1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License, Version 1.0 only 6 * (the "License"). You may not use this file except in compliance 7 * with the License. 8 * 9 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 10 * or http://www.opensolaris.org/os/licensing. 11 * See the License for the specific language governing permissions 12 * and limitations under the License. 13 * 14 * When distributing Covered Code, include this CDDL HEADER in each 15 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 16 * If applicable, add the following below this CDDL HEADER, with the 17 * fields enclosed by brackets "[]" replaced with your own identifying 18 * information: Portions Copyright [yyyy] [name of copyright owner] 19 * 20 * CDDL HEADER END 21 */ 22 /* 23 * Copyright 2005 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 27 #pragma ident "%Z%%M% %I% %E% SMI" 28 29 #include <sys/cpuvar.h> 30 #include <sys/regset.h> 31 #include <sys/psw.h> 32 #include <sys/types.h> 33 #include <sys/thread.h> 34 #include <sys/systm.h> 35 #include <sys/segments.h> 36 #include <sys/pcb.h> 37 #include <sys/trap.h> 38 #include <sys/ftrace.h> 39 #include <sys/traptrace.h> 40 #include <sys/clock.h> 41 #include <sys/panic.h> 42 #include <sys/disp.h> 43 #include <vm/seg_kp.h> 44 #include <sys/stack.h> 45 #include <sys/sysmacros.h> 46 #include <sys/cmn_err.h> 47 #include <sys/kstat.h> 48 #include <sys/smp_impldefs.h> 49 #include <sys/pool_pset.h> 50 #include <sys/zone.h> 51 #include <sys/bitmap.h> 52 53 #if defined(__amd64) 54 55 #if defined(__lint) 56 /* 57 * atomic_btr32() is a gcc __inline__ function, defined in <asm/bitmap.h> 58 * For lint purposes, define it here. 59 */ 60 uint_t 61 atomic_btr32(uint32_t *pending, uint_t pil) 62 { 63 return (*pending &= ~(1 << pil)); 64 } 65 #else 66 67 extern uint_t atomic_btr32(uint32_t *pending, uint_t pil); 68 69 #endif 70 71 /* 72 * This code is amd64-only for now, but as time permits, we should 73 * use this on i386 too. 74 */ 75 76 /* 77 * Some questions to ponder: 78 * - in several of these routines, we make multiple calls to tsc_read() 79 * without invoking functions .. couldn't we just reuse the same 80 * timestamp sometimes? 81 * - if we have the inline, we can probably make set_base_spl be a 82 * C routine too. 83 */ 84 85 static uint_t 86 bsrw_insn(uint16_t mask) 87 { 88 uint_t index = sizeof (mask) * NBBY - 1; 89 90 ASSERT(mask != 0); 91 92 while ((mask & (1 << index)) == 0) 93 index--; 94 return (index); 95 } 96 97 /* 98 * Do all the work necessary to set up the cpu and thread structures 99 * to dispatch a high-level interrupt. 100 * 101 * Returns 0 if we're -not- already on the high-level interrupt stack, 102 * (and *must* switch to it), non-zero if we are already on that stack. 103 * 104 * Called with interrupts masked. 105 * The 'pil' is already set to the appropriate level for rp->r_trapno. 