1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2007 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 27 #pragma ident "%Z%%M% %I% %E% SMI" 28 29 #include <sys/types.h> 30 #include <sys/t_lock.h> 31 #include <sys/param.h> 32 #include <sys/segments.h> 33 #include <sys/sysmacros.h> 34 #include <sys/signal.h> 35 #include <sys/systm.h> 36 #include <sys/user.h> 37 #include <sys/mman.h> 38 #include <sys/vm.h> 39 40 #include <sys/disp.h> 41 #include <sys/class.h> 42 43 #include <sys/proc.h> 44 #include <sys/buf.h> 45 #include <sys/kmem.h> 46 47 #include <sys/reboot.h> 48 #include <sys/uadmin.h> 49 #include <sys/callb.h> 50 51 #include <sys/cred.h> 52 #include <sys/vnode.h> 53 #include <sys/file.h> 54 55 #include <sys/procfs.h> 56 #include <sys/acct.h> 57 58 #include <sys/vfs.h> 59 #include <sys/dnlc.h> 60 #include <sys/var.h> 61 #include <sys/cmn_err.h> 62 #include <sys/utsname.h> 63 #include <sys/debug.h> 64 65 #include <sys/dumphdr.h> 66 #include <sys/bootconf.h> 67 #include <sys/varargs.h> 68 #include <sys/promif.h> 69 #include <sys/modctl.h> 70 71 #include <sys/consdev.h> 72 #include <sys/frame.h> 73 74 #include <sys/sunddi.h> 75 #include <sys/ddidmareq.h> 76 #include <sys/psw.h> 77 #include <sys/regset.h> 78 #include <sys/privregs.h> 79 #include <sys/clock.h> 80 #include <sys/tss.h> 81 #include <sys/cpu.h> 82 #include <sys/stack.h> 83 #include <sys/trap.h> 84 #include <sys/pic.h> 85 #include <vm/hat.h> 86 #include <vm/anon.h> 87 #include <vm/as.h> 88 #include <vm/page.h> 89 #include <vm/seg.h> 90 #include <vm/seg_kmem.h> 91 #include <vm/seg_map.h> 92 #include <vm/seg_vn.h> 93 #include <vm/seg_kp.h> 94 #include <vm/hat_i86.h> 95 #include <sys/swap.h> 96 #include <sys/thread.h> 97 #include <sys/sysconf.h> 98 #include <sys/vm_machparam.h> 99 #include <sys/archsystm.h> 100 #include <sys/machsystm.h> 101 #include <sys/machlock.h> 102 #include <sys/x_call.h> 103 #include <sys/instance.h> 104 105 #include <sys/time.h> 106 #include <sys/smp_impldefs.h> 107 #include <sys/psm_types.h> 108 #include <sys/atomic.h> 109 #include <sys/panic.h> 110 #include <sys/cpuvar.h> 111 #include <sys/dtrace.h> 112 #include <sys/bl.h> 113 #include <sys/nvpair.h> 114 #include <sys/x86_archext.h> 115 #include <sys/pool_pset.h> 116 #include <sys/autoconf.h> 117 #include <sys/mem.h> 118 #include <sys/dumphdr.h> 119 #include <sys/compress.h> 120 121 #ifdef TRAPTRACE 122 #include <sys/traptrace.h> 123 #endif /* TRAPTRACE */ 124 125 #ifdef C2_AUDIT 126 extern void audit_enterprom(int); 127 extern void audit_exitprom(int); 128 #endif 129 130 /* 131 * The panicbuf array is used to record messages and state: 132 */ 133 char panicbuf[PANICBUFSIZE]; 134 135 /* 136 * maxphys - used during physio 137 * klustsize - used for klustering by swapfs and specfs 138 */ 139 int maxphys = 56 * 1024; /* XXX See vm_subr.c - max b_count in physio */ 140 int klustsize = 56 * 1024; 141 142 caddr_t p0_va; /* Virtual address for accessing physical page 0 */ 143 144 /* 145 * defined here, though unused on x86, 146 * to make kstat_fr.c happy. 147 */ 148 int vac; 149 150 void stop_other_cpus(); 151 void debug_enter(char *); 152 153 extern void pm_cfb_check_and_powerup(void); 154 extern void pm_cfb_rele(void); 155 156 /* 157 * Machine dependent code to reboot. 158 * "mdep" is interpreted as a character pointer; if non-null, it is a pointer 159 * to a string to be used as the argument string when rebooting. 160 * 161 * "invoke_cb" is a boolean. It is set to true when mdboot() can safely 162 * invoke CB_CL_MDBOOT callbacks before shutting the system down, i.e. when 163 * we are in a normal shutdown sequence (interrupts are not blocked, the 164 * system is not panic'ing or being suspended). 