1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License, Version 1.0 only 6 * (the "License"). You may not use this file except in compliance 7 * with the License. 8 * 9 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 10 * or http://www.opensolaris.org/os/licensing. 11 * See the License for the specific language governing permissions 12 * and limitations under the License. 13 * 14 * When distributing Covered Code, include this CDDL HEADER in each 15 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 16 * If applicable, add the following below this CDDL HEADER, with the 17 * fields enclosed by brackets "[]" replaced with your own identifying 18 * information: Portions Copyright [yyyy] [name of copyright owner] 19 * 20 * CDDL HEADER END 21 */ 22 /* 23 * Copyright 2005 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 27 #pragma ident "%Z%%M% %I% %E% SMI" 28 29 #include <sys/types.h> 30 #include <sys/t_lock.h> 31 #include <sys/param.h> 32 #include <sys/sysmacros.h> 33 #include <sys/signal.h> 34 #include <sys/systm.h> 35 #include <sys/user.h> 36 #include <sys/mman.h> 37 #include <sys/vm.h> 38 39 #include <sys/disp.h> 40 #include <sys/class.h> 41 42 #include <sys/proc.h> 43 #include <sys/buf.h> 44 #include <sys/kmem.h> 45 46 #include <sys/reboot.h> 47 #include <sys/uadmin.h> 48 #include <sys/callb.h> 49 50 #include <sys/cred.h> 51 #include <sys/vnode.h> 52 #include <sys/file.h> 53 54 #include <sys/procfs.h> 55 #include <sys/acct.h> 56 57 #include <sys/vfs.h> 58 #include <sys/dnlc.h> 59 #include <sys/var.h> 60 #include <sys/cmn_err.h> 61 #include <sys/utsname.h> 62 #include <sys/debug.h> 63 #include <sys/kdi_impl.h> 64 65 #include <sys/dumphdr.h> 66 #include <sys/bootconf.h> 67 #include <sys/varargs.h> 68 #include <sys/promif.h> 69 #include <sys/modctl.h> 70 71 #include <sys/consdev.h> 72 #include <sys/frame.h> 73 74 #include <sys/sunddi.h> 75 #include <sys/ddidmareq.h> 76 #include <sys/psw.h> 77 #include <sys/regset.h> 78 #include <sys/privregs.h> 79 #include <sys/clock.h> 80 #include <sys/tss.h> 81 #include <sys/cpu.h> 82 #include <sys/stack.h> 83 #include <sys/trap.h> 84 #include <sys/pic.h> 85 #include <sys/mmu.h> 86 #include <vm/hat.h> 87 #include <vm/anon.h> 88 #include <vm/as.h> 89 #include <vm/page.h> 90 #include <vm/seg.h> 91 #include <vm/seg_kmem.h> 92 #include <vm/seg_map.h> 93 #include <vm/seg_vn.h> 94 #include <vm/seg_kp.h> 95 #include <vm/hat_i86.h> 96 #include <sys/swap.h> 97 #include <sys/thread.h> 98 #include <sys/sysconf.h> 99 #include <sys/vm_machparam.h> 100 #include <sys/archsystm.h> 101 #include <sys/machsystm.h> 102 #include <sys/machlock.h> 103 #include <sys/x_call.h> 104 #include <sys/instance.h> 105 106 #include <sys/time.h> 107 #include <sys/smp_impldefs.h> 108 #include <sys/psm_types.h> 109 #include <sys/atomic.h> 110 #include <sys/panic.h> 111 #include <sys/cpuvar.h> 112 #include <sys/dtrace.h> 113 #include <sys/bl.h> 114 #include <sys/nvpair.h> 115 #include <sys/x86_archext.h> 116 #include <sys/pool_pset.h> 117 #include <sys/autoconf.h> 118 #include <sys/kdi.h> 119 120 #ifdef TRAPTRACE 121 #include <sys/traptrace.h> 122 #endif /* TRAPTRACE */ 123 124 #ifdef C2_AUDIT 125 extern void audit_enterprom(int); 126 extern void audit_exitprom(int); 127 #endif 128 129 /* 130 * The panicbuf array is used to record messages and state: 131 */ 132 char panicbuf[PANICBUFSIZE]; 133 134 /* 135 * maxphys - used during physio 136 * klustsize - used for klustering by swapfs and specfs 137 */ 138 int maxphys = 56 * 1024; /* XXX See vm_subr.c - max b_count in physio */ 139 int klustsize = 56 * 1024; 140 141 caddr_t p0_va; /* Virtual address for accessing physical page 0 */ 142 143 /* 144 * defined here, though unused on x86, 145 * to make kstat_fr.c happy. 