1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2006 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 27 #pragma ident "%Z%%M% %I% %E% SMI" 28 29 #include <sys/types.h> 30 #include <sys/t_lock.h> 31 #include <sys/param.h> 32 #include <sys/sysmacros.h> 33 #include <sys/signal.h> 34 #include <sys/systm.h> 35 #include <sys/user.h> 36 #include <sys/mman.h> 37 #include <sys/vm.h> 38 39 #include <sys/disp.h> 40 #include <sys/class.h> 41 42 #include <sys/proc.h> 43 #include <sys/buf.h> 44 #include <sys/kmem.h> 45 46 #include <sys/reboot.h> 47 #include <sys/uadmin.h> 48 #include <sys/callb.h> 49 50 #include <sys/cred.h> 51 #include <sys/vnode.h> 52 #include <sys/file.h> 53 54 #include <sys/procfs.h> 55 #include <sys/acct.h> 56 57 #include <sys/vfs.h> 58 #include <sys/dnlc.h> 59 #include <sys/var.h> 60 #include <sys/cmn_err.h> 61 #include <sys/utsname.h> 62 #include <sys/debug.h> 63 #include <sys/kdi_impl.h> 64 65 #include <sys/dumphdr.h> 66 #include <sys/bootconf.h> 67 #include <sys/varargs.h> 68 #include <sys/promif.h> 69 #include <sys/modctl.h> 70 71 #include <sys/consdev.h> 72 #include <sys/frame.h> 73 74 #include <sys/sunddi.h> 75 #include <sys/ddidmareq.h> 76 #include <sys/psw.h> 77 #include <sys/regset.h> 78 #include <sys/privregs.h> 79 #include <sys/clock.h> 80 #include <sys/tss.h> 81 #include <sys/cpu.h> 82 #include <sys/stack.h> 83 #include <sys/trap.h> 84 #include <sys/pic.h> 85 #include <sys/mmu.h> 86 #include <vm/hat.h> 87 #include <vm/anon.h> 88 #include <vm/as.h> 89 #include <vm/page.h> 90 #include <vm/seg.h> 91 #include <vm/seg_kmem.h> 92 #include <vm/seg_map.h> 93 #include <vm/seg_vn.h> 94 #include <vm/seg_kp.h> 95 #include <vm/hat_i86.h> 96 #include <sys/swap.h> 97 #include <sys/thread.h> 98 #include <sys/sysconf.h> 99 #include <sys/vm_machparam.h> 100 #include <sys/archsystm.h> 101 #include <sys/machsystm.h> 102 #include <sys/machlock.h> 103 #include <sys/x_call.h> 104 #include <sys/instance.h> 105 106 #include <sys/time.h> 107 #include <sys/smp_impldefs.h> 108 #include <sys/psm_types.h> 109 #include <sys/atomic.h> 110 #include <sys/panic.h> 111 #include <sys/cpuvar.h> 112 #include <sys/dtrace.h> 113 #include <sys/bl.h> 114 #include <sys/nvpair.h> 115 #include <sys/x86_archext.h> 116 #include <sys/pool_pset.h> 117 #include <sys/autoconf.h> 118 #include <sys/kdi.h> 119 120 #ifdef TRAPTRACE 121 #include <sys/traptrace.h> 122 #endif /* TRAPTRACE */ 123 124 #ifdef C2_AUDIT 125 extern void audit_enterprom(int); 126 extern void audit_exitprom(int); 127 #endif 128 129 /* 130 * The panicbuf array is used to record messages and state: 131 */ 132 char panicbuf[PANICBUFSIZE]; 133 134 /* 135 * maxphys - used during physio 136 * klustsize - used for klustering by swapfs and specfs 137 */ 138 int maxphys = 56 * 1024; /* XXX See vm_subr.c - max b_count in physio */ 139 int klustsize = 56 * 1024; 140 141 caddr_t p0_va; /* Virtual address for accessing physical page 0 */ 142 143 /* 144 * defined here, though unused on x86, 145 * to make kstat_fr.c happy. 146 */ 147 int vac; 148 149 void stop_other_cpus(); 150 void debug_enter(char *); 151 152 int procset = 1; 153 154 extern void pm_cfb_check_and_powerup(void); 155 extern void pm_cfb_rele(void); 156 157 /* 158 * Machine dependent code to reboot. 159 * "mdep" is interpreted as a character pointer; if non-null, it is a pointer 160 * to a string to be used as the argument string when rebooting. 161 * 162 * "invoke_cb" is a boolean. It is set to true when mdboot() can safely 163 * invoke CB_CL_MDBOOT callbacks before shutting the system down, i.e. when 164 * we are in a normal shutdown sequence (interrupts are not blocked, the 165 * system is not panic'ing or being suspended). 