1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 2004, 2010, Oracle and/or its affiliates. All rights reserved. 24 */ 25 26 #include <sys/cpuvar.h> 27 #include <sys/cpu_event.h> 28 #include <sys/regset.h> 29 #include <sys/psw.h> 30 #include <sys/types.h> 31 #include <sys/thread.h> 32 #include <sys/systm.h> 33 #include <sys/segments.h> 34 #include <sys/pcb.h> 35 #include <sys/trap.h> 36 #include <sys/ftrace.h> 37 #include <sys/traptrace.h> 38 #include <sys/clock.h> 39 #include <sys/panic.h> 40 #include <sys/disp.h> 41 #include <vm/seg_kp.h> 42 #include <sys/stack.h> 43 #include <sys/sysmacros.h> 44 #include <sys/cmn_err.h> 45 #include <sys/kstat.h> 46 #include <sys/smp_impldefs.h> 47 #include <sys/pool_pset.h> 48 #include <sys/zone.h> 49 #include <sys/bitmap.h> 50 #include <sys/archsystm.h> 51 #include <sys/machsystm.h> 52 #include <sys/ontrap.h> 53 #include <sys/x86_archext.h> 54 #include <sys/promif.h> 55 #include <vm/hat_i86.h> 56 #if defined(__xpv) 57 #include <sys/hypervisor.h> 58 #endif 59 60 61 #if defined(__xpv) && defined(DEBUG) 62 63 /* 64 * This panic message is intended as an aid to interrupt debugging. 65 * 66 * The associated assertion tests the condition of enabling 67 * events when events are already enabled. The implication 68 * being that whatever code the programmer thought was 69 * protected by having events disabled until the second 70 * enable happened really wasn't protected at all .. 71 */ 72 73 int stistipanic = 1; /* controls the debug panic check */ 74 const char *stistimsg = "stisti"; 75 ulong_t laststi[NCPU]; 76 77 /* 78 * This variable tracks the last place events were disabled on each cpu 79 * it assists in debugging when asserts that interrupts are enabled trip. 80 */ 81 ulong_t lastcli[NCPU]; 82 83 #endif 84 85 void do_interrupt(struct regs *rp, trap_trace_rec_t *ttp); 86 87 void (*do_interrupt_common)(struct regs *, trap_trace_rec_t *) = do_interrupt; 88 uintptr_t (*get_intr_handler)(int, short) = NULL; 89 90 /* 91 * Set cpu's base SPL level to the highest active interrupt level 92 */ 93 void 94 set_base_spl(void) 95 { 96 struct cpu *cpu = CPU; 97 uint16_t active = (uint16_t)cpu->cpu_intr_actv; 98 99 cpu->cpu_base_spl = active == 0 ? 0 : bsrw_insn(active); 100 } 101 102 /* 103 * Do all the work necessary to set up the cpu and thread structures 104 * to dispatch a high-level interrupt. 105 * 106 * Returns 0 if we're -not- already on the high-level interrupt stack, 107 * (and *must* switch to it), non-zero if we are already on that stack. 108 * 109 * Called with interrupts masked. 110 * The 'pil' is already set to the appropriate level for rp->r_trapno. 111 */ 112 static int 113 hilevel_intr_prolog(struct cpu *cpu, uint_t pil, uint_t oldpil, struct regs *rp) 114 { 115 struct machcpu *mcpu = &cpu->cpu_m; 116 uint_t mask; 117 hrtime_t intrtime; 118 hrtime_t now = tsc_read(); 119 120 ASSERT(pil > LOCK_LEVEL); 121 122 if (pil == CBE_HIGH_PIL) { 123 cpu->cpu_profile_pil = oldpil; 124 if (USERMODE(rp->r_cs)) { 125 cpu->cpu_profile_pc = 0; 126 cpu->cpu_profile_upc = rp->r_pc; 127 cpu->cpu_cpcprofile_pc = 0; 128 cpu->cpu_cpcprofile_upc = rp->r_pc; 129 } else { 130 cpu->cpu_profile_pc = rp->r_pc; 131 cpu->cpu_profile_upc = 0; 132 cpu->cpu_cpcprofile_pc = rp->r_pc; 133 cpu->cpu_cpcprofile_upc = 0; 134 } 135 } 136 137 mask = cpu->cpu_intr_actv & CPU_INTR_ACTV_HIGH_LEVEL_MASK; 138 if (mask != 0) { 139 int nestpil; 140 141 /* 142 * We have interrupted another high-level interrupt. 143 * Load starting timestamp, compute interval, update 144 * cumulative counter. 145 */ 146 nestpil = bsrw_insn((uint16_t)mask); 147 ASSERT(nestpil < pil); 148 intrtime = now - 149 mcpu->pil_high_start[nestpil - (LOCK_LEVEL + 1)]; 150 mcpu->intrstat[nestpil][0] += intrtime; 151 cpu->cpu_intracct[cpu->cpu_mstate] += intrtime; 152 /* 153 * Another high-level interrupt is active below this one, so 154 * there is no need to check for an interrupt thread. That 155 * will be done by the lowest priority high-level interrupt 156 * active. 157 */ 158 } else { 159 kthread_t *t = cpu->cpu_thread; 160 161 /* 162 * See if we are interrupting a low-level interrupt thread. 