xref: /titanic_41/usr/src/uts/i86pc/os/lgrpplat.c (revision 66e1f4391ea0d382201658130a560296881a014b)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License, Version 1.0 only
6  * (the "License").  You may not use this file except in compliance
7  * with the License.
8  *
9  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
10  * or http://www.opensolaris.org/os/licensing.
11  * See the License for the specific language governing permissions
12  * and limitations under the License.
13  *
14  * When distributing Covered Code, include this CDDL HEADER in each
15  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
16  * If applicable, add the following below this CDDL HEADER, with the
17  * fields enclosed by brackets "[]" replaced with your own identifying
18  * information: Portions Copyright [yyyy] [name of copyright owner]
19  *
20  * CDDL HEADER END
21  */
22 /*
23  * Copyright 2005 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 #pragma ident	"%Z%%M%	%I%	%E% SMI"
28 
29 
30 #include <sys/archsystm.h>	/* for {in,out}{b,w,l}() */
31 #include <sys/cmn_err.h>
32 #include <sys/cpupart.h>
33 #include <sys/cpuvar.h>
34 #include <sys/lgrp.h>
35 #include <sys/machsystm.h>
36 #include <sys/memlist.h>
37 #include <sys/memnode.h>
38 #include <sys/mman.h>
39 #include <sys/pci_impl.h>	/* for PCI configuration space macros */
40 #include <sys/param.h>
41 #include <sys/promif.h>		/* for prom_printf() */
42 #include <sys/systm.h>
43 #include <sys/thread.h>
44 #include <sys/types.h>
45 #include <sys/var.h>
46 #include <sys/x86_archext.h>	/* for x86_feature and X86_AMD */
47 #include <vm/hat_i86.h>
48 #include <vm/seg_kmem.h>
49 
50 
51 
52 /*
53  * lgroup platform support for x86 platforms.
54  */
55 
56 #define	MAX_NODES		8
57 #define	NLGRP			(MAX_NODES * (MAX_NODES - 1) + 1)
58 
59 #define	LGRP_PLAT_CPU_TO_NODE(cpu)	(chip_plat_get_chipid(cpu))
60 
61 #define	LGRP_PLAT_PROBE_NROUNDS		64	/* default laps for probing */
62 #define	LGRP_PLAT_PROBE_NSAMPLES	1	/* default samples to take */
63 
64 
65 /*
66  * Multiprocessor Opteron machines have Non Uniform Memory Access (NUMA).
67  *
68  * Until System Affinity Resource Table (SRAT) becomes part of ACPI standard,
69  * we need to examine registers in PCI configuration space to determine how
70  * many nodes are in the system and which CPUs and memory are in each node.
71  * This could be determined by probing all memory from each CPU, but that is
72  * too expensive to do while booting the kernel.
73  *
74  * NOTE: Using these PCI configuration space registers to determine this
75  *       locality info is Opteron K8 specific and not guaranteed to work on
76  *       the next generation Opteron processor.  Furthermore, we assume that
77  *	 there is one CPU per node and CPU 0 is in node 0, CPU 1 is in node 1,
78  *	 etc. which should be true for Opteron K8....
79  */
80 
81 /*
82  * Opteron DRAM Address Map in PCI configuration space gives base and limit
83  * of physical memory in each node for Opteron K8.  The following constants
84  * and macros define their contents, structure, and access.
85  */
86 
87 /*
88  * How many bits to shift Opteron DRAM Address Map base and limit registers
89  * to get actual value
90  */
91 #define	OPT_DRAMADDR_LSHIFT_ADDR	8	/* shift left for address */
92 
93 #define	OPT_DRAMADDR_MASK_OFF	0xFFFFFF	/* offset for address */
94 
95 /*
96  * Bit masks defining what's in Opteron DRAM Address Map base register
97  */
98 #define	OPT_DRAMBASE_MASK_RE		0x1		/* read enable */
99 #define	OPT_DRAMBASE_MASK_WE		0x2		/* write enable */
100 #define	OPT_DRAMBASE_MASK_INTRLVEN	0x700		/* interleave */
101 
102 #define	OPT_DRAMBASE_MASK_ADDR	0xFFFF0000	/* address bits 39-24 */
103 
104 /*
105  * Macros to get values from Opteron DRAM Address Map base register
106  */
107 #define	OPT_DRAMBASE(reg) \
108 	(((u_longlong_t)reg & OPT_DRAMBASE_MASK_ADDR) << \
109 	    OPT_DRAMADDR_LSHIFT_ADDR)
110 
111 
112 /*
113  * Bit masks defining what's in Opteron DRAM Address Map limit register
114  */
115 #define	OPT_DRAMLIMIT_MASK_DSTNODE	0x7		/* destination node */
116 #define	OPT_DRAMLIMIT_MASK_INTRLVSEL	0x70		/* interleave select */
117 #define	OPT_DRAMLIMIT_MASK_ADDR		0xFFFF0000	/* addr bits 39-24 */
118 
119 /*
120  * Macros to get values from Opteron DRAM Address Map limit register
121  */
122 #define	OPT_DRAMLIMIT(reg) \
123 	(((u_longlong_t)reg & OPT_DRAMLIMIT_MASK_ADDR) << \
124 	    OPT_DRAMADDR_LSHIFT_ADDR)
125 
126 
127 /*
128  * Opteron Node ID register in PCI configuration space contains
129  * number of nodes in system, etc. for Opteron K8.  The following
130  * constants and macros define its contents, structure, and access.
