xref: /titanic_41/usr/src/uts/i86pc/os/intr.c (revision 8b6220d73c6a079b62251e38103a523c41ee541a)
17c478bd9Sstevel@tonic-gate /*
27c478bd9Sstevel@tonic-gate  * CDDL HEADER START
37c478bd9Sstevel@tonic-gate  *
47c478bd9Sstevel@tonic-gate  * The contents of this file are subject to the terms of the
5100b72f4Sandrei  * Common Development and Distribution License (the "License").
6100b72f4Sandrei  * You may not use this file except in compliance with the License.
77c478bd9Sstevel@tonic-gate  *
87c478bd9Sstevel@tonic-gate  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
97c478bd9Sstevel@tonic-gate  * or http://www.opensolaris.org/os/licensing.
107c478bd9Sstevel@tonic-gate  * See the License for the specific language governing permissions
117c478bd9Sstevel@tonic-gate  * and limitations under the License.
127c478bd9Sstevel@tonic-gate  *
137c478bd9Sstevel@tonic-gate  * When distributing Covered Code, include this CDDL HEADER in each
147c478bd9Sstevel@tonic-gate  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
157c478bd9Sstevel@tonic-gate  * If applicable, add the following below this CDDL HEADER, with the
167c478bd9Sstevel@tonic-gate  * fields enclosed by brackets "[]" replaced with your own identifying
177c478bd9Sstevel@tonic-gate  * information: Portions Copyright [yyyy] [name of copyright owner]
187c478bd9Sstevel@tonic-gate  *
197c478bd9Sstevel@tonic-gate  * CDDL HEADER END
207c478bd9Sstevel@tonic-gate  */
21843e1988Sjohnlev 
227c478bd9Sstevel@tonic-gate /*
235cd376e8SJimmy Vetayases  * Copyright (c) 2004, 2010, Oracle and/or its affiliates. All rights reserved.
24636dfb4bSJerry Jelinek  * Copyright (c) 2012, Joyent, Inc.  All rights reserverd.
25636dfb4bSJerry Jelinek  */
26636dfb4bSJerry Jelinek 
27636dfb4bSJerry Jelinek /*
28636dfb4bSJerry Jelinek  * To understand the present state of interrupt handling on i86pc, we must
29636dfb4bSJerry Jelinek  * first consider the history of interrupt controllers and our way of handling
30636dfb4bSJerry Jelinek  * interrupts.
31636dfb4bSJerry Jelinek  *
32636dfb4bSJerry Jelinek  * History of Interrupt Controllers on i86pc
33636dfb4bSJerry Jelinek  * -----------------------------------------
34636dfb4bSJerry Jelinek  *
35636dfb4bSJerry Jelinek  *    Intel 8259 and 8259A
36636dfb4bSJerry Jelinek  *
37636dfb4bSJerry Jelinek  * The first interrupt controller that attained widespread use on i86pc was
38636dfb4bSJerry Jelinek  * the Intel 8259(A) Programmable Interrupt Controller that first saw use with
39636dfb4bSJerry Jelinek  * the 8086. It took up to 8 interrupt sources and combined them into one
40636dfb4bSJerry Jelinek  * output wire. Up to 8 8259s could be slaved together providing up to 64 IRQs.
41636dfb4bSJerry Jelinek  * With the switch to the 8259A, level mode interrupts became possible. For a
42636dfb4bSJerry Jelinek  * long time on i86pc the 8259A was the only way to handle interrupts and it
43636dfb4bSJerry Jelinek  * had its own set of quirks. The 8259A and its corresponding interval timer
44636dfb4bSJerry Jelinek  * the 8254 are programmed using outb and inb instructions.
45636dfb4bSJerry Jelinek  *
46636dfb4bSJerry Jelinek  *    Intel Advanced Programmable Interrupt Controller (APIC)
47636dfb4bSJerry Jelinek  *
48636dfb4bSJerry Jelinek  * Starting around the time of the introduction of the P6 family
49636dfb4bSJerry Jelinek  * microarchitecture (i686) Intel introduced a new interrupt controller.
50636dfb4bSJerry Jelinek  * Instead of having the series of slaved 8259A devices, Intel opted to outfit
51636dfb4bSJerry Jelinek  * each processor with a Local APIC (lapic) and to outfit the system with at
52636dfb4bSJerry Jelinek  * least one, but potentially more, I/O APICs (ioapic). The lapics and ioapics
53636dfb4bSJerry Jelinek  * initially communicated over a dedicated bus, but this has since been
54636dfb4bSJerry Jelinek  * replaced. Each physical core and even hyperthread currently contains its
55636dfb4bSJerry Jelinek  * own local apic, which is not shared. There are a few exceptions for
56636dfb4bSJerry Jelinek  * hyperthreads, but that does not usually concern us.
57636dfb4bSJerry Jelinek  *
58636dfb4bSJerry Jelinek  * Instead of talking directly to 8259 for status, sending End Of Interrupt
59636dfb4bSJerry Jelinek  * (EOI), etc. a microprocessor now communicates directly to the lapic. This
60636dfb4bSJerry Jelinek  * also allows for each microprocessor to be able to have independent controls.
61636dfb4bSJerry Jelinek  * The programming method is different from the 8259. Consumers map the lapic
62636dfb4bSJerry Jelinek  * registers into uncacheable memory to read and manipulate the state.
63636dfb4bSJerry Jelinek  *
64636dfb4bSJerry Jelinek  * The number of addressable interrupt vectors was increased to 256. However
65636dfb4bSJerry Jelinek  * vectors 0-31 are reserved for the processor exception handling, leaving the
66636dfb4bSJerry Jelinek  * remaining vectors for general use. In addition to hardware generated
67636dfb4bSJerry Jelinek  * interrupts, the lapic provides a way for generating inter-processor
68636dfb4bSJerry Jelinek  * interrupts (IPI) which are the basis for CPU cross calls and CPU pokes.
69636dfb4bSJerry Jelinek  *
70636dfb4bSJerry Jelinek  * AMD ended up implementing the Intel APIC architecture in lieu of their work
71636dfb4bSJerry Jelinek  * with Cyrix.
72636dfb4bSJerry Jelinek  *
73636dfb4bSJerry Jelinek  *    Intel x2apic
74636dfb4bSJerry Jelinek  *
75636dfb4bSJerry Jelinek  * The x2apic is an extension to the lapic which started showing up around the
76636dfb4bSJerry Jelinek  * same time as the Sandy Bridge chipsets. It provides a new programming mode
77636dfb4bSJerry Jelinek  * as well as new features. The goal of the x2apic is to solve a few problems
78636dfb4bSJerry Jelinek  * with the previous generation of lapic and the x2apic is backwards compatible
79636dfb4bSJerry Jelinek  * with the previous programming and model. The only downsides to using the
80636dfb4bSJerry Jelinek  * backwards compatibility is that you are not able to take advantage of the new
81636dfb4bSJerry Jelinek  * x2apic features.
82636dfb4bSJerry Jelinek  *
83636dfb4bSJerry Jelinek  *    o The APIC ID is increased from an 8-bit value to a 32-bit value. This
84636dfb4bSJerry Jelinek  *    increases the maximum number of addressable physical processors beyond
85636dfb4bSJerry Jelinek  *    256. This new ID is assembled in a similar manner as the information that
86636dfb4bSJerry Jelinek  *    is obtainable by the extended cpuid topology leaves.
87636dfb4bSJerry Jelinek  *
88636dfb4bSJerry Jelinek  *    o A new means of generating IPIs was introduced.
89636dfb4bSJerry Jelinek  *
90636dfb4bSJerry Jelinek  *    o Instead of memory mapping the registers, the x2apic only allows for
91636dfb4bSJerry Jelinek  *    programming it through a series of wrmsrs. This has important semantic
92636dfb4bSJerry Jelinek  *    side effects. Recall that the registers were previously all mapped to
93636dfb4bSJerry Jelinek  *    uncachable memory which meant that all operations to the local apic were
94636dfb4bSJerry Jelinek  *    serializing instructions. With the switch to using wrmsrs this has been
95636dfb4bSJerry Jelinek  *    relaxed and these operations can no longer be assumed to be serializing
96636dfb4bSJerry Jelinek  *    instructions.
97636dfb4bSJerry Jelinek  *
98636dfb4bSJerry Jelinek  * Note for the rest of this we are only going to concern ourselves with the
99636dfb4bSJerry Jelinek  * apic and x2apic which practically all of i86pc has been using now for
100636dfb4bSJerry Jelinek  * quite some time.
101636dfb4bSJerry Jelinek  *
102636dfb4bSJerry Jelinek  * Interrupt Priority Levels
103636dfb4bSJerry Jelinek  * -------------------------
104636dfb4bSJerry Jelinek  *
105636dfb4bSJerry Jelinek  * On i86pc systems there are a total of fifteen interrupt priority levels
106636dfb4bSJerry Jelinek  * (ipls) which range from 1-15. Level 0 is for normal processing and
107636dfb4bSJerry Jelinek  * non-interrupt processing. To manipulate these values the family of spl
108636dfb4bSJerry Jelinek  * functions (which date back to UNIX on the PDP-11) are used. Specifically,
109636dfb4bSJerry Jelinek  * splr() to raise the priority level and splx() to lower it. One should not
110636dfb4bSJerry Jelinek  * generally call setspl() directly.
111636dfb4bSJerry Jelinek  *
112636dfb4bSJerry Jelinek  * Both i86pc and the supported SPARC platforms honor the same conventions for
113636dfb4bSJerry Jelinek  * the meaning behind these IPLs. The most important IPL is the platform's
114636dfb4bSJerry Jelinek  * LOCK_LEVEL (0xa on i86pc). If a thread is above LOCK_LEVEL it _must_ not
115636dfb4bSJerry Jelinek  * sleep on any synchronization object. The only allowed synchronization
116636dfb4bSJerry Jelinek  * primitive is a mutex that has been specifically initialized to be a spin
117636dfb4bSJerry Jelinek  * lock (see mutex_init(9F)). Another important level is DISP_LEVEL (0xb on
118636dfb4bSJerry Jelinek  * i86pc). You must be at DISP_LEVEL if you want to control the dispatcher.
119636dfb4bSJerry Jelinek  * The XC_HI_PIL is the highest level (0xf) and is used during cross-calls.
120636dfb4bSJerry Jelinek  *
121636dfb4bSJerry Jelinek  * Each interrupt that is registered in the system fires at a specific IPL.
122636dfb4bSJerry Jelinek  * Generally most interrupts fire below LOCK_LEVEL.
123636dfb4bSJerry Jelinek  *
124636dfb4bSJerry Jelinek  * PSM Drivers
125636dfb4bSJerry Jelinek  * -----------
126636dfb4bSJerry Jelinek  *
127636dfb4bSJerry Jelinek  * We currently have three sets of PSM (platform specific module) drivers
128636dfb4bSJerry Jelinek  * available. uppc, pcplusmp, and apix. uppc (uni-processor PC) is the original
129636dfb4bSJerry Jelinek  * driver that interacts with the 8259A and 8254. In general, it is not used
130636dfb4bSJerry Jelinek  * anymore given the prevalence of the apic.
131636dfb4bSJerry Jelinek  *
132636dfb4bSJerry Jelinek  * The system prefers to use the apix driver over the pcplusmp driver. The apix
133636dfb4bSJerry Jelinek  * driver requires HW support for an x2apic. If there is no x2apic HW, apix
134636dfb4bSJerry Jelinek  * will not be used. In general we prefer using the apix driver over the
135636dfb4bSJerry Jelinek  * pcplusmp driver because it gives us much more flexibility with respect to
136636dfb4bSJerry Jelinek  * interrupts. In the apix driver each local apic has its own independent set
137636dfb4bSJerry Jelinek  * of  interrupts, whereas the pcplusmp driver only has a single global set of
138636dfb4bSJerry Jelinek  * interrupts. This is why pcplusmp only supports a finite number of interrupts
139636dfb4bSJerry Jelinek  * per IPL -- generally 16, often less. The apix driver supports using either
140636dfb4bSJerry Jelinek  * the x2apic or the local apic programing modes. The programming mode does not
141636dfb4bSJerry Jelinek  * change the number of interrupts available, just the number of processors
142636dfb4bSJerry Jelinek  * that we can address. For the apix driver, the x2apic mode is enabled if the
143636dfb4bSJerry Jelinek  * system supports interrupt re-mapping, otherwise the module manages the
144636dfb4bSJerry Jelinek  * x2apic in local mode.
145636dfb4bSJerry Jelinek  *
146636dfb4bSJerry Jelinek  * When there is no x2apic present, we default back to the pcplusmp PSM driver.
147636dfb4bSJerry Jelinek  * In general, this is not problematic unless you have more than 256
148636dfb4bSJerry Jelinek  * processors in the machine or you do not have enough interrupts available.
149636dfb4bSJerry Jelinek  *
150636dfb4bSJerry Jelinek  * Controlling Interrupt Generation on i86pc
151636dfb4bSJerry Jelinek  * -----------------------------------------
152636dfb4bSJerry Jelinek  *
153636dfb4bSJerry Jelinek  * There are two different ways to manipulate which interrupts will be
154636dfb4bSJerry Jelinek  * generated on i86pc. Each offers different degrees of control.
155636dfb4bSJerry Jelinek  *
156636dfb4bSJerry Jelinek  * The first is through the flags register (eflags and rflags on i386 and amd64
157636dfb4bSJerry Jelinek  * respectively). The IF bit determines whether or not interrupts are enabled
158636dfb4bSJerry Jelinek  * or disabled. This is manipulated in one of several ways. The most common way
159636dfb4bSJerry Jelinek  * is through the cli and sti instructions. These clear the IF flag and set it,
160636dfb4bSJerry Jelinek  * respectively, for the current processor. The other common way is through the
161636dfb4bSJerry Jelinek  * use of the intr_clear and intr_restore functions.
162636dfb4bSJerry Jelinek  *
163636dfb4bSJerry Jelinek  * Assuming interrupts are not blocked by the IF flag, then the second form is
164636dfb4bSJerry Jelinek  * through the Processor-Priority Register (PPR). The PPR is used to determine
165636dfb4bSJerry Jelinek  * whether or not a pending interrupt should be delivered. If the ipl of the
166636dfb4bSJerry Jelinek  * new interrupt is higher than the current value in the PPR, then the lapic
167636dfb4bSJerry Jelinek  * will either deliver it immediately (if interrupts are not in progress) or it
168636dfb4bSJerry Jelinek  * will deliver it once the current interrupt processing has issued an EOI. The
169636dfb4bSJerry Jelinek  * highest unmasked interrupt will be the one delivered.
170636dfb4bSJerry Jelinek  *
171636dfb4bSJerry Jelinek  * The PPR register is based upon the max of the following two registers in the
172636dfb4bSJerry Jelinek  * lapic, the TPR register (also known as CR8 on amd64) that can be used to
173636dfb4bSJerry Jelinek  * mask interrupt levels, and the current vector. Because the pcplusmp module
174636dfb4bSJerry Jelinek  * always sets TPR appropriately early in the do_interrupt path, we can usually
175636dfb4bSJerry Jelinek  * just think that the PPR is the TPR. The pcplusmp module also issues an EOI
176636dfb4bSJerry Jelinek  * once it has set the TPR, so higher priority interrupts can come in while
177636dfb4bSJerry Jelinek  * we're servicing a lower priority interrupt.
