xref: /titanic_41/usr/src/uts/i86pc/os/lgrpplat.c (revision 894b27768c68091df4918b3219c91ed77d2d4054)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License, Version 1.0 only
6  * (the "License").  You may not use this file except in compliance
7  * with the License.
8  *
9  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
10  * or http://www.opensolaris.org/os/licensing.
11  * See the License for the specific language governing permissions
12  * and limitations under the License.
13  *
14  * When distributing Covered Code, include this CDDL HEADER in each
15  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
16  * If applicable, add the following below this CDDL HEADER, with the
17  * fields enclosed by brackets "[]" replaced with your own identifying
18  * information: Portions Copyright [yyyy] [name of copyright owner]
19  *
20  * CDDL HEADER END
21  */
22 /*
23  * Copyright 2005 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 #pragma ident	"%Z%%M%	%I%	%E% SMI"
28 
29 
30 #include <sys/archsystm.h>	/* for {in,out}{b,w,l}() */
31 #include <sys/cmn_err.h>
32 #include <sys/cpupart.h>
33 #include <sys/cpuvar.h>
34 #include <sys/lgrp.h>
35 #include <sys/machsystm.h>
36 #include <sys/memlist.h>
37 #include <sys/memnode.h>
38 #include <sys/mman.h>
39 #include <sys/pci_impl.h>	/* for PCI configuration space macros */
40 #include <sys/param.h>
41 #include <sys/promif.h>		/* for prom_printf() */
42 #include <sys/systm.h>
43 #include <sys/thread.h>
44 #include <sys/types.h>
45 #include <sys/var.h>
46 #include <sys/x86_archext.h>	/* for x86_feature and X86_AMD */
47 #include <vm/hat_i86.h>
48 #include <vm/seg_kmem.h>
49 #include <vm/vm_dep.h>
50 
51 
52 
53 /*
54  * lgroup platform support for x86 platforms.
55  */
56 
57 #define	MAX_NODES		8
58 #define	NLGRP			(MAX_NODES * (MAX_NODES - 1) + 1)
59 
60 #define	LGRP_PLAT_CPU_TO_NODE(cpu)	(chip_plat_get_chipid(cpu))
61 
62 #define	LGRP_PLAT_PROBE_NROUNDS		64	/* default laps for probing */
63 #define	LGRP_PLAT_PROBE_NSAMPLES	1	/* default samples to take */
64 
65 
66 /*
67  * Multiprocessor Opteron machines have Non Uniform Memory Access (NUMA).
68  *
69  * Until System Affinity Resource Table (SRAT) becomes part of ACPI standard,
70  * we need to examine registers in PCI configuration space to determine how
71  * many nodes are in the system and which CPUs and memory are in each node.
72  * This could be determined by probing all memory from each CPU, but that is
73  * too expensive to do while booting the kernel.
74  *
75  * NOTE: Using these PCI configuration space registers to determine this
76  *       locality info is Opteron K8 specific and not guaranteed to work on
77  *       the next generation Opteron processor.  Furthermore, we assume that
78  *	 there is one CPU per node and CPU 0 is in node 0, CPU 1 is in node 1,
79  *	 etc. which should be true for Opteron K8....
80  */
81 
82 /*
83  * Opteron DRAM Address Map in PCI configuration space gives base and limit
84  * of physical memory in each node for Opteron K8.  The following constants
85  * and macros define their contents, structure, and access.
86  */
87 
88 /*
89  * How many bits to shift Opteron DRAM Address Map base and limit registers
90  * to get actual value
91  */
92 #define	OPT_DRAMADDR_LSHIFT_ADDR	8	/* shift left for address */
93 
94 #define	OPT_DRAMADDR_MASK_OFF	0xFFFFFF	/* offset for address */
95 
96 /*
97  * Bit masks defining what's in Opteron DRAM Address Map base register
98  */
99 #define	OPT_DRAMBASE_MASK_RE		0x1	/* read enable */
100 #define	OPT_DRAMBASE_MASK_WE		0x2	/* write enable */
101 #define	OPT_DRAMBASE_MASK_INTRLVEN	0x700	/* interleave */
102 
103 #define	OPT_DRAMBASE_MASK_ADDR	0xFFFF0000	/* address bits 39-24 */
104 
105 /*
106  * Macros to get values from Opteron DRAM Address Map base register
107  */
108 #define	OPT_DRAMBASE(reg) \
109 	(((u_longlong_t)reg & OPT_DRAMBASE_MASK_ADDR) << \
110 	    OPT_DRAMADDR_LSHIFT_ADDR)
111 
112 
113 /*
114  * Bit masks defining what's in Opteron DRAM Address Map limit register
115  */
116 #define	OPT_DRAMLIMIT_MASK_DSTNODE	0x7		/* destination node */
117 #define	OPT_DRAMLIMIT_MASK_INTRLVSEL	0x70		/* interleave select */
118 #define	OPT_DRAMLIMIT_MASK_ADDR		0xFFFF0000	/* addr bits 39-24 */
119 
120 /*
121  * Macros to get values from Opteron DRAM Address Map limit register
122  */
123 #define	OPT_DRAMLIMIT(reg) \
124 	(((u_longlong_t)reg & OPT_DRAMLIMIT_MASK_ADDR) << \
125 	    OPT_DRAMADDR_LSHIFT_ADDR)
126 
127 
128 /*
129  * Opteron Node ID register in PCI configuration space contains
130  * number of nodes in system, etc. for Opteron K8.  The following
131  * constants and macros define its contents, structure, and access.
