1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2009 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 27 /* 28 * This file contains the functions for performing Fast Reboot -- a 29 * reboot which bypasses the firmware and bootloader, considerably 30 * reducing downtime. 31 * 32 * fastboot_load_kernel(): This function is invoked by mdpreboot() in the 33 * reboot path. It loads the new kernel and boot archive into memory, builds 34 * the data structure containing sufficient information about the new 35 * kernel and boot archive to be passed to the fast reboot switcher 36 * (see fb_swtch_src.s for details). When invoked the switcher relocates 37 * the new kernel and boot archive to physically contiguous low memory, 38 * similar to where the boot loader would have loaded them, and jumps to 39 * the new kernel. 40 * 41 * If fastreboot_onpanic is enabled, fastboot_load_kernel() is called 42 * by fastreboot_post_startup() to load the back up kernel in case of 43 * panic. 44 * 45 * The physical addresses of the memory allocated for the new kernel, boot 46 * archive and their page tables must be above where the boot archive ends 47 * after it has been relocated by the switcher, otherwise the new files 48 * and their page tables could be overridden during relocation. 49 * 50 * fast_reboot(): This function is invoked by mdboot() once it's determined 51 * that the system is capable of fast reboot. It jumps to the fast reboot 52 * switcher with the data structure built by fastboot_load_kernel() as the 53 * argument. 54 */ 55 56 #include <sys/types.h> 57 #include <sys/param.h> 58 #include <sys/segments.h> 59 #include <sys/sysmacros.h> 60 #include <sys/vm.h> 61 62 #include <sys/proc.h> 63 #include <sys/buf.h> 64 #include <sys/kmem.h> 65 66 #include <sys/reboot.h> 67 #include <sys/uadmin.h> 68 69 #include <sys/cred.h> 70 #include <sys/vnode.h> 71 #include <sys/file.h> 72 73 #include <sys/cmn_err.h> 74 #include <sys/dumphdr.h> 75 #include <sys/bootconf.h> 76 #include <sys/ddidmareq.h> 77 #include <sys/varargs.h> 78 #include <sys/promif.h> 79 #include <sys/modctl.h> 80 81 #include <vm/hat.h> 82 #include <vm/as.h> 83 #include <vm/page.h> 84 #include <vm/seg.h> 85 #include <vm/hat_i86.h> 86 #include <sys/vm_machparam.h> 87 #include <sys/archsystm.h> 88 #include <sys/machsystm.h> 89 #include <sys/mman.h> 90 #include <sys/x86_archext.h> 91 #include <sys/smp_impldefs.h> 92 #include <sys/spl.h> 93 94 #include <sys/fastboot.h> 95 #include <sys/machelf.h> 96 #include <sys/kobj.h> 97 #include <sys/multiboot.h> 98 #include <sys/kobj_lex.h> 99 100 /* 101 * Macro to determine how many pages are needed for PTEs to map a particular 102 * file. Allocate one extra page table entry for terminating the list. 103 */ 104 #define FASTBOOT_PTE_LIST_SIZE(fsize) \ 105 P2ROUNDUP((((fsize) >> PAGESHIFT) + 1) * sizeof (x86pte_t), PAGESIZE) 106 107 /* 108 * Data structure containing necessary information for the fast reboot 109 * switcher to jump to the new kernel. 110 */ 111 fastboot_info_t newkernel = { 0 }; 112 char fastboot_args[OBP_MAXPATHLEN]; 113 114 static char fastboot_filename[2][OBP_MAXPATHLEN] = { { 0 }, { 0 }}; 115 static x86pte_t ptp_bits = PT_VALID | PT_REF | PT_USER | PT_WRITABLE; 116 static x86pte_t pte_bits = 117 PT_VALID | PT_REF | PT_MOD | PT_NOCONSIST | PT_WRITABLE; 118 static uint_t fastboot_shift_amt_pae[] = {12, 21, 30, 39}; 119 120 int fastboot_debug = 0; 121 int fastboot_contig = 0; 122 123 /* 124 * Fake starting va for new kernel and boot archive. 125 */ 126 static uintptr_t fake_va = FASTBOOT_FAKE_VA; 127 128 /* 129 * Reserve memory below PA 1G in preparation of fast reboot. 130 * 131 * This variable is only checked when fastreboot_capable is set, but 132 * fastreboot_onpanic is not set. The amount of memory reserved 133 * is negligible, but just in case we are really short of low memory, 134 * this variable will give us a backdoor to not consume memory at all. 135 */ 136 int reserve_mem_enabled = 1; 137 138 /* 139 * Mutex to protect fastreboot_onpanic. 140 */ 141 kmutex_t fastreboot_config_mutex; 142 143 /* 144 * Amount of memory below PA 1G to reserve for constructing the multiboot 145 * data structure and the page tables as we tend to run out of those 146 * when more drivers are loaded. 147 */ 148 static size_t fastboot_mbi_size = 0x2000; /* 8K */ 149 static size_t fastboot_pagetable_size = 0x5000; /* 20K */ 150 151 /* 152 * Minimum system uptime in clock_t before Fast Reboot should be used 153 * on panic. Will be initialized in fastboot_post_startup(). 154 */ 155 clock_t fastreboot_onpanic_uptime = LONG_MAX; 156 157 /* 158 * lbolt value when the system booted. This value will be used if the system 159 * panics to calculate how long the system has been up. If the uptime is less 160 * than fastreboot_onpanic_uptime, a reboot through BIOS will be performed to 161 * avoid a potential panic/reboot loop. 162 */ 163 clock_t lbolt_at_boot = LONG_MAX; 164 165 /* 166 * Use below 1G for page tables as 167 * 1. we are only doing 1:1 mapping of the bottom 1G of physical memory. 168 * 2. we are using 2G as the fake virtual address for the new kernel and 169 * boot archive. 