178636dfb4bSJerry Jelinek  *
179636dfb4bSJerry Jelinek  * Handling Interrupts
180636dfb4bSJerry Jelinek  * -------------------
181636dfb4bSJerry Jelinek  *
182636dfb4bSJerry Jelinek  * Interrupts can be broken down into three categories based on priority and
183636dfb4bSJerry Jelinek  * source:
184636dfb4bSJerry Jelinek  *
185636dfb4bSJerry Jelinek  *   o High level interrupts
186636dfb4bSJerry Jelinek  *   o Low level hardware interrupts
187636dfb4bSJerry Jelinek  *   o Low level software interrupts
188636dfb4bSJerry Jelinek  *
189636dfb4bSJerry Jelinek  *   High Level Interrupts
190636dfb4bSJerry Jelinek  *
191636dfb4bSJerry Jelinek  * High level interrupts encompasses both hardware-sourced and software-sourced
192636dfb4bSJerry Jelinek  * interrupts. Examples of high level hardware interrupts include the serial
193636dfb4bSJerry Jelinek  * console. High level software-sourced interrupts are still delivered through
194636dfb4bSJerry Jelinek  * the local apic through IPIs. This is primarily cross calls.
195636dfb4bSJerry Jelinek  *
196636dfb4bSJerry Jelinek  * When a high level interrupt comes in, we will raise the SPL and then pin the
197636dfb4bSJerry Jelinek  * current lwp to the processor. We will use its lwp, but our own interrupt
198636dfb4bSJerry Jelinek  * stack and process the high level interrupt in-situ. These handlers are
199636dfb4bSJerry Jelinek  * designed to be very short in nature and cannot go to sleep, only block on a
200636dfb4bSJerry Jelinek  * spin lock. If the interrupt has a lot of work to do, it must generate a
201636dfb4bSJerry Jelinek  * low-priority software interrupt that will be processed later.
202636dfb4bSJerry Jelinek  *
203636dfb4bSJerry Jelinek  *   Low level hardware interrupts
204636dfb4bSJerry Jelinek  *
205636dfb4bSJerry Jelinek  * Low level hardware interrupts start off like their high-level cousins. The
206636dfb4bSJerry Jelinek  * current CPU contains a number of kernel threads (kthread_t) that can be used
207636dfb4bSJerry Jelinek  * to process low level interrupts. These are shared between both low level
208636dfb4bSJerry Jelinek  * hardware and software interrupts. Note that while we run with our
209636dfb4bSJerry Jelinek  * kthread_t, we borrow the pinned threads lwp_t until such a time as we hit a
210636dfb4bSJerry Jelinek  * synchronization object. If we hit one and need to sleep, then the scheduler
211636dfb4bSJerry Jelinek  * will instead create the rest of what we need.
212636dfb4bSJerry Jelinek  *
213636dfb4bSJerry Jelinek  *   Low level software interrupts
214636dfb4bSJerry Jelinek  *
215636dfb4bSJerry Jelinek  * Low level software interrupts are handled in a similar way as hardware
216636dfb4bSJerry Jelinek  * interrupts, but the notification vector is different. Each CPU has a bitmask
217636dfb4bSJerry Jelinek  * of pending software interrupts. We can notify a CPU to process software
218636dfb4bSJerry Jelinek  * interrupts through a specific trap vector as well as through several
219636dfb4bSJerry Jelinek  * checks that are performed throughout the code. These checks will look at
220636dfb4bSJerry Jelinek  * processing software interrupts as we lower our spl.
221636dfb4bSJerry Jelinek  *
222636dfb4bSJerry Jelinek  * We attempt to process the highest pending software interrupt that we can
223636dfb4bSJerry Jelinek  * which is greater than our current IPL. If none currently exist, then we move
224636dfb4bSJerry Jelinek  * on. We process a software interrupt in a similar fashion to a hardware
225636dfb4bSJerry Jelinek  * interrupt.
226636dfb4bSJerry Jelinek  *
227636dfb4bSJerry Jelinek  * Traditional Interrupt Flow
228636dfb4bSJerry Jelinek  * --------------------------
229636dfb4bSJerry Jelinek  *
230636dfb4bSJerry Jelinek  * The following diagram tracks the flow of the traditional uppc and pcplusmp
231636dfb4bSJerry Jelinek  * interrupt handlers. The apix driver has its own version of do_interrupt().
232636dfb4bSJerry Jelinek  * We come into the interrupt handler with all interrupts masked by the IF
233636dfb4bSJerry Jelinek  * flag. This is because we set up the handler using an interrupt-gate, which
234636dfb4bSJerry Jelinek  * is defined architecturally to have cleared the IF flag for us.
235636dfb4bSJerry Jelinek  *
236636dfb4bSJerry Jelinek  * +--------------+    +----------------+    +-----------+
237636dfb4bSJerry Jelinek  * | _interrupt() |--->| do_interrupt() |--->| *setlvl() |
238636dfb4bSJerry Jelinek  * +--------------+    +----------------+    +-----------+
239636dfb4bSJerry Jelinek  *                       |      |     |
240636dfb4bSJerry Jelinek  *                       |      |     |
241636dfb4bSJerry Jelinek  *              low-level|      |     | softint
242636dfb4bSJerry Jelinek  *                HW int |      |     +---------------------------------------+
243636dfb4bSJerry Jelinek  * +--------------+      |      |                                             |
244636dfb4bSJerry Jelinek  * | intr_thread_ |<-----+      | hi-level int                                |
245636dfb4bSJerry Jelinek  * | prolog()     |             |    +----------+                             |
246636dfb4bSJerry Jelinek  * +--------------+             +--->| hilevel_ |      Not on intr stack      |
247636dfb4bSJerry Jelinek  *       |                           | intr_    |-----------------+           |
248636dfb4bSJerry Jelinek  *       |                           | prolog() |                 |           |
249636dfb4bSJerry Jelinek  * +------------+                    +----------+                 |           |
250636dfb4bSJerry Jelinek  * | switch_sp_ |                        | On intr                v           |
251636dfb4bSJerry Jelinek  * | and_call() |                        | Stack          +------------+      |
252636dfb4bSJerry Jelinek  * +------------+                        |                | switch_sp_ |      |
253636dfb4bSJerry Jelinek  *       |                               v                | and_call() |      |
254636dfb4bSJerry Jelinek  *       v                             +-----------+      +------------+      |
255636dfb4bSJerry Jelinek  * +-----------+                       | dispatch_ |             |            |
256636dfb4bSJerry Jelinek  * | dispatch_ |   +-------------------| hilevel() |<------------+            |
257636dfb4bSJerry Jelinek  * | hardint() |   |                   +-----------+                          |
258636dfb4bSJerry Jelinek  * +-----------+   |                                                          |
259636dfb4bSJerry Jelinek  *       |         v                                                          |
260636dfb4bSJerry Jelinek  *       |     +-----+  +----------------------+  +-----+  hi-level           |
261636dfb4bSJerry Jelinek  *       +---->| sti |->| av_dispatch_autovect |->| cli |---------+           |
262636dfb4bSJerry Jelinek  *             +-----+  +----------------------+  +-----+         |           |
263636dfb4bSJerry Jelinek  *                                |                |              |           |
264636dfb4bSJerry Jelinek  *                                v                |              |           |
265636dfb4bSJerry Jelinek  *                         +----------+            |              |           |
266636dfb4bSJerry Jelinek  *                         | for each |            |              |           |
267636dfb4bSJerry Jelinek  *                         | handler  |            |              |           |
268636dfb4bSJerry Jelinek  *                         |  *intr() |            |              v           |
269636dfb4bSJerry Jelinek  * +--------------+        +----------+            |      +----------------+  |
270636dfb4bSJerry Jelinek  * | intr_thread_ |                      low-level |      | hilevel_intr_  |  |
271636dfb4bSJerry Jelinek  * | epilog()     |<-------------------------------+      | epilog()       |  |
272636dfb4bSJerry Jelinek  * +--------------+                                       +----------------+  |
273636dfb4bSJerry Jelinek  *   |       |                                                   |            |
274636dfb4bSJerry Jelinek  *   |       +----------------------v      v---------------------+            |
275636dfb4bSJerry Jelinek  *   |                           +------------+                               |
276636dfb4bSJerry Jelinek  *   |   +---------------------->| *setlvlx() |                               |
277636dfb4bSJerry Jelinek  *   |   |                       +------------+                               |
278636dfb4bSJerry Jelinek  *   |   |                              |                                     |
279636dfb4bSJerry Jelinek  *   |   |                              v                                     |
280636dfb4bSJerry Jelinek  *   |   |      +--------+     +------------------+      +-------------+      |
281636dfb4bSJerry Jelinek  *   |   |      | return |<----| softint pending? |----->| dosoftint() |<-----+
282636dfb4bSJerry Jelinek  *   |   |      +--------+  no +------------------+ yes  +-------------+
283636dfb4bSJerry Jelinek  *   |   |           ^                                      |     |
284636dfb4bSJerry Jelinek  *   |   |           |  softint pil too low                 |     |
285636dfb4bSJerry Jelinek  *   |   |           +--------------------------------------+     |
286636dfb4bSJerry Jelinek  *   |   |                                                        v
287636dfb4bSJerry Jelinek  *   |   |    +-----------+      +------------+          +-----------+
288636dfb4bSJerry Jelinek  *   |   |    | dispatch_ |<-----| switch_sp_ |<---------| *setspl() |
289636dfb4bSJerry Jelinek  *   |   |    | softint() |      | and_call() |          +-----------+
290636dfb4bSJerry Jelinek  *   |   |    +-----------+      +------------+
291636dfb4bSJerry Jelinek  *   |   |        |
292636dfb4bSJerry Jelinek  *   |   |        v
293636dfb4bSJerry Jelinek  *   |   |      +-----+  +----------------------+  +-----+  +------------+
294636dfb4bSJerry Jelinek  *   |   |      | sti |->| av_dispatch_autovect |->| cli |->| dosoftint_ |
295636dfb4bSJerry Jelinek  *   |   |      +-----+  +----------------------+  +-----+  | epilog()   |
296636dfb4bSJerry Jelinek  *   |   |                                                  +------------+
297636dfb4bSJerry Jelinek  *   |   |                                                    |     |
298636dfb4bSJerry Jelinek  *   |   +----------------------------------------------------+     |
299636dfb4bSJerry Jelinek  *   v                                                              |
300636dfb4bSJerry Jelinek  * +-----------+                                                    |
301636dfb4bSJerry Jelinek  * | interrupt |                                                    |
302636dfb4bSJerry Jelinek  * | thread    |<---------------------------------------------------+
303636dfb4bSJerry Jelinek  * | blocked   |
304636dfb4bSJerry Jelinek  * +-----------+
305636dfb4bSJerry Jelinek  *      |
306636dfb4bSJerry Jelinek  *      v
307636dfb4bSJerry Jelinek  *  +----------------+  +------------+  +-----------+  +-------+  +---------+
308636dfb4bSJerry Jelinek  *  | set_base_spl() |->| *setlvlx() |->| splhigh() |->| sti() |->| swtch() |
309636dfb4bSJerry Jelinek  *  +----------------+  +------------+  +-----------+  +-------+  +---------+
310636dfb4bSJerry Jelinek  *
311636dfb4bSJerry Jelinek  *    Calls made on Interrupt Stacks and Epilogue routines
312636dfb4bSJerry Jelinek  *
313636dfb4bSJerry Jelinek  * We use the switch_sp_and_call() assembly routine to switch our sp to the
314636dfb4bSJerry Jelinek  * interrupt stacks and then call the appropriate dispatch function. In the
315636dfb4bSJerry Jelinek  * case of interrupts which may block, softints and hardints, we always ensure
316636dfb4bSJerry Jelinek  * that we are still on the interrupt thread when we call the epilog routine.
317636dfb4bSJerry Jelinek  * This is not just important, it's necessary. If the interrupt thread blocked,
318636dfb4bSJerry Jelinek  * we won't return from our switch_sp_and_call() function and instead we'll go
319636dfb4bSJerry Jelinek  * through and set ourselves up to swtch() directly.
320636dfb4bSJerry Jelinek  *
321636dfb4bSJerry Jelinek  * New Interrupt Flow
322636dfb4bSJerry Jelinek  * ------------------
323636dfb4bSJerry Jelinek  *
324636dfb4bSJerry Jelinek  * The apix module has its own interrupt path. This is done for various
325636dfb4bSJerry Jelinek  * reasons. The first is that rather than having global interrupt vectors, we
326636dfb4bSJerry Jelinek  * now have per-cpu vectors.
327636dfb4bSJerry Jelinek  *
328636dfb4bSJerry Jelinek  * The other substantial change is that the apix design does not use the TPR to
329636dfb4bSJerry Jelinek  * mask interrupts below the current level. In fact, except for one special
330636dfb4bSJerry Jelinek  * case, it does not use the TPR at all. Instead, it only uses the IF flag
331636dfb4bSJerry Jelinek  * (cli/sti) to either block all interrupts or allow any interrupts to come in.
332636dfb4bSJerry Jelinek  * The design is such that when interrupts are allowed to come in, if we are
333636dfb4bSJerry Jelinek  * currently servicing a higher priority interupt, the new interrupt is treated
334636dfb4bSJerry Jelinek  * as pending and serviced later. Specifically, in the pcplusmp module's
335636dfb4bSJerry Jelinek  * apic_intr_enter() the code masks interrupts at or below the current
336636dfb4bSJerry Jelinek  * IPL using the TPR before sending EOI, whereas the apix module's
337636dfb4bSJerry Jelinek  * apix_intr_enter() simply sends EOI.
338636dfb4bSJerry Jelinek  *
339636dfb4bSJerry Jelinek  * The one special case where the apix code uses the TPR is when it calls
340636dfb4bSJerry Jelinek  * through the apic_reg_ops function pointer apic_write_task_reg in
341636dfb4bSJerry Jelinek  * apix_init_intr() to initially mask all levels and then finally to enable all
342636dfb4bSJerry Jelinek  * levels.
343636dfb4bSJerry Jelinek  *
344636dfb4bSJerry Jelinek  * Recall that we come into the interrupt handler with all interrupts masked
345636dfb4bSJerry Jelinek  * by the IF flag. This is because we set up the handler using an
346636dfb4bSJerry Jelinek  * interrupt-gate which is defined architecturally to have cleared the IF flag
347636dfb4bSJerry Jelinek  * for us.
348636dfb4bSJerry Jelinek  *
349636dfb4bSJerry Jelinek  * +--------------+    +---------------------+
350636dfb4bSJerry Jelinek  * | _interrupt() |--->| apix_do_interrupt() |
351636dfb4bSJerry Jelinek  * +--------------+    +---------------------+
352636dfb4bSJerry Jelinek  *                               |
353636dfb4bSJerry Jelinek  *                hard int? +----+--------+ softint?
