1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License, Version 1.0 only 6 * (the "License"). You may not use this file except in compliance 7 * with the License. 8 * 9 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 10 * or http://www.opensolaris.org/os/licensing. 11 * See the License for the specific language governing permissions 12 * and limitations under the License. 13 * 14 * When distributing Covered Code, include this CDDL HEADER in each 15 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 16 * If applicable, add the following below this CDDL HEADER, with the 17 * fields enclosed by brackets "[]" replaced with your own identifying 18 * information: Portions Copyright [yyyy] [name of copyright owner] 19 * 20 * CDDL HEADER END 21 */ 22 /* 23 * Copyright 2005 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 27 #pragma ident "%Z%%M% %I% %E% SMI" 28 29 #include <sys/types.h> 30 #include <sys/t_lock.h> 31 #include <sys/param.h> 32 #include <sys/sysmacros.h> 33 #include <sys/signal.h> 34 #include <sys/systm.h> 35 #include <sys/user.h> 36 #include <sys/mman.h> 37 #include <sys/vm.h> 38 39 #include <sys/disp.h> 40 #include <sys/class.h> 41 42 #include <sys/proc.h> 43 #include <sys/buf.h> 44 #include <sys/kmem.h> 45 46 #include <sys/reboot.h> 47 #include <sys/uadmin.h> 48 #include <sys/callb.h> 49 50 #include <sys/cred.h> 51 #include <sys/vnode.h> 52 #include <sys/file.h> 53 54 #include <sys/procfs.h> 55 #include <sys/acct.h> 56 57 #include <sys/vfs.h> 58 #include <sys/dnlc.h> 59 #include <sys/var.h> 60 #include <sys/cmn_err.h> 61 #include <sys/utsname.h> 62 #include <sys/debug.h> 63 #include <sys/kdi_impl.h> 64 65 #include <sys/dumphdr.h> 66 #include <sys/bootconf.h> 67 #include <sys/varargs.h> 68 #include <sys/promif.h> 69 #include <sys/modctl.h> 70 71 #include <sys/consdev.h> 72 #include <sys/frame.h> 73 74 #include <sys/sunddi.h> 75 #include <sys/ddidmareq.h> 76 #include <sys/psw.h> 77 #include <sys/regset.h> 78 #include <sys/privregs.h> 79 #include <sys/clock.h> 80 #include <sys/tss.h> 81 #include <sys/cpu.h> 82 #include <sys/stack.h> 83 #include <sys/trap.h> 84 #include <sys/pic.h> 85 #include <sys/mmu.h> 86 #include <vm/hat.h> 87 #include <vm/anon.h> 88 #include <vm/as.h> 89 #include <vm/page.h> 90 #include <vm/seg.h> 91 #include <vm/seg_kmem.h> 92 #include <vm/seg_map.h> 93 #include <vm/seg_vn.h> 94 #include <vm/seg_kp.h> 95 #include <vm/hat_i86.h> 96 #include <sys/swap.h> 97 #include <sys/thread.h> 98 #include <sys/sysconf.h> 99 #include <sys/vm_machparam.h> 100 #include <sys/archsystm.h> 101 #include <sys/machsystm.h> 102 #include <sys/machlock.h> 103 #include <sys/x_call.h> 104 #include <sys/instance.h> 105 106 #include <sys/time.h> 107 #include <sys/smp_impldefs.h> 108 #include <sys/psm_types.h> 109 #include <sys/atomic.h> 110 #include <sys/panic.h> 111 #include <sys/cpuvar.h> 112 #include <sys/dtrace.h> 113 #include <sys/bl.h> 114 #include <sys/nvpair.h> 115 #include <sys/x86_archext.h> 116 #include <sys/pool_pset.h> 117 #include <sys/autoconf.h> 118 #include <sys/kdi.h> 119 120 #ifdef TRAPTRACE 121 #include <sys/traptrace.h> 122 #endif /* TRAPTRACE */ 123 124 #ifdef C2_AUDIT 125 extern void audit_enterprom(int); 126 extern void audit_exitprom(int); 127 #endif 128 129 /* 130 * The panicbuf array is used to record messages and state: 131 */ 132 char panicbuf[PANICBUFSIZE]; 133 134 /* 135 * maxphys - used during physio 136 * klustsize - used for klustering by swapfs and specfs 137 */ 138 int maxphys = 56 * 1024; /* XXX See vm_subr.c - max b_count in physio */ 139 int klustsize = 56 * 1024; 140 141 caddr_t p0_va; /* Virtual address for accessing physical page 0 */ 142 143 /* 144 * defined here, though unused on x86, 145 * to make kstat_fr.c happy. 