1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License, Version 1.0 only 6 * (the "License"). You may not use this file except in compliance 7 * with the License. 8 * 9 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 10 * or http://www.opensolaris.org/os/licensing. 11 * See the License for the specific language governing permissions 12 * and limitations under the License. 13 * 14 * When distributing Covered Code, include this CDDL HEADER in each 15 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 16 * If applicable, add the following below this CDDL HEADER, with the 17 * fields enclosed by brackets "[]" replaced with your own identifying 18 * information: Portions Copyright [yyyy] [name of copyright owner] 19 * 20 * CDDL HEADER END 21 */ 22 /* 23 * Copyright 2005 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 27 #pragma ident "%Z%%M% %I% %E% SMI" 28 29 #include <sys/cpuvar.h> 30 #include <sys/regset.h> 31 #include <sys/psw.h> 32 #include <sys/types.h> 33 #include <sys/thread.h> 34 #include <sys/systm.h> 35 #include <sys/segments.h> 36 #include <sys/pcb.h> 37 #include <sys/trap.h> 38 #include <sys/ftrace.h> 39 #include <sys/traptrace.h> 40 #include <sys/clock.h> 41 #include <sys/panic.h> 42 #include <sys/disp.h> 43 #include <vm/seg_kp.h> 44 #include <sys/stack.h> 45 #include <sys/sysmacros.h> 46 #include <sys/cmn_err.h> 47 #include <sys/kstat.h> 48 #include <sys/smp_impldefs.h> 49 #include <sys/pool_pset.h> 50 #include <sys/zone.h> 51 #include <sys/bitmap.h> 52 53 #if defined(__amd64) 54 55 #if defined(__lint) 56 /* 57 * atomic_btr32() is a gcc __inline__ function, defined in <asm/bitmap.h> 58 * For lint purposes, define it here. 59 */ 60 uint_t 61 atomic_btr32(uint32_t *pending, uint_t pil) 62 { 63 return (*pending &= ~(1 << pil)); 64 } 65 #else 66 67 extern uint_t atomic_btr32(uint32_t *pending, uint_t pil); 68 69 #endif 70 71 /* 72 * This code is amd64-only for now, but as time permits, we should 73 * use this on i386 too. 74 */ 75 76 /* 77 * Some questions to ponder: 78 * - in several of these routines, we make multiple calls to tsc_read() 79 * without invoking functions .. couldn't we just reuse the same 80 * timestamp sometimes? 81 * - if we have the inline, we can probably make set_base_spl be a 82 * C routine too. 83 */ 84 85 static uint_t 86 bsrw_insn(uint16_t mask) 87 { 88 uint_t index = sizeof (mask) * NBBY - 1; 89 90 ASSERT(mask != 0); 91 92 while ((mask & (1 << index)) == 0) 93 index--; 94 return (index); 95 } 96 97 /* 98 * Do all the work necessary to set up the cpu and thread structures 99 * to dispatch a high-level interrupt. 100 * 101 * Returns 0 if we're -not- already on the high-level interrupt stack, 102 * (and *must* switch to it), non-zero if we are already on that stack. 103 * 104 * Called with interrupts masked. 105 * The 'pil' is already set to the appropriate level for rp->r_trapno. 