354636dfb4bSJerry Jelinek  *                          |             | (but no low-level looping)
355636dfb4bSJerry Jelinek  *                   +-----------+        |
356636dfb4bSJerry Jelinek  *                   | *setlvl() |        |
357636dfb4bSJerry Jelinek  * +---------+       +-----------+        +----------------------------------+
358636dfb4bSJerry Jelinek  * |apix_add_|    check IPL |                                                |
359636dfb4bSJerry Jelinek  * |pending_ |<-------------+------+----------------------+                  |
360636dfb4bSJerry Jelinek  * |hardint()|        low-level int|          hi-level int|                  |
361636dfb4bSJerry Jelinek  * +---------+                     v                      v                  |
362636dfb4bSJerry Jelinek  *     | check IPL       +-----------------+     +---------------+           |
363636dfb4bSJerry Jelinek  *  +--+-----+           | apix_intr_      |     | apix_hilevel_ |           |
364636dfb4bSJerry Jelinek  *  |        |           | thread_prolog() |     | intr_prolog() |           |
365636dfb4bSJerry Jelinek  *  |      return        +-----------------+     +---------------+           |
366636dfb4bSJerry Jelinek  *  |                         |                    | On intr                 |
367636dfb4bSJerry Jelinek  *  |                   +------------+             | stack?  +------------+  |
368636dfb4bSJerry Jelinek  *  |                   | switch_sp_ |             +---------| switch_sp_ |  |
369636dfb4bSJerry Jelinek  *  |                   | and_call() |             |         | and_call() |  |
370636dfb4bSJerry Jelinek  *  |                   +------------+             |         +------------+  |
371636dfb4bSJerry Jelinek  *  |                         |                    |          |              |
372636dfb4bSJerry Jelinek  *  |                   +----------------+     +----------------+            |
373636dfb4bSJerry Jelinek  *  |                   | apix_dispatch_ |     | apix_dispatch_ |            |
374636dfb4bSJerry Jelinek  *  |                   | lowlevel()     |     | hilevel()      |            |
375636dfb4bSJerry Jelinek  *  |                   +----------------+     +----------------+            |
376636dfb4bSJerry Jelinek  *  |                                |             |                         |
377636dfb4bSJerry Jelinek  *  |                                v             v                         |
378636dfb4bSJerry Jelinek  *  |                       +-------------------------+                      |
379636dfb4bSJerry Jelinek  *  |                       |apix_dispatch_by_vector()|----+                 |
380636dfb4bSJerry Jelinek  *  |                       +-------------------------+    |                 |
381636dfb4bSJerry Jelinek  *  |               !XC_HI_PIL|         |         |        |                 |
382636dfb4bSJerry Jelinek  *  |                       +---+   +-------+   +---+      |                 |
383636dfb4bSJerry Jelinek  *  |                       |sti|   |*intr()|   |cli|      |                 |
384636dfb4bSJerry Jelinek  *  |                       +---+   +-------+   +---+      |  hi-level?      |
385636dfb4bSJerry Jelinek  *  |                          +---------------------------+----+            |
386636dfb4bSJerry Jelinek  *  |                          v                low-level?      v            |
387636dfb4bSJerry Jelinek  *  |                  +----------------+               +----------------+   |
388636dfb4bSJerry Jelinek  *  |                  | apix_intr_     |               | apix_hilevel_  |   |
389636dfb4bSJerry Jelinek  *  |                  | thread_epilog()|               | intr_epilog()  |   |
390636dfb4bSJerry Jelinek  *  |                  +----------------+               +----------------+   |
391636dfb4bSJerry Jelinek  *  |                          |                                |            |
392636dfb4bSJerry Jelinek  *  |        v-----------------+--------------------------------+            |
393636dfb4bSJerry Jelinek  *  |  +------------+                                                        |
394636dfb4bSJerry Jelinek  *  |  | *setlvlx() |   +----------------------------------------------------+
395636dfb4bSJerry Jelinek  *  |  +------------+   |
396636dfb4bSJerry Jelinek  *  |      |            |            +--------------------------------+ low
397636dfb4bSJerry Jelinek  *  v      v     v------+            v                                | level
398636dfb4bSJerry Jelinek  * +------------------+      +------------------+      +-----------+  | pending?
399636dfb4bSJerry Jelinek  * | apix_do_pending_ |----->| apix_do_pending_ |----->| apix_do_  |--+
400636dfb4bSJerry Jelinek  * | hilevel()        |      | hardint()        |      | softint() |  |
401636dfb4bSJerry Jelinek  * +------------------+      +------------------+      +-----------+    return
402636dfb4bSJerry Jelinek  *     |                       |                         |
403636dfb4bSJerry Jelinek  *     | while pending         | while pending           | while pending
404636dfb4bSJerry Jelinek  *     | hi-level              | low-level               | softint
405636dfb4bSJerry Jelinek  *     |                       |                         |
406636dfb4bSJerry Jelinek  *  +---------------+        +-----------------+       +-----------------+
407636dfb4bSJerry Jelinek  *  | apix_hilevel_ |        | apix_intr_      |       | apix_do_        |
408636dfb4bSJerry Jelinek  *  | intr_prolog() |        | thread_prolog() |       | softint_prolog()|
409636dfb4bSJerry Jelinek  *  +---------------+        +-----------------+       +-----------------+
410636dfb4bSJerry Jelinek  *     | On intr                       |                      |
411636dfb4bSJerry Jelinek  *     | stack? +------------+    +------------+        +------------+
412636dfb4bSJerry Jelinek  *     +--------| switch_sp_ |    | switch_sp_ |        | switch_sp_ |
413636dfb4bSJerry Jelinek  *     |        | and_call() |    | and_call() |        | and_call() |
414636dfb4bSJerry Jelinek  *     |        +------------+    +------------+        +------------+
415636dfb4bSJerry Jelinek  *     |           |                   |                      |
416636dfb4bSJerry Jelinek  *  +------------------+   +------------------+   +------------------------+
417636dfb4bSJerry Jelinek  *  | apix_dispatch_   |   | apix_dispatch_   |   | apix_dispatch_softint()|
418636dfb4bSJerry Jelinek  *  | pending_hilevel()|   | pending_hardint()|   +------------------------+
419636dfb4bSJerry Jelinek  *  +------------------+   +------------------+      |    |      |      |
420636dfb4bSJerry Jelinek  *    |         |           |         |              |    |      |      |
421636dfb4bSJerry Jelinek  *    | +----------------+  | +----------------+     |    |      |      |
422636dfb4bSJerry Jelinek  *    | | apix_hilevel_  |  | | apix_intr_     |     |    |      |      |
423636dfb4bSJerry Jelinek  *    | | intr_epilog()  |  | | thread_epilog()|     |    |      |      |
424636dfb4bSJerry Jelinek  *    | +----------------+  | +----------------+     |    |      |      |
425636dfb4bSJerry Jelinek  *    |         |           |       |                |    |      |      |
426636dfb4bSJerry Jelinek  *    |   +------------+    |  +----------+   +------+    |      |      |
427636dfb4bSJerry Jelinek  *    |   | *setlvlx() |    |  |*setlvlx()|   |           |      |      |
428636dfb4bSJerry Jelinek  *    |   +------------+    |  +----------+   |   +----------+   |   +---------+
429636dfb4bSJerry Jelinek  *    |                     |               +---+ |av_       | +---+ |apix_do_ |
430636dfb4bSJerry Jelinek  * +---------------------------------+      |sti| |dispatch_ | |cli| |softint_ |
431636dfb4bSJerry Jelinek  * | apix_dispatch_pending_autovect()|      +---+ |softvect()| +---+ |epilog() |
432636dfb4bSJerry Jelinek  * +---------------------------------+            +----------+       +---------+
433636dfb4bSJerry Jelinek  *  |!XC_HI_PIL  |       |         |                    |
434636dfb4bSJerry Jelinek  * +---+  +-------+    +---+  +----------+          +-------+
435636dfb4bSJerry Jelinek  * |sti|  |*intr()|    |cli|  |apix_post_|          |*intr()|
436636dfb4bSJerry Jelinek  * +---+  +-------+    +---+  |hardint() |          +-------+
437636dfb4bSJerry Jelinek  *                            +----------+
4387c478bd9Sstevel@tonic-gate  */
4397c478bd9Sstevel@tonic-gate 
4407c478bd9Sstevel@tonic-gate #include <sys/cpuvar.h>
441fb2caebeSRandy Fishel #include <sys/cpu_event.h>
4427c478bd9Sstevel@tonic-gate #include <sys/regset.h>
4437c478bd9Sstevel@tonic-gate #include <sys/psw.h>
4447c478bd9Sstevel@tonic-gate #include <sys/types.h>
4457c478bd9Sstevel@tonic-gate #include <sys/thread.h>
4467c478bd9Sstevel@tonic-gate #include <sys/systm.h>
4477c478bd9Sstevel@tonic-gate #include <sys/segments.h>
4487c478bd9Sstevel@tonic-gate #include <sys/pcb.h>
4497c478bd9Sstevel@tonic-gate #include <sys/trap.h>
4507c478bd9Sstevel@tonic-gate #include <sys/ftrace.h>
4517c478bd9Sstevel@tonic-gate #include <sys/traptrace.h>
4527c478bd9Sstevel@tonic-gate #include <sys/clock.h>
4537c478bd9Sstevel@tonic-gate #include <sys/panic.h>
4547c478bd9Sstevel@tonic-gate #include <sys/disp.h>
4557c478bd9Sstevel@tonic-gate #include <vm/seg_kp.h>
4567c478bd9Sstevel@tonic-gate #include <sys/stack.h>
4577c478bd9Sstevel@tonic-gate #include <sys/sysmacros.h>
4587c478bd9Sstevel@tonic-gate #include <sys/cmn_err.h>
4597c478bd9Sstevel@tonic-gate #include <sys/kstat.h>
4607c478bd9Sstevel@tonic-gate #include <sys/smp_impldefs.h>
4617c478bd9Sstevel@tonic-gate #include <sys/pool_pset.h>
4627c478bd9Sstevel@tonic-gate #include <sys/zone.h>
4637c478bd9Sstevel@tonic-gate #include <sys/bitmap.h>
464ae115bc7Smrj #include <sys/archsystm.h>
465ae115bc7Smrj #include <sys/machsystm.h>
466ae115bc7Smrj #include <sys/ontrap.h>
467ae115bc7Smrj #include <sys/x86_archext.h>
468ae115bc7Smrj #include <sys/promif.h>
46995c0a3c8Sjosephb #include <vm/hat_i86.h>
470843e1988Sjohnlev #if defined(__xpv)
471843e1988Sjohnlev #include <sys/hypervisor.h>
472843e1988Sjohnlev #endif
4737c478bd9Sstevel@tonic-gate 
4747c478bd9Sstevel@tonic-gate 
475843e1988Sjohnlev #if defined(__xpv) && defined(DEBUG)
476843e1988Sjohnlev 
477843e1988Sjohnlev /*
478843e1988Sjohnlev  * This panic message is intended as an aid to interrupt debugging.
479843e1988Sjohnlev  *
480843e1988Sjohnlev  * The associated assertion tests the condition of enabling
481843e1988Sjohnlev  * events when events are already enabled.  The implication
482843e1988Sjohnlev  * being that whatever code the programmer thought was
483843e1988Sjohnlev  * protected by having events disabled until the second
484843e1988Sjohnlev  * enable happened really wasn't protected at all ..
485843e1988Sjohnlev  */
486843e1988Sjohnlev 
487843e1988Sjohnlev int stistipanic = 1;	/* controls the debug panic check */
488843e1988Sjohnlev const char *stistimsg = "stisti";
489843e1988Sjohnlev ulong_t laststi[NCPU];
490843e1988Sjohnlev 
491843e1988Sjohnlev /*
492843e1988Sjohnlev  * This variable tracks the last place events were disabled on each cpu
493fb2caebeSRandy Fishel  * it assists in debugging when asserts that interrupts are enabled trip.
494843e1988Sjohnlev  */
495843e1988Sjohnlev ulong_t lastcli[NCPU];
496843e1988Sjohnlev 
497843e1988Sjohnlev #endif
498843e1988Sjohnlev 
4997ff178cdSJimmy Vetayases void do_interrupt(struct regs *rp, trap_trace_rec_t *ttp);
5007ff178cdSJimmy Vetayases 
5017ff178cdSJimmy Vetayases void (*do_interrupt_common)(struct regs *, trap_trace_rec_t *) = do_interrupt;
5027ff178cdSJimmy Vetayases uintptr_t (*get_intr_handler)(int, short) = NULL;
5037ff178cdSJimmy Vetayases 
5047c478bd9Sstevel@tonic-gate /*
505ae115bc7Smrj  * Set cpu's base SPL level to the highest active interrupt level
5067c478bd9Sstevel@tonic-gate  */
507ae115bc7Smrj void
set_base_spl(void)508ae115bc7Smrj set_base_spl(void)
5097c478bd9Sstevel@tonic-gate {
510ae115bc7Smrj 	struct cpu *cpu = CPU;
511ae115bc7Smrj 	uint16_t active = (uint16_t)cpu->cpu_intr_actv;
5127c478bd9Sstevel@tonic-gate 
513ae115bc7Smrj 	cpu->cpu_base_spl = active == 0 ? 0 : bsrw_insn(active);
5147c478bd9Sstevel@tonic-gate }
5157c478bd9Sstevel@tonic-gate 
5167c478bd9Sstevel@tonic-gate /*
5177c478bd9Sstevel@tonic-gate  * Do all the work necessary to set up the cpu and thread structures
5187c478bd9Sstevel@tonic-gate  * to dispatch a high-level interrupt.
5197c478bd9Sstevel@tonic-gate  *
5207c478bd9Sstevel@tonic-gate  * Returns 0 if we're -not- already on the high-level interrupt stack,
5217c478bd9Sstevel@tonic-gate  * (and *must* switch to it), non-zero if we are already on that stack.
5227c478bd9Sstevel@tonic-gate  *
5237c478bd9Sstevel@tonic-gate  * Called with interrupts masked.
5247c478bd9Sstevel@tonic-gate  * The 'pil' is already set to the appropriate level for rp->r_trapno.
5257c478bd9Sstevel@tonic-gate  */
526ae115bc7Smrj static int
hilevel_intr_prolog(struct cpu * cpu,uint_t pil,uint_t oldpil,struct regs * rp)5277c478bd9Sstevel@tonic-gate hilevel_intr_prolog(struct cpu *cpu, uint_t pil, uint_t oldpil, struct regs *rp)
5287c478bd9Sstevel@tonic-gate {
5297c478bd9Sstevel@tonic-gate 	struct machcpu *mcpu = &cpu->cpu_m;
5307c478bd9Sstevel@tonic-gate 	uint_t mask;
531eda89462Sesolom 	hrtime_t intrtime;
532ae115bc7Smrj 	hrtime_t now = tsc_read();
5337c478bd9Sstevel@tonic-gate 
5347c478bd9Sstevel@tonic-gate 	ASSERT(pil > LOCK_LEVEL);
5357c478bd9Sstevel@tonic-gate 
5367c478bd9Sstevel@tonic-gate 	if (pil == CBE_HIGH_PIL) {
5377c478bd9Sstevel@tonic-gate 		cpu->cpu_profile_pil = oldpil;
5387c478bd9Sstevel@tonic-gate 		if (USERMODE(rp->r_cs)) {
5397c478bd9Sstevel@tonic-gate 			cpu->cpu_profile_pc = 0;
5407c478bd9Sstevel@tonic-gate 			cpu->cpu_profile_upc = rp->r_pc;
541b9e93c10SJonathan Haslam 			cpu->cpu_cpcprofile_pc = 0;
542b9e93c10SJonathan Haslam 			cpu->cpu_cpcprofile_upc = rp->r_pc;
5437c478bd9Sstevel@tonic-gate 		} else {
5447c478bd9Sstevel@tonic-gate 			cpu->cpu_profile_pc = rp->r_pc;
5457c478bd9Sstevel@tonic-gate 			cpu->cpu_profile_upc = 0;
546b9e93c10SJonathan Haslam 			cpu->cpu_cpcprofile_pc = rp->r_pc;
547b9e93c10SJonathan Haslam 			cpu->cpu_cpcprofile_upc = 0;
5487c478bd9Sstevel@tonic-gate 		}
5497c478bd9Sstevel@tonic-gate 	}
5507c478bd9Sstevel@tonic-gate 
5517c478bd9Sstevel@tonic-gate 	mask = cpu->cpu_intr_actv & CPU_INTR_ACTV_HIGH_LEVEL_MASK;
5527c478bd9Sstevel@tonic-gate 	if (mask != 0) {
5537c478bd9Sstevel@tonic-gate 		int nestpil;
5547c478bd9Sstevel@tonic-gate 
5557c478bd9Sstevel@tonic-gate 		/*
5567c478bd9Sstevel@tonic-gate 		 * We have interrupted another high-level interrupt.
5577c478bd9Sstevel@tonic-gate 		 * Load starting timestamp, compute interval, update
5587c478bd9Sstevel@tonic-gate 		 * cumulative counter.