146 */ 147 int vac; 148 149 void stop_other_cpus(); 150 void debug_enter(char *); 151 152 int procset = 1; 153 154 /* 155 * Flags set by mdboot if we're panicking and we invoke mdboot on a CPU which 156 * is not the boot CPU. When set, panic_idle() on the boot CPU will invoke 157 * mdboot with the corresponding arguments. 158 */ 159 160 #define BOOT_WAIT -1 /* Flag indicating we should idle */ 161 162 volatile int cpu_boot_cmd = BOOT_WAIT; 163 volatile int cpu_boot_fcn = BOOT_WAIT; 164 165 extern void pm_cfb_check_and_powerup(void); 166 extern void pm_cfb_rele(void); 167 168 /* 169 * Machine dependent code to reboot. 170 * "mdep" is interpreted as a character pointer; if non-null, it is a pointer 171 * to a string to be used as the argument string when rebooting. 172 * 173 * "invoke_cb" is a boolean. It is set to true when mdboot() can safely 174 * invoke CB_CL_MDBOOT callbacks before shutting the system down, i.e. when 175 * we are in a normal shutdown sequence (interrupts are not blocked, the 176 * system is not panic'ing or being suspended). 177 */ 178 /*ARGSUSED*/ 179 void 180 mdboot(int cmd, int fcn, char *mdep, boolean_t invoke_cb) 181 { 182 extern void mtrr_resync(void); 183 184 /* 185 * The PSMI guarantees the implementor of psm_shutdown that it will 186 * only be called on the boot CPU. This was needed by Corollary 187 * because the hardware does not allow other CPUs to reset the 188 * boot CPU. So before rebooting, we switch over to the boot CPU. 189 * If we are panicking, the other CPUs are at high spl spinning in 190 * panic_idle(), so we set the cpu_boot_* variables and wait for 191 * the boot CPU to re-invoke mdboot() for us. 192 */ 193 if (!panicstr) { 194 kpreempt_disable(); 195 affinity_set(getbootcpuid()); 196 } else if (CPU->cpu_id != getbootcpuid()) { 197 cpu_boot_cmd = cmd; 198 cpu_boot_fcn = fcn; 199 for (;;); 200 } 201 202 /* 203 * XXX - rconsvp is set to NULL to ensure that output messages 204 * are sent to the underlying "hardware" device using the 205 * monitor's printf routine since we are in the process of 206 * either rebooting or halting the machine. 207 */ 208 rconsvp = NULL; 209 210 /* 211 * Print the reboot message now, before pausing other cpus. 212 * There is a race condition in the printing support that 213 * can deadlock multiprocessor machines. 214 */ 215 if (!(fcn == AD_HALT || fcn == AD_POWEROFF)) 216 prom_printf("rebooting...\n"); 217 218 /* 219 * We can't bring up the console from above lock level, so do it now 220 */ 221 pm_cfb_check_and_powerup(); 222 223 /* make sure there are no more changes to the device tree */ 224 devtree_freeze(); 225 226 if (invoke_cb) 227 (void) callb_execute_class(CB_CL_MDBOOT, NULL); 228 229 page_retire_hunt(page_retire_mdboot_cb); 230 231 /* 232 * stop other cpus and raise our priority. since there is only 233 * one active cpu after this, and our priority will be too high 234 * for us to be preempted, we're essentially single threaded 235 * from here on out. 