163 * If so, account for its time slice only if its time stamp 164 * is non-zero. 165 */ 166 if ((t->t_flag & T_INTR_THREAD) != 0 && t->t_intr_start != 0) { 167 intrtime = now - t->t_intr_start; 168 mcpu->intrstat[t->t_pil][0] += intrtime; 169 cpu->cpu_intracct[cpu->cpu_mstate] += intrtime; 170 t->t_intr_start = 0; 171 } 172 } 173 174 /* 175 * Store starting timestamp in CPU structure for this PIL. 176 */ 177 mcpu->pil_high_start[pil - (LOCK_LEVEL + 1)] = now; 178 179 ASSERT((cpu->cpu_intr_actv & (1 << pil)) == 0); 180 181 if (pil == 15) { 182 /* 183 * To support reentrant level 15 interrupts, we maintain a 184 * recursion count in the top half of cpu_intr_actv. Only 185 * when this count hits zero do we clear the PIL 15 bit from 186 * the lower half of cpu_intr_actv. 187 */ 188 uint16_t *refcntp = (uint16_t *)&cpu->cpu_intr_actv + 1; 189 (*refcntp)++; 190 } 191 192 mask = cpu->cpu_intr_actv; 193 194 cpu->cpu_intr_actv |= (1 << pil); 195 196 return (mask & CPU_INTR_ACTV_HIGH_LEVEL_MASK); 197 } 198 199 /* 200 * Does most of the work of returning from a high level interrupt. 201 * 202 * Returns 0 if there are no more high level interrupts (in which 203 * case we must switch back to the interrupted thread stack) or 204 * non-zero if there are more (in which case we should stay on it). 205 * 206 * Called with interrupts masked 207 */ 208 static int 209 hilevel_intr_epilog(struct cpu *cpu, uint_t pil, uint_t oldpil, uint_t vecnum) 210 { 211 struct machcpu *mcpu = &cpu->cpu_m; 212 uint_t mask; 213 hrtime_t intrtime; 214 hrtime_t now = tsc_read(); 215 216 ASSERT(mcpu->mcpu_pri == pil); 217 218 cpu->cpu_stats.sys.intr[pil - 1]++; 219 220 ASSERT(cpu->cpu_intr_actv & (1 << pil)); 221 222 if (pil == 15) { 223 /* 224 * To support reentrant level 15 interrupts, we maintain a 225 * recursion count in the top half of cpu_intr_actv. Only 226 * when this count hits zero do we clear the PIL 15 bit from 227 * the lower half of cpu_intr_actv. 228 */ 229 uint16_t *refcntp = (uint16_t *)&cpu->cpu_intr_actv + 1; 230 231 ASSERT(*refcntp > 0); 232 233 if (--(*refcntp) == 0) 234 cpu->cpu_intr_actv &= ~(1 << pil); 235 } else { 236 cpu->cpu_intr_actv &= ~(1 << pil); 237 } 238 239 ASSERT(mcpu->pil_high_start[pil - (LOCK_LEVEL + 1)] != 0); 240 241 intrtime = now - mcpu->pil_high_start[pil - (LOCK_LEVEL + 1)]; 242 mcpu->intrstat[pil][0] += intrtime; 243 cpu->cpu_intracct[cpu->cpu_mstate] += intrtime; 244 245 /* 246 * Check for lower-pil nested high-level interrupt beneath 247 * current one. If so, place a starting timestamp in its 248 * pil_high_start entry. 249 */ 250 mask = cpu->cpu_intr_actv & CPU_INTR_ACTV_HIGH_LEVEL_MASK; 251 if (mask != 0) { 252 int nestpil; 253 254 /* 255 * find PIL of nested interrupt 256 */ 257 nestpil = bsrw_insn((uint16_t)mask); 258 ASSERT(nestpil < pil); 259 mcpu->pil_high_start[nestpil - (LOCK_LEVEL + 1)] = now; 260 /* 261 * (Another high-level interrupt is active below this one, 262 * so there is no need to check for an interrupt 263 * thread. That will be done by the lowest priority 264 * high-level interrupt active.) 265 */ 266 } else { 267 /* 268 * Check to see if there is a low-level interrupt active. 269 * If so, place a starting timestamp in the thread 270 * structure. 271 */ 272 kthread_t *t = cpu->cpu_thread; 273 274 if (t->t_flag & T_INTR_THREAD) 275 t->t_intr_start = now; 276 } 277 278 mcpu->mcpu_pri = oldpil; 279 (void) (*setlvlx)(oldpil, vecnum); 280 281 return (cpu->cpu_intr_actv & CPU_INTR_ACTV_HIGH_LEVEL_MASK); 282 } 283 284 /* 285 * Set up the cpu, thread and interrupt thread structures for 286 * executing an interrupt thread. The new stack pointer of the 287 * interrupt thread (which *must* be switched to) is returned. 288 */ 289 static caddr_t 290 intr_thread_prolog(struct cpu *cpu, caddr_t stackptr, uint_t pil) 291 { 292 struct machcpu *mcpu = &cpu->cpu_m; 293 kthread_t *t, *volatile it; 294 hrtime_t now = tsc_read(); 295 296 ASSERT(pil > 0); 297 ASSERT((cpu->cpu_intr_actv & (1 << pil)) == 0); 298 cpu->cpu_intr_actv |= (1 << pil); 299 300 /* 301 * Get set to run an interrupt thread. 302 * There should always be an interrupt thread, since we 303 * allocate one for each level on each CPU. 304 * 305 * t_intr_start could be zero due to cpu_intr_swtch_enter. 