170 */ 171 static ddi_dma_attr_t fastboot_below_1G_dma_attr = { 172 DMA_ATTR_V0, 173 0x0000000008000000ULL, /* dma_attr_addr_lo: 128MB */ 174 0x000000003FFFFFFFULL, /* dma_attr_addr_hi: 1G */ 175 0x00000000FFFFFFFFULL, /* dma_attr_count_max */ 176 0x0000000000001000ULL, /* dma_attr_align: 4KB */ 177 1, /* dma_attr_burstsize */ 178 1, /* dma_attr_minxfer */ 179 0x00000000FFFFFFFFULL, /* dma_attr_maxxfer */ 180 0x00000000FFFFFFFFULL, /* dma_attr_seg */ 181 1, /* dma_attr_sgllen */ 182 0x1000ULL, /* dma_attr_granular */ 183 0, /* dma_attr_flags */ 184 }; 185 186 static ddi_dma_attr_t fastboot_dma_attr = { 187 DMA_ATTR_V0, 188 0x0000000008000000ULL, /* dma_attr_addr_lo: 128MB */ 189 #ifdef __amd64 190 0xFFFFFFFFFFFFFFFFULL, /* dma_attr_addr_hi: 2^64B */ 191 #else 192 0x0000000FFFFFFFFFULL, /* dma_attr_addr_hi: 64GB */ 193 #endif /* __amd64 */ 194 0x00000000FFFFFFFFULL, /* dma_attr_count_max */ 195 0x0000000000001000ULL, /* dma_attr_align: 4KB */ 196 1, /* dma_attr_burstsize */ 197 1, /* dma_attr_minxfer */ 198 0x00000000FFFFFFFFULL, /* dma_attr_maxxfer */ 199 0x00000000FFFFFFFFULL, /* dma_attr_seg */ 200 1, /* dma_attr_sgllen */ 201 0x1000ULL, /* dma_attr_granular */ 202 0, /* dma_attr_flags */ 203 }; 204 205 /* 206 * Various information saved from the previous boot to reconstruct 207 * multiboot_info. 208 */ 209 extern multiboot_info_t saved_mbi; 210 extern mb_memory_map_t saved_mmap[FASTBOOT_SAVED_MMAP_COUNT]; 211 extern uint8_t saved_drives[FASTBOOT_SAVED_DRIVES_SIZE]; 212 extern char saved_cmdline[FASTBOOT_SAVED_CMDLINE_LEN]; 213 extern int saved_cmdline_len; 214 extern size_t saved_file_size[]; 215 216 extern void* contig_alloc(size_t size, ddi_dma_attr_t *attr, 217 uintptr_t align, int cansleep); 218 extern void contig_free(void *addr, size_t size); 219 220 221 /* PRINTLIKE */ 222 extern void vprintf(const char *, va_list); 223 224 225 /* 226 * Need to be able to get boot_archives from other places 227 */ 228 #define BOOTARCHIVE64 "/platform/i86pc/amd64/boot_archive" 229 #define BOOTARCHIVE32 "/platform/i86pc/boot_archive" 230 #define BOOTARCHIVE32_FAILSAFE "/boot/x86.miniroot-safe" 231 #define BOOTARCHIVE64_FAILSAFE "/boot/amd64/x86.miniroot-safe" 232 #define FAILSAFE_BOOTFILE32 "/boot/platform/i86pc/kernel/unix" 233 #define FAILSAFE_BOOTFILE64 "/boot/platform/i86pc/kernel/amd64/unix" 234 235 static uint_t fastboot_vatoindex(fastboot_info_t *, uintptr_t, int); 236 static void fastboot_map_with_size(fastboot_info_t *, uintptr_t, 237 paddr_t, size_t, int); 238 static void fastboot_build_pagetables(fastboot_info_t *); 239 static int fastboot_build_mbi(char *, fastboot_info_t *); 240 static void fastboot_free_file(fastboot_file_t *); 241 242 static const char fastboot_enomem_msg[] = "!Fastboot: Couldn't allocate 0x%" 243 PRIx64" bytes below %s to do fast reboot"; 244 245 static void 246 dprintf(char *fmt, ...) 247 { 248 va_list adx; 249 250 if (!fastboot_debug) 251 return; 252 253 va_start(adx, fmt); 254 vprintf(fmt, adx); 255 va_end(adx); 256 } 257 258 259 /* 260 * Return the index corresponding to a virt address at a given page table level. 261 */ 262 static uint_t 263 fastboot_vatoindex(fastboot_info_t *nk, uintptr_t va, int level) 264 { 265 return ((va >> nk->fi_shift_amt[level]) & (nk->fi_ptes_per_table - 1)); 266 } 267 268 269 /* 270 * Add mapping from vstart to pstart for the specified size. 271 * vstart, pstart and size should all have been aligned at 2M boundaries. 272 */ 273 static void 274 fastboot_map_with_size(fastboot_info_t *nk, uintptr_t vstart, paddr_t pstart, 275 size_t size, int level) 276 { 277 x86pte_t pteval, *table; 278 uintptr_t vaddr; 279 paddr_t paddr; 280 int index, l; 281 282 table = (x86pte_t *)(nk->fi_pagetable_va); 283 284 for (l = nk->fi_top_level; l >= level; l--) { 285 286 index = fastboot_vatoindex(nk, vstart, l); 287 288 if (l == level) { 289 /* 290 * Last level. Program the page table entries. 291 */ 292 for (vaddr = vstart, paddr = pstart; 293 vaddr < vstart + size; 294 vaddr += (1ULL << nk->fi_shift_amt[l]), 295 paddr += (1ULL << nk->fi_shift_amt[l])) { 296 297 uint_t index = fastboot_vatoindex(nk, vaddr, l); 298 299 if (l > 0) 300 pteval = paddr | pte_bits | PT_PAGESIZE; 301 else 302 pteval = paddr | pte_bits; 303 304 table[index] = pteval; 305 } 306 } else if (table[index] & PT_VALID) { 307 308 table = (x86pte_t *) 309 ((uintptr_t)(((paddr_t)table[index] & MMU_PAGEMASK) 310 - nk->fi_pagetable_pa) + nk->fi_pagetable_va); 311 } else { 312 /* 313 * Intermediate levels. 314 * Program with either valid bit or PTP bits. 315 */ 316 if (l == nk->fi_top_level) { 317 #ifdef __amd64 318 ASSERT(nk->fi_top_level == 3); 319 table[index] = nk->fi_next_table_pa | ptp_bits; 320 #else 321 table[index] = nk->fi_next_table_pa | PT_VALID; 322 #endif /* __amd64 */ 323 } else { 324 table[index] = nk->fi_next_table_pa | ptp_bits; 325 } 326 table = (x86pte_t *)(nk->fi_next_table_va); 327 nk->fi_next_table_va += MMU_PAGESIZE; 328 nk->fi_next_table_pa += MMU_PAGESIZE; 329 } 330 } 331 } 332 333 /* 334 * Build page tables for the lower 1G of physical memory using 2M 335 * pages, and prepare page tables for mapping new kernel and boot 336 * archive pages using 4K pages. 337 */ 338 static void 339 fastboot_build_pagetables(fastboot_info_t *nk) 340 { 341 /* 342 * Map lower 1G physical memory. Use large pages. 343 */ 344 fastboot_map_with_size(nk, 0, 0, ONE_GIG, 1); 345 346 /* 347 * Map one 4K page to get the middle page tables set up. 348 */ 349 fake_va = P2ALIGN_TYPED(fake_va, nk->fi_lpagesize, uintptr_t); 350 fastboot_map_with_size(nk, fake_va, 351 nk->fi_files[0].fb_pte_list_va[0] & MMU_PAGEMASK, PAGESIZE, 0); 352 } 353 354 355 /* 356 * Sanity check. Look for dboot offset. 