165 */ 166 /*ARGSUSED*/ 167 void 168 mdboot(int cmd, int fcn, char *mdep, boolean_t invoke_cb) 169 { 170 extern void mtrr_resync(void); 171 172 if (!panicstr) { 173 kpreempt_disable(); 174 affinity_set(CPU_CURRENT); 175 } 176 177 /* 178 * XXX - rconsvp is set to NULL to ensure that output messages 179 * are sent to the underlying "hardware" device using the 180 * monitor's printf routine since we are in the process of 181 * either rebooting or halting the machine. 182 */ 183 rconsvp = NULL; 184 185 /* 186 * Print the reboot message now, before pausing other cpus. 187 * There is a race condition in the printing support that 188 * can deadlock multiprocessor machines. 189 */ 190 if (!(fcn == AD_HALT || fcn == AD_POWEROFF)) 191 prom_printf("rebooting...\n"); 192 193 /* 194 * We can't bring up the console from above lock level, so do it now 195 */ 196 pm_cfb_check_and_powerup(); 197 198 /* make sure there are no more changes to the device tree */ 199 devtree_freeze(); 200 201 if (invoke_cb) 202 (void) callb_execute_class(CB_CL_MDBOOT, NULL); 203 204 /* 205 * Clear any unresolved UEs from memory. 206 */ 207 page_retire_mdboot(); 208 209 /* 210 * stop other cpus and raise our priority. since there is only 211 * one active cpu after this, and our priority will be too high 212 * for us to be preempted, we're essentially single threaded 213 * from here on out. 214 */ 215 (void) spl6(); 216 if (!panicstr) { 217 mutex_enter(&cpu_lock); 218 pause_cpus(NULL); 219 mutex_exit(&cpu_lock); 220 } 221 222 /* 223 * try and reset leaf devices. reset_leaves() should only 224 * be called when there are no other threads that could be 225 * accessing devices 226 */ 227 reset_leaves(); 228 229 (void) spl8(); 230 (*psm_shutdownf)(cmd, fcn); 231 232 mtrr_resync(); 233 234 if (fcn == AD_HALT || fcn == AD_POWEROFF) 235 halt((char *)NULL); 236 else 237 prom_reboot(""); 238 /*NOTREACHED*/ 239 } 240 241 /* mdpreboot - may be called prior to mdboot while root fs still mounted */ 242 /*ARGSUSED*/ 243 void 244 mdpreboot(int cmd, int fcn, char *mdep) 245 { 246 (*psm_preshutdownf)(cmd, fcn); 247 } 248 249 void 250 idle_other_cpus() 251 { 252 int cpuid = CPU->cpu_id; 253 cpuset_t xcset; 254 255 ASSERT(cpuid < NCPU); 256 CPUSET_ALL_BUT(xcset, cpuid); 257 xc_capture_cpus(xcset); 258 } 259 260 void 261 resume_other_cpus() 262 { 263 ASSERT(CPU->cpu_id < NCPU); 264 265 xc_release_cpus(); 266 } 267 268 void 269 stop_other_cpus() 270 { 271 int cpuid = CPU->cpu_id; 272 cpuset_t xcset; 273 274 ASSERT(cpuid < NCPU); 275 276 /* 277 * xc_trycall will attempt to make all other CPUs execute mach_cpu_halt, 278 * and will return immediately regardless of whether or not it was 279 * able to make them do it. 280 */ 281 CPUSET_ALL_BUT(xcset, cpuid); 282 xc_trycall(NULL, NULL, NULL, xcset, (int (*)())mach_cpu_halt); 283 } 284 285 /* 286 * Machine dependent abort sequence handling 287 */ 288 void 289 abort_sequence_enter(char *msg) 290 { 291 if (abort_enable == 0) { 292 #ifdef C2_AUDIT 293 if (audit_active) 294 audit_enterprom(0); 295 #endif /* C2_AUDIT */ 296 return; 297 } 298 #ifdef C2_AUDIT 299 if (audit_active) 300 audit_enterprom(1); 301 #endif /* C2_AUDIT */ 302 debug_enter(msg); 303 #ifdef C2_AUDIT 304 if (audit_active) 305 audit_exitprom(1); 306 #endif /* C2_AUDIT */ 307 } 308 309 /* 310 * Enter debugger. Called when the user types ctrl-alt-d or whenever 311 * code wants to enter the debugger and possibly resume later. 