306 */ 307 t = cpu->cpu_thread; 308 if ((t->t_flag & T_INTR_THREAD) && t->t_intr_start != 0) { 309 hrtime_t intrtime = now - t->t_intr_start; 310 mcpu->intrstat[t->t_pil][0] += intrtime; 311 cpu->cpu_intracct[cpu->cpu_mstate] += intrtime; 312 t->t_intr_start = 0; 313 } 314 315 ASSERT(SA((uintptr_t)stackptr) == (uintptr_t)stackptr); 316 317 t->t_sp = (uintptr_t)stackptr; /* mark stack in curthread for resume */ 318 319 /* 320 * unlink the interrupt thread off the cpu 321 * 322 * Note that the code in kcpc_overflow_intr -relies- on the 323 * ordering of events here - in particular that t->t_lwp of 324 * the interrupt thread is set to the pinned thread *before* 325 * curthread is changed. 326 */ 327 it = cpu->cpu_intr_thread; 328 cpu->cpu_intr_thread = it->t_link; 329 it->t_intr = t; 330 it->t_lwp = t->t_lwp; 331 332 /* 333 * (threads on the interrupt thread free list could have state 334 * preset to TS_ONPROC, but it helps in debugging if 335 * they're TS_FREE.) 336 */ 337 it->t_state = TS_ONPROC; 338 339 cpu->cpu_thread = it; /* new curthread on this cpu */ 340 it->t_pil = (uchar_t)pil; 341 it->t_pri = intr_pri + (pri_t)pil; 342 it->t_intr_start = now; 343 344 return (it->t_stk); 345 } 346 347 348 #ifdef DEBUG 349 int intr_thread_cnt; 350 #endif 351 352 /* 353 * Called with interrupts disabled 354 */ 355 static void 356 intr_thread_epilog(struct cpu *cpu, uint_t vec, uint_t oldpil) 357 { 358 struct machcpu *mcpu = &cpu->cpu_m; 359 kthread_t *t; 360 kthread_t *it = cpu->cpu_thread; /* curthread */ 361 uint_t pil, basespl; 362 hrtime_t intrtime; 363 hrtime_t now = tsc_read(); 364 365 pil = it->t_pil; 366 cpu->cpu_stats.sys.intr[pil - 1]++; 367 368 ASSERT(it->t_intr_start != 0); 369 intrtime = now - it->t_intr_start; 370 mcpu->intrstat[pil][0] += intrtime; 371 cpu->cpu_intracct[cpu->cpu_mstate] += intrtime; 372 373 ASSERT(cpu->cpu_intr_actv & (1 << pil)); 374 cpu->cpu_intr_actv &= ~(1 << pil); 375 376 /* 377 * If there is still an interrupted thread underneath this one 378 * then the interrupt was never blocked and the return is 379 * fairly simple. Otherwise it isn't. 380 */ 381 if ((t = it->t_intr) == NULL) { 382 /* 383 * The interrupted thread is no longer pinned underneath 384 * the interrupt thread. This means the interrupt must 385 * have blocked, and the interrupted thread has been 386 * unpinned, and has probably been running around the 387 * system for a while. 388 * 389 * Since there is no longer a thread under this one, put 390 * this interrupt thread back on the CPU's free list and 391 * resume the idle thread which will dispatch the next 392 * thread to run. 393 */ 394 #ifdef DEBUG 395 intr_thread_cnt++; 396 #endif 397 cpu->cpu_stats.sys.intrblk++; 398 /* 399 * Set CPU's base SPL based on active interrupts bitmask 400 */ 401 set_base_spl(); 402 basespl = cpu->cpu_base_spl; 403 mcpu->mcpu_pri = basespl; 404 (*setlvlx)(basespl, vec); 405 (void) splhigh(); 406 sti(); 407 it->t_state = TS_FREE; 408 /* 409 * Return interrupt thread to pool 410 */ 411 it->t_link = cpu->cpu_intr_thread; 412 cpu->cpu_intr_thread = it; 413 swtch(); 414 panic("intr_thread_epilog: swtch returned"); 415 /*NOTREACHED*/ 416 } 417 418 /* 419 * Return interrupt thread to the pool 420 */ 421 it->t_link = cpu->cpu_intr_thread; 422 cpu->cpu_intr_thread = it; 423 it->t_state = TS_FREE; 424 425 basespl = cpu->cpu_base_spl; 426 pil = MAX(oldpil, basespl); 427 mcpu->mcpu_pri = pil; 428 (*setlvlx)(pil, vec); 429 t->t_intr_start = now; 430 cpu->cpu_thread = t; 431 } 432 433 /* 434 * intr_get_time() is a resource for interrupt handlers to determine how 435 * much time has been spent handling the current interrupt. Such a function 436 * is needed because higher level interrupts can arrive during the 437 * processing of an interrupt. intr_get_time() only returns time spent in the 438 * current interrupt handler. 439 * 440 * The caller must be calling from an interrupt handler running at a pil 441 * below or at lock level. Timings are not provided for high-level 442 * interrupts. 