357 */ 358 static int 359 fastboot_elf64_find_dboot_load_offset(void *img, off_t imgsz, uint32_t *offp) 360 { 361 Elf64_Ehdr *ehdr = (Elf64_Ehdr *)img; 362 Elf64_Phdr *phdr; 363 uint8_t *phdrbase; 364 int i; 365 366 if ((ehdr->e_phoff + ehdr->e_phnum * ehdr->e_phentsize) >= imgsz) 367 return (-1); 368 369 phdrbase = (uint8_t *)img + ehdr->e_phoff; 370 371 for (i = 0; i < ehdr->e_phnum; i++) { 372 phdr = (Elf64_Phdr *)(phdrbase + ehdr->e_phentsize * i); 373 374 if (phdr->p_type == PT_LOAD) { 375 if (phdr->p_vaddr == phdr->p_paddr && 376 phdr->p_vaddr == DBOOT_ENTRY_ADDRESS) { 377 ASSERT(phdr->p_offset <= UINT32_MAX); 378 *offp = (uint32_t)phdr->p_offset; 379 return (0); 380 } 381 } 382 } 383 384 return (-1); 385 } 386 387 388 /* 389 * Initialize text and data section information for 32-bit kernel. 390 * sectcntp - is both input/output parameter. 391 * On entry, *sectcntp contains maximum allowable number of sections; 392 * on return, it contains the actual number of sections filled. 393 */ 394 static int 395 fastboot_elf32_find_loadables(void *img, off_t imgsz, fastboot_section_t *sectp, 396 int *sectcntp, uint32_t *offp) 397 { 398 Elf32_Ehdr *ehdr = (Elf32_Ehdr *)img; 399 Elf32_Phdr *phdr; 400 uint8_t *phdrbase; 401 int i; 402 int used_sections = 0; 403 const int max_sectcnt = *sectcntp; 404 405 if ((ehdr->e_phoff + ehdr->e_phnum * ehdr->e_phentsize) >= imgsz) 406 return (-1); 407 408 phdrbase = (uint8_t *)img + ehdr->e_phoff; 409 410 for (i = 0; i < ehdr->e_phnum; i++) { 411 phdr = (Elf32_Phdr *)(phdrbase + ehdr->e_phentsize * i); 412 413 if (phdr->p_type == PT_INTERP) 414 return (-1); 415 416 if (phdr->p_type != PT_LOAD) 417 continue; 418 419 if (phdr->p_vaddr == phdr->p_paddr && 420 phdr->p_paddr == DBOOT_ENTRY_ADDRESS) { 421 *offp = (uint32_t)phdr->p_offset; 422 } else { 423 if (max_sectcnt <= used_sections) 424 return (-1); 425 426 sectp[used_sections].fb_sec_offset = phdr->p_offset; 427 sectp[used_sections].fb_sec_paddr = phdr->p_paddr; 428 sectp[used_sections].fb_sec_size = phdr->p_filesz; 429 sectp[used_sections].fb_sec_bss_size = 430 (phdr->p_filesz < phdr->p_memsz) ? 431 (phdr->p_memsz - phdr->p_filesz) : 0; 432 433 /* Extra sanity check for the input object file */ 434 if (sectp[used_sections].fb_sec_paddr + 435 sectp[used_sections].fb_sec_size + 436 sectp[used_sections].fb_sec_bss_size >= 437 DBOOT_ENTRY_ADDRESS) 438 return (-1); 439 440 used_sections++; 441 } 442 } 443 444 *sectcntp = used_sections; 445 return (0); 446 } 447 448 /* 449 * Create multiboot info structure (mbi) base on the saved mbi. 450 * Recalculate values of the pointer type fields in the data 451 * structure based on the new starting physical address of the 452 * data structure. 453 */ 454 static int 455 fastboot_build_mbi(char *mdep, fastboot_info_t *nk) 456 { 457 mb_module_t *mbp; 458 multiboot_info_t *mbi; /* pointer to multiboot structure */ 459 uintptr_t start_addr_va; /* starting VA of mbi */ 460 uintptr_t start_addr_pa; /* starting PA of mbi */ 461 size_t offs = 0; /* offset from the starting address */ 462 size_t arglen; /* length of the command line arg */ 463 size_t size; /* size of the memory reserved for mbi */ 464 size_t mdnsz; /* length of the boot archive name */ 465 466 /* 467 * If mdep is not NULL or empty, use the length of mdep + 1 468 * (for NULL terminating) as the length of the new command 469 * line; else use the saved command line length as the 470 * length for the new command line. 471 */ 472 if (mdep != NULL && strlen(mdep) != 0) { 473 arglen = strlen(mdep) + 1; 474 } else { 475 arglen = saved_cmdline_len; 476 } 477 478 /* 479 * Allocate memory for the new multiboot info structure (mbi). 480 * If we have reserved memory for mbi but it's not enough, 481 * free it and reallocate. 482 */ 483 size = PAGESIZE + P2ROUNDUP(arglen, PAGESIZE); 484 if (nk->fi_mbi_size && nk->fi_mbi_size < size) { 485 contig_free((void *)nk->fi_new_mbi_va, nk->fi_mbi_size); 486 nk->fi_mbi_size = 0; 487 } 488 489 if (nk->fi_mbi_size == 0) { 490 if ((nk->fi_new_mbi_va = 491 (uintptr_t)contig_alloc(size, &fastboot_below_1G_dma_attr, 492 PAGESIZE, 0)) == NULL) { 493 cmn_err(CE_NOTE, fastboot_enomem_msg, 494 (uint64_t)size, "1G"); 495 return (-1); 496 } 497 /* 498 * fi_mbi_size must be set after the allocation succeeds 499 * as it's used to determine how much memory to free. 500 */ 501 nk->fi_mbi_size = size; 502 } 503 504 /* 505 * Initalize memory 506 */ 507 bzero((void *)nk->fi_new_mbi_va, nk->fi_mbi_size); 508 509 /* 510 * Get PA for the new mbi 511 */ 512 start_addr_va = nk->fi_new_mbi_va; 513 start_addr_pa = mmu_ptob((uint64_t)hat_getpfnum(kas.a_hat, 514 (caddr_t)start_addr_va)); 515 nk->fi_new_mbi_pa = (paddr_t)start_addr_pa; 516 517 /* 518 * Populate the rest of the fields in the data structure 519 */ 520 521 /* 522 * Copy from the saved mbi to preserve all non-pointer type fields. 523 */ 524 mbi = (multiboot_info_t *)start_addr_va; 525 bcopy(&saved_mbi, mbi, sizeof (*mbi)); 526 527 /* 528 * Recalculate mods_addr. Set mod_start and mod_end based on 529 * the physical address of the new boot archive. Set mod_name 530 * to the name of the new boto archive. 531 */ 532 offs += sizeof (multiboot_info_t); 533 mbi->mods_addr = start_addr_pa + offs; 534 mbp = (mb_module_t *)(start_addr_va + offs); 535 mbp->mod_start = nk->fi_files[FASTBOOT_BOOTARCHIVE].fb_dest_pa; 536 mbp->mod_end = nk->fi_files[FASTBOOT_BOOTARCHIVE].fb_next_pa; 537 538 offs += sizeof (mb_module_t); 539 mdnsz = strlen(fastboot_filename[FASTBOOT_NAME_BOOTARCHIVE]) + 1; 540 bcopy(fastboot_filename[FASTBOOT_NAME_BOOTARCHIVE], 541 (void *)(start_addr_va + offs), mdnsz); 542 mbp->mod_name = start_addr_pa + offs; 543 mbp->reserved = 0; 544 545 /* 546 * Make sure the offset is 16-byte aligned to avoid unaligned access. 