166 */ 167 /*ARGSUSED*/ 168 void 169 mdboot(int cmd, int fcn, char *mdep, boolean_t invoke_cb) 170 { 171 extern void mtrr_resync(void); 172 173 if (!panicstr) { 174 kpreempt_disable(); 175 affinity_set(CPU_CURRENT); 176 } 177 178 /* 179 * XXX - rconsvp is set to NULL to ensure that output messages 180 * are sent to the underlying "hardware" device using the 181 * monitor's printf routine since we are in the process of 182 * either rebooting or halting the machine. 183 */ 184 rconsvp = NULL; 185 186 /* 187 * Print the reboot message now, before pausing other cpus. 188 * There is a race condition in the printing support that 189 * can deadlock multiprocessor machines. 190 */ 191 if (!(fcn == AD_HALT || fcn == AD_POWEROFF)) 192 prom_printf("rebooting...\n"); 193 194 /* 195 * We can't bring up the console from above lock level, so do it now 196 */ 197 pm_cfb_check_and_powerup(); 198 199 /* make sure there are no more changes to the device tree */ 200 devtree_freeze(); 201 202 if (invoke_cb) 203 (void) callb_execute_class(CB_CL_MDBOOT, NULL); 204 205 page_retire_hunt(page_retire_mdboot_cb); 206 207 /* 208 * stop other cpus and raise our priority. since there is only 209 * one active cpu after this, and our priority will be too high 210 * for us to be preempted, we're essentially single threaded 211 * from here on out. 212 */ 213 (void) spl6(); 214 if (!panicstr) { 215 mutex_enter(&cpu_lock); 216 pause_cpus(NULL); 217 mutex_exit(&cpu_lock); 218 } 219 220 /* 221 * try and reset leaf devices. reset_leaves() should only 222 * be called when there are no other threads that could be 223 * accessing devices 224 */ 225 reset_leaves(); 226 227 (void) spl8(); 228 (*psm_shutdownf)(cmd, fcn); 229 230 mtrr_resync(); 231 232 if (fcn == AD_HALT || fcn == AD_POWEROFF) 233 halt((char *)NULL); 234 else 235 prom_reboot(""); 236 /*NOTREACHED*/ 237 } 238 239 /* mdpreboot - may be called prior to mdboot while root fs still mounted */ 240 /*ARGSUSED*/ 241 void 242 mdpreboot(int cmd, int fcn, char *mdep) 243 { 244 (*psm_preshutdownf)(cmd, fcn); 245 } 246 247 void 248 idle_other_cpus() 249 { 250 int cpuid = CPU->cpu_id; 251 cpuset_t xcset; 252 253 ASSERT(cpuid < NCPU); 254 CPUSET_ALL_BUT(xcset, cpuid); 255 xc_capture_cpus(xcset); 256 } 257 258 void 259 resume_other_cpus() 260 { 261 ASSERT(CPU->cpu_id < NCPU); 262 263 xc_release_cpus(); 264 } 265 266 extern void mp_halt(char *); 267 268 void 269 stop_other_cpus() 270 { 271 int cpuid = CPU->cpu_id; 272 cpuset_t xcset; 273 274 ASSERT(cpuid < NCPU); 275 276 /* 277 * xc_trycall will attempt to make all other CPUs execute mp_halt, 278 * and will return immediately regardless of whether or not it was 279 * able to make them do it. 280 */ 281 CPUSET_ALL_BUT(xcset, cpuid); 282 xc_trycall(NULL, NULL, NULL, xcset, (int (*)())mp_halt); 283 } 284 285 /* 286 * Machine dependent abort sequence handling 287 */ 288 void 289 abort_sequence_enter(char *msg) 290 { 291 if (abort_enable == 0) { 292 #ifdef C2_AUDIT 293 if (audit_active) 294 audit_enterprom(0); 295 #endif /* C2_AUDIT */ 296 return; 297 } 298 #ifdef C2_AUDIT 299 if (audit_active) 300 audit_enterprom(1); 301 #endif /* C2_AUDIT */ 302 debug_enter(msg); 303 #ifdef C2_AUDIT 304 if (audit_active) 305 audit_exitprom(1); 306 #endif /* C2_AUDIT */ 307 } 308 309 /* 310 * Enter debugger. Called when the user types ctrl-alt-d or whenever 311 * code wants to enter the debugger and possibly resume later. 