443 * 444 * The first time intr_get_time() is called while handling an interrupt, 445 * it returns the time since the interrupt handler was invoked. Subsequent 446 * calls will return the time since the prior call to intr_get_time(). Time 447 * is returned as ticks. Use scalehrtimef() to convert ticks to nsec. 448 * 449 * Theory Of Intrstat[][]: 450 * 451 * uint64_t intrstat[pil][0..1] is an array indexed by pil level, with two 452 * uint64_ts per pil. 453 * 454 * intrstat[pil][0] is a cumulative count of the number of ticks spent 455 * handling all interrupts at the specified pil on this CPU. It is 456 * exported via kstats to the user. 457 * 458 * intrstat[pil][1] is always a count of ticks less than or equal to the 459 * value in [0]. The difference between [1] and [0] is the value returned 460 * by a call to intr_get_time(). At the start of interrupt processing, 461 * [0] and [1] will be equal (or nearly so). As the interrupt consumes 462 * time, [0] will increase, but [1] will remain the same. A call to 463 * intr_get_time() will return the difference, then update [1] to be the 464 * same as [0]. Future calls will return the time since the last call. 465 * Finally, when the interrupt completes, [1] is updated to the same as [0]. 466 * 467 * Implementation: 468 * 469 * intr_get_time() works much like a higher level interrupt arriving. It 470 * "checkpoints" the timing information by incrementing intrstat[pil][0] 471 * to include elapsed running time, and by setting t_intr_start to rdtsc. 472 * It then sets the return value to intrstat[pil][0] - intrstat[pil][1], 473 * and updates intrstat[pil][1] to be the same as the new value of 474 * intrstat[pil][0]. 475 * 476 * In the normal handling of interrupts, after an interrupt handler returns 477 * and the code in intr_thread() updates intrstat[pil][0], it then sets 478 * intrstat[pil][1] to the new value of intrstat[pil][0]. When [0] == [1], 479 * the timings are reset, i.e. intr_get_time() will return [0] - [1] which 480 * is 0. 481 * 482 * Whenever interrupts arrive on a CPU which is handling a lower pil 483 * interrupt, they update the lower pil's [0] to show time spent in the 484 * handler that they've interrupted. This results in a growing discrepancy 485 * between [0] and [1], which is returned the next time intr_get_time() is 486 * called. Time spent in the higher-pil interrupt will not be returned in 487 * the next intr_get_time() call from the original interrupt, because 488 * the higher-pil interrupt's time is accumulated in intrstat[higherpil][]. 489 */ 490 uint64_t 491 intr_get_time(void) 492 { 493 struct cpu *cpu; 494 struct machcpu *mcpu; 495 kthread_t *t; 496 uint64_t time, delta, ret; 497 uint_t pil; 498 499 cli(); 500 cpu = CPU; 501 mcpu = &cpu->cpu_m; 502 t = cpu->cpu_thread; 503 pil = t->t_pil; 504 ASSERT((cpu->cpu_intr_actv & CPU_INTR_ACTV_HIGH_LEVEL_MASK) == 0); 505 ASSERT(t->t_flag & T_INTR_THREAD); 506 ASSERT(pil != 0); 507 ASSERT(t->t_intr_start != 0); 508 509 time = tsc_read(); 510 delta = time - t->t_intr_start; 511 t->t_intr_start = time; 512 513 time = mcpu->intrstat[pil][0] + delta; 514 ret = time - mcpu->intrstat[pil][1]; 515 mcpu->intrstat[pil][0] = time; 516 mcpu->intrstat[pil][1] = time; 517 cpu->cpu_intracct[cpu->cpu_mstate] += delta; 518 519 sti(); 520 return (ret); 521 } 522 523 static caddr_t 524 dosoftint_prolog( 525 struct cpu *cpu, 526 caddr_t stackptr, 527 uint32_t st_pending, 528 uint_t oldpil) 529 { 530 kthread_t *t, *volatile it; 531 struct machcpu *mcpu = &cpu->cpu_m; 532 uint_t pil; 533 hrtime_t now; 534 535 top: 536 ASSERT(st_pending == mcpu->mcpu_softinfo.st_pending); 537 538 pil = bsrw_insn((uint16_t)st_pending); 539 if (pil <= oldpil || pil <= cpu->cpu_base_spl) 540 return (0); 541 542 /* 543 * XX64 Sigh. 544 * 545 * This is a transliteration of the i386 assembler code for 546 * soft interrupts. One question is "why does this need 547 * to be atomic?" One possible race is -other- processors 548 * posting soft interrupts to us in set_pending() i.e. the 549 * CPU might get preempted just after the address computation, 550 * but just before the atomic transaction, so another CPU would 551 * actually set the original CPU's st_pending bit. However, 552 * it looks like it would be simpler to disable preemption there. 