236 */ 237 (void) spl6(); 238 if (!panicstr) { 239 mutex_enter(&cpu_lock); 240 pause_cpus(NULL); 241 mutex_exit(&cpu_lock); 242 } 243 244 /* 245 * try and reset leaf devices. reset_leaves() should only 246 * be called when there are no other threads that could be 247 * accessing devices 248 */ 249 reset_leaves(); 250 251 (void) spl8(); 252 (*psm_shutdownf)(cmd, fcn); 253 254 mtrr_resync(); 255 256 if (fcn == AD_HALT || fcn == AD_POWEROFF) 257 halt((char *)NULL); 258 else 259 prom_reboot(""); 260 /*NOTREACHED*/ 261 } 262 263 /* mdpreboot - may be called prior to mdboot while root fs still mounted */ 264 /*ARGSUSED*/ 265 void 266 mdpreboot(int cmd, int fcn, char *mdep) 267 { 268 (*psm_preshutdownf)(cmd, fcn); 269 } 270 271 void 272 idle_other_cpus() 273 { 274 int cpuid = CPU->cpu_id; 275 cpuset_t xcset; 276 277 ASSERT(cpuid < NCPU); 278 CPUSET_ALL_BUT(xcset, cpuid); 279 xc_capture_cpus(xcset); 280 } 281 282 void 283 resume_other_cpus() 284 { 285 ASSERT(CPU->cpu_id < NCPU); 286 287 xc_release_cpus(); 288 } 289 290 extern void mp_halt(char *); 291 292 void 293 stop_other_cpus() 294 { 295 int cpuid = CPU->cpu_id; 296 cpuset_t xcset; 297 298 ASSERT(cpuid < NCPU); 299 300 /* 301 * xc_trycall will attempt to make all other CPUs execute mp_halt, 302 * and will return immediately regardless of whether or not it was 303 * able to make them do it. 304 */ 305 CPUSET_ALL_BUT(xcset, cpuid); 306 xc_trycall(NULL, NULL, NULL, xcset, (int (*)())mp_halt); 307 } 308 309 /* 310 * Machine dependent abort sequence handling 311 */ 312 void 313 abort_sequence_enter(char *msg) 314 { 315 if (abort_enable == 0) { 316 #ifdef C2_AUDIT 317 if (audit_active) 318 audit_enterprom(0); 319 #endif /* C2_AUDIT */ 320 return; 321 } 322 #ifdef C2_AUDIT 323 if (audit_active) 324 audit_enterprom(1); 325 #endif /* C2_AUDIT */ 326 debug_enter(msg); 327 #ifdef C2_AUDIT 328 if (audit_active) 329 audit_exitprom(1); 330 #endif /* C2_AUDIT */ 331 } 332 333 /* 334 * Enter debugger. Called when the user types ctrl-alt-d or whenever 335 * code wants to enter the debugger and possibly resume later. 336 */ 337 void 338 debug_enter( 339 char *msg) /* message to print, possibly NULL */ 340 { 341 if (dtrace_debugger_init != NULL) 342 (*dtrace_debugger_init)(); 343 344 if (msg) 345 prom_printf("%s\n", msg); 346 347 if (boothowto & RB_DEBUG) 348 kdi_dvec_enter(); 349 350 if (dtrace_debugger_fini != NULL) 351 (*dtrace_debugger_fini)(); 352 } 353 354 void 355 reset(void) 356 { 357 ushort_t *bios_memchk; 358 359 /* 360 * Can't use psm_map_phys before the hat is initialized. 361 */ 362 if (khat_running) { 363 bios_memchk = (ushort_t *)psm_map_phys(0x472, 364 sizeof (ushort_t), PROT_READ | PROT_WRITE); 365 if (bios_memchk) 366 *bios_memchk = 0x1234; /* bios memory check disable */ 367 } 368 369 pc_reset(); 370 /*NOTREACHED*/ 371 } 372 373 /* 374 * Halt the machine and return to the monitor 375 */ 376 void 377 halt(char *s) 378 { 379 stop_other_cpus(); /* send stop signal to other CPUs */ 380 if (s) 381 prom_printf("(%s) \n", s); 382 prom_exit_to_mon(); 383 /*NOTREACHED*/ 384 } 385 386 /* 387 * Enter monitor. Called via cross-call from stop_other_cpus(). 388 */ 389 void 390 mp_halt(char *msg) 391 { 392 if (msg) 393 prom_printf("%s\n", msg); 394 395 /*CONSTANTCONDITION*/ 396 while (1) 397 ; 398 } 399 400 /* 401 * Initiate interrupt redistribution. 