106 */ 107 int 108 hilevel_intr_prolog(struct cpu *cpu, uint_t pil, uint_t oldpil, struct regs *rp) 109 { 110 struct machcpu *mcpu = &cpu->cpu_m; 111 uint_t mask; 112 hrtime_t intrtime; 113 114 ASSERT(pil > LOCK_LEVEL); 115 116 if (pil == CBE_HIGH_PIL) { 117 cpu->cpu_profile_pil = oldpil; 118 if (USERMODE(rp->r_cs)) { 119 cpu->cpu_profile_pc = 0; 120 cpu->cpu_profile_upc = rp->r_pc; 121 } else { 122 cpu->cpu_profile_pc = rp->r_pc; 123 cpu->cpu_profile_upc = 0; 124 } 125 } 126 127 mask = cpu->cpu_intr_actv & CPU_INTR_ACTV_HIGH_LEVEL_MASK; 128 if (mask != 0) { 129 int nestpil; 130 131 /* 132 * We have interrupted another high-level interrupt. 133 * Load starting timestamp, compute interval, update 134 * cumulative counter. 135 */ 136 nestpil = bsrw_insn((uint16_t)mask); 137 ASSERT(nestpil < pil); 138 intrtime = tsc_read() - 139 mcpu->pil_high_start[nestpil - (LOCK_LEVEL + 1)]; 140 mcpu->intrstat[nestpil][0] += intrtime; 141 cpu->cpu_intracct[cpu->cpu_mstate] += intrtime; 142 /* 143 * Another high-level interrupt is active below this one, so 144 * there is no need to check for an interrupt thread. That 145 * will be done by the lowest priority high-level interrupt 146 * active. 147 */ 148 } else { 149 kthread_t *t = cpu->cpu_thread; 150 151 /* 152 * See if we are interrupting a low-level interrupt thread. 153 * If so, account for its time slice only if its time stamp 154 * is non-zero. 155 */ 156 if ((t->t_flag & T_INTR_THREAD) != 0 && t->t_intr_start != 0) { 157 intrtime = tsc_read() - t->t_intr_start; 158 mcpu->intrstat[t->t_pil][0] += intrtime; 159 cpu->cpu_intracct[cpu->cpu_mstate] += intrtime; 160 t->t_intr_start = 0; 161 } 162 } 163 164 /* 165 * Store starting timestamp in CPU structure for this PIL. 166 */ 167 mcpu->pil_high_start[pil - (LOCK_LEVEL + 1)] = tsc_read(); 168 169 ASSERT((cpu->cpu_intr_actv & (1 << pil)) == 0); 170 171 if (pil == 15) { 172 /* 173 * To support reentrant level 15 interrupts, we maintain a 174 * recursion count in the top half of cpu_intr_actv. Only 175 * when this count hits zero do we clear the PIL 15 bit from 176 * the lower half of cpu_intr_actv. 177 */ 178 uint16_t *refcntp = (uint16_t *)&cpu->cpu_intr_actv + 1; 179 (*refcntp)++; 180 } 181 182 mask = cpu->cpu_intr_actv; 183 184 cpu->cpu_intr_actv |= (1 << pil); 185 186 return (mask & CPU_INTR_ACTV_HIGH_LEVEL_MASK); 187 } 188 189 /* 190 * Does most of the work of returning from a high level interrupt. 191 * 192 * Returns 0 if there are no more high level interrupts (in which 193 * case we must switch back to the interrupted thread stack) or 194 * non-zero if there are more (in which case we should stay on it). 195 * 196 * Called with interrupts masked 197 */ 198 int 199 hilevel_intr_epilog(struct cpu *cpu, uint_t pil, uint_t oldpil, uint_t vecnum) 200 { 201 struct machcpu *mcpu = &cpu->cpu_m; 202 uint_t mask; 203 hrtime_t intrtime; 204 205 ASSERT(mcpu->mcpu_pri == pil); 206 207 cpu->cpu_stats.sys.intr[pil - 1]++; 208 209 ASSERT(cpu->cpu_intr_actv & (1 << pil)); 210 211 if (pil == 15) { 212 /* 213 * To support reentrant level 15 interrupts, we maintain a 214 * recursion count in the top half of cpu_intr_actv. Only 215 * when this count hits zero do we clear the PIL 15 bit from 216 * the lower half of cpu_intr_actv. 217 */ 218 uint16_t *refcntp = (uint16_t *)&cpu->cpu_intr_actv + 1; 219 220 ASSERT(*refcntp > 0); 221 222 if (--(*refcntp) == 0) 223 cpu->cpu_intr_actv &= ~(1 << pil); 224 } else { 225 cpu->cpu_intr_actv &= ~(1 << pil); 226 } 227 228 ASSERT(mcpu->pil_high_start[pil - (LOCK_LEVEL + 1)] != 0); 229 230 intrtime = tsc_read() - mcpu->pil_high_start[pil - (LOCK_LEVEL + 1)]; 231 mcpu->intrstat[pil][0] += intrtime; 232 cpu->cpu_intracct[cpu->cpu_mstate] += intrtime; 233 234 /* 235 * Check for lower-pil nested high-level interrupt beneath 236 * current one. If so, place a starting timestamp in its 237 * pil_high_start entry. 