1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2009 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 27 #include <sys/types.h> 28 #include <sys/t_lock.h> 29 #include <sys/param.h> 30 #include <sys/segments.h> 31 #include <sys/sysmacros.h> 32 #include <sys/signal.h> 33 #include <sys/systm.h> 34 #include <sys/user.h> 35 #include <sys/mman.h> 36 #include <sys/vm.h> 37 38 #include <sys/disp.h> 39 #include <sys/class.h> 40 41 #include <sys/proc.h> 42 #include <sys/buf.h> 43 #include <sys/kmem.h> 44 45 #include <sys/reboot.h> 46 #include <sys/uadmin.h> 47 #include <sys/callb.h> 48 49 #include <sys/cred.h> 50 #include <sys/vnode.h> 51 #include <sys/file.h> 52 53 #include <sys/procfs.h> 54 #include <sys/acct.h> 55 56 #include <sys/vfs.h> 57 #include <sys/dnlc.h> 58 #include <sys/var.h> 59 #include <sys/cmn_err.h> 60 #include <sys/utsname.h> 61 #include <sys/debug.h> 62 63 #include <sys/dumphdr.h> 64 #include <sys/bootconf.h> 65 #include <sys/varargs.h> 66 #include <sys/promif.h> 67 #include <sys/modctl.h> 68 69 #include <sys/consdev.h> 70 #include <sys/frame.h> 71 72 #include <sys/sunddi.h> 73 #include <sys/ddidmareq.h> 74 #include <sys/psw.h> 75 #include <sys/regset.h> 76 #include <sys/privregs.h> 77 #include <sys/clock.h> 78 #include <sys/tss.h> 79 #include <sys/cpu.h> 80 #include <sys/stack.h> 81 #include <sys/trap.h> 82 #include <sys/pic.h> 83 #include <vm/hat.h> 84 #include <vm/anon.h> 85 #include <vm/as.h> 86 #include <vm/page.h> 87 #include <vm/seg.h> 88 #include <vm/seg_kmem.h> 89 #include <vm/seg_map.h> 90 #include <vm/seg_vn.h> 91 #include <vm/seg_kp.h> 92 #include <vm/hat_i86.h> 93 #include <sys/swap.h> 94 #include <sys/thread.h> 95 #include <sys/sysconf.h> 96 #include <sys/vm_machparam.h> 97 #include <sys/archsystm.h> 98 #include <sys/machsystm.h> 99 #include <sys/machlock.h> 100 #include <sys/x_call.h> 101 #include <sys/instance.h> 102 103 #include <sys/time.h> 104 #include <sys/smp_impldefs.h> 105 #include <sys/psm_types.h> 106 #include <sys/atomic.h> 107 #include <sys/panic.h> 108 #include <sys/cpuvar.h> 109 #include <sys/dtrace.h> 110 #include <sys/bl.h> 111 #include <sys/nvpair.h> 112 #include <sys/x86_archext.h> 113 #include <sys/pool_pset.h> 114 #include <sys/autoconf.h> 115 #include <sys/mem.h> 116 #include <sys/dumphdr.h> 117 #include <sys/compress.h> 118 #include <sys/cpu_module.h> 119 #if defined(__xpv) 120 #include <sys/hypervisor.h> 121 #include <sys/xpv_panic.h> 122 #endif 123 124 #include <sys/fastboot.h> 125 #include <sys/machelf.h> 126 #include <sys/kobj.h> 127 #include <sys/multiboot.h> 128 129 #ifdef TRAPTRACE 130 #include <sys/traptrace.h> 131 #endif /* TRAPTRACE */ 132 133 extern void audit_enterprom(int); 134 extern void audit_exitprom(int); 135 136 /* 137 * Occassionally the kernel knows better whether to power-off or reboot. 138 */ 139 int force_shutdown_method = AD_UNKNOWN; 140 141 /* 142 * The panicbuf array is used to record messages and state: 143 */ 144 char panicbuf[PANICBUFSIZE]; 145 146 /* 147 * maxphys - used during physio 148 * klustsize - used for klustering by swapfs and specfs 149 */ 150 int maxphys = 56 * 1024; /* XXX See vm_subr.c - max b_count in physio */ 151 int klustsize = 56 * 1024; 152 153 caddr_t p0_va; /* Virtual address for accessing physical page 0 */ 154 155 /* 156 * defined here, though unused on x86, 157 * to make kstat_fr.c happy. 158 */ 159 int vac; 160 161 void debug_enter(char *); 162 163 extern void pm_cfb_check_and_powerup(void); 164 extern void pm_cfb_rele(void); 165 166 extern fastboot_info_t newkernel; 167 168 /* 169 * Machine dependent code to reboot. 170 * "mdep" is interpreted as a character pointer; if non-null, it is a pointer 171 * to a string to be used as the argument string when rebooting. 172 * 173 * "invoke_cb" is a boolean. It is set to true when mdboot() can safely 174 * invoke CB_CL_MDBOOT callbacks before shutting the system down, i.e. when 175 * we are in a normal shutdown sequence (interrupts are not blocked, the 176 * system is not panic'ing or being suspended). 177 */ 178 /*ARGSUSED*/ 179 void 180 mdboot(int cmd, int fcn, char *mdep, boolean_t invoke_cb) 181 { 182 processorid_t bootcpuid = 0; 183 static int is_first_quiesce = 1; 184 static int is_first_reset = 1; 185 int reset_status = 0; 186 static char fallback_str[] = "Falling back to regular reboot.