402 */ 403 void 404 i_ddi_intr_redist_all_cpus() 405 { 406 } 407 408 /* 409 * XXX These probably ought to live somewhere else 410 * XXX They are called from mem.c 411 */ 412 413 /* 414 * Convert page frame number to an OBMEM page frame number 415 * (i.e. put in the type bits -- zero for this implementation) 416 */ 417 pfn_t 418 impl_obmem_pfnum(pfn_t pf) 419 { 420 return (pf); 421 } 422 423 #ifdef NM_DEBUG 424 int nmi_test = 0; /* checked in intentry.s during clock int */ 425 int nmtest = -1; 426 nmfunc1(arg, rp) 427 int arg; 428 struct regs *rp; 429 { 430 printf("nmi called with arg = %x, regs = %x\n", arg, rp); 431 nmtest += 50; 432 if (arg == nmtest) { 433 printf("ip = %x\n", rp->r_pc); 434 return (1); 435 } 436 return (0); 437 } 438 439 #endif 440 441 #include <sys/bootsvcs.h> 442 443 /* Hacked up initialization for initial kernel check out is HERE. */ 444 /* The basic steps are: */ 445 /* kernel bootfuncs definition/initialization for KADB */ 446 /* kadb bootfuncs pointer initialization */ 447 /* putchar/getchar (interrupts disabled) */ 448 449 /* kadb bootfuncs pointer initialization */ 450 451 int 452 sysp_getchar() 453 { 454 int i; 455 int s; 456 457 if (cons_polledio == NULL) { 458 /* Uh oh */ 459 prom_printf("getchar called with no console\n"); 460 for (;;) 461 /* LOOP FOREVER */; 462 } 463 464 s = clear_int_flag(); 465 i = cons_polledio->cons_polledio_getchar( 466 cons_polledio->cons_polledio_argument); 467 restore_int_flag(s); 468 return (i); 469 } 470 471 void 472 sysp_putchar(int c) 473 { 474 int s; 475 476 /* 477 * We have no alternative but to drop the output on the floor. 478 */ 479 if (cons_polledio == NULL) 480 return; 481 482 s = clear_int_flag(); 483 cons_polledio->cons_polledio_putchar( 484 cons_polledio->cons_polledio_argument, c); 485 restore_int_flag(s); 486 } 487 488 int 489 sysp_ischar() 490 { 491 int i; 492 int s; 493 494 if (cons_polledio == NULL) 495 return (0); 496 497 s = clear_int_flag(); 498 i = cons_polledio->cons_polledio_ischar( 499 cons_polledio->cons_polledio_argument); 500 restore_int_flag(s); 501 return (i); 502 } 503 504 int 505 goany(void) 506 { 507 prom_printf("Type any key to continue "); 508 (void) prom_getchar(); 509 prom_printf("\n"); 510 return (1); 511 } 512 513 static struct boot_syscalls kern_sysp = { 514 sysp_getchar, /* unchar (*getchar)(); 7 */ 515 sysp_putchar, /* int (*putchar)(); 8 */ 516 sysp_ischar, /* int (*ischar)(); 9 */ 517 }; 518 519 void 520 kadb_uses_kernel() 521 { 522 /* 523 * This routine is now totally misnamed, since it does not in fact 524 * control kadb's I/O; it only controls the kernel's prom_* I/O. 525 */ 526 sysp = &kern_sysp; 527 } 528 529 /* 530 * the interface to the outside world 531 */ 532 533 /* 534 * poll_port -- wait for a register to achieve a 535 * specific state. Arguments are a mask of bits we care about, 536 * and two sub-masks. To return normally, all the bits in the 537 * first sub-mask must be ON, all the bits in the second sub- 538 * mask must be OFF. If about seconds pass without the register 539 * achieving the desired bit configuration, we return 1, else 540 * 0. 