238 */ 239 mask = cpu->cpu_intr_actv & CPU_INTR_ACTV_HIGH_LEVEL_MASK; 240 if (mask != 0) { 241 int nestpil; 242 243 /* 244 * find PIL of nested interrupt 245 */ 246 nestpil = bsrw_insn((uint16_t)mask); 247 ASSERT(nestpil < pil); 248 mcpu->pil_high_start[nestpil - (LOCK_LEVEL + 1)] = tsc_read(); 249 /* 250 * (Another high-level interrupt is active below this one, 251 * so there is no need to check for an interrupt 252 * thread. That will be done by the lowest priority 253 * high-level interrupt active.) 254 */ 255 } else { 256 /* 257 * Check to see if there is a low-level interrupt active. 258 * If so, place a starting timestamp in the thread 259 * structure. 260 */ 261 kthread_t *t = cpu->cpu_thread; 262 263 if (t->t_flag & T_INTR_THREAD) 264 t->t_intr_start = tsc_read(); 265 } 266 267 mcpu->mcpu_pri = oldpil; 268 (void) (*setlvlx)(oldpil, vecnum); 269 270 return (cpu->cpu_intr_actv & CPU_INTR_ACTV_HIGH_LEVEL_MASK); 271 } 272 273 /* 274 * Set up the cpu, thread and interrupt thread structures for 275 * executing an interrupt thread. The new stack pointer of the 276 * interrupt thread (which *must* be switched to) is returned. 277 */ 278 caddr_t 279 intr_thread_prolog(struct cpu *cpu, caddr_t stackptr, uint_t pil) 280 { 281 struct machcpu *mcpu = &cpu->cpu_m; 282 kthread_t *t, *volatile it; 283 284 ASSERT(pil > 0); 285 ASSERT((cpu->cpu_intr_actv & (1 << pil)) == 0); 286 cpu->cpu_intr_actv |= (1 << pil); 287 288 /* 289 * Get set to run an interrupt thread. 290 * There should always be an interrupt thread, since we 291 * allocate one for each level on each CPU. 292 * 293 * t_intr_start could be zero due to cpu_intr_swtch_enter. 294 */ 295 t = cpu->cpu_thread; 296 if ((t->t_flag & T_INTR_THREAD) && t->t_intr_start != 0) { 297 hrtime_t intrtime = tsc_read() - t->t_intr_start; 298 mcpu->intrstat[t->t_pil][0] += intrtime; 299 cpu->cpu_intracct[cpu->cpu_mstate] += intrtime; 300 t->t_intr_start = 0; 301 } 302 303 ASSERT(SA((uintptr_t)stackptr) == (uintptr_t)stackptr); 304 305 t->t_sp = (uintptr_t)stackptr; /* mark stack in curthread for resume */ 306 307 /* 308 * unlink the interrupt thread off the cpu 309 * 310 * Note that the code in kcpc_overflow_intr -relies- on the 311 * ordering of events here - in particular that t->t_lwp of 312 * the interrupt thread is set to the pinned thread *before* 313 * curthread is changed. 