\n"; 187 188 if (fcn == AD_FASTREBOOT && !newkernel.fi_valid) 189 fcn = AD_BOOT; 190 191 if (!panicstr) { 192 kpreempt_disable(); 193 if (fcn == AD_FASTREBOOT) { 194 mutex_enter(&cpu_lock); 195 if (CPU_ACTIVE(cpu_get(bootcpuid))) { 196 affinity_set(bootcpuid); 197 } 198 mutex_exit(&cpu_lock); 199 } else { 200 affinity_set(CPU_CURRENT); 201 } 202 } 203 204 if (force_shutdown_method != AD_UNKNOWN) 205 fcn = force_shutdown_method; 206 207 /* 208 * XXX - rconsvp is set to NULL to ensure that output messages 209 * are sent to the underlying "hardware" device using the 210 * monitor's printf routine since we are in the process of 211 * either rebooting or halting the machine. 212 */ 213 rconsvp = NULL; 214 215 /* 216 * Print the reboot message now, before pausing other cpus. 217 * There is a race condition in the printing support that 218 * can deadlock multiprocessor machines. 219 */ 220 if (!(fcn == AD_HALT || fcn == AD_POWEROFF)) 221 prom_printf("rebooting...\n"); 222 223 if (IN_XPV_PANIC()) 224 reset(); 225 226 /* 227 * We can't bring up the console from above lock level, so do it now 228 */ 229 pm_cfb_check_and_powerup(); 230 231 /* make sure there are no more changes to the device tree */ 232 devtree_freeze(); 233 234 if (invoke_cb) 235 (void) callb_execute_class(CB_CL_MDBOOT, NULL); 236 237 /* 238 * Clear any unresolved UEs from memory. 239 */ 240 page_retire_mdboot(); 241 242 #if defined(__xpv) 243 /* 244 * XXPV Should probably think some more about how we deal 245 * with panicing before it's really safe to panic. 246 * On hypervisors, we reboot very quickly.. Perhaps panic 247 * should only attempt to recover by rebooting if, 248 * say, we were able to mount the root filesystem, 249 * or if we successfully launched init(1m). 250 */ 251 if (panicstr && proc_init == NULL) 252 (void) HYPERVISOR_shutdown(SHUTDOWN_poweroff); 253 #endif 254 /* 255 * stop other cpus and raise our priority. since there is only 256 * one active cpu after this, and our priority will be too high 257 * for us to be preempted, we're essentially single threaded 258 * from here on out. 259 */ 260 (void) spl6(); 261 if (!panicstr) { 262 mutex_enter(&cpu_lock); 263 pause_cpus(NULL); 264 mutex_exit(&cpu_lock); 265 } 266 267 /* 268 * If the system is panicking, the preloaded kernel is valid, and 269 * fastreboot_onpanic has been set, and the system has been up for 270 * longer than fastreboot_onpanic_uptime (default to 10 minutes), 271 * choose Fast Reboot. 272 */ 273 if (fcn == AD_BOOT && panicstr && newkernel.fi_valid && 274 fastreboot_onpanic && 275 (panic_lbolt - lbolt_at_boot) > fastreboot_onpanic_uptime) { 276 fcn = AD_FASTREBOOT; 277 } 278 279 /* 280 * Try to quiesce devices. 281 */ 282 if (is_first_quiesce) { 283 /* 284 * Clear is_first_quiesce before calling quiesce_devices() 285 * so that if quiesce_devices() causes panics, it will not 286 * be invoked again. 287 */ 288 is_first_quiesce = 0; 289 290 quiesce_active = 1; 291 quiesce_devices(ddi_root_node(), &reset_status); 292 if (reset_status == -1) { 293 if (fcn == AD_FASTREBOOT && !force_fastreboot) { 294 prom_printf("Driver(s) not capable of fast " 295 "reboot.\n"); 296 prom_printf(fallback_str); 297 fastreboot_capable = 0; 298 fcn = AD_BOOT; 299 } else if (fcn != AD_FASTREBOOT) 300 fastreboot_capable = 0; 301 } 302 quiesce_active = 0; 303 } 304 305 /* 306 * Try to reset devices. reset_leaves() should only be called 307 * a) when there are no other threads that could be accessing devices, 308 * and 309 * b) on a system that's not capable of fast reboot (fastreboot_capable 310 * being 0), or on a system where quiesce_devices() failed to 311 * complete (quiesce_active being 1). 312 */ 313 if (is_first_reset && (!fastreboot_capable || quiesce_active)) { 314 /* 315 * Clear is_first_reset before calling reset_devices() 316 * so that if reset_devices() causes panics, it will not 317 * be invoked again. 318 */ 319 is_first_reset = 0; 320 reset_leaves(); 321 } 322 323 /* Verify newkernel checksum */ 324 if (fastreboot_capable && fcn == AD_FASTREBOOT && 325 fastboot_cksum_verify(&newkernel) != 0) { 326 fastreboot_capable = 0; 327 prom_printf("Fast reboot: checksum failed for the new " 328 "kernel.