xref: /titanic_41/usr/src/uts/i86pc/os/fastboot.c (revision cc1a9a89a73172cc2db053635fab3b1b91691657)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright 2008 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 /*
28  * This file contains the functions for performing Fast Reboot -- a
29  * reboot which bypasses the firmware and bootloader, considerably
30  * reducing downtime.
31  *
32  * load_kernel(): This function is invoked by mdpreboot() in the reboot
33  * path.  It loads the new kernel and boot archive into memory, builds
34  * the data structure containing sufficient information about the new
35  * kernel and boot archive to be passed to the fast reboot switcher
36  * (see fb_swtch_src.s for details).  When invoked the switcher relocates
37  * the new kernel and boot archive to physically contiguous low memory,
38  * similar to where the boot loader would have loaded them, and jumps to
39  * the new kernel.
40  *
41  * The physical addresses of the memory allocated for the new kernel, boot
42  * archive and their page tables must be above where the boot archive ends
43  * after it has been relocated by the switcher, otherwise the new files
44  * and their page tables could be overridden during relocation.
45  *
46  * fast_reboot(): This function is invoked by mdboot() once it's determined
47  * that the system is capable of fast reboot.  It jumps to the fast reboot
48  * switcher with the data structure built by load_kernel() as the argument.
49  */
50 
51 #include <sys/types.h>
52 #include <sys/param.h>
53 #include <sys/segments.h>
54 #include <sys/sysmacros.h>
55 #include <sys/vm.h>
56 
57 #include <sys/proc.h>
58 #include <sys/buf.h>
59 #include <sys/kmem.h>
60 
61 #include <sys/reboot.h>
62 #include <sys/uadmin.h>
63 
64 #include <sys/cred.h>
65 #include <sys/vnode.h>
66 #include <sys/file.h>
67 
68 #include <sys/cmn_err.h>
69 #include <sys/dumphdr.h>
70 #include <sys/bootconf.h>
71 #include <sys/ddidmareq.h>
72 #include <sys/varargs.h>
73 #include <sys/promif.h>
74 #include <sys/modctl.h>
75 
76 #include <vm/hat.h>
77 #include <vm/as.h>
78 #include <vm/page.h>
79 #include <vm/seg.h>
80 #include <vm/hat_i86.h>
81 #include <sys/vm_machparam.h>
82 #include <sys/archsystm.h>
83 #include <sys/machsystm.h>
84 #include <sys/mman.h>
85 #include <sys/x86_archext.h>
86 
87 #include <sys/fastboot.h>
88 #include <sys/machelf.h>
89 #include <sys/kobj.h>
90 #include <sys/multiboot.h>
91 
92 /*
93  * Data structure containing necessary information for the fast reboot
94  * switcher to jump to the new kernel.
95  */
96 fastboot_info_t newkernel = { 0 };
97 
98 static char fastboot_filename[2][OBP_MAXPATHLEN] = { { 0 }, { 0 }};
99 static x86pte_t ptp_bits = PT_VALID | PT_REF | PT_USER | PT_WRITABLE;
100 static x86pte_t pte_bits =
101     PT_VALID | PT_REF | PT_MOD | PT_NOCONSIST | PT_WRITABLE;
102 static uint_t fastboot_shift_amt_pae[] = {12, 21, 30, 39};
103 
104 int fastboot_debug = 0;
105 int fastboot_contig = 0;
106 
107 /*
108  * Fake starting va for new kernel and boot archive.
109  */
110 static uintptr_t fake_va = FASTBOOT_FAKE_VA;
111 
112 /*
113  * Below 1G for page tables as we are using 2G as the fake virtual address for
114  * the new kernel and boot archive.
115  */
116 static ddi_dma_attr_t fastboot_below_1G_dma_attr = {
117 	DMA_ATTR_V0,
118 	0x0000000008000000ULL,	/* dma_attr_addr_lo: 128MB */
119 	0x000000003FFFFFFFULL,	/* dma_attr_addr_hi: 1G */
120 	0x00000000FFFFFFFFULL,	/* dma_attr_count_max */
121 	0x0000000000001000ULL,	/* dma_attr_align: 4KB */
122 	1,			/* dma_attr_burstsize */
123 	1,			/* dma_attr_minxfer */
124 	0x00000000FFFFFFFFULL,	/* dma_attr_maxxfer */
125 	0x00000000FFFFFFFFULL,	/* dma_attr_seg */
126 	1,			/* dma_attr_sgllen */
127 	0x1000ULL,		/* dma_attr_granular */
128 	0,			/* dma_attr_flags */
129 };
130 
131 static ddi_dma_attr_t fastboot_dma_attr = {
132 	DMA_ATTR_V0,
133 	0x0000000008000000ULL,	/* dma_attr_addr_lo: 128MB */
134 	0x0000000FFFFFFFFFULL,	/* dma_attr_addr_hi: 64GB */
135 	0x00000000FFFFFFFFULL,	/* dma_attr_count_max */
136 	0x0000000000001000ULL,	/* dma_attr_align: 4KB */
137 	1,			/* dma_attr_burstsize */
138 	1,			/* dma_attr_minxfer */
139 	0x00000000FFFFFFFFULL,	/* dma_attr_maxxfer */
140 	0x00000000FFFFFFFFULL,	/* dma_attr_seg */
141 	1,			/* dma_attr_sgllen */
142 	0x1000ULL,		/* dma_attr_granular */
143 	0,			/* dma_attr_flags */
144 };
145 
146 /*
147  * Various information saved from the previous boot to reconstruct
148  * multiboot_info.