553 * Are there other races for which preemption control doesn't work? 554 * 555 * The i386 assembler version -also- checks to see if the bit 556 * being cleared was actually set; if it wasn't, it rechecks 557 * for more. This seems a bit strange, as the only code that 558 * ever clears the bit is -this- code running with interrupts 559 * disabled on -this- CPU. This code would probably be cheaper: 560 * 561 * atomic_and_32((uint32_t *)&mcpu->mcpu_softinfo.st_pending, 562 * ~(1 << pil)); 563 * 564 * and t->t_preempt--/++ around set_pending() even cheaper, 565 * but at this point, correctness is critical, so we slavishly 566 * emulate the i386 port. 567 */ 568 if (atomic_btr32((uint32_t *) 569 &mcpu->mcpu_softinfo.st_pending, pil) == 0) { 570 st_pending = mcpu->mcpu_softinfo.st_pending; 571 goto top; 572 } 573 574 mcpu->mcpu_pri = pil; 575 (*setspl)(pil); 576 577 now = tsc_read(); 578 579 /* 580 * Get set to run interrupt thread. 581 * There should always be an interrupt thread since we 582 * allocate one for each level on the CPU. 583 */ 584 it = cpu->cpu_intr_thread; 585 cpu->cpu_intr_thread = it->t_link; 586 587 /* t_intr_start could be zero due to cpu_intr_swtch_enter. */ 588 t = cpu->cpu_thread; 589 if ((t->t_flag & T_INTR_THREAD) && t->t_intr_start != 0) { 590 hrtime_t intrtime = now - t->t_intr_start; 591 mcpu->intrstat[pil][0] += intrtime; 592 cpu->cpu_intracct[cpu->cpu_mstate] += intrtime; 593 t->t_intr_start = 0; 594 } 595 596 /* 597 * Note that the code in kcpc_overflow_intr -relies- on the 598 * ordering of events here - in particular that t->t_lwp of 599 * the interrupt thread is set to the pinned thread *before* 600 * curthread is changed. 601 */ 602 it->t_lwp = t->t_lwp; 603 it->t_state = TS_ONPROC; 604 605 /* 606 * Push interrupted thread onto list from new thread. 607 * Set the new thread as the current one. 608 * Set interrupted thread's T_SP because if it is the idle thread, 609 * resume() may use that stack between threads. 610 */ 611 612 ASSERT(SA((uintptr_t)stackptr) == (uintptr_t)stackptr); 613 t->t_sp = (uintptr_t)stackptr; 614 615 it->t_intr = t; 616 cpu->cpu_thread = it; 617 618 /* 619 * Set bit for this pil in CPU's interrupt active bitmask. 620 */ 621 ASSERT((cpu->cpu_intr_actv & (1 << pil)) == 0); 622 cpu->cpu_intr_actv |= (1 << pil); 623 624 /* 625 * Initialize thread priority level from intr_pri 626 */ 627 it->t_pil = (uchar_t)pil; 628 it->t_pri = (pri_t)pil + intr_pri; 629 it->t_intr_start = now; 630 631 return (it->t_stk); 632 } 633 634 static void 635 dosoftint_epilog(struct cpu *cpu, uint_t oldpil) 636 { 637 struct machcpu *mcpu = &cpu->cpu_m; 638 kthread_t *t, *it; 639 uint_t pil, basespl; 640 hrtime_t intrtime; 641 hrtime_t now = tsc_read(); 642 643 it = cpu->cpu_thread; 644 pil = it->t_pil; 645 646 cpu->cpu_stats.sys.intr[pil - 1]++; 647 648 ASSERT(cpu->cpu_intr_actv & (1 << pil)); 649 cpu->cpu_intr_actv &= ~(1 << pil); 650 intrtime = now - it->t_intr_start; 651 mcpu->intrstat[pil][0] += intrtime; 652 cpu->cpu_intracct[cpu->cpu_mstate] += intrtime; 653 654 /* 655 * If there is still an interrupted thread underneath this one 656 * then the interrupt was never blocked and the return is 657 * fairly simple. Otherwise it isn't. 658 */ 659 if ((t = it->t_intr) == NULL) { 660 /* 661 * Put thread back on the interrupt thread list. 662 * This was an interrupt thread, so set CPU's base SPL. 663 */ 664 set_base_spl(); 665 it->t_state = TS_FREE; 666 it->t_link = cpu->cpu_intr_thread; 667 cpu->cpu_intr_thread = it; 668 (void) splhigh(); 669 sti(); 670 swtch(); 671 /*NOTREACHED*/ 672 panic("dosoftint_epilog: swtch returned"); 673 } 674 it->t_link = cpu->cpu_intr_thread; 675 cpu->cpu_intr_thread = it; 676 it->t_state = TS_FREE; 677 cpu->cpu_thread = t; 678 if (t->t_flag & T_INTR_THREAD) 679 t->t_intr_start = now; 680 basespl = cpu->cpu_base_spl; 681 pil = MAX(oldpil, basespl); 682 mcpu->mcpu_pri = pil; 683 (*setspl)(pil); 684 } 685 686 687 /* 688 * Make the interrupted thread 'to' be runnable. 689 * 690 * Since t->t_sp has already been saved, t->t_pc is all 691 * that needs to be set in this function. 692 * 693 * Returns the interrupt level of the interrupt thread. 