131  */
132 
133 /*
134  * Bit masks defining what's in Opteron Node ID register
135  */
136 #define	OPT_NODE_MASK_ID	0x7	/* node ID */
137 #define	OPT_NODE_MASK_CNT	0x70	/* node count */
138 #define	OPT_NODE_MASK_IONODE	0x700	/* Hypertransport I/O hub node ID */
139 #define	OPT_NODE_MASK_LCKNODE	0x7000	/* lock controller node ID */
140 #define	OPT_NODE_MASK_CPUCNT	0xF0000	/* CPUs in system (0 means 1 CPU)  */
141 
142 /*
143  * How many bits in Opteron Node ID register to shift right to get actual value
144  */
145 #define	OPT_NODE_RSHIFT_CNT	0x4	/* shift right for node count value */
146 
147 /*
148  * Macros to get values from Opteron Node ID register
149  */
150 #define	OPT_NODE_CNT(reg) \
151 	((reg & OPT_NODE_MASK_CNT) >> OPT_NODE_RSHIFT_CNT)
152 
153 
154 /*
155  * PCI configuration space registers accessed by specifying
156  * a bus, device, function, and offset.  The following constants
157  * define the values needed to access Opteron K8 configuration
158  * info to determine its node topology
159  */
160 
161 #define	OPT_PCS_BUS_CONFIG	0	/* Hypertransport config space bus */
162 
163 /*
164  * Opteron PCI configuration space register function values
165  */
166 #define	OPT_PCS_FUNC_HT		0	/* Hypertransport configuration */
167 #define	OPT_PCS_FUNC_ADDRMAP	1	/* Address map configuration */
168 #define	OPT_PCS_FUNC_DRAM	2	/* DRAM configuration */
169 #define	OPT_PCS_FUNC_MISC	3	/* Miscellaneous configuration */
170 
171 /*
172  * PCI Configuration Space register offsets
173  */
174 #define	OPT_PCS_OFF_VENDOR	0x0	/* device/vendor ID register */
175 #define	OPT_PCS_OFF_DRAMBASE	0x40	/* DRAM Base register (node 0) */
176 #define	OPT_PCS_OFF_NODEID	0x60	/* Node ID register */
177 
178 /*
179  * Opteron PCI Configuration Space device IDs for nodes
180  */
181 #define	OPT_PCS_DEV_NODE0		24	/* device number for node 0 */
182 
183 
184 /*
185  * Bookkeeping for latencies seen during probing (used for verification)
186  */
187 typedef	struct lgrp_plat_latency_acct {
188 	hrtime_t	la_value;	/* latency value */
189 	int		la_count;	/* occurrences */
190 } lgrp_plat_latency_acct_t;
191 
192 
193 /*
194  * Choices for probing to determine lgroup topology
195  */
196 typedef	enum lgrp_plat_probe_op {
197 	LGRP_PLAT_PROBE_PGCPY,		/* Use page copy */
198 	LGRP_PLAT_PROBE_VENDOR		/* Read vendor ID on Northbridge */
199 } lgrp_plat_probe_op_t;
200 
201 
202 /*
203  * Opteron DRAM address map gives base and limit for physical memory in a node
204  */
205 typedef	struct opt_dram_addr_map {
206 	uint32_t	base;
207 	uint32_t	limit;
208 } opt_dram_addr_map_t;
209 
210 
211 /*
212  * Starting and ending page for physical memory in node
213  */
214 typedef	struct phys_addr_map {
215 	pfn_t	start;
216 	pfn_t	end;
217 } phys_addr_map_t;
218 
219 
220 /*
221  * Opteron DRAM address map for each node
222  */
223 struct opt_dram_addr_map	opt_dram_map[MAX_NODES];
224 
225 /*
226  * Node ID register contents for each node
227  */
228 uint_t				opt_node_info[MAX_NODES];
229 
230 /*
231  * Whether memory is interleaved across nodes causing MPO to be disabled
232  */
233 int			lgrp_plat_mem_intrlv = 0;
234 
235 /*
236  * Number of nodes in system
237  */
238 uint_t			lgrp_plat_node_cnt = 1;
239 
240 /*
241  * Physical address range for memory in each node
242  */
243 phys_addr_map_t		lgrp_plat_node_memory[MAX_NODES];
244 
245 /*
246  * Probe costs (individual and total) and flush cost
247  */
248 hrtime_t		lgrp_plat_flush_cost = 0;
249 hrtime_t		lgrp_plat_probe_cost = 0;
250 hrtime_t		lgrp_plat_probe_cost_total = 0;
251 
252 /*
253  * Error code for latency adjustment and verification
254  */
255 int			lgrp_plat_probe_error_code = 0;
256 
257 /*
258  * How much latencies were off from minimum values gotten
259  */
260 hrtime_t		lgrp_plat_probe_errors[MAX_NODES][MAX_NODES];
261 
262 /*
263  * Unique probe latencies and number of occurrences of each
264  */
265 lgrp_plat_latency_acct_t	lgrp_plat_probe_lat_acct[MAX_NODES];
266 
267 /*
268  * Size of memory buffer in each node for probing
269  */
270 size_t			lgrp_plat_probe_memsize = 0;
271 
272 /*
273  * Virtual address of page in each node for probing
274  */
275 caddr_t			lgrp_plat_probe_memory[MAX_NODES];
276 
277 /*
278  * Number of unique latencies in probe times
279  */
280 int			lgrp_plat_probe_nlatencies = 0;
281 
282 /*
283  * How many rounds of probing to do
284  */
285 int			lgrp_plat_probe_nrounds = LGRP_PLAT_PROBE_NROUNDS;
286 
287 /*
288  * Number of samples to take when probing each node
289  */
290 int			lgrp_plat_probe_nsamples = LGRP_PLAT_PROBE_NSAMPLES;
291 
292 /*
293  * How to probe to determine lgroup topology
294  */
295 lgrp_plat_probe_op_t	lgrp_plat_probe_op = LGRP_PLAT_PROBE_VENDOR;
296 
297 /*
298  * PFN of page in each node for probing
299  */
300 pfn_t			lgrp_plat_probe_pfn[MAX_NODES];
301 
302 /*
303  * Whether probe time was suspect (ie. not within tolerance of value that it
304  * should match)
305  */
306 int			lgrp_plat_probe_suspect[MAX_NODES][MAX_NODES];
307 
308 /*
309  * How long it takes to access memory from each node
310  */
311 hrtime_t		lgrp_plat_probe_times[MAX_NODES][MAX_NODES];
312 
313 /*
314  * Min and max node memory probe times seen
315  */
316 hrtime_t		lgrp_plat_probe_time_max = 0;
317 hrtime_t		lgrp_plat_probe_time_min = -1;
318 hrtime_t		lgrp_plat_probe_max[MAX_NODES][MAX_NODES];
319 hrtime_t		lgrp_plat_probe_min[MAX_NODES][MAX_NODES];
320 
321 
322 /*
323  * Allocate lgrp and lgrp stat arrays statically.
324  */
325 static lgrp_t	lgrp_space[NLGRP];
326 static int	nlgrps_alloc;
327 
328 struct lgrp_stats lgrp_stats[NLGRP];
329 
330 #define	CPUID_FAMILY_OPTERON	15
331 
332 uint_t	opt_family = 0;
333 uint_t	opt_model = 0;
334 uint_t	opt_probe_func = OPT_PCS_FUNC_DRAM;
335 
336 
337 /*
338  * Determine whether we're running on an AMD Opteron K8 machine
339  */
340 int
341 is_opteron(void)
342 {
343 	if (x86_vendor != X86_VENDOR_AMD)
344 		return (0);
345 
346 	if (cpuid_getfamily(CPU) == CPUID_FAMILY_OPTERON)
347 		return (1);
348 	else
349 		return (0);
350 }
351 
352 int
353 plat_lgrphand_to_mem_node(lgrp_handle_t hand)
354 {
355 	if (max_mem_nodes == 1)
356 		return (0);
357 
358 	return ((int)hand);
359 }
360 
361 lgrp_handle_t
362 plat_mem_node_to_lgrphand(int mnode)
363 {
364 	if (max_mem_nodes == 1)
365 		return (LGRP_DEFAULT_HANDLE);
366 
367 	return ((lgrp_handle_t)mnode);
368 }
369 
370 int
371 plat_pfn_to_mem_node(pfn_t pfn)
372 {
373 	int	node;
374 
375 	if (max_mem_nodes == 1)
376 		return (0);
377 
378 	for (node = 0; node < lgrp_plat_node_cnt; node++) {
379 		if (pfn >= lgrp_plat_node_memory[node].start &&
380 		    pfn <= lgrp_plat_node_memory[node].end)
381 			return (node);
382 	}
383 
384 	ASSERT(node < lgrp_plat_node_cnt);
385 	return (-1);
386 }
387 
388 /*
389  * Configure memory nodes for machines with more than one node (ie NUMA)
390  */
391 void
392 plat_build_mem_nodes(struct memlist *list)
393 {
394 	pfn_t	cur_start, cur_end;	/* start & end addr of subrange */
395 	pfn_t	start, end;		/* start & end addr of whole range */
396 
397 	/*
398 	 * Boot install lists are arranged <addr, len>, ...