132  */
133 
134 /*
135  * Bit masks defining what's in Opteron Node ID register
136  */
137 #define	OPT_NODE_MASK_ID	0x7	/* node ID */
138 #define	OPT_NODE_MASK_CNT	0x70	/* node count */
139 #define	OPT_NODE_MASK_IONODE	0x700	/* Hypertransport I/O hub node ID */
140 #define	OPT_NODE_MASK_LCKNODE	0x7000	/* lock controller node ID */
141 #define	OPT_NODE_MASK_CPUCNT	0xF0000	/* CPUs in system (0 means 1 CPU)  */
142 
143 /*
144  * How many bits in Opteron Node ID register to shift right to get actual value
145  */
146 #define	OPT_NODE_RSHIFT_CNT	0x4	/* shift right for node count value */
147 
148 /*
149  * Macros to get values from Opteron Node ID register
150  */
151 #define	OPT_NODE_CNT(reg) \
152 	((reg & OPT_NODE_MASK_CNT) >> OPT_NODE_RSHIFT_CNT)
153 
154 
155 /*
156  * PCI configuration space registers accessed by specifying
157  * a bus, device, function, and offset.  The following constants
158  * define the values needed to access Opteron K8 configuration
159  * info to determine its node topology
160  */
161 
162 #define	OPT_PCS_BUS_CONFIG	0	/* Hypertransport config space bus */
163 
164 /*
165  * Opteron PCI configuration space register function values
166  */
167 #define	OPT_PCS_FUNC_HT		0	/* Hypertransport configuration */
168 #define	OPT_PCS_FUNC_ADDRMAP	1	/* Address map configuration */
169 #define	OPT_PCS_FUNC_DRAM	2	/* DRAM configuration */
170 #define	OPT_PCS_FUNC_MISC	3	/* Miscellaneous configuration */
171 
172 /*
173  * PCI Configuration Space register offsets
174  */
175 #define	OPT_PCS_OFF_VENDOR	0x0	/* device/vendor ID register */
176 #define	OPT_PCS_OFF_DRAMBASE	0x40	/* DRAM Base register (node 0) */
177 #define	OPT_PCS_OFF_NODEID	0x60	/* Node ID register */
178 
179 /*
180  * Opteron PCI Configuration Space device IDs for nodes
181  */
182 #define	OPT_PCS_DEV_NODE0		24	/* device number for node 0 */
183 
184 
185 /*
186  * Bookkeeping for latencies seen during probing (used for verification)
187  */
188 typedef	struct lgrp_plat_latency_acct {
189 	hrtime_t	la_value;	/* latency value */
190 	int		la_count;	/* occurrences */
191 } lgrp_plat_latency_acct_t;
192 
193 
194 /*
195  * Choices for probing to determine lgroup topology
196  */
197 typedef	enum lgrp_plat_probe_op {
198 	LGRP_PLAT_PROBE_PGCPY,		/* Use page copy */
199 	LGRP_PLAT_PROBE_VENDOR		/* Read vendor ID on Northbridge */
200 } lgrp_plat_probe_op_t;
201 
202 
203 /*
204  * Opteron DRAM address map gives base and limit for physical memory in a node
205  */
206 typedef	struct opt_dram_addr_map {
207 	uint32_t	base;
208 	uint32_t	limit;
209 } opt_dram_addr_map_t;
210 
211 
212 /*
213  * Starting and ending page for physical memory in node
214  */
215 typedef	struct phys_addr_map {
216 	pfn_t	start;
217 	pfn_t	end;
218 	int	exists;
219 } phys_addr_map_t;
220 
221 
222 /*
223  * Opteron DRAM address map for each node
224  */
225 struct opt_dram_addr_map	opt_dram_map[MAX_NODES];
226 
227 /*
228  * Node ID register contents for each node
229  */
230 uint_t				opt_node_info[MAX_NODES];
231 
232 /*
233  * Whether memory is interleaved across nodes causing MPO to be disabled
234  */
235 int			lgrp_plat_mem_intrlv = 0;
236 
237 /*
238  * Number of nodes in system
239  */
240 uint_t			lgrp_plat_node_cnt = 1;
241 
242 /*
243  * Physical address range for memory in each node
244  */
245 phys_addr_map_t		lgrp_plat_node_memory[MAX_NODES];
246 
247 /*
248  * Probe costs (individual and total) and flush cost
249  */
250 hrtime_t		lgrp_plat_flush_cost = 0;
251 hrtime_t		lgrp_plat_probe_cost = 0;
252 hrtime_t		lgrp_plat_probe_cost_total = 0;
253 
254 /*
255  * Error code for latency adjustment and verification
256  */
257 int			lgrp_plat_probe_error_code = 0;
258 
259 /*
260  * How much latencies were off from minimum values gotten
261  */
262 hrtime_t		lgrp_plat_probe_errors[MAX_NODES][MAX_NODES];
263 
264 /*
265  * Unique probe latencies and number of occurrences of each
266  */
267 lgrp_plat_latency_acct_t	lgrp_plat_probe_lat_acct[MAX_NODES];
268 
269 /*
270  * Size of memory buffer in each node for probing
271  */
272 size_t			lgrp_plat_probe_memsize = 0;
273 
274 /*
275  * Virtual address of page in each node for probing
276  */
277 caddr_t			lgrp_plat_probe_memory[MAX_NODES];
278 
279 /*
280  * Number of unique latencies in probe times
281  */
282 int			lgrp_plat_probe_nlatencies = 0;
283 
284 /*
285  * How many rounds of probing to do
286  */
287 int			lgrp_plat_probe_nrounds = LGRP_PLAT_PROBE_NROUNDS;
288 
289 /*
290  * Number of samples to take when probing each node
291  */
292 int			lgrp_plat_probe_nsamples = LGRP_PLAT_PROBE_NSAMPLES;
293 
294 /*
295  * How to probe to determine lgroup topology
296  */
297 lgrp_plat_probe_op_t	lgrp_plat_probe_op = LGRP_PLAT_PROBE_VENDOR;
298 
299 /*
300  * PFN of page in each node for probing
301  */
302 pfn_t			lgrp_plat_probe_pfn[MAX_NODES];
303 
304 /*
305  * Whether probe time was suspect (ie. not within tolerance of value that it
306  * should match)
307  */
308 int			lgrp_plat_probe_suspect[MAX_NODES][MAX_NODES];
309 
310 /*
311  * How long it takes to access memory from each node
312  */
313 hrtime_t		lgrp_plat_probe_times[MAX_NODES][MAX_NODES];
314 
315 /*
316  * Min and max node memory probe times seen
317  */
318 hrtime_t		lgrp_plat_probe_time_max = 0;
319 hrtime_t		lgrp_plat_probe_time_min = -1;
320 hrtime_t		lgrp_plat_probe_max[MAX_NODES][MAX_NODES];
321 hrtime_t		lgrp_plat_probe_min[MAX_NODES][MAX_NODES];
322 
323 
324 /*
325  * Allocate lgrp and lgrp stat arrays statically.
326  */
327 static lgrp_t	lgrp_space[NLGRP];
328 static int	nlgrps_alloc;
329 
330 struct lgrp_stats lgrp_stats[NLGRP];
331 
332 #define	CPUID_FAMILY_OPTERON	15
333 
334 uint_t	opt_family = 0;
335 uint_t	opt_model = 0;
336 uint_t	opt_probe_func = OPT_PCS_FUNC_DRAM;
337 
338 
339 /*
340  * Determine whether we're running on an AMD Opteron K8 machine
341  */
342 int
343 is_opteron(void)
344 {
345 	if (x86_vendor != X86_VENDOR_AMD)
346 		return (0);
347 
348 	if (cpuid_getfamily(CPU) == CPUID_FAMILY_OPTERON)
349 		return (1);
350 	else
351 		return (0);
352 }
353 
354 int
355 plat_lgrphand_to_mem_node(lgrp_handle_t hand)
356 {
357 	if (max_mem_nodes == 1)
358 		return (0);
359 
360 	return ((int)hand);
361 }
362 
363 lgrp_handle_t
364 plat_mem_node_to_lgrphand(int mnode)
365 {
366 	if (max_mem_nodes == 1)
367 		return (LGRP_DEFAULT_HANDLE);
368 
369 	return ((lgrp_handle_t)mnode);
370 }
371 
372 int
373 plat_pfn_to_mem_node(pfn_t pfn)
374 {
375 	int	node;
376 
377 	if (max_mem_nodes == 1)
378 		return (0);
379 
380 	for (node = 0; node < lgrp_plat_node_cnt; node++) {
381 		/*
382 		 * Skip nodes with no memory
383 		 */
384 		if (!lgrp_plat_node_memory[node].exists)
385 			continue;
386 
387 		if (pfn >= lgrp_plat_node_memory[node].start &&
388 		    pfn <= lgrp_plat_node_memory[node].end)
389 			return (node);
390 	}
391 
392 	ASSERT(node < lgrp_plat_node_cnt);
393 	return (-1);
394 }
395 
396 /*
397  * Configure memory nodes for machines with more than one node (ie NUMA)
398  */
399 void
400 plat_build_mem_nodes(struct memlist *list)
401 {
402 	pfn_t		cur_start;	/* start addr of subrange */
403 	pfn_t		cur_end;	/* end addr of subrange */
404 	pfn_t		start;		/* start addr of whole range */
405 	pfn_t		end;		/* end addr of whole range */
406 
407 	/*
408 	 * Boot install lists are arranged <addr, len>, ...