5597c478bd9Sstevel@tonic-gate 		 */
5607c478bd9Sstevel@tonic-gate 		nestpil = bsrw_insn((uint16_t)mask);
5617c478bd9Sstevel@tonic-gate 		ASSERT(nestpil < pil);
562ae115bc7Smrj 		intrtime = now -
5637c478bd9Sstevel@tonic-gate 		    mcpu->pil_high_start[nestpil - (LOCK_LEVEL + 1)];
5647a364d25Sschwartz 		mcpu->intrstat[nestpil][0] += intrtime;
565eda89462Sesolom 		cpu->cpu_intracct[cpu->cpu_mstate] += intrtime;
5667c478bd9Sstevel@tonic-gate 		/*
5677c478bd9Sstevel@tonic-gate 		 * Another high-level interrupt is active below this one, so
5687c478bd9Sstevel@tonic-gate 		 * there is no need to check for an interrupt thread.  That
5697c478bd9Sstevel@tonic-gate 		 * will be done by the lowest priority high-level interrupt
5707c478bd9Sstevel@tonic-gate 		 * active.
5717c478bd9Sstevel@tonic-gate 		 */
5727c478bd9Sstevel@tonic-gate 	} else {
5737c478bd9Sstevel@tonic-gate 		kthread_t *t = cpu->cpu_thread;
5747c478bd9Sstevel@tonic-gate 
5757c478bd9Sstevel@tonic-gate 		/*
5767c478bd9Sstevel@tonic-gate 		 * See if we are interrupting a low-level interrupt thread.
5777c478bd9Sstevel@tonic-gate 		 * If so, account for its time slice only if its time stamp
5787c478bd9Sstevel@tonic-gate 		 * is non-zero.
5797c478bd9Sstevel@tonic-gate 		 */
5807c478bd9Sstevel@tonic-gate 		if ((t->t_flag & T_INTR_THREAD) != 0 && t->t_intr_start != 0) {
581ae115bc7Smrj 			intrtime = now - t->t_intr_start;
5827a364d25Sschwartz 			mcpu->intrstat[t->t_pil][0] += intrtime;
583eda89462Sesolom 			cpu->cpu_intracct[cpu->cpu_mstate] += intrtime;
5847c478bd9Sstevel@tonic-gate 			t->t_intr_start = 0;
5857c478bd9Sstevel@tonic-gate 		}
5867c478bd9Sstevel@tonic-gate 	}
5877c478bd9Sstevel@tonic-gate 
5887c478bd9Sstevel@tonic-gate 	/*
5897c478bd9Sstevel@tonic-gate 	 * Store starting timestamp in CPU structure for this PIL.
5907c478bd9Sstevel@tonic-gate 	 */
591ae115bc7Smrj 	mcpu->pil_high_start[pil - (LOCK_LEVEL + 1)] = now;
5927c478bd9Sstevel@tonic-gate 
5937c478bd9Sstevel@tonic-gate 	ASSERT((cpu->cpu_intr_actv & (1 << pil)) == 0);
5947c478bd9Sstevel@tonic-gate 
5957c478bd9Sstevel@tonic-gate 	if (pil == 15) {
5967c478bd9Sstevel@tonic-gate 		/*
5977c478bd9Sstevel@tonic-gate 		 * To support reentrant level 15 interrupts, we maintain a
5987c478bd9Sstevel@tonic-gate 		 * recursion count in the top half of cpu_intr_actv.  Only
5997c478bd9Sstevel@tonic-gate 		 * when this count hits zero do we clear the PIL 15 bit from
6007c478bd9Sstevel@tonic-gate 		 * the lower half of cpu_intr_actv.
6017c478bd9Sstevel@tonic-gate 		 */
6027c478bd9Sstevel@tonic-gate 		uint16_t *refcntp = (uint16_t *)&cpu->cpu_intr_actv + 1;
6037c478bd9Sstevel@tonic-gate 		(*refcntp)++;
6047c478bd9Sstevel@tonic-gate 	}
6057c478bd9Sstevel@tonic-gate 
6067c478bd9Sstevel@tonic-gate 	mask = cpu->cpu_intr_actv;
6077c478bd9Sstevel@tonic-gate 
6087c478bd9Sstevel@tonic-gate 	cpu->cpu_intr_actv |= (1 << pil);
6097c478bd9Sstevel@tonic-gate 
6107c478bd9Sstevel@tonic-gate 	return (mask & CPU_INTR_ACTV_HIGH_LEVEL_MASK);
6117c478bd9Sstevel@tonic-gate }
6127c478bd9Sstevel@tonic-gate 
6137c478bd9Sstevel@tonic-gate /*
6147c478bd9Sstevel@tonic-gate  * Does most of the work of returning from a high level interrupt.
6157c478bd9Sstevel@tonic-gate  *
6167c478bd9Sstevel@tonic-gate  * Returns 0 if there are no more high level interrupts (in which
6177c478bd9Sstevel@tonic-gate  * case we must switch back to the interrupted thread stack) or
6187c478bd9Sstevel@tonic-gate  * non-zero if there are more (in which case we should stay on it).
6197c478bd9Sstevel@tonic-gate  *
6207c478bd9Sstevel@tonic-gate  * Called with interrupts masked
6217c478bd9Sstevel@tonic-gate  */
622ae115bc7Smrj static int
hilevel_intr_epilog(struct cpu * cpu,uint_t pil,uint_t oldpil,uint_t vecnum)6237c478bd9Sstevel@tonic-gate hilevel_intr_epilog(struct cpu *cpu, uint_t pil, uint_t oldpil, uint_t vecnum)
6247c478bd9Sstevel@tonic-gate {
6257c478bd9Sstevel@tonic-gate 	struct machcpu *mcpu = &cpu->cpu_m;
6267c478bd9Sstevel@tonic-gate 	uint_t mask;
627eda89462Sesolom 	hrtime_t intrtime;
628ae115bc7Smrj 	hrtime_t now = tsc_read();
6297c478bd9Sstevel@tonic-gate 
6307c478bd9Sstevel@tonic-gate 	ASSERT(mcpu->mcpu_pri == pil);
6317c478bd9Sstevel@tonic-gate 
6327c478bd9Sstevel@tonic-gate 	cpu->cpu_stats.sys.intr[pil - 1]++;
6337c478bd9Sstevel@tonic-gate 
6347c478bd9Sstevel@tonic-gate 	ASSERT(cpu->cpu_intr_actv & (1 << pil));
6357c478bd9Sstevel@tonic-gate 
6367c478bd9Sstevel@tonic-gate 	if (pil == 15) {
6377c478bd9Sstevel@tonic-gate 		/*
6387c478bd9Sstevel@tonic-gate 		 * To support reentrant level 15 interrupts, we maintain a
6397c478bd9Sstevel@tonic-gate 		 * recursion count in the top half of cpu_intr_actv.  Only
6407c478bd9Sstevel@tonic-gate 		 * when this count hits zero do we clear the PIL 15 bit from
6417c478bd9Sstevel@tonic-gate 		 * the lower half of cpu_intr_actv.
6427c478bd9Sstevel@tonic-gate 		 */
6437c478bd9Sstevel@tonic-gate 		uint16_t *refcntp = (uint16_t *)&cpu->cpu_intr_actv + 1;
6447c478bd9Sstevel@tonic-gate 
6457c478bd9Sstevel@tonic-gate 		ASSERT(*refcntp > 0);
6467c478bd9Sstevel@tonic-gate 
6477c478bd9Sstevel@tonic-gate 		if (--(*refcntp) == 0)
6487c478bd9Sstevel@tonic-gate 			cpu->cpu_intr_actv &= ~(1 << pil);
6497c478bd9Sstevel@tonic-gate 	} else {
6507c478bd9Sstevel@tonic-gate 		cpu->cpu_intr_actv &= ~(1 << pil);
6517c478bd9Sstevel@tonic-gate 	}
6527c478bd9Sstevel@tonic-gate 
6537c478bd9Sstevel@tonic-gate 	ASSERT(mcpu->pil_high_start[pil - (LOCK_LEVEL + 1)] != 0);
6547c478bd9Sstevel@tonic-gate 
655ae115bc7Smrj 	intrtime = now - mcpu->pil_high_start[pil - (LOCK_LEVEL + 1)];
6567a364d25Sschwartz 	mcpu->intrstat[pil][0] += intrtime;
657eda89462Sesolom 	cpu->cpu_intracct[cpu->cpu_mstate] += intrtime;
6587c478bd9Sstevel@tonic-gate 
6597c478bd9Sstevel@tonic-gate 	/*
6607c478bd9Sstevel@tonic-gate 	 * Check for lower-pil nested high-level interrupt beneath
6617c478bd9Sstevel@tonic-gate 	 * current one.  If so, place a starting timestamp in its
6627c478bd9Sstevel@tonic-gate 	 * pil_high_start entry.
6637c478bd9Sstevel@tonic-gate 	 */
6647c478bd9Sstevel@tonic-gate 	mask = cpu->cpu_intr_actv & CPU_INTR_ACTV_HIGH_LEVEL_MASK;
6657c478bd9Sstevel@tonic-gate 	if (mask != 0) {
6667c478bd9Sstevel@tonic-gate 		int nestpil;
6677c478bd9Sstevel@tonic-gate 
6687c478bd9Sstevel@tonic-gate 		/*
6697c478bd9Sstevel@tonic-gate 		 * find PIL of nested interrupt
6707c478bd9Sstevel@tonic-gate 		 */
6717c478bd9Sstevel@tonic-gate 		nestpil = bsrw_insn((uint16_t)mask);
6727c478bd9Sstevel@tonic-gate 		ASSERT(nestpil < pil);
673ae115bc7Smrj 		mcpu->pil_high_start[nestpil - (LOCK_LEVEL + 1)] = now;
6747c478bd9Sstevel@tonic-gate 		/*
6757c478bd9Sstevel@tonic-gate 		 * (Another high-level interrupt is active below this one,
6767c478bd9Sstevel@tonic-gate 		 * so there is no need to check for an interrupt
6777c478bd9Sstevel@tonic-gate 		 * thread.  That will be done by the lowest priority
6787c478bd9Sstevel@tonic-gate 		 * high-level interrupt active.)
6797c478bd9Sstevel@tonic-gate 		 */
6807c478bd9Sstevel@tonic-gate 	} else {
6817c478bd9Sstevel@tonic-gate 		/*
6827c478bd9Sstevel@tonic-gate 		 * Check to see if there is a low-level interrupt active.
6837c478bd9Sstevel@tonic-gate 		 * If so, place a starting timestamp in the thread
6847c478bd9Sstevel@tonic-gate 		 * structure.
6857c478bd9Sstevel@tonic-gate 		 */
6867c478bd9Sstevel@tonic-gate 		kthread_t *t = cpu->cpu_thread;
6877c478bd9Sstevel@tonic-gate 
6887c478bd9Sstevel@tonic-gate 		if (t->t_flag & T_INTR_THREAD)
689ae115bc7Smrj 			t->t_intr_start = now;
6907c478bd9Sstevel@tonic-gate 	}
6917c478bd9Sstevel@tonic-gate 
6927c478bd9Sstevel@tonic-gate 	mcpu->mcpu_pri = oldpil;
6937c478bd9Sstevel@tonic-gate 	(void) (*setlvlx)(oldpil, vecnum);
6947c478bd9Sstevel@tonic-gate 
6957c478bd9Sstevel@tonic-gate 	return (cpu->cpu_intr_actv & CPU_INTR_ACTV_HIGH_LEVEL_MASK);
6967c478bd9Sstevel@tonic-gate }
6977c478bd9Sstevel@tonic-gate 
6987c478bd9Sstevel@tonic-gate /*
6997c478bd9Sstevel@tonic-gate  * Set up the cpu, thread and interrupt thread structures for
7007c478bd9Sstevel@tonic-gate  * executing an interrupt thread.  The new stack pointer of the
7017c478bd9Sstevel@tonic-gate  * interrupt thread (which *must* be switched to) is returned.
7027c478bd9Sstevel@tonic-gate  */
703ae115bc7Smrj static caddr_t
intr_thread_prolog(struct cpu * cpu,caddr_t stackptr,uint_t pil)7047c478bd9Sstevel@tonic-gate intr_thread_prolog(struct cpu *cpu, caddr_t stackptr, uint_t pil)
7057c478bd9Sstevel@tonic-gate {
7067c478bd9Sstevel@tonic-gate 	struct machcpu *mcpu = &cpu->cpu_m;
7077c478bd9Sstevel@tonic-gate 	kthread_t *t, *volatile it;
708ae115bc7Smrj 	hrtime_t now = tsc_read();
7097c478bd9Sstevel@tonic-gate 
7107c478bd9Sstevel@tonic-gate 	ASSERT(pil > 0);
7117c478bd9Sstevel@tonic-gate 	ASSERT((cpu->cpu_intr_actv & (1 << pil)) == 0);
7127c478bd9Sstevel@tonic-gate 	cpu->cpu_intr_actv |= (1 << pil);
7137c478bd9Sstevel@tonic-gate 
7147c478bd9Sstevel@tonic-gate 	/*
7157c478bd9Sstevel@tonic-gate 	 * Get set to run an interrupt thread.
7167c478bd9Sstevel@tonic-gate 	 * There should always be an interrupt thread, since we
7177c478bd9Sstevel@tonic-gate 	 * allocate one for each level on each CPU.
7187c478bd9Sstevel@tonic-gate 	 *
719fd71cd2fSesolom 	 * t_intr_start could be zero due to cpu_intr_swtch_enter.
7207c478bd9Sstevel@tonic-gate 	 */
7217c478bd9Sstevel@tonic-gate 	t = cpu->cpu_thread;
722fd71cd2fSesolom 	if ((t->t_flag & T_INTR_THREAD) && t->t_intr_start != 0) {
723ae115bc7Smrj 		hrtime_t intrtime = now - t->t_intr_start;
7247a364d25Sschwartz 		mcpu->intrstat[t->t_pil][0] += intrtime;
725eda89462Sesolom 		cpu->cpu_intracct[cpu->cpu_mstate] += intrtime;
7267c478bd9Sstevel@tonic-gate 		t->t_intr_start = 0;
7277c478bd9Sstevel@tonic-gate 	}
7287c478bd9Sstevel@tonic-gate 
7297c478bd9Sstevel@tonic-gate 	ASSERT(SA((uintptr_t)stackptr) == (uintptr_t)stackptr);
7307c478bd9Sstevel@tonic-gate 
7317c478bd9Sstevel@tonic-gate 	t->t_sp = (uintptr_t)stackptr;	/* mark stack in curthread for resume */
7327c478bd9Sstevel@tonic-gate 
7337c478bd9Sstevel@tonic-gate 	/*
7347c478bd9Sstevel@tonic-gate 	 * unlink the interrupt thread off the cpu
735fd71cd2fSesolom 	 *
736fd71cd2fSesolom 	 * Note that the code in kcpc_overflow_intr -relies- on the
737fd71cd2fSesolom 	 * ordering of events here - in particular that t->t_lwp of
738fd71cd2fSesolom 	 * the interrupt thread is set to the pinned thread *before*
739fd71cd2fSesolom 	 * curthread is changed.
7407c478bd9Sstevel@tonic-gate 	 */
7417c478bd9Sstevel@tonic-gate 	it = cpu->cpu_intr_thread;
7427c478bd9Sstevel@tonic-gate 	cpu->cpu_intr_thread = it->t_link;
7437c478bd9Sstevel@tonic-gate 	it->t_intr = t;
7447c478bd9Sstevel@tonic-gate 	it->t_lwp = t->t_lwp;
7457c478bd9Sstevel@tonic-gate 
7467c478bd9Sstevel@tonic-gate 	/*
7477c478bd9Sstevel@tonic-gate 	 * (threads on the interrupt thread free list could have state
7487c478bd9Sstevel@tonic-gate 	 * preset to TS_ONPROC, but it helps in debugging if
7497c478bd9Sstevel@tonic-gate 	 * they're TS_FREE.)