106 */ 107 int 108 hilevel_intr_prolog(struct cpu *cpu, uint_t pil, uint_t oldpil, struct regs *rp) 109 { 110 struct machcpu *mcpu = &cpu->cpu_m; 111 uint_t mask; 112 hrtime_t intrtime; 113 114 ASSERT(pil > LOCK_LEVEL); 115 116 if (pil == CBE_HIGH_PIL) { 117 cpu->cpu_profile_pil = oldpil; 118 if (USERMODE(rp->r_cs)) { 119 cpu->cpu_profile_pc = 0; 120 cpu->cpu_profile_upc = rp->r_pc; 121 } else { 122 cpu->cpu_profile_pc = rp->r_pc; 123 cpu->cpu_profile_upc = 0; 124 } 125 } 126 127 mask = cpu->cpu_intr_actv & CPU_INTR_ACTV_HIGH_LEVEL_MASK; 128 if (mask != 0) { 129 int nestpil; 130 131 /* 132 * We have interrupted another high-level interrupt. 133 * Load starting timestamp, compute interval, update 134 * cumulative counter. 135 */ 136 nestpil = bsrw_insn((uint16_t)mask); 137 ASSERT(nestpil < pil); 138 intrtime = tsc_read() - 139 mcpu->pil_high_start[nestpil - (LOCK_LEVEL + 1)]; 140 mcpu->intrstat[nestpil] += intrtime; 141 cpu->cpu_intracct[cpu->cpu_mstate] += intrtime; 142 /* 143 * Another high-level interrupt is active below this one, so 144 * there is no need to check for an interrupt thread. That 145 * will be done by the lowest priority high-level interrupt 146 * active. 147 */ 148 } else { 149 kthread_t *t = cpu->cpu_thread; 150 151 /* 152 * See if we are interrupting a low-level interrupt thread. 153 * If so, account for its time slice only if its time stamp 154 * is non-zero. 155 */ 156 if ((t->t_flag & T_INTR_THREAD) != 0 && t->t_intr_start != 0) { 157 intrtime = tsc_read() - t->t_intr_start; 158 mcpu->intrstat[t->t_pil] += intrtime; 159 cpu->cpu_intracct[cpu->cpu_mstate] += intrtime; 160 t->t_intr_start = 0; 161 } 162 } 163 164 /* 165 * Store starting timestamp in CPU structure for this PIL. 166 */ 167 mcpu->pil_high_start[pil - (LOCK_LEVEL + 1)] = tsc_read(); 168 169 ASSERT((cpu->cpu_intr_actv & (1 << pil)) == 0); 170 171 if (pil == 15) { 172 /* 173 * To support reentrant level 15 interrupts, we maintain a 174 * recursion count in the top half of cpu_intr_actv. Only 175 * when this count hits zero do we clear the PIL 15 bit from 176 * the lower half of cpu_intr_actv. 177 */ 178 uint16_t *refcntp = (uint16_t *)&cpu->cpu_intr_actv + 1; 179 (*refcntp)++; 180 } 181 182 mask = cpu->cpu_intr_actv; 183 184 cpu->cpu_intr_actv |= (1 << pil); 185 186 return (mask & CPU_INTR_ACTV_HIGH_LEVEL_MASK); 187 } 188 189 /* 190 * Does most of the work of returning from a high level interrupt. 191 * 192 * Returns 0 if there are no more high level interrupts (in which 193 * case we must switch back to the interrupted thread stack) or 194 * non-zero if there are more (in which case we should stay on it). 195 * 196 * Called with interrupts masked 197 */ 198 int 199 hilevel_intr_epilog(struct cpu *cpu, uint_t pil, uint_t oldpil, uint_t vecnum) 200 { 201 struct machcpu *mcpu = &cpu->cpu_m; 202 uint_t mask; 203 hrtime_t intrtime; 204 205 ASSERT(mcpu->mcpu_pri == pil); 206 207 cpu->cpu_stats.sys.intr[pil - 1]++; 208 209 ASSERT(cpu->cpu_intr_actv & (1 << pil)); 210 211 if (pil == 15) { 212 /* 213 * To support reentrant level 15 interrupts, we maintain a 214 * recursion count in the top