547 */ 548 offs += mdnsz; 549 offs = P2ROUNDUP_TYPED(offs, 16, size_t); 550 551 /* 552 * Recalculate mmap_addr 553 */ 554 mbi->mmap_addr = start_addr_pa + offs; 555 bcopy((void *)(uintptr_t)saved_mmap, (void *)(start_addr_va + offs), 556 saved_mbi.mmap_length); 557 offs += saved_mbi.mmap_length; 558 559 /* 560 * Recalculate drives_addr 561 */ 562 mbi->drives_addr = start_addr_pa + offs; 563 bcopy((void *)(uintptr_t)saved_drives, (void *)(start_addr_va + offs), 564 saved_mbi.drives_length); 565 offs += saved_mbi.drives_length; 566 567 /* 568 * Recalculate the address of cmdline. Set cmdline to contain the 569 * new boot argument. 570 */ 571 mbi->cmdline = start_addr_pa + offs; 572 573 if (mdep != NULL && strlen(mdep) != 0) { 574 bcopy(mdep, (void *)(start_addr_va + offs), arglen); 575 } else { 576 bcopy((void *)saved_cmdline, (void *)(start_addr_va + offs), 577 arglen); 578 } 579 580 /* clear fields and flags that are not copied */ 581 bzero(&mbi->config_table, 582 sizeof (*mbi) - offsetof(multiboot_info_t, config_table)); 583 mbi->flags &= ~(MB_INFO_CONFIG_TABLE | MB_INFO_BOOT_LOADER_NAME | 584 MB_INFO_APM_TABLE | MB_INFO_VIDEO_INFO); 585 586 return (0); 587 } 588 589 /* 590 * Initialize HAT related fields 591 */ 592 static void 593 fastboot_init_fields(fastboot_info_t *nk) 594 { 595 if (x86_feature & X86_PAE) { 596 nk->fi_has_pae = 1; 597 nk->fi_shift_amt = fastboot_shift_amt_pae; 598 nk->fi_ptes_per_table = 512; 599 nk->fi_lpagesize = (2 << 20); /* 2M */ 600 #ifdef __amd64 601 nk->fi_top_level = 3; 602 #else 603 nk->fi_top_level = 2; 604 #endif /* __amd64 */ 605 } 606 } 607 608 /* 609 * Process boot argument 610 */ 611 static void 612 fastboot_parse_mdep(char *mdep, char *kern_bootpath, int *bootpath_len, 613 char *bootargs) 614 { 615 int i; 616 617 /* 618 * If mdep is not NULL, it comes in the format of 619 * mountpoint unix args 620 */ 621 if (mdep != NULL && strlen(mdep) != 0) { 622 if (mdep[0] != '-') { 623 /* First get the root argument */ 624 i = 0; 625 while (mdep[i] != '\0' && mdep[i] != ' ') { 626 i++; 627 } 628 629 if (i < 4 || strncmp(&mdep[i-4], "unix", 4) != 0) { 630 /* mount point */ 631 bcopy(mdep, kern_bootpath, i); 632 kern_bootpath[i] = '\0'; 633 *bootpath_len = i; 634 635 /* 636 * Get the next argument. It should be unix as 637 * we have validated in in halt.c. 638 */ 639 if (strlen(mdep) > i) { 640 mdep += (i + 1); 641 i = 0; 642 while (mdep[i] != '\0' && 643 mdep[i] != ' ') { 644 i++; 645 } 646 } 647 648 } 649 bcopy(mdep, kern_bootfile, i); 650 kern_bootfile[i] = '\0'; 651 bcopy(mdep, bootargs, strlen(mdep)); 652 } else { 653 int off = strlen(kern_bootfile); 654 bcopy(kern_bootfile, bootargs, off); 655 bcopy(" ", &bootargs[off++], 1); 656 bcopy(mdep, &bootargs[off], strlen(mdep)); 657 off += strlen(mdep); 658 bootargs[off] = '\0'; 659 } 660 } 661 } 662 663 /* 664 * Reserve memory under PA 1G for mapping the new kernel and boot archive. 665 * This function is only called if fastreboot_onpanic is *not* set. 666 */ 667 static void 668 fastboot_reserve_mem(fastboot_info_t *nk) 669 { 670 int i; 671 672 /* 673 * A valid kernel is in place. No need to reserve any memory. 674 */ 675 if (nk->fi_valid) 676 return; 677 678 /* 679 * Reserve memory under PA 1G for PTE lists. 680 */ 681 for (i = 0; i < FASTBOOT_MAX_FILES_MAP; i++) { 682 fastboot_file_t *fb = &nk->fi_files[i]; 683 size_t fsize_roundup, size; 684 685 fsize_roundup = P2ROUNDUP_TYPED(saved_file_size[i], 686 PAGESIZE, size_t); 687 size = FASTBOOT_PTE_LIST_SIZE(fsize_roundup); 688 if ((fb->fb_pte_list_va = contig_alloc(size, 689 &fastboot_below_1G_dma_attr, PAGESIZE, 0)) == NULL) { 690 return; 691 } 692 fb->fb_pte_list_size = size; 693 } 694 695 /* 696 * Reserve memory under PA 1G for page tables. 697 */ 698 if ((nk->fi_pagetable_va = 699 (uintptr_t)contig_alloc(fastboot_pagetable_size, 700 &fastboot_below_1G_dma_attr, PAGESIZE, 0)) == NULL) { 701 return; 702 } 703 nk->fi_pagetable_size = fastboot_pagetable_size; 704 705 /* 706 * Reserve memory under PA 1G for multiboot structure. 707 */ 708 if ((nk->fi_new_mbi_va = (uintptr_t)contig_alloc(fastboot_mbi_size, 709 &fastboot_below_1G_dma_attr, PAGESIZE, 0)) == NULL) { 710 return; 711 } 712 nk->fi_mbi_size = fastboot_mbi_size; 713 } 714 715 /* 716 * Calculate MD5 digest for the given fastboot_file. 717 * Assumes that the file is allready loaded properly. 