\n"); 329 prom_printf(fallback_str); 330 } 331 332 (void) spl8(); 333 334 if (fastreboot_capable && fcn == AD_FASTREBOOT) { 335 /* 336 * psm_shutdown is called within fast_reboot() 337 */ 338 fast_reboot(); 339 } else { 340 (*psm_shutdownf)(cmd, fcn); 341 342 if (fcn == AD_HALT || fcn == AD_POWEROFF) 343 halt((char *)NULL); 344 else 345 prom_reboot(""); 346 } 347 /*NOTREACHED*/ 348 } 349 350 /* mdpreboot - may be called prior to mdboot while root fs still mounted */ 351 /*ARGSUSED*/ 352 void 353 mdpreboot(int cmd, int fcn, char *mdep) 354 { 355 if (fcn == AD_FASTREBOOT && !fastreboot_capable) { 356 fcn = AD_BOOT; 357 #ifdef __xpv 358 cmn_err(CE_WARN, "Fast reboot is not supported on xVM"); 359 #else 360 cmn_err(CE_WARN, 361 "Fast reboot is not supported on this platform"); 362 #endif 363 } 364 365 if (fcn == AD_FASTREBOOT) { 366 fastboot_load_kernel(mdep); 367 if (!newkernel.fi_valid) 368 fcn = AD_BOOT; 369 } 370 371 (*psm_preshutdownf)(cmd, fcn); 372 } 373 374 static void 375 stop_other_cpus(void) 376 { 377 ulong_t s = clear_int_flag(); /* fast way to keep CPU from changing */ 378 cpuset_t xcset; 379 380 CPUSET_ALL_BUT(xcset, CPU->cpu_id); 381 xc_priority(0, 0, 0, CPUSET2BV(xcset), (xc_func_t)mach_cpu_halt); 382 restore_int_flag(s); 383 } 384 385 /* 386 * Machine dependent abort sequence handling 387 */ 388 void 389 abort_sequence_enter(char *msg) 390 { 391 if (abort_enable == 0) { 392 if (audit_active) 393 audit_enterprom(0); 394 return; 395 } 396 if (audit_active) 397 audit_enterprom(1); 398 debug_enter(msg); 399 if (audit_active) 400 audit_exitprom(1); 401 } 402 403 /* 404 * Enter debugger. Called when the user types ctrl-alt-d or whenever 405 * code wants to enter the debugger and possibly resume later. 406 */ 407 void 408 debug_enter( 409 char *msg) /* message to print, possibly NULL */ 410 { 411 if (dtrace_debugger_init != NULL) 412 (*dtrace_debugger_init)(); 413 414 if (msg) 415 prom_printf("%s\n", msg); 416 417 if (boothowto & RB_DEBUG) 418 kmdb_enter(); 419 420 if (dtrace_debugger_fini != NULL) 421 (*dtrace_debugger_fini)(); 422 } 423 424 void 425 reset(void) 426 { 427 extern void acpi_reset_system(); 428 #if !defined(__xpv) 429 ushort_t *bios_memchk; 430 431 /* 432 * Can't use psm_map_phys or acpi_reset_system before the hat is 433 * initialized. 434 */ 435 if (khat_running) { 436 bios_memchk = (ushort_t *)psm_map_phys(0x472, 437 sizeof (ushort_t), PROT_READ | PROT_WRITE); 438 if (bios_memchk) 439 *bios_memchk = 0x1234; /* bios memory check disable */ 440 441 if (options_dip != NULL && 442 ddi_prop_exists(DDI_DEV_T_ANY, ddi_root_node(), 0, 443 "efi-systab")) { 444 efi_reset(); 445 } 446 447 /* 448 * The problem with using stubs is that we can call 449 * acpi_reset_system only after the kernel is up and running. 450 * 451 * We should create a global state to keep track of how far 452 * up the kernel is but for the time being we will depend on 453 * bootops. bootops cleared in startup_end(). 454 */ 455 if (bootops == NULL) 456 acpi_reset_system(); 457 } 458 459 pc_reset(); 460 #else 461 if (IN_XPV_PANIC()) { 462 if (khat_running && bootops == NULL) { 463 acpi_reset_system(); 464 } 465 466 pc_reset(); 467 } 468 469 (void) HYPERVISOR_shutdown(SHUTDOWN_reboot); 470 panic("HYPERVISOR_shutdown() failed"); 471 #endif 472 /*NOTREACHED*/ 473 } 474 475 /* 476 * Halt the machine and return to the monitor 477 */ 478 void 479 halt(char *s) 480 { 481 stop_other_cpus(); /* send stop signal to other CPUs */ 482 if (s) 483 prom_printf("(%s) \n", s); 484 prom_exit_to_mon(); 485 /*NOTREACHED*/ 486 } 487 488 /* 489 * Initiate interrupt redistribution. 490 */ 491 void 492 i_ddi_intr_redist_all_cpus() 493 { 494 } 495 496 /* 497 * XXX These probably ought to live somewhere else 498 * XXX They are called from mem.c 499 */ 500 501 /* 502 * Convert page frame number to an OBMEM page frame number 503 * (i.e. put in the type bits -- zero for this implementation) 504 */ 505 pfn_t 506 impl_obmem_pfnum(pfn_t pf) 507 { 508 return (pf); 509 } 510 511 #ifdef NM_DEBUG 512 int nmi_test = 0; /* checked in intentry.s during clock int */ 513 int nmtest = -1; 514 nmfunc1(arg, rp) 515 int arg; 516 struct regs *rp; 517 { 518 printf("nmi called with arg = %x, regs = %x\n", arg, rp); 519 nmtest += 50; 520 if (arg == nmtest) { 521 printf("ip = %x\n", rp->r_pc); 522 return (1); 523 } 524 return (0); 525 } 526 527 #endif 528 529 #include <sys/bootsvcs.h> 530 531 /* Hacked up initialization for initial kernel check out is HERE. */ 532 /* The basic steps are: */ 533 /* kernel bootfuncs definition/initialization for KADB */ 534 /* kadb bootfuncs pointer initialization */ 535 /* putchar/getchar (interrupts disabled) */ 536 537 /* kadb bootfuncs pointer initialization */ 538 539 int 540 sysp_getchar() 541 { 542 int i; 543 ulong_t s; 544 545 if (cons_polledio == NULL) { 546 /* Uh oh */ 547 prom_printf("getchar called with no console\n"); 548 for (;;) 549 /* LOOP FOREVER */; 550 } 551 552 s = clear_int_flag(); 553 i = cons_polledio->cons_polledio_getchar( 554 cons_polledio->cons_polledio_argument); 555 restore_int_flag(s); 556 return (i); 557 } 558 559 void 560 sysp_putchar(int c) 561 { 562 ulong_t s; 563 564 /* 565 * We have no alternative but to drop the output on the floor. 