149  */
150 extern multiboot_info_t saved_mbi;
151 extern mb_memory_map_t saved_mmap[FASTBOOT_SAVED_MMAP_COUNT];
152 extern struct sol_netinfo saved_drives[FASTBOOT_SAVED_DRIVES_COUNT];
153 extern char saved_cmdline[FASTBOOT_SAVED_CMDLINE_LEN];
154 extern int saved_cmdline_len;
155 
156 extern void* contig_alloc(size_t size, ddi_dma_attr_t *attr,
157     uintptr_t align, int cansleep);
158 extern void contig_free(void *addr, size_t size);
159 
160 
161 /* PRINTLIKE */
162 extern void vprintf(const char *, va_list);
163 
164 
165 /*
166  * Need to be able to get boot_archives from other places
167  */
168 #define	BOOTARCHIVE64	"/platform/i86pc/amd64/boot_archive"
169 #define	BOOTARCHIVE32	"/platform/i86pc/boot_archive"
170 #define	BOOTARCHIVE_FAILSAFE	"/boot/x86.miniroot-safe"
171 #define	FAILSAFE_BOOTFILE	"/boot/platform/i86pc/kernel/unix"
172 
173 static uint_t fastboot_vatoindex(fastboot_info_t *, uintptr_t, int);
174 static void fastboot_map_with_size(fastboot_info_t *, uintptr_t,
175     paddr_t, size_t, int);
176 static void fastboot_build_pagetables(fastboot_info_t *);
177 static int fastboot_build_mbi(char *, fastboot_info_t *);
178 
179 static const char fastboot_enomem_msg[] = "Fastboot: Couldn't allocate 0x%"
180 	PRIx64" bytes below %s to do fast reboot";
181 
182 static void
183 dprintf(char *fmt, ...)
184 {
185 	va_list adx;
186 
187 	if (!fastboot_debug)
188 		return;
189 
190 	va_start(adx, fmt);
191 	vprintf(fmt, adx);
192 	va_end(adx);
193 }
194 
195 
196 /*
197  * Return the index corresponding to a virt address at a given page table level.
198  */
199 static uint_t
200 fastboot_vatoindex(fastboot_info_t *nk, uintptr_t va, int level)
201 {
202 	return ((va >> nk->fi_shift_amt[level]) & (nk->fi_ptes_per_table - 1));
203 }
204 
205 
206 /*
207  * Add mapping from vstart to pstart for the specified size.
208  * Only handles 2 level.  Must use 2M pages.  vstart, pstart
209  * and size should all have been aligned at 2M boundaries.
210  */
211 static void
212 fastboot_map_with_size(fastboot_info_t *nk, uintptr_t vstart, paddr_t pstart,
213     size_t size, int level)
214 {
215 	x86pte_t	pteval, *table;
216 	uintptr_t	vaddr;
217 	paddr_t		paddr;
218 	int		index, l;
219 
220 	table = (x86pte_t *)(nk->fi_pagetable_va);
221 
222 	for (l = nk->fi_top_level; l >= level; l--) {
223 
224 		index = fastboot_vatoindex(nk, vstart, l);
225 
226 		if (l == level) {
227 			/*
228 			 * Last level.  Program the page table entries.
229 			 */
230 			for (vaddr = vstart, paddr = pstart;
231 			    vaddr < vstart + size;
232 			    vaddr += (1ULL << nk->fi_shift_amt[l]),
233 			    paddr += (1ULL << nk->fi_shift_amt[l])) {
234 
235 				uint_t index = fastboot_vatoindex(nk, vaddr, l);
236 
237 				if (l > 0)
238 					pteval = paddr | pte_bits | PT_PAGESIZE;
239 				else
240 					pteval = paddr | pte_bits;
241 
242 				table[index] = pteval;
243 			}
244 		} else if (table[index] & PT_VALID) {
245 			if (l == level)
246 				break;
247 
248 			table = (x86pte_t *)
249 			    ((uintptr_t)(((paddr_t)table[index] & MMU_PAGEMASK)
250 			    - nk->fi_pagetable_pa) + nk->fi_pagetable_va);
251 		} else {
252 			/*
253 			 * Intermediate levels.  Program with either valid
254 			 * bit or PTP bits.