half of cpu_intr_actv. Only 215 * when this count hits zero do we clear the PIL 15 bit from 216 * the lower half of cpu_intr_actv. 217 */ 218 uint16_t *refcntp = (uint16_t *)&cpu->cpu_intr_actv + 1; 219 220 ASSERT(*refcntp > 0); 221 222 if (--(*refcntp) == 0) 223 cpu->cpu_intr_actv &= ~(1 << pil); 224 } else { 225 cpu->cpu_intr_actv &= ~(1 << pil); 226 } 227 228 ASSERT(mcpu->pil_high_start[pil - (LOCK_LEVEL + 1)] != 0); 229 230 intrtime = tsc_read() - mcpu->pil_high_start[pil - (LOCK_LEVEL + 1)]; 231 mcpu->intrstat[pil] += intrtime; 232 cpu->cpu_intracct[cpu->cpu_mstate] += intrtime; 233 234 /* 235 * Check for lower-pil nested high-level interrupt beneath 236 * current one. If so, place a starting timestamp in its 237 * pil_high_start entry. 238 */ 239 mask = cpu->cpu_intr_actv & CPU_INTR_ACTV_HIGH_LEVEL_MASK; 240 if (mask != 0) { 241 int nestpil; 242 243 /* 244 * find PIL of nested interrupt 245 */ 246 nestpil = bsrw_insn((uint16_t)mask); 247 ASSERT(nestpil < pil); 248 mcpu->pil_high_start[nestpil - (LOCK_LEVEL + 1)] = tsc_read(); 249 /* 250 * (Another high-level interrupt is active below this one, 251 * so there is no need to check for an interrupt 252 * thread. That will be done by the lowest priority 253 * high-level interrupt active.) 254 */ 255 } else { 256 /* 257 * Check to see if there is a low-level interrupt active. 258 * If so, place a starting timestamp in the thread 259 * structure. 260 */ 261 kthread_t *t = cpu->cpu_thread; 262 263 if (t->t_flag & T_INTR_THREAD) 264 t->t_intr_start = tsc_read(); 265 } 266 267 mcpu->mcpu_pri = oldpil; 268 (void) (*setlvlx)(oldpil, vecnum); 269 270 return (cpu->cpu_intr_actv & CPU_INTR_ACTV_HIGH_LEVEL_MASK); 271 } 272 273 /* 274 * Set up the cpu, thread and interrupt thread structures for 275 * executing an interrupt thread. The new stack pointer of the 276 * interrupt thread (which *must* be switched to) is returned. 277 */ 278 caddr_t 279 intr_thread_prolog(struct cpu *cpu, caddr_t stackptr, uint_t pil) 280 { 281 struct machcpu *mcpu = &cpu->cpu_m; 282 kthread_t *t, *volatile it; 283 284 ASSERT(pil > 0); 285 ASSERT((cpu->cpu_intr_actv & (1 << pil)) == 0); 286 cpu->cpu_intr_actv |= (1 << pil); 287 288 /* 289 * Get set to run an interrupt thread. 290 * There should always be an interrupt thread, since we 291 * allocate one for each level on each CPU. 292 * 293 * Note that the code in kcpc_overflow_intr -relies- on the 294 * ordering of events here - in particular that t->t_lwp of 295 * the interrupt thread is set to the pinned thread *before* 296 * curthread is changed. 