7507c478bd9Sstevel@tonic-gate 	 */
7517c478bd9Sstevel@tonic-gate 	it->t_state = TS_ONPROC;
7527c478bd9Sstevel@tonic-gate 
7537c478bd9Sstevel@tonic-gate 	cpu->cpu_thread = it;		/* new curthread on this cpu */
7547c478bd9Sstevel@tonic-gate 	it->t_pil = (uchar_t)pil;
7557c478bd9Sstevel@tonic-gate 	it->t_pri = intr_pri + (pri_t)pil;
756ae115bc7Smrj 	it->t_intr_start = now;
7577c478bd9Sstevel@tonic-gate 
7587c478bd9Sstevel@tonic-gate 	return (it->t_stk);
7597c478bd9Sstevel@tonic-gate }
7607c478bd9Sstevel@tonic-gate 
7617c478bd9Sstevel@tonic-gate 
7627c478bd9Sstevel@tonic-gate #ifdef DEBUG
7637c478bd9Sstevel@tonic-gate int intr_thread_cnt;
7647c478bd9Sstevel@tonic-gate #endif
7657c478bd9Sstevel@tonic-gate 
7667c478bd9Sstevel@tonic-gate /*
7677c478bd9Sstevel@tonic-gate  * Called with interrupts disabled
7687c478bd9Sstevel@tonic-gate  */
769ae115bc7Smrj static void
intr_thread_epilog(struct cpu * cpu,uint_t vec,uint_t oldpil)7707c478bd9Sstevel@tonic-gate intr_thread_epilog(struct cpu *cpu, uint_t vec, uint_t oldpil)
7717c478bd9Sstevel@tonic-gate {
7727c478bd9Sstevel@tonic-gate 	struct machcpu *mcpu = &cpu->cpu_m;
7737c478bd9Sstevel@tonic-gate 	kthread_t *t;
7747c478bd9Sstevel@tonic-gate 	kthread_t *it = cpu->cpu_thread;	/* curthread */
7757c478bd9Sstevel@tonic-gate 	uint_t pil, basespl;
776eda89462Sesolom 	hrtime_t intrtime;
777ae115bc7Smrj 	hrtime_t now = tsc_read();
7787c478bd9Sstevel@tonic-gate 
7797c478bd9Sstevel@tonic-gate 	pil = it->t_pil;
7807c478bd9Sstevel@tonic-gate 	cpu->cpu_stats.sys.intr[pil - 1]++;
7817c478bd9Sstevel@tonic-gate 
7827c478bd9Sstevel@tonic-gate 	ASSERT(it->t_intr_start != 0);
783ae115bc7Smrj 	intrtime = now - it->t_intr_start;
7847a364d25Sschwartz 	mcpu->intrstat[pil][0] += intrtime;
785eda89462Sesolom 	cpu->cpu_intracct[cpu->cpu_mstate] += intrtime;
7867c478bd9Sstevel@tonic-gate 
7877c478bd9Sstevel@tonic-gate 	ASSERT(cpu->cpu_intr_actv & (1 << pil));
7887c478bd9Sstevel@tonic-gate 	cpu->cpu_intr_actv &= ~(1 << pil);
7897c478bd9Sstevel@tonic-gate 
7907c478bd9Sstevel@tonic-gate 	/*
7917c478bd9Sstevel@tonic-gate 	 * If there is still an interrupted thread underneath this one
7927c478bd9Sstevel@tonic-gate 	 * then the interrupt was never blocked and the return is
7937c478bd9Sstevel@tonic-gate 	 * fairly simple.  Otherwise it isn't.
7947c478bd9Sstevel@tonic-gate 	 */
7957c478bd9Sstevel@tonic-gate 	if ((t = it->t_intr) == NULL) {
7967c478bd9Sstevel@tonic-gate 		/*
7977c478bd9Sstevel@tonic-gate 		 * The interrupted thread is no longer pinned underneath
7987c478bd9Sstevel@tonic-gate 		 * the interrupt thread.  This means the interrupt must
7997c478bd9Sstevel@tonic-gate 		 * have blocked, and the interrupted thread has been
8007c478bd9Sstevel@tonic-gate 		 * unpinned, and has probably been running around the
8017c478bd9Sstevel@tonic-gate 		 * system for a while.
8027c478bd9Sstevel@tonic-gate 		 *
8037c478bd9Sstevel@tonic-gate 		 * Since there is no longer a thread under this one, put
8047c478bd9Sstevel@tonic-gate 		 * this interrupt thread back on the CPU's free list and
8057c478bd9Sstevel@tonic-gate 		 * resume the idle thread which will dispatch the next
8067c478bd9Sstevel@tonic-gate 		 * thread to run.
8077c478bd9Sstevel@tonic-gate 		 */
8087c478bd9Sstevel@tonic-gate #ifdef DEBUG
8097c478bd9Sstevel@tonic-gate 		intr_thread_cnt++;
8107c478bd9Sstevel@tonic-gate #endif
8117c478bd9Sstevel@tonic-gate 		cpu->cpu_stats.sys.intrblk++;
8127c478bd9Sstevel@tonic-gate 		/*
8137c478bd9Sstevel@tonic-gate 		 * Set CPU's base SPL based on active interrupts bitmask
8147c478bd9Sstevel@tonic-gate 		 */
8157c478bd9Sstevel@tonic-gate 		set_base_spl();
8167c478bd9Sstevel@tonic-gate 		basespl = cpu->cpu_base_spl;
8177c478bd9Sstevel@tonic-gate 		mcpu->mcpu_pri = basespl;
8187c478bd9Sstevel@tonic-gate 		(*setlvlx)(basespl, vec);
8197c478bd9Sstevel@tonic-gate 		(void) splhigh();
820ae115bc7Smrj 		sti();
8217c478bd9Sstevel@tonic-gate 		it->t_state = TS_FREE;
8227c478bd9Sstevel@tonic-gate 		/*
8237c478bd9Sstevel@tonic-gate 		 * Return interrupt thread to pool
8247c478bd9Sstevel@tonic-gate 		 */
8257c478bd9Sstevel@tonic-gate 		it->t_link = cpu->cpu_intr_thread;
8267c478bd9Sstevel@tonic-gate 		cpu->cpu_intr_thread = it;
8277c478bd9Sstevel@tonic-gate 		swtch();
828ae115bc7Smrj 		panic("intr_thread_epilog: swtch returned");
8297c478bd9Sstevel@tonic-gate 		/*NOTREACHED*/
8307c478bd9Sstevel@tonic-gate 	}
8317c478bd9Sstevel@tonic-gate 
8327c478bd9Sstevel@tonic-gate 	/*
8337c478bd9Sstevel@tonic-gate 	 * Return interrupt thread to the pool
8347c478bd9Sstevel@tonic-gate 	 */
8357c478bd9Sstevel@tonic-gate 	it->t_link = cpu->cpu_intr_thread;
8367c478bd9Sstevel@tonic-gate 	cpu->cpu_intr_thread = it;
8377c478bd9Sstevel@tonic-gate 	it->t_state = TS_FREE;
8387c478bd9Sstevel@tonic-gate 
8397c478bd9Sstevel@tonic-gate 	basespl = cpu->cpu_base_spl;
8407c478bd9Sstevel@tonic-gate 	pil = MAX(oldpil, basespl);
8417c478bd9Sstevel@tonic-gate 	mcpu->mcpu_pri = pil;
8427c478bd9Sstevel@tonic-gate 	(*setlvlx)(pil, vec);
843ae115bc7Smrj 	t->t_intr_start = now;
8447c478bd9Sstevel@tonic-gate 	cpu->cpu_thread = t;
8457c478bd9Sstevel@tonic-gate }
8467c478bd9Sstevel@tonic-gate 
8477a364d25Sschwartz /*
848ae115bc7Smrj  * intr_get_time() is a resource for interrupt handlers to determine how
849ae115bc7Smrj  * much time has been spent handling the current interrupt. Such a function
850ae115bc7Smrj  * is needed because higher level interrupts can arrive during the
851ae115bc7Smrj  * processing of an interrupt.  intr_get_time() only returns time spent in the
852ae115bc7Smrj  * current interrupt handler.
853ae115bc7Smrj  *
854ae115bc7Smrj  * The caller must be calling from an interrupt handler running at a pil
855ae115bc7Smrj  * below or at lock level. Timings are not provided for high-level
856ae115bc7Smrj  * interrupts.
857ae115bc7Smrj  *
858ae115bc7Smrj  * The first time intr_get_time() is called while handling an interrupt,
859ae115bc7Smrj  * it returns the time since the interrupt handler was invoked. Subsequent
860ae115bc7Smrj  * calls will return the time since the prior call to intr_get_time(). Time
861843e1988Sjohnlev  * is returned as ticks. Use scalehrtimef() to convert ticks to nsec.
862ae115bc7Smrj  *
863ae115bc7Smrj  * Theory Of Intrstat[][]:
864ae115bc7Smrj  *
865ae115bc7Smrj  * uint64_t intrstat[pil][0..1] is an array indexed by pil level, with two
866ae115bc7Smrj  * uint64_ts per pil.
867ae115bc7Smrj  *
868ae115bc7Smrj  * intrstat[pil][0] is a cumulative count of the number of ticks spent
869ae115bc7Smrj  * handling all interrupts at the specified pil on this CPU. It is
870ae115bc7Smrj  * exported via kstats to the user.
871ae115bc7Smrj  *
872ae115bc7Smrj  * intrstat[pil][1] is always a count of ticks less than or equal to the
873ae115bc7Smrj  * value in [0]. The difference between [1] and [0] is the value returned
874ae115bc7Smrj  * by a call to intr_get_time(). At the start of interrupt processing,
875ae115bc7Smrj  * [0] and [1] will be equal (or nearly so). As the interrupt consumes
876ae115bc7Smrj  * time, [0] will increase, but [1] will remain the same. A call to
877ae115bc7Smrj  * intr_get_time() will return the difference, then update [1] to be the
878ae115bc7Smrj  * same as [0]. Future calls will return the time since the last call.
879ae115bc7Smrj  * Finally, when the interrupt completes, [1] is updated to the same as [0].
880ae115bc7Smrj  *
881ae115bc7Smrj  * Implementation:
882ae115bc7Smrj  *
883ae115bc7Smrj  * intr_get_time() works much like a higher level interrupt arriving. It
884ae115bc7Smrj  * "checkpoints" the timing information by incrementing intrstat[pil][0]
885ae115bc7Smrj  * to include elapsed running time, and by setting t_intr_start to rdtsc.
886ae115bc7Smrj  * It then sets the return value to intrstat[pil][0] - intrstat[pil][1],
887ae115bc7Smrj  * and updates intrstat[pil][1] to be the same as the new value of
888ae115bc7Smrj  * intrstat[pil][0].
889ae115bc7Smrj  *
890ae115bc7Smrj  * In the normal handling of interrupts, after an interrupt handler returns
891ae115bc7Smrj  * and the code in intr_thread() updates intrstat[pil][0], it then sets
892ae115bc7Smrj  * intrstat[pil][1] to the new value of intrstat[pil][0]. When [0] == [1],
893ae115bc7Smrj  * the timings are reset, i.e. intr_get_time() will return [0] - [1] which
894ae115bc7Smrj  * is 0.
895ae115bc7Smrj  *
896ae115bc7Smrj  * Whenever interrupts arrive on a CPU which is handling a lower pil
897ae115bc7Smrj  * interrupt, they update the lower pil's [0] to show time spent in the
898ae115bc7Smrj  * handler that they've interrupted. This results in a growing discrepancy
899ae115bc7Smrj  * between [0] and [1], which is returned the next time intr_get_time() is
900ae115bc7Smrj  * called. Time spent in the higher-pil interrupt will not be returned in
901ae115bc7Smrj  * the next intr_get_time() call from the original interrupt, because
902ae115bc7Smrj  * the higher-pil interrupt's time is accumulated in intrstat[higherpil][].
9037a364d25Sschwartz  */
9047a364d25Sschwartz uint64_t
intr_get_time(void)905ae115bc7Smrj intr_get_time(void)
9067a364d25Sschwartz {
907ae115bc7Smrj 	struct cpu *cpu;
908ae115bc7Smrj 	struct machcpu *mcpu;
909ae115bc7Smrj 	kthread_t *t;
9107a364d25Sschwartz 	uint64_t time, delta, ret;
911ae115bc7Smrj 	uint_t pil;
9127a364d25Sschwartz 
913ae115bc7Smrj 	cli();
914ae115bc7Smrj 	cpu = CPU;
915ae115bc7Smrj 	mcpu = &cpu->cpu_m;
916ae115bc7Smrj 	t = cpu->cpu_thread;
917ae115bc7Smrj 	pil = t->t_pil;
9187a364d25Sschwartz 	ASSERT((cpu->cpu_intr_actv & CPU_INTR_ACTV_HIGH_LEVEL_MASK) == 0);
9197a364d25Sschwartz 	ASSERT(t->t_flag & T_INTR_THREAD);
9207a364d25Sschwartz 	ASSERT(pil != 0);
9217a364d25Sschwartz 	ASSERT(t->t_intr_start != 0);
9227a364d25Sschwartz 
9237a364d25Sschwartz 	time = tsc_read();
9247a364d25Sschwartz 	delta = time - t->t_intr_start;
9257a364d25Sschwartz 	t->t_intr_start = time;
9267a364d25Sschwartz 
9277a364d25Sschwartz 	time = mcpu->intrstat[pil][0] + delta;
9287a364d25Sschwartz 	ret = time - mcpu->intrstat[pil][1];
9297a364d25Sschwartz 	mcpu->intrstat[pil][0] = time;
9307a364d25Sschwartz 	mcpu->intrstat[pil][1] = time;
931c81508f4Sjhaslam 	cpu->cpu_intracct[cpu->cpu_mstate] += delta;
9327a364d25Sschwartz 
933ae115bc7Smrj 	sti();
9347a364d25Sschwartz 	return (ret);
9357a364d25Sschwartz }
9367a364d25Sschwartz 
937ae115bc7Smrj static caddr_t
dosoftint_prolog(struct cpu * cpu,caddr_t stackptr,uint32_t st_pending,uint_t oldpil)9387c478bd9Sstevel@tonic-gate dosoftint_prolog(
9397c478bd9Sstevel@tonic-gate 	struct cpu *cpu,
9407c478bd9Sstevel@tonic-gate 	caddr_t stackptr,
9417c478bd9Sstevel@tonic-gate 	uint32_t st_pending,
9427c478bd9Sstevel@tonic-gate 	uint_t oldpil)
9437c478bd9Sstevel@tonic-gate {
9447c478bd9Sstevel@tonic-gate 	kthread_t *t, *volatile it;
9457c478bd9Sstevel@tonic-gate 	struct machcpu *mcpu = &cpu->cpu_m;
9467c478bd9Sstevel@tonic-gate 	uint_t pil;
947ae115bc7Smrj 	hrtime_t now;
9487c478bd9Sstevel@tonic-gate 
9497c478bd9Sstevel@tonic-gate top:
9507c478bd9Sstevel@tonic-gate 	ASSERT(st_pending == mcpu->mcpu_softinfo.st_pending);
9517c478bd9Sstevel@tonic-gate 
9527c478bd9Sstevel@tonic-gate 	pil = bsrw_insn((uint16_t)st_pending);
9537c478bd9Sstevel@tonic-gate 	if (pil <= oldpil || pil <= cpu->cpu_base_spl)
9547c478bd9Sstevel@tonic-gate 		return (0);
9557c478bd9Sstevel@tonic-gate 
9567c478bd9Sstevel@tonic-gate 	/*
9577c478bd9Sstevel@tonic-gate 	 * XX64	Sigh.