312 */ 313 void 314 debug_enter( 315 char *msg) /* message to print, possibly NULL */ 316 { 317 if (dtrace_debugger_init != NULL) 318 (*dtrace_debugger_init)(); 319 320 if (msg) 321 prom_printf("%s\n", msg); 322 323 if (boothowto & RB_DEBUG) 324 kmdb_enter(); 325 326 if (dtrace_debugger_fini != NULL) 327 (*dtrace_debugger_fini)(); 328 } 329 330 void 331 reset(void) 332 { 333 ushort_t *bios_memchk; 334 335 /* 336 * Can't use psm_map_phys before the hat is initialized. 337 */ 338 if (khat_running) { 339 bios_memchk = (ushort_t *)psm_map_phys(0x472, 340 sizeof (ushort_t), PROT_READ | PROT_WRITE); 341 if (bios_memchk) 342 *bios_memchk = 0x1234; /* bios memory check disable */ 343 } 344 345 if (ddi_prop_exists(DDI_DEV_T_ANY, ddi_root_node(), 0, "efi-systab")) 346 efi_reset(); 347 pc_reset(); 348 /*NOTREACHED*/ 349 } 350 351 /* 352 * Halt the machine and return to the monitor 353 */ 354 void 355 halt(char *s) 356 { 357 stop_other_cpus(); /* send stop signal to other CPUs */ 358 if (s) 359 prom_printf("(%s) \n", s); 360 prom_exit_to_mon(); 361 /*NOTREACHED*/ 362 } 363 364 /* 365 * Initiate interrupt redistribution. 366 */ 367 void 368 i_ddi_intr_redist_all_cpus() 369 { 370 } 371 372 /* 373 * XXX These probably ought to live somewhere else 374 * XXX They are called from mem.c 375 */ 376 377 /* 378 * Convert page frame number to an OBMEM page frame number 379 * (i.e. put in the type bits -- zero for this implementation) 380 */ 381 pfn_t 382 impl_obmem_pfnum(pfn_t pf) 383 { 384 return (pf); 385 } 386 387 #ifdef NM_DEBUG 388 int nmi_test = 0; /* checked in intentry.s during clock int */ 389 int nmtest = -1; 390 nmfunc1(arg, rp) 391 int arg; 392 struct regs *rp; 393 { 394 printf("nmi called with arg = %x, regs = %x\n", arg, rp); 395 nmtest += 50; 396 if (arg == nmtest) { 397 printf("ip = %x\n", rp->r_pc); 398 return (1); 399 } 400 return (0); 401 } 402 403 #endif 404 405 #include <sys/bootsvcs.h> 406 407 /* Hacked up initialization for initial kernel check out is HERE. */ 408 /* The basic steps are: */ 409 /* kernel bootfuncs definition/initialization for KADB */ 410 /* kadb bootfuncs pointer initialization */ 411 /* putchar/getchar (interrupts disabled) */ 412 413 /* kadb bootfuncs pointer initialization */ 414 415 int 416 sysp_getchar() 417 { 418 int i; 419 ulong_t s; 420 421 if (cons_polledio == NULL) { 422 /* Uh oh */ 423 prom_printf("getchar called with no console\n"); 424 for (;;) 425 /* LOOP FOREVER */; 426 } 427 428 s = clear_int_flag(); 429 i = cons_polledio->cons_polledio_getchar( 430 cons_polledio->cons_polledio_argument); 431 restore_int_flag(s); 432 return (i); 433 } 434 435 void 436 sysp_putchar(int c) 437 { 438 ulong_t s; 439 440 /* 441 * We have no alternative but to drop the output on the floor. 442 */ 443 if (cons_polledio == NULL || 444 cons_polledio->cons_polledio_putchar == NULL) 445 return; 446 447 s = clear_int_flag(); 448 cons_polledio->cons_polledio_putchar( 449 cons_polledio->cons_polledio_argument, c); 450 restore_int_flag(s); 451 } 452 453 int 454 sysp_ischar() 455 { 456 int i; 457 ulong_t s; 458 459 if (cons_polledio == NULL || 460 cons_polledio->cons_polledio_ischar == NULL) 461 return (0); 462 463 s = clear_int_flag(); 464 i = cons_polledio->cons_polledio_ischar( 465 cons_polledio->cons_polledio_argument); 466 restore_int_flag(s); 467 return (i); 468 } 469 470 int 471 goany(void) 472 { 473 prom_printf("Type any key to continue "); 474 (void) prom_getchar(); 475 prom_printf("\n"); 476 return (1); 477 } 478 479 static struct boot_syscalls kern_sysp = { 480 sysp_getchar, /* unchar (*getchar)(); 7 */ 481 sysp_putchar, /* int (*putchar)(); 8 */ 482 sysp_ischar, /* int (*ischar)(); 9 */ 483 }; 484 485 void 486 kadb_uses_kernel() 487 { 488 /* 489 * This routine is now totally misnamed, since it does not in fact 490 * control kadb's I/O; it only controls the kernel's prom_* I/O. 491 */ 492 sysp = &kern_sysp; 493 } 494 495 /* 496 * the interface to the outside world 497 */ 498 499 /* 500 * poll_port -- wait for a register to achieve a 501 * specific state. Arguments are a mask of bits we care about, 502 * and two sub-masks. To return normally, all the bits in the 503 * first sub-mask must be ON, all the bits in the second sub- 504 * mask must be OFF. If about seconds pass without the register 505 * achieving the desired bit configuration, we return 1, else 506 * 0. 507 */ 508 int 509 poll_port(ushort_t port, ushort_t mask, ushort_t onbits, ushort_t offbits) 510 { 511 int i; 512 ushort_t maskval; 513 514 for (i = 500000; i; i--) { 515 maskval = inb(port) & mask; 516 if (((maskval & onbits) == onbits) && 517 ((maskval & offbits) == 0)) 518 return (0); 519 drv_usecwait(10); 520 } 521 return (1); 522 } 523 524 /* 525 * set_idle_cpu is called from idle() when a CPU becomes idle. 526 */ 527 /*LINTED: static unused */ 528 static uint_t last_idle_cpu; 529 530 /*ARGSUSED*/ 531 void 532 set_idle_cpu(int cpun) 533 { 534 last_idle_cpu = cpun; 535 (*psm_set_idle_cpuf)(cpun); 536 } 537 538 /* 539 * unset_idle_cpu is called from idle() when a CPU is no longer idle. 540 */ 541 /*ARGSUSED*/ 542 void 543 unset_idle_cpu(int cpun) 544 { 545 (*psm_unset_idle_cpuf)(cpun); 546 } 547 548 /* 549 * This routine is almost correct now, but not quite. It still needs the 550 * equivalent concept of "hres_last_tick", just like on the sparc side. 551 * The idea is to take a snapshot of the hi-res timer while doing the 552 * hrestime_adj updates under hres_lock in locore, so that the small 553 * interval between interrupt assertion and interrupt processing is 554 * accounted for correctly. Once we have this, the code below should 555 * be modified to subtract off hres_last_tick rather than hrtime_base. 556 * 557 * I'd have done this myself, but I don't have source to all of the 558 * vendor-specific hi-res timer routines (grrr...). The generic hook I 559 * need is something like "gethrtime_unlocked()", which would be just like 560 * gethrtime() but would assume that you're already holding CLOCK_LOCK(). 561 * This is what the GET_HRTIME() macro is for on sparc (although it also 562 * serves the function of making time available without a function call 563 * so you don't take a register window overflow while traps are disabled). 564 */ 565 void 566 pc_gethrestime(timestruc_t *tp) 567 { 568 int lock_prev; 569 timestruc_t now; 570 int nslt; /* nsec since last tick */ 571 int adj; /* amount of adjustment to apply */ 572 573 loop: 574 lock_prev = hres_lock; 575 now = hrestime; 576 nslt = (int)(gethrtime() - hres_last_tick); 577 if (nslt < 0) { 578 /* 579 * nslt < 0 means a tick came between sampling 580 * gethrtime() and hres_last_tick; restart the loop 581 */ 582 583 goto loop; 584 } 585 now.tv_nsec += nslt; 586 if (hrestime_adj != 0) { 587 if (hrestime_adj > 0) { 588 adj = (nslt >> ADJ_SHIFT); 589 if (adj > hrestime_adj) 590 adj = (int)hrestime_adj; 591 } else { 592 adj = -(nslt >> ADJ_SHIFT); 593 if (adj < hrestime_adj) 594 adj = (int)hrestime_adj; 595 } 596 now.tv_nsec += adj; 597 } 598 while ((unsigned long)now.tv_nsec >= NANOSEC) { 599 600 /* 601 * We might have a large adjustment or have been in the 602 * debugger for a long time; take care of (at most) four 603 * of those missed seconds (tv_nsec is 32 bits, so 604 * anything >4s will be wrapping around). However, 605 * anything more than 2 seconds out of sync will trigger 606 * timedelta from clock() to go correct the time anyway, 607 * so do what we can, and let the big crowbar do the 608 * rest. A similar correction while loop exists inside 609 * hres_tick(); in all cases we'd like tv_nsec to 610 * satisfy 0 <= tv_nsec < NANOSEC to avoid confusing 611 * user processes, but if tv_sec's a little behind for a 612 * little while, that's OK; time still monotonically 613 * increases. 