314 */ 315 it = cpu->cpu_intr_thread; 316 cpu->cpu_intr_thread = it->t_link; 317 it->t_intr = t; 318 it->t_lwp = t->t_lwp; 319 320 /* 321 * (threads on the interrupt thread free list could have state 322 * preset to TS_ONPROC, but it helps in debugging if 323 * they're TS_FREE.) 324 */ 325 it->t_state = TS_ONPROC; 326 327 cpu->cpu_thread = it; /* new curthread on this cpu */ 328 it->t_pil = (uchar_t)pil; 329 it->t_pri = intr_pri + (pri_t)pil; 330 it->t_intr_start = tsc_read(); 331 332 return (it->t_stk); 333 } 334 335 336 #ifdef DEBUG 337 int intr_thread_cnt; 338 #endif 339 340 /* 341 * Called with interrupts disabled 342 */ 343 void 344 intr_thread_epilog(struct cpu *cpu, uint_t vec, uint_t oldpil) 345 { 346 struct machcpu *mcpu = &cpu->cpu_m; 347 kthread_t *t; 348 kthread_t *it = cpu->cpu_thread; /* curthread */ 349 uint_t pil, basespl; 350 hrtime_t intrtime; 351 352 pil = it->t_pil; 353 cpu->cpu_stats.sys.intr[pil - 1]++; 354 355 ASSERT(it->t_intr_start != 0); 356 intrtime = tsc_read() - it->t_intr_start; 357 mcpu->intrstat[pil][0] += intrtime; 358 cpu->cpu_intracct[cpu->cpu_mstate] += intrtime; 359 360 ASSERT(cpu->cpu_intr_actv & (1 << pil)); 361 cpu->cpu_intr_actv &= ~(1 << pil); 362 363 /* 364 * If there is still an interrupted thread underneath this one 365 * then the interrupt was never blocked and the return is 366 * fairly simple. Otherwise it isn't. 367 */ 368 if ((t = it->t_intr) == NULL) { 369 /* 370 * The interrupted thread is no longer pinned underneath 371 * the interrupt thread. This means the interrupt must 372 * have blocked, and the interrupted thread has been 373 * unpinned, and has probably been running around the 374 * system for a while. 375 * 376 * Since there is no longer a thread under this one, put 377 * this interrupt thread back on the CPU's free list and 378 * resume the idle thread which will dispatch the next 379 * thread to run. 380 */ 381 #ifdef DEBUG 382 intr_thread_cnt++; 383 #endif 384 cpu->cpu_stats.sys.intrblk++; 385 /* 386 * Set CPU's base SPL based on active interrupts bitmask 387 */ 388 set_base_spl(); 389 basespl = cpu->cpu_base_spl; 390 mcpu->mcpu_pri = basespl; 391 (*setlvlx)(basespl, vec); 392 (void) splhigh(); 393 it->t_state = TS_FREE; 394 /* 395 * Return interrupt thread to pool 396 */ 397 it->t_link = cpu->cpu_intr_thread; 398 cpu->cpu_intr_thread = it; 399 swtch(); 400 /*NOTREACHED*/ 401 } 402 403 /* 404 * Return interrupt thread to the pool 405 */ 406 it->t_link = cpu->cpu_intr_thread; 407 cpu->cpu_intr_thread = it; 408 it->t_state = TS_FREE; 409 410 basespl = cpu->cpu_base_spl; 411 pil = MAX(oldpil, basespl); 412 mcpu->mcpu_pri = pil; 413 (*setlvlx)(pil, vec); 414 t->t_intr_start = tsc_read(); 415 cpu->cpu_thread = t; 416 } 417 418 /* 419 * Called with interrupts disabled by an interrupt thread to determine 420 * how much time has elapsed. See interrupt.s:intr_get_time() for detailed 421 * theory of operation. 422 */ 423 uint64_t 424 intr_thread_get_time(struct cpu *cpu) 425 { 426 struct machcpu *mcpu = &cpu->cpu_m; 427 kthread_t *t = cpu->cpu_thread; 428 uint64_t time, delta, ret; 429 uint_t pil = t->t_pil; 430 431 ASSERT((cpu->cpu_intr_actv & CPU_INTR_ACTV_HIGH_LEVEL_MASK) == 0); 432 ASSERT(t->t_flag & T_INTR_THREAD); 433 ASSERT(pil != 0); 434 ASSERT(t->t_intr_start != 0); 435 436 time = tsc_read(); 437 delta = time - t->t_intr_start; 438 t->t_intr_start = time; 439 440 time = mcpu->intrstat[pil][0] + delta; 441 ret = time - mcpu->intrstat[pil][1]; 442 mcpu->intrstat[pil][0] = time; 443 