255 			 */
256 			if (l == nk->fi_top_level) {
257 				table[index] = nk->fi_next_table_pa | PT_VALID;
258 			} else {
259 				table[index] = nk->fi_next_table_pa | ptp_bits;
260 			}
261 			table = (x86pte_t *)(nk->fi_next_table_va);
262 			nk->fi_next_table_va += MMU_PAGESIZE;
263 			nk->fi_next_table_pa += MMU_PAGESIZE;
264 		}
265 	}
266 }
267 
268 /*
269  * Build page tables for the lower 1G of physical memory using 2M
270  * pages, and prepare page tables for mapping new kernel and boot
271  * archive pages using 4K pages.
272  */
273 static void
274 fastboot_build_pagetables(fastboot_info_t *nk)
275 {
276 	/*
277 	 * Map lower 1G physical memory.  Use large pages.
278 	 */
279 	fastboot_map_with_size(nk, 0, 0, ONE_GIG, 1);
280 
281 	/*
282 	 * Map one 4K page to get the middle page tables set up.
283 	 */
284 	fake_va = P2ALIGN_TYPED(fake_va, nk->fi_lpagesize, uintptr_t);
285 	fastboot_map_with_size(nk, fake_va,
286 	    nk->fi_files[0].fb_pte_list_va[0] & MMU_PAGEMASK, PAGESIZE, 0);
287 }
288 
289 
290 /*
291  * Sanity check.  Look for dboot offset.
292  */
293 static int
294 fastboot_elf64_find_dboot_load_offset(void *img, off_t imgsz, uint32_t *offp)
295 {
296 	Elf64_Ehdr	*ehdr = (Elf64_Ehdr *)img;
297 	Elf64_Phdr	*phdr;
298 	uint8_t		*phdrbase;
299 	int		i;
300 
301 	if ((ehdr->e_phoff + ehdr->e_phnum * ehdr->e_phentsize) >= imgsz)
302 		return (-1);
303 
304 	phdrbase = (uint8_t *)img + ehdr->e_phoff;
305 
306 	for (i = 0; i < ehdr->e_phnum; i++) {
307 		phdr = (Elf64_Phdr *)(phdrbase + ehdr->e_phentsize * i);
308 
309 		if (phdr->p_type == PT_LOAD) {
310 			if (phdr->p_vaddr == phdr->p_paddr &&
311 			    phdr->p_vaddr == DBOOT_ENTRY_ADDRESS) {
312 				ASSERT(phdr->p_offset <= UINT32_MAX);
313 				*offp = (uint32_t)phdr->p_offset;
314 				return (0);
315 			}
316 		}
317 	}
318 
319 	return (-1);
320 }
321 
322 
323 /*
324  * Initialize text and data section information for 32-bit kernel.
325  */
326 static int
327 fastboot_elf32_find_loadables(void *img, off_t imgsz, fastboot_section_t *sectp,
328     int *sectcntp, uint32_t *offp)
329 {
330 	Elf32_Ehdr	*ehdr = (Elf32_Ehdr *)img;
331 	Elf32_Phdr	*phdr;
332 	uint8_t		*phdrbase;
333 	int		i;
334 	int		used_sections = 0;
335 
336 
337 	if ((ehdr->e_phoff + ehdr->e_phnum * ehdr->e_phentsize) >= imgsz)
338 		return (-1);
339 
340 	phdrbase = (uint8_t *)img + ehdr->e_phoff;
341 
342 	for (i = 0; i < ehdr->e_phnum; i++) {
343 		phdr = (Elf32_Phdr *)(phdrbase + ehdr->e_phentsize * i);
344 
345 		if (phdr->p_type == PT_INTERP)
346 			return (-1);
347 
348 		if (phdr->p_type != PT_LOAD)
349 			continue;
350 
351 		if (phdr->p_vaddr == phdr->p_paddr &&
352 		    phdr->p_paddr == DBOOT_ENTRY_ADDRESS) {
353 			*offp = (uint32_t)phdr->p_offset;
354 		} else {
355 			sectp[used_sections].fb_sec_offset = phdr->p_offset;
356 			sectp[used_sections].fb_sec_paddr = phdr->p_paddr;
357 			sectp[used_sections].fb_sec_size = phdr->p_filesz;
358 			sectp[used_sections].fb_sec_bss_size =
359 			    (phdr->p_filesz < phdr->p_memsz) ?