297 */ 298 t = cpu->cpu_thread; 299 if (t->t_flag & T_INTR_THREAD) { 300 hrtime_t intrtime = tsc_read() - t->t_intr_start; 301 mcpu->intrstat[t->t_pil] += intrtime; 302 cpu->cpu_intracct[cpu->cpu_mstate] += intrtime; 303 t->t_intr_start = 0; 304 } 305 306 ASSERT(SA((uintptr_t)stackptr) == (uintptr_t)stackptr); 307 308 t->t_sp = (uintptr_t)stackptr; /* mark stack in curthread for resume */ 309 310 /* 311 * unlink the interrupt thread off the cpu 312 */ 313 it = cpu->cpu_intr_thread; 314 cpu->cpu_intr_thread = it->t_link; 315 it->t_intr = t; 316 it->t_lwp = t->t_lwp; 317 318 /* 319 * (threads on the interrupt thread free list could have state 320 * preset to TS_ONPROC, but it helps in debugging if 321 * they're TS_FREE.) 322 */ 323 it->t_state = TS_ONPROC; 324 325 cpu->cpu_thread = it; /* new curthread on this cpu */ 326 it->t_pil = (uchar_t)pil; 327 it->t_pri = intr_pri + (pri_t)pil; 328 it->t_intr_start = tsc_read(); 329 330 return (it->t_stk); 331 } 332 333 334 #ifdef DEBUG 335 int intr_thread_cnt; 336 #endif 337 338 /* 339 * Called with interrupts disabled 340 */ 341 void 342 intr_thread_epilog(struct cpu *cpu, uint_t vec, uint_t oldpil) 343 { 344 struct machcpu *mcpu = &cpu->cpu_m; 345 kthread_t *t; 346 kthread_t *it = cpu->cpu_thread; /* curthread */ 347 uint_t pil, basespl; 348 hrtime_t intrtime; 349 350 pil = it->t_pil; 351 cpu->cpu_stats.sys.intr[pil - 1]++; 352 353 ASSERT(it->t_intr_start != 0); 354 intrtime = tsc_read() - it->t_intr_start; 355 mcpu->intrstat[pil] += intrtime; 356 cpu->cpu_intracct[cpu->cpu_mstate] += intrtime; 357 358 ASSERT(cpu->cpu_intr_actv & (1 << pil)); 359 cpu->cpu_intr_actv &= ~(1 << pil); 360 361 /* 362 * If there is still an interrupted thread underneath this one 363 * then the interrupt was never blocked and the return is 364 * fairly simple. Otherwise it isn't. 365 */ 366 if ((t = it->t_intr) == NULL) { 367 /* 368 * The interrupted thread is no longer pinned underneath 369 * the interrupt thread. This means the interrupt must 370 * have blocked, and the interrupted thread has been 371 * unpinned, and has probably been running around the 372 * system for a while. 373 * 374 * Since there is no longer a thread under this one, put 375 * this interrupt thread back on the CPU's free list and 376 * resume the idle thread which will dispatch the next 377 * thread to run. 378 */ 379 #ifdef DEBUG 380 intr_thread_cnt++; 381 #endif 382 cpu->cpu_stats.sys.intrblk++; 383 /* 384 * Set CPU's base SPL based on active interrupts bitmask 385 */ 386 set_base_spl(); 387 basespl = cpu->cpu_base_spl; 388 mcpu->mcpu_pri = basespl; 389 (*setlvlx)(basespl, vec); 390 (void) splhigh(); 391 it->t_state = TS_FREE; 392 /* 393 * Return interrupt thread to pool 394 */ 395 it->t_link = cpu->cpu_intr_thread; 396 cpu->cpu_intr_thread = it; 397 swtch(); 398 /*NOTREACHED*/ 399 } 400 401 /* 402 * Return interrupt thread to the pool 403 */ 404 it->t_link = cpu->cpu_intr_thread; 405 cpu->cpu_intr_thread = it; 406 it->t_state = TS_FREE; 407 408 basespl = cpu->cpu_base_spl; 409 pil = MAX(oldpil, basespl); 410 mcpu->mcpu_pri = pil; 411 (*setlvlx)(pil, vec); 412 t->t_intr_start = tsc_read(); 413 cpu->cpu_thread = t; 414 } 415 416 caddr_t 417 dosoftint_prolog( 418 struct cpu *cpu, 419 caddr_t stackptr, 420 uint32_t st_pending, 421 uint_t oldpil) 422 { 423 kthread_t *t, *volatile it; 424 struct machcpu *mcpu = &cpu->cpu_m; 425 uint_t pil; 426 427 top: 428 ASSERT(st_pending == mcpu->mcpu_softinfo.st_pending); 