9587c478bd9Sstevel@tonic-gate 	 *
9597c478bd9Sstevel@tonic-gate 	 * This is a transliteration of the i386 assembler code for
9607c478bd9Sstevel@tonic-gate 	 * soft interrupts.  One question is "why does this need
9617c478bd9Sstevel@tonic-gate 	 * to be atomic?"  One possible race is -other- processors
9627c478bd9Sstevel@tonic-gate 	 * posting soft interrupts to us in set_pending() i.e. the
9637c478bd9Sstevel@tonic-gate 	 * CPU might get preempted just after the address computation,
9647c478bd9Sstevel@tonic-gate 	 * but just before the atomic transaction, so another CPU would
9657c478bd9Sstevel@tonic-gate 	 * actually set the original CPU's st_pending bit.  However,
9667c478bd9Sstevel@tonic-gate 	 * it looks like it would be simpler to disable preemption there.
9677c478bd9Sstevel@tonic-gate 	 * Are there other races for which preemption control doesn't work?
9687c478bd9Sstevel@tonic-gate 	 *
9697c478bd9Sstevel@tonic-gate 	 * The i386 assembler version -also- checks to see if the bit
9707c478bd9Sstevel@tonic-gate 	 * being cleared was actually set; if it wasn't, it rechecks
9717c478bd9Sstevel@tonic-gate 	 * for more.  This seems a bit strange, as the only code that
9727c478bd9Sstevel@tonic-gate 	 * ever clears the bit is -this- code running with interrupts
9737c478bd9Sstevel@tonic-gate 	 * disabled on -this- CPU.  This code would probably be cheaper:
9747c478bd9Sstevel@tonic-gate 	 *
9757c478bd9Sstevel@tonic-gate 	 * atomic_and_32((uint32_t *)&mcpu->mcpu_softinfo.st_pending,
9767c478bd9Sstevel@tonic-gate 	 *   ~(1 << pil));
9777c478bd9Sstevel@tonic-gate 	 *
9787c478bd9Sstevel@tonic-gate 	 * and t->t_preempt--/++ around set_pending() even cheaper,
9797c478bd9Sstevel@tonic-gate 	 * but at this point, correctness is critical, so we slavishly
9807c478bd9Sstevel@tonic-gate 	 * emulate the i386 port.
9817c478bd9Sstevel@tonic-gate 	 */
982ae115bc7Smrj 	if (atomic_btr32((uint32_t *)
983ae115bc7Smrj 	    &mcpu->mcpu_softinfo.st_pending, pil) == 0) {
9847c478bd9Sstevel@tonic-gate 		st_pending = mcpu->mcpu_softinfo.st_pending;
9857c478bd9Sstevel@tonic-gate 		goto top;
9867c478bd9Sstevel@tonic-gate 	}
9877c478bd9Sstevel@tonic-gate 
9887c478bd9Sstevel@tonic-gate 	mcpu->mcpu_pri = pil;
9897c478bd9Sstevel@tonic-gate 	(*setspl)(pil);
9907c478bd9Sstevel@tonic-gate 
991ae115bc7Smrj 	now = tsc_read();
992ae115bc7Smrj 
9937c478bd9Sstevel@tonic-gate 	/*
9947c478bd9Sstevel@tonic-gate 	 * Get set to run interrupt thread.
9957c478bd9Sstevel@tonic-gate 	 * There should always be an interrupt thread since we
9967c478bd9Sstevel@tonic-gate 	 * allocate one for each level on the CPU.
9977c478bd9Sstevel@tonic-gate 	 */
9987c478bd9Sstevel@tonic-gate 	it = cpu->cpu_intr_thread;
9997c478bd9Sstevel@tonic-gate 	cpu->cpu_intr_thread = it->t_link;
10007c478bd9Sstevel@tonic-gate 
1001fd71cd2fSesolom 	/* t_intr_start could be zero due to cpu_intr_swtch_enter. */
1002fd71cd2fSesolom 	t = cpu->cpu_thread;
1003fd71cd2fSesolom 	if ((t->t_flag & T_INTR_THREAD) && t->t_intr_start != 0) {
1004ae115bc7Smrj 		hrtime_t intrtime = now - t->t_intr_start;
1005fd71cd2fSesolom 		mcpu->intrstat[pil][0] += intrtime;
1006fd71cd2fSesolom 		cpu->cpu_intracct[cpu->cpu_mstate] += intrtime;
1007fd71cd2fSesolom 		t->t_intr_start = 0;
1008fd71cd2fSesolom 	}
1009fd71cd2fSesolom 
10107c478bd9Sstevel@tonic-gate 	/*
10117c478bd9Sstevel@tonic-gate 	 * Note that the code in kcpc_overflow_intr -relies- on the
10127c478bd9Sstevel@tonic-gate 	 * ordering of events here - in particular that t->t_lwp of
10137c478bd9Sstevel@tonic-gate 	 * the interrupt thread is set to the pinned thread *before*
1014fd71cd2fSesolom 	 * curthread is changed.
10157c478bd9Sstevel@tonic-gate 	 */
10167c478bd9Sstevel@tonic-gate 	it->t_lwp = t->t_lwp;
10177c478bd9Sstevel@tonic-gate 	it->t_state = TS_ONPROC;
10187c478bd9Sstevel@tonic-gate 
10197c478bd9Sstevel@tonic-gate 	/*
10207c478bd9Sstevel@tonic-gate 	 * Push interrupted thread onto list from new thread.
10217c478bd9Sstevel@tonic-gate 	 * Set the new thread as the current one.
10227c478bd9Sstevel@tonic-gate 	 * Set interrupted thread's T_SP because if it is the idle thread,
10237c478bd9Sstevel@tonic-gate 	 * resume() may use that stack between threads.
10247c478bd9Sstevel@tonic-gate 	 */
10257c478bd9Sstevel@tonic-gate 
10267c478bd9Sstevel@tonic-gate 	ASSERT(SA((uintptr_t)stackptr) == (uintptr_t)stackptr);
10277c478bd9Sstevel@tonic-gate 	t->t_sp = (uintptr_t)stackptr;
10287c478bd9Sstevel@tonic-gate 
10297c478bd9Sstevel@tonic-gate 	it->t_intr = t;
10307c478bd9Sstevel@tonic-gate 	cpu->cpu_thread = it;
10317c478bd9Sstevel@tonic-gate 
10327c478bd9Sstevel@tonic-gate 	/*
10337c478bd9Sstevel@tonic-gate 	 * Set bit for this pil in CPU's interrupt active bitmask.
10347c478bd9Sstevel@tonic-gate 	 */
10357c478bd9Sstevel@tonic-gate 	ASSERT((cpu->cpu_intr_actv & (1 << pil)) == 0);
10367c478bd9Sstevel@tonic-gate 	cpu->cpu_intr_actv |= (1 << pil);
10377c478bd9Sstevel@tonic-gate 
10387c478bd9Sstevel@tonic-gate 	/*
10397c478bd9Sstevel@tonic-gate 	 * Initialize thread priority level from intr_pri
10407c478bd9Sstevel@tonic-gate 	 */
10417c478bd9Sstevel@tonic-gate 	it->t_pil = (uchar_t)pil;
10427c478bd9Sstevel@tonic-gate 	it->t_pri = (pri_t)pil + intr_pri;
1043ae115bc7Smrj 	it->t_intr_start = now;
10447c478bd9Sstevel@tonic-gate 
10457c478bd9Sstevel@tonic-gate 	return (it->t_stk);
10467c478bd9Sstevel@tonic-gate }
10477c478bd9Sstevel@tonic-gate 
1048ae115bc7Smrj static void
dosoftint_epilog(struct cpu * cpu,uint_t oldpil)10497c478bd9Sstevel@tonic-gate dosoftint_epilog(struct cpu *cpu, uint_t oldpil)
10507c478bd9Sstevel@tonic-gate {
10517c478bd9Sstevel@tonic-gate 	struct machcpu *mcpu = &cpu->cpu_m;
10527c478bd9Sstevel@tonic-gate 	kthread_t *t, *it;
10537c478bd9Sstevel@tonic-gate 	uint_t pil, basespl;
1054eda89462Sesolom 	hrtime_t intrtime;
1055ae115bc7Smrj 	hrtime_t now = tsc_read();
10567c478bd9Sstevel@tonic-gate 
10577c478bd9Sstevel@tonic-gate 	it = cpu->cpu_thread;
10587c478bd9Sstevel@tonic-gate 	pil = it->t_pil;
10597c478bd9Sstevel@tonic-gate 
10607c478bd9Sstevel@tonic-gate 	cpu->cpu_stats.sys.intr[pil - 1]++;
10617c478bd9Sstevel@tonic-gate 
10627c478bd9Sstevel@tonic-gate 	ASSERT(cpu->cpu_intr_actv & (1 << pil));
10637c478bd9Sstevel@tonic-gate 	cpu->cpu_intr_actv &= ~(1 << pil);
1064ae115bc7Smrj 	intrtime = now - it->t_intr_start;
10657a364d25Sschwartz 	mcpu->intrstat[pil][0] += intrtime;
1066eda89462Sesolom 	cpu->cpu_intracct[cpu->cpu_mstate] += intrtime;
10677c478bd9Sstevel@tonic-gate 
10687c478bd9Sstevel@tonic-gate 	/*
10697c478bd9Sstevel@tonic-gate 	 * If there is still an interrupted thread underneath this one
10707c478bd9Sstevel@tonic-gate 	 * then the interrupt was never blocked and the return is
10717c478bd9Sstevel@tonic-gate 	 * fairly simple.  Otherwise it isn't.
10727c478bd9Sstevel@tonic-gate 	 */
10737c478bd9Sstevel@tonic-gate 	if ((t = it->t_intr) == NULL) {
10747c478bd9Sstevel@tonic-gate 		/*
10757c478bd9Sstevel@tonic-gate 		 * Put thread back on the interrupt thread list.
10767c478bd9Sstevel@tonic-gate 		 * This was an interrupt thread, so set CPU's base SPL.
10777c478bd9Sstevel@tonic-gate 		 */
10787c478bd9Sstevel@tonic-gate 		set_base_spl();
10797c478bd9Sstevel@tonic-gate 		it->t_state = TS_FREE;
10807c478bd9Sstevel@tonic-gate 		it->t_link = cpu->cpu_intr_thread;
10817c478bd9Sstevel@tonic-gate 		cpu->cpu_intr_thread = it;
10827c478bd9Sstevel@tonic-gate 		(void) splhigh();
1083ae115bc7Smrj 		sti();
10847c478bd9Sstevel@tonic-gate 		swtch();
10857c478bd9Sstevel@tonic-gate 		/*NOTREACHED*/
1086ae115bc7Smrj 		panic("dosoftint_epilog: swtch returned");
10877c478bd9Sstevel@tonic-gate 	}
10887c478bd9Sstevel@tonic-gate 	it->t_link = cpu->cpu_intr_thread;
10897c478bd9Sstevel@tonic-gate 	cpu->cpu_intr_thread = it;
10907c478bd9Sstevel@tonic-gate 	it->t_state = TS_FREE;
10917c478bd9Sstevel@tonic-gate 	cpu->cpu_thread = t;
10927c478bd9Sstevel@tonic-gate 	if (t->t_flag & T_INTR_THREAD)
1093ae115bc7Smrj 		t->t_intr_start = now;
10947c478bd9Sstevel@tonic-gate 	basespl = cpu->cpu_base_spl;
10957c478bd9Sstevel@tonic-gate 	pil = MAX(oldpil, basespl);
10967c478bd9Sstevel@tonic-gate 	mcpu->mcpu_pri = pil;
10977c478bd9Sstevel@tonic-gate 	(*setspl)(pil);
10987c478bd9Sstevel@tonic-gate }
10997c478bd9Sstevel@tonic-gate 
1100ae115bc7Smrj 
11017c478bd9Sstevel@tonic-gate /*
11027c478bd9Sstevel@tonic-gate  * Make the interrupted thread 'to' be runnable.
11037c478bd9Sstevel@tonic-gate  *
11047c478bd9Sstevel@tonic-gate  * Since t->t_sp has already been saved, t->t_pc is all
11057c478bd9Sstevel@tonic-gate  * that needs to be set in this function.
11067c478bd9Sstevel@tonic-gate  *
11077c478bd9Sstevel@tonic-gate  * Returns the interrupt level of the interrupt thread.
11087c478bd9Sstevel@tonic-gate  */
11097c478bd9Sstevel@tonic-gate int
intr_passivate(kthread_t * it,kthread_t * t)11107c478bd9Sstevel@tonic-gate intr_passivate(
11117c478bd9Sstevel@tonic-gate 	kthread_t *it,		/* interrupt thread */
11127c478bd9Sstevel@tonic-gate 	kthread_t *t)		/* interrupted thread */
11137c478bd9Sstevel@tonic-gate {
11147c478bd9Sstevel@tonic-gate 	extern void _sys_rtt();
11157c478bd9Sstevel@tonic-gate 
11167c478bd9Sstevel@tonic-gate 	ASSERT(it->t_flag & T_INTR_THREAD);
11177c478bd9Sstevel@tonic-gate 	ASSERT(SA(t->t_sp) == t->t_sp);
11187c478bd9Sstevel@tonic-gate 
11197c478bd9Sstevel@tonic-gate 	t->t_pc = (uintptr_t)_sys_rtt;
11207c478bd9Sstevel@tonic-gate 	return (it->t_pil);
11217c478bd9Sstevel@tonic-gate }
11227c478bd9Sstevel@tonic-gate 
11237c478bd9Sstevel@tonic-gate /*
11247c478bd9Sstevel@tonic-gate  * Create interrupt kstats for this CPU.
11257c478bd9Sstevel@tonic-gate  */
11267c478bd9Sstevel@tonic-gate void
cpu_create_intrstat(cpu_t * cp)11277c478bd9Sstevel@tonic-gate cpu_create_intrstat(cpu_t *cp)
11287c478bd9Sstevel@tonic-gate {
11297c478bd9Sstevel@tonic-gate 	int		i;
11307c478bd9Sstevel@tonic-gate 	kstat_t		*intr_ksp;
11317c478bd9Sstevel@tonic-gate 	kstat_named_t	*knp;
11327c478bd9Sstevel@tonic-gate 	char		name[KSTAT_STRLEN];
11337c478bd9Sstevel@tonic-gate 	zoneid_t	zoneid;
11347c478bd9Sstevel@tonic-gate 
11357c478bd9Sstevel@tonic-gate 	ASSERT(MUTEX_HELD(&cpu_lock));
11367c478bd9Sstevel@tonic-gate 
11377c478bd9Sstevel@tonic-gate 	if (pool_pset_enabled())
11387c478bd9Sstevel@tonic-gate 		zoneid = GLOBAL_ZONEID;
11397c478bd9Sstevel@tonic-gate 	else
11407c478bd9Sstevel@tonic-gate 		zoneid = ALL_ZONES;
11417c478bd9Sstevel@tonic-gate 
11427c478bd9Sstevel@tonic-gate 	intr_ksp = kstat_create_zone("cpu", cp->cpu_id, "intrstat", "misc",
11437c478bd9Sstevel@tonic-gate 	    KSTAT_TYPE_NAMED, PIL_MAX * 2, NULL, zoneid);
11447c478bd9Sstevel@tonic-gate 
11457c478bd9Sstevel@tonic-gate 	/*
11467c478bd9Sstevel@tonic-gate 	 * Initialize each PIL's named kstat
11477c478bd9Sstevel@tonic-gate 	 */
11487c478bd9Sstevel@tonic-gate 	if (intr_ksp != NULL) {
11497c478bd9Sstevel@tonic-gate 		intr_ksp->ks_update = cpu_kstat_intrstat_update;
11507c478bd9Sstevel@tonic-gate 		knp = (kstat_named_t *)intr_ksp->ks_data;
11517c478bd9Sstevel@tonic-gate 		intr_ksp->ks_private = cp;
11527c478bd9Sstevel@tonic-gate 		for (i = 0; i < PIL_MAX; i++) {
11537c478bd9Sstevel@tonic-gate 			(void) snprintf(name, KSTAT_STRLEN, "level-%d-time",
11547c478bd9Sstevel@tonic-gate 			    i + 1);
11557c478bd9Sstevel@tonic-gate 			kstat_named_init(&knp[i * 2], name, KSTAT_DATA_UINT64);
11567c478bd9Sstevel@tonic-gate 			(void) snprintf(name, KSTAT_STRLEN, "level-%d-count",
11577c478bd9Sstevel@tonic-gate 			    i + 1);
11587c478bd9Sstevel@tonic-gate 			kstat_named_init(&knp[(i * 2) + 1], name,
11597c478bd9Sstevel@tonic-gate 			    KSTAT_DATA_UINT64);
11607c478bd9Sstevel@tonic-gate 		}
11617c478bd9Sstevel@tonic-gate 		kstat_install(intr_ksp);
11627c478bd9Sstevel@tonic-gate 	}
11637c478bd9Sstevel@tonic-gate }
11647c478bd9Sstevel@tonic-gate 
11657c478bd9Sstevel@tonic-gate /*
11667c478bd9Sstevel@tonic-gate  * Delete interrupt kstats for this CPU.