541 */ 542 int 543 poll_port(ushort_t port, ushort_t mask, ushort_t onbits, ushort_t offbits) 544 { 545 int i; 546 ushort_t maskval; 547 548 for (i = 500000; i; i--) { 549 maskval = inb(port) & mask; 550 if (((maskval & onbits) == onbits) && 551 ((maskval & offbits) == 0)) 552 return (0); 553 drv_usecwait(10); 554 } 555 return (1); 556 } 557 558 /* 559 * set_idle_cpu is called from idle() when a CPU becomes idle. 560 */ 561 /*LINTED: static unused */ 562 static uint_t last_idle_cpu; 563 564 /*ARGSUSED*/ 565 void 566 set_idle_cpu(int cpun) 567 { 568 last_idle_cpu = cpun; 569 (*psm_set_idle_cpuf)(cpun); 570 } 571 572 /* 573 * unset_idle_cpu is called from idle() when a CPU is no longer idle. 574 */ 575 /*ARGSUSED*/ 576 void 577 unset_idle_cpu(int cpun) 578 { 579 (*psm_unset_idle_cpuf)(cpun); 580 } 581 582 /* 583 * This routine is almost correct now, but not quite. It still needs the 584 * equivalent concept of "hres_last_tick", just like on the sparc side. 585 * The idea is to take a snapshot of the hi-res timer while doing the 586 * hrestime_adj updates under hres_lock in locore, so that the small 587 * interval between interrupt assertion and interrupt processing is 588 * accounted for correctly. Once we have this, the code below should 589 * be modified to subtract off hres_last_tick rather than hrtime_base. 590 * 591 * I'd have done this myself, but I don't have source to all of the 592 * vendor-specific hi-res timer routines (grrr...). The generic hook I 593 * need is something like "gethrtime_unlocked()", which would be just like 594 * gethrtime() but would assume that you're already holding CLOCK_LOCK(). 595 * This is what the GET_HRTIME() macro is for on sparc (although it also 596 * serves the function of making time available without a function call 597 * so you don't take a register window overflow while traps are disabled). 598 */ 599 void 600 pc_gethrestime(timestruc_t *tp) 601 { 602 int lock_prev; 603 timestruc_t now; 604 int nslt; /* nsec since last tick */ 605 int adj; /* amount of adjustment to apply */ 606 607 loop: 608 lock_prev = hres_lock; 609 now = hrestime; 610 nslt = (int)(gethrtime() - hres_last_tick); 611 if (nslt < 0) { 612 /* 613 * nslt < 0 means a tick came between sampling 614 * gethrtime() and hres_last_tick; restart the loop 615 */ 616 617 goto loop; 618 } 619 now.tv_nsec += nslt; 620 if (hrestime_adj != 0) { 621 if (hrestime_adj > 0) { 622 adj = (nslt >> ADJ_SHIFT); 623 if (adj > hrestime_adj) 624 adj = (int)hrestime_adj; 625 } else { 626 adj = -(nslt >> ADJ_SHIFT); 627 if (adj < hrestime_adj) 628 adj = (int)hrestime_adj; 629 } 630 now.tv_nsec += adj; 631 } 632 while ((unsigned long)now.tv_nsec >= NANOSEC) { 633 634 /* 635 * We might have a large adjustment or have been in the 636 * debugger for a long time; take care of (at most) four 637 * of those missed seconds (tv_nsec is 32 bits, so 638 * anything >4s will be wrapping around). However, 639 * anything more than 2 seconds out of sync will trigger 640 * timedelta from clock() to go correct the time anyway, 641 * so do what we can, and let the big crowbar do the 642 * rest. A similar correction while loop exists inside 643 * hres_tick(); in all cases we'd like tv_nsec to 644 * satisfy 0 <= tv_nsec < NANOSEC to avoid confusing 645 * user processes, but if tv_sec's a little behind for a 646 * little while, that's OK; time still monotonically 647 * increases. 