429 430 pil = bsrw_insn((uint16_t)st_pending); 431 if (pil <= oldpil || pil <= cpu->cpu_base_spl) 432 return (0); 433 434 /* 435 * XX64 Sigh. 436 * 437 * This is a transliteration of the i386 assembler code for 438 * soft interrupts. One question is "why does this need 439 * to be atomic?" One possible race is -other- processors 440 * posting soft interrupts to us in set_pending() i.e. the 441 * CPU might get preempted just after the address computation, 442 * but just before the atomic transaction, so another CPU would 443 * actually set the original CPU's st_pending bit. However, 444 * it looks like it would be simpler to disable preemption there. 445 * Are there other races for which preemption control doesn't work? 446 * 447 * The i386 assembler version -also- checks to see if the bit 448 * being cleared was actually set; if it wasn't, it rechecks 449 * for more. This seems a bit strange, as the only code that 450 * ever clears the bit is -this- code running with interrupts 451 * disabled on -this- CPU. This code would probably be cheaper: 452 * 453 * atomic_and_32((uint32_t *)&mcpu->mcpu_softinfo.st_pending, 454 * ~(1 << pil)); 455 * 456 * and t->t_preempt--/++ around set_pending() even cheaper, 457 * but at this point, correctness is critical, so we slavishly 458 * emulate the i386 port. 459 */ 460 if (atomic_btr32((uint32_t *)&mcpu->mcpu_softinfo.st_pending, pil) 461 == 0) { 462 st_pending = mcpu->mcpu_softinfo.st_pending; 463 goto top; 464 } 465 466 mcpu->mcpu_pri = pil; 467 (*setspl)(pil); 468 469 /* 470 * Get set to run interrupt thread. 471 * There should always be an interrupt thread since we 472 * allocate one for each level on the CPU. 473 */ 474 it = cpu->cpu_intr_thread; 475 cpu->cpu_intr_thread = it->t_link; 476 477 /* 478 * Note that the code in kcpc_overflow_intr -relies- on the 479 * ordering of events here - in particular that t->t_lwp of 480 * the interrupt thread is set to the pinned thread *before* 481 * curthread is changed 482 */ 483 t = cpu->cpu_thread; 484 if (t->t_flag & T_INTR_THREAD) { 485 hrtime_t intrtime = tsc_read() - t->t_intr_start; 486 mcpu->intrstat[pil] += intrtime; 487 cpu->cpu_intracct[cpu->cpu_mstate] += intrtime; 488 } 489 it->t_lwp = t->t_lwp; 490 it->t_state = TS_ONPROC; 491 492 /* 493 * Push interrupted thread onto list from new thread. 494 * Set the new thread as the current one. 495 * Set interrupted thread's T_SP because if it is the idle thread, 496 * resume() may use that stack between threads. 497 */ 498 499 ASSERT(SA((uintptr_t)stackptr) == (uintptr_t)stackptr); 500 t->t_sp = (uintptr_t)stackptr; 501 502 it->t_intr = t; 503 cpu->cpu_thread = it; 504 505 /* 506 * Set bit for this pil in CPU's interrupt active bitmask. 