360 			    (phdr->p_memsz - phdr->p_filesz) : 0;
361 
362 			used_sections++;
363 		}
364 
365 	}
366 
367 	*sectcntp = used_sections;
368 	return (0);
369 }
370 
371 /*
372  * Create multiboot info structure
373  */
374 static int
375 fastboot_build_mbi(char *mdep, fastboot_info_t *nk)
376 {
377 	mb_module_t	*mbp;
378 	uintptr_t	next_addr;
379 	uintptr_t	new_mbi_pa;
380 	size_t		size;
381 	void		*buf = NULL;
382 	size_t		arglen;
383 	char		bootargs[OBP_MAXPATHLEN];
384 
385 	bzero(bootargs, OBP_MAXPATHLEN);
386 
387 	if (mdep != NULL && strlen(mdep) != 0) {
388 		arglen = strlen(mdep) + 1;
389 	} else {
390 		arglen = saved_cmdline_len;
391 	}
392 
393 	size = PAGESIZE + P2ROUNDUP(arglen, PAGESIZE);
394 	buf = contig_alloc(size, &fastboot_below_1G_dma_attr, PAGESIZE, 0);
395 	if (buf == NULL) {
396 		cmn_err(CE_WARN, fastboot_enomem_msg, (uint64_t)size, "1G");
397 		return (-1);
398 	}
399 
400 	bzero(buf, size);
401 
402 	new_mbi_pa = mmu_ptob((uint64_t)hat_getpfnum(kas.a_hat, (caddr_t)buf));
403 
404 	hat_devload(kas.a_hat, (caddr_t)new_mbi_pa, size,
405 	    mmu_btop(new_mbi_pa), PROT_READ | PROT_WRITE, HAT_LOAD_NOCONSIST);
406 
407 	nk->fi_new_mbi_pa = (paddr_t)new_mbi_pa;
408 
409 	bcopy(&saved_mbi, (void *)new_mbi_pa, sizeof (multiboot_info_t));
410 
411 	next_addr = new_mbi_pa + sizeof (multiboot_info_t);
412 	((multiboot_info_t *)new_mbi_pa)->mods_addr = next_addr;
413 	mbp = (mb_module_t *)(uintptr_t)next_addr;
414 	mbp->mod_start = newkernel.fi_files[FASTBOOT_BOOTARCHIVE].fb_dest_pa;
415 	mbp->mod_end = newkernel.fi_files[FASTBOOT_BOOTARCHIVE].fb_next_pa;
416 
417 	next_addr += sizeof (mb_module_t);
418 	bcopy(fastboot_filename[FASTBOOT_NAME_BOOTARCHIVE], (void *)next_addr,
419 	    strlen(fastboot_filename[FASTBOOT_NAME_BOOTARCHIVE]));
420 
421 	mbp->mod_name = next_addr;
422 	mbp->reserved = 0;
423 	next_addr += strlen(fastboot_filename[FASTBOOT_NAME_BOOTARCHIVE]);
424 	*(char *)next_addr = '\0';
425 	next_addr++;
426 	next_addr = P2ROUNDUP_TYPED(next_addr, 16, uintptr_t);
427 
428 	((multiboot_info_t *)new_mbi_pa)->mmap_addr = next_addr;
429 	bcopy((void *)(uintptr_t)saved_mmap, (void *)next_addr,
430 	    saved_mbi.mmap_length);
431 	next_addr += saved_mbi.mmap_length;
432 
433 	((multiboot_info_t *)new_mbi_pa)->drives_addr = next_addr;
434 	bcopy((void *)(uintptr_t)saved_drives, (void *)next_addr,
435 	    saved_mbi.drives_length);
436 	next_addr += saved_mbi.drives_length;
437 
438 	((multiboot_info_t *)new_mbi_pa)->cmdline = next_addr;
439 
440 	if (mdep != NULL && strlen(mdep) != 0) {
441 		bcopy(mdep, (void *)(uintptr_t)
442 		    (((multiboot_info_t *)new_mbi_pa)->cmdline), (arglen - 1));
443 	} else {
444 		bcopy((void *)saved_cmdline, (void *)next_addr, (arglen - 1));
445 	}
446 	/* Terminate the string */
447 	((char *)(intptr_t)next_addr)[arglen - 1] = '\0';
448 
449 	return (0);
450 }
451 
452 /*
453  * Initialize HAT related fields
454  */
455 static void
456 fastboot_init_fields(fastboot_info_t *nk)
457 {
458 	if (x86_feature & X86_PAE) {
459 		nk->fi_has_pae = 1;
460 		nk->fi_shift_amt = fastboot_shift_amt_pae;
461 		nk->fi_ptes_per_table = 512;
462 		nk->fi_lpagesize = (2 << 20);	/* 2M */
463 		nk->fi_top_level = 2;
464 	}
465 }
466 
467 /*
468  * Process boot argument
469  */
470 static void
471 fastboot_parse_mdep(char *mdep, char *kern_bootpath, int *bootpath_len,
472     char *bootargs)
473 {
474 	int	i;
475 
476 	/*
477 	 * If mdep is not NULL, it comes in the format of
478 	 *	mountpoint unix args
479 	 */
480 	if (mdep != NULL && strlen(mdep) != 0) {
481 		if (mdep[0] != '-') {
482 			/* First get the root argument */
483 			i = 0;
484 			while (mdep[i] != '\0' && mdep[i] != ' ') {
485 				i++;
486 			}
487 
488 			if (i < 4 || strncmp(&mdep[i-4], "unix", 4) != 0) {
489 				/* mount point */
490 				bcopy(mdep, kern_bootpath, i);
491 				kern_bootpath[i] = '\0';
492 				*bootpath_len = i;
493 
494 				/*
495 				 * Get the next argument. It should be unix as
496 				 * we have validated in in halt.c.