146 */ 147 int vac; 148 149 void stop_other_cpus(); 150 void debug_enter(char *); 151 152 int procset = 1; 153 154 /* 155 * Flags set by mdboot if we're panicking and we invoke mdboot on a CPU which 156 * is not the boot CPU. When set, panic_idle() on the boot CPU will invoke 157 * mdboot with the corresponding arguments. 158 */ 159 160 #define BOOT_WAIT -1 /* Flag indicating we should idle */ 161 162 volatile int cpu_boot_cmd = BOOT_WAIT; 163 volatile int cpu_boot_fcn = BOOT_WAIT; 164 165 extern void pm_cfb_check_and_powerup(void); 166 extern void pm_cfb_rele(void); 167 168 /* 169 * Machine dependent code to reboot. 170 * "mdep" is interpreted as a character pointer; if non-null, it is a pointer 171 * to a string to be used as the argument string when rebooting. 172 * 173 * "invoke_cb" is a boolean. It is set to true when mdboot() can safely 174 * invoke CB_CL_MDBOOT callbacks before shutting the system down, i.e. when 175 * we are in a normal shutdown sequence (interrupts are not blocked, the 176 * system is not panic'ing or being suspended). 177 */ 178 /*ARGSUSED*/ 179 void 180 mdboot(int cmd, int fcn, char *mdep, boolean_t invoke_cb) 181 { 182 extern void mtrr_resync(void); 183 184 /* 185 * The PSMI guarantees the implementor of psm_shutdown that it will 186 * only be called on the boot CPU. This was needed by Corollary 187 * because the hardware does not allow other CPUs to reset the 188 * boot CPU. So before rebooting, we switch over to the boot CPU. 189 * If we are panicking, the other CPUs are at high spl spinning in 190 * panic_idle(), so we set the cpu_boot_* variables and wait for 191 * the boot CPU to re-invoke mdboot() for us. 192 */ 193 if (!panicstr) { 194 kpreempt_disable(); 195 affinity_set(getbootcpuid()); 196 } else if (CPU->cpu_id != getbootcpuid()) { 197 cpu_boot_cmd = cmd; 198 cpu_boot_fcn = fcn; 199 for (;;); 200 } 201 202 /* 203 * XXX - rconsvp is set to NULL to ensure that output messages 204 * are sent to the underlying "hardware" device using the 205 * monitor's printf routine since we are in the process of 206 * either rebooting or halting the machine. 207 */ 208 rconsvp = NULL; 209 210 /* 211 * Print the reboot message now, before pausing other cpus. 212 * There is a race condition in the printing support that 213 * can deadlock multiprocessor machines. 214 */ 215 if (!(fcn == AD_HALT || fcn == AD_POWEROFF)) 216 prom_printf("rebooting...\n"); 217 218 /* 219 * We can't bring up the console from above lock level, so do it now 220 */ 221 pm_cfb_check_and_powerup(); 222 223 /* make sure there are no more changes to the device tree */ 224 devtree_freeze(); 225 226 if (invoke_cb) 227 (void) callb_execute_class(CB_CL_MDBOOT, NULL); 228 229 /* 230 * stop other cpus and raise our priority. since there is only 231 * one active cpu after this, and our priority will be too high 232 * for us to be preempted, we're essentially single threaded 233 * from here on out. 234 */ 235 (void) spl6(); 236 if (!panicstr) { 237 mutex_enter(&cpu_lock); 238 pause_cpus(NULL); 239 mutex_exit(&cpu_lock); 240 } 241 242 /* 243 * try and reset leaf devices. reset_leaves() should only 244 * be called when there are no other threads that could be 245 * accessing devices 246 */ 247 reset_leaves(); 248 249 (void) spl8(); 250 (*psm_shutdownf)(cmd, fcn); 251 252 mtrr_resync(); 253 254 if (fcn == AD_HALT || fcn == AD_POWEROFF) 255 halt((char *)NULL); 256 else 257 prom_reboot(""); 258 /*NOTREACHED*/ 259 } 260 261 /* mdpreboot - may be called prior to mdboot while root fs still mounted */ 262 /*ARGSUSED*/ 263 void 264 mdpreboot(int cmd, int fcn, char *mdep) 265 { 266 (*psm_preshutdownf)(cmd, fcn); 267 } 268 269 void 270 idle_other_cpus() 271 { 272 int cpuid = CPU->cpu_id; 273 cpuset_t xcset; 274 275 ASSERT(cpuid < NCPU); 276 CPUSET_ALL_BUT(xcset, cpuid); 277 xc_capture_cpus(xcset); 278 } 279 280 void 281 resume_other_cpus() 282 { 283 ASSERT(CPU->cpu_id < NCPU); 284 285 xc_release_cpus(); 286 } 287 288 extern void mp_halt(char *); 289 290 void 291 stop_other_cpus() 292 { 293 int cpuid = CPU->cpu_id; 294 cpuset_t xcset; 295 296 ASSERT(cpuid < NCPU); 297 298 /* 299 * xc_trycall will attempt to make all other CPUs execute mp_halt, 300 * and will return immediately regardless of whether or not it was 301 * able to make them do it. 302 */ 303 CPUSET_ALL_BUT(xcset, cpuid); 304 xc_trycall(NULL, NULL, NULL, xcset, (int (*)())mp_halt); 305 } 306 307 /* 308 * Machine dependent abort sequence handling 309 */ 310 void 311 abort_sequence_enter(char *msg) 312 { 313 if (abort_enable == 0) { 314 #ifdef C2_AUDIT 315 if (audit_active) 316 audit_enterprom(0); 317 #endif /* C2_AUDIT */ 318 return; 319 } 320 #ifdef C2_AUDIT 321 if (audit_active) 322 audit_enterprom(1); 323 #endif /* C2_AUDIT */ 324 debug_enter(msg); 325 #ifdef C2_AUDIT 326 if (audit_active) 327 audit_exitprom(1); 328 #endif /* C2_AUDIT */ 329 } 330 331 /* 332 * Enter debugger. Called when the user types ctrl-alt-d or whenever 333 * code wants to enter the debugger and possibly resume later. 334 */ 335 void 336 debug_enter( 337 char *msg) /* message to print, possibly NULL */ 338 { 339 if (dtrace_debugger_init != NULL) 340 (*dtrace_debugger_init)(); 341 342 if (msg) 343 prom_printf("%s\n", msg); 344 345 if (boothowto & RB_DEBUG) 346 kdi_dvec_enter(); 347 348 if (dtrace_debugger_fini != NULL) 349 (*dtrace_debugger_fini)(); 350 } 351 352 void 353 reset(void) 354 { 355 ushort_t *bios_memchk; 356 357 /* 358 * Can't use psm_map_phys before the hat is initialized. 359 */ 360 if (khat_running) { 361 bios_memchk = (ushort_t *)psm_map_phys(0x472, 362 sizeof (ushort_t), PROT_READ | PROT_WRITE); 363 if (bios_memchk) 364 *bios_memchk = 0x1234; /* bios memory check disable */ 365 } 366 367 pc_reset(); 368 /*NOTREACHED*/ 369 } 370 371 /* 372 * Halt the machine and return to the monitor 373 */ 374 void 375 halt(char *s) 376 { 377 stop_other_cpus(); /* send stop signal to other CPUs */ 378 if (s) 379 prom_printf("(%s) \n", s); 380 prom_exit_to_mon(); 381 /*NOTREACHED*/ 382 } 383 384 /* 385 * Enter monitor. Called via cross-call from stop_other_cpus(). 386 */ 387 void 388 mp_halt(char *msg) 389 { 390 if (msg) 391 prom_printf("%s\n", msg); 392 393 /*CONSTANTCONDITION*/ 394 while (1) 395 ; 396 } 397 398 /* 399 * Initiate interrupt redistribution. 