399 	 */
400 	while (list) {
401 		int	node;
402 
403 		start = list->address >> PAGESHIFT;
404 		end = (list->address + list->size - 1) >> PAGESHIFT;
405 
406 		if (start > physmax) {
407 			list = list->next;
408 			continue;
409 		}
410 		if (end > physmax)
411 			end = physmax;
412 
413 		/*
414 		 * When there is only one memnode, just add memory to memnode
415 		 */
416 		if (max_mem_nodes == 1) {
417 			mem_node_add_slice(start, end);
418 			list = list->next;
419 			continue;
420 		}
421 
422 		/*
423 		 * mem_node_add_slice() expects to get a memory range that
424 		 * is within one memnode, so need to split any memory range
425 		 * that spans multiple memnodes into subranges that are each
426 		 * contained within one memnode when feeding them to
427 		 * mem_node_add_slice()
428 		 */
429 		cur_start = start;
430 		do {
431 			node = plat_pfn_to_mem_node(cur_start);
432 			ASSERT(cur_start >=
433 			    lgrp_plat_node_memory[node].start &&
434 			    cur_start <= lgrp_plat_node_memory[node].end);
435 
436 			cur_end = end;
437 
438 			/*
439 			 * End of current subrange should not span memnodes
440 			 */
441 			if (cur_end > lgrp_plat_node_memory[node].end)
442 				cur_end = lgrp_plat_node_memory[node].end;
443 
444 			mem_node_add_slice(cur_start, cur_end);
445 
446 			/*
447 			 * Next subrange starts after end of current one
448 			 */
449 			cur_start = cur_end + 1;
450 		} while (cur_end < end);
451 
452 		list = list->next;
453 	}
454 	mem_node_physalign = 0;
455 	mem_node_pfn_shift = 0;
456 }
457 
458 
459 /*
460  * Platform-specific initialization of lgroups
461  */
462 void
463 lgrp_plat_init(void)
464 {
465 	uint_t		bus;
466 	uint_t		dev;
467 	uint_t		node;
468 	uint_t		off;
469 
470 	extern lgrp_load_t	lgrp_expand_proc_thresh;
471 	extern lgrp_load_t	lgrp_expand_proc_diff;
472 
473 	/*
474 	 * Initialize as a UMA machine if this isn't an Opteron
475 	 */
476 	if (!is_opteron() || lgrp_topo_ht_limit() == 1) {
477 		lgrp_plat_node_cnt = max_mem_nodes = 1;
478 		return;
479 	}
480 
481 	/*
482 	 * Read configuration registers from PCI configuration space to
483 	 * determine node information, which memory is in each node, etc.
484 	 *
485 	 * Write to PCI configuration space address register to specify
486 	 * which configuration register to read and read/write PCI
487 	 * configuration space data register to get/set contents
488 	 */
489 	bus = OPT_PCS_BUS_CONFIG;
490 	dev = OPT_PCS_DEV_NODE0;
491 	off = OPT_PCS_OFF_DRAMBASE;
492 
493 	/*
494 	 * Read node ID register for node 0 to get node count
495 	 */
496 	outl(PCI_CONFADD, PCI_CADDR1(bus, dev, OPT_PCS_FUNC_HT,
497 	    OPT_PCS_OFF_NODEID));
498 	opt_node_info[0] = inl(PCI_CONFDATA);
499 	lgrp_plat_node_cnt = OPT_NODE_CNT(opt_node_info[0]) + 1;
500 
501 	for (node = 0; node < lgrp_plat_node_cnt; node++) {
502 		/*
503 		 * Read node ID register (except for node 0 which we just read)
504 		 */
505 		if (node > 0) {
506 			outl(PCI_CONFADD, PCI_CADDR1(bus, dev,
507 			    OPT_PCS_FUNC_HT, OPT_PCS_OFF_NODEID));
508 			opt_node_info[node] = inl(PCI_CONFDATA);
509 		}
510 
511 		/*
512 		 * Read DRAM base and limit registers which specify
513 		 * physical memory range of each node
514 		 */
515 		outl(PCI_CONFADD, PCI_CADDR1(bus, dev, OPT_PCS_FUNC_ADDRMAP,
516 		    off));
517 		opt_dram_map[node].base = inl(PCI_CONFDATA);
518 		if (opt_dram_map[node].base & OPT_DRAMBASE_MASK_INTRLVEN)
519 			lgrp_plat_mem_intrlv++;
520 
521 		off += 4;	/* limit register offset */
522 		outl(PCI_CONFADD, PCI_CADDR1(bus, dev, OPT_PCS_FUNC_ADDRMAP,
523 		    off));
524 		opt_dram_map[node].limit = inl(PCI_CONFDATA);
525 
526 		/*
527 		 * Increment device number to next node and register offset for
528 		 * DRAM base register of next node
529 		 */
530 		off += 4;
531 		dev++;
532 
533 		/*
534 		 * Get PFN for first page in each node,
535 		 * so we can probe memory to determine latency topology
536 		 */
537 		lgrp_plat_probe_pfn[node] =
538 		    btop(OPT_DRAMBASE(opt_dram_map[node].base));
539 
540 		/*
541 		 * Remember physical address range of each node for use later
542 		 */
543 		lgrp_plat_node_memory[node].start =
544 		    btop(OPT_DRAMBASE(opt_dram_map[node].base));
545 		lgrp_plat_node_memory[node].end =
546 		    btop(OPT_DRAMLIMIT(opt_dram_map[node].limit) |
547 		    OPT_DRAMADDR_MASK_OFF);
548 	}
549 
550 	/*
551 	 * Only use one memory node if memory is interleaved between any nodes
552 	 */
553 	if (lgrp_plat_mem_intrlv) {
554 		lgrp_plat_node_cnt = max_mem_nodes = 1;
555 		(void) lgrp_topo_ht_limit_set(1);
556 	} else {
557 		max_mem_nodes = lgrp_plat_node_cnt;
558 
559 		/*
560 		 * Probing errors can mess up the lgroup topology and force us
561 		 * fall back to a 2 level lgroup topology.  Here we bound how
562 		 * tall the lgroup topology can grow in hopes of avoiding any
563 		 * anamolies in probing from messing up the lgroup topology
564 		 * by limiting the accuracy of the latency topology.