566 */ 567 if (cons_polledio == NULL || 568 cons_polledio->cons_polledio_putchar == NULL) 569 return; 570 571 s = clear_int_flag(); 572 cons_polledio->cons_polledio_putchar( 573 cons_polledio->cons_polledio_argument, c); 574 restore_int_flag(s); 575 } 576 577 int 578 sysp_ischar() 579 { 580 int i; 581 ulong_t s; 582 583 if (cons_polledio == NULL || 584 cons_polledio->cons_polledio_ischar == NULL) 585 return (0); 586 587 s = clear_int_flag(); 588 i = cons_polledio->cons_polledio_ischar( 589 cons_polledio->cons_polledio_argument); 590 restore_int_flag(s); 591 return (i); 592 } 593 594 int 595 goany(void) 596 { 597 prom_printf("Type any key to continue "); 598 (void) prom_getchar(); 599 prom_printf("\n"); 600 return (1); 601 } 602 603 static struct boot_syscalls kern_sysp = { 604 sysp_getchar, /* unchar (*getchar)(); 7 */ 605 sysp_putchar, /* int (*putchar)(); 8 */ 606 sysp_ischar, /* int (*ischar)(); 9 */ 607 }; 608 609 #if defined(__xpv) 610 int using_kern_polledio; 611 #endif 612 613 void 614 kadb_uses_kernel() 615 { 616 /* 617 * This routine is now totally misnamed, since it does not in fact 618 * control kadb's I/O; it only controls the kernel's prom_* I/O. 619 */ 620 sysp = &kern_sysp; 621 #if defined(__xpv) 622 using_kern_polledio = 1; 623 #endif 624 } 625 626 /* 627 * the interface to the outside world 628 */ 629 630 /* 631 * poll_port -- wait for a register to achieve a 632 * specific state. Arguments are a mask of bits we care about, 633 * and two sub-masks. To return normally, all the bits in the 634 * first sub-mask must be ON, all the bits in the second sub- 635 * mask must be OFF. If about seconds pass without the register 636 * achieving the desired bit configuration, we return 1, else 637 * 0. 638 */ 639 int 640 poll_port(ushort_t port, ushort_t mask, ushort_t onbits, ushort_t offbits) 641 { 642 int i; 643 ushort_t maskval; 644 645 for (i = 500000; i; i--) { 646 maskval = inb(port) & mask; 647 if (((maskval & onbits) == onbits) && 648 ((maskval & offbits) == 0)) 649 return (0); 650 drv_usecwait(10); 651 } 652 return (1); 653 } 654 655 /* 656 * set_idle_cpu is called from idle() when a CPU becomes idle. 657 */ 658 /*LINTED: static unused */ 659 static uint_t last_idle_cpu; 660 661 /*ARGSUSED*/ 662 void 663 set_idle_cpu(int cpun) 664 { 665 last_idle_cpu = cpun; 666 (*psm_set_idle_cpuf)(cpun); 667 } 668 669 /* 670 * unset_idle_cpu is called from idle() when a CPU is no longer idle. 671 */ 672 /*ARGSUSED*/ 673 void 674 unset_idle_cpu(int cpun) 675 { 676 (*psm_unset_idle_cpuf)(cpun); 677 } 678 679 /* 680 * This routine is almost correct now, but not quite. It still needs the 681 * equivalent concept of "hres_last_tick", just like on the sparc side. 682 * The idea is to take a snapshot of the hi-res timer while doing the 683 * hrestime_adj updates under hres_lock in locore, so that the small 684 * interval between interrupt assertion and interrupt processing is 685 * accounted for correctly. Once we have this, the code below should 686 * be modified to subtract off hres_last_tick rather than hrtime_base. 687 * 688 * I'd have done this myself, but I don't have source to all of the 689 * vendor-specific hi-res timer routines (grrr...). The generic hook I 690 * need is something like "gethrtime_unlocked()", which would be just like 691 * gethrtime() but would assume that you're already holding CLOCK_LOCK(). 692 * This is what the GET_HRTIME() macro is for on sparc (although it also 693 * serves the function of making time available without a function call 694 * so you don't take a register window overflow while traps are disabled). 695 */ 696 void 697 pc_gethrestime(timestruc_t *tp) 698 { 699 int lock_prev; 700 timestruc_t now; 701 int nslt; /* nsec since last tick */ 702 int adj; /* amount of adjustment to apply */ 703 704 loop: 705 lock_prev = hres_lock; 706 now = hrestime; 707 nslt = (int)(gethrtime() - hres_last_tick); 708 if (nslt < 0) { 709 /* 710 * nslt < 0 means a tick came between sampling 711 * gethrtime() and hres_last_tick; restart the loop 712 */ 713 714 goto loop; 715 } 716 now.tv_nsec += nslt; 717 if (hrestime_adj != 0) { 718 if (hrestime_adj > 0) { 719 adj = (nslt >> ADJ_SHIFT); 720 if (adj > hrestime_adj) 721 adj = (int)hrestime_adj; 722 } else { 723 adj = -(nslt >> ADJ_SHIFT); 724 if (adj < hrestime_adj) 