400 */ 401 void 402 i_ddi_intr_redist_all_cpus() 403 { 404 } 405 406 /* 407 * XXX These probably ought to live somewhere else 408 * XXX They are called from mem.c 409 */ 410 411 /* 412 * Convert page frame number to an OBMEM page frame number 413 * (i.e. put in the type bits -- zero for this implementation) 414 */ 415 pfn_t 416 impl_obmem_pfnum(pfn_t pf) 417 { 418 return (pf); 419 } 420 421 #ifdef NM_DEBUG 422 int nmi_test = 0; /* checked in intentry.s during clock int */ 423 int nmtest = -1; 424 nmfunc1(arg, rp) 425 int arg; 426 struct regs *rp; 427 { 428 printf("nmi called with arg = %x, regs = %x\n", arg, rp); 429 nmtest += 50; 430 if (arg == nmtest) { 431 printf("ip = %x\n", rp->r_pc); 432 return (1); 433 } 434 return (0); 435 } 436 437 #endif 438 439 #include <sys/bootsvcs.h> 440 441 /* Hacked up initialization for initial kernel check out is HERE. */ 442 /* The basic steps are: */ 443 /* kernel bootfuncs definition/initialization for KADB */ 444 /* kadb bootfuncs pointer initialization */ 445 /* putchar/getchar (interrupts disabled) */ 446 447 /* kadb bootfuncs pointer initialization */ 448 449 int 450 sysp_getchar() 451 { 452 int i; 453 int s; 454 455 if (cons_polledio == NULL) { 456 /* Uh oh */ 457 prom_printf("getchar called with no console\n"); 458 for (;;) 459 /* LOOP FOREVER */; 460 } 461 462 s = clear_int_flag(); 463 i = cons_polledio->cons_polledio_getchar( 464 cons_polledio->cons_polledio_argument); 465 restore_int_flag(s); 466 return (i); 467 } 468 469 void 470 sysp_putchar(int c) 471 { 472 int s; 473 474 /* 475 * We have no alternative but to drop the output on the floor. 476 */ 477 if (cons_polledio == NULL) 478 return; 479 480 s = clear_int_flag(); 481 cons_polledio->cons_polledio_putchar( 482 cons_polledio->cons_polledio_argument, c); 483 restore_int_flag(s); 484 } 485 486 int 487 sysp_ischar() 488 { 489 int i; 490 int s; 491 492 if (cons_polledio == NULL) 493 return (0); 494 495 s = clear_int_flag(); 496 i = cons_polledio->cons_polledio_ischar( 497 cons_polledio->cons_polledio_argument); 498 restore_int_flag(s); 499 return (i); 500 } 501 502 int 503 goany(void) 504 { 505 prom_printf("Type any key to continue "); 506 (void) prom_getchar(); 507 prom_printf("\n"); 508 return (1); 509 } 510 511 static struct boot_syscalls kern_sysp = { 512 sysp_getchar, /* unchar (*getchar)(); 7 */ 513 sysp_putchar, /* int (*putchar)(); 8 */ 514 sysp_ischar, /* int (*ischar)(); 9 */ 515 }; 516 517 void 518 kadb_uses_kernel() 519 { 520 /* 521 * This routine is now totally misnamed, since it does not in fact 522 * control kadb's I/O; it only controls the kernel's prom_* I/O. 523 */ 524 sysp = &kern_sysp; 525 } 526 527 /* 528 * the interface to the outside world 529 */ 530 531 /* 532 * poll_port -- wait for a register to achieve a 533 * specific state. Arguments are a mask of bits we care about, 534 * and two sub-masks. To return normally, all the bits in the 535 * first sub-mask must be ON, all the bits in the second sub- 536 * mask must be OFF. If about seconds pass without the register 537 * achieving the desired bit configuration, we return 1, else 538 * 0. 