507 */ 508 ASSERT((cpu->cpu_intr_actv & (1 << pil)) == 0); 509 cpu->cpu_intr_actv |= (1 << pil); 510 511 /* 512 * Initialize thread priority level from intr_pri 513 */ 514 it->t_pil = (uchar_t)pil; 515 it->t_pri = (pri_t)pil + intr_pri; 516 it->t_intr_start = tsc_read(); 517 518 return (it->t_stk); 519 } 520 521 void 522 dosoftint_epilog(struct cpu *cpu, uint_t oldpil) 523 { 524 struct machcpu *mcpu = &cpu->cpu_m; 525 kthread_t *t, *it; 526 uint_t pil, basespl; 527 hrtime_t intrtime; 528 529 it = cpu->cpu_thread; 530 pil = it->t_pil; 531 532 cpu->cpu_stats.sys.intr[pil - 1]++; 533 534 ASSERT(cpu->cpu_intr_actv & (1 << pil)); 535 cpu->cpu_intr_actv &= ~(1 << pil); 536 intrtime = tsc_read() - it->t_intr_start; 537 mcpu->intrstat[pil] += intrtime; 538 cpu->cpu_intracct[cpu->cpu_mstate] += intrtime; 539 540 /* 541 * If there is still an interrupted thread underneath this one 542 * then the interrupt was never blocked and the return is 543 * fairly simple. Otherwise it isn't. 544 */ 545 if ((t = it->t_intr) == NULL) { 546 /* 547 * Put thread back on the interrupt thread list. 548 * This was an interrupt thread, so set CPU's base SPL. 549 */ 550 set_base_spl(); 551 it->t_state = TS_FREE; 552 it->t_link = cpu->cpu_intr_thread; 553 cpu->cpu_intr_thread = it; 554 (void) splhigh(); 555 swtch(); 556 /*NOTREACHED*/ 557 } 558 it->t_link = cpu->cpu_intr_thread; 559 cpu->cpu_intr_thread = it; 560 it->t_state = TS_FREE; 561 cpu->cpu_thread = t; 562 if (t->t_flag & T_INTR_THREAD) 563 t->t_intr_start = tsc_read(); 564 basespl = cpu->cpu_base_spl; 565 pil = MAX(oldpil, basespl); 566 mcpu->mcpu_pri = pil; 567 (*setspl)(pil); 568 } 569 570 /* 571 * Make the interrupted thread 'to' be runnable. 572 * 573 * Since t->t_sp has already been saved, t->t_pc is all 574 * that needs to be set in this function. 575 * 576 * Returns the interrupt level of the interrupt thread. 577 */ 578 int 579 intr_passivate( 580 kthread_t *it, /* interrupt thread */ 581 kthread_t *t) /* interrupted thread */ 582 { 583 extern void _sys_rtt(); 584 585 ASSERT(it->t_flag & T_INTR_THREAD); 586 ASSERT(SA(t->t_sp) == t->t_sp); 587 588 t->t_pc = (uintptr_t)_sys_rtt; 589 return (it->t_pil); 590 } 591 592 #endif /* __amd64 */ 593 594 /* 595 * Allocate threads and stacks for interrupt handling. 596 */ 597 #define NINTR_THREADS (LOCK_LEVEL-1) /* number of interrupt threads */ 598 599 void 600 init_intr_threads(struct cpu *cp) 601 { 602 int i; 603 604 for (i = 0; i < NINTR_THREADS; i++) 605 thread_create_intr(cp); 606 607 cp->cpu_intr_stack = (caddr_t)segkp_get(segkp, INTR_STACK_SIZE, 608 KPD_HASREDZONE | KPD_NO_ANON | KPD_LOCKED) + 609 INTR_STACK_SIZE - SA(MINFRAME); 610 } 611 612 /* 613 * Create interrupt kstats for this CPU. 614 */ 615 void 616 cpu_create_intrstat(cpu_t *cp) 617 { 618 int i; 619 kstat_t *intr_ksp; 620 kstat_named_t *knp; 621 char name[KSTAT_STRLEN]; 622 zoneid_t zoneid; 623 624 ASSERT(MUTEX_HELD(&cpu_lock)); 625 626 if (pool_pset_enabled()) 627 zoneid = GLOBAL_ZONEID; 628 else 629 zoneid = ALL_ZONES; 630 631 intr_ksp = kstat_create_zone("cpu", cp->cpu_id, "intrstat", "misc", 632 KSTAT_TYPE_NAMED, PIL_MAX * 2, NULL, zoneid); 633 634 /* 635 * Initialize each PIL's named kstat 636 */ 637 if (intr_ksp != NULL) { 638 intr_ksp->ks_update = cpu_kstat_intrstat_update; 