725 adj = (int)hrestime_adj; 726 } 727 now.tv_nsec += adj; 728 } 729 while ((unsigned long)now.tv_nsec >= NANOSEC) { 730 731 /* 732 * We might have a large adjustment or have been in the 733 * debugger for a long time; take care of (at most) four 734 * of those missed seconds (tv_nsec is 32 bits, so 735 * anything >4s will be wrapping around). However, 736 * anything more than 2 seconds out of sync will trigger 737 * timedelta from clock() to go correct the time anyway, 738 * so do what we can, and let the big crowbar do the 739 * rest. A similar correction while loop exists inside 740 * hres_tick(); in all cases we'd like tv_nsec to 741 * satisfy 0 <= tv_nsec < NANOSEC to avoid confusing 742 * user processes, but if tv_sec's a little behind for a 743 * little while, that's OK; time still monotonically 744 * increases. 745 */ 746 747 now.tv_nsec -= NANOSEC; 748 now.tv_sec++; 749 } 750 if ((hres_lock & ~1) != lock_prev) 751 goto loop; 752 753 *tp = now; 754 } 755 756 void 757 gethrestime_lasttick(timespec_t *tp) 758 { 759 int s; 760 761 s = hr_clock_lock(); 762 *tp = hrestime; 763 hr_clock_unlock(s); 764 } 765 766 time_t 767 gethrestime_sec(void) 768 { 769 timestruc_t now; 770 771 gethrestime(&now); 772 return (now.tv_sec); 773 } 774 775 /* 776 * Initialize a kernel thread's stack 777 */ 778 779 caddr_t 780 thread_stk_init(caddr_t stk) 781 { 782 ASSERT(((uintptr_t)stk & (STACK_ALIGN - 1)) == 0); 783 return (stk - SA(MINFRAME)); 784 } 785 786 /* 787 * Initialize lwp's kernel stack. 788 */ 789 790 #ifdef TRAPTRACE 791 /* 792 * There's a tricky interdependency here between use of sysenter and 793 * TRAPTRACE which needs recording to avoid future confusion (this is 794 * about the third time I've re-figured this out ..) 795 * 796 * Here's how debugging lcall works with TRAPTRACE. 797 * 798 * 1 We're in userland with a breakpoint on the lcall instruction. 799 * 2 We execute the instruction - the instruction pushes the userland 800 * %ss, %esp, %efl, %cs, %eip on the stack and zips into the kernel 801 * via the call gate. 802 * 3 The hardware raises a debug trap in kernel mode, the hardware 803 * pushes %efl, %cs, %eip and gets to dbgtrap via the idt. 804 * 4 dbgtrap pushes the error code and trapno and calls cmntrap 805 * 5 cmntrap finishes building a trap frame 806 * 6 The TRACE_REGS macros in cmntrap copy a REGSIZE worth chunk 807 * off the stack into the traptrace buffer. 808 * 809 * This means that the traptrace buffer contains the wrong values in 810 * %esp and %ss, but everything else in there is correct. 811 * 812 * Here's how debugging sysenter works with TRAPTRACE. 813 * 814 * a We're in userland with a breakpoint on the sysenter instruction. 815 * b We execute the instruction - the instruction pushes -nothing- 816 * on the stack, but sets %cs, %eip, %ss, %esp to prearranged 817 * values to take us to sys_sysenter, at the top of the lwp's 818 * stack. 819 * c goto 3 820 * 821 * At this point, because we got into the kernel without the requisite 822 * five pushes on the stack, if we didn't make extra room, we'd 823 * end up with the TRACE_REGS macro fetching the saved %ss and %esp 824 * values from negative (unmapped) stack addresses -- which really bites. 825 * That's why we do the '-= 8' below. 826 * 827 * XXX Note that reading "up" lwp0's stack works because t0 is declared 828 * right next to t0stack in locore.s 829 */ 830 #endif 831 832 caddr_t 833 lwp_stk_init(klwp_t *lwp, caddr_t stk) 834 { 835 caddr_t oldstk; 836 struct pcb *pcb = &lwp->lwp_pcb; 837 838 oldstk = stk; 839 stk -= SA(sizeof (struct regs) + SA(MINFRAME)); 840 #ifdef TRAPTRACE 841 stk -= 2 * sizeof (greg_t); /* space for phony %ss:%sp (see above) */ 842 #endif 843 stk = (caddr_t)((uintptr_t)stk & ~(STACK_ALIGN - 1ul)); 844 bzero(stk, oldstk - stk); 845 lwp->lwp_regs = (void *)(stk + SA(MINFRAME)); 846 847 /* 848 * Arrange that the virtualized %fs and %gs GDT descriptors 849 * have a well-defined initial state (present, ring 3 850 * and of type data). 851 */ 852 #if defined(__amd64) 853 if (lwp_getdatamodel(lwp) == DATAMODEL_NATIVE) 854 pcb->pcb_fsdesc = pcb->pcb_gsdesc = zero_udesc; 855 else 856 pcb->pcb_fsdesc = pcb->pcb_gsdesc = zero_u32desc; 857 #elif defined(__i386) 858 pcb->pcb_fsdesc = pcb->pcb_gsdesc = zero_udesc; 859 #endif /* __i386 */ 860 lwp_installctx(lwp); 861 return (stk); 862 } 863 864 /*ARGSUSED*/ 865 void 866 lwp_stk_fini(klwp_t *lwp) 867 {} 868 869 /* 870 * If we're not the panic CPU, we wait in panic_idle for reboot. 