565 		 *
566 		 * Assume that nodes will at least be configured in a ring,
567 		 * so limit height of lgroup topology to be less than number
568 		 * of nodes on a system with 4 or more nodes
569 		 */
570 		if (lgrp_plat_node_cnt >= 4 &&
571 		    lgrp_topo_ht_limit() == lgrp_topo_ht_limit_default())
572 			(void) lgrp_topo_ht_limit_set(lgrp_plat_node_cnt - 1);
573 	}
574 
575 	/*
576 	 * Lgroups on Opteron architectures have but a single physical
577 	 * processor. Tune lgrp_expand_proc_thresh and lgrp_expand_proc_diff
578 	 * so that lgrp_choose() will spread things out aggressively.
579 	 */
580 	lgrp_expand_proc_thresh = LGRP_LOADAVG_THREAD_MAX / 2;
581 	lgrp_expand_proc_diff = 0;
582 }
583 
584 
585 /*
586  * Latencies must be within 1/(2**LGRP_LAT_TOLERANCE_SHIFT) of each other to
587  * be considered same
588  */
589 #define	LGRP_LAT_TOLERANCE_SHIFT	4
590 
591 int	lgrp_plat_probe_lt_shift = LGRP_LAT_TOLERANCE_SHIFT;
592 
593 
594 /*
595  * Adjust latencies between nodes to be symmetric, normalize latencies between
596  * any nodes that are within some tolerance to be same, and make local
597  * latencies be same
598  */
599 static void
600 lgrp_plat_latency_adjust(void)
601 {
602 	int				i;
603 	int				j;
604 	int				k;
605 	int				l;
606 	u_longlong_t			max;
607 	u_longlong_t			min;
608 	u_longlong_t			t;
609 	u_longlong_t			t1;
610 	u_longlong_t			t2;
611 	const lgrp_config_flag_t	cflag = LGRP_CONFIG_LATENCY_CHANGE;
612 	int				lat_corrected[MAX_NODES][MAX_NODES];
613 
614 	/*
615 	 * Nothing to do when this is an UMA machine
616 	 */
617 	if (max_mem_nodes == 1)
618 		return;
619 
620 	/*
621 	 * Make sure that latencies are symmetric between any two nodes
622 	 * (ie. latency(node0, node1) == latency(node1, node0))
623 	 */
624 	for (i = 0; i < lgrp_plat_node_cnt; i++)
625 		for (j = 0; j < lgrp_plat_node_cnt; j++) {
626 			t1 = lgrp_plat_probe_times[i][j];
627 			t2 = lgrp_plat_probe_times[j][i];
628 
629 			if (t1 == 0 || t2 == 0 || t1 == t2)
630 				continue;
631 
632 			/*
633 			 * Latencies should be same
634 			 * - Use minimum of two latencies which should be same
635 			 * - Track suspect probe times not within tolerance of
636 			 *   min value
637 			 * - Remember how much values are corrected by
638 			 */
639 			if (t1 > t2) {
640 				t = t2;
641 				lgrp_plat_probe_errors[i][j] += t1 - t2;
642 				if (t1 - t2 > t2 >> lgrp_plat_probe_lt_shift) {
643 					lgrp_plat_probe_suspect[i][j]++;
644 					lgrp_plat_probe_suspect[j][i]++;
645 				}
646 			} else if (t2 > t1) {
647 				t = t1;
648 				lgrp_plat_probe_errors[j][i] += t2 - t1;
649 				if (t2 - t1 > t1 >> lgrp_plat_probe_lt_shift) {
650 					lgrp_plat_probe_suspect[i][j]++;
651 					lgrp_plat_probe_suspect[j][i]++;
652 				}
653 			}
654 
655 			lgrp_plat_probe_times[i][j] =
656 			    lgrp_plat_probe_times[j][i] = t;
657 			lgrp_config(cflag, t1, t);
658 			lgrp_config(cflag, t2, t);
659 		}
660 
661 	/*
662 	 * Keep track of which latencies get corrected
663 	 */
664 	for (i = 0; i < MAX_NODES; i++)
665 		for (j = 0; j < MAX_NODES; j++)
666 			lat_corrected[i][j] = 0;
667 
668 	/*
669 	 * For every two nodes, see whether there is another pair of nodes which
670 	 * are about the same distance apart and make the latencies be the same
671 	 * if they are close enough together
672 	 */
673 	for (i = 0; i < lgrp_plat_node_cnt; i++)
674 		for (j = 0; j < lgrp_plat_node_cnt; j++) {
675 			/*
676 			 * Pick one pair of nodes (i, j)
677 			 * and get latency between them
678 			 */
679 			t1 = lgrp_plat_probe_times[i][j];
680 
681 			/*
682 			 * Skip this pair of nodes if there isn't a latency
683 			 * for it yet
684 			 */
685 			if (t1 == 0)
686 				continue;
687 
688 			for (k = 0; k < lgrp_plat_node_cnt; k++)
689 				for (l = 0; l < lgrp_plat_node_cnt; l++) {
690 					/*
691 					 * Pick another pair of nodes (k, l)
692 					 * not same as (i, j) and get latency
693 					 * between them
694 					 */
695 					if (k == i && l == j)
696 						continue;
697 
698 					t2 = lgrp_plat_probe_times[k][l];
699 
700 					/*
701 					 * Skip this pair of nodes if there
702 					 * isn't a latency for it yet
703 					 */
704 
705 					if (t2 == 0)
706 						continue;
707 
708 					/*
709 					 * Skip nodes (k, l) if they already
710 					 * have same latency as (i, j) or
711 					 * their latency isn't close enough to
712 					 * be considered/made the same
713 					 */
714 					if (t1 == t2 || (t1 > t2 && t1 - t2 >
715 					    t1 >> lgrp_plat_probe_lt_shift) ||
716 					    (t2 > t1 && t2 - t1 >
717 					    t2 >> lgrp_plat_probe_lt_shift))
718 						continue;
719 
720 					/*
721 					 * Make latency(i, j) same as
722 					 * latency(k, l), try to use latency
723 					 * that has been adjusted already to get
724 					 * more consistency (if possible), and
725 					 * remember which latencies were
726 					 * adjusted for next time
727 					 */
728 					if (lat_corrected[i][j]) {
729 						t = t1;
730 						lgrp_config(cflag, t2, t);
731 						t2 = t;
732 					} else if (lat_corrected[k][l]) {
733 						t = t2;
734 						lgrp_config(cflag, t1, t);
735 						t1 = t;
736 					} else {
737 						if (t1 > t2)
738 							t = t2;
739 						else
740 							t = t1;
741 						lgrp_config(cflag, t1, t);
742 						lgrp_config(cflag, t2, t);
743 						t1 = t2 = t;
744 					}
745 
746 					lgrp_plat_probe_times[i][j] =
747 					    lgrp_plat_probe_times[k][l] = t;
748 
749 					lat_corrected[i][j] =
750 					    lat_corrected[k][l] = 1;