639 knp = (kstat_named_t *)intr_ksp->ks_data; 640 intr_ksp->ks_private = cp; 641 for (i = 0; i < PIL_MAX; i++) { 642 (void) snprintf(name, KSTAT_STRLEN, "level-%d-time", 643 i + 1); 644 kstat_named_init(&knp[i * 2], name, KSTAT_DATA_UINT64); 645 (void) snprintf(name, KSTAT_STRLEN, "level-%d-count", 646 i + 1); 647 kstat_named_init(&knp[(i * 2) + 1], name, 648 KSTAT_DATA_UINT64); 649 } 650 kstat_install(intr_ksp); 651 } 652 } 653 654 /* 655 * Delete interrupt kstats for this CPU. 656 */ 657 void 658 cpu_delete_intrstat(cpu_t *cp) 659 { 660 kstat_delete_byname_zone("cpu", cp->cpu_id, "intrstat", ALL_ZONES); 661 } 662 663 /* 664 * Convert interrupt statistics from CPU ticks to nanoseconds and 665 * update kstat. 666 */ 667 int 668 cpu_kstat_intrstat_update(kstat_t *ksp, int rw) 669 { 670 kstat_named_t *knp = ksp->ks_data; 671 cpu_t *cpup = (cpu_t *)ksp->ks_private; 672 int i; 673 hrtime_t hrt; 674 675 if (rw == KSTAT_WRITE) 676 return (EACCES); 677 678 for (i = 0; i < PIL_MAX; i++) { 679 hrt = (hrtime_t)cpup->cpu_m.intrstat[i + 1]; 680 tsc_scalehrtime(&hrt); 681 knp[i * 2].value.ui64 = (uint64_t)hrt; 682 knp[(i * 2) + 1].value.ui64 = cpup->cpu_stats.sys.intr[i]; 683 } 684 685 return (0); 686 } 687 688 /* 689 * An interrupt thread is ending a time slice, so compute the interval it 690 * ran for and update the statistic for its PIL. 691 */ 692 void 693 cpu_intr_swtch_enter(kthread_id_t t) 694 { 695 uint64_t interval; 696 uint64_t start; 697 cpu_t *cpu; 698 699 ASSERT((t->t_flag & T_INTR_THREAD) != 0); 700 ASSERT(t->t_pil > 0 && t->t_pil <= LOCK_LEVEL); 701 702 /* 703 * We could be here with a zero timestamp. This could happen if: 704 * an interrupt thread which no longer has a pinned thread underneath 705 * it (i.e. it blocked at some point in its past) has finished running 706 * its handler. intr_thread() updated the interrupt statistic for its 707 * PIL and zeroed its timestamp. Since there was no pinned thread to 708 * return to, swtch() gets called and we end up here. 709 * 710 * Note that we use atomic ops below (cas64 and atomic_add_64), which 711 * we don't use in the functions above, because we're not called 712 * with interrupts blocked, but the epilog/prolog functions are. 713 */ 714 if (t->t_intr_start) { 715 do { 716 start = t->t_intr_start; 717 interval = tsc_read() - start; 718 } while (cas64(&t->t_intr_start, start, 0) != start); 719 cpu = CPU; 720 cpu->cpu_m.intrstat[t->t_pil] += interval; 721 722 atomic_add_64((uint64_t *)&cpu->cpu_intracct[cpu->cpu_mstate], 723 interval); 724 } else 725 ASSERT(t->t_intr == NULL); 726 } 727 728 /* 729 * An interrupt thread is returning from swtch(). Place a starting timestamp 730 * in its thread structure. 731 */ 732 void 733 cpu_intr_swtch_exit(kthread_id_t t) 734 { 735 uint64_t ts; 736 737 ASSERT((t->t_flag & T_INTR_THREAD) != 0); 738 ASSERT(t->t_pil > 0 && t->t_pil <= LOCK_LEVEL); 739 740 do { 741 ts = t->t_intr_start; 742 } while (cas64(&t->t_intr_start, ts, tsc_read()) != ts); 743 } 744