497 				 */
498 				if (strlen(mdep) > i) {
499 					mdep += (i + 1);
500 					i = 0;
501 					while (mdep[i] != '\0' &&
502 					    mdep[i] != ' ') {
503 						i++;
504 					}
505 				}
506 
507 			}
508 			bcopy(mdep, kern_bootfile, i);
509 			kern_bootfile[i] = '\0';
510 			bcopy(mdep, bootargs, strlen(mdep));
511 		} else {
512 			int off = strlen(kern_bootfile);
513 			bcopy(kern_bootfile, bootargs, off);
514 			bcopy(" ", &bootargs[off++], 1);
515 			bcopy(mdep, &bootargs[off], strlen(mdep));
516 			off += strlen(mdep);
517 			bootargs[off] = '\0';
518 		}
519 	}
520 }
521 
522 /*
523  * Free up the memory we have allocated for this file
524  */
525 static void
526 fastboot_free_file(fastboot_file_t *fb)
527 {
528 	size_t	fsize_roundup, pt_size;
529 	int	pt_entry_count;
530 
531 	fsize_roundup = P2ROUNDUP_TYPED(fb->fb_size, PAGESIZE, size_t);
532 	contig_free((void *)fb->fb_va, fsize_roundup);
533 
534 	pt_entry_count = (fsize_roundup >> PAGESHIFT) + 1;
535 	pt_size = P2ROUNDUP(pt_entry_count * 8, PAGESIZE);
536 	contig_free((void *)fb->fb_pte_list_va, pt_size);
537 }
538 
539 /*
540  * This function performs the following tasks:
541  * - Read the sizes of the new kernel and boot archive.
542  * - Allocate memory for the new kernel and boot archive.
543  * - Allocate memory for page tables necessary for mapping the memory
544  *   allocated for the files.
545  * - Read the new kernel and boot archive into memory.
546  * - Map in the fast reboot switcher.
547  * - Load the fast reboot switcher to FASTBOOT_SWTCH_PA.
548  * - Build the new multiboot_info structure
549  * - Build page tables for the low 1G of physical memory.
550  * - Mark the data structure as valid if all steps have succeeded.