mcpu->intrstat[pil][1] = time; 444 445 return (ret); 446 } 447 448 caddr_t 449 dosoftint_prolog( 450 struct cpu *cpu, 451 caddr_t stackptr, 452 uint32_t st_pending, 453 uint_t oldpil) 454 { 455 kthread_t *t, *volatile it; 456 struct machcpu *mcpu = &cpu->cpu_m; 457 uint_t pil; 458 459 top: 460 ASSERT(st_pending == mcpu->mcpu_softinfo.st_pending); 461 462 pil = bsrw_insn((uint16_t)st_pending); 463 if (pil <= oldpil || pil <= cpu->cpu_base_spl) 464 return (0); 465 466 /* 467 * XX64 Sigh. 468 * 469 * This is a transliteration of the i386 assembler code for 470 * soft interrupts. One question is "why does this need 471 * to be atomic?" One possible race is -other- processors 472 * posting soft interrupts to us in set_pending() i.e. the 473 * CPU might get preempted just after the address computation, 474 * but just before the atomic transaction, so another CPU would 475 * actually set the original CPU's st_pending bit. However, 476 * it looks like it would be simpler to disable preemption there. 477 * Are there other races for which preemption control doesn't work? 478 * 479 * The i386 assembler version -also- checks to see if the bit 480 * being cleared was actually set; if it wasn't, it rechecks 481 * for more. This seems a bit strange, as the only code that 482 * ever clears the bit is -this- code running with interrupts 483 * disabled on -this- CPU. This code would probably be cheaper: 484 * 485 * atomic_and_32((uint32_t *)&mcpu->mcpu_softinfo.st_pending, 486 * ~(1 << pil)); 487 * 488 * and t->t_preempt--/++ around set_pending() even cheaper, 489 * but at this point, correctness is critical, so we slavishly 490 * emulate the i386 port. 491 */ 492 if (atomic_btr32((uint32_t *)&mcpu->mcpu_softinfo.st_pending, pil) 493 == 0) { 494 st_pending = mcpu->mcpu_softinfo.st_pending; 495 goto top; 496 } 497 498 mcpu->mcpu_pri = pil; 499 (*setspl)(pil); 500 501 /* 502 * Get set to run interrupt thread. 503 * There should always be an interrupt thread since we 504 * allocate one for each level on the CPU. 505 */ 506 it = cpu->cpu_intr_thread; 507 cpu->cpu_intr_thread = it->t_link; 508 509 /* t_intr_start could be zero due to cpu_intr_swtch_enter. */ 510 t = cpu->cpu_thread; 511 if ((t->t_flag & T_INTR_THREAD) && t->t_intr_start != 0) { 512 hrtime_t intrtime = tsc_read() - t->t_intr_start; 513 mcpu->intrstat[pil][0] += intrtime; 514 cpu->cpu_intracct[cpu->cpu_mstate] += intrtime; 515 t->t_intr_start = 0; 516 } 517 518 /* 519 * Note that the code in kcpc_overflow_intr -relies- on the 520 * ordering of events here - in particular that t->t_lwp of 521 * the interrupt thread is set to the pinned thread *before* 522 * curthread is changed. 523 */ 524 it->t_lwp = t->t_lwp; 525 it->t_state = TS_ONPROC; 526 527 /* 528 * Push interrupted thread onto list from new thread. 529 * Set the new thread as the current one. 530 * Set interrupted thread's T_SP because if it is the idle thread, 531 * resume() may use that stack between threads. 532 */ 533 534 ASSERT(SA((uintptr_t)stackptr) == (uintptr_t)stackptr); 535 t->t_sp = (uintptr_t)stackptr; 536 537 it->t_intr = t; 538 cpu->cpu_thread = it; 539 540 /* 541 * Set bit for this pil in CPU's interrupt active bitmask. 