751 				}
752 		}
753 
754 	/*
755 	 * Local latencies should be same
756 	 * - Find min and max local latencies
757 	 * - Make all local latencies be minimum
758 	 */
759 	min = -1;
760 	max = 0;
761 	for (i = 0; i < lgrp_plat_node_cnt; i++) {
762 		t = lgrp_plat_probe_times[i][i];
763 		if (t == 0)
764 			continue;
765 		if (min == -1 || t < min)
766 			min = t;
767 		if (t > max)
768 			max = t;
769 	}
770 	if (min != max) {
771 		for (i = 0; i < lgrp_plat_node_cnt; i++) {
772 			int	local;
773 
774 			local = lgrp_plat_probe_times[i][i];
775 			if (local == 0)
776 				continue;
777 
778 			/*
779 			 * Track suspect probe times that aren't within
780 			 * tolerance of minimum local latency and how much
781 			 * probe times are corrected by
782 			 */
783 			if (local - min > min >> lgrp_plat_probe_lt_shift)
784 				lgrp_plat_probe_suspect[i][i]++;
785 
786 			lgrp_plat_probe_errors[i][i] += local - min;
787 
788 			/*
789 			 * Make local latencies be minimum
790 			 */
791 			lgrp_config(cflag, local, min);
792 			lgrp_plat_probe_times[i][i] = min;
793 		}
794 	}
795 
796 	/*
797 	 * Determine max probe time again since just adjusted latencies
798 	 */
799 	lgrp_plat_probe_time_max = 0;
800 	for (i = 0; i < lgrp_plat_node_cnt; i++)
801 		for (j = 0; j < lgrp_plat_node_cnt; j++) {
802 			t = lgrp_plat_probe_times[i][j];
803 			if (t > lgrp_plat_probe_time_max)
804 				lgrp_plat_probe_time_max = t;
805 		}
806 }
807 
808 
809 /*
810  * Verify following about latencies between nodes:
811  *
812  * - Latencies should be symmetric (ie. latency(a, b) == latency(b, a))
813  * - Local latencies same
814  * - Local < remote
815  * - Number of latencies seen is reasonable
816  * - Number of occurrences of a given latency should be more than 1
817  *
818  * Returns:
819  *	0	Success
820  *	-1	Not symmetric
821  *	-2	Local latencies not same
822  *	-3	Local >= remote
823  *	-4	Wrong number of latencies
824  *	-5	Not enough occurrences of given latency
825  */
826 static int
827 lgrp_plat_latency_verify(void)
828 {
829 	int				i;
830 	int				j;
831 	lgrp_plat_latency_acct_t	*l;
832 	int				probed;
833 	u_longlong_t			t1;
834 	u_longlong_t			t2;
835 
836 	/*
837 	 * Nothing to do when this is an UMA machine, lgroup topology is
838 	 * limited to 2 levels, or there aren't any probe times yet
839 	 */
840 	if (max_mem_nodes == 1 || lgrp_topo_levels < 2 ||
841 	    (lgrp_plat_probe_time_max == 0 && lgrp_plat_probe_time_min == -1))
842 		return (0);
843 
844 	/*
845 	 * Make sure that latencies are symmetric between any two nodes
846 	 * (ie. latency(node0, node1) == latency(node1, node0))
847 	 */
848 	for (i = 0; i < lgrp_plat_node_cnt; i++)
849 		for (j = 0; j < lgrp_plat_node_cnt; j++) {
850 			t1 = lgrp_plat_probe_times[i][j];
851 			t2 = lgrp_plat_probe_times[j][i];
852 
853 			if (t1 == 0 || t2 == 0 || t1 == t2)
854 				continue;
855 
856 			return (-1);
857 		}
858 
859 	/*
860 	 * Local latencies should be same
861 	 */
862 	t1 = lgrp_plat_probe_times[0][0];
863 	for (i = 1; i < lgrp_plat_node_cnt; i++) {
864 		t2 = lgrp_plat_probe_times[i][i];
865 		if (t2 == 0)
866 			continue;
867 
868 		if (t1 == 0) {
869 			t1 = t2;
870 			continue;
871 		}
872 
873 		if (t1 != t2)
874 			return (-2);
875 	}
876 
877 	/*
878 	 * Local latencies should be less than remote
879 	 */
880 	if (t1) {
881 		for (i = 0; i < lgrp_plat_node_cnt; i++)
882 			for (j = 0; j < lgrp_plat_node_cnt; j++) {
883 				t2 = lgrp_plat_probe_times[i][j];
884 				if (i == j || t2 == 0)
885 					continue;
886 
887 				if (t1 >= t2)
888 					return (-3);
889 			}
890 	}
891 
892 	/*
893 	 * Rest of checks are not very useful for machines with less than
894 	 * 4 nodes (which means less than 3 latencies on Opteron)
895 	 */
896 	if (lgrp_plat_node_cnt < 4)
897 		return (0);
898 
899 	/*
900 	 * Need to see whether done probing in order to verify number of
901 	 * latencies are correct
902 	 */
903 	probed = 0;
904 	for (i = 0; i < lgrp_plat_node_cnt; i++)
905 		if (lgrp_plat_probe_times[i][i])
906 			probed++;
907 
908 	if (probed != lgrp_plat_node_cnt)
909 		return (0);
910 
911 	/*
912 	 * Determine number of unique latencies seen in probe times,
913 	 * their values, and number of occurrences of each
914 	 */
915 	lgrp_plat_probe_nlatencies = 0;
916 	bzero(lgrp_plat_probe_lat_acct,
917 	    MAX_NODES * sizeof (lgrp_plat_latency_acct_t));
918 	for (i = 0; i < lgrp_plat_node_cnt; i++) {
919 		for (j = 0; j < lgrp_plat_node_cnt; j++) {
920 			int	k;
921 
922 			/*
923 			 * Look at each probe time
924 			 */
925 			t1 = lgrp_plat_probe_times[i][j];
926 			if (t1 == 0)
927 				continue;
928 
929 			/*
930 			 * Account for unique latencies
931 			 */
932 			for (k = 0; k < lgrp_plat_node_cnt; k++) {
933 				l = &lgrp_plat_probe_lat_acct[k];
934 				if (t1 == l->la_value) {
935 					/*
936 					 * Increment number of occurrences
937 					 * if seen before
938 					 */
939 					l->la_count++;
940 					break;
941 				} else if (l->la_value == 0) {
942 					/*
943 					 * Record latency if haven't seen before
944 					 */
945 					l->la_value = t1;
946 					l->la_count++;
947 					lgrp_plat_probe_nlatencies++;
948 					break;
949 				}
950 			}
951 		}
952 	}
953 
954 	/*
955 	 * Number of latencies should be relative to number of
956 	 * nodes in system:
957 	 * - Same as nodes when nodes <= 2
958 	 * - Less than nodes when nodes > 2
959 	 * - Greater than 2 when nodes >= 4
960 	 */
961 	if ((lgrp_plat_node_cnt <= 2 &&