312 */ 313 void 314 debug_enter( 315 char *msg) /* message to print, possibly NULL */ 316 { 317 if (dtrace_debugger_init != NULL) 318 (*dtrace_debugger_init)(); 319 320 if (msg) 321 prom_printf("%s\n", msg); 322 323 if (boothowto & RB_DEBUG) 324 kdi_dvec_enter(); 325 326 if (dtrace_debugger_fini != NULL) 327 (*dtrace_debugger_fini)(); 328 } 329 330 void 331 reset(void) 332 { 333 ushort_t *bios_memchk; 334 335 /* 336 * Can't use psm_map_phys before the hat is initialized. 337 */ 338 if (khat_running) { 339 bios_memchk = (ushort_t *)psm_map_phys(0x472, 340 sizeof (ushort_t), PROT_READ | PROT_WRITE); 341 if (bios_memchk) 342 *bios_memchk = 0x1234; /* bios memory check disable */ 343 } 344 345 pc_reset(); 346 /*NOTREACHED*/ 347 } 348 349 /* 350 * Halt the machine and return to the monitor 351 */ 352 void 353 halt(char *s) 354 { 355 stop_other_cpus(); /* send stop signal to other CPUs */ 356 if (s) 357 prom_printf("(%s) \n", s); 358 prom_exit_to_mon(); 359 /*NOTREACHED*/ 360 } 361 362 /* 363 * Enter monitor. Called via cross-call from stop_other_cpus(). 364 */ 365 void 366 mp_halt(char *msg) 367 { 368 if (msg) 369 prom_printf("%s\n", msg); 370 371 /*CONSTANTCONDITION*/ 372 while (1) 373 ; 374 } 375 376 /* 377 * Initiate interrupt redistribution. 378 */ 379 void 380 i_ddi_intr_redist_all_cpus() 381 { 382 } 383 384 /* 385 * XXX These probably ought to live somewhere else 386 * XXX They are called from mem.c 387 */ 388 389 /* 390 * Convert page frame number to an OBMEM page frame number 391 * (i.e. put in the type bits -- zero for this implementation) 392 */ 393 pfn_t 394 impl_obmem_pfnum(pfn_t pf) 395 { 396 return (pf); 397 } 398 399 #ifdef NM_DEBUG 400 int nmi_test = 0; /* checked in intentry.s during clock int */ 401 int nmtest = -1; 402 nmfunc1(arg, rp) 403 int arg; 404 struct regs *rp; 405 { 406 printf("nmi called with arg = %x, regs = %x\n", arg, rp); 407 nmtest += 50; 408 if (arg == nmtest) { 409 printf("ip = %x\n", rp->r_pc); 410 return (1); 411 } 412 return (0); 413 } 414 415 #endif 416 417 #include <sys/bootsvcs.h> 418 419 /* Hacked up initialization for initial kernel check out is HERE. */ 420 /* The basic steps are: */ 421 /* kernel bootfuncs definition/initialization for KADB */ 422 /* kadb bootfuncs pointer initialization */ 423 /* putchar/getchar (interrupts disabled) */ 424 425 /* kadb bootfuncs pointer initialization */ 426 427 int 428 sysp_getchar() 429 { 430 int i; 431 int s; 432 433 if (cons_polledio == NULL) { 434 /* Uh oh */ 435 prom_printf("getchar called with no console\n"); 436 for (;;) 437 /* LOOP FOREVER */; 438 } 439 440 s = clear_int_flag(); 441 i = cons_polledio->cons_polledio_getchar( 442 cons_polledio->cons_polledio_argument); 443 restore_int_flag(s); 444 return (i); 445 } 446 447 void 448 sysp_putchar(int c) 449 { 450 int s; 451 452 /* 453 * We have no alternative but to drop the output on the floor. 454 */ 455 if (cons_polledio == NULL || 456 cons_polledio->cons_polledio_putchar == NULL) 457 return; 458 459 s = clear_int_flag(); 460 cons_polledio->cons_polledio_putchar( 461 cons_polledio->cons_polledio_argument, c); 462 restore_int_flag(s); 463 } 464 465 int 466 sysp_ischar() 467 { 468 int i; 469 int s; 470 471 if (cons_polledio == NULL || 472 cons_polledio->cons_polledio_ischar == NULL) 473 return (0); 474 475 s = clear_int_flag(); 476 i = cons_polledio->cons_polledio_ischar( 477 cons_polledio->cons_polledio_argument); 478 restore_int_flag(s); 479 return (i); 480 } 481 482 int 483 goany(void) 484 { 485 prom_printf("Type any key to continue "); 486 (void) prom_getchar(); 487 prom_printf("\n"); 488 return (1); 489 } 490 491 static struct boot_syscalls kern_sysp = { 492 sysp_getchar, /* unchar (*getchar)(); 7 */ 493 sysp_putchar, /* int (*putchar)(); 8 */ 494 sysp_ischar, /* int (*ischar)(); 9 */ 495 }; 496 497 void 498 kadb_uses_kernel() 499 { 500 /* 501 * This routine is now totally misnamed, since it does not in fact 502 * control kadb's I/O; it only controls the kernel's prom_* I/O. 503 */ 504 sysp = &kern_sysp; 505 } 506 507 /* 508 * the interface to the outside world 509 */ 510 511 /* 512 * poll_port -- wait for a register to achieve a 513 * specific state. Arguments are a mask of bits we care about, 514 * and two sub-masks. To return normally, all the bits in the 515 * first sub-mask must be ON, all the bits in the second sub- 516 * mask must be OFF. If about seconds pass without the register 517 * achieving the desired bit configuration, we return 1, else 518 * 0. 519 */ 520 int 521 poll_port(ushort_t port, ushort_t mask, ushort_t onbits, ushort_t offbits) 522 { 523 int i; 524 ushort_t maskval; 525 526 for (i = 500000; i; i--) { 527 maskval = inb(port) & mask; 528 if (((maskval & onbits) == onbits) && 529 ((maskval & offbits) == 0)) 530 return (0); 531 drv_usecwait(10); 532 } 533 return (1); 534 } 535 536 /* 537 * set_idle_cpu is called from idle() when a CPU becomes idle. 538 */ 539 /*LINTED: static unused */ 540 static uint_t last_idle_cpu; 541 542 /*ARGSUSED*/ 543 void 544 set_idle_cpu(int cpun) 545 { 546 last_idle_cpu = cpun; 547 (*psm_set_idle_cpuf)(cpun); 548 } 549 550 /* 551 * unset_idle_cpu is called from idle() when a CPU is no longer idle. 552 */ 553 /*ARGSUSED*/ 554 void 555 unset_idle_cpu(int cpun) 556 { 557 (*psm_unset_idle_cpuf)(cpun); 558 } 559 560 /* 561 * This routine is almost correct now, but not quite. It still needs the 562 * equivalent concept of "hres_last_tick", just like on the sparc side. 563 * The idea is to take a snapshot of the hi-res timer while doing the 564 * hrestime_adj updates under hres_lock in locore, so that the small 565 * interval between interrupt assertion and interrupt processing is 566 * accounted for correctly. Once we have this, the code below should 567 * be modified to subtract off hres_last_tick rather than hrtime_base. 568 * 569 * I'd have done this myself, but I don't have source to all of the 570 * vendor-specific hi-res timer routines (grrr...). The generic hook I 571 * need is something like "gethrtime_unlocked()", which would be just like 572 * gethrtime() but would assume that you're already holding CLOCK_LOCK(). 573 * This is what the GET_HRTIME() macro is for on sparc (although it also 574 * serves the function of making time available without a function call 575 * so you don't take a register window overflow while traps are disabled). 576 */ 577 void 578 pc_gethrestime(timestruc_t *tp) 579 { 580 int lock_prev; 581 timestruc_t now; 582 int nslt; /* nsec since last tick */ 583 int adj; /* amount of adjustment to apply */ 584 585 loop: 586 lock_prev = hres_lock; 587 now = hrestime; 588 nslt = (int)(gethrtime() - hres_last_tick); 589 if (nslt < 0) { 590 /* 591 * nslt < 0 means a tick came between sampling 592 * gethrtime() and hres_last_tick; restart the loop 593 */ 594 595 goto loop; 596 } 597 now.tv_nsec += nslt; 598 if (hrestime_adj != 0) { 599 if (hrestime_adj > 0) { 600 adj = (nslt >> ADJ_SHIFT); 601 if (adj > hrestime_adj) 602 adj = (int)hrestime_adj; 603 } else { 604 adj = -(nslt >> ADJ_SHIFT); 605 if (adj < hrestime_adj) 606 adj = (int)hrestime_adj; 607 } 608 now.tv_nsec += adj; 609 } 610 while ((unsigned long)now.tv_nsec >= NANOSEC) { 