1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2007 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 27 #pragma ident "%Z%%M% %I% %E% SMI" 28 29 #include <sys/types.h> 30 #include <sys/t_lock.h> 31 #include <sys/param.h> 32 #include <sys/sysmacros.h> 33 #include <sys/signal.h> 34 #include <sys/systm.h> 35 #include <sys/user.h> 36 #include <sys/mman.h> 37 #include <sys/vm.h> 38 39 #include <sys/disp.h> 40 #include <sys/class.h> 41 42 #include <sys/proc.h> 43 #include <sys/buf.h> 44 #include <sys/kmem.h> 45 46 #include <sys/reboot.h> 47 #include <sys/uadmin.h> 48 #include <sys/callb.h> 49 50 #include <sys/cred.h> 51 #include <sys/vnode.h> 52 #include <sys/file.h> 53 54 #include <sys/procfs.h> 55 #include <sys/acct.h> 56 57 #include <sys/vfs.h> 58 #include <sys/dnlc.h> 59 #include <sys/var.h> 60 #include <sys/cmn_err.h> 61 #include <sys/utsname.h> 62 #include <sys/debug.h> 63 64 #include <sys/dumphdr.h> 65 #include <sys/bootconf.h> 66 #include <sys/varargs.h> 67 #include <sys/promif.h> 68 #include <sys/modctl.h> 69 70 #include <sys/consdev.h> 71 #include <sys/frame.h> 72 73 #include <sys/sunddi.h> 74 #include <sys/ddidmareq.h> 75 #include <sys/psw.h> 76 #include <sys/regset.h> 77 #include <sys/privregs.h> 78 #include <sys/clock.h> 79 #include <sys/tss.h> 80 #include <sys/cpu.h> 81 #include <sys/stack.h> 82 #include <sys/trap.h> 83 #include <sys/pic.h> 84 #include <vm/hat.h> 85 #include <vm/anon.h> 86 #include <vm/as.h> 87 #include <vm/page.h> 88 #include <vm/seg.h> 89 #include <vm/seg_kmem.h> 90 #include <vm/seg_map.h> 91 #include <vm/seg_vn.h> 92 #include <vm/seg_kp.h> 93 #include <vm/hat_i86.h> 94 #include <sys/swap.h> 95 #include <sys/thread.h> 96 #include <sys/sysconf.h> 97 #include <sys/vm_machparam.h> 98 #include <sys/archsystm.h> 99 #include <sys/machsystm.h> 100 #include <sys/machlock.h> 101 #include <sys/x_call.h> 102 #include <sys/instance.h> 103 104 #include <sys/time.h> 105 #include <sys/smp_impldefs.h> 106 #include <sys/psm_types.h> 107 #include <sys/atomic.h> 108 #include <sys/panic.h> 109 #include <sys/cpuvar.h> 110 #include <sys/dtrace.h> 111 #include <sys/bl.h> 112 #include <sys/nvpair.h> 113 #include <sys/x86_archext.h> 114 #include <sys/pool_pset.h> 115 #include <sys/autoconf.h> 116 #include <sys/mem.h> 117 #include <sys/dumphdr.h> 118 #include <sys/compress.h> 119 120 #ifdef TRAPTRACE 121 #include <sys/traptrace.h> 122 #endif /* TRAPTRACE */ 123 124 #ifdef C2_AUDIT 125 extern void audit_enterprom(int); 126 extern void audit_exitprom(int); 127 #endif 128 129 /* 130 * The panicbuf array is used to record messages and state: 131 */ 132 char panicbuf[PANICBUFSIZE]; 133 134 /* 135 * maxphys - used during physio 136 * klustsize - used for klustering by swapfs and specfs 137 */ 138 int maxphys = 56 * 1024; /* XXX See vm_subr.c - max b_count in physio */ 139 int klustsize = 56 * 1024; 140 141 caddr_t p0_va; /* Virtual address for accessing physical page 0 */ 142 143 /* 144 * defined here, though unused on x86, 145 * to make kstat_fr.c happy. 146 */ 147 int vac; 148 149 void stop_other_cpus(); 150 void debug_enter(char *); 151 152 extern void pm_cfb_check_and_powerup(void); 153 extern void pm_cfb_rele(void); 154 155 /* 156 * Machine dependent code to reboot. 