539 */ 540 int 541 poll_port(ushort_t port, ushort_t mask, ushort_t onbits, ushort_t offbits) 542 { 543 int i; 544 ushort_t maskval; 545 546 for (i = 500000; i; i--) { 547 maskval = inb(port) & mask; 548 if (((maskval & onbits) == onbits) && 549 ((maskval & offbits) == 0)) 550 return (0); 551 drv_usecwait(10); 552 } 553 return (1); 554 } 555 556 /* 557 * set_idle_cpu is called from idle() when a CPU becomes idle. 558 */ 559 /*LINTED: static unused */ 560 static uint_t last_idle_cpu; 561 562 /*ARGSUSED*/ 563 void 564 set_idle_cpu(int cpun) 565 { 566 last_idle_cpu = cpun; 567 (*psm_set_idle_cpuf)(cpun); 568 } 569 570 /* 571 * unset_idle_cpu is called from idle() when a CPU is no longer idle. 572 */ 573 /*ARGSUSED*/ 574 void 575 unset_idle_cpu(int cpun) 576 { 577 (*psm_unset_idle_cpuf)(cpun); 578 } 579 580 /* 581 * This routine is almost correct now, but not quite. It still needs the 582 * equivalent concept of "hres_last_tick", just like on the sparc side. 583 * The idea is to take a snapshot of the hi-res timer while doing the 584 * hrestime_adj updates under hres_lock in locore, so that the small 585 * interval between interrupt assertion and interrupt processing is 586 * accounted for correctly. Once we have this, the code below should 587 * be modified to subtract off hres_last_tick rather than hrtime_base. 588 * 589 * I'd have done this myself, but I don't have source to all of the 590 * vendor-specific hi-res timer routines (grrr...). The generic hook I 591 * need is something like "gethrtime_unlocked()", which would be just like 592 * gethrtime() but would assume that you're already holding CLOCK_LOCK(). 593 * This is what the GET_HRTIME() macro is for on sparc (although it also 594 * serves the function of making time available without a function call 595 * so you don't take a register window overflow while traps are disabled). 596 */ 597 void 598 pc_gethrestime(timestruc_t *tp) 599 { 600 int lock_prev; 601 timestruc_t now; 602 int nslt; /* nsec since last tick */ 603 int adj; /* amount of adjustment to apply */ 604 605 loop: 606 lock_prev = hres_lock; 607 now = hrestime; 608 nslt = (int)(gethrtime() - hres_last_tick); 609 if (nslt < 0) { 610 /* 611 * nslt < 0 means a tick came between sampling 612 * gethrtime() and hres_last_tick; restart the loop 613 */ 614 615 goto loop; 616 } 617 now.tv_nsec += nslt; 618 if (hrestime_adj != 0) { 619 if (hrestime_adj > 0) { 620 adj = (nslt >> ADJ_SHIFT); 621 if (adj > hrestime_adj) 622 adj = (int)hrestime_adj; 623 } else { 624 adj = -(nslt >> ADJ_SHIFT); 625 if (adj < hrestime_adj) 626 adj = (int)hrestime_adj; 627 } 628 now.tv_nsec += adj; 629 } 630 while ((unsigned long)now.tv_nsec >= NANOSEC) { 631 632 /* 633 * We might have a large adjustment or have been in the 634 * debugger for a long time; take care of (at most) four 635 * of those missed seconds (tv_nsec is 32 bits, so 636 * anything >4s will be wrapping around). However, 637 * anything more than 2 seconds out of sync will trigger 638 * timedelta from clock() to go correct the time anyway, 639 * so do what we can, and let the big crowbar do the 640 * rest. A similar correction while loop exists inside 641 * hres_tick(); in all cases we'd like tv_nsec to 642 * satisfy 0 <= tv_nsec < NANOSEC to avoid confusing 643 * user processes, but if tv_sec's a little behind for a 644 * little while, that's OK; time still monotonically 645 * increases. 