611 612 /* 613 * We might have a large adjustment or have been in the 614 * debugger for a long time; take care of (at most) four 615 * of those missed seconds (tv_nsec is 32 bits, so 616 * anything >4s will be wrapping around). However, 617 * anything more than 2 seconds out of sync will trigger 618 * timedelta from clock() to go correct the time anyway, 619 * so do what we can, and let the big crowbar do the 620 * rest. A similar correction while loop exists inside 621 * hres_tick(); in all cases we'd like tv_nsec to 622 * satisfy 0 <= tv_nsec < NANOSEC to avoid confusing 623 * user processes, but if tv_sec's a little behind for a 624 * little while, that's OK; time still monotonically 625 * increases. 626 */ 627 628 now.tv_nsec -= NANOSEC; 629 now.tv_sec++; 630 } 631 if ((hres_lock & ~1) != lock_prev) 632 goto loop; 633 634 *tp = now; 635 } 636 637 void 638 gethrestime_lasttick(timespec_t *tp) 639 { 640 int s; 641 642 s = hr_clock_lock(); 643 *tp = hrestime; 644 hr_clock_unlock(s); 645 } 646 647 time_t 648 gethrestime_sec(void) 649 { 650 timestruc_t now; 651 652 gethrestime(&now); 653 return (now.tv_sec); 654 } 655 656 /* 657 * Initialize a kernel thread's stack 658 */ 659 660 caddr_t 661 thread_stk_init(caddr_t stk) 662 { 663 ASSERT(((uintptr_t)stk & (STACK_ALIGN - 1)) == 0); 664 return (stk - SA(MINFRAME)); 665 } 666 667 /* 668 * Initialize lwp's kernel stack. 669 */ 670 671 #ifdef TRAPTRACE 672 /* 673 * There's a tricky interdependency here between use of sysenter and 674 * TRAPTRACE which needs recording to avoid future confusion (this is 675 * about the third time I've re-figured this out ..) 676 * 677 * Here's how debugging lcall works with TRAPTRACE. 678 * 679 * 1 We're in userland with a breakpoint on the lcall instruction. 680 * 2 We execute the instruction - the instruction pushes the userland 681 * %ss, %esp, %efl, %cs, %eip on the stack and zips into the kernel 682 * via the call gate. 683 * 3 The hardware raises a debug trap in kernel mode, the hardware 684 * pushes %efl, %cs, %eip and gets to dbgtrap via the idt. 685 * 4 dbgtrap pushes the error code and trapno and calls cmntrap 686 * 5 cmntrap finishes building a trap frame 687 * 6 The TRACE_REGS macros in cmntrap copy a REGSIZE worth chunk 688 * off the stack into the traptrace buffer. 689 * 690 * This means that the traptrace buffer contains the wrong values in 691 * %esp and %ss, but everything else in there is correct. 692 * 693 * Here's how debugging sysenter works with TRAPTRACE. 694 * 695 * a We're in userland with a breakpoint on the sysenter instruction. 696 * b We execute the instruction - the instruction pushes -nothing- 697 * on the stack, but sets %cs, %eip, %ss, %esp to prearranged 698 * values to take us to sys_sysenter, at the top of the lwp's 699 * stack. 700 * c goto 3 701 * 702 * At this point, because we got into the kernel without the requisite 703 * five pushes on the stack, if we didn't make extra room, we'd 704 * end up with the TRACE_REGS macro fetching the saved %ss and %esp 705 * values from negative (unmapped) stack addresses -- which really bites. 706 * That's why we do the '-= 8' below. 707 * 708 * XXX Note that reading "up" lwp0's stack works because t0 is declared 709 * right next to t0stack in locore.s 710 */ 711 #endif 712 713 caddr_t 714 lwp_stk_init(klwp_t *lwp, caddr_t stk) 715 { 716 caddr_t oldstk; 717 struct pcb *pcb = &lwp->lwp_pcb; 718 719 oldstk = stk; 720 stk -= SA(sizeof (struct regs) + SA(MINFRAME)); 721 #ifdef TRAPTRACE 722 stk -= 2 * sizeof (greg_t); /* space for phony %ss:%sp (see above) */ 723 #endif 724 stk = (caddr_t)((uintptr_t)stk & ~(STACK_ALIGN - 1ul)); 725 bzero(stk, oldstk - stk); 726 lwp->lwp_regs = (void *)(stk + SA(MINFRAME)); 727 728 /* 729 * Arrange that the virtualized %fs and %gs GDT descriptors 730 * have a well-defined initial state (present, ring 3 731 * and of type data). 