157 * "mdep" is interpreted as a character pointer; if non-null, it is a pointer 158 * to a string to be used as the argument string when rebooting. 159 * 160 * "invoke_cb" is a boolean. It is set to true when mdboot() can safely 161 * invoke CB_CL_MDBOOT callbacks before shutting the system down, i.e. when 162 * we are in a normal shutdown sequence (interrupts are not blocked, the 163 * system is not panic'ing or being suspended). 164 */ 165 /*ARGSUSED*/ 166 void 167 mdboot(int cmd, int fcn, char *mdep, boolean_t invoke_cb) 168 { 169 extern void mtrr_resync(void); 170 171 if (!panicstr) { 172 kpreempt_disable(); 173 affinity_set(CPU_CURRENT); 174 } 175 176 /* 177 * XXX - rconsvp is set to NULL to ensure that output messages 178 * are sent to the underlying "hardware" device using the 179 * monitor's printf routine since we are in the process of 180 * either rebooting or halting the machine. 181 */ 182 rconsvp = NULL; 183 184 /* 185 * Print the reboot message now, before pausing other cpus. 186 * There is a race condition in the printing support that 187 * can deadlock multiprocessor machines. 188 */ 189 if (!(fcn == AD_HALT || fcn == AD_POWEROFF)) 190 prom_printf("rebooting...\n"); 191 192 /* 193 * We can't bring up the console from above lock level, so do it now 194 */ 195 pm_cfb_check_and_powerup(); 196 197 /* make sure there are no more changes to the device tree */ 198 devtree_freeze(); 199 200 if (invoke_cb) 201 (void) callb_execute_class(CB_CL_MDBOOT, NULL); 202 203 /* 204 * Clear any unresolved UEs from memory. 205 */ 206 page_retire_mdboot(); 207 208 /* 209 * stop other cpus and raise our priority. since there is only 210 * one active cpu after this, and our priority will be too high 211 * for us to be preempted, we're essentially single threaded 212 * from here on out. 213 */ 214 (void) spl6(); 215 if (!panicstr) { 216 mutex_enter(&cpu_lock); 217 pause_cpus(NULL); 218 mutex_exit(&cpu_lock); 219 } 220 221 /* 222 * try and reset leaf devices. reset_leaves() should only 223 * be called when there are no other threads that could be 224 * accessing devices 225 */ 226 reset_leaves(); 227 228 (void) spl8(); 229 (*psm_shutdownf)(cmd, fcn); 230 231 mtrr_resync(); 232 233 if (fcn == AD_HALT || fcn == AD_POWEROFF) 234 halt((char *)NULL); 235 else 236 prom_reboot(""); 237 /*NOTREACHED*/ 238 } 239 240 /* mdpreboot - may be called prior to mdboot while root fs still mounted */ 241 /*ARGSUSED*/ 242 void 243 mdpreboot(int cmd, int fcn, char *mdep) 244 { 245 (*psm_preshutdownf)(cmd, fcn); 246 } 247 248 void 249 idle_other_cpus() 250 { 251 int cpuid = CPU->cpu_id; 252 cpuset_t xcset; 253 254 ASSERT(cpuid < NCPU); 255 CPUSET_ALL_BUT(xcset, cpuid); 256 xc_capture_cpus(xcset); 257 } 258 259 void 260 resume_other_cpus() 261 { 262 ASSERT(CPU->cpu_id < NCPU); 263 264 xc_release_cpus(); 265 } 266 267 void 268 stop_other_cpus() 269 { 270 int cpuid = CPU->cpu_id; 271 cpuset_t xcset; 272 273 ASSERT(cpuid < NCPU); 274 275 /* 276 * xc_trycall will attempt to make all other CPUs execute mach_cpu_halt, 277 * and will return immediately regardless of whether or not it was 278 * able to make them do it. 279 */ 280 CPUSET_ALL_BUT(xcset, cpuid); 281 xc_trycall(NULL, NULL, NULL, xcset, (int (*)())mach_cpu_halt); 