409 	 */
410 	while (list) {
411 		int	node;
412 
413 		start = list->address >> PAGESHIFT;
414 		end = (list->address + list->size - 1) >> PAGESHIFT;
415 
416 		if (start > physmax) {
417 			list = list->next;
418 			continue;
419 		}
420 		if (end > physmax)
421 			end = physmax;
422 
423 		/*
424 		 * When there is only one memnode, just add memory to memnode
425 		 */
426 		if (max_mem_nodes == 1) {
427 			mem_node_add_slice(start, end);
428 			list = list->next;
429 			continue;
430 		}
431 
432 		/*
433 		 * mem_node_add_slice() expects to get a memory range that
434 		 * is within one memnode, so need to split any memory range
435 		 * that spans multiple memnodes into subranges that are each
436 		 * contained within one memnode when feeding them to
437 		 * mem_node_add_slice()
438 		 */
439 		cur_start = start;
440 		do {
441 			node = plat_pfn_to_mem_node(cur_start);
442 
443 			/*
444 			 * Panic if DRAM address map registers or SRAT say
445 			 * memory in node doesn't exist or address from
446 			 * boot installed memory list entry isn't in this node.
447 			 * This shouldn't happen and rest of code can't deal
448 			 * with this if it does.
449 			 */
450 			if (node < 0 || node >= lgrp_plat_node_cnt ||
451 			    !lgrp_plat_node_memory[node].exists ||
452 			    cur_start < lgrp_plat_node_memory[node].start ||
453 			    cur_start > lgrp_plat_node_memory[node].end) {
454 				cmn_err(CE_PANIC, "Don't know which memnode "
455 				    "to add installed memory address 0x%lx\n",
456 				    cur_start);
457 			}
458 
459 			/*
460 			 * End of current subrange should not span memnodes
461 			 */
462 			cur_end = end;
463 			if (lgrp_plat_node_memory[node].exists &&
464 			    cur_end > lgrp_plat_node_memory[node].end)
465 				cur_end = lgrp_plat_node_memory[node].end;
466 
467 			mem_node_add_slice(cur_start, cur_end);
468 
469 			/*
470 			 * Next subrange starts after end of current one
471 			 */
472 			cur_start = cur_end + 1;
473 		} while (cur_end < end);
474 
475 		list = list->next;
476 	}
477 	mem_node_physalign = 0;
478 	mem_node_pfn_shift = 0;
479 }
480 
481 
482 /*
483  * Platform-specific initialization of lgroups
484  */
485 void
486 lgrp_plat_init(void)
487 {
488 	uint_t		bus;
489 	uint_t		dev;
490 	uint_t		node;
491 	uint_t		off;
492 
493 	extern lgrp_load_t	lgrp_expand_proc_thresh;
494 	extern lgrp_load_t	lgrp_expand_proc_diff;
495 
496 	/*
497 	 * Initialize as a UMA machine if this isn't an Opteron
498 	 */
499 	if (!is_opteron() || lgrp_topo_ht_limit() == 1) {
500 		lgrp_plat_node_cnt = max_mem_nodes = 1;
501 		return;
502 	}
503 
504 	/*
505 	 * Read configuration registers from PCI configuration space to
506 	 * determine node information, which memory is in each node, etc.
507 	 *
508 	 * Write to PCI configuration space address register to specify
509 	 * which configuration register to read and read/write PCI
510 	 * configuration space data register to get/set contents
511 	 */
512 	bus = OPT_PCS_BUS_CONFIG;
513 	dev = OPT_PCS_DEV_NODE0;
514 	off = OPT_PCS_OFF_DRAMBASE;
515 
516 	/*
517 	 * Read node ID register for node 0 to get node count
518 	 */
519 	outl(PCI_CONFADD, PCI_CADDR1(bus, dev, OPT_PCS_FUNC_HT,
520 	    OPT_PCS_OFF_NODEID));
521 	opt_node_info[0] = inl(PCI_CONFDATA);
522 	lgrp_plat_node_cnt = OPT_NODE_CNT(opt_node_info[0]) + 1;
523 
524 	for (node = 0; node < lgrp_plat_node_cnt; node++) {
525 		/*
526 		 * Read node ID register (except for node 0 which we just read)
527 		 */
528 		if (node > 0) {
529 			outl(PCI_CONFADD, PCI_CADDR1(bus, dev,
530 			    OPT_PCS_FUNC_HT, OPT_PCS_OFF_NODEID));
531 			opt_node_info[node] = inl(PCI_CONFDATA);
532 		}
533 
534 		/*
535 		 * Read DRAM base and limit registers which specify
536 		 * physical memory range of each node
537 		 */
538 		outl(PCI_CONFADD, PCI_CADDR1(bus, dev, OPT_PCS_FUNC_ADDRMAP,
539 		    off));
540 		opt_dram_map[node].base = inl(PCI_CONFDATA);
541 		if (opt_dram_map[node].base & OPT_DRAMBASE_MASK_INTRLVEN)
542 			lgrp_plat_mem_intrlv++;
543 
544 		off += 4;	/* limit register offset */
545 		outl(PCI_CONFADD, PCI_CADDR1(bus, dev, OPT_PCS_FUNC_ADDRMAP,
546 		    off));
547 		opt_dram_map[node].limit = inl(PCI_CONFDATA);
548 
549 		/*
550 		 * Increment device number to next node and register offset for
551 		 * DRAM base register of next node
552 		 */
553 		off += 4;
554 		dev++;
555 
556 		/*
557 		 * Both read and write enable bits must be enabled in DRAM
558 		 * address map base register for physical memory to exist in
559 		 * node
560 		 */
561 		if ((opt_dram_map[node].base & OPT_DRAMBASE_MASK_RE) == 0 ||
562 		    (opt_dram_map[node].base & OPT_DRAMBASE_MASK_WE) == 0) {
563 			/*
564 			 * Mark node memory as non-existent and set start and
565 			 * end addresses to be same in lgrp_plat_node_memory[]
566 			 */
567 			lgrp_plat_node_memory[node].exists = 0;
568 			lgrp_plat_node_memory[node].start =
569 			    lgrp_plat_node_memory[node].end = (pfn_t)-1;
570 			continue;
571 		}
572 
573 		/*
574 		 * Get PFN for first page in each node,
575 		 * so we can probe memory to determine latency topology
576 		 */
577 		lgrp_plat_probe_pfn[node] =
578 		    btop(OPT_DRAMBASE(opt_dram_map[node].base));
579 
580 		/*
581 		 * Mark node memory as existing and remember physical address
582 		 * range of each node for use later
583 		 */
584 		lgrp_plat_node_memory[node].exists = 1;
585 		lgrp_plat_node_memory[node].start =
586 		    btop(OPT_DRAMBASE(opt_dram_map[node].base));
587 		lgrp_plat_node_memory[node].end =
588 		    btop(OPT_DRAMLIMIT(opt_dram_map[node].limit) |
589 		    OPT_DRAMADDR_MASK_OFF);
590 	}
591 
592 	/*
593 	 * Only use one memory node if memory is interleaved between any nodes
594 	 */
595 	if (lgrp_plat_mem_intrlv) {
596 		lgrp_plat_node_cnt = max_mem_nodes = 1;
597 		(void) lgrp_topo_ht_limit_set(1);
598 	} else {
599 		max_mem_nodes = lgrp_plat_node_cnt;
600 
601 		/*
602 		 * Probing errors can mess up the lgroup topology and force us
603 		 * fall back to a 2 level lgroup topology.  Here we bound how
604 		 * tall the lgroup topology can grow in hopes of avoiding any
605 		 * anamolies in probing from messing up the lgroup topology
606 		 * by limiting the accuracy of the latency topology.