694 */ 695 int 696 intr_passivate( 697 kthread_t *it, /* interrupt thread */ 698 kthread_t *t) /* interrupted thread */ 699 { 700 extern void _sys_rtt(); 701 702 ASSERT(it->t_flag & T_INTR_THREAD); 703 ASSERT(SA(t->t_sp) == t->t_sp); 704 705 t->t_pc = (uintptr_t)_sys_rtt; 706 return (it->t_pil); 707 } 708 709 /* 710 * Create interrupt kstats for this CPU. 711 */ 712 void 713 cpu_create_intrstat(cpu_t *cp) 714 { 715 int i; 716 kstat_t *intr_ksp; 717 kstat_named_t *knp; 718 char name[KSTAT_STRLEN]; 719 zoneid_t zoneid; 720 721 ASSERT(MUTEX_HELD(&cpu_lock)); 722 723 if (pool_pset_enabled()) 724 zoneid = GLOBAL_ZONEID; 725 else 726 zoneid = ALL_ZONES; 727 728 intr_ksp = kstat_create_zone("cpu", cp->cpu_id, "intrstat", "misc", 729 KSTAT_TYPE_NAMED, PIL_MAX * 2, NULL, zoneid); 730 731 /* 732 * Initialize each PIL's named kstat 733 */ 734 if (intr_ksp != NULL) { 735 intr_ksp->ks_update = cpu_kstat_intrstat_update; 736 knp = (kstat_named_t *)intr_ksp->ks_data; 737 intr_ksp->ks_private = cp; 738 for (i = 0; i < PIL_MAX; i++) { 739 (void) snprintf(name, KSTAT_STRLEN, "level-%d-time", 740 i + 1); 741 kstat_named_init(&knp[i * 2], name, KSTAT_DATA_UINT64); 742 (void) snprintf(name, KSTAT_STRLEN, "level-%d-count", 743 i + 1); 744 kstat_named_init(&knp[(i * 2) + 1], name, 745 KSTAT_DATA_UINT64); 746 } 747 kstat_install(intr_ksp); 748 } 749 } 750 751 /* 752 * Delete interrupt kstats for this CPU. 753 */ 754 void 755 cpu_delete_intrstat(cpu_t *cp) 756 { 757 kstat_delete_byname_zone("cpu", cp->cpu_id, "intrstat", ALL_ZONES); 758 } 759 760 /* 761 * Convert interrupt statistics from CPU ticks to nanoseconds and 762 * update kstat. 763 */ 764 int 765 cpu_kstat_intrstat_update(kstat_t *ksp, int rw) 766 { 767 kstat_named_t *knp = ksp->ks_data; 768 cpu_t *cpup = (cpu_t *)ksp->ks_private; 769 int i; 770 hrtime_t hrt; 771 772 if (rw == KSTAT_WRITE) 773 return (EACCES); 774 775 for (i = 0; i < PIL_MAX; i++) { 776 hrt = (hrtime_t)cpup->cpu_m.intrstat[i + 1][0]; 777 scalehrtimef(&hrt); 778 knp[i * 2].value.ui64 = (uint64_t)hrt; 779 knp[(i * 2) + 1].value.ui64 = cpup->cpu_stats.sys.intr[i]; 780 } 781 782 return (0); 783 } 784 785 /* 786 * An interrupt thread is ending a time slice, so compute the interval it 787 * ran for and update the statistic for its PIL. 788 */ 789 void 790 cpu_intr_swtch_enter(kthread_id_t t) 791 { 792 uint64_t interval; 793 uint64_t start; 794 cpu_t *cpu; 795 796 ASSERT((t->t_flag & T_INTR_THREAD) != 0); 797 ASSERT(t->t_pil > 0 && t->t_pil <= LOCK_LEVEL); 798 799 /* 800 * We could be here with a zero timestamp. This could happen if: 801 * an interrupt thread which no longer has a pinned thread underneath 802 * it (i.e. it blocked at some point in its past) has finished running 803 * its handler. intr_thread() updated the interrupt statistic for its 804 * PIL and zeroed its timestamp. Since there was no pinned thread to 805 * return to, swtch() gets called and we end up here. 806 * 807 * Note that we use atomic ops below (cas64 and atomic_add_64), which 808 * we don't use in the functions above, because we're not called 809 * with interrupts blocked, but the epilog/prolog functions are. 810 */ 811 if (t->t_intr_start) { 812 do { 813 start = t->t_intr_start; 814 interval = tsc_read() - start; 815 } while (cas64(&t->t_intr_start, start, 0) != start); 816 cpu = CPU; 817 cpu->cpu_m.intrstat[t->t_pil][0] += interval; 818 819 atomic_add_64((uint64_t *)&cpu->cpu_intracct[cpu->cpu_mstate], 820 interval); 821 } else 822 ASSERT(t->t_intr == NULL); 823 } 824 825 /* 826 * An interrupt thread is returning from swtch(). Place a starting timestamp 827 * in its thread structure. 828 */ 829 void 830 cpu_intr_swtch_exit(kthread_id_t t) 831 { 832 uint64_t ts; 833 834 ASSERT((t->t_flag & T_INTR_THREAD) != 0); 835 ASSERT(t->t_pil > 0 && t->t_pil <= LOCK_LEVEL); 836 837 do { 838 ts = t->t_intr_start; 839 } while (cas64(&t->t_intr_start, ts, tsc_read()) != ts); 840 } 841 842 /* 843 * Dispatch a hilevel interrupt (one above LOCK_LEVEL) 844 */ 845 /*ARGSUSED*/ 846 static void 847 dispatch_hilevel(uint_t vector, uint_t arg2) 848 { 849 sti(); 850 av_dispatch_autovect(vector); 851 cli(); 852 } 853 854 /* 855 * Dispatch a soft interrupt 856 */ 857 /*ARGSUSED*/ 858 static void 859 dispatch_softint(uint_t oldpil, uint_t arg2) 860 { 861 struct cpu *cpu = CPU; 862 863 sti(); 864 av_dispatch_softvect((int)cpu->cpu_thread->t_pil); 865 cli(); 866 867 /* 868 * Must run softint_epilog() on the interrupt thread stack, since 869 * there may not be a return from it if the interrupt thread blocked. 