282 } 283 284 /* 285 * Machine dependent abort sequence handling 286 */ 287 void 288 abort_sequence_enter(char *msg) 289 { 290 if (abort_enable == 0) { 291 #ifdef C2_AUDIT 292 if (audit_active) 293 audit_enterprom(0); 294 #endif /* C2_AUDIT */ 295 return; 296 } 297 #ifdef C2_AUDIT 298 if (audit_active) 299 audit_enterprom(1); 300 #endif /* C2_AUDIT */ 301 debug_enter(msg); 302 #ifdef C2_AUDIT 303 if (audit_active) 304 audit_exitprom(1); 305 #endif /* C2_AUDIT */ 306 } 307 308 /* 309 * Enter debugger. Called when the user types ctrl-alt-d or whenever 310 * code wants to enter the debugger and possibly resume later. 311 */ 312 void 313 debug_enter( 314 char *msg) /* message to print, possibly NULL */ 315 { 316 if (dtrace_debugger_init != NULL) 317 (*dtrace_debugger_init)(); 318 319 if (msg) 320 prom_printf("%s\n", msg); 321 322 if (boothowto & RB_DEBUG) 323 kmdb_enter(); 324 325 if (dtrace_debugger_fini != NULL) 326 (*dtrace_debugger_fini)(); 327 } 328 329 void 330 reset(void) 331 { 332 ushort_t *bios_memchk; 333 334 /* 335 * Can't use psm_map_phys before the hat is initialized. 336 */ 337 if (khat_running) { 338 bios_memchk = (ushort_t *)psm_map_phys(0x472, 339 sizeof (ushort_t), PROT_READ | PROT_WRITE); 340 if (bios_memchk) 341 *bios_memchk = 0x1234; /* bios memory check disable */ 342 } 343 344 if (ddi_prop_exists(DDI_DEV_T_ANY, ddi_root_node(), 0, "efi-systab")) 345 efi_reset(); 346 pc_reset(); 347 /*NOTREACHED*/ 348 } 349 350 /* 351 * Halt the machine and return to the monitor 352 */ 353 void 354 halt(char *s) 355 { 356 stop_other_cpus(); /* send stop signal to other CPUs */ 357 if (s) 358 prom_printf("(%s) \n", s); 359 prom_exit_to_mon(); 360 /*NOTREACHED*/ 361 } 362 363 /* 364 * Initiate interrupt redistribution. 365 */ 366 void 367 i_ddi_intr_redist_all_cpus() 368 { 369 } 370 371 /* 372 * XXX These probably ought to live somewhere else 373 * XXX They are called from mem.c 374 */ 375 376 /* 377 * Convert page frame number to an OBMEM page frame number 378 * (i.e. put in the type bits -- zero for this implementation) 379 */ 380 pfn_t 381 impl_obmem_pfnum(pfn_t pf) 382 { 383 return (pf); 384 } 385 386 #ifdef NM_DEBUG 387 int nmi_test = 0; /* checked in intentry.s during clock int */ 388 int nmtest = -1; 389 nmfunc1(arg, rp) 390 int arg; 391 struct regs *rp; 392 { 393 printf("nmi called with arg = %x, regs = %x\n", arg, rp); 394 nmtest += 50; 395 if (arg == nmtest) { 396 printf("ip = %x\n", rp->r_pc); 397 return (1); 398 } 399 return (0); 400 } 401 402 #endif 403 404 #include <sys/bootsvcs.h> 405 406 /* Hacked up initialization for initial kernel check out is HERE. */ 407 /* The basic steps are: */ 408 /* kernel bootfuncs definition/initialization for KADB */ 409 /* kadb bootfuncs pointer initialization */ 410 /* putchar/getchar (interrupts disabled) */ 411 412 /* kadb bootfuncs pointer initialization */ 413 414 int 415 sysp_getchar() 416 { 417 int i; 418 ulong_t s; 419 420 if (cons_polledio == NULL) { 421 /* Uh oh */ 422 prom_printf("getchar called with no console\n"); 423 for (;;) 424 /* LOOP FOREVER */; 425 } 426 427 s = clear_int_flag(); 428 i = cons_polledio->cons_polledio_getchar( 429 cons_polledio->cons_polledio_argument); 430 restore_int_flag(s); 431 return (i); 432 } 433 434 void 435 sysp_putchar(int c) 436 { 437 ulong_t s; 438 439 /* 440 * We have no alternative but to drop the output on the floor. 