607 		 *
608 		 * Assume that nodes will at least be configured in a ring,
609 		 * so limit height of lgroup topology to be less than number
610 		 * of nodes on a system with 4 or more nodes
611 		 */
612 		if (lgrp_plat_node_cnt >= 4 &&
613 		    lgrp_topo_ht_limit() == lgrp_topo_ht_limit_default())
614 			(void) lgrp_topo_ht_limit_set(lgrp_plat_node_cnt - 1);
615 	}
616 
617 	/*
618 	 * Lgroups on Opteron architectures have but a single physical
619 	 * processor. Tune lgrp_expand_proc_thresh and lgrp_expand_proc_diff
620 	 * so that lgrp_choose() will spread things out aggressively.
621 	 */
622 	lgrp_expand_proc_thresh = LGRP_LOADAVG_THREAD_MAX / 2;
623 	lgrp_expand_proc_diff = 0;
624 }
625 
626 
627 /*
628  * Latencies must be within 1/(2**LGRP_LAT_TOLERANCE_SHIFT) of each other to
629  * be considered same
630  */
631 #define	LGRP_LAT_TOLERANCE_SHIFT	4
632 
633 int	lgrp_plat_probe_lt_shift = LGRP_LAT_TOLERANCE_SHIFT;
634 
635 
636 /*
637  * Adjust latencies between nodes to be symmetric, normalize latencies between
638  * any nodes that are within some tolerance to be same, and make local
639  * latencies be same
640  */
641 static void
642 lgrp_plat_latency_adjust(void)
643 {
644 	int				i;
645 	int				j;
646 	int				k;
647 	int				l;
648 	u_longlong_t			max;
649 	u_longlong_t			min;
650 	u_longlong_t			t;
651 	u_longlong_t			t1;
652 	u_longlong_t			t2;
653 	const lgrp_config_flag_t	cflag = LGRP_CONFIG_LATENCY_CHANGE;
654 	int				lat_corrected[MAX_NODES][MAX_NODES];
655 
656 	/*
657 	 * Nothing to do when this is an UMA machine
658 	 */
659 	if (max_mem_nodes == 1)
660 		return;
661 
662 	/*
663 	 * Make sure that latencies are symmetric between any two nodes
664 	 * (ie. latency(node0, node1) == latency(node1, node0))
665 	 */
666 	for (i = 0; i < lgrp_plat_node_cnt; i++)
667 		for (j = 0; j < lgrp_plat_node_cnt; j++) {
668 			t1 = lgrp_plat_probe_times[i][j];
669 			t2 = lgrp_plat_probe_times[j][i];
670 
671 			if (t1 == 0 || t2 == 0 || t1 == t2)
672 				continue;
673 
674 			/*
675 			 * Latencies should be same
676 			 * - Use minimum of two latencies which should be same
677 			 * - Track suspect probe times not within tolerance of
678 			 *   min value
679 			 * - Remember how much values are corrected by
680 			 */
681 			if (t1 > t2) {
682 				t = t2;
683 				lgrp_plat_probe_errors[i][j] += t1 - t2;
684 				if (t1 - t2 > t2 >> lgrp_plat_probe_lt_shift) {
685 					lgrp_plat_probe_suspect[i][j]++;
686 					lgrp_plat_probe_suspect[j][i]++;
687 				}
688 			} else if (t2 > t1) {
689 				t = t1;
690 				lgrp_plat_probe_errors[j][i] += t2 - t1;
691 				if (t2 - t1 > t1 >> lgrp_plat_probe_lt_shift) {
692 					lgrp_plat_probe_suspect[i][j]++;
693 					lgrp_plat_probe_suspect[j][i]++;
694 				}
695 			}
696 
697 			lgrp_plat_probe_times[i][j] =
698 			    lgrp_plat_probe_times[j][i] = t;
699 			lgrp_config(cflag, t1, t);
700 			lgrp_config(cflag, t2, t);
701 		}
702 
703 	/*
704 	 * Keep track of which latencies get corrected
705 	 */
706 	for (i = 0; i < MAX_NODES; i++)
707 		for (j = 0; j < MAX_NODES; j++)
708 			lat_corrected[i][j] = 0;
709 
710 	/*
711 	 * For every two nodes, see whether there is another pair of nodes which
712 	 * are about the same distance apart and make the latencies be the same
713 	 * if they are close enough together
714 	 */
715 	for (i = 0; i < lgrp_plat_node_cnt; i++)
716 		for (j = 0; j < lgrp_plat_node_cnt; j++) {
717 			/*
718 			 * Pick one pair of nodes (i, j)
719 			 * and get latency between them
720 			 */
721 			t1 = lgrp_plat_probe_times[i][j];
722 
723 			/*
724 			 * Skip this pair of nodes if there isn't a latency
725 			 * for it yet
726 			 */
727 			if (t1 == 0)
728 				continue;
729 
730 			for (k = 0; k < lgrp_plat_node_cnt; k++)
731 				for (l = 0; l < lgrp_plat_node_cnt; l++) {
732 					/*
733 					 * Pick another pair of nodes (k, l)
734 					 * not same as (i, j) and get latency
735 					 * between them
736 					 */
737 					if (k == i && l == j)
738 						continue;
739 
740 					t2 = lgrp_plat_probe_times[k][l];
741 
742 					/*
743 					 * Skip this pair of nodes if there
744 					 * isn't a latency for it yet
745 					 */
746 
747 					if (t2 == 0)
748 						continue;
749 
750 					/*
751 					 * Skip nodes (k, l) if they already
752 					 * have same latency as (i, j) or
753 					 * their latency isn't close enough to
754 					 * be considered/made the same
755 					 */
756 					if (t1 == t2 || (t1 > t2 && t1 - t2 >
757 					    t1 >> lgrp_plat_probe_lt_shift) ||
758 					    (t2 > t1 && t2 - t1 >
759 					    t2 >> lgrp_plat_probe_lt_shift))
760 						continue;
761 
762 					/*
763 					 * Make latency(i, j) same as
764 					 * latency(k, l), try to use latency
765 					 * that has been adjusted already to get
766 					 * more consistency (if possible), and
767 					 * remember which latencies were
768 					 * adjusted for next time
769 					 */
770 					if (lat_corrected[i][j]) {
771 						t = t1;
772 						lgrp_config(cflag, t2, t);
773 						t2 = t;
774 					} else if (lat_corrected[k][l]) {
775 						t = t2;
776 						lgrp_config(cflag, t1, t);
777 						t1 = t;
778 					} else {
779 						if (t1 > t2)
780 							t = t2;
781 						else
782 							t = t1;
783 						lgrp_config(cflag, t1, t);
784 						lgrp_config(cflag, t2, t);
785 						t1 = t2 = t;
786 					}
787 
788 					lgrp_plat_probe_times[i][j] =
789 					    lgrp_plat_probe_times[k][l] = t;
790 
791 					lat_corrected[i][j] =
792 					    lat_corrected[k][l] = 1;