11677c478bd9Sstevel@tonic-gate  */
11687c478bd9Sstevel@tonic-gate void
cpu_delete_intrstat(cpu_t * cp)11697c478bd9Sstevel@tonic-gate cpu_delete_intrstat(cpu_t *cp)
11707c478bd9Sstevel@tonic-gate {
11717c478bd9Sstevel@tonic-gate 	kstat_delete_byname_zone("cpu", cp->cpu_id, "intrstat", ALL_ZONES);
11727c478bd9Sstevel@tonic-gate }
11737c478bd9Sstevel@tonic-gate 
11747c478bd9Sstevel@tonic-gate /*
11757c478bd9Sstevel@tonic-gate  * Convert interrupt statistics from CPU ticks to nanoseconds and
11767c478bd9Sstevel@tonic-gate  * update kstat.
11777c478bd9Sstevel@tonic-gate  */
11787c478bd9Sstevel@tonic-gate int
cpu_kstat_intrstat_update(kstat_t * ksp,int rw)11797c478bd9Sstevel@tonic-gate cpu_kstat_intrstat_update(kstat_t *ksp, int rw)
11807c478bd9Sstevel@tonic-gate {
11817c478bd9Sstevel@tonic-gate 	kstat_named_t	*knp = ksp->ks_data;
11827c478bd9Sstevel@tonic-gate 	cpu_t		*cpup = (cpu_t *)ksp->ks_private;
11837c478bd9Sstevel@tonic-gate 	int		i;
11847c478bd9Sstevel@tonic-gate 	hrtime_t	hrt;
11857c478bd9Sstevel@tonic-gate 
11867c478bd9Sstevel@tonic-gate 	if (rw == KSTAT_WRITE)
11877c478bd9Sstevel@tonic-gate 		return (EACCES);
11887c478bd9Sstevel@tonic-gate 
11897c478bd9Sstevel@tonic-gate 	for (i = 0; i < PIL_MAX; i++) {
11907a364d25Sschwartz 		hrt = (hrtime_t)cpup->cpu_m.intrstat[i + 1][0];
1191843e1988Sjohnlev 		scalehrtimef(&hrt);
11927c478bd9Sstevel@tonic-gate 		knp[i * 2].value.ui64 = (uint64_t)hrt;
11937c478bd9Sstevel@tonic-gate 		knp[(i * 2) + 1].value.ui64 = cpup->cpu_stats.sys.intr[i];
11947c478bd9Sstevel@tonic-gate 	}
11957c478bd9Sstevel@tonic-gate 
11967c478bd9Sstevel@tonic-gate 	return (0);
11977c478bd9Sstevel@tonic-gate }
11987c478bd9Sstevel@tonic-gate 
11997c478bd9Sstevel@tonic-gate /*
12007c478bd9Sstevel@tonic-gate  * An interrupt thread is ending a time slice, so compute the interval it
12017c478bd9Sstevel@tonic-gate  * ran for and update the statistic for its PIL.
12027c478bd9Sstevel@tonic-gate  */
12037c478bd9Sstevel@tonic-gate void
cpu_intr_swtch_enter(kthread_id_t t)12047c478bd9Sstevel@tonic-gate cpu_intr_swtch_enter(kthread_id_t t)
12057c478bd9Sstevel@tonic-gate {
12067c478bd9Sstevel@tonic-gate 	uint64_t	interval;
12077c478bd9Sstevel@tonic-gate 	uint64_t	start;
1208eda89462Sesolom 	cpu_t		*cpu;
12097c478bd9Sstevel@tonic-gate 
12107c478bd9Sstevel@tonic-gate 	ASSERT((t->t_flag & T_INTR_THREAD) != 0);
12117c478bd9Sstevel@tonic-gate 	ASSERT(t->t_pil > 0 && t->t_pil <= LOCK_LEVEL);
12127c478bd9Sstevel@tonic-gate 
12137c478bd9Sstevel@tonic-gate 	/*
12147c478bd9Sstevel@tonic-gate 	 * We could be here with a zero timestamp. This could happen if:
12157c478bd9Sstevel@tonic-gate 	 * an interrupt thread which no longer has a pinned thread underneath
12167c478bd9Sstevel@tonic-gate 	 * it (i.e. it blocked at some point in its past) has finished running
12177c478bd9Sstevel@tonic-gate 	 * its handler. intr_thread() updated the interrupt statistic for its
12187c478bd9Sstevel@tonic-gate 	 * PIL and zeroed its timestamp. Since there was no pinned thread to
12197c478bd9Sstevel@tonic-gate 	 * return to, swtch() gets called and we end up here.
1220eda89462Sesolom 	 *
1221*8b6220d7SJosef 'Jeff' Sipek 	 * Note that we use atomic ops below (atomic_cas_64 and
1222*8b6220d7SJosef 'Jeff' Sipek 	 * atomic_add_64), which we don't use in the functions above,
1223*8b6220d7SJosef 'Jeff' Sipek 	 * because we're not called with interrupts blocked, but the
1224*8b6220d7SJosef 'Jeff' Sipek 	 * epilog/prolog functions are.
12257c478bd9Sstevel@tonic-gate 	 */
12267c478bd9Sstevel@tonic-gate 	if (t->t_intr_start) {
12277c478bd9Sstevel@tonic-gate 		do {
12287c478bd9Sstevel@tonic-gate 			start = t->t_intr_start;
12297c478bd9Sstevel@tonic-gate 			interval = tsc_read() - start;
1230*8b6220d7SJosef 'Jeff' Sipek 		} while (atomic_cas_64(&t->t_intr_start, start, 0) != start);
1231eda89462Sesolom 		cpu = CPU;
12327a364d25Sschwartz 		cpu->cpu_m.intrstat[t->t_pil][0] += interval;
1233eda89462Sesolom 
1234eda89462Sesolom 		atomic_add_64((uint64_t *)&cpu->cpu_intracct[cpu->cpu_mstate],
1235eda89462Sesolom 		    interval);
12367c478bd9Sstevel@tonic-gate 	} else
12377c478bd9Sstevel@tonic-gate 		ASSERT(t->t_intr == NULL);
12387c478bd9Sstevel@tonic-gate }
12397c478bd9Sstevel@tonic-gate 
12407c478bd9Sstevel@tonic-gate /*
12417c478bd9Sstevel@tonic-gate  * An interrupt thread is returning from swtch(). Place a starting timestamp
12427c478bd9Sstevel@tonic-gate  * in its thread structure.
12437c478bd9Sstevel@tonic-gate  */
12447c478bd9Sstevel@tonic-gate void
cpu_intr_swtch_exit(kthread_id_t t)12457c478bd9Sstevel@tonic-gate cpu_intr_swtch_exit(kthread_id_t t)
12467c478bd9Sstevel@tonic-gate {
12477c478bd9Sstevel@tonic-gate 	uint64_t ts;
12487c478bd9Sstevel@tonic-gate 
12497c478bd9Sstevel@tonic-gate 	ASSERT((t->t_flag & T_INTR_THREAD) != 0);
12507c478bd9Sstevel@tonic-gate 	ASSERT(t->t_pil > 0 && t->t_pil <= LOCK_LEVEL);
12517c478bd9Sstevel@tonic-gate 
12527c478bd9Sstevel@tonic-gate 	do {
12537c478bd9Sstevel@tonic-gate 		ts = t->t_intr_start;
1254*8b6220d7SJosef 'Jeff' Sipek 	} while (atomic_cas_64(&t->t_intr_start, ts, tsc_read()) != ts);
12557c478bd9Sstevel@tonic-gate }
1256ae115bc7Smrj 
1257ae115bc7Smrj /*
1258ae115bc7Smrj  * Dispatch a hilevel interrupt (one above LOCK_LEVEL)
1259ae115bc7Smrj  */
1260ae115bc7Smrj /*ARGSUSED*/
1261ae115bc7Smrj static void
dispatch_hilevel(uint_t vector,uint_t arg2)1262ae115bc7Smrj dispatch_hilevel(uint_t vector, uint_t arg2)
1263ae115bc7Smrj {
1264ae115bc7Smrj 	sti();
1265ae115bc7Smrj 	av_dispatch_autovect(vector);
1266ae115bc7Smrj 	cli();
1267ae115bc7Smrj }
1268ae115bc7Smrj 
1269ae115bc7Smrj /*
1270ae115bc7Smrj  * Dispatch a soft interrupt
1271ae115bc7Smrj  */
1272ae115bc7Smrj /*ARGSUSED*/
1273ae115bc7Smrj static void
dispatch_softint(uint_t oldpil,uint_t arg2)1274ae115bc7Smrj dispatch_softint(uint_t oldpil, uint_t arg2)
1275ae115bc7Smrj {
1276ae115bc7Smrj 	struct cpu *cpu = CPU;
1277ae115bc7Smrj 
1278ae115bc7Smrj 	sti();
1279ae115bc7Smrj 	av_dispatch_softvect((int)cpu->cpu_thread->t_pil);
1280ae115bc7Smrj 	cli();
1281ae115bc7Smrj 
1282ae115bc7Smrj 	/*
1283ae115bc7Smrj 	 * Must run softint_epilog() on the interrupt thread stack, since
1284ae115bc7Smrj 	 * there may not be a return from it if the interrupt thread blocked.
1285ae115bc7Smrj 	 */
1286ae115bc7Smrj 	dosoftint_epilog(cpu, oldpil);
1287ae115bc7Smrj }
1288ae115bc7Smrj 
1289ae115bc7Smrj /*
1290ae115bc7Smrj  * Dispatch a normal interrupt
1291ae115bc7Smrj  */
1292ae115bc7Smrj static void
dispatch_hardint(uint_t vector,uint_t oldipl)1293ae115bc7Smrj dispatch_hardint(uint_t vector, uint_t oldipl)
1294ae115bc7Smrj {
1295ae115bc7Smrj 	struct cpu *cpu = CPU;
1296ae115bc7Smrj 
1297ae115bc7Smrj 	sti();
1298ae115bc7Smrj 	av_dispatch_autovect(vector);
1299ae115bc7Smrj 	cli();
1300ae115bc7Smrj 
1301ae115bc7Smrj 	/*
1302ae115bc7Smrj 	 * Must run intr_thread_epilog() on the interrupt thread stack, since
1303ae115bc7Smrj 	 * there may not be a return from it if the interrupt thread blocked.
1304ae115bc7Smrj 	 */
1305ae115bc7Smrj 	intr_thread_epilog(cpu, vector, oldipl);
1306ae115bc7Smrj }
1307ae115bc7Smrj 
1308ae115bc7Smrj /*
1309ae115bc7Smrj  * Deliver any softints the current interrupt priority allows.
1310ae115bc7Smrj  * Called with interrupts disabled.
1311ae115bc7Smrj  */
1312ae115bc7Smrj void
dosoftint(struct regs * regs)1313ae115bc7Smrj dosoftint(struct regs *regs)
1314ae115bc7Smrj {
1315ae115bc7Smrj 	struct cpu *cpu = CPU;
1316ae115bc7Smrj 	int oldipl;
1317ae115bc7Smrj 	caddr_t newsp;
1318ae115bc7Smrj 
1319ae115bc7Smrj 	while (cpu->cpu_softinfo.st_pending) {
1320ae115bc7Smrj 		oldipl = cpu->cpu_pri;
1321ae115bc7Smrj 		newsp = dosoftint_prolog(cpu, (caddr_t)regs,
1322ae115bc7Smrj 		    cpu->cpu_softinfo.st_pending, oldipl);
1323ae115bc7Smrj 		/*
1324ae115bc7Smrj 		 * If returned stack pointer is NULL, priority is too high
1325ae115bc7Smrj 		 * to run any of the pending softints now.
1326ae115bc7Smrj 		 * Break out and they will be run later.
1327ae115bc7Smrj 		 */
1328ae115bc7Smrj 		if (newsp == NULL)
1329ae115bc7Smrj 			break;
1330ae115bc7Smrj 		switch_sp_and_call(newsp, dispatch_softint, oldipl, 0);
1331ae115bc7Smrj 	}
1332ae115bc7Smrj }
1333ae115bc7Smrj 
1334ae115bc7Smrj /*
1335ae115bc7Smrj  * Interrupt service routine, called with interrupts disabled.
1336ae115bc7Smrj  */
1337ae115bc7Smrj /*ARGSUSED*/
1338ae115bc7Smrj void
do_interrupt(struct regs * rp,trap_trace_rec_t * ttp)1339ae115bc7Smrj do_interrupt(struct regs *rp, trap_trace_rec_t *ttp)
1340ae115bc7Smrj {
1341ae115bc7Smrj 	struct cpu *cpu = CPU;
1342ae115bc7Smrj 	int newipl, oldipl = cpu->cpu_pri;
1343ae115bc7Smrj 	uint_t vector;
1344ae115bc7Smrj 	caddr_t newsp;
1345ae115bc7Smrj 
1346ae115bc7Smrj #ifdef TRAPTRACE
1347ae115bc7Smrj 	ttp->ttr_marker = TT_INTERRUPT;
1348ae115bc7Smrj 	ttp->ttr_ipl = 0xff;
1349ae115bc7Smrj 	ttp->ttr_pri = oldipl;
1350ae115bc7Smrj 	ttp->ttr_spl = cpu->cpu_base_spl;
1351ae115bc7Smrj 	ttp->ttr_vector = 0xff;
1352ae115bc7Smrj #endif	/* TRAPTRACE */
1353ae115bc7Smrj 
1354fb2caebeSRandy Fishel 	cpu_idle_exit(CPU_IDLE_CB_FLAG_INTR);
135595c0a3c8Sjosephb 
13563006ae82SFrank Van Der Linden 	++*(uint16_t *)&cpu->cpu_m.mcpu_istamp;
13573006ae82SFrank Van Der Linden 
135895c0a3c8Sjosephb 	/*
1359ae115bc7Smrj 	 * If it's a softint go do it now.
1360ae115bc7Smrj 	 */
1361ae115bc7Smrj 	if (rp->r_trapno == T_SOFTINT) {
1362ae115bc7Smrj 		dosoftint(rp);
1363ae115bc7Smrj 		ASSERT(!interrupts_enabled());
1364ae115bc7Smrj 		return;
1365ae115bc7Smrj 	}
1366ae115bc7Smrj 
1367ae115bc7Smrj 	/*
1368ae115bc7Smrj 	 * Raise the interrupt priority.