441 */ 442 if (cons_polledio == NULL || 443 cons_polledio->cons_polledio_putchar == NULL) 444 return; 445 446 s = clear_int_flag(); 447 cons_polledio->cons_polledio_putchar( 448 cons_polledio->cons_polledio_argument, c); 449 restore_int_flag(s); 450 } 451 452 int 453 sysp_ischar() 454 { 455 int i; 456 ulong_t s; 457 458 if (cons_polledio == NULL || 459 cons_polledio->cons_polledio_ischar == NULL) 460 return (0); 461 462 s = clear_int_flag(); 463 i = cons_polledio->cons_polledio_ischar( 464 cons_polledio->cons_polledio_argument); 465 restore_int_flag(s); 466 return (i); 467 } 468 469 int 470 goany(void) 471 { 472 prom_printf("Type any key to continue "); 473 (void) prom_getchar(); 474 prom_printf("\n"); 475 return (1); 476 } 477 478 static struct boot_syscalls kern_sysp = { 479 sysp_getchar, /* unchar (*getchar)(); 7 */ 480 sysp_putchar, /* int (*putchar)(); 8 */ 481 sysp_ischar, /* int (*ischar)(); 9 */ 482 }; 483 484 void 485 kadb_uses_kernel() 486 { 487 /* 488 * This routine is now totally misnamed, since it does not in fact 489 * control kadb's I/O; it only controls the kernel's prom_* I/O. 490 */ 491 sysp = &kern_sysp; 492 } 493 494 /* 495 * the interface to the outside world 496 */ 497 498 /* 499 * poll_port -- wait for a register to achieve a 500 * specific state. Arguments are a mask of bits we care about, 501 * and two sub-masks. To return normally, all the bits in the 502 * first sub-mask must be ON, all the bits in the second sub- 503 * mask must be OFF. If about seconds pass without the register 504 * achieving the desired bit configuration, we return 1, else 505 * 0. 506 */ 507 int 508 poll_port(ushort_t port, ushort_t mask, ushort_t onbits, ushort_t offbits) 509 { 510 int i; 511 ushort_t maskval; 512 513 for (i = 500000; i; i--) { 514 maskval = inb(port) & mask; 515 if (((maskval & onbits) == onbits) && 516 ((maskval & offbits) == 0)) 517 return (0); 518 drv_usecwait(10); 519 } 520 return (1); 521 } 522 523 /* 524 * set_idle_cpu is called from idle() when a CPU becomes idle. 525 */ 526 /*LINTED: static unused */ 527 static uint_t last_idle_cpu; 528 529 /*ARGSUSED*/ 530 void 531 set_idle_cpu(int cpun) 532 { 533 last_idle_cpu = cpun; 534 (*psm_set_idle_cpuf)(cpun); 535 } 536 537 /* 538 * unset_idle_cpu is called from idle() when a CPU is no longer idle. 539 */ 540 /*ARGSUSED*/ 541 void 542 unset_idle_cpu(int cpun) 543 { 544 (*psm_unset_idle_cpuf)(cpun); 545 } 546 547 /* 548 * This routine is almost correct now, but not quite. It still needs the 549 * equivalent concept of "hres_last_tick", just like on the sparc side. 550 * The idea is to take a snapshot of the hi-res timer while doing the 551 * hrestime_adj updates under hres_lock in locore, so that the small 552 * interval between interrupt assertion and interrupt processing is 553 * accounted for correctly. Once we have this, the code below should 554 * be modified to subtract off hres_last_tick rather than hrtime_base. 555 * 556 * I'd have done this myself, but I don't have source to all of the 557 * vendor-specific hi-res timer routines (grrr...). The generic hook I 558 * need is something like "gethrtime_unlocked()", which would be just like 559 * gethrtime() but would assume that you're already holding CLOCK_LOCK(). 