870 */ 871 dosoftint_epilog(cpu, oldpil); 872 } 873 874 /* 875 * Dispatch a normal interrupt 876 */ 877 static void 878 dispatch_hardint(uint_t vector, uint_t oldipl) 879 { 880 struct cpu *cpu = CPU; 881 882 sti(); 883 av_dispatch_autovect(vector); 884 cli(); 885 886 /* 887 * Must run intr_thread_epilog() on the interrupt thread stack, since 888 * there may not be a return from it if the interrupt thread blocked. 889 */ 890 intr_thread_epilog(cpu, vector, oldipl); 891 } 892 893 /* 894 * Deliver any softints the current interrupt priority allows. 895 * Called with interrupts disabled. 896 */ 897 void 898 dosoftint(struct regs *regs) 899 { 900 struct cpu *cpu = CPU; 901 int oldipl; 902 caddr_t newsp; 903 904 while (cpu->cpu_softinfo.st_pending) { 905 oldipl = cpu->cpu_pri; 906 newsp = dosoftint_prolog(cpu, (caddr_t)regs, 907 cpu->cpu_softinfo.st_pending, oldipl); 908 /* 909 * If returned stack pointer is NULL, priority is too high 910 * to run any of the pending softints now. 911 * Break out and they will be run later. 912 */ 913 if (newsp == NULL) 914 break; 915 switch_sp_and_call(newsp, dispatch_softint, oldipl, 0); 916 } 917 } 918 919 /* 920 * Interrupt service routine, called with interrupts disabled. 921 */ 922 /*ARGSUSED*/ 923 void 924 do_interrupt(struct regs *rp, trap_trace_rec_t *ttp) 925 { 926 struct cpu *cpu = CPU; 927 int newipl, oldipl = cpu->cpu_pri; 928 uint_t vector; 929 caddr_t newsp; 930 931 #ifdef TRAPTRACE 932 ttp->ttr_marker = TT_INTERRUPT; 933 ttp->ttr_ipl = 0xff; 934 ttp->ttr_pri = oldipl; 935 ttp->ttr_spl = cpu->cpu_base_spl; 936 ttp->ttr_vector = 0xff; 937 #endif /* TRAPTRACE */ 938 939 cpu_idle_exit(CPU_IDLE_CB_FLAG_INTR); 940 941 ++*(uint16_t *)&cpu->cpu_m.mcpu_istamp; 942 943 /* 944 * If it's a softint go do it now. 945 */ 946 if (rp->r_trapno == T_SOFTINT) { 947 dosoftint(rp); 948 ASSERT(!interrupts_enabled()); 949 return; 950 } 951 952 /* 953 * Raise the interrupt priority. 954 */ 955 newipl = (*setlvl)(oldipl, (int *)&rp->r_trapno); 956 #ifdef TRAPTRACE 957 ttp->ttr_ipl = newipl; 958 #endif /* TRAPTRACE */ 959 960 /* 961 * Bail if it is a spurious interrupt 962 */ 963 if (newipl == -1) 964 return; 965 cpu->cpu_pri = newipl; 966 vector = rp->r_trapno; 967 #ifdef TRAPTRACE 968 ttp->ttr_vector = vector; 969 #endif /* TRAPTRACE */ 970 if (newipl > LOCK_LEVEL) { 971 /* 972 * High priority interrupts run on this cpu's interrupt stack. 973 */ 974 if (hilevel_intr_prolog(cpu, newipl, oldipl, rp) == 0) { 975 newsp = cpu->cpu_intr_stack; 976 switch_sp_and_call(newsp, dispatch_hilevel, vector, 0); 977 } else { /* already on the interrupt stack */ 978 dispatch_hilevel(vector, 0); 979 } 980 (void) hilevel_intr_epilog(cpu, newipl, oldipl, vector); 981 } else { 982 /* 983 * Run this interrupt in a separate thread. 984 */ 985 newsp = intr_thread_prolog(cpu, (caddr_t)rp, newipl); 986 switch_sp_and_call(newsp, dispatch_hardint, vector, oldipl); 987 } 988 989 #if !defined(__xpv) 990 /* 991 * Deliver any pending soft interrupts. 992 */ 993 if (cpu->cpu_softinfo.st_pending) 994 dosoftint(rp); 995 #endif /* !__xpv */ 996 } 997 998 999 /* 1000 * Common tasks always done by _sys_rtt, called with interrupts disabled. 1001 * Returns 1 if returning to userland, 0 if returning to system mode. 1002 */ 1003 int 1004 sys_rtt_common(struct regs *rp) 1005 { 1006 kthread_t *tp; 1007 extern void mutex_exit_critical_start(); 1008 extern long mutex_exit_critical_size; 1009 extern void mutex_owner_running_critical_start(); 1010 extern long mutex_owner_running_critical_size; 1011 1012 loop: 1013 1014 /* 1015 * Check if returning to user 1016 */ 1017 tp = CPU->cpu_thread; 1018 if (USERMODE(rp->r_cs)) { 1019 /* 1020 * Check if AST pending. 1021 */ 1022 if (tp->t_astflag) { 1023 /* 1024 * Let trap() handle the AST 1025 */ 1026 sti(); 1027 rp->r_trapno = T_AST; 1028 trap(rp, (caddr_t)0, CPU->cpu_id); 1029 cli(); 1030 goto loop; 1031 } 1032 1033 #if defined(__amd64) 1034 /* 1035 * We are done if segment registers do not need updating. 1036 */ 1037 if (tp->t_lwp->lwp_pcb.pcb_rupdate == 0) 1038 return (1); 1039 1040 if (update_sregs(rp, tp->t_lwp)) { 1041 /* 1042 * 1 or more of the selectors is bad. 1043 * Deliver a SIGSEGV. 