542 */ 543 ASSERT((cpu->cpu_intr_actv & (1 << pil)) == 0); 544 cpu->cpu_intr_actv |= (1 << pil); 545 546 /* 547 * Initialize thread priority level from intr_pri 548 */ 549 it->t_pil = (uchar_t)pil; 550 it->t_pri = (pri_t)pil + intr_pri; 551 it->t_intr_start = tsc_read(); 552 553 return (it->t_stk); 554 } 555 556 void 557 dosoftint_epilog(struct cpu *cpu, uint_t oldpil) 558 { 559 struct machcpu *mcpu = &cpu->cpu_m; 560 kthread_t *t, *it; 561 uint_t pil, basespl; 562 hrtime_t intrtime; 563 564 it = cpu->cpu_thread; 565 pil = it->t_pil; 566 567 cpu->cpu_stats.sys.intr[pil - 1]++; 568 569 ASSERT(cpu->cpu_intr_actv & (1 << pil)); 570 cpu->cpu_intr_actv &= ~(1 << pil); 571 intrtime = tsc_read() - it->t_intr_start; 572 mcpu->intrstat[pil][0] += intrtime; 573 cpu->cpu_intracct[cpu->cpu_mstate] += intrtime; 574 575 /* 576 * If there is still an interrupted thread underneath this one 577 * then the interrupt was never blocked and the return is 578 * fairly simple. Otherwise it isn't. 579 */ 580 if ((t = it->t_intr) == NULL) { 581 /* 582 * Put thread back on the interrupt thread list. 583 * This was an interrupt thread, so set CPU's base SPL. 584 */ 585 set_base_spl(); 586 it->t_state = TS_FREE; 587 it->t_link = cpu->cpu_intr_thread; 588 cpu->cpu_intr_thread = it; 589 (void) splhigh(); 590 swtch(); 591 /*NOTREACHED*/ 592 } 593 it->t_link = cpu->cpu_intr_thread; 594 cpu->cpu_intr_thread = it; 595 it->t_state = TS_FREE; 596 cpu->cpu_thread = t; 597 if (t->t_flag & T_INTR_THREAD) 598 t->t_intr_start = tsc_read(); 599 basespl = cpu->cpu_base_spl; 600 pil = MAX(oldpil, basespl); 601 mcpu->mcpu_pri = pil; 602 (*setspl)(pil); 603 } 604 605 /* 606 * Make the interrupted thread 'to' be runnable. 607 * 608 * Since t->t_sp has already been saved, t->t_pc is all 609 * that needs to be set in this function. 610 * 611 * Returns the interrupt level of the interrupt thread. 612 */ 613 int 614 intr_passivate( 615 kthread_t *it, /* interrupt thread */ 616 kthread_t *t) /* interrupted thread */ 617 { 618 extern void _sys_rtt(); 619 620 ASSERT(it->t_flag & T_INTR_THREAD); 621 ASSERT(SA(t->t_sp) == t->t_sp); 622 623 t->t_pc = (uintptr_t)_sys_rtt; 624 return (it->t_pil); 625 } 626 627 #endif /* __amd64 */ 628 629 /* 630 * Allocate threads and stacks for interrupt handling. 631 */ 632 #define NINTR_THREADS (LOCK_LEVEL-1) /* number of interrupt threads */ 633 634 void 635 init_intr_threads(struct cpu *cp) 636 { 637 int i; 638 639 for (i = 0; i < NINTR_THREADS; i++) 640 thread_create_intr(cp); 641 642 cp->cpu_intr_stack = (caddr_t)segkp_get(segkp, INTR_STACK_SIZE, 643 KPD_HASREDZONE | KPD_NO_ANON | KPD_LOCKED) + 644 INTR_STACK_SIZE - SA(MINFRAME); 645 } 646 647 /* 648 * Create interrupt kstats for this CPU. 649 */ 650 void 651 cpu_create_intrstat(cpu_t *cp) 652 { 653 int i; 654 kstat_t *intr_ksp; 655 kstat_named_t *knp; 656 char name[KSTAT_STRLEN]; 657 zoneid_t zoneid; 658 659 ASSERT(MUTEX_HELD(&cpu_lock)); 660 661 if (pool_pset_enabled()) 662 zoneid = GLOBAL_ZONEID; 663 else 664 zoneid = ALL_ZONES; 665 666 intr_ksp = kstat_create_zone("cpu", cp->cpu_id, "intrstat", "misc", 667 KSTAT_TYPE_NAMED, PIL_MAX * 2, NULL, zoneid); 668 669 /* 670 * Initialize each PIL's named kstat 671 */ 672 if (intr_ksp != NULL) { 673 intr_ksp->ks_update = cpu_kstat_intrstat_update; 674 knp = (kstat_named_t *)intr_ksp->ks_data; 675 intr_ksp->ks_private = cp; 676 for (i = 0; i < PIL_MAX; i++) { 677 (void) snprintf(name, KSTAT_STRLEN, "level-%d-time", 678 i + 1); 679 kstat_named_init(&knp[i * 2], name, KSTAT_DATA_UINT64); 680 (void) snprintf(name, KSTAT_STRLEN, "level-%d-count", 681 i + 1); 682 kstat_named_init(&knp[(i * 2) + 1], name, 683 KSTAT_DATA_UINT64); 684 } 685 kstat_install(intr_ksp); 686 } 687 } 688 689 /* 690 * Delete interrupt kstats for this CPU. 691 */ 692 void 693 cpu_delete_intrstat(cpu_t *cp) 694 { 695 kstat_delete_byname_zone("cpu", cp->cpu_id, "intrstat", ALL_ZONES); 696 } 697 698 /* 699 * Convert interrupt statistics from CPU ticks to nanoseconds and 700 * update kstat. 701 */ 702 int 703 cpu_kstat_intrstat_update(kstat_t *ksp, int rw) 704 { 705 kstat_named_t *knp = ksp->ks_data; 706 cpu_t *cpup = (cpu_t *)ksp->ks_private; 707 int i; 708 hrtime_t hrt; 709 710 if (rw == KSTAT_WRITE) 711 return (EACCES); 712 713 for (i = 0; i < PIL_MAX; i++) { 714 hrt = (hrtime_t)cpup->cpu_m.intrstat[i + 1][0]; 715 tsc_scalehrtime(&hrt); 716 knp[i * 2].value.ui64 = (uint64_t)hrt; 717 knp[(i * 2) + 1].value.ui64 = cpup->cpu_stats.sys.intr[i]; 718 } 719 720 return (0); 721 } 722 723 /* 724 * An interrupt thread is ending a time slice, so compute the interval it 725 * ran for and update the statistic for its PIL. 726 */ 727 void 728 cpu_intr_swtch_enter(kthread_id_t t) 729 { 730 uint64_t interval; 731 uint64_t start; 732 cpu_t *cpu; 733 734 ASSERT((t->t_flag & T_INTR_THREAD) != 0); 735 ASSERT(t->t_pil > 0 && t->t_pil <= LOCK_LEVEL); 736 737 /* 738 * We could be here with a zero timestamp. This could happen if: 739 * an interrupt thread which no longer has a pinned thread underneath 740 * it (i.e. it blocked at some point in its past) has finished running 741 * its handler. intr_thread() updated the interrupt statistic for its 742 * PIL and zeroed its timestamp. Since there was no pinned thread to 743 * return to, swtch() gets called and we end up here. 744 * 745 * Note that we use atomic ops below (cas64 and atomic_add_64), which 746 * we don't use in the functions above, because we're not called 747 * with interrupts blocked, but the epilog/prolog functions are. 748 */ 749 if (t->t_intr_start) { 750 do { 751 start = t->t_intr_start; 752 interval = tsc_read() - start; 753 } while (cas64(&t->t_intr_start, start, 0) != start); 754 cpu = CPU; 755 cpu->cpu_m.intrstat[t->t_pil][0] += interval; 756 757 atomic_add_64((uint64_t *)&cpu->cpu_intracct[cpu->cpu_mstate], 758 interval); 759 } else 760 ASSERT(t->t_intr == NULL); 761 } 762 763 /* 764 * An interrupt thread is returning from swtch(). Place a starting timestamp 765 * in its thread structure. 766 */ 767 void 768 cpu_intr_swtch_exit(kthread_id_t t) 769 { 770 uint64_t ts; 771 772 ASSERT((t->t_flag & T_INTR_THREAD) != 0); 773 ASSERT(t->t_pil > 0 && t->t_pil <= LOCK_LEVEL); 774 775 do { 776 ts = t->t_intr_start; 777 } while (cas64(&t->t_intr_start, ts, tsc_read()) != ts); 778 } 779