560 * This is what the GET_HRTIME() macro is for on sparc (although it also 561 * serves the function of making time available without a function call 562 * so you don't take a register window overflow while traps are disabled). 563 */ 564 void 565 pc_gethrestime(timestruc_t *tp) 566 { 567 int lock_prev; 568 timestruc_t now; 569 int nslt; /* nsec since last tick */ 570 int adj; /* amount of adjustment to apply */ 571 572 loop: 573 lock_prev = hres_lock; 574 now = hrestime; 575 nslt = (int)(gethrtime() - hres_last_tick); 576 if (nslt < 0) { 577 /* 578 * nslt < 0 means a tick came between sampling 579 * gethrtime() and hres_last_tick; restart the loop 580 */ 581 582 goto loop; 583 } 584 now.tv_nsec += nslt; 585 if (hrestime_adj != 0) { 586 if (hrestime_adj > 0) { 587 adj = (nslt >> ADJ_SHIFT); 588 if (adj > hrestime_adj) 589 adj = (int)hrestime_adj; 590 } else { 591 adj = -(nslt >> ADJ_SHIFT); 592 if (adj < hrestime_adj) 593 adj = (int)hrestime_adj; 594 } 595 now.tv_nsec += adj; 596 } 597 while ((unsigned long)now.tv_nsec >= NANOSEC) { 598 599 /* 600 * We might have a large adjustment or have been in the 601 * debugger for a long time; take care of (at most) four 602 * of those missed seconds (tv_nsec is 32 bits, so 603 * anything >4s will be wrapping around). However, 604 * anything more than 2 seconds out of sync will trigger 605 * timedelta from clock() to go correct the time anyway, 606 * so do what we can, and let the big crowbar do the 607 * rest. A similar correction while loop exists inside 608 * hres_tick(); in all cases we'd like tv_nsec to 609 * satisfy 0 <= tv_nsec < NANOSEC to avoid confusing 610 * user processes, but if tv_sec's a little behind for a 611 * little while, that's OK; time still monotonically 612 * increases. 613 */ 614 615 now.tv_nsec -= NANOSEC; 616 now.tv_sec++; 617 } 618 if ((hres_lock & ~1) != lock_prev) 619 goto loop; 620 621 *tp = now; 622 } 623 624 void 625 gethrestime_lasttick(timespec_t *tp) 626 { 627 int s; 628 629 s = hr_clock_lock(); 630 *tp = hrestime; 631 hr_clock_unlock(s); 632 } 633 634 time_t 635 gethrestime_sec(void) 636 { 637 timestruc_t now; 638 639 gethrestime(&now); 640 return (now.tv_sec); 641 } 642 643 /* 644 * Initialize a kernel thread's stack 645 */ 646 647 caddr_t 648 thread_stk_init(caddr_t stk) 649 { 650 ASSERT(((uintptr_t)stk & (STACK_ALIGN - 1)) == 0); 651 return (stk - SA(MINFRAME)); 652 } 653 654 /* 655 * Initialize lwp's kernel stack. 656 */ 657 658 #ifdef TRAPTRACE 659 /* 660 * There's a tricky interdependency here between use of sysenter and 661 * TRAPTRACE which needs recording to avoid future confusion (this is 662 * about the third time I've re-figured this out ..) 663 * 664 * Here's how debugging lcall works with TRAPTRACE. 665 * 666 * 1 We're in userland with a breakpoint on the lcall instruction. 667 * 2 We execute the instruction - the instruction pushes the userland 668 * %ss, %esp, %efl, %cs, %eip on the stack and zips into the kernel 669 * via the call gate. 670 * 3 The hardware raises a debug trap in kernel mode, the hardware 671 * pushes %efl, %cs, %eip and gets to dbgtrap via the idt. 672 * 4 dbgtrap pushes the error code and trapno and calls cmntrap 673 * 5 cmntrap finishes building a trap frame 674 * 6 The TRACE_REGS macros in cmntrap copy a REGSIZE worth chunk 675 * off the stack into the traptrace buffer. 