648 */ 649 650 now.tv_nsec -= NANOSEC; 651 now.tv_sec++; 652 } 653 if ((hres_lock & ~1) != lock_prev) 654 goto loop; 655 656 *tp = now; 657 } 658 659 void 660 gethrestime_lasttick(timespec_t *tp) 661 { 662 int s; 663 664 s = hr_clock_lock(); 665 *tp = hrestime; 666 hr_clock_unlock(s); 667 } 668 669 time_t 670 gethrestime_sec(void) 671 { 672 timestruc_t now; 673 674 gethrestime(&now); 675 return (now.tv_sec); 676 } 677 678 /* 679 * Initialize a kernel thread's stack 680 */ 681 682 caddr_t 683 thread_stk_init(caddr_t stk) 684 { 685 ASSERT(((uintptr_t)stk & (STACK_ALIGN - 1)) == 0); 686 return (stk - SA(MINFRAME)); 687 } 688 689 /* 690 * Initialize lwp's kernel stack. 691 */ 692 693 #ifdef TRAPTRACE 694 /* 695 * There's a tricky interdependency here between use of sysenter and 696 * TRAPTRACE which needs recording to avoid future confusion (this is 697 * about the third time I've re-figured this out ..) 698 * 699 * Here's how debugging lcall works with TRAPTRACE. 700 * 701 * 1 We're in userland with a breakpoint on the lcall instruction. 702 * 2 We execute the instruction - the instruction pushes the userland 703 * %ss, %esp, %efl, %cs, %eip on the stack and zips into the kernel 704 * via the call gate. 705 * 3 The hardware raises a debug trap in kernel mode, the hardware 706 * pushes %efl, %cs, %eip and gets to dbgtrap via the idt. 707 * 4 dbgtrap pushes the error code and trapno and calls cmntrap 708 * 5 cmntrap finishes building a trap frame 709 * 6 The TRACE_REGS macros in cmntrap copy a REGSIZE worth chunk 710 * off the stack into the traptrace buffer. 711 * 712 * This means that the traptrace buffer contains the wrong values in 713 * %esp and %ss, but everything else in there is correct. 714 * 715 * Here's how debugging sysenter works with TRAPTRACE. 716 * 717 * a We're in userland with a breakpoint on the sysenter instruction. 718 * b We execute the instruction - the instruction pushes -nothing- 719 * on the stack, but sets %cs, %eip, %ss, %esp to prearranged 720 * values to take us to sys_sysenter, at the top of the lwp's 721 * stack. 722 * c goto 3 723 * 724 * At this point, because we got into the kernel without the requisite 725 * five pushes on the stack, if we didn't make extra room, we'd 726 * end up with the TRACE_REGS macro fetching the saved %ss and %esp 727 * values from negative (unmapped) stack addresses -- which really bites. 728 * That's why we do the '-= 8' below. 729 * 730 * XXX Note that reading "up" lwp0's stack works because t0 is declared 731 * right next to t0stack in locore.s 732 */ 733 #endif 734 735 caddr_t 736 lwp_stk_init(klwp_t *lwp, caddr_t stk) 737 { 738 caddr_t oldstk; 739 struct pcb *pcb = &lwp->lwp_pcb; 740 741 oldstk = stk; 742 stk -= SA(sizeof (struct regs) + SA(MINFRAME)); 743 #ifdef TRAPTRACE 744 stk -= 2 * sizeof (greg_t); /* space for phony %ss:%sp (see above) */ 745 #endif 746 stk = (caddr_t)((uintptr_t)stk & ~(STACK_ALIGN - 1ul)); 747 bzero(stk, oldstk - stk); 748 lwp->lwp_regs = (void *)(stk + SA(MINFRAME)); 749 750 /* 751 * Arrange that the virtualized %fs and %gs GDT descriptors 752 * have a well-defined initial state (present, ring 3 753 * and of type data). 