793 				}
794 		}
795 
796 	/*
797 	 * Local latencies should be same
798 	 * - Find min and max local latencies
799 	 * - Make all local latencies be minimum
800 	 */
801 	min = -1;
802 	max = 0;
803 	for (i = 0; i < lgrp_plat_node_cnt; i++) {
804 		t = lgrp_plat_probe_times[i][i];
805 		if (t == 0)
806 			continue;
807 		if (min == -1 || t < min)
808 			min = t;
809 		if (t > max)
810 			max = t;
811 	}
812 	if (min != max) {
813 		for (i = 0; i < lgrp_plat_node_cnt; i++) {
814 			int	local;
815 
816 			local = lgrp_plat_probe_times[i][i];
817 			if (local == 0)
818 				continue;
819 
820 			/*
821 			 * Track suspect probe times that aren't within
822 			 * tolerance of minimum local latency and how much
823 			 * probe times are corrected by
824 			 */
825 			if (local - min > min >> lgrp_plat_probe_lt_shift)
826 				lgrp_plat_probe_suspect[i][i]++;
827 
828 			lgrp_plat_probe_errors[i][i] += local - min;
829 
830 			/*
831 			 * Make local latencies be minimum
832 			 */
833 			lgrp_config(cflag, local, min);
834 			lgrp_plat_probe_times[i][i] = min;
835 		}
836 	}
837 
838 	/*
839 	 * Determine max probe time again since just adjusted latencies
840 	 */
841 	lgrp_plat_probe_time_max = 0;
842 	for (i = 0; i < lgrp_plat_node_cnt; i++)
843 		for (j = 0; j < lgrp_plat_node_cnt; j++) {
844 			t = lgrp_plat_probe_times[i][j];
845 			if (t > lgrp_plat_probe_time_max)
846 				lgrp_plat_probe_time_max = t;
847 		}
848 }
849 
850 
851 /*
852  * Verify following about latencies between nodes:
853  *
854  * - Latencies should be symmetric (ie. latency(a, b) == latency(b, a))
855  * - Local latencies same
856  * - Local < remote
857  * - Number of latencies seen is reasonable
858  * - Number of occurrences of a given latency should be more than 1
859  *
860  * Returns:
861  *	0	Success
862  *	-1	Not symmetric
863  *	-2	Local latencies not same
864  *	-3	Local >= remote
865  *	-4	Wrong number of latencies
866  *	-5	Not enough occurrences of given latency
867  */
868 static int
869 lgrp_plat_latency_verify(void)
870 {
871 	int				i;
872 	int				j;
873 	lgrp_plat_latency_acct_t	*l;
874 	int				probed;
875 	u_longlong_t			t1;
876 	u_longlong_t			t2;
877 
878 	/*
879 	 * Nothing to do when this is an UMA machine, lgroup topology is
880 	 * limited to 2 levels, or there aren't any probe times yet
881 	 */
882 	if (max_mem_nodes == 1 || lgrp_topo_levels < 2 ||
883 	    (lgrp_plat_probe_time_max == 0 && lgrp_plat_probe_time_min == -1))
884 		return (0);
885 
886 	/*
887 	 * Make sure that latencies are symmetric between any two nodes
888 	 * (ie. latency(node0, node1) == latency(node1, node0))
889 	 */
890 	for (i = 0; i < lgrp_plat_node_cnt; i++)
891 		for (j = 0; j < lgrp_plat_node_cnt; j++) {
892 			t1 = lgrp_plat_probe_times[i][j];
893 			t2 = lgrp_plat_probe_times[j][i];
894 
895 			if (t1 == 0 || t2 == 0 || t1 == t2)
896 				continue;
897 
898 			return (-1);
899 		}
900 
901 	/*
902 	 * Local latencies should be same
903 	 */
904 	t1 = lgrp_plat_probe_times[0][0];
905 	for (i = 1; i < lgrp_plat_node_cnt; i++) {
906 		t2 = lgrp_plat_probe_times[i][i];
907 		if (t2 == 0)
908 			continue;
909 
910 		if (t1 == 0) {
911 			t1 = t2;
912 			continue;
913 		}
914 
915 		if (t1 != t2)
916 			return (-2);
917 	}
918 
919 	/*
920 	 * Local latencies should be less than remote
921 	 */
922 	if (t1) {
923 		for (i = 0; i < lgrp_plat_node_cnt; i++)
924 			for (j = 0; j < lgrp_plat_node_cnt; j++) {
925 				t2 = lgrp_plat_probe_times[i][j];
926 				if (i == j || t2 == 0)
927 					continue;
928 
929 				if (t1 >= t2)
930 					return (-3);
931 			}
932 	}
933 
934 	/*
935 	 * Rest of checks are not very useful for machines with less than
936 	 * 4 nodes (which means less than 3 latencies on Opteron)
937 	 */
938 	if (lgrp_plat_node_cnt < 4)
939 		return (0);
940 
941 	/*
942 	 * Need to see whether done probing in order to verify number of
943 	 * latencies are correct
944 	 */
945 	probed = 0;
946 	for (i = 0; i < lgrp_plat_node_cnt; i++)
947 		if (lgrp_plat_probe_times[i][i])
948 			probed++;
949 
950 	if (probed != lgrp_plat_node_cnt)
951 		return (0);
952 
953 	/*
954 	 * Determine number of unique latencies seen in probe times,
955 	 * their values, and number of occurrences of each
956 	 */
957 	lgrp_plat_probe_nlatencies = 0;
958 	bzero(lgrp_plat_probe_lat_acct,
959 	    MAX_NODES * sizeof (lgrp_plat_latency_acct_t));
960 	for (i = 0; i < lgrp_plat_node_cnt; i++) {
961 		for (j = 0; j < lgrp_plat_node_cnt; j++) {
962 			int	k;
963 
964 			/*
965 			 * Look at each probe time
966 			 */
967 			t1 = lgrp_plat_probe_times[i][j];
968 			if (t1 == 0)
969 				continue;
970 
971 			/*
972 			 * Account for unique latencies
973 			 */
974 			for (k = 0; k < lgrp_plat_node_cnt; k++) {
975 				l = &lgrp_plat_probe_lat_acct[k];
976 				if (t1 == l->la_value) {
977 					/*
978 					 * Increment number of occurrences
979 					 * if seen before
980 					 */
981 					l->la_count++;
982 					break;
983 				} else if (l->la_value == 0) {
984 					/*
985 					 * Record latency if haven't seen before
986 					 */
987 					l->la_value = t1;
988 					l->la_count++;
989 					lgrp_plat_probe_nlatencies++;
990 					break;
991 				}
992 			}
993 		}
994 	}
995 
996 	/*
997 	 * Number of latencies should be relative to number of
998 	 * nodes in system:
999 	 * - Same as nodes when nodes <= 2
1000 	 * - Less than nodes when nodes > 2
1001 	 * - Greater than 2 when nodes >= 4
1002 	 */
1003 	if ((lgrp_plat_node_cnt <= 2 &&