646 */ 647 648 now.tv_nsec -= NANOSEC; 649 now.tv_sec++; 650 } 651 if ((hres_lock & ~1) != lock_prev) 652 goto loop; 653 654 *tp = now; 655 } 656 657 void 658 gethrestime_lasttick(timespec_t *tp) 659 { 660 int s; 661 662 s = hr_clock_lock(); 663 *tp = hrestime; 664 hr_clock_unlock(s); 665 } 666 667 time_t 668 gethrestime_sec(void) 669 { 670 timestruc_t now; 671 672 gethrestime(&now); 673 return (now.tv_sec); 674 } 675 676 /* 677 * Initialize a kernel thread's stack 678 */ 679 680 caddr_t 681 thread_stk_init(caddr_t stk) 682 { 683 ASSERT(((uintptr_t)stk & (STACK_ALIGN - 1)) == 0); 684 return (stk - SA(MINFRAME)); 685 } 686 687 /* 688 * Initialize lwp's kernel stack. 689 */ 690 691 #ifdef TRAPTRACE 692 /* 693 * There's a tricky interdependency here between use of sysenter and 694 * TRAPTRACE which needs recording to avoid future confusion (this is 695 * about the third time I've re-figured this out ..) 696 * 697 * Here's how debugging lcall works with TRAPTRACE. 698 * 699 * 1 We're in userland with a breakpoint on the lcall instruction. 700 * 2 We execute the instruction - the instruction pushes the userland 701 * %ss, %esp, %efl, %cs, %eip on the stack and zips into the kernel 702 * via the call gate. 703 * 3 The hardware raises a debug trap in kernel mode, the hardware 704 * pushes %efl, %cs, %eip and gets to dbgtrap via the idt. 705 * 4 dbgtrap pushes the error code and trapno and calls cmntrap 706 * 5 cmntrap finishes building a trap frame 707 * 6 The TRACE_REGS macros in cmntrap copy a REGSIZE worth chunk 708 * off the stack into the traptrace buffer. 709 * 710 * This means that the traptrace buffer contains the wrong values in 711 * %esp and %ss, but everything else in there is correct. 712 * 713 * Here's how debugging sysenter works with TRAPTRACE. 714 * 715 * a We're in userland with a breakpoint on the sysenter instruction. 716 * b We execute the instruction - the instruction pushes -nothing- 717 * on the stack, but sets %cs, %eip, %ss, %esp to prearranged 718 * values to take us to sys_sysenter, at the top of the lwp's 719 * stack. 720 * c goto 3 721 * 722 * At this point, because we got into the kernel without the requisite 723 * five pushes on the stack, if we didn't make extra room, we'd 724 * end up with the TRACE_REGS macro fetching the saved %ss and %esp 725 * values from negative (unmapped) stack addresses -- which really bites. 726 * That's why we do the '-= 8' below. 727 * 728 * XXX Note that reading "up" lwp0's stack works because t0 is declared 729 * right next to t0stack in locore.s 730 */ 731 #endif 732 733 caddr_t 734 lwp_stk_init(klwp_t *lwp, caddr_t stk) 735 { 736 caddr_t oldstk; 737 struct pcb *pcb = &lwp->lwp_pcb; 738 739 oldstk = stk; 740 stk -= SA(sizeof (struct regs) + SA(MINFRAME)); 741 #ifdef TRAPTRACE 742 stk -= 2 * sizeof (greg_t); /* space for phony %ss:%sp (see above) */ 743 #endif 744 stk = (caddr_t)((uintptr_t)stk & ~(STACK_ALIGN - 1ul)); 745 bzero(stk, oldstk - stk); 746 lwp->lwp_regs = (void *)(stk + SA(MINFRAME)); 747 748 /* 749 * Arrange that the virtualized %fs and %gs GDT descriptors 750 * have a well-defined initial state (present, ring 3 751 * and of type data). 