1044 */ 1045 proc_t *p = ttoproc(tp); 1046 1047 sti(); 1048 mutex_enter(&p->p_lock); 1049 tp->t_lwp->lwp_cursig = SIGSEGV; 1050 mutex_exit(&p->p_lock); 1051 psig(); 1052 tp->t_sig_check = 1; 1053 cli(); 1054 } 1055 tp->t_lwp->lwp_pcb.pcb_rupdate = 0; 1056 1057 #endif /* __amd64 */ 1058 return (1); 1059 } 1060 1061 /* 1062 * Here if we are returning to supervisor mode. 1063 * Check for a kernel preemption request. 1064 */ 1065 if (CPU->cpu_kprunrun && (rp->r_ps & PS_IE)) { 1066 1067 /* 1068 * Do nothing if already in kpreempt 1069 */ 1070 if (!tp->t_preempt_lk) { 1071 tp->t_preempt_lk = 1; 1072 sti(); 1073 kpreempt(1); /* asynchronous kpreempt call */ 1074 cli(); 1075 tp->t_preempt_lk = 0; 1076 } 1077 } 1078 1079 /* 1080 * If we interrupted the mutex_exit() critical region we must 1081 * reset the PC back to the beginning to prevent missed wakeups 1082 * See the comments in mutex_exit() for details. 1083 */ 1084 if ((uintptr_t)rp->r_pc - (uintptr_t)mutex_exit_critical_start < 1085 mutex_exit_critical_size) { 1086 rp->r_pc = (greg_t)mutex_exit_critical_start; 1087 } 1088 1089 /* 1090 * If we interrupted the mutex_owner_running() critical region we 1091 * must reset the PC back to the beginning to prevent dereferencing 1092 * of a freed thread pointer. See the comments in mutex_owner_running 1093 * for details. 1094 */ 1095 if ((uintptr_t)rp->r_pc - 1096 (uintptr_t)mutex_owner_running_critical_start < 1097 mutex_owner_running_critical_size) { 1098 rp->r_pc = (greg_t)mutex_owner_running_critical_start; 1099 } 1100 1101 return (0); 1102 } 1103 1104 void 1105 send_dirint(int cpuid, int int_level) 1106 { 1107 (*send_dirintf)(cpuid, int_level); 1108 } 1109 1110 #define IS_FAKE_SOFTINT(flag, newpri) \ 1111 (((flag) & PS_IE) && \ 1112 (((*get_pending_spl)() > (newpri)) || \ 1113 bsrw_insn((uint16_t)cpu->cpu_softinfo.st_pending) > (newpri))) 1114 1115 /* 1116 * do_splx routine, takes new ipl to set 1117 * returns the old ipl. 1118 * We are careful not to set priority lower than CPU->cpu_base_pri, 1119 * even though it seems we're raising the priority, it could be set 1120 * higher at any time by an interrupt routine, so we must block interrupts 1121 * and look at CPU->cpu_base_pri 1122 */ 1123 int 1124 do_splx(int newpri) 1125 { 1126 ulong_t flag; 1127 cpu_t *cpu; 1128 int curpri, basepri; 1129 1130 flag = intr_clear(); 1131 cpu = CPU; /* ints are disabled, now safe to cache cpu ptr */ 1132 curpri = cpu->cpu_m.mcpu_pri; 1133 basepri = cpu->cpu_base_spl; 1134 if (newpri < basepri) 1135 newpri = basepri; 1136 cpu->cpu_m.mcpu_pri = newpri; 1137 (*setspl)(newpri); 1138 /* 1139 * If we are going to reenable interrupts see if new priority level 1140 * allows pending softint delivery. 1141 */ 1142 if (IS_FAKE_SOFTINT(flag, newpri)) 1143 fakesoftint(); 1144 ASSERT(!interrupts_enabled()); 1145 intr_restore(flag); 1146 return (curpri); 1147 } 1148 1149 /* 1150 * Common spl raise routine, takes new ipl to set 1151 * returns the old ipl, will not lower ipl. 1152 */ 1153 int 1154 splr(int newpri) 1155 { 1156 ulong_t flag; 1157 cpu_t *cpu; 1158 int curpri, basepri; 1159 1160 flag = intr_clear(); 1161 cpu = CPU; /* ints are disabled, now safe to cache cpu ptr */ 1162 curpri = cpu->cpu_m.mcpu_pri; 1163 /* 1164 * Only do something if new priority is larger 1165 */ 1166 if (newpri > curpri) { 1167 basepri = cpu->cpu_base_spl; 1168 if (newpri < basepri) 1169 newpri = basepri; 1170 cpu->cpu_m.mcpu_pri = newpri; 1171 (*setspl)(newpri); 1172 /* 1173 * See if new priority level allows pending softint delivery 1174 */ 1175 if (IS_FAKE_SOFTINT(flag, newpri)) 1176 fakesoftint(); 1177 } 1178 intr_restore(flag); 1179 return (curpri); 1180 } 1181 1182 int 1183 getpil(void) 1184 { 1185 return (CPU->cpu_m.mcpu_pri); 1186 } 1187 1188 int 1189 spl_xcall(void) 1190 { 1191 return (splr(ipltospl(XCALL_PIL))); 1192 } 1193 1194 int 1195 interrupts_enabled(void) 1196 { 1197 ulong_t flag; 1198 1199 flag = getflags(); 1200 return ((flag & PS_IE) == PS_IE); 1201 } 1202 1203 #ifdef DEBUG 1204 void 1205 assert_ints_enabled(void) 1206 { 1207 ASSERT(!interrupts_unleashed || interrupts_enabled()); 1208 } 1209 #endif /* DEBUG */ 1210