1369ae115bc7Smrj 	 */
1370ae115bc7Smrj 	newipl = (*setlvl)(oldipl, (int *)&rp->r_trapno);
1371ae115bc7Smrj #ifdef TRAPTRACE
1372ae115bc7Smrj 	ttp->ttr_ipl = newipl;
1373ae115bc7Smrj #endif	/* TRAPTRACE */
1374ae115bc7Smrj 
1375ae115bc7Smrj 	/*
1376ae115bc7Smrj 	 * Bail if it is a spurious interrupt
1377ae115bc7Smrj 	 */
1378ae115bc7Smrj 	if (newipl == -1)
1379ae115bc7Smrj 		return;
1380ae115bc7Smrj 	cpu->cpu_pri = newipl;
1381ae115bc7Smrj 	vector = rp->r_trapno;
1382ae115bc7Smrj #ifdef TRAPTRACE
1383ae115bc7Smrj 	ttp->ttr_vector = vector;
1384ae115bc7Smrj #endif	/* TRAPTRACE */
1385ae115bc7Smrj 	if (newipl > LOCK_LEVEL) {
1386ae115bc7Smrj 		/*
1387ae115bc7Smrj 		 * High priority interrupts run on this cpu's interrupt stack.
1388ae115bc7Smrj 		 */
1389ae115bc7Smrj 		if (hilevel_intr_prolog(cpu, newipl, oldipl, rp) == 0) {
1390ae115bc7Smrj 			newsp = cpu->cpu_intr_stack;
1391ae115bc7Smrj 			switch_sp_and_call(newsp, dispatch_hilevel, vector, 0);
1392ae115bc7Smrj 		} else { /* already on the interrupt stack */
1393ae115bc7Smrj 			dispatch_hilevel(vector, 0);
1394ae115bc7Smrj 		}
1395ae115bc7Smrj 		(void) hilevel_intr_epilog(cpu, newipl, oldipl, vector);
1396ae115bc7Smrj 	} else {
1397ae115bc7Smrj 		/*
1398ae115bc7Smrj 		 * Run this interrupt in a separate thread.
1399ae115bc7Smrj 		 */
1400ae115bc7Smrj 		newsp = intr_thread_prolog(cpu, (caddr_t)rp, newipl);
1401ae115bc7Smrj 		switch_sp_and_call(newsp, dispatch_hardint, vector, oldipl);
1402ae115bc7Smrj 	}
1403ae115bc7Smrj 
1404349b53ddSStuart Maybee #if !defined(__xpv)
1405ae115bc7Smrj 	/*
1406ae115bc7Smrj 	 * Deliver any pending soft interrupts.
1407ae115bc7Smrj 	 */
1408ae115bc7Smrj 	if (cpu->cpu_softinfo.st_pending)
1409ae115bc7Smrj 		dosoftint(rp);
1410349b53ddSStuart Maybee #endif	/* !__xpv */
1411ae115bc7Smrj }
1412ae115bc7Smrj 
1413349b53ddSStuart Maybee 
1414ae115bc7Smrj /*
1415ae115bc7Smrj  * Common tasks always done by _sys_rtt, called with interrupts disabled.
1416ae115bc7Smrj  * Returns 1 if returning to userland, 0 if returning to system mode.
1417ae115bc7Smrj  */
1418ae115bc7Smrj int
sys_rtt_common(struct regs * rp)1419ae115bc7Smrj sys_rtt_common(struct regs *rp)
1420ae115bc7Smrj {
1421ae115bc7Smrj 	kthread_t *tp;
1422ae115bc7Smrj 	extern void mutex_exit_critical_start();
1423ae115bc7Smrj 	extern long mutex_exit_critical_size;
1424575a7426Spt157919 	extern void mutex_owner_running_critical_start();
1425575a7426Spt157919 	extern long mutex_owner_running_critical_size;
1426ae115bc7Smrj 
1427ae115bc7Smrj loop:
1428ae115bc7Smrj 
1429ae115bc7Smrj 	/*
1430ae115bc7Smrj 	 * Check if returning to user
1431ae115bc7Smrj 	 */
1432ae115bc7Smrj 	tp = CPU->cpu_thread;
1433ae115bc7Smrj 	if (USERMODE(rp->r_cs)) {
1434ae115bc7Smrj 		/*
1435ae115bc7Smrj 		 * Check if AST pending.
1436ae115bc7Smrj 		 */
1437ae115bc7Smrj 		if (tp->t_astflag) {
1438ae115bc7Smrj 			/*
1439ae115bc7Smrj 			 * Let trap() handle the AST
1440ae115bc7Smrj 			 */
1441ae115bc7Smrj 			sti();
1442ae115bc7Smrj 			rp->r_trapno = T_AST;
1443ae115bc7Smrj 			trap(rp, (caddr_t)0, CPU->cpu_id);
1444ae115bc7Smrj 			cli();
1445ae115bc7Smrj 			goto loop;
1446ae115bc7Smrj 		}
1447ae115bc7Smrj 
1448ae115bc7Smrj #if defined(__amd64)
1449ae115bc7Smrj 		/*
1450ae115bc7Smrj 		 * We are done if segment registers do not need updating.
1451ae115bc7Smrj 		 */
14527712e92cSsudheer 		if (tp->t_lwp->lwp_pcb.pcb_rupdate == 0)
1453ae115bc7Smrj 			return (1);
1454ae115bc7Smrj 
1455ae115bc7Smrj 		if (update_sregs(rp, tp->t_lwp)) {
1456ae115bc7Smrj 			/*
1457ae115bc7Smrj 			 * 1 or more of the selectors is bad.
1458ae115bc7Smrj 			 * Deliver a SIGSEGV.
1459ae115bc7Smrj 			 */
1460ae115bc7Smrj 			proc_t *p = ttoproc(tp);
1461ae115bc7Smrj 
1462ae115bc7Smrj 			sti();
1463ae115bc7Smrj 			mutex_enter(&p->p_lock);
1464ae115bc7Smrj 			tp->t_lwp->lwp_cursig = SIGSEGV;
1465ae115bc7Smrj 			mutex_exit(&p->p_lock);
1466ae115bc7Smrj 			psig();
1467ae115bc7Smrj 			tp->t_sig_check = 1;
1468ae115bc7Smrj 			cli();
1469ae115bc7Smrj 		}
14707712e92cSsudheer 		tp->t_lwp->lwp_pcb.pcb_rupdate = 0;
1471ae115bc7Smrj 
1472ae115bc7Smrj #endif	/* __amd64 */
1473ae115bc7Smrj 		return (1);
1474ae115bc7Smrj 	}
1475ae115bc7Smrj 
1476ae115bc7Smrj 	/*
1477ae115bc7Smrj 	 * Here if we are returning to supervisor mode.
1478ae115bc7Smrj 	 * Check for a kernel preemption request.
1479ae115bc7Smrj 	 */
1480ae115bc7Smrj 	if (CPU->cpu_kprunrun && (rp->r_ps & PS_IE)) {
1481ae115bc7Smrj 
1482ae115bc7Smrj 		/*
1483ae115bc7Smrj 		 * Do nothing if already in kpreempt
1484ae115bc7Smrj 		 */
1485ae115bc7Smrj 		if (!tp->t_preempt_lk) {
1486ae115bc7Smrj 			tp->t_preempt_lk = 1;
1487ae115bc7Smrj 			sti();
1488ae115bc7Smrj 			kpreempt(1); /* asynchronous kpreempt call */
1489ae115bc7Smrj 			cli();
1490ae115bc7Smrj 			tp->t_preempt_lk = 0;
1491ae115bc7Smrj 		}
1492ae115bc7Smrj 	}
1493ae115bc7Smrj 
1494ae115bc7Smrj 	/*
1495ae115bc7Smrj 	 * If we interrupted the mutex_exit() critical region we must
1496ae115bc7Smrj 	 * reset the PC back to the beginning to prevent missed wakeups
1497ae115bc7Smrj 	 * See the comments in mutex_exit() for details.
1498ae115bc7Smrj 	 */
1499ae115bc7Smrj 	if ((uintptr_t)rp->r_pc - (uintptr_t)mutex_exit_critical_start <
1500ae115bc7Smrj 	    mutex_exit_critical_size) {
1501ae115bc7Smrj 		rp->r_pc = (greg_t)mutex_exit_critical_start;
1502ae115bc7Smrj 	}
1503575a7426Spt157919 
1504575a7426Spt157919 	/*
1505575a7426Spt157919 	 * If we interrupted the mutex_owner_running() critical region we
1506575a7426Spt157919 	 * must reset the PC back to the beginning to prevent dereferencing
1507575a7426Spt157919 	 * of a freed thread pointer. See the comments in mutex_owner_running
1508575a7426Spt157919 	 * for details.
1509575a7426Spt157919 	 */
1510575a7426Spt157919 	if ((uintptr_t)rp->r_pc -
1511575a7426Spt157919 	    (uintptr_t)mutex_owner_running_critical_start <
1512575a7426Spt157919 	    mutex_owner_running_critical_size) {
1513575a7426Spt157919 		rp->r_pc = (greg_t)mutex_owner_running_critical_start;
1514575a7426Spt157919 	}
1515575a7426Spt157919 
1516ae115bc7Smrj 	return (0);
1517ae115bc7Smrj }
1518ae115bc7Smrj 
1519ae115bc7Smrj void
send_dirint(int cpuid,int int_level)1520ae115bc7Smrj send_dirint(int cpuid, int int_level)
1521ae115bc7Smrj {
1522ae115bc7Smrj 	(*send_dirintf)(cpuid, int_level);
1523ae115bc7Smrj }
1524ae115bc7Smrj 
15257ff178cdSJimmy Vetayases #define	IS_FAKE_SOFTINT(flag, newpri)		\
15267ff178cdSJimmy Vetayases 	(((flag) & PS_IE) &&				\
15277ff178cdSJimmy Vetayases 	    (((*get_pending_spl)() > (newpri)) ||	\
15287ff178cdSJimmy Vetayases 	    bsrw_insn((uint16_t)cpu->cpu_softinfo.st_pending) > (newpri)))
15297ff178cdSJimmy Vetayases 
1530ae115bc7Smrj /*
1531ae115bc7Smrj  * do_splx routine, takes new ipl to set
1532ae115bc7Smrj  * returns the old ipl.
1533ae115bc7Smrj  * We are careful not to set priority lower than CPU->cpu_base_pri,
1534ae115bc7Smrj  * even though it seems we're raising the priority, it could be set
1535ae115bc7Smrj  * higher at any time by an interrupt routine, so we must block interrupts
1536ae115bc7Smrj  * and look at CPU->cpu_base_pri
1537ae115bc7Smrj  */
1538ae115bc7Smrj int
do_splx(int newpri)1539ae115bc7Smrj do_splx(int newpri)
1540ae115bc7Smrj {
1541ae115bc7Smrj 	ulong_t	flag;
1542ae115bc7Smrj 	cpu_t	*cpu;
1543ae115bc7Smrj 	int	curpri, basepri;
1544ae115bc7Smrj 
1545ae115bc7Smrj 	flag = intr_clear();
1546ae115bc7Smrj 	cpu = CPU; /* ints are disabled, now safe to cache cpu ptr */
1547ae115bc7Smrj 	curpri = cpu->cpu_m.mcpu_pri;
1548ae115bc7Smrj 	basepri = cpu->cpu_base_spl;
1549ae115bc7Smrj 	if (newpri < basepri)
1550ae115bc7Smrj 		newpri = basepri;
1551ae115bc7Smrj 	cpu->cpu_m.mcpu_pri = newpri;
1552ae115bc7Smrj 	(*setspl)(newpri);
1553ae115bc7Smrj 	/*
1554ae115bc7Smrj 	 * If we are going to reenable interrupts see if new priority level
1555ae115bc7Smrj 	 * allows pending softint delivery.
1556ae115bc7Smrj 	 */
15577ff178cdSJimmy Vetayases 	if (IS_FAKE_SOFTINT(flag, newpri))
1558ae115bc7Smrj 		fakesoftint();
1559ae115bc7Smrj 	ASSERT(!interrupts_enabled());
1560ae115bc7Smrj 	intr_restore(flag);
1561ae115bc7Smrj 	return (curpri);
1562ae115bc7Smrj }
1563ae115bc7Smrj 
1564ae115bc7Smrj /*
1565ae115bc7Smrj  * Common spl raise routine, takes new ipl to set
1566ae115bc7Smrj  * returns the old ipl, will not lower ipl.
1567ae115bc7Smrj  */
1568ae115bc7Smrj int
splr(int newpri)1569ae115bc7Smrj splr(int newpri)
1570ae115bc7Smrj {
1571ae115bc7Smrj 	ulong_t	flag;
1572ae115bc7Smrj 	cpu_t	*cpu;
1573ae115bc7Smrj 	int	curpri, basepri;
1574ae115bc7Smrj 
1575ae115bc7Smrj 	flag = intr_clear();
1576ae115bc7Smrj 	cpu = CPU; /* ints are disabled, now safe to cache cpu ptr */
1577ae115bc7Smrj 	curpri = cpu->cpu_m.mcpu_pri;
1578ae115bc7Smrj 	/*
1579ae115bc7Smrj 	 * Only do something if new priority is larger
1580ae115bc7Smrj 	 */
1581ae115bc7Smrj 	if (newpri > curpri) {
1582ae115bc7Smrj 		basepri = cpu->cpu_base_spl;
1583ae115bc7Smrj 		if (newpri < basepri)
1584ae115bc7Smrj 			newpri = basepri;
1585ae115bc7Smrj 		cpu->cpu_m.mcpu_pri = newpri;
1586ae115bc7Smrj 		(*setspl)(newpri);
1587ae115bc7Smrj 		/*
1588ae115bc7Smrj 		 * See if new priority level allows pending softint delivery
1589ae115bc7Smrj 		 */
15907ff178cdSJimmy Vetayases 		if (IS_FAKE_SOFTINT(flag, newpri))
1591ae115bc7Smrj 			fakesoftint();
1592ae115bc7Smrj 	}
1593ae115bc7Smrj 	intr_restore(flag);
1594ae115bc7Smrj 	return (curpri);
1595ae115bc7Smrj }
1596ae115bc7Smrj 
1597ae115bc7Smrj int
getpil(void)1598ae115bc7Smrj getpil(void)
1599ae115bc7Smrj {
1600ae115bc7Smrj 	return (CPU->cpu_m.mcpu_pri);
1601ae115bc7Smrj }
1602ae115bc7Smrj 
1603ae115bc7Smrj int
spl_xcall(void)1604b885580bSAlexander Kolbasov spl_xcall(void)
1605b885580bSAlexander Kolbasov {
1606b885580bSAlexander Kolbasov 	return (splr(ipltospl(XCALL_PIL)));
1607b885580bSAlexander Kolbasov }
1608b885580bSAlexander Kolbasov 
1609b885580bSAlexander Kolbasov int
interrupts_enabled(void)1610ae115bc7Smrj interrupts_enabled(void)
1611ae115bc7Smrj {
1612ae115bc7Smrj 	ulong_t	flag;
1613ae115bc7Smrj 
1614ae115bc7Smrj 	flag = getflags();
1615ae115bc7Smrj 	return ((flag & PS_IE) == PS_IE);
1616ae115bc7Smrj }
1617ae115bc7Smrj 
1618ae115bc7Smrj #ifdef DEBUG
1619ae115bc7Smrj void
assert_ints_enabled(void)1620ae115bc7Smrj assert_ints_enabled(void)
1621ae115bc7Smrj {
1622ae115bc7Smrj 	ASSERT(!interrupts_unleashed || interrupts_enabled());
1623ae115bc7Smrj }
1624ae115bc7Smrj #endif	/* DEBUG */
1625