732 */ 733 #if defined(__amd64) 734 if (lwp_getdatamodel(lwp) == DATAMODEL_NATIVE) 735 pcb->pcb_fsdesc = pcb->pcb_gsdesc = zero_udesc; 736 else 737 pcb->pcb_fsdesc = pcb->pcb_gsdesc = zero_u32desc; 738 #elif defined(__i386) 739 pcb->pcb_fsdesc = pcb->pcb_gsdesc = zero_udesc; 740 #endif /* __i386 */ 741 lwp_installctx(lwp); 742 return (stk); 743 } 744 745 /*ARGSUSED*/ 746 void 747 lwp_stk_fini(klwp_t *lwp) 748 {} 749 750 /* 751 * If we're not the panic CPU, we wait in panic_idle for reboot. 752 */ 753 static void 754 panic_idle(void) 755 { 756 splx(ipltospl(CLOCK_LEVEL)); 757 (void) setjmp(&curthread->t_pcb); 758 759 for (;;); 760 } 761 762 /* 763 * Stop the other CPUs by cross-calling them and forcing them to enter 764 * the panic_idle() loop above. 765 */ 766 /*ARGSUSED*/ 767 void 768 panic_stopcpus(cpu_t *cp, kthread_t *t, int spl) 769 { 770 processorid_t i; 771 cpuset_t xcset; 772 773 (void) splzs(); 774 775 CPUSET_ALL_BUT(xcset, cp->cpu_id); 776 xc_trycall(NULL, NULL, NULL, xcset, (int (*)())panic_idle); 777 778 for (i = 0; i < NCPU; i++) { 779 if (i != cp->cpu_id && cpu[i] != NULL && 780 (cpu[i]->cpu_flags & CPU_EXISTS)) 781 cpu[i]->cpu_flags |= CPU_QUIESCED; 782 } 783 } 784 785 /* 786 * Platform callback following each entry to panicsys(). 787 */ 788 /*ARGSUSED*/ 789 void 790 panic_enter_hw(int spl) 791 { 792 /* Nothing to do here */ 793 } 794 795 /* 796 * Platform-specific code to execute after panicstr is set: we invoke 797 * the PSM entry point to indicate that a panic has occurred. 798 */ 799 /*ARGSUSED*/ 800 void 801 panic_quiesce_hw(panic_data_t *pdp) 802 { 803 psm_notifyf(PSM_PANIC_ENTER); 804 805 #ifdef TRAPTRACE 806 /* 807 * Turn off TRAPTRACE 808 */ 809 TRAPTRACE_FREEZE; 810 #endif /* TRAPTRACE */ 811 } 812 813 /* 814 * Platform callback prior to writing crash dump. 815 */ 816 /*ARGSUSED*/ 817 void 818 panic_dump_hw(int spl) 819 { 820 /* Nothing to do here */ 821 } 822 823 /*ARGSUSED*/ 824 void 825 plat_tod_fault(enum tod_fault_type tod_bad) 826 { 827 } 828 829 /*ARGSUSED*/ 830 int 831 blacklist(int cmd, const char *scheme, nvlist_t *fmri, const char *class) 832 { 833 return (ENOTSUP); 834 } 835 836 /* 837 * The underlying console output routines are protected by raising IPL in case 838 * we are still calling into the early boot services. Once we start calling 839 * the kernel console emulator, it will disable interrupts completely during 840 * character rendering (see sysp_putchar, for example). Refer to the comments 841 * and code in common/os/console.c for more information on these callbacks. 842 */ 843 /*ARGSUSED*/ 844 int 845 console_enter(int busy) 846 { 847 return (splzs()); 848 } 849 850 /*ARGSUSED*/ 851 void 852 console_exit(int busy, int spl) 853 { 854 splx(spl); 855 } 856 857 /* 858 * Allocate a region of virtual address space, unmapped. 859 * Stubbed out except on sparc, at least for now. 860 */ 861 /*ARGSUSED*/ 862 void * 863 boot_virt_alloc(void *addr, size_t size) 864 { 865 return (addr); 866 } 867 868 volatile unsigned long tenmicrodata; 869 870 void 871 tenmicrosec(void) 872 { 873 extern int tsc_gethrtime_initted; 874 int i; 875 876 if (tsc_gethrtime_initted) { 877 hrtime_t start, end; 878 start = end = gethrtime(); 879 while ((end - start) < (10 * (NANOSEC / MICROSEC))) { 880 SMT_PAUSE(); 881 end = gethrtime(); 882 } 883 } else { 884 /* 885 * Artificial loop to induce delay. 