962 	    lgrp_plat_probe_nlatencies != lgrp_plat_node_cnt) ||
963 	    (lgrp_plat_node_cnt > 2 &&
964 	    lgrp_plat_probe_nlatencies >= lgrp_plat_node_cnt) ||
965 	    (lgrp_plat_node_cnt >= 4 && lgrp_topo_levels >= 3 &&
966 	    lgrp_plat_probe_nlatencies <= 2))
967 		return (-4);
968 
969 	/*
970 	 * There should be more than one occurrence of every latency
971 	 * as long as probing is complete
972 	 */
973 	for (i = 0; i < lgrp_plat_probe_nlatencies; i++) {
974 		l = &lgrp_plat_probe_lat_acct[i];
975 		if (l->la_count <= 1)
976 			return (-5);
977 	}
978 	return (0);
979 }
980 
981 
982 /*
983  * Set lgroup latencies for 2 level lgroup topology
984  */
985 static void
986 lgrp_plat_2level_setup(void)
987 {
988 	int	i;
989 
990 	if (lgrp_plat_node_cnt >= 4)
991 		cmn_err(CE_NOTE,
992 		    "MPO only optimizing for local and remote\n");
993 	for (i = 0; i < lgrp_plat_node_cnt; i++) {
994 		int	j;
995 
996 		for (j = 0; j < lgrp_plat_node_cnt; j++) {
997 			if (i == j)
998 				lgrp_plat_probe_times[i][j] = 2;
999 			else
1000 				lgrp_plat_probe_times[i][j] = 3;
1001 		}
1002 	}
1003 	lgrp_plat_probe_time_min = 2;
1004 	lgrp_plat_probe_time_max = 3;
1005 	lgrp_config(LGRP_CONFIG_FLATTEN, 2, 0);
1006 }
1007 
1008 
1009 /*
1010  * Return time needed to probe from current CPU to memory in given node
1011  */
1012 static hrtime_t
1013 lgrp_plat_probe_time(int to)
1014 {
1015 	caddr_t		buf;
1016 	uint_t		dev;
1017 	/* LINTED: set but not used in function */
1018 	volatile uint_t	dev_vendor;
1019 	hrtime_t	elapsed;
1020 	hrtime_t	end;
1021 	int		from;
1022 	int		i;
1023 	int		ipl;
1024 	hrtime_t	max;
1025 	hrtime_t	min;
1026 	hrtime_t	start;
1027 	extern int	use_sse_pagecopy;
1028 
1029 	/*
1030 	 * Determine ID of node containing current CPU
1031 	 */
1032 	from = LGRP_PLAT_CPU_TO_NODE(CPU);
1033 
1034 	/*
1035 	 * Do common work for probing main memory
1036 	 */
1037 	if (lgrp_plat_probe_op == LGRP_PLAT_PROBE_PGCPY) {
1038 		/*
1039 		 * Skip probing any nodes without memory and
1040 		 * set probe time to 0
1041 		 */
1042 		if (lgrp_plat_probe_memory[to] == NULL) {
1043 			lgrp_plat_probe_times[from][to] = 0;
1044 			return (0);
1045 		}
1046 
1047 		/*
1048 		 * Invalidate caches once instead of once every sample
1049 		 * which should cut cost of probing by a lot
1050 		 */
1051 		lgrp_plat_flush_cost = gethrtime();
1052 		invalidate_cache();
1053 		lgrp_plat_flush_cost = gethrtime() - lgrp_plat_flush_cost;
1054 		lgrp_plat_probe_cost_total += lgrp_plat_flush_cost;
1055 	}
1056 
1057 	/*
1058 	 * Probe from current CPU to given memory using specified operation
1059 	 * and take specified number of samples
1060 	 */
1061 	max = 0;
1062 	min = -1;
1063 	for (i = 0; i < lgrp_plat_probe_nsamples; i++) {
1064 		lgrp_plat_probe_cost = gethrtime();
1065 
1066 		/*
1067 		 * Can't measure probe time if gethrtime() isn't working yet
1068 		 */
1069 		if (lgrp_plat_probe_cost == 0 && gethrtime() == 0)
1070 			return (0);
1071 
1072 		switch (lgrp_plat_probe_op) {
1073 
1074 		case LGRP_PLAT_PROBE_PGCPY:
1075 		default:
1076 			/*
1077 			 * Measure how long it takes to copy page
1078 			 * on top of itself
1079 			 */
1080 			buf = lgrp_plat_probe_memory[to] + (i * PAGESIZE);
1081 
1082 			kpreempt_disable();
1083 			ipl = splhigh();
1084 			start = gethrtime();
1085 			if (use_sse_pagecopy)
1086 				hwblkpagecopy(buf, buf);
1087 			else
1088 				bcopy(buf, buf, PAGESIZE);
1089 			end = gethrtime();
1090 			elapsed = end - start;
1091 			splx(ipl);
1092 			kpreempt_enable();
1093 			break;
1094 
1095 		case LGRP_PLAT_PROBE_VENDOR:
1096 			/*
1097 			 * Measure how long it takes to read vendor ID from
1098 			 * Northbridge
1099 			 */
1100 			dev = OPT_PCS_DEV_NODE0 + to;
1101 			kpreempt_disable();
1102 			ipl = spl8();
1103 			outl(PCI_CONFADD, PCI_CADDR1(0, dev, opt_probe_func,
1104 			    OPT_PCS_OFF_VENDOR));
1105 			start = gethrtime();
1106 			dev_vendor = inl(PCI_CONFDATA);
1107 			end = gethrtime();
1108 			elapsed = end - start;
1109 			splx(ipl);
1110 			kpreempt_enable();
1111 			break;
1112 		}
1113 
1114 		lgrp_plat_probe_cost = gethrtime() - lgrp_plat_probe_cost;
1115 		lgrp_plat_probe_cost_total += lgrp_plat_probe_cost;
1116 
1117 		if (min == -1 || elapsed < min)
1118 			min = elapsed;
1119 		if (elapsed > max)
1120 			max = elapsed;
1121 	}
1122 
1123 	/*
1124 	 * Update minimum and maximum probe times between
1125 	 * these two nodes
1126 	 */
1127 	if (min < lgrp_plat_probe_min[from][to] ||
1128 	    lgrp_plat_probe_min[from][to] == 0)
1129 		lgrp_plat_probe_min[from][to] = min;
1130 
1131 	if (max > lgrp_plat_probe_max[from][to])
1132 		lgrp_plat_probe_max[from][to] = max;
1133 
1134 	return (min);
1135 }
1136 
1137 
1138 /*
1139  * Probe memory in each node from current CPU to determine latency topology
1140  */
1141 void
1142 lgrp_plat_probe(void)
1143 {
1144 	int		from;
1145 	int		i;
1146 	hrtime_t	probe_time;
1147 	int		to;
1148 
1149 	if (max_mem_nodes == 1 || lgrp_topo_ht_limit() <= 2)
1150 		return;
1151 
1152 	/*
1153 	 * Determine ID of node containing current CPU
1154 	 */
1155 	from = LGRP_PLAT_CPU_TO_NODE(CPU);
1156 
1157 	/*
1158 	 * Don't need to probe if got times already
1159 	 */
1160 	if (lgrp_plat_probe_times[from][from] != 0)
1161 		return;
1162 
1163 	/*
1164 	 * Read vendor ID in Northbridge or read and write page(s)
1165 	 * in each node from current CPU and remember how long it takes,
1166 	 * so we can build latency topology of machine later.