871 */ 872 void 873 panic_idle(void) 874 { 875 splx(ipltospl(CLOCK_LEVEL)); 876 (void) setjmp(&curthread->t_pcb); 877 878 dumpsys_helper(); 879 880 #ifndef __xpv 881 for (;;) 882 i86_halt(); 883 #else 884 for (;;) 885 ; 886 #endif 887 } 888 889 /* 890 * Stop the other CPUs by cross-calling them and forcing them to enter 891 * the panic_idle() loop above. 892 */ 893 /*ARGSUSED*/ 894 void 895 panic_stopcpus(cpu_t *cp, kthread_t *t, int spl) 896 { 897 processorid_t i; 898 cpuset_t xcset; 899 900 /* 901 * In the case of a Xen panic, the hypervisor has already stopped 902 * all of the CPUs. 903 */ 904 if (!IN_XPV_PANIC()) { 905 (void) splzs(); 906 907 CPUSET_ALL_BUT(xcset, cp->cpu_id); 908 xc_priority(0, 0, 0, CPUSET2BV(xcset), (xc_func_t)panic_idle); 909 } 910 911 for (i = 0; i < NCPU; i++) { 912 if (i != cp->cpu_id && cpu[i] != NULL && 913 (cpu[i]->cpu_flags & CPU_EXISTS)) 914 cpu[i]->cpu_flags |= CPU_QUIESCED; 915 } 916 } 917 918 /* 919 * Platform callback following each entry to panicsys(). 920 */ 921 /*ARGSUSED*/ 922 void 923 panic_enter_hw(int spl) 924 { 925 /* Nothing to do here */ 926 } 927 928 /* 929 * Platform-specific code to execute after panicstr is set: we invoke 930 * the PSM entry point to indicate that a panic has occurred. 931 */ 932 /*ARGSUSED*/ 933 void 934 panic_quiesce_hw(panic_data_t *pdp) 935 { 936 psm_notifyf(PSM_PANIC_ENTER); 937 938 cmi_panic_callback(); 939 940 #ifdef TRAPTRACE 941 /* 942 * Turn off TRAPTRACE 943 */ 944 TRAPTRACE_FREEZE; 945 #endif /* TRAPTRACE */ 946 } 947 948 /* 949 * Platform callback prior to writing crash dump. 950 */ 951 /*ARGSUSED*/ 952 void 953 panic_dump_hw(int spl) 954 { 955 /* Nothing to do here */ 956 } 957 958 void * 959 plat_traceback(void *fpreg) 960 { 961 #ifdef __xpv 962 if (IN_XPV_PANIC()) 963 return (xpv_traceback(fpreg)); 964 #endif 965 return (fpreg); 966 } 967 968 /*ARGSUSED*/ 969 void 970 plat_tod_fault(enum tod_fault_type tod_bad) 971 {} 972 973 /*ARGSUSED*/ 974 int 975 blacklist(int cmd, const char *scheme, nvlist_t *fmri, const char *class) 976 { 977 return (ENOTSUP); 978 } 979 980 /* 981 * The underlying console output routines are protected by raising IPL in case 982 * we are still calling into the early boot services. Once we start calling 983 * the kernel console emulator, it will disable interrupts completely during 984 * character rendering (see sysp_putchar, for example). Refer to the comments 985 * and code in common/os/console.c for more information on these callbacks. 986 */ 987 /*ARGSUSED*/ 988 int 989 console_enter(int busy) 990 { 991 return (splzs()); 992 } 993 994 /*ARGSUSED*/ 995 void 996 console_exit(int busy, int spl) 997 { 998 splx(spl); 999 } 1000 1001 /* 1002 * Allocate a region of virtual address space, unmapped. 1003 * Stubbed out except on sparc, at least for now. 1004 */ 1005 /*ARGSUSED*/ 1006 void * 1007 boot_virt_alloc(void *addr, size_t size) 1008 { 1009 return (addr); 1010 } 1011 1012 volatile unsigned long tenmicrodata; 1013 1014 void 1015 tenmicrosec(void) 1016 { 1017 extern int gethrtime_hires; 1018 1019 if (gethrtime_hires) { 1020 hrtime_t start, end; 1021 start = end = gethrtime(); 1022 while ((end - start) < (10 * (NANOSEC / MICROSEC))) { 1023 SMT_PAUSE(); 1024 end = gethrtime(); 1025 } 1026 } else { 1027 #if defined(__xpv) 1028 hrtime_t newtime; 1029 1030 newtime = xpv_gethrtime() + 10000; /* now + 10 us */ 1031 while (xpv_gethrtime() < newtime) 1032 SMT_PAUSE(); 1033 #else /* __xpv */ 1034 int i; 1035 1036 /* 1037 * Artificial loop to induce delay. 1038 */ 1039 for (i = 0; i < microdata; i++) 1040 tenmicrodata = microdata; 1041 #endif /* __xpv */ 1042 } 1043 } 1044 1045 /* 1046 * get_cpu_mstate() is passed an array of timestamps, NCMSTATES 1047 * long, and it fills in the array with the time spent on cpu in 1048 * each of the mstates, where time is returned in nsec. 1049 * 1050 * No guarantee is made that the returned values in times[] will 1051 * monotonically increase on sequential calls, although this will 1052 * be true in the long run. Any such guarantee must be handled by 1053 * the caller, if needed. This can happen if we fail to account 1054 * for elapsed time due to a generation counter conflict, yet we 1055 * did account for it on a prior call (see below). 1056 * 1057 * The complication is that the cpu in question may be updating 1058 * its microstate at the same time that we are reading it. 1059 * Because the microstate is only updated when the CPU's state 1060 * changes, the values in cpu_intracct[] can be indefinitely out 1061 * of date. To determine true current values, it is necessary to 1062 * compare the current time with cpu_mstate_start, and add the 1063 * difference to times[cpu_mstate]. 