718 */ 719 static void 720 fastboot_cksum_file(fastboot_file_t *fb, uchar_t *md5_hash) 721 { 722 MD5_CTX md5_ctx; 723 724 MD5Init(&md5_ctx); 725 MD5Update(&md5_ctx, (void *)fb->fb_va, fb->fb_size); 726 MD5Final(md5_hash, &md5_ctx); 727 } 728 729 /* 730 * Free up the memory we have allocated for a file 731 */ 732 static void 733 fastboot_free_file(fastboot_file_t *fb) 734 { 735 size_t fsize_roundup; 736 737 fsize_roundup = P2ROUNDUP_TYPED(fb->fb_size, PAGESIZE, size_t); 738 if (fsize_roundup) { 739 contig_free((void *)fb->fb_va, fsize_roundup); 740 fb->fb_va = NULL; 741 fb->fb_size = 0; 742 } 743 } 744 745 /* 746 * Free up memory used by the PTEs for a file. 747 */ 748 static void 749 fastboot_free_file_pte(fastboot_file_t *fb, uint64_t endaddr) 750 { 751 if (fb->fb_pte_list_size && fb->fb_pte_list_pa < endaddr) { 752 contig_free((void *)fb->fb_pte_list_va, fb->fb_pte_list_size); 753 fb->fb_pte_list_va = 0; 754 fb->fb_pte_list_pa = 0; 755 fb->fb_pte_list_size = 0; 756 } 757 } 758 759 /* 760 * Free up all the memory used for representing a kernel with 761 * fastboot_info_t. 762 */ 763 static void 764 fastboot_free_mem(fastboot_info_t *nk, uint64_t endaddr) 765 { 766 int i; 767 768 for (i = 0; i < FASTBOOT_MAX_FILES_MAP; i++) { 769 fastboot_free_file(nk->fi_files + i); 770 fastboot_free_file_pte(nk->fi_files + i, endaddr); 771 } 772 773 if (nk->fi_pagetable_size && nk->fi_pagetable_pa < endaddr) { 774 contig_free((void *)nk->fi_pagetable_va, nk->fi_pagetable_size); 775 nk->fi_pagetable_va = 0; 776 nk->fi_pagetable_pa = 0; 777 nk->fi_pagetable_size = 0; 778 } 779 780 if (nk->fi_mbi_size && nk->fi_new_mbi_pa < endaddr) { 781 contig_free((void *)nk->fi_new_mbi_va, nk->fi_mbi_size); 782 nk->fi_new_mbi_va = 0; 783 nk->fi_new_mbi_pa = 0; 784 nk->fi_mbi_size = 0; 785 } 786 } 787 788 /* 789 * Only free up the memory allocated for the kernel and boot archive, 790 * but not for the page tables. 791 */ 792 void 793 fastboot_free_newkernel(fastboot_info_t *nk) 794 { 795 int i; 796 797 nk->fi_valid = 0; 798 /* 799 * Free the memory we have allocated 800 */ 801 for (i = 0; i < FASTBOOT_MAX_FILES_MAP; i++) { 802 fastboot_free_file(&(nk->fi_files[i])); 803 } 804 } 805 806 static void 807 fastboot_cksum_cdata(fastboot_info_t *nk, uchar_t *md5_hash) 808 { 809 int i; 810 MD5_CTX md5_ctx; 811 812 MD5Init(&md5_ctx); 813 for (i = 0; i < FASTBOOT_MAX_FILES_MAP; i++) { 814 MD5Update(&md5_ctx, nk->fi_files[i].fb_pte_list_va, 815 nk->fi_files[i].fb_pte_list_size); 816 } 817 MD5Update(&md5_ctx, (void *)nk->fi_pagetable_va, nk->fi_pagetable_size); 818 MD5Update(&md5_ctx, (void *)nk->fi_new_mbi_va, nk->fi_mbi_size); 819 820 MD5Final(md5_hash, &md5_ctx); 821 } 822 823 /* 824 * Generate MD5 checksum of the given kernel. 825 */ 826 static void 827 fastboot_cksum_generate(fastboot_info_t *nk) 828 { 829 int i; 830 831 for (i = 0; i < FASTBOOT_MAX_FILES_MAP; i++) { 832 fastboot_cksum_file(nk->fi_files + i, nk->fi_md5_hash[i]); 833 } 834 fastboot_cksum_cdata(nk, nk->fi_md5_hash[i]); 835 } 836 837 /* 838 * Calculate MD5 checksum of the given kernel and verify that 839 * it matches with what was calculated before. 840 */ 841 int 842 fastboot_cksum_verify(fastboot_info_t *nk) 843 { 844 int i; 845 uchar_t md5_hash[MD5_DIGEST_LENGTH]; 846 847 for (i = 0; i < FASTBOOT_MAX_FILES_MAP; i++) { 848 fastboot_cksum_file(nk->fi_files + i, md5_hash); 849 if (bcmp(nk->fi_md5_hash[i], md5_hash, 850 sizeof (nk->fi_md5_hash[i])) != 0) 851 return (i + 1); 852 } 853 854 fastboot_cksum_cdata(nk, md5_hash); 855 if (bcmp(nk->fi_md5_hash[i], md5_hash, 856 sizeof (nk->fi_md5_hash[i])) != 0) 857 return (i + 1); 858 859 return (0); 860 } 861 862 /* 863 * This function performs the following tasks: 864 * - Read the sizes of the new kernel and boot archive. 865 * - Allocate memory for the new kernel and boot archive. 866 * - Allocate memory for page tables necessary for mapping the memory 867 * allocated for the files. 868 * - Read the new kernel and boot archive into memory. 869 * - Map in the fast reboot switcher. 870 * - Load the fast reboot switcher to FASTBOOT_SWTCH_PA. 871 * - Build the new multiboot_info structure 872 * - Build page tables for the low 1G of physical memory. 873 * - Mark the data structure as valid if all steps have succeeded. 874 */ 875 void 876 fastboot_load_kernel(char *mdep) 877 { 878 void *buf = NULL; 879 int i; 880 fastboot_file_t *fb; 881 uint32_t dboot_start_offset; 882 char kern_bootpath[OBP_MAXPATHLEN]; 883 extern uintptr_t postbootkernelbase; 884 uintptr_t saved_kernelbase; 885 int bootpath_len = 0; 886 int is_failsafe = 0; 887 int is_retry = 0; 888 uint64_t end_addr; 889 890 if (!fastreboot_capable) 891 return; 892 893 if (newkernel.fi_valid) 894 fastboot_free_newkernel(&newkernel); 895 896 saved_kernelbase = postbootkernelbase; 897 898 postbootkernelbase = 0; 899 900 /* 901 * Initialize various HAT related fields in the data structure 902 */ 903 fastboot_init_fields(&newkernel); 904 905 bzero(kern_bootpath, OBP_MAXPATHLEN); 906 907 /* 908 * Process the boot argument 909 */ 910 bzero(fastboot_args, OBP_MAXPATHLEN); 911 fastboot_parse_mdep(mdep, kern_bootpath, &bootpath_len, fastboot_args); 912 913 /* 914 * Make sure we get the null character 915 */ 916 bcopy(kern_bootpath, fastboot_filename[FASTBOOT_NAME_UNIX], 917 bootpath_len); 918 bcopy(kern_bootfile, 919 &fastboot_filename[FASTBOOT_NAME_UNIX][bootpath_len], 920 strlen(kern_bootfile) + 1); 921 922 bcopy(kern_bootpath, fastboot_filename[FASTBOOT_NAME_BOOTARCHIVE], 923 bootpath_len); 924 925 if (bcmp(kern_bootfile, FAILSAFE_BOOTFILE32, 926 (sizeof (FAILSAFE_BOOTFILE32) - 1)) == 0 || 927 bcmp(kern_bootfile, FAILSAFE_BOOTFILE64, 928 (sizeof (FAILSAFE_BOOTFILE64) - 1)) == 0) { 929 is_failsafe = 1; 930 } 931 932 load_kernel_retry: 933 /* 934 * Read in unix and boot_archive 935 */ 936 end_addr = DBOOT_ENTRY_ADDRESS; 937 for (i = 0; i < FASTBOOT_MAX_FILES_MAP; i++) { 938 struct _buf *file; 939 uintptr_t va; 940 uint64_t fsize; 941 size_t fsize_roundup, pt_size; 942 int page_index; 943 uintptr_t offset; 944 ddi_dma_attr_t dma_attr = fastboot_dma_attr; 945 946 947 dprintf("fastboot_filename[%d] = %s\n", 948 i, fastboot_filename[i]); 949 950 if ((file = kobj_open_file(fastboot_filename[i])) == 951 (struct _buf *)-1) { 952 cmn_err(CE_NOTE, "!Fastboot: Couldn't open %s", 953 fastboot_filename[i]); 954 goto err_out; 955 } 956 957 if (kobj_get_filesize(file, &fsize) != 0) { 958 cmn_err(CE_NOTE, 959 "!Fastboot: Couldn't get filesize for %s", 960 fastboot_filename[i]); 961 goto err_out; 962 } 963 964 fsize_roundup = P2ROUNDUP_TYPED(fsize, PAGESIZE, size_t); 965 966 /* 967 * Where the files end in physical memory after being 968 * relocated by the fast boot switcher. 