551  */
552 void
553 load_kernel(char *mdep)
554 {
555 	void		*buf = NULL;
556 	int		i;
557 	fastboot_file_t	*fb;
558 	uint32_t	dboot_start_offset;
559 	char		kern_bootpath[OBP_MAXPATHLEN];
560 	char		bootargs[OBP_MAXPATHLEN];
561 	extern uintptr_t postbootkernelbase;
562 	extern char	fb_swtch_image[];
563 	int		bootpath_len = 0;
564 	int		is_failsafe = 0;
565 	int		is_retry = 0;
566 	uint64_t	end_addr;
567 
568 	ASSERT(fastreboot_capable);
569 
570 	postbootkernelbase = 0;
571 
572 	/*
573 	 * Initialize various HAT related fields in the data structure
574 	 */
575 	fastboot_init_fields(&newkernel);
576 
577 	bzero(kern_bootpath, OBP_MAXPATHLEN);
578 
579 	/*
580 	 * Process the boot argument
581 	 */
582 	bzero(bootargs, OBP_MAXPATHLEN);
583 	fastboot_parse_mdep(mdep, kern_bootpath, &bootpath_len, bootargs);
584 
585 	/*
586 	 * Make sure we get the null character
587 	 */
588 	bcopy(kern_bootpath, fastboot_filename[FASTBOOT_NAME_UNIX],
589 	    bootpath_len);
590 	bcopy(kern_bootfile,
591 	    &fastboot_filename[FASTBOOT_NAME_UNIX][bootpath_len],
592 	    strlen(kern_bootfile) + 1);
593 
594 	bcopy(kern_bootpath, fastboot_filename[FASTBOOT_NAME_BOOTARCHIVE],
595 	    bootpath_len);
596 
597 	if (bcmp(kern_bootfile, FAILSAFE_BOOTFILE,
598 	    (sizeof (FAILSAFE_BOOTFILE) - 1)) == 0) {
599 		is_failsafe = 1;
600 	}
601 
602 load_kernel_retry:
603 	/*
604 	 * Read in unix and boot_archive
605 	 */
606 	end_addr = DBOOT_ENTRY_ADDRESS;
607 	for (i = 0; i < FASTBOOT_MAX_FILES_MAP; i++) {
608 		struct _buf	*file;
609 		uintptr_t	va;
610 		uint64_t	fsize;
611 		size_t		fsize_roundup, pt_size;
612 		int		page_index;
613 		uintptr_t	offset;
614 		int		pt_entry_count;
615 		ddi_dma_attr_t dma_attr = fastboot_dma_attr;
616 
617 
618 		dprintf("fastboot_filename[%d] = %s\n",
619 		    i, fastboot_filename[i]);
620 
621 		if ((file = kobj_open_file(fastboot_filename[i])) ==
622 		    (struct _buf *)-1) {
623 			cmn_err(CE_WARN, "Fastboot: Couldn't open %s",
624 			    fastboot_filename[i]);
625 			goto err_out;
626 		}
627 
628 		if (kobj_get_filesize(file, &fsize) != 0) {
629 			cmn_err(CE_WARN,
630 			    "Fastboot: Couldn't get filesize for %s",
631 			    fastboot_filename[i]);
632 			goto err_out;
633 		}
634 
635 		fsize_roundup = P2ROUNDUP_TYPED(fsize, PAGESIZE, size_t);
636 
637 		/*
638 		 * Where the files end in physical memory after being
639 		 * relocated by the fast boot switcher.
640 		 */
641 		end_addr += fsize_roundup;
642 		if (end_addr > fastboot_below_1G_dma_attr.dma_attr_addr_hi) {
643 			cmn_err(CE_WARN, "Fastboot: boot archive is too big");
644 			goto err_out;
645 		}
646 
647 		/*
648 		 * Adjust dma_attr_addr_lo so that the new kernel and boot
649 		 * archive will not be overridden during relocation.
650 		 */
651 		if (end_addr > fastboot_dma_attr.dma_attr_addr_lo ||
652 		    end_addr > fastboot_below_1G_dma_attr.dma_attr_addr_lo) {
653 
654 			if (is_retry) {
655 				/*
656 				 * If we have already tried and didn't succeed,
657 				 * just give up.
658 				 */
659 				cmn_err(CE_WARN,
660 				    "Fastboot: boot archive is too big");
661 				goto err_out;
662 			} else {
663 				int j;
664 
665 				/* Set the flag so we don't keep retrying */
666 				is_retry++;
667 
668 				/* Adjust dma_attr_addr_lo */
669 				fastboot_dma_attr.dma_attr_addr_lo = end_addr;
670 				fastboot_below_1G_dma_attr.dma_attr_addr_lo =
671 				    end_addr;
672 
673 				/*
674 				 * Free the memory we have already allocated
675 				 * whose physical addresses might not fit
676 				 * the new lo and hi constraints.
677 				 */
678 				for (j = 0; j < i; j++)
679 					fastboot_free_file(
680 					    &newkernel.fi_files[j]);
681 				goto load_kernel_retry;
682 			}
683 		}
684 
685 
686 		if (!fastboot_contig)
687 			dma_attr.dma_attr_sgllen = (fsize / PAGESIZE) +
688 			    (((fsize % PAGESIZE) == 0) ? 0 : 1);
689 
690 		if ((buf = contig_alloc(fsize, &dma_attr, PAGESIZE, 0))
691 		    == NULL) {
692 			cmn_err(CE_WARN, fastboot_enomem_msg, fsize, "64G");
693 			goto err_out;
694 		}
695 
696 		va = P2ROUNDUP_TYPED((uintptr_t)buf, PAGESIZE, uintptr_t);
697 
698 		if (kobj_read_file(file, (char *)va, fsize, 0) < 0) {
699 			cmn_err(CE_WARN, "Fastboot: Couldn't read %s",
700 			    fastboot_filename[i]);
701 			goto err_out;
702 		}
703 
704 		fb = &newkernel.fi_files[i];
705 		fb->fb_va = va;
706 		fb->fb_size = fsize;
707 		fb->fb_sectcnt = 0;
708 
709 		/*
710 		 * Allocate one extra page table entry for terminating
711 		 * the list.