886 */ 887 for (i = 0; i < microdata; i++) 888 tenmicrodata = microdata; 889 } 890 } 891 892 /* 893 * get_cpu_mstate() is passed an array of timestamps, NCMSTATES 894 * long, and it fills in the array with the time spent on cpu in 895 * each of the mstates, where time is returned in nsec. 896 * 897 * No guarantee is made that the returned values in times[] will 898 * monotonically increase on sequential calls, although this will 899 * be true in the long run. Any such guarantee must be handled by 900 * the caller, if needed. This can happen if we fail to account 901 * for elapsed time due to a generation counter conflict, yet we 902 * did account for it on a prior call (see below). 903 * 904 * The complication is that the cpu in question may be updating 905 * its microstate at the same time that we are reading it. 906 * Because the microstate is only updated when the CPU's state 907 * changes, the values in cpu_intracct[] can be indefinitely out 908 * of date. To determine true current values, it is necessary to 909 * compare the current time with cpu_mstate_start, and add the 910 * difference to times[cpu_mstate]. 911 * 912 * This can be a problem if those values are changing out from 913 * under us. Because the code path in new_cpu_mstate() is 914 * performance critical, we have not added a lock to it. Instead, 915 * we have added a generation counter. Before beginning 916 * modifications, the counter is set to 0. After modifications, 917 * it is set to the old value plus one. 918 * 919 * get_cpu_mstate() will not consider the values of cpu_mstate 920 * and cpu_mstate_start to be usable unless the value of 921 * cpu_mstate_gen is both non-zero and unchanged, both before and 922 * after reading the mstate information. Note that we must 923 * protect against out-of-order loads around accesses to the 924 * generation counter. Also, this is a best effort approach in 925 * that we do not retry should the counter be found to have 926 * changed. 927 * 928 * cpu_intracct[] is used to identify time spent in each CPU 929 * mstate while handling interrupts. Such time should be reported 930 * against system time, and so is subtracted out from its 931 * corresponding cpu_acct[] time and added to 932 * cpu_acct[CMS_SYSTEM]. 933 */ 934 935 void 936 get_cpu_mstate(cpu_t *cpu, hrtime_t *times) 937 { 938 int i; 939 hrtime_t now, start; 940 uint16_t gen; 941 uint16_t state; 942 hrtime_t intracct[NCMSTATES]; 943 944 /* 945 * Load all volatile state under the protection of membar. 946 * cpu_acct[cpu_mstate] must be loaded to avoid double counting 947 * of (now - cpu_mstate_start) by a change in CPU mstate that 948 * arrives after we make our last check of cpu_mstate_gen. 949 */ 950 951 now = gethrtime_unscaled(); 952 gen = cpu->cpu_mstate_gen; 953 954 membar_consumer(); /* guarantee load ordering */ 955 start = cpu->cpu_mstate_start; 956 state = cpu->cpu_mstate; 957 for (i = 0; i < NCMSTATES; i++) { 958 intracct[i] = cpu->cpu_intracct[i]; 959 times[i] = cpu->cpu_acct[i]; 960 } 961 membar_consumer(); /* guarantee load ordering */ 962 963 if (gen != 0 && gen == cpu->cpu_mstate_gen && now > start) 964 times[state] += now - start; 965 966 for (i = 0; i < NCMSTATES; i++) { 967 if (i == CMS_SYSTEM) 968 continue; 969 times[i] -= intracct[i]; 970 if (times[i] < 0) { 971 intracct[i] += times[i]; 972 times[i] = 0; 973 } 974 times[CMS_SYSTEM] += intracct[i]; 975 scalehrtime(×[i]); 976 } 977 scalehrtime(×[CMS_SYSTEM]); 978 } 979