752 */ 753 #if defined(__amd64) 754 if (lwp_getdatamodel(lwp) == DATAMODEL_NATIVE) 755 pcb->pcb_fsdesc = pcb->pcb_gsdesc = zero_udesc; 756 else 757 pcb->pcb_fsdesc = pcb->pcb_gsdesc = zero_u32desc; 758 #elif defined(__i386) 759 pcb->pcb_fsdesc = pcb->pcb_gsdesc = zero_udesc; 760 #endif /* __i386 */ 761 lwp_installctx(lwp); 762 return (stk); 763 } 764 765 /*ARGSUSED*/ 766 void 767 lwp_stk_fini(klwp_t *lwp) 768 {} 769 770 /* 771 * If we're not the panic CPU, we wait in panic_idle for reboot. If we're 772 * the boot CPU, then we are responsible for actually doing the reboot, so 773 * we watch for cpu_boot_cmd to be set. 774 */ 775 static void 776 panic_idle(void) 777 { 778 splx(ipltospl(CLOCK_LEVEL)); 779 (void) setjmp(&curthread->t_pcb); 780 781 if (CPU->cpu_id == getbootcpuid()) { 782 while (cpu_boot_cmd == BOOT_WAIT || cpu_boot_fcn == BOOT_WAIT) 783 drv_usecwait(10); 784 785 mdboot(cpu_boot_cmd, cpu_boot_fcn, NULL, B_FALSE); 786 } 787 788 for (;;); 789 } 790 791 /* 792 * Stop the other CPUs by cross-calling them and forcing them to enter 793 * the panic_idle() loop above. 794 */ 795 /*ARGSUSED*/ 796 void 797 panic_stopcpus(cpu_t *cp, kthread_t *t, int spl) 798 { 799 processorid_t i; 800 cpuset_t xcset; 801 802 (void) splzs(); 803 804 CPUSET_ALL_BUT(xcset, cp->cpu_id); 805 xc_trycall(NULL, NULL, NULL, xcset, (int (*)())panic_idle); 806 807 for (i = 0; i < NCPU; i++) { 808 if (i != cp->cpu_id && cpu[i] != NULL && 809 (cpu[i]->cpu_flags & CPU_EXISTS)) 810 cpu[i]->cpu_flags |= CPU_QUIESCED; 811 } 812 } 813 814 /* 815 * Platform callback following each entry to panicsys(). 816 */ 817 /*ARGSUSED*/ 818 void 819 panic_enter_hw(int spl) 820 { 821 /* Nothing to do here */ 822 } 823 824 /* 825 * Platform-specific code to execute after panicstr is set: we invoke 826 * the PSM entry point to indicate that a panic has occurred. 827 */ 828 /*ARGSUSED*/ 829 void 830 panic_quiesce_hw(panic_data_t *pdp) 831 { 832 psm_notifyf(PSM_PANIC_ENTER); 833 834 #ifdef TRAPTRACE 835 /* 836 * Turn off TRAPTRACE 837 */ 838 TRAPTRACE_FREEZE; 839 #endif /* TRAPTRACE */ 840 } 841 842 /* 843 * Platform callback prior to writing crash dump. 844 */ 845 /*ARGSUSED*/ 846 void 847 panic_dump_hw(int spl) 848 { 849 /* Nothing to do here */ 850 } 851 852 /*ARGSUSED*/ 853 void 854 plat_tod_fault(enum tod_fault_type tod_bad) 855 { 856 } 857 858 /*ARGSUSED*/ 859 int 860 blacklist(int cmd, const char *scheme, nvlist_t *fmri, const char *class) 861 { 862 return (ENOTSUP); 863 } 864 865 /* 866 * The underlying console output routines are protected by raising IPL in case 867 * we are still calling into the early boot services. Once we start calling 868 * the kernel console emulator, it will disable interrupts completely during 869 * character rendering (see sysp_putchar, for example). Refer to the comments 870 * and code in common/os/console.c for more information on these callbacks. 871 */ 872 /*ARGSUSED*/ 873 int 874 console_enter(int busy) 875 { 876 return (splzs()); 877 } 878 879 /*ARGSUSED*/ 880 void 881 console_exit(int busy, int spl) 882 { 883 splx(spl); 884 } 885 886 /* 887 * Allocate a region of virtual address space, unmapped. 888 * Stubbed out except on sparc, at least for now. 889 */ 890 /*ARGSUSED*/ 891 void * 892 boot_virt_alloc(void *addr, size_t size) 893 { 894 return (addr); 895 } 896 897 volatile unsigned long tenmicrodata; 898 899 void 900 tenmicrosec(void) 901 { 902 extern int tsc_gethrtime_initted; 903 int i; 904 905 if (tsc_gethrtime_initted) { 906 hrtime_t start, end; 907 start = end = gethrtime(); 908 while ((end - start) < (10 * (NANOSEC / MICROSEC))) { 909 SMT_PAUSE(); 910 end = gethrtime(); 911 } 912 } else { 913 /* 914 * Artificial loop to induce delay. 