614 */ 615 616 now.tv_nsec -= NANOSEC; 617 now.tv_sec++; 618 } 619 if ((hres_lock & ~1) != lock_prev) 620 goto loop; 621 622 *tp = now; 623 } 624 625 void 626 gethrestime_lasttick(timespec_t *tp) 627 { 628 int s; 629 630 s = hr_clock_lock(); 631 *tp = hrestime; 632 hr_clock_unlock(s); 633 } 634 635 time_t 636 gethrestime_sec(void) 637 { 638 timestruc_t now; 639 640 gethrestime(&now); 641 return (now.tv_sec); 642 } 643 644 /* 645 * Initialize a kernel thread's stack 646 */ 647 648 caddr_t 649 thread_stk_init(caddr_t stk) 650 { 651 ASSERT(((uintptr_t)stk & (STACK_ALIGN - 1)) == 0); 652 return (stk - SA(MINFRAME)); 653 } 654 655 /* 656 * Initialize lwp's kernel stack. 657 */ 658 659 #ifdef TRAPTRACE 660 /* 661 * There's a tricky interdependency here between use of sysenter and 662 * TRAPTRACE which needs recording to avoid future confusion (this is 663 * about the third time I've re-figured this out ..) 664 * 665 * Here's how debugging lcall works with TRAPTRACE. 666 * 667 * 1 We're in userland with a breakpoint on the lcall instruction. 668 * 2 We execute the instruction - the instruction pushes the userland 669 * %ss, %esp, %efl, %cs, %eip on the stack and zips into the kernel 670 * via the call gate. 671 * 3 The hardware raises a debug trap in kernel mode, the hardware 672 * pushes %efl, %cs, %eip and gets to dbgtrap via the idt. 673 * 4 dbgtrap pushes the error code and trapno and calls cmntrap 674 * 5 cmntrap finishes building a trap frame 675 * 6 The TRACE_REGS macros in cmntrap copy a REGSIZE worth chunk 676 * off the stack into the traptrace buffer. 677 * 678 * This means that the traptrace buffer contains the wrong values in 679 * %esp and %ss, but everything else in there is correct. 680 * 681 * Here's how debugging sysenter works with TRAPTRACE. 682 * 683 * a We're in userland with a breakpoint on the sysenter instruction. 684 * b We execute the instruction - the instruction pushes -nothing- 685 * on the stack, but sets %cs, %eip, %ss, %esp to prearranged 686 * values to take us to sys_sysenter, at the top of the lwp's 687 * stack. 688 * c goto 3 689 * 690 * At this point, because we got into the kernel without the requisite 691 * five pushes on the stack, if we didn't make extra room, we'd 692 * end up with the TRACE_REGS macro fetching the saved %ss and %esp 693 * values from negative (unmapped) stack addresses -- which really bites. 694 * That's why we do the '-= 8' below. 695 * 696 * XXX Note that reading "up" lwp0's stack works because t0 is declared 697 * right next to t0stack in locore.s 698 */ 699 #endif 700 701 caddr_t 702 lwp_stk_init(klwp_t *lwp, caddr_t stk) 703 { 704 caddr_t oldstk; 705 struct pcb *pcb = &lwp->lwp_pcb; 706 707 oldstk = stk; 708 stk -= SA(sizeof (struct regs) + SA(MINFRAME)); 709 #ifdef TRAPTRACE 710 stk -= 2 * sizeof (greg_t); /* space for phony %ss:%sp (see above) */ 711 #endif 712 stk = (caddr_t)((uintptr_t)stk & ~(STACK_ALIGN - 1ul)); 713 bzero(stk, oldstk - stk); 714 lwp->lwp_regs = (void *)(stk + SA(MINFRAME)); 715 716 /* 717 * Arrange that the virtualized %fs and %gs GDT descriptors 718 * have a well-defined initial state (present, ring 3 719 * and of type data). 