1004 	    lgrp_plat_probe_nlatencies != lgrp_plat_node_cnt) ||
1005 	    (lgrp_plat_node_cnt > 2 &&
1006 	    lgrp_plat_probe_nlatencies >= lgrp_plat_node_cnt) ||
1007 	    (lgrp_plat_node_cnt >= 4 && lgrp_topo_levels >= 3 &&
1008 	    lgrp_plat_probe_nlatencies <= 2))
1009 		return (-4);
1010 
1011 	/*
1012 	 * There should be more than one occurrence of every latency
1013 	 * as long as probing is complete
1014 	 */
1015 	for (i = 0; i < lgrp_plat_probe_nlatencies; i++) {
1016 		l = &lgrp_plat_probe_lat_acct[i];
1017 		if (l->la_count <= 1)
1018 			return (-5);
1019 	}
1020 	return (0);
1021 }
1022 
1023 
1024 /*
1025  * Set lgroup latencies for 2 level lgroup topology
1026  */
1027 static void
1028 lgrp_plat_2level_setup(void)
1029 {
1030 	int	i;
1031 
1032 	if (lgrp_plat_node_cnt >= 4)
1033 		cmn_err(CE_NOTE,
1034 		    "MPO only optimizing for local and remote\n");
1035 	for (i = 0; i < lgrp_plat_node_cnt; i++) {
1036 		int	j;
1037 
1038 		for (j = 0; j < lgrp_plat_node_cnt; j++) {
1039 			if (i == j)
1040 				lgrp_plat_probe_times[i][j] = 2;
1041 			else
1042 				lgrp_plat_probe_times[i][j] = 3;
1043 		}
1044 	}
1045 	lgrp_plat_probe_time_min = 2;
1046 	lgrp_plat_probe_time_max = 3;
1047 	lgrp_config(LGRP_CONFIG_FLATTEN, 2, 0);
1048 }
1049 
1050 
1051 /*
1052  * Return time needed to probe from current CPU to memory in given node
1053  */
1054 static hrtime_t
1055 lgrp_plat_probe_time(int to)
1056 {
1057 	caddr_t		buf;
1058 	uint_t		dev;
1059 	/* LINTED: set but not used in function */
1060 	volatile uint_t	dev_vendor;
1061 	hrtime_t	elapsed;
1062 	hrtime_t	end;
1063 	int		from;
1064 	int		i;
1065 	int		ipl;
1066 	hrtime_t	max;
1067 	hrtime_t	min;
1068 	hrtime_t	start;
1069 	extern int	use_sse_pagecopy;
1070 
1071 	/*
1072 	 * Determine ID of node containing current CPU
1073 	 */
1074 	from = LGRP_PLAT_CPU_TO_NODE(CPU);
1075 
1076 	/*
1077 	 * Do common work for probing main memory
1078 	 */
1079 	if (lgrp_plat_probe_op == LGRP_PLAT_PROBE_PGCPY) {
1080 		/*
1081 		 * Skip probing any nodes without memory and
1082 		 * set probe time to 0
1083 		 */
1084 		if (lgrp_plat_probe_memory[to] == NULL) {
1085 			lgrp_plat_probe_times[from][to] = 0;
1086 			return (0);
1087 		}
1088 
1089 		/*
1090 		 * Invalidate caches once instead of once every sample
1091 		 * which should cut cost of probing by a lot
1092 		 */
1093 		lgrp_plat_flush_cost = gethrtime();
1094 		invalidate_cache();
1095 		lgrp_plat_flush_cost = gethrtime() - lgrp_plat_flush_cost;
1096 		lgrp_plat_probe_cost_total += lgrp_plat_flush_cost;
1097 	}
1098 
1099 	/*
1100 	 * Probe from current CPU to given memory using specified operation
1101 	 * and take specified number of samples
1102 	 */
1103 	max = 0;
1104 	min = -1;
1105 	for (i = 0; i < lgrp_plat_probe_nsamples; i++) {
1106 		lgrp_plat_probe_cost = gethrtime();
1107 
1108 		/*
1109 		 * Can't measure probe time if gethrtime() isn't working yet
1110 		 */
1111 		if (lgrp_plat_probe_cost == 0 && gethrtime() == 0)
1112 			return (0);
1113 
1114 		switch (lgrp_plat_probe_op) {
1115 
1116 		case LGRP_PLAT_PROBE_PGCPY:
1117 		default:
1118 			/*
1119 			 * Measure how long it takes to copy page
1120 			 * on top of itself
1121 			 */
1122 			buf = lgrp_plat_probe_memory[to] + (i * PAGESIZE);
1123 
1124 			kpreempt_disable();
1125 			ipl = splhigh();
1126 			start = gethrtime();
1127 			if (use_sse_pagecopy)
1128 				hwblkpagecopy(buf, buf);
1129 			else
1130 				bcopy(buf, buf, PAGESIZE);
1131 			end = gethrtime();
1132 			elapsed = end - start;
1133 			splx(ipl);
1134 			kpreempt_enable();
1135 			break;
1136 
1137 		case LGRP_PLAT_PROBE_VENDOR:
1138 			/*
1139 			 * Measure how long it takes to read vendor ID from
1140 			 * Northbridge
1141 			 */
1142 			dev = OPT_PCS_DEV_NODE0 + to;
1143 			kpreempt_disable();
1144 			ipl = spl8();
1145 			outl(PCI_CONFADD, PCI_CADDR1(0, dev, opt_probe_func,
1146 			    OPT_PCS_OFF_VENDOR));
1147 			start = gethrtime();
1148 			dev_vendor = inl(PCI_CONFDATA);
1149 			end = gethrtime();
1150 			elapsed = end - start;
1151 			splx(ipl);
1152 			kpreempt_enable();
1153 			break;
1154 		}
1155 
1156 		lgrp_plat_probe_cost = gethrtime() - lgrp_plat_probe_cost;
1157 		lgrp_plat_probe_cost_total += lgrp_plat_probe_cost;
1158 
1159 		if (min == -1 || elapsed < min)
1160 			min = elapsed;
1161 		if (elapsed > max)
1162 			max = elapsed;
1163 	}
1164 
1165 	/*
1166 	 * Update minimum and maximum probe times between
1167 	 * these two nodes
1168 	 */
1169 	if (min < lgrp_plat_probe_min[from][to] ||
1170 	    lgrp_plat_probe_min[from][to] == 0)
1171 		lgrp_plat_probe_min[from][to] = min;
1172 
1173 	if (max > lgrp_plat_probe_max[from][to])
1174 		lgrp_plat_probe_max[from][to] = max;
1175 
1176 	return (min);
1177 }
1178 
1179 
1180 /*
1181  * Probe memory in each node from current CPU to determine latency topology
1182  */
1183 void
1184 lgrp_plat_probe(void)
1185 {
1186 	int		from;
1187 	int		i;
1188 	hrtime_t	probe_time;
1189 	int		to;
1190 
1191 	if (max_mem_nodes == 1 || lgrp_topo_ht_limit() <= 2)
1192 		return;
1193 
1194 	/*
1195 	 * Determine ID of node containing current CPU
1196 	 */
1197 	from = LGRP_PLAT_CPU_TO_NODE(CPU);
1198 
1199 	/*
1200 	 * Don't need to probe if got times already
1201 	 */
1202 	if (lgrp_plat_probe_times[from][from] != 0)
1203 		return;
1204 
1205 	/*
1206 	 * Read vendor ID in Northbridge or read and write page(s)
1207 	 * in each node from current CPU and remember how long it takes,
1208 	 * so we can build latency topology of machine later.