1064 * 1065 * This can be a problem if those values are changing out from 1066 * under us. Because the code path in new_cpu_mstate() is 1067 * performance critical, we have not added a lock to it. Instead, 1068 * we have added a generation counter. Before beginning 1069 * modifications, the counter is set to 0. After modifications, 1070 * it is set to the old value plus one. 1071 * 1072 * get_cpu_mstate() will not consider the values of cpu_mstate 1073 * and cpu_mstate_start to be usable unless the value of 1074 * cpu_mstate_gen is both non-zero and unchanged, both before and 1075 * after reading the mstate information. Note that we must 1076 * protect against out-of-order loads around accesses to the 1077 * generation counter. Also, this is a best effort approach in 1078 * that we do not retry should the counter be found to have 1079 * changed. 1080 * 1081 * cpu_intracct[] is used to identify time spent in each CPU 1082 * mstate while handling interrupts. Such time should be reported 1083 * against system time, and so is subtracted out from its 1084 * corresponding cpu_acct[] time and added to 1085 * cpu_acct[CMS_SYSTEM]. 1086 */ 1087 1088 void 1089 get_cpu_mstate(cpu_t *cpu, hrtime_t *times) 1090 { 1091 int i; 1092 hrtime_t now, start; 1093 uint16_t gen; 1094 uint16_t state; 1095 hrtime_t intracct[NCMSTATES]; 1096 1097 /* 1098 * Load all volatile state under the protection of membar. 1099 * cpu_acct[cpu_mstate] must be loaded to avoid double counting 1100 * of (now - cpu_mstate_start) by a change in CPU mstate that 1101 * arrives after we make our last check of cpu_mstate_gen. 1102 */ 1103 1104 now = gethrtime_unscaled(); 1105 gen = cpu->cpu_mstate_gen; 1106 1107 membar_consumer(); /* guarantee load ordering */ 1108 start = cpu->cpu_mstate_start; 1109 state = cpu->cpu_mstate; 1110 for (i = 0; i < NCMSTATES; i++) { 1111 intracct[i] = cpu->cpu_intracct[i]; 1112 times[i] = cpu->cpu_acct[i]; 1113 } 1114 membar_consumer(); /* guarantee load ordering */ 1115 1116 if (gen != 0 && gen == cpu->cpu_mstate_gen && now > start) 1117 times[state] += now - start; 1118 1119 for (i = 0; i < NCMSTATES; i++) { 1120 if (i == CMS_SYSTEM) 1121 continue; 1122 times[i] -= intracct[i]; 1123 if (times[i] < 0) { 1124 intracct[i] += times[i]; 1125 times[i] = 0; 1126 } 1127 times[CMS_SYSTEM] += intracct[i]; 1128 scalehrtime(×[i]); 1129 } 1130 scalehrtime(×[CMS_SYSTEM]); 1131 } 1132 1133 /* 1134 * This is a version of the rdmsr instruction that allows 1135 * an error code to be returned in the case of failure. 1136 */ 1137 int 1138 checked_rdmsr(uint_t msr, uint64_t *value) 1139 { 1140 if ((x86_feature & X86_MSR) == 0) 1141 return (ENOTSUP); 1142 *value = rdmsr(msr); 1143 return (0); 1144 } 1145 1146 /* 1147 * This is a version of the wrmsr instruction that allows 1148 * an error code to be returned in the case of failure. 1149 */ 1150 int 1151 checked_wrmsr(uint_t msr, uint64_t value) 1152 { 1153 if ((x86_feature & X86_MSR) == 0) 1154 return (ENOTSUP); 1155 wrmsr(msr, value); 1156 return (0); 1157 } 1158 1159 /* 1160 * The mem driver's usual method of using hat_devload() to establish a 1161 * temporary mapping will not work for foreign pages mapped into this 1162 * domain or for the special hypervisor-provided pages. For the foreign 1163 * pages, we often don't know which domain owns them, so we can't ask the 1164 * hypervisor to set up a new mapping. For the other pages, we don't have 1165 * a pfn, so we can't create a new PTE. For these special cases, we do a 1166 * direct uiomove() from the existing kernel virtual address. 1167 */ 1168 /*ARGSUSED*/ 1169 int 1170 plat_mem_do_mmio(struct uio *uio, enum uio_rw rw) 1171 { 1172 #if defined(__xpv) 1173 void *va = (void *)(uintptr_t)uio->uio_loffset; 1174 off_t pageoff = uio->uio_loffset & PAGEOFFSET; 1175 size_t nbytes = MIN((size_t)(PAGESIZE - pageoff), 1176 (size_t)uio->uio_iov->iov_len); 1177 1178 if ((rw == UIO_READ && 1179 (va == HYPERVISOR_shared_info || va == xen_info)) || 1180 (pfn_is_foreign(hat_getpfnum(kas.a_hat, va)))) 1181 return (uiomove(va, nbytes, rw, uio)); 1182 #endif 1183 return (ENOTSUP); 1184 } 1185 1186 pgcnt_t 1187 num_phys_pages() 1188 { 1189 pgcnt_t npages = 0; 1190 struct memlist *mp; 1191 1192 #if defined(__xpv) 1193 if (DOMAIN_IS_INITDOMAIN(xen_info)) 1194 return (xpv_nr_phys_pages()); 1195 #endif /* __xpv */ 1196 1197 for (mp = phys_install; mp != NULL; mp = mp->next) 1198 npages += mp->size >> PAGESHIFT; 1199 1200 return (npages); 1201 } 1202 1203 /* cpu threshold for compressed dumps */ 1204 #ifdef _LP64 1205 uint_t dump_plat_mincpu = DUMP_PLAT_X86_64_MINCPU; 1206 #else 1207 uint_t dump_plat_mincpu = DUMP_PLAT_X86_32_MINCPU; 1208 #endif 1209 1210 int 1211 dump_plat_addr() 1212 { 1213 #ifdef __xpv 1214 pfn_t pfn = mmu_btop(xen_info->shared_info) | PFN_IS_FOREIGN_MFN; 1215 mem_vtop_t mem_vtop; 1216 int cnt; 1217 1218 /* 1219 * On the hypervisor, we want to dump the page with shared_info on it. 1220 */ 1221 if (!IN_XPV_PANIC()) { 1222 mem_vtop.m_as = &kas; 1223 mem_vtop.m_va = HYPERVISOR_shared_info; 1224 mem_vtop.m_pfn = pfn; 1225 dumpvp_write(&mem_vtop, sizeof (mem_vtop_t)); 1226 cnt = 1; 1227 } else { 1228 cnt = dump_xpv_addr(); 1229 } 1230 return (cnt); 1231 #else 1232 return (0); 1233 #endif 1234 } 1235 1236 void 1237 dump_plat_pfn() 1238 { 1239 #ifdef __xpv 1240 pfn_t pfn = mmu_btop(xen_info->shared_info) | PFN_IS_FOREIGN_MFN; 1241 1242 if (!IN_XPV_PANIC()) 1243 dumpvp_write(&pfn, sizeof (pfn)); 1244 else 1245 dump_xpv_pfn(); 1246 #endif 1247 } 1248 1249 /*ARGSUSED*/ 1250 int 1251 dump_plat_data(void *dump_cbuf) 1252 { 1253 #ifdef __xpv 1254 uint32_t csize; 1255 int cnt; 1256 1257 if (!IN_XPV_PANIC()) { 1258 csize = (uint32_t)compress(HYPERVISOR_shared_info, dump_cbuf, 1259 PAGESIZE); 1260 dumpvp_write(&csize, sizeof (uint32_t)); 1261 dumpvp_write(dump_cbuf, csize); 1262 cnt = 1; 1263 } else { 1264 cnt = dump_xpv_data(dump_cbuf); 1265 } 1266 return (cnt); 1267 #else 1268 return (0); 1269 #endif 1270 } 1271 1272 /* 1273 * Calculates a linear address, given the CS selector and PC values 1274 * by looking up the %cs selector process's LDT or the CPU's GDT. 1275 * proc->p_ldtlock must be held across this call. 1276 */ 1277 int 1278 linear_pc(struct regs *rp, proc_t *p, caddr_t *linearp) 1279 { 1280 user_desc_t *descrp; 1281 caddr_t baseaddr; 1282 uint16_t idx = SELTOIDX(rp->r_cs); 1283 1284 ASSERT(rp->r_cs <= 0xFFFF); 1285 ASSERT(MUTEX_HELD(&p->p_ldtlock)); 1286 1287 if (SELISLDT(rp->r_cs)) { 1288 /* 1289 * Currently 64 bit processes cannot have private LDTs. 1290 */ 1291 ASSERT(p->p_model != DATAMODEL_LP64); 1292 1293 if (p->p_ldt == NULL) 1294 return (-1); 1295 1296 descrp = &p->p_ldt[idx]; 1297 baseaddr = (caddr_t)(uintptr_t)USEGD_GETBASE(descrp); 1298 1299 /* 1300 * Calculate the linear address (wraparound is not only ok, 1301 * it's expected behavior). The cast to uint32_t is because 1302 * LDT selectors are only allowed in 32-bit processes. 1303 */ 1304 *linearp = (caddr_t)(uintptr_t)(uint32_t)((uintptr_t)baseaddr + 1305 rp->r_pc); 1306 } else { 1307 #ifdef DEBUG 1308 descrp = &CPU->cpu_gdt[idx]; 1309 baseaddr = (caddr_t)(uintptr_t)USEGD_GETBASE(descrp); 1310 /* GDT-based descriptors' base addresses should always be 0 */ 1311 ASSERT(baseaddr == 0); 1312 #endif 1313 *linearp = (caddr_t)(uintptr_t)rp->r_pc; 1314 } 1315 1316 return (0); 1317 } 1318 1319 /* 1320 * The implementation of dtrace_linear_pc is similar to the that of 1321 * linear_pc, above, but here we acquire p_ldtlock before accessing 1322 * p_ldt. This implementation is used by the pid provider; we prefix 1323 * it with "dtrace_" to avoid inducing spurious tracing events. 1324 */ 1325 int 1326 dtrace_linear_pc(struct regs *rp, proc_t *p, caddr_t *linearp) 1327 { 1328 user_desc_t *descrp; 1329 caddr_t baseaddr; 1330 uint16_t idx = SELTOIDX(rp->r_cs); 1331 1332 ASSERT(rp->r_cs <= 0xFFFF); 1333 1334 if (SELISLDT(rp->r_cs)) { 1335 /* 1336 * Currently 64 bit processes cannot have private LDTs. 1337 */ 1338 ASSERT(p->p_model != DATAMODEL_LP64); 1339 1340 mutex_enter(&p->p_ldtlock); 1341 if (p->p_ldt == NULL) { 1342 mutex_exit(&p->p_ldtlock); 1343 return (-1); 1344 } 1345 descrp = &p->p_ldt[idx]; 1346 baseaddr = (caddr_t)(uintptr_t)USEGD_GETBASE(descrp); 1347 mutex_exit(&p->p_ldtlock); 1348 1349 /* 1350 * Calculate the linear address (wraparound is not only ok, 1351 * it's expected behavior). The cast to uint32_t is because 1352 * LDT selectors are only allowed in 32-bit processes. 1353 */ 1354 *linearp = (caddr_t)(uintptr_t)(uint32_t)((uintptr_t)baseaddr + 1355 rp->r_pc); 1356 } else { 1357 #ifdef DEBUG 1358 descrp = &CPU->cpu_gdt[idx]; 1359 baseaddr = (caddr_t)(uintptr_t)USEGD_GETBASE(descrp); 1360 /* GDT-based descriptors' base addresses should always be 0 */ 1361 ASSERT(baseaddr == 0); 1362 #endif 1363 *linearp = (caddr_t)(uintptr_t)rp->r_pc; 1364 } 1365 1366 return (0); 1367 } 1368