720 */ 721 #if defined(__amd64) 722 if (lwp_getdatamodel(lwp) == DATAMODEL_NATIVE) 723 pcb->pcb_fsdesc = pcb->pcb_gsdesc = zero_udesc; 724 else 725 pcb->pcb_fsdesc = pcb->pcb_gsdesc = zero_u32desc; 726 #elif defined(__i386) 727 pcb->pcb_fsdesc = pcb->pcb_gsdesc = zero_udesc; 728 #endif /* __i386 */ 729 lwp_installctx(lwp); 730 return (stk); 731 } 732 733 /*ARGSUSED*/ 734 void 735 lwp_stk_fini(klwp_t *lwp) 736 {} 737 738 /* 739 * If we're not the panic CPU, we wait in panic_idle for reboot. 740 */ 741 static void 742 panic_idle(void) 743 { 744 splx(ipltospl(CLOCK_LEVEL)); 745 (void) setjmp(&curthread->t_pcb); 746 747 for (;;) 748 ; 749 } 750 751 /* 752 * Stop the other CPUs by cross-calling them and forcing them to enter 753 * the panic_idle() loop above. 754 */ 755 /*ARGSUSED*/ 756 void 757 panic_stopcpus(cpu_t *cp, kthread_t *t, int spl) 758 { 759 processorid_t i; 760 cpuset_t xcset; 761 762 (void) splzs(); 763 764 CPUSET_ALL_BUT(xcset, cp->cpu_id); 765 xc_trycall(NULL, NULL, NULL, xcset, (int (*)())panic_idle); 766 767 for (i = 0; i < NCPU; i++) { 768 if (i != cp->cpu_id && cpu[i] != NULL && 769 (cpu[i]->cpu_flags & CPU_EXISTS)) 770 cpu[i]->cpu_flags |= CPU_QUIESCED; 771 } 772 } 773 774 /* 775 * Platform callback following each entry to panicsys(). 776 */ 777 /*ARGSUSED*/ 778 void 779 panic_enter_hw(int spl) 780 { 781 /* Nothing to do here */ 782 } 783 784 /* 785 * Platform-specific code to execute after panicstr is set: we invoke 786 * the PSM entry point to indicate that a panic has occurred. 787 */ 788 /*ARGSUSED*/ 789 void 790 panic_quiesce_hw(panic_data_t *pdp) 791 { 792 psm_notifyf(PSM_PANIC_ENTER); 793 794 #ifdef TRAPTRACE 795 /* 796 * Turn off TRAPTRACE 797 */ 798 TRAPTRACE_FREEZE; 799 #endif /* TRAPTRACE */ 800 } 801 802 /* 803 * Platform callback prior to writing crash dump. 804 */ 805 /*ARGSUSED*/ 806 void 807 panic_dump_hw(int spl) 808 { 809 /* Nothing to do here */ 810 } 811 812 /*ARGSUSED*/ 813 void 814 plat_tod_fault(enum tod_fault_type tod_bad) 815 {} 816 817 /*ARGSUSED*/ 818 int 819 blacklist(int cmd, const char *scheme, nvlist_t *fmri, const char *class) 820 { 821 return (ENOTSUP); 822 } 823 824 /* 825 * The underlying console output routines are protected by raising IPL in case 826 * we are still calling into the early boot services. Once we start calling 827 * the kernel console emulator, it will disable interrupts completely during 828 * character rendering (see sysp_putchar, for example). Refer to the comments 829 * and code in common/os/console.c for more information on these callbacks. 830 */ 831 /*ARGSUSED*/ 832 int 833 console_enter(int busy) 834 { 835 return (splzs()); 836 } 837 838 /*ARGSUSED*/ 839 void 840 console_exit(int busy, int spl) 841 { 842 splx(spl); 843 } 844 845 /* 846 * Allocate a region of virtual address space, unmapped. 847 * Stubbed out except on sparc, at least for now. 848 */ 849 /*ARGSUSED*/ 850 void * 851 boot_virt_alloc(void *addr, size_t size) 852 { 853 return (addr); 854 } 855 856 volatile unsigned long tenmicrodata; 857 858 void 859 tenmicrosec(void) 860 { 861 extern int tsc_gethrtime_initted; 862 863 if (tsc_gethrtime_initted) { 864 hrtime_t start, end; 865 start = end = gethrtime(); 866 while ((end - start) < (10 * (NANOSEC / MICROSEC))) { 867 SMT_PAUSE(); 868 end = gethrtime(); 869 } 870 } else { 871 int i; 872 873 /* 874 * Artificial loop to induce delay. 