676 * 677 * This means that the traptrace buffer contains the wrong values in 678 * %esp and %ss, but everything else in there is correct. 679 * 680 * Here's how debugging sysenter works with TRAPTRACE. 681 * 682 * a We're in userland with a breakpoint on the sysenter instruction. 683 * b We execute the instruction - the instruction pushes -nothing- 684 * on the stack, but sets %cs, %eip, %ss, %esp to prearranged 685 * values to take us to sys_sysenter, at the top of the lwp's 686 * stack. 687 * c goto 3 688 * 689 * At this point, because we got into the kernel without the requisite 690 * five pushes on the stack, if we didn't make extra room, we'd 691 * end up with the TRACE_REGS macro fetching the saved %ss and %esp 692 * values from negative (unmapped) stack addresses -- which really bites. 693 * That's why we do the '-= 8' below. 694 * 695 * XXX Note that reading "up" lwp0's stack works because t0 is declared 696 * right next to t0stack in locore.s 697 */ 698 #endif 699 700 caddr_t 701 lwp_stk_init(klwp_t *lwp, caddr_t stk) 702 { 703 caddr_t oldstk; 704 struct pcb *pcb = &lwp->lwp_pcb; 705 706 oldstk = stk; 707 stk -= SA(sizeof (struct regs) + SA(MINFRAME)); 708 #ifdef TRAPTRACE 709 stk -= 2 * sizeof (greg_t); /* space for phony %ss:%sp (see above) */ 710 #endif 711 stk = (caddr_t)((uintptr_t)stk & ~(STACK_ALIGN - 1ul)); 712 bzero(stk, oldstk - stk); 713 lwp->lwp_regs = (void *)(stk + SA(MINFRAME)); 714 715 /* 716 * Arrange that the virtualized %fs and %gs GDT descriptors 717 * have a well-defined initial state (present, ring 3 718 * and of type data). 719 */ 720 #if defined(__amd64) 721 if (lwp_getdatamodel(lwp) == DATAMODEL_NATIVE) 722 pcb->pcb_fsdesc = pcb->pcb_gsdesc = zero_udesc; 723 else 724 pcb->pcb_fsdesc = pcb->pcb_gsdesc = zero_u32desc; 725 #elif defined(__i386) 726 pcb->pcb_fsdesc = pcb->pcb_gsdesc = zero_udesc; 727 #endif /* __i386 */ 728 lwp_installctx(lwp); 729 return (stk); 730 } 731 732 /*ARGSUSED*/ 733 void 734 lwp_stk_fini(klwp_t *lwp) 735 {} 736 737 /* 738 * If we're not the panic CPU, we wait in panic_idle for reboot. 739 */ 740 static void 741 panic_idle(void) 742 { 743 splx(ipltospl(CLOCK_LEVEL)); 744 (void) setjmp(&curthread->t_pcb); 745 746 for (;;) 747 ; 748 } 749 750 /* 751 * Stop the other CPUs by cross-calling them and forcing them to enter 752 * the panic_idle() loop above. 753 */ 754 /*ARGSUSED*/ 755 void 756 panic_stopcpus(cpu_t *cp, kthread_t *t, int spl) 757 { 758 processorid_t i; 759 cpuset_t xcset; 760 761 (void) splzs(); 762 763 CPUSET_ALL_BUT(xcset, cp->cpu_id); 764 xc_trycall(NULL, NULL, NULL, xcset, (int (*)())panic_idle); 765 766 for (i = 0; i < NCPU; i++) { 767 if (i != cp->cpu_id && cpu[i] != NULL && 768 (cpu[i]->cpu_flags & CPU_EXISTS)) 769 cpu[i]->cpu_flags |= CPU_QUIESCED; 770 } 771 } 772 773 /* 774 * Platform callback following each entry to panicsys(). 