969 */ 970 end_addr += fsize_roundup; 971 if (end_addr > fastboot_below_1G_dma_attr.dma_attr_addr_hi) { 972 cmn_err(CE_NOTE, "!Fastboot: boot archive is too big"); 973 goto err_out; 974 } 975 976 /* 977 * Adjust dma_attr_addr_lo so that the new kernel and boot 978 * archive will not be overridden during relocation. 979 */ 980 if (end_addr > fastboot_dma_attr.dma_attr_addr_lo || 981 end_addr > fastboot_below_1G_dma_attr.dma_attr_addr_lo) { 982 983 if (is_retry) { 984 /* 985 * If we have already tried and didn't succeed, 986 * just give up. 987 */ 988 cmn_err(CE_NOTE, 989 "!Fastboot: boot archive is too big"); 990 goto err_out; 991 } else { 992 /* Set the flag so we don't keep retrying */ 993 is_retry++; 994 995 /* Adjust dma_attr_addr_lo */ 996 fastboot_dma_attr.dma_attr_addr_lo = end_addr; 997 fastboot_below_1G_dma_attr.dma_attr_addr_lo = 998 end_addr; 999 1000 /* 1001 * Free the memory we have already allocated 1002 * whose physical addresses might not fit 1003 * the new lo and hi constraints. 1004 */ 1005 fastboot_free_mem(&newkernel, end_addr); 1006 goto load_kernel_retry; 1007 } 1008 } 1009 1010 1011 if (!fastboot_contig) 1012 dma_attr.dma_attr_sgllen = (fsize / PAGESIZE) + 1013 (((fsize % PAGESIZE) == 0) ? 0 : 1); 1014 1015 if ((buf = contig_alloc(fsize, &dma_attr, PAGESIZE, 0)) 1016 == NULL) { 1017 cmn_err(CE_NOTE, fastboot_enomem_msg, fsize, "64G"); 1018 goto err_out; 1019 } 1020 1021 va = P2ROUNDUP_TYPED((uintptr_t)buf, PAGESIZE, uintptr_t); 1022 1023 if (kobj_read_file(file, (char *)va, fsize, 0) < 0) { 1024 cmn_err(CE_NOTE, "!Fastboot: Couldn't read %s", 1025 fastboot_filename[i]); 1026 goto err_out; 1027 } 1028 1029 fb = &newkernel.fi_files[i]; 1030 fb->fb_va = va; 1031 fb->fb_size = fsize; 1032 fb->fb_sectcnt = 0; 1033 1034 pt_size = FASTBOOT_PTE_LIST_SIZE(fsize_roundup); 1035 1036 /* 1037 * If we have reserved memory but it not enough, free it. 1038 */ 1039 if (fb->fb_pte_list_size && fb->fb_pte_list_size < pt_size) { 1040 contig_free((void *)fb->fb_pte_list_va, 1041 fb->fb_pte_list_size); 1042 fb->fb_pte_list_size = 0; 1043 } 1044 1045 if (fb->fb_pte_list_size == 0) { 1046 if ((fb->fb_pte_list_va = 1047 (x86pte_t *)contig_alloc(pt_size, 1048 &fastboot_below_1G_dma_attr, PAGESIZE, 0)) 1049 == NULL) { 1050 cmn_err(CE_NOTE, fastboot_enomem_msg, 1051 (uint64_t)pt_size, "1G"); 1052 goto err_out; 1053 } 1054 /* 1055 * fb_pte_list_size must be set after the allocation 1056 * succeeds as it's used to determine how much memory to 1057 * free. 1058 */ 1059 fb->fb_pte_list_size = pt_size; 1060 } 1061 1062 bzero((void *)(fb->fb_pte_list_va), fb->fb_pte_list_size); 1063 1064 fb->fb_pte_list_pa = mmu_ptob((uint64_t)hat_getpfnum(kas.a_hat, 1065 (caddr_t)fb->fb_pte_list_va)); 1066 1067 for (page_index = 0, offset = 0; offset < fb->fb_size; 1068 offset += PAGESIZE) { 1069 uint64_t paddr; 1070 1071 paddr = mmu_ptob((uint64_t)hat_getpfnum(kas.a_hat, 1072 (caddr_t)fb->fb_va + offset)); 1073 1074 ASSERT(paddr >= fastboot_dma_attr.dma_attr_addr_lo); 1075 1076 /* 1077 * Include the pte_bits so we don't have to make 1078 * it in assembly. 1079 */ 1080 fb->fb_pte_list_va[page_index++] = (x86pte_t) 1081 (paddr | pte_bits); 1082 } 1083 1084 fb->fb_pte_list_va[page_index] = FASTBOOT_TERMINATE; 1085 1086 if (i == FASTBOOT_UNIX) { 1087 Ehdr *ehdr = (Ehdr *)va; 1088 int j; 1089 1090 /* 1091 * Sanity checks: 1092 */ 1093 for (j = 0; j < SELFMAG; j++) { 1094 if (ehdr->e_ident[j] != ELFMAG[j]) { 1095 cmn_err(CE_NOTE, "!Fastboot: Bad ELF " 1096 "signature"); 1097 goto err_out; 1098 } 1099 } 1100 1101 if (ehdr->e_ident[EI_CLASS] == ELFCLASS32 && 1102 ehdr->e_ident[EI_DATA] == ELFDATA2LSB && 1103 ehdr->e_machine == EM_386) { 1104 1105 fb->fb_sectcnt = sizeof (fb->fb_sections) / 1106 sizeof (fb->fb_sections[0]); 1107 1108 if (fastboot_elf32_find_loadables((void *)va, 1109 fsize, &fb->fb_sections[0], 1110 &fb->fb_sectcnt, &dboot_start_offset) < 0) { 1111 cmn_err(CE_NOTE, "!Fastboot: ELF32 " 1112 "program section failure"); 1113 goto err_out; 1114 } 1115 1116 if (fb->fb_sectcnt == 0) { 1117 cmn_err(CE_NOTE, "!Fastboot: No ELF32 " 1118 "program sections found"); 1119 goto err_out; 1120 } 1121 1122 if (is_failsafe) { 1123 /* Failsafe boot_archive */ 1124 bcopy(BOOTARCHIVE32_FAILSAFE, 1125 &fastboot_filename 1126 [FASTBOOT_NAME_BOOTARCHIVE] 1127 [bootpath_len], 1128 sizeof (BOOTARCHIVE32_FAILSAFE)); 1129 } else { 1130 bcopy(BOOTARCHIVE32, 1131 &fastboot_filename 1132 [FASTBOOT_NAME_BOOTARCHIVE] 1133 [bootpath_len], 1134 sizeof (BOOTARCHIVE32)); 1135 } 1136 1137 } else if (ehdr->e_ident[EI_CLASS] == ELFCLASS64 && 1138 ehdr->e_ident[EI_DATA] == ELFDATA2LSB && 1139 ehdr->e_machine == EM_AMD64) { 1140 1141 if (fastboot_elf64_find_dboot_load_offset( 1142 (void *)va, fsize, &dboot_start_offset) 1143 != 0) { 1144 cmn_err(CE_NOTE, "!Fastboot: Couldn't " 1145 "find ELF64 dboot entry offset"); 1146 goto err_out; 1147 } 1148 1149 if ((x86_feature & X86_64) == 0 || 1150 (x86_feature & X86_PAE) == 