875 */ 876 for (i = 0; i < microdata; i++) 877 tenmicrodata = microdata; 878 } 879 } 880 881 /* 882 * get_cpu_mstate() is passed an array of timestamps, NCMSTATES 883 * long, and it fills in the array with the time spent on cpu in 884 * each of the mstates, where time is returned in nsec. 885 * 886 * No guarantee is made that the returned values in times[] will 887 * monotonically increase on sequential calls, although this will 888 * be true in the long run. Any such guarantee must be handled by 889 * the caller, if needed. This can happen if we fail to account 890 * for elapsed time due to a generation counter conflict, yet we 891 * did account for it on a prior call (see below). 892 * 893 * The complication is that the cpu in question may be updating 894 * its microstate at the same time that we are reading it. 895 * Because the microstate is only updated when the CPU's state 896 * changes, the values in cpu_intracct[] can be indefinitely out 897 * of date. To determine true current values, it is necessary to 898 * compare the current time with cpu_mstate_start, and add the 899 * difference to times[cpu_mstate]. 900 * 901 * This can be a problem if those values are changing out from 902 * under us. Because the code path in new_cpu_mstate() is 903 * performance critical, we have not added a lock to it. Instead, 904 * we have added a generation counter. Before beginning 905 * modifications, the counter is set to 0. After modifications, 906 * it is set to the old value plus one. 907 * 908 * get_cpu_mstate() will not consider the values of cpu_mstate 909 * and cpu_mstate_start to be usable unless the value of 910 * cpu_mstate_gen is both non-zero and unchanged, both before and 911 * after reading the mstate information. Note that we must 912 * protect against out-of-order loads around accesses to the 913 * generation counter. Also, this is a best effort approach in 914 * that we do not retry should the counter be found to have 915 * changed. 916 * 917 * cpu_intracct[] is used to identify time spent in each CPU 918 * mstate while handling interrupts. Such time should be reported 919 * against system time, and so is subtracted out from its 920 * corresponding cpu_acct[] time and added to 921 * cpu_acct[CMS_SYSTEM]. 922 */ 923 924 void 925 get_cpu_mstate(cpu_t *cpu, hrtime_t *times) 926 { 927 int i; 928 hrtime_t now, start; 929 uint16_t gen; 930 uint16_t state; 931 hrtime_t intracct[NCMSTATES]; 932 933 /* 934 * Load all volatile state under the protection of membar. 935 * cpu_acct[cpu_mstate] must be loaded to avoid double counting 936 * of (now - cpu_mstate_start) by a change in CPU mstate that 937 * arrives after we make our last check of cpu_mstate_gen. 938 */ 939 940 now = gethrtime_unscaled(); 941 gen = cpu->cpu_mstate_gen; 942 943 membar_consumer(); /* guarantee load ordering */ 944 start = cpu->cpu_mstate_start; 945 state = cpu->cpu_mstate; 946 for (i = 0; i < NCMSTATES; i++) { 947 intracct[i] = cpu->cpu_intracct[i]; 948 times[i] = cpu->cpu_acct[i]; 949 } 950 membar_consumer(); /* guarantee load ordering */ 951 952 if (gen != 0 && gen == cpu->cpu_mstate_gen && now > start) 953 times[state] += now - start; 954 955 for (i = 0; i < NCMSTATES; i++) { 956 if (i == CMS_SYSTEM) 957 continue; 958 times[i] -= intracct[i]; 959 if (times[i] < 0) { 960 intracct[i] += times[i]; 961 times[i] = 0; 962 } 963 times[CMS_SYSTEM] += intracct[i]; 964 scalehrtime(×[i]); 965 } 966 scalehrtime(×[CMS_SYSTEM]); 967 } 968 969 970 /* 971 * This is a version of the rdmsr instruction that allows 972 * an error code to be returned in the case of failure. 973 */ 974 int 975 checked_rdmsr(uint_t msr, uint64_t *value) 976 { 977 if ((x86_feature & X86_MSR) == 0) 978 return (ENOTSUP); 979 *value = rdmsr(msr); 980 return (0); 981 } 982 983 /* 984 * This is a version of the wrmsr instruction that allows 985 * an error code to be returned in the case of failure. 