1209 	 * This should approximate the memory latency between each node.
1210 	 */
1211 	for (i = 0; i < lgrp_plat_probe_nrounds; i++)
1212 		for (to = 0; to < lgrp_plat_node_cnt; to++) {
1213 			/*
1214 			 * Get probe time and bail out if can't get it yet
1215 			 */
1216 			probe_time = lgrp_plat_probe_time(to);
1217 			if (probe_time == 0)
1218 				return;
1219 
1220 			/*
1221 			 * Keep lowest probe time as latency between nodes
1222 			 */
1223 			if (lgrp_plat_probe_times[from][to] == 0 ||
1224 			    probe_time < lgrp_plat_probe_times[from][to])
1225 				lgrp_plat_probe_times[from][to] = probe_time;
1226 
1227 			/*
1228 			 * Update overall minimum and maximum probe times
1229 			 * across all nodes
1230 			 */
1231 			if (probe_time < lgrp_plat_probe_time_min ||
1232 			    lgrp_plat_probe_time_min == -1)
1233 				lgrp_plat_probe_time_min = probe_time;
1234 			if (probe_time > lgrp_plat_probe_time_max)
1235 				lgrp_plat_probe_time_max = probe_time;
1236 		}
1237 
1238 	/*
1239 	 * - Fix up latencies such that local latencies are same,
1240 	 *   latency(i, j) == latency(j, i), etc. (if possible)
1241 	 *
1242 	 * - Verify that latencies look ok
1243 	 *
1244 	 * - Fallback to just optimizing for local and remote if
1245 	 *   latencies didn't look right
1246 	 */
1247 	lgrp_plat_latency_adjust();
1248 	lgrp_plat_probe_error_code = lgrp_plat_latency_verify();
1249 	if (lgrp_plat_probe_error_code)
1250 		lgrp_plat_2level_setup();
1251 }
1252 
1253 
1254 /*
1255  * Platform-specific initialization
1256  */
1257 void
1258 lgrp_plat_main_init(void)
1259 {
1260 	int	curnode;
1261 	int	ht_limit;
1262 	int	i;
1263 
1264 	/*
1265 	 * Print a notice that MPO is disabled when memory is interleaved
1266 	 * across nodes....Would do this when it is discovered, but can't
1267 	 * because it happens way too early during boot....
1268 	 */
1269 	if (lgrp_plat_mem_intrlv)
1270 		cmn_err(CE_NOTE,
1271 		    "MPO disabled because memory is interleaved\n");
1272 
1273 	/*
1274 	 * Don't bother to do any probing if there is only one node or the
1275 	 * height of the lgroup topology less than or equal to 2
1276 	 */
1277 	ht_limit = lgrp_topo_ht_limit();
1278 	if (max_mem_nodes == 1 || ht_limit <= 2) {
1279 		/*
1280 		 * Setup lgroup latencies for 2 level lgroup topology
1281 		 * (ie. local and remote only) if they haven't been set yet
1282 		 */
1283 		if (ht_limit == 2 && lgrp_plat_probe_time_min == -1 &&
1284 		    lgrp_plat_probe_time_max == 0)
1285 			lgrp_plat_2level_setup();
1286 		return;
1287 	}
1288 
1289 	if (lgrp_plat_probe_op == LGRP_PLAT_PROBE_VENDOR) {
1290 		/*
1291 		 * Should have been able to probe from CPU 0 when it was added
1292 		 * to lgroup hierarchy, but may not have been able to then
1293 		 * because it happens so early in boot that gethrtime() hasn't
1294 		 * been initialized.  (:-(
1295 		 */
1296 		curnode = LGRP_PLAT_CPU_TO_NODE(CPU);
1297 		if (lgrp_plat_probe_times[curnode][curnode] == 0)
1298 			lgrp_plat_probe();
1299 
1300 		return;
1301 	}
1302 
1303 	/*
1304 	 * When probing memory, use one page for every sample to determine
1305 	 * lgroup topology and taking multiple samples
1306 	 */
1307 	if (lgrp_plat_probe_memsize == 0)
1308 		lgrp_plat_probe_memsize = PAGESIZE *
1309 		    lgrp_plat_probe_nsamples;
1310 
1311 	/*
1312 	 * Map memory in each node needed for probing to determine latency
1313 	 * topology
1314 	 */
1315 	for (i = 0; i < lgrp_plat_node_cnt; i++) {
1316 		int	mnode;
1317 
1318 		/*
1319 		 * Skip this node and leave its probe page NULL
1320 		 * if it doesn't have any memory
1321 		 */
1322 		mnode = plat_lgrphand_to_mem_node((lgrp_handle_t)i);
1323 		if (!mem_node_config[mnode].exists) {
1324 			lgrp_plat_probe_memory[i] = NULL;
1325 			continue;
1326 		}
1327 
1328 		/*
1329 		 * Allocate one kernel virtual page
1330 		 */
1331 		lgrp_plat_probe_memory[i] = vmem_alloc(heap_arena,
1332 		    lgrp_plat_probe_memsize, VM_NOSLEEP);
1333 		if (lgrp_plat_probe_memory[i] == NULL) {
1334 			cmn_err(CE_WARN,
1335 			    "lgrp_plat_main_init: couldn't allocate memory");
1336 			return;
1337 		}
1338 
1339 		/*
1340 		 * Map virtual page to first page in node
1341 		 */
1342 		hat_devload(kas.a_hat, lgrp_plat_probe_memory[i],
1343 		    lgrp_plat_probe_memsize,
1344 		    lgrp_plat_probe_pfn[i],
1345 		    PROT_READ | PROT_WRITE | HAT_PLAT_NOCACHE,
1346 		    HAT_LOAD_NOCONSIST);
1347 	}
1348 
1349 	/*
1350 	 * Probe from current CPU
1351 	 */
1352 	lgrp_plat_probe();
1353 }
1354 
1355 /*
1356  * Allocate additional space for an lgroup.