712 		 */
713 		pt_entry_count = (fsize_roundup >> PAGESHIFT) + 1;
714 		pt_size = P2ROUNDUP(pt_entry_count * 8, PAGESIZE);
715 
716 		if ((fb->fb_pte_list_va =
717 		    (x86pte_t *)contig_alloc(pt_size,
718 		    &fastboot_below_1G_dma_attr, PAGESIZE, 0)) == NULL) {
719 			cmn_err(CE_WARN, fastboot_enomem_msg,
720 			    (uint64_t)pt_size, "1G");
721 			goto err_out;
722 		}
723 
724 		bzero((void *)(fb->fb_pte_list_va), pt_size);
725 
726 		fb->fb_pte_list_pa = mmu_ptob((uint64_t)hat_getpfnum(kas.a_hat,
727 		    (caddr_t)fb->fb_pte_list_va));
728 
729 		for (page_index = 0, offset = 0; offset < fb->fb_size;
730 		    offset += PAGESIZE) {
731 			uint64_t paddr;
732 
733 			paddr = mmu_ptob((uint64_t)hat_getpfnum(kas.a_hat,
734 			    (caddr_t)fb->fb_va + offset));
735 
736 			ASSERT(paddr >= fastboot_dma_attr.dma_attr_addr_lo);
737 
738 			/*
739 			 * Include the pte_bits so we don't have to make
740 			 * it in assembly.
741 			 */
742 			fb->fb_pte_list_va[page_index++] = (x86pte_t)
743 			    (paddr | pte_bits);
744 		}
745 
746 		fb->fb_pte_list_va[page_index] = FASTBOOT_TERMINATE;
747 
748 		if (i == FASTBOOT_UNIX) {
749 			Ehdr	*ehdr = (Ehdr *)va;
750 			int	j;
751 
752 			/*
753 			 * Sanity checks:
754 			 */
755 			for (j = 0; j < SELFMAG; j++) {
756 				if (ehdr->e_ident[j] != ELFMAG[j]) {
757 					cmn_err(CE_WARN, "Fastboot: Bad ELF "
758 					    "signature");
759 					goto err_out;
760 				}
761 			}
762 
763 			if (ehdr->e_ident[EI_CLASS] == ELFCLASS32 &&
764 			    ehdr->e_ident[EI_DATA] == ELFDATA2LSB &&
765 			    ehdr->e_machine == EM_386) {
766 
767 				if (fastboot_elf32_find_loadables((void *)va,
768 				    fsize, &fb->fb_sections[0],
769 				    &fb->fb_sectcnt, &dboot_start_offset) < 0) {
770 					cmn_err(CE_WARN, "Fastboot: ELF32 "
771 					    "program section failure");
772 					goto err_out;
773 				}
774 
775 				if (fb->fb_sectcnt == 0) {
776 					cmn_err(CE_WARN, "Fastboot: No ELF32 "
777 					    "program sections found");
778 					goto err_out;
779 				}
780 
781 				if (is_failsafe) {
782 					/* Failsafe boot_archive */
783 					bcopy(BOOTARCHIVE_FAILSAFE,
784 					    &fastboot_filename
785 					    [FASTBOOT_NAME_BOOTARCHIVE]
786 					    [bootpath_len],
787 					    sizeof (BOOTARCHIVE_FAILSAFE));
788 				} else {
789 					bcopy(BOOTARCHIVE32,
790 					    &fastboot_filename
791 					    [FASTBOOT_NAME_BOOTARCHIVE]
792 					    [bootpath_len],
793 					    sizeof (BOOTARCHIVE32));
794 				}
795 
796 			} else if (ehdr->e_ident[EI_CLASS] == ELFCLASS64 &&
797 			    ehdr->e_ident[EI_DATA] == ELFDATA2LSB &&
798 			    ehdr->e_machine == EM_AMD64) {
799 
800 				if (fastboot_elf64_find_dboot_load_offset(
801 				    (void *)va, fsize, &dboot_start_offset)
802 				    != 0) {
803 					cmn_err(CE_WARN, "Fastboot: Couldn't "
804 					    "find ELF64 dboot entry offset");
805 					goto err_out;
806 				}
807 
808 				if ((x86_feature & X86_64) == 0 ||
809 				    newkernel.fi_has_pae == 0) {
810 					cmn_err(CE_WARN, "Fastboot: Cannot "
811 					    "reboot to %s: "
812 					    "not a 64-bit capable system",
813 					    kern_bootfile);
814 					goto err_out;