986 */ 987 int 988 checked_wrmsr(uint_t msr, uint64_t value) 989 { 990 if ((x86_feature & X86_MSR) == 0) 991 return (ENOTSUP); 992 wrmsr(msr, value); 993 return (0); 994 } 995 996 /* 997 * Return true if the given page VA can be read via /dev/kmem. 998 */ 999 /*ARGSUSED*/ 1000 int 1001 plat_mem_valid_page(uintptr_t pageaddr, uio_rw_t rw) 1002 { 1003 return (0); 1004 } 1005 1006 int 1007 dump_plat_addr() 1008 { 1009 return (0); 1010 } 1011 1012 void 1013 dump_plat_pfn() 1014 { 1015 } 1016 1017 /*ARGSUSED*/ 1018 int 1019 dump_plat_data(void *dump_cbuf) 1020 { 1021 return (0); 1022 } 1023 1024 /* 1025 * Calculates a linear address, given the CS selector and PC values 1026 * by looking up the %cs selector process's LDT or the CPU's GDT. 1027 * proc->p_ldtlock must be held across this call. 1028 */ 1029 int 1030 linear_pc(struct regs *rp, proc_t *p, caddr_t *linearp) 1031 { 1032 user_desc_t *descrp; 1033 caddr_t baseaddr; 1034 uint16_t idx = SELTOIDX(rp->r_cs); 1035 1036 ASSERT(rp->r_cs <= 0xFFFF); 1037 ASSERT(MUTEX_HELD(&p->p_ldtlock)); 1038 1039 if (SELISLDT(rp->r_cs)) { 1040 /* 1041 * Currently 64 bit processes cannot have private LDTs. 1042 */ 1043 ASSERT(p->p_model != DATAMODEL_LP64); 1044 1045 if (p->p_ldt == NULL) 1046 return (-1); 1047 1048 descrp = &p->p_ldt[idx]; 1049 baseaddr = (caddr_t)(uintptr_t)USEGD_GETBASE(descrp); 1050 1051 /* 1052 * Calculate the linear address (wraparound is not only ok, 1053 * it's expected behavior). The cast to uint32_t is because 1054 * LDT selectors are only allowed in 32-bit processes. 1055 */ 1056 *linearp = (caddr_t)(uintptr_t)(uint32_t)((uintptr_t)baseaddr + 1057 rp->r_pc); 1058 } else { 1059 #ifdef DEBUG 1060 descrp = &CPU->cpu_gdt[idx]; 1061 baseaddr = (caddr_t)(uintptr_t)USEGD_GETBASE(descrp); 1062 /* GDT-based descriptors' base addresses should always be 0 */ 1063 ASSERT(baseaddr == 0); 1064 #endif 1065 *linearp = (caddr_t)(uintptr_t)rp->r_pc; 1066 } 1067 1068 return (0); 1069 } 1070 1071 /* 1072 * The implementation of dtrace_linear_pc is similar to the that of 1073 * linear_pc, above, but here we acquire p_ldtlock before accessing 1074 * p_ldt. This implementation is used by the pid provider; we prefix 1075 * it with "dtrace_" to avoid inducing spurious tracing events. 1076 */ 1077 int 1078 dtrace_linear_pc(struct regs *rp, proc_t *p, caddr_t *linearp) 1079 { 1080 user_desc_t *descrp; 1081 caddr_t baseaddr; 1082 uint16_t idx = SELTOIDX(rp->r_cs); 1083 1084 ASSERT(rp->r_cs <= 0xFFFF); 1085 1086 if (SELISLDT(rp->r_cs)) { 1087 /* 1088 * Currently 64 bit processes cannot have private LDTs. 1089 */ 1090 ASSERT(p->p_model != DATAMODEL_LP64); 1091 1092 mutex_enter(&p->p_ldtlock); 1093 if (p->p_ldt == NULL) { 1094 mutex_exit(&p->p_ldtlock); 1095 return (-1); 1096 } 1097 descrp = &p->p_ldt[idx]; 1098 baseaddr = (caddr_t)(uintptr_t)USEGD_GETBASE(descrp); 1099 mutex_exit(&p->p_ldtlock); 1100 1101 /* 1102 * Calculate the linear address (wraparound is not only ok, 1103 * it's expected behavior). The cast to uint32_t is because 1104 * LDT selectors are only allowed in 32-bit processes. 1105 */ 1106 *linearp = (caddr_t)(uintptr_t)(uint32_t)((uintptr_t)baseaddr + 1107 rp->r_pc); 1108 } else { 1109 #ifdef DEBUG 1110 descrp = &CPU->cpu_gdt[idx]; 1111 baseaddr = (caddr_t)(uintptr_t)USEGD_GETBASE(descrp); 1112 /* GDT-based descriptors' base addresses should always be 0 */ 1113 ASSERT(baseaddr == 0); 1114 #endif 1115 *linearp = (caddr_t)(uintptr_t)rp->r_pc; 1116 } 1117 1118 return (0); 1119 } 1120