754 */ 755 #if defined(__amd64) 756 if (lwp_getdatamodel(lwp) == DATAMODEL_NATIVE) 757 pcb->pcb_fsdesc = pcb->pcb_gsdesc = zero_udesc; 758 else 759 pcb->pcb_fsdesc = pcb->pcb_gsdesc = zero_u32desc; 760 #elif defined(__i386) 761 pcb->pcb_fsdesc = pcb->pcb_gsdesc = zero_udesc; 762 #endif /* __i386 */ 763 lwp_installctx(lwp); 764 return (stk); 765 } 766 767 /*ARGSUSED*/ 768 void 769 lwp_stk_fini(klwp_t *lwp) 770 {} 771 772 /* 773 * If we're not the panic CPU, we wait in panic_idle for reboot. If we're 774 * the boot CPU, then we are responsible for actually doing the reboot, so 775 * we watch for cpu_boot_cmd to be set. 776 */ 777 static void 778 panic_idle(void) 779 { 780 splx(ipltospl(CLOCK_LEVEL)); 781 (void) setjmp(&curthread->t_pcb); 782 783 if (CPU->cpu_id == getbootcpuid()) { 784 while (cpu_boot_cmd == BOOT_WAIT || cpu_boot_fcn == BOOT_WAIT) 785 drv_usecwait(10); 786 787 mdboot(cpu_boot_cmd, cpu_boot_fcn, NULL, B_FALSE); 788 } 789 790 for (;;); 791 } 792 793 /* 794 * Stop the other CPUs by cross-calling them and forcing them to enter 795 * the panic_idle() loop above. 796 */ 797 /*ARGSUSED*/ 798 void 799 panic_stopcpus(cpu_t *cp, kthread_t *t, int spl) 800 { 801 processorid_t i; 802 cpuset_t xcset; 803 804 (void) splzs(); 805 806 CPUSET_ALL_BUT(xcset, cp->cpu_id); 807 xc_trycall(NULL, NULL, NULL, xcset, (int (*)())panic_idle); 808 809 for (i = 0; i < NCPU; i++) { 810 if (i != cp->cpu_id && cpu[i] != NULL && 811 (cpu[i]->cpu_flags & CPU_EXISTS)) 812 cpu[i]->cpu_flags |= CPU_QUIESCED; 813 } 814 } 815 816 /* 817 * Platform callback following each entry to panicsys(). 818 */ 819 /*ARGSUSED*/ 820 void 821 panic_enter_hw(int spl) 822 { 823 /* Nothing to do here */ 824 } 825 826 /* 827 * Platform-specific code to execute after panicstr is set: we invoke 828 * the PSM entry point to indicate that a panic has occurred. 829 */ 830 /*ARGSUSED*/ 831 void 832 panic_quiesce_hw(panic_data_t *pdp) 833 { 834 psm_notifyf(PSM_PANIC_ENTER); 835 836 #ifdef TRAPTRACE 837 /* 838 * Turn off TRAPTRACE 839 */ 840 TRAPTRACE_FREEZE; 841 #endif /* TRAPTRACE */ 842 } 843 844 /* 845 * Platform callback prior to writing crash dump. 846 */ 847 /*ARGSUSED*/ 848 void 849 panic_dump_hw(int spl) 850 { 851 /* Nothing to do here */ 852 } 853 854 /*ARGSUSED*/ 855 void 856 plat_tod_fault(enum tod_fault_type tod_bad) 857 { 858 } 859 860 /*ARGSUSED*/ 861 int 862 blacklist(int cmd, const char *scheme, nvlist_t *fmri, const char *class) 863 { 864 return (ENOTSUP); 865 } 866 867 /* 868 * The underlying console output routines are protected by raising IPL in case 869 * we are still calling into the early boot services. Once we start calling 870 * the kernel console emulator, it will disable interrupts completely during 871 * character rendering (see sysp_putchar, for example). Refer to the comments 872 * and code in common/os/console.c for more information on these callbacks. 873 */ 874 /*ARGSUSED*/ 875 int 876 console_enter(int busy) 877 { 878 return (splzs()); 879 } 880 881 /*ARGSUSED*/ 882 void 883 console_exit(int busy, int spl) 884 { 885 splx(spl); 886 } 887 888 /* 889 * Allocate a region of virtual address space, unmapped. 890 * Stubbed out except on sparc, at least for now. 891 */ 892 /*ARGSUSED*/ 893 void * 894 boot_virt_alloc(void *addr, size_t size) 895 { 896 return (addr); 897 } 898 899 volatile unsigned long tenmicrodata; 900 901 void 902 tenmicrosec(void) 903 { 904 extern int tsc_gethrtime_initted; 905 int i; 906 907 if (tsc_gethrtime_initted) { 908 hrtime_t start, end; 909 start = end = gethrtime(); 910 while ((end - start) < (10 * (NANOSEC / MICROSEC))) { 911 SMT_PAUSE(); 912 end = gethrtime(); 913 } 914 } else { 915 /* 916 * Artificial loop to induce delay. 