775 */ 776 /*ARGSUSED*/ 777 void 778 panic_enter_hw(int spl) 779 { 780 /* Nothing to do here */ 781 } 782 783 /* 784 * Platform-specific code to execute after panicstr is set: we invoke 785 * the PSM entry point to indicate that a panic has occurred. 786 */ 787 /*ARGSUSED*/ 788 void 789 panic_quiesce_hw(panic_data_t *pdp) 790 { 791 psm_notifyf(PSM_PANIC_ENTER); 792 793 #ifdef TRAPTRACE 794 /* 795 * Turn off TRAPTRACE 796 */ 797 TRAPTRACE_FREEZE; 798 #endif /* TRAPTRACE */ 799 } 800 801 /* 802 * Platform callback prior to writing crash dump. 803 */ 804 /*ARGSUSED*/ 805 void 806 panic_dump_hw(int spl) 807 { 808 /* Nothing to do here */ 809 } 810 811 /*ARGSUSED*/ 812 void 813 plat_tod_fault(enum tod_fault_type tod_bad) 814 {} 815 816 /*ARGSUSED*/ 817 int 818 blacklist(int cmd, const char *scheme, nvlist_t *fmri, const char *class) 819 { 820 return (ENOTSUP); 821 } 822 823 /* 824 * The underlying console output routines are protected by raising IPL in case 825 * we are still calling into the early boot services. Once we start calling 826 * the kernel console emulator, it will disable interrupts completely during 827 * character rendering (see sysp_putchar, for example). Refer to the comments 828 * and code in common/os/console.c for more information on these callbacks. 829 */ 830 /*ARGSUSED*/ 831 int 832 console_enter(int busy) 833 { 834 return (splzs()); 835 } 836 837 /*ARGSUSED*/ 838 void 839 console_exit(int busy, int spl) 840 { 841 splx(spl); 842 } 843 844 /* 845 * Allocate a region of virtual address space, unmapped. 846 * Stubbed out except on sparc, at least for now. 847 */ 848 /*ARGSUSED*/ 849 void * 850 boot_virt_alloc(void *addr, size_t size) 851 { 852 return (addr); 853 } 854 855 volatile unsigned long tenmicrodata; 856 857 void 858 tenmicrosec(void) 859 { 860 extern int tsc_gethrtime_initted; 861 862 if (tsc_gethrtime_initted) { 863 hrtime_t start, end; 864 start = end = gethrtime(); 865 while ((end - start) < (10 * (NANOSEC / MICROSEC))) { 866 SMT_PAUSE(); 867 end = gethrtime(); 868 } 869 } else { 870 int i; 871 872 /* 873 * Artificial loop to induce delay. 874 */ 875 for (i = 0; i < microdata; i++) 876 tenmicrodata = microdata; 877 } 878 } 879 880 /* 881 * get_cpu_mstate() is passed an array of timestamps, NCMSTATES 882 * long, and it fills in the array with the time spent on cpu in 883 * each of the mstates, where time is returned in nsec. 884 * 885 * No guarantee is made that the returned values in times[] will 886 * monotonically increase on sequential calls, although this will 887 * be true in the long run. Any such guarantee must be handled by 888 * the caller, if needed. This can happen if we fail to account 889 * for elapsed time due to a generation counter conflict, yet we 890 * did account for it on a prior call (see below). 891 * 892 * The complication is that the cpu in question may be updating 893 * its microstate at the same time that we are reading it. 894 * Because the microstate is only updated when the CPU's state 895 * changes, the values in cpu_intracct[] can be indefinitely out 896 * of date. To determine true current values, it is necessary to 897 * compare the current time with cpu_mstate_start, and add the 898 * difference to times[cpu_mstate]. 