0) { 1151 cmn_err(CE_NOTE, "!Fastboot: Cannot " 1152 "reboot to %s: " 1153 "not a 64-bit capable system", 1154 kern_bootfile); 1155 goto err_out; 1156 } 1157 1158 if (is_failsafe) { 1159 /* Failsafe boot_archive */ 1160 bcopy(BOOTARCHIVE64_FAILSAFE, 1161 &fastboot_filename 1162 [FASTBOOT_NAME_BOOTARCHIVE] 1163 [bootpath_len], 1164 sizeof (BOOTARCHIVE64_FAILSAFE)); 1165 } else { 1166 bcopy(BOOTARCHIVE64, 1167 &fastboot_filename 1168 [FASTBOOT_NAME_BOOTARCHIVE] 1169 [bootpath_len], 1170 sizeof (BOOTARCHIVE64)); 1171 } 1172 } else { 1173 cmn_err(CE_NOTE, "!Fastboot: Unknown ELF type"); 1174 goto err_out; 1175 } 1176 1177 fb->fb_dest_pa = DBOOT_ENTRY_ADDRESS - 1178 dboot_start_offset; 1179 1180 fb->fb_next_pa = DBOOT_ENTRY_ADDRESS + fsize_roundup; 1181 } else { 1182 fb->fb_dest_pa = newkernel.fi_files[i - 1].fb_next_pa; 1183 fb->fb_next_pa = fb->fb_dest_pa + fsize_roundup; 1184 } 1185 1186 kobj_close_file(file); 1187 1188 } 1189 1190 /* 1191 * Add the function that will switch us to 32-bit protected mode 1192 */ 1193 fb = &newkernel.fi_files[FASTBOOT_SWTCH]; 1194 fb->fb_va = fb->fb_dest_pa = FASTBOOT_SWTCH_PA; 1195 fb->fb_size = MMU_PAGESIZE; 1196 1197 hat_devload(kas.a_hat, (caddr_t)fb->fb_va, 1198 MMU_PAGESIZE, mmu_btop(fb->fb_dest_pa), 1199 PROT_READ | PROT_WRITE | PROT_EXEC, 1200 HAT_LOAD_NOCONSIST | HAT_LOAD_LOCK); 1201 1202 /* 1203 * Build the new multiboot_info structure 1204 */ 1205 if (fastboot_build_mbi(fastboot_args, &newkernel) != 0) { 1206 goto err_out; 1207 } 1208 1209 /* 1210 * Build page table for low 1G physical memory. Use big pages. 1211 * Allocate 4 (5 for amd64) pages for the page tables. 1212 * 1 page for PML4 (amd64) 1213 * 1 page for Page-Directory-Pointer Table 1214 * 2 pages for Page Directory 1215 * 1 page for Page Table. 1216 * The page table entry will be rewritten to map the physical 1217 * address as we do the copying. 1218 */ 1219 if (newkernel.fi_has_pae) { 1220 #ifdef __amd64 1221 size_t size = MMU_PAGESIZE * 5; 1222 #else 1223 size_t size = MMU_PAGESIZE * 4; 1224 #endif /* __amd64 */ 1225 1226 if (newkernel.fi_pagetable_size && newkernel.fi_pagetable_size 1227 < size) { 1228 contig_free((void *)newkernel.fi_pagetable_va, 1229 newkernel.fi_pagetable_size); 1230 newkernel.fi_pagetable_size = 0; 1231 } 1232 1233 if (newkernel.fi_pagetable_size == 0) { 1234 if ((newkernel.fi_pagetable_va = (uintptr_t) 1235 contig_alloc(size, &fastboot_below_1G_dma_attr, 1236 MMU_PAGESIZE, 0)) == NULL) { 1237 cmn_err(CE_NOTE, fastboot_enomem_msg, 1238 (uint64_t)size, "1G"); 1239 goto err_out; 1240 } 1241 /* 1242 * fi_pagetable_size must be set after the allocation 1243 * succeeds as it's used to determine how much memory to 1244 * free. 1245 */ 1246 newkernel.fi_pagetable_size = size; 1247 } 1248 1249 bzero((void *)(newkernel.fi_pagetable_va), size); 1250 1251 newkernel.fi_pagetable_pa = 1252 mmu_ptob((uint64_t)hat_getpfnum(kas.a_hat, 1253 (caddr_t)newkernel.fi_pagetable_va)); 1254 1255 newkernel.fi_last_table_pa = newkernel.fi_pagetable_pa + 1256 size - MMU_PAGESIZE; 1257 1258 newkernel.fi_next_table_va = newkernel.fi_pagetable_va + 1259 MMU_PAGESIZE; 1260 newkernel.fi_next_table_pa = newkernel.fi_pagetable_pa + 1261 MMU_PAGESIZE; 1262 1263 fastboot_build_pagetables(&newkernel); 1264 } 1265 1266 1267 /* Generate MD5 checksums */ 1268 fastboot_cksum_generate(&newkernel); 1269 1270 /* Mark it as valid */ 1271 newkernel.fi_valid = 1; 1272 newkernel.fi_magic = FASTBOOT_MAGIC; 1273 1274 postbootkernelbase = saved_kernelbase; 1275 return; 1276 1277 err_out: 1278 postbootkernelbase = saved_kernelbase; 1279 newkernel.fi_valid = 0; 1280 fastboot_free_newkernel(&newkernel); 1281 } 1282 1283 1284 /* ARGSUSED */ 1285 static int 1286 fastboot_xc_func(fastboot_info_t *nk, xc_arg_t unused2, xc_arg_t unused3) 1287 { 1288 void (*fastboot_func)(fastboot_info_t *); 1289 fastboot_file_t *fb = &nk->fi_files[FASTBOOT_SWTCH]; 1290 fastboot_func = (void (*)())(fb->fb_va); 1291 kthread_t *t_intr = curthread->t_intr; 1292 1293 if (&kas != curproc->p_as) { 1294 hat_devload(curproc->p_as->a_hat, (caddr_t)fb->fb_va, 1295 MMU_PAGESIZE, mmu_btop(fb->fb_dest_pa), 1296 PROT_READ | PROT_WRITE | PROT_EXEC, 1297 HAT_LOAD_NOCONSIST | HAT_LOAD_LOCK); 1298 } 1299 1300 /* 1301 * If we have pinned a thread, make sure the address is mapped 1302 * in the address space of the pinned thread. 1303 */ 1304 if (t_intr && t_intr->t_procp->p_as->a_hat != curproc->p_as->a_hat && 1305 t_intr->t_procp->p_as != &kas) 1306 hat_devload(t_intr->t_procp->p_as->a_hat, (caddr_t)fb->fb_va, 1307 MMU_PAGESIZE, mmu_btop(fb->fb_dest_pa), 1308 PROT_READ | PROT_WRITE | PROT_EXEC, 1309 HAT_LOAD_NOCONSIST | HAT_LOAD_LOCK); 1310 1311 (*psm_shutdownf)(A_SHUTDOWN, AD_FASTREBOOT); 1312 (*fastboot_func)(nk); 1313 1314 /*NOTREACHED*/ 1315 return (0); 1316 } 1317 1318 /* 1319 * Jump to the fast reboot switcher. This function never returns. 