917 */ 918 for (i = 0; i < microdata; i++) 919 tenmicrodata = microdata; 920 } 921 } 922 923 /* 924 * get_cpu_mstate() is passed an array of timestamps, NCMSTATES 925 * long, and it fills in the array with the time spent on cpu in 926 * each of the mstates, where time is returned in nsec. 927 * 928 * No guarantee is made that the returned values in times[] will 929 * monotonically increase on sequential calls, although this will 930 * be true in the long run. Any such guarantee must be handled by 931 * the caller, if needed. This can happen if we fail to account 932 * for elapsed time due to a generation counter conflict, yet we 933 * did account for it on a prior call (see below). 934 * 935 * The complication is that the cpu in question may be updating 936 * its microstate at the same time that we are reading it. 937 * Because the microstate is only updated when the CPU's state 938 * changes, the values in cpu_intracct[] can be indefinitely out 939 * of date. To determine true current values, it is necessary to 940 * compare the current time with cpu_mstate_start, and add the 941 * difference to times[cpu_mstate]. 942 * 943 * This can be a problem if those values are changing out from 944 * under us. Because the code path in new_cpu_mstate() is 945 * performance critical, we have not added a lock to it. Instead, 946 * we have added a generation counter. Before beginning 947 * modifications, the counter is set to 0. After modifications, 948 * it is set to the old value plus one. 949 * 950 * get_cpu_mstate() will not consider the values of cpu_mstate 951 * and cpu_mstate_start to be usable unless the value of 952 * cpu_mstate_gen is both non-zero and unchanged, both before and 953 * after reading the mstate information. Note that we must 954 * protect against out-of-order loads around accesses to the 955 * generation counter. Also, this is a best effort approach in 956 * that we do not retry should the counter be found to have 957 * changed. 958 * 959 * cpu_intracct[] is used to identify time spent in each CPU 960 * mstate while handling interrupts. Such time should be reported 961 * against system time, and so is subtracted out from its 962 * corresponding cpu_acct[] time and added to 963 * cpu_acct[CMS_SYSTEM]. 964 */ 965 966 void 967 get_cpu_mstate(cpu_t *cpu, hrtime_t *times) 968 { 969 int i; 970 hrtime_t now, start; 971 uint16_t gen; 972 uint16_t state; 973 hrtime_t intracct[NCMSTATES]; 974 975 /* 976 * Load all volatile state under the protection of membar. 977 * cpu_acct[cpu_mstate] must be loaded to avoid double counting 978 * of (now - cpu_mstate_start) by a change in CPU mstate that 979 * arrives after we make our last check of cpu_mstate_gen. 980 */ 981 982 now = gethrtime_unscaled(); 983 gen = cpu->cpu_mstate_gen; 984 985 membar_consumer(); /* guarantee load ordering */ 986 start = cpu->cpu_mstate_start; 987 state = cpu->cpu_mstate; 988 for (i = 0; i < NCMSTATES; i++) { 989 intracct[i] = cpu->cpu_intracct[i]; 990 times[i] = cpu->cpu_acct[i]; 991 } 992 membar_consumer(); /* guarantee load ordering */ 993 994 if (gen != 0 && gen == cpu->cpu_mstate_gen && now > start) 995 times[state] += now - start; 996 997 for (i = 0; i < NCMSTATES; i++) { 998 if (i == CMS_SYSTEM) 999 continue; 1000 times[i] -= intracct[i]; 1001 if (times[i] < 0) { 1002 intracct[i] += times[i]; 1003 times[i] = 0; 1004 } 1005 times[CMS_SYSTEM] += intracct[i]; 1006 scalehrtime(×[i]); 1007 } 1008 scalehrtime(×[CMS_SYSTEM]); 1009 } 1010