899 * 900 * This can be a problem if those values are changing out from 901 * under us. Because the code path in new_cpu_mstate() is 902 * performance critical, we have not added a lock to it. Instead, 903 * we have added a generation counter. Before beginning 904 * modifications, the counter is set to 0. After modifications, 905 * it is set to the old value plus one. 906 * 907 * get_cpu_mstate() will not consider the values of cpu_mstate 908 * and cpu_mstate_start to be usable unless the value of 909 * cpu_mstate_gen is both non-zero and unchanged, both before and 910 * after reading the mstate information. Note that we must 911 * protect against out-of-order loads around accesses to the 912 * generation counter. Also, this is a best effort approach in 913 * that we do not retry should the counter be found to have 914 * changed. 915 * 916 * cpu_intracct[] is used to identify time spent in each CPU 917 * mstate while handling interrupts. Such time should be reported 918 * against system time, and so is subtracted out from its 919 * corresponding cpu_acct[] time and added to 920 * cpu_acct[CMS_SYSTEM]. 921 */ 922 923 void 924 get_cpu_mstate(cpu_t *cpu, hrtime_t *times) 925 { 926 int i; 927 hrtime_t now, start; 928 uint16_t gen; 929 uint16_t state; 930 hrtime_t intracct[NCMSTATES]; 931 932 /* 933 * Load all volatile state under the protection of membar. 934 * cpu_acct[cpu_mstate] must be loaded to avoid double counting 935 * of (now - cpu_mstate_start) by a change in CPU mstate that 936 * arrives after we make our last check of cpu_mstate_gen. 937 */ 938 939 now = gethrtime_unscaled(); 940 gen = cpu->cpu_mstate_gen; 941 942 membar_consumer(); /* guarantee load ordering */ 943 start = cpu->cpu_mstate_start; 944 state = cpu->cpu_mstate; 945 for (i = 0; i < NCMSTATES; i++) { 946 intracct[i] = cpu->cpu_intracct[i]; 947 times[i] = cpu->cpu_acct[i]; 948 } 949 membar_consumer(); /* guarantee load ordering */ 950 951 if (gen != 0 && gen == cpu->cpu_mstate_gen && now > start) 952 times[state] += now - start; 953 954 for (i = 0; i < NCMSTATES; i++) { 955 if (i == CMS_SYSTEM) 956 continue; 957 times[i] -= intracct[i]; 958 if (times[i] < 0) { 959 intracct[i] += times[i]; 960 times[i] = 0; 961 } 962 times[CMS_SYSTEM] += intracct[i]; 963 scalehrtime(×[i]); 964 } 965 scalehrtime(×[CMS_SYSTEM]); 966 } 967 968 969 /* 970 * This is a version of the rdmsr instruction that allows 971 * an error code to be returned in the case of failure. 972 */ 973 int 974 checked_rdmsr(uint_t msr, uint64_t *value) 975 { 976 if ((x86_feature & X86_MSR) == 0) 977 return (ENOTSUP); 978 *value = rdmsr(msr); 979 return (0); 980 } 981 982 /* 983 * This is a version of the wrmsr instruction that allows 984 * an error code to be returned in the case of failure. 985 */ 986 int 987 checked_wrmsr(uint_t msr, uint64_t value) 988 { 989 if ((x86_feature & X86_MSR) == 0) 990 return (ENOTSUP); 991 wrmsr(msr, value); 992 return (0); 993 } 994 995 /* 996 * Return true if the given page VA can be read via /dev/kmem. 997 */ 998 /*ARGSUSED*/ 999 int 1000 plat_mem_valid_page(uintptr_t pageaddr, uio_rw_t rw) 1001 { 1002 return (0); 1003 } 1004 1005 int 1006 dump_plat_addr() 1007 { 1008 return (0); 1009 } 1010 1011 void 1012 dump_plat_pfn() 1013 { 1014 } 1015 1016 /*ARGSUSED*/ 1017 int 1018 dump_plat_data(void *dump_cbuf) 1019 { 1020 return (0); 1021 } 1022