1320 */ 1321 void 1322 fast_reboot() 1323 { 1324 processorid_t bootcpuid = 0; 1325 extern uintptr_t postbootkernelbase; 1326 extern char fb_swtch_image[]; 1327 fastboot_file_t *fb; 1328 int i; 1329 1330 postbootkernelbase = 0; 1331 1332 fb = &newkernel.fi_files[FASTBOOT_SWTCH]; 1333 1334 /* 1335 * Map the address into both the current proc's address 1336 * space and the kernel's address space in case the panic 1337 * is forced by kmdb. 1338 */ 1339 if (&kas != curproc->p_as) { 1340 hat_devload(curproc->p_as->a_hat, (caddr_t)fb->fb_va, 1341 MMU_PAGESIZE, mmu_btop(fb->fb_dest_pa), 1342 PROT_READ | PROT_WRITE | PROT_EXEC, 1343 HAT_LOAD_NOCONSIST | HAT_LOAD_LOCK); 1344 } 1345 1346 bcopy((void *)fb_swtch_image, (void *)fb->fb_va, fb->fb_size); 1347 1348 1349 /* 1350 * Set fb_va to fake_va 1351 */ 1352 for (i = 0; i < FASTBOOT_MAX_FILES_MAP; i++) { 1353 newkernel.fi_files[i].fb_va = fake_va; 1354 1355 } 1356 1357 if (panicstr && CPU->cpu_id != bootcpuid && 1358 CPU_ACTIVE(cpu_get(bootcpuid))) { 1359 extern void panic_idle(void); 1360 cpuset_t cpuset; 1361 1362 CPUSET_ZERO(cpuset); 1363 CPUSET_ADD(cpuset, bootcpuid); 1364 xc_priority((xc_arg_t)&newkernel, 0, 0, CPUSET2BV(cpuset), 1365 (xc_func_t)fastboot_xc_func); 1366 1367 panic_idle(); 1368 } else 1369 (void) fastboot_xc_func(&newkernel, 0, 0); 1370 } 1371 1372 1373 /* 1374 * Get boot property value for fastreboot_onpanic. 1375 * 1376 * NOTE: If fastreboot_onpanic is set to non-zero in /etc/system, 1377 * new setting passed in via "-B fastreboot_onpanic" is ignored. 1378 * This order of precedence is to enable developers debugging panics 1379 * that occur early in boot to utilize Fast Reboot on panic. 1380 */ 1381 static void 1382 fastboot_get_bootprop(void) 1383 { 1384 int val = 0xaa, len, ret; 1385 dev_info_t *devi; 1386 char *propstr = NULL; 1387 1388 devi = ddi_root_node(); 1389 1390 ret = ddi_prop_lookup_string(DDI_DEV_T_ANY, devi, DDI_PROP_DONTPASS, 1391 FASTREBOOT_ONPANIC, &propstr); 1392 1393 if (ret == DDI_PROP_SUCCESS) { 1394 if (FASTREBOOT_ONPANIC_NOTSET(propstr)) 1395 val = 0; 1396 else if (FASTREBOOT_ONPANIC_ISSET(propstr)) 1397 val = UA_FASTREBOOT_ONPANIC; 1398 1399 /* 1400 * Only set fastreboot_onpanic to the value passed in 1401 * if it's not already set to non-zero, and the value 1402 * has indeed been passed in via command line. 1403 */ 1404 if (!fastreboot_onpanic && val != 0xaa) 1405 fastreboot_onpanic = val; 1406 ddi_prop_free(propstr); 1407 } else if (ret != DDI_PROP_NOT_FOUND && ret != DDI_PROP_UNDEFINED) { 1408 cmn_err(CE_NOTE, "!%s value is invalid, will be ignored", 1409 FASTREBOOT_ONPANIC); 1410 } 1411 1412 len = sizeof (fastreboot_onpanic_cmdline); 1413 ret = ddi_getlongprop_buf(DDI_DEV_T_ANY, devi, DDI_PROP_DONTPASS, 1414 FASTREBOOT_ONPANIC_CMDLINE, fastreboot_onpanic_cmdline, &len); 1415 1416 if (ret == DDI_PROP_BUF_TOO_SMALL) 1417 cmn_err(CE_NOTE, "!%s value is too long, will be ignored", 1418 FASTREBOOT_ONPANIC_CMDLINE); 1419 } 1420 1421 /* 1422 * This function is called by main() to either load the backup kernel for panic 1423 * fast reboot, or to reserve low physical memory for fast reboot. 1424 */ 1425 void 1426 fastboot_post_startup() 1427 { 1428 lbolt_at_boot = ddi_get_lbolt(); 1429 1430 /* Default to 10 minutes */ 1431 if (fastreboot_onpanic_uptime == LONG_MAX) 1432 fastreboot_onpanic_uptime = SEC_TO_TICK(10 * 60); 1433 1434 if (!fastreboot_capable) 1435 return; 1436 1437 mutex_enter(&fastreboot_config_mutex); 1438 1439 fastboot_get_bootprop(); 1440 1441 if (fastreboot_onpanic) 1442 fastboot_load_kernel(fastreboot_onpanic_cmdline); 1443 else if (reserve_mem_enabled) 1444 fastboot_reserve_mem(&newkernel); 1445 1446 mutex_exit(&fastreboot_config_mutex); 1447 } 1448 1449 /* 1450 * Update boot configuration settings. 1451 * If the new fastreboot_onpanic setting is false, and a kernel has 1452 * been preloaded, free the memory; 1453 * if the new fastreboot_onpanic setting is true and newkernel is 1454 * not valid, load the new kernel. 1455 */ 1456 void 1457 fastboot_update_config(const char *mdep) 1458 { 1459 uint8_t boot_config = (uint8_t)*mdep; 1460 int cur_fastreboot_onpanic; 1461 1462 if (!fastreboot_capable) 1463 return; 1464 1465 mutex_enter(&fastreboot_config_mutex); 1466 1467 cur_fastreboot_onpanic = fastreboot_onpanic; 1468 fastreboot_onpanic = boot_config & UA_FASTREBOOT_ONPANIC; 1469 1470 if (fastreboot_onpanic && (!cur_fastreboot_onpanic || 1471 !newkernel.fi_valid)) 1472 fastboot_load_kernel(fastreboot_onpanic_cmdline); 1473 if (cur_fastreboot_onpanic && !fastreboot_onpanic) 1474 fastboot_free_newkernel(&newkernel); 1475 1476 mutex_exit(&fastreboot_config_mutex); 1477 } 1478 1479 /* 1480 * This is the interface to be called by other kernel components to 1481 * disable fastreboot_onpanic. 1482 */ 1483 void 1484 fastreboot_disable() 1485 { 1486 uint8_t boot_config = (uint8_t)(~UA_FASTREBOOT_ONPANIC); 1487 fastboot_update_config((const char *)&boot_config); 1488 } 1489 1490 /* 1491 * This is the interface to be called by fm_panic() in case FMA has diagnosed 1492 * a terminal machine check exception. It does not free up memory allocated 1493 * for the backup kernel. General disabling fastreboot_onpanic in a 1494 * non-panicking situation must go through fastboot_update_config(). 1495 */ 1496 void 1497 fastreboot_disable_highpil() 1498 { 1499 fastreboot_onpanic = 0; 1500 } 1501 1502 1503 /* 1504 * A simplified interface for uadmin to call to update the configuration 1505 * setting and load a new kernel if necessary. 1506 */ 1507 void 1508 fastboot_update_and_load(int fcn, char *mdep) 1509 { 1510 if (fcn != AD_FASTREBOOT) { 1511 /* 1512 * If user has explicitly requested reboot to prom, 1513 * or uadmin(1M) was invoked with other functions, 1514 * don't try to fast reboot after dumping. 1515 */ 1516 fastreboot_disable(); 1517 } 1518 1519 mutex_enter(&fastreboot_config_mutex); 1520 1521 if (fastreboot_onpanic) 1522 fastboot_load_kernel(mdep); 1523 1524 mutex_exit(&fastreboot_config_mutex); 1525 } 1526