1167 	 * This should approximate the memory latency between each node.
1168 	 */
1169 	for (i = 0; i < lgrp_plat_probe_nrounds; i++)
1170 		for (to = 0; to < lgrp_plat_node_cnt; to++) {
1171 			/*
1172 			 * Get probe time and bail out if can't get it yet
1173 			 */
1174 			probe_time = lgrp_plat_probe_time(to);
1175 			if (probe_time == 0)
1176 				return;
1177 
1178 			/*
1179 			 * Keep lowest probe time as latency between nodes
1180 			 */
1181 			if (lgrp_plat_probe_times[from][to] == 0 ||
1182 			    probe_time < lgrp_plat_probe_times[from][to])
1183 				lgrp_plat_probe_times[from][to] = probe_time;
1184 
1185 			/*
1186 			 * Update overall minimum and maximum probe times
1187 			 * across all nodes
1188 			 */
1189 			if (probe_time < lgrp_plat_probe_time_min ||
1190 			    lgrp_plat_probe_time_min == -1)
1191 				lgrp_plat_probe_time_min = probe_time;
1192 			if (probe_time > lgrp_plat_probe_time_max)
1193 				lgrp_plat_probe_time_max = probe_time;
1194 		}
1195 
1196 	/*
1197 	 * - Fix up latencies such that local latencies are same,
1198 	 *   latency(i, j) == latency(j, i), etc. (if possible)
1199 	 *
1200 	 * - Verify that latencies look ok
1201 	 *
1202 	 * - Fallback to just optimizing for local and remote if
1203 	 *   latencies didn't look right
1204 	 */
1205 	lgrp_plat_latency_adjust();
1206 	lgrp_plat_probe_error_code = lgrp_plat_latency_verify();
1207 	if (lgrp_plat_probe_error_code)
1208 		lgrp_plat_2level_setup();
1209 }
1210 
1211 
1212 /*
1213  * Platform-specific initialization
1214  */
1215 void
1216 lgrp_plat_main_init(void)
1217 {
1218 	int	curnode;
1219 	int	ht_limit;
1220 	int	i;
1221 
1222 	/*
1223 	 * Print a notice that MPO is disabled when memory is interleaved
1224 	 * across nodes....Would do this when it is discovered, but can't
1225 	 * because it happens way too early during boot....
1226 	 */
1227 	if (lgrp_plat_mem_intrlv)
1228 		cmn_err(CE_NOTE,
1229 		    "MPO disabled because memory is interleaved\n");
1230 
1231 	/*
1232 	 * Don't bother to do any probing if there is only one node or the
1233 	 * height of the lgroup topology less than or equal to 2
1234 	 */
1235 	ht_limit = lgrp_topo_ht_limit();
1236 	if (max_mem_nodes == 1 || ht_limit <= 2) {
1237 		/*
1238 		 * Setup lgroup latencies for 2 level lgroup topology
1239 		 * (ie. local and remote only) if they haven't been set yet
1240 		 */
1241 		if (ht_limit == 2 && lgrp_plat_probe_time_min == -1 &&
1242 		    lgrp_plat_probe_time_max == 0)
1243 			lgrp_plat_2level_setup();
1244 		return;
1245 	}
1246 
1247 	if (lgrp_plat_probe_op == LGRP_PLAT_PROBE_VENDOR) {
1248 		/*
1249 		 * Should have been able to probe from CPU 0 when it was added
1250 		 * to lgroup hierarchy, but may not have been able to then
1251 		 * because it happens so early in boot that gethrtime() hasn't
1252 		 * been initialized.  (:-(
1253 		 */
1254 		curnode = LGRP_PLAT_CPU_TO_NODE(CPU);
1255 		if (lgrp_plat_probe_times[curnode][curnode] == 0)
1256 			lgrp_plat_probe();
1257 
1258 		return;
1259 	}
1260 
1261 	/*
1262 	 * When probing memory, use one page for every sample to determine
1263 	 * lgroup topology and taking multiple samples
1264 	 */
1265 	if (lgrp_plat_probe_memsize == 0)
1266 		lgrp_plat_probe_memsize = PAGESIZE *
1267 		    lgrp_plat_probe_nsamples;
1268 
1269 	/*
1270 	 * Map memory in each node needed for probing to determine latency
1271 	 * topology
1272 	 */
1273 	for (i = 0; i < lgrp_plat_node_cnt; i++) {
1274 		int	mnode;
1275 
1276 		/*
1277 		 * Skip this node and leave its probe page NULL
1278 		 * if it doesn't have any memory
1279 		 */
1280 		mnode = plat_lgrphand_to_mem_node((lgrp_handle_t)i);
1281 		if (!mem_node_config[mnode].exists) {
1282 			lgrp_plat_probe_memory[i] = NULL;
1283 			continue;
1284 		}
1285 
1286 		/*
1287 		 * Allocate one kernel virtual page
1288 		 */
1289 		lgrp_plat_probe_memory[i] = vmem_alloc(heap_arena,
1290 		    lgrp_plat_probe_memsize, VM_NOSLEEP);
1291 		if (lgrp_plat_probe_memory[i] == NULL) {
1292 			cmn_err(CE_WARN,
1293 			    "lgrp_plat_main_init: couldn't allocate memory");
1294 			return;
1295 		}
1296 
1297 		/*
1298 		 * Map virtual page to first page in node
1299 		 */
1300 		hat_devload(kas.a_hat, lgrp_plat_probe_memory[i],
1301 		    lgrp_plat_probe_memsize,
1302 		    lgrp_plat_probe_pfn[i],
1303 		    PROT_READ | PROT_WRITE | HAT_PLAT_NOCACHE,
1304 		    HAT_LOAD_NOCONSIST);
1305 	}
1306 
1307 	/*
1308 	 * Probe from current CPU
1309 	 */
1310 	lgrp_plat_probe();
1311 }
1312 
1313 /*
1314  * Allocate additional space for an lgroup.