1357  */
1358 /* ARGSUSED */
1359 lgrp_t *
1360 lgrp_plat_alloc(lgrp_id_t lgrpid)
1361 {
1362 	lgrp_t *lgrp;
1363 
1364 	lgrp = &lgrp_space[nlgrps_alloc++];
1365 	if (lgrpid >= NLGRP || nlgrps_alloc > NLGRP)
1366 		return (NULL);
1367 	return (lgrp);
1368 }
1369 
1370 /*
1371  * Platform handling for (re)configuration changes
1372  */
1373 /* ARGSUSED */
1374 void
1375 lgrp_plat_config(lgrp_config_flag_t flag, uintptr_t arg)
1376 {
1377 }
1378 
1379 /*
1380  * Return the platform handle for the lgroup containing the given CPU
1381  */
1382 /* ARGSUSED */
1383 lgrp_handle_t
1384 lgrp_plat_cpu_to_hand(processorid_t id)
1385 {
1386 	if (lgrp_plat_node_cnt == 1)
1387 		return (LGRP_DEFAULT_HANDLE);
1388 
1389 	return ((lgrp_handle_t)LGRP_PLAT_CPU_TO_NODE(cpu[id]));
1390 }
1391 
1392 /*
1393  * Return the platform handle of the lgroup that contains the physical memory
1394  * corresponding to the given page frame number
1395  */
1396 /* ARGSUSED */
1397 lgrp_handle_t
1398 lgrp_plat_pfn_to_hand(pfn_t pfn)
1399 {
1400 	int	mnode;
1401 
1402 	if (max_mem_nodes == 1)
1403 		return (LGRP_DEFAULT_HANDLE);
1404 
1405 	mnode = plat_pfn_to_mem_node(pfn);
1406 	return (MEM_NODE_2_LGRPHAND(mnode));
1407 }
1408 
1409 /*
1410  * Return the maximum number of lgrps supported by the platform.
1411  * Before lgrp topology is known it returns an estimate based on the number of
1412  * nodes. Once topology is known it returns the actual maximim number of lgrps
1413  * created. Since x86 doesn't support dynamic addition of new nodes, this number
1414  * may not grow during system lifetime.
1415  */
1416 int
1417 lgrp_plat_max_lgrps()
1418 {
1419 	return (lgrp_topo_initialized ?
1420 	    lgrp_alloc_max + 1 :
1421 	    lgrp_plat_node_cnt * (lgrp_plat_node_cnt - 1) + 1);
1422 }
1423 
1424 /*
1425  * Return the number of free, allocatable, or installed
1426  * pages in an lgroup
1427  * This is a copy of the MAX_MEM_NODES == 1 version of the routine
1428  * used when MPO is disabled (i.e. single lgroup) or this is the root lgroup
1429  */
1430 /* ARGSUSED */
1431 static pgcnt_t
1432 lgrp_plat_mem_size_default(lgrp_handle_t lgrphand, lgrp_mem_query_t query)
1433 {
1434 	struct memlist *mlist;
1435 	pgcnt_t npgs = 0;
1436 	extern struct memlist *phys_avail;
1437 	extern struct memlist *phys_install;
1438 
1439 	switch (query) {
1440 	case LGRP_MEM_SIZE_FREE:
1441 		return ((pgcnt_t)freemem);
1442 	case LGRP_MEM_SIZE_AVAIL:
1443 		memlist_read_lock();
1444 		for (mlist = phys_avail; mlist; mlist = mlist->next)
1445 			npgs += btop(mlist->size);
1446 		memlist_read_unlock();
1447 		return (npgs);
1448 	case LGRP_MEM_SIZE_INSTALL:
1449 		memlist_read_lock();
1450 		for (mlist = phys_install; mlist; mlist = mlist->next)
1451 			npgs += btop(mlist->size);
1452 		memlist_read_unlock();
1453 		return (npgs);
1454 	default:
1455 		return ((pgcnt_t)0);
1456 	}
1457 }
1458 
1459 /*
1460  * Return the number of free pages in an lgroup.
1461  *
1462  * For query of LGRP_MEM_SIZE_FREE, return the number of base pagesize
1463  * pages on freelists.  For query of LGRP_MEM_SIZE_AVAIL, return the
1464  * number of allocatable base pagesize pages corresponding to the
1465  * lgroup (e.g. do not include page_t's, BOP_ALLOC()'ed memory, ..)
1466  * For query of LGRP_MEM_SIZE_INSTALL, return the amount of physical
1467  * memory installed, regardless of whether or not it's usable.
1468  */
1469 pgcnt_t
1470 lgrp_plat_mem_size(lgrp_handle_t plathand, lgrp_mem_query_t query)
1471 {
1472 	int	mnode;
1473 	pgcnt_t npgs = (pgcnt_t)0;
1474 	extern struct memlist *phys_avail;
1475 	extern struct memlist *phys_install;
1476 
1477 
1478 	if (plathand == LGRP_DEFAULT_HANDLE)
1479 		return (lgrp_plat_mem_size_default(plathand, query));
1480 
1481 	if (plathand != LGRP_NULL_HANDLE) {
1482 		mnode = plat_lgrphand_to_mem_node(plathand);
1483 		if (mnode >= 0 && mem_node_config[mnode].exists) {
1484 			switch (query) {
1485 			case LGRP_MEM_SIZE_FREE:
1486 				npgs = MNODE_PGCNT(mnode);
1487 				break;
1488 			case LGRP_MEM_SIZE_AVAIL:
1489 				npgs = mem_node_memlist_pages(mnode,
1490 				    phys_avail);
1491 				break;
1492 			case LGRP_MEM_SIZE_INSTALL:
1493 				npgs = mem_node_memlist_pages(mnode,
1494 				    phys_install);
1495 				break;
1496 			default:
1497 				break;
1498 			}
1499 		}
1500 	}
1501 	return (npgs);
1502 }
1503 
1504 /*
1505  * Return latency between "from" and "to" lgroups
1506  *
1507  * This latency number can only be used for relative comparison
1508  * between lgroups on the running system, cannot be used across platforms,
1509  * and may not reflect the actual latency.  It is platform and implementation
1510  * specific, so platform gets to decide its value.  It would be nice if the
1511  * number was at least proportional to make comparisons more meaningful though.
1512  */
1513 /* ARGSUSED */
1514 int
1515 lgrp_plat_latency(lgrp_handle_t from, lgrp_handle_t to)
1516 {
1517 	lgrp_handle_t	src, dest;
1518 
1519 	if (max_mem_nodes == 1)
1520 		return (0);
1521 
1522 	/*
1523 	 * Return max latency for root lgroup
1524 	 */
1525 	if (from == LGRP_DEFAULT_HANDLE || to == LGRP_DEFAULT_HANDLE)
1526 		return (lgrp_plat_probe_time_max);
1527 
1528 	src = from;
1529 	dest = to;
1530 
1531 	/*
1532 	 * Return 0 for nodes (lgroup platform handles) out of range
1533 	 */
1534 	if (src < 0 || src >= MAX_NODES || dest < 0 || dest >= MAX_NODES)
1535 		return (0);
1536 
1537 	/*
1538 	 * Probe from current CPU if its lgroup latencies haven't been set yet
1539 	 * and we are trying to get latency from current CPU to some node
1540 	 */
1541 	if (lgrp_plat_probe_times[src][src] == 0 &&
1542 	    LGRP_PLAT_CPU_TO_NODE(CPU) == src)
1543 		lgrp_plat_probe();
1544 
1545 	return (lgrp_plat_probe_times[src][dest]);
1546 }
1547 
1548 /*
1549  * Return platform handle for root lgroup
1550  */
1551 lgrp_handle_t
1552 lgrp_plat_root_hand(void)
1553 {
1554 	return (LGRP_DEFAULT_HANDLE);
1555 }
1556