815 				}
816 
817 				bcopy(BOOTARCHIVE64,
818 				    &fastboot_filename
819 				    [FASTBOOT_NAME_BOOTARCHIVE][bootpath_len],
820 				    sizeof (BOOTARCHIVE64));
821 			} else {
822 				cmn_err(CE_WARN, "Fastboot: Unknown ELF type");
823 				goto err_out;
824 			}
825 
826 			fb->fb_dest_pa = DBOOT_ENTRY_ADDRESS -
827 			    dboot_start_offset;
828 
829 			fb->fb_next_pa = DBOOT_ENTRY_ADDRESS + fsize_roundup;
830 		} else {
831 			fb->fb_dest_pa = newkernel.fi_files[i - 1].fb_next_pa;
832 			fb->fb_next_pa = fb->fb_dest_pa + fsize_roundup;
833 		}
834 
835 		kobj_close_file(file);
836 
837 	}
838 
839 	/*
840 	 * Set fb_va to fake_va
841 	 */
842 	for (i = 0; i < FASTBOOT_MAX_FILES_MAP; i++) {
843 		newkernel.fi_files[i].fb_va = fake_va;
844 
845 	}
846 
847 	/*
848 	 * Add the function that will switch us to 32-bit protected mode
849 	 */
850 	fb = &newkernel.fi_files[FASTBOOT_SWTCH];
851 	fb->fb_va = fb->fb_dest_pa = FASTBOOT_SWTCH_PA;
852 	fb->fb_size = PAGESIZE;
853 
854 	/*
855 	 * Map in FASTBOOT_SWTCH_PA
856 	 */
857 	hat_devload(kas.a_hat, (caddr_t)fb->fb_va, MMU_PAGESIZE,
858 	    mmu_btop(fb->fb_dest_pa),
859 	    PROT_READ | PROT_WRITE | PROT_EXEC, HAT_LOAD_NOCONSIST);
860 
861 	bcopy((void *)fb_swtch_image, (void *)fb->fb_va, fb->fb_size);
862 
863 	/*
864 	 * Build the new multiboot_info structure
865 	 */
866 	if (fastboot_build_mbi(bootargs, &newkernel) != 0) {
867 		goto err_out;
868 	}
869 
870 	/*
871 	 * Build page table for low 1G physical memory. Use big pages.
872 	 * Allocate 4 pages for the page tables.
873 	 *    1 page for Page-Directory-Pointer Table
874 	 *    2 page for Page Directory
875 	 *    1 page for Page Table.
876 	 * The page table entry will be rewritten to map the physical
877 	 * address as we do the copying.
878 	 */
879 	if (newkernel.fi_has_pae) {
880 		size_t size = MMU_PAGESIZE * 4;
881 
882 		if ((newkernel.fi_pagetable_va = (uintptr_t)
883 		    contig_alloc(size, &fastboot_below_1G_dma_attr,
884 		    PAGESIZE, 0)) == NULL) {
885 			cmn_err(CE_WARN, fastboot_enomem_msg,
886 			    (uint64_t)size, "1G");
887 			goto err_out;
888 		}
889 
890 		bzero((void *)(newkernel.fi_pagetable_va), size);
891 
892 		newkernel.fi_pagetable_pa =
893 		    mmu_ptob((uint64_t)hat_getpfnum(kas.a_hat,
894 		    (caddr_t)newkernel.fi_pagetable_va));
895 
896 		newkernel.fi_last_table_pa = newkernel.fi_pagetable_pa +
897 		    MMU_PAGESIZE * 3;
898 
899 		newkernel.fi_next_table_va = newkernel.fi_pagetable_va +
900 		    MMU_PAGESIZE;
901 		newkernel.fi_next_table_pa = newkernel.fi_pagetable_pa +
902 		    MMU_PAGESIZE;
903 
904 		fastboot_build_pagetables(&newkernel);
905 	}
906 
907 
908 	/* Mark it as valid */
909 	newkernel.fi_valid = 1;
910 	newkernel.fi_magic = FASTBOOT_MAGIC;
911 
912 	return;
913 
914 err_out:
915 	newkernel.fi_valid = 0;
916 }
917 
918 /*
919  * Jump to the fast reboot switcher.  This function never returns.
920  */
921 void
922 fast_reboot()
923 {
924 	void (*fastboot_func)(fastboot_info_t *);
925 
926 	fastboot_func = (void (*)())(newkernel.fi_files[FASTBOOT_SWTCH].fb_va);
927 	(*fastboot_func)(&newkernel);
928 }
929