1315  */
1316 /* ARGSUSED */
1317 lgrp_t *
1318 lgrp_plat_alloc(lgrp_id_t lgrpid)
1319 {
1320 	lgrp_t *lgrp;
1321 
1322 	lgrp = &lgrp_space[nlgrps_alloc++];
1323 	if (lgrpid >= NLGRP || nlgrps_alloc > NLGRP)
1324 		return (NULL);
1325 	return (lgrp);
1326 }
1327 
1328 /*
1329  * Platform handling for (re)configuration changes
1330  */
1331 /* ARGSUSED */
1332 void
1333 lgrp_plat_config(lgrp_config_flag_t flag, uintptr_t arg)
1334 {
1335 }
1336 
1337 /*
1338  * Return the platform handle for the lgroup containing the given CPU
1339  */
1340 /* ARGSUSED */
1341 lgrp_handle_t
1342 lgrp_plat_cpu_to_hand(processorid_t id)
1343 {
1344 	if (lgrp_plat_node_cnt == 1)
1345 		return (LGRP_DEFAULT_HANDLE);
1346 
1347 	return ((lgrp_handle_t)LGRP_PLAT_CPU_TO_NODE(cpu[id]));
1348 }
1349 
1350 /*
1351  * Return the platform handle of the lgroup that contains the physical memory
1352  * corresponding to the given page frame number
1353  */
1354 /* ARGSUSED */
1355 lgrp_handle_t
1356 lgrp_plat_pfn_to_hand(pfn_t pfn)
1357 {
1358 	int	mnode;
1359 
1360 	if (max_mem_nodes == 1)
1361 		return (LGRP_DEFAULT_HANDLE);
1362 
1363 	mnode = plat_pfn_to_mem_node(pfn);
1364 	return (MEM_NODE_2_LGRPHAND(mnode));
1365 }
1366 
1367 /*
1368  * Return the maximum number of lgrps supported by the platform.
1369  * Before lgrp topology is known it returns an estimate based on the number of
1370  * nodes. Once topology is known it returns the actual maximim number of lgrps
1371  * created. Since x86 doesn't support dynamic addition of new nodes, this number
1372  * may not grow during system lifetime.
1373  */
1374 int
1375 lgrp_plat_max_lgrps()
1376 {
1377 	return (lgrp_topo_initialized ?
1378 	    lgrp_alloc_max + 1 :
1379 	    lgrp_plat_node_cnt * (lgrp_plat_node_cnt - 1) + 1);
1380 }
1381 
1382 /*
1383  * Return the number of free, allocatable, or installed
1384  * pages in an lgroup
1385  * This is a copy of the MAX_MEM_NODES == 1 version of the routine
1386  * used when MPO is disabled (i.e. single lgroup) or this is the root lgroup
1387  */
1388 /* ARGSUSED */
1389 static pgcnt_t
1390 lgrp_plat_mem_size_default(lgrp_handle_t lgrphand, lgrp_mem_query_t query)
1391 {
1392 	struct memlist *mlist;
1393 	pgcnt_t npgs = 0;
1394 	extern struct memlist *phys_avail;
1395 	extern struct memlist *phys_install;
1396 
1397 	switch (query) {
1398 	case LGRP_MEM_SIZE_FREE:
1399 		return ((pgcnt_t)freemem);
1400 	case LGRP_MEM_SIZE_AVAIL:
1401 		memlist_read_lock();
1402 		for (mlist = phys_avail; mlist; mlist = mlist->next)
1403 			npgs += btop(mlist->size);
1404 		memlist_read_unlock();
1405 		return (npgs);
1406 	case LGRP_MEM_SIZE_INSTALL:
1407 		memlist_read_lock();
1408 		for (mlist = phys_install; mlist; mlist = mlist->next)
1409 			npgs += btop(mlist->size);
1410 		memlist_read_unlock();
1411 		return (npgs);
1412 	default:
1413 		return ((pgcnt_t)0);
1414 	}
1415 }
1416 
1417 /*
1418  * Return the number of free pages in an lgroup.
1419  *
1420  * For query of LGRP_MEM_SIZE_FREE, return the number of base pagesize
1421  * pages on freelists.  For query of LGRP_MEM_SIZE_AVAIL, return the
1422  * number of allocatable base pagesize pages corresponding to the
1423  * lgroup (e.g. do not include page_t's, BOP_ALLOC()'ed memory, ..)
1424  * For query of LGRP_MEM_SIZE_INSTALL, return the amount of physical
1425  * memory installed, regardless of whether or not it's usable.
1426  */
1427 pgcnt_t
1428 lgrp_plat_mem_size(lgrp_handle_t plathand, lgrp_mem_query_t query)
1429 {
1430 	int	mnode;
1431 	pgcnt_t npgs = (pgcnt_t)0;
1432 	extern struct memlist *phys_avail;
1433 	extern struct memlist *phys_install;
1434 
1435 
1436 	if (plathand == LGRP_DEFAULT_HANDLE)
1437 		return (lgrp_plat_mem_size_default(plathand, query));
1438 
1439 	if (plathand != LGRP_NULL_HANDLE) {
1440 		mnode = plat_lgrphand_to_mem_node(plathand);
1441 		if (mnode >= 0 && mem_node_config[mnode].exists) {
1442 			switch (query) {
1443 			case LGRP_MEM_SIZE_FREE:
1444 				npgs = mem_node_config[mnode].cursize;
1445 				break;
1446 			case LGRP_MEM_SIZE_AVAIL:
1447 				npgs = mem_node_memlist_pages(mnode,
1448 				    phys_avail);
1449 				break;
1450 			case LGRP_MEM_SIZE_INSTALL:
1451 				npgs = mem_node_memlist_pages(mnode,
1452 				    phys_install);
1453 				break;
1454 			default:
1455 				break;
1456 			}
1457 		}
1458 	}
1459 	return (npgs);
1460 }
1461 
1462 /*
1463  * Return latency between "from" and "to" lgroups
1464  *
1465  * This latency number can only be used for relative comparison
1466  * between lgroups on the running system, cannot be used across platforms,
1467  * and may not reflect the actual latency.  It is platform and implementation
1468  * specific, so platform gets to decide its value.  It would be nice if the
1469  * number was at least proportional to make comparisons more meaningful though.
1470  */
1471 /* ARGSUSED */
1472 int
1473 lgrp_plat_latency(lgrp_handle_t from, lgrp_handle_t to)
1474 {
1475 	lgrp_handle_t	src, dest;
1476 
1477 	if (max_mem_nodes == 1)
1478 		return (0);
1479 
1480 	/*
1481 	 * Return max latency for root lgroup
1482 	 */
1483 	if (from == LGRP_DEFAULT_HANDLE || to == LGRP_DEFAULT_HANDLE)
1484 		return (lgrp_plat_probe_time_max);
1485 
1486 	src = from;
1487 	dest = to;
1488 
1489 	/*
1490 	 * Return 0 for nodes (lgroup platform handles) out of range
1491 	 */
1492 	if (src < 0 || src >= MAX_NODES || dest < 0 || dest >= MAX_NODES)
1493 		return (0);
1494 
1495 	/*
1496 	 * Probe from current CPU if its lgroup latencies haven't been set yet
1497 	 * and we are trying to get latency from current CPU to some node
1498 	 */
1499 	if (lgrp_plat_probe_times[src][src] == 0 &&
1500 	    LGRP_PLAT_CPU_TO_NODE(CPU) == src)
1501 		lgrp_plat_probe();
1502 
1503 	return (lgrp_plat_probe_times[src][dest]);
1504 }
1505 
1506 /*
1507  * Return platform handle for root lgroup
1508  */
1509 lgrp_handle_t
1510 lgrp_plat_root_hand(void)
1511 {
1512 	return (LGRP_DEFAULT_HANDLE);
1513 }
1514