915 */ 916 for (i = 0; i < microdata; i++) 917 tenmicrodata = microdata; 918 } 919 } 920 921 /* 922 * get_cpu_mstate() is passed an array of timestamps, NCMSTATES 923 * long, and it fills in the array with the time spent on cpu in 924 * each of the mstates, where time is returned in nsec. 925 * 926 * No guarantee is made that the returned values in times[] will 927 * monotonically increase on sequential calls, although this will 928 * be true in the long run. Any such guarantee must be handled by 929 * the caller, if needed. This can happen if we fail to account 930 * for elapsed time due to a generation counter conflict, yet we 931 * did account for it on a prior call (see below). 932 * 933 * The complication is that the cpu in question may be updating 934 * its microstate at the same time that we are reading it. 935 * Because the microstate is only updated when the CPU's state 936 * changes, the values in cpu_intracct[] can be indefinitely out 937 * of date. To determine true current values, it is necessary to 938 * compare the current time with cpu_mstate_start, and add the 939 * difference to times[cpu_mstate]. 940 * 941 * This can be a problem if those values are changing out from 942 * under us. Because the code path in new_cpu_mstate() is 943 * performance critical, we have not added a lock to it. Instead, 944 * we have added a generation counter. Before beginning 945 * modifications, the counter is set to 0. After modifications, 946 * it is set to the old value plus one. 947 * 948 * get_cpu_mstate() will not consider the values of cpu_mstate 949 * and cpu_mstate_start to be usable unless the value of 950 * cpu_mstate_gen is both non-zero and unchanged, both before and 951 * after reading the mstate information. Note that we must 952 * protect against out-of-order loads around accesses to the 953 * generation counter. Also, this is a best effort approach in 954 * that we do not retry should the counter be found to have 955 * changed. 956 * 957 * cpu_intracct[] is used to identify time spent in each CPU 958 * mstate while handling interrupts. Such time should be reported 959 * against system time, and so is subtracted out from its 960 * corresponding cpu_acct[] time and added to 961 * cpu_acct[CMS_SYSTEM]. 962 */ 963 964 void 965 get_cpu_mstate(cpu_t *cpu, hrtime_t *times) 966 { 967 int i; 968 hrtime_t now, start; 969 uint16_t gen; 970 uint16_t state; 971 hrtime_t intracct[NCMSTATES]; 972 973 /* 974 * Load all volatile state under the protection of membar. 975 * cpu_acct[cpu_mstate] must be loaded to avoid double counting 976 * of (now - cpu_mstate_start) by a change in CPU mstate that 977 * arrives after we make our last check of cpu_mstate_gen. 978 */ 979 980 now = gethrtime_unscaled(); 981 gen = cpu->cpu_mstate_gen; 982 983 membar_consumer(); /* guarantee load ordering */ 984 start = cpu->cpu_mstate_start; 985 state = cpu->cpu_mstate; 986 for (i = 0; i < NCMSTATES; i++) { 987 intracct[i] = cpu->cpu_intracct[i]; 988 times[i] = cpu->cpu_acct[i]; 989 } 990 membar_consumer(); /* guarantee load ordering */ 991 992 if (gen != 0 && gen == cpu->cpu_mstate_gen && now > start) 993 times[state] += now - start; 994 995 for (i = 0; i < NCMSTATES; i++) { 996 if (i == CMS_SYSTEM) 997 continue; 998 times[i] -= intracct[i]; 999 if (times[i] < 0) { 1000 intracct[i] += times[i]; 1001 times[i] = 0; 1002 } 1003 times[CMS_SYSTEM] += intracct[i]; 1004 scalehrtime(×[i]); 1005 } 1006 scalehrtime(×[CMS_SYSTEM]); 1007 } 1008