1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2009 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 27 /* 28 * This file contains the functions for performing Fast Reboot -- a 29 * reboot which bypasses the firmware and bootloader, considerably 30 * reducing downtime. 31 * 32 * fastboot_load_kernel(): This function is invoked by mdpreboot() in the 33 * reboot path. It loads the new kernel and boot archive into memory, builds 34 * the data structure containing sufficient information about the new 35 * kernel and boot archive to be passed to the fast reboot switcher 36 * (see fb_swtch_src.s for details). When invoked the switcher relocates 37 * the new kernel and boot archive to physically contiguous low memory, 38 * similar to where the boot loader would have loaded them, and jumps to 39 * the new kernel. 40 * 41 * If fastreboot_onpanic is enabled, fastboot_load_kernel() is called 42 * by fastreboot_post_startup() to load the back up kernel in case of 43 * panic. 44 * 45 * The physical addresses of the memory allocated for the new kernel, boot 46 * archive and their page tables must be above where the boot archive ends 47 * after it has been relocated by the switcher, otherwise the new files 48 * and their page tables could be overridden during relocation. 49 * 50 * fast_reboot(): This function is invoked by mdboot() once it's determined 51 * that the system is capable of fast reboot. It jumps to the fast reboot 52 * switcher with the data structure built by fastboot_load_kernel() as the 53 * argument. 54 */ 55 56 #include <sys/types.h> 57 #include <sys/param.h> 58 #include <sys/segments.h> 59 #include <sys/sysmacros.h> 60 #include <sys/vm.h> 61 62 #include <sys/proc.h> 63 #include <sys/buf.h> 64 #include <sys/kmem.h> 65 66 #include <sys/reboot.h> 67 #include <sys/uadmin.h> 68 69 #include <sys/cred.h> 70 #include <sys/vnode.h> 71 #include <sys/file.h> 72 73 #include <sys/cmn_err.h> 74 #include <sys/dumphdr.h> 75 #include <sys/bootconf.h> 76 #include <sys/ddidmareq.h> 77 #include <sys/varargs.h> 78 #include <sys/promif.h> 79 #include <sys/modctl.h> 80 81 #include <vm/hat.h> 82 #include <vm/as.h> 83 #include <vm/page.h> 84 #include <vm/seg.h> 85 #include <vm/hat_i86.h> 86 #include <sys/vm_machparam.h> 87 #include <sys/archsystm.h> 88 #include <sys/machsystm.h> 89 #include <sys/mman.h> 90 #include <sys/x86_archext.h> 91 #include <sys/smp_impldefs.h> 92 #include <sys/spl.h> 93 94 #include <sys/fastboot.h> 95 #include <sys/machelf.h> 96 #include <sys/kobj.h> 97 #include <sys/multiboot.h> 98 #include <sys/kobj_lex.h> 99 100 /* 101 * Macro to determine how many pages are needed for PTEs to map a particular 102 * file. Allocate one extra page table entry for terminating the list. 103 */ 104 #define FASTBOOT_PTE_LIST_SIZE(fsize) \ 105 P2ROUNDUP((((fsize) >> PAGESHIFT) + 1) * sizeof (x86pte_t), PAGESIZE) 106 107 /* 108 * Data structure containing necessary information for the fast reboot 109 * switcher to jump to the new kernel. 110 */ 111 fastboot_info_t newkernel = { 0 }; 112 char fastboot_args[OBP_MAXPATHLEN]; 113 114 static char fastboot_filename[2][OBP_MAXPATHLEN] = { { 0 }, { 0 }}; 115 static x86pte_t ptp_bits = PT_VALID | PT_REF | PT_USER | PT_WRITABLE; 116 static x86pte_t pte_bits = 117 PT_VALID | PT_REF | PT_MOD | PT_NOCONSIST | PT_WRITABLE; 118 static uint_t fastboot_shift_amt_pae[] = {12, 21, 30, 39}; 119 120 int fastboot_debug = 0; 121 int fastboot_contig = 0; 122 123 /* 124 * Fake starting va for new kernel and boot archive. 125 */ 126 static uintptr_t fake_va = FASTBOOT_FAKE_VA; 127 128 /* 129 * Reserve memory below PA 1G in preparation of fast reboot. 130 * 131 * This variable is only checked when fastreboot_capable is set, but 132 * fastreboot_onpanic is not set. The amount of memory reserved 133 * is negligible, but just in case we are really short of low memory, 134 * this variable will give us a backdoor to not consume memory at all. 135 */ 136 int reserve_mem_enabled = 1; 137 138 /* 139 * Amount of memory below PA 1G to reserve for constructing the multiboot 140 * data structure and the page tables as we tend to run out of those 141 * when more drivers are loaded. 142 */ 143 static size_t fastboot_mbi_size = 0x2000; /* 8K */ 144 static size_t fastboot_pagetable_size = 0x5000; /* 20K */ 145 146 /* 147 * Use below 1G for page tables as 148 * 1. we are only doing 1:1 mapping of the bottom 1G of physical memory. 149 * 2. we are using 2G as the fake virtual address for the new kernel and 150 * boot archive. 151 */ 152 static ddi_dma_attr_t fastboot_below_1G_dma_attr = { 153 DMA_ATTR_V0, 154 0x0000000008000000ULL, /* dma_attr_addr_lo: 128MB */ 155 0x000000003FFFFFFFULL, /* dma_attr_addr_hi: 1G */ 156 0x00000000FFFFFFFFULL, /* dma_attr_count_max */ 157 0x0000000000001000ULL, /* dma_attr_align: 4KB */ 158 1, /* dma_attr_burstsize */ 159 1, /* dma_attr_minxfer */ 160 0x00000000FFFFFFFFULL, /* dma_attr_maxxfer */ 161 0x00000000FFFFFFFFULL, /* dma_attr_seg */ 162 1, /* dma_attr_sgllen */ 163 0x1000ULL, /* dma_attr_granular */ 164 0, /* dma_attr_flags */ 165 }; 166 167 static ddi_dma_attr_t fastboot_dma_attr = { 168 DMA_ATTR_V0, 169 0x0000000008000000ULL, /* dma_attr_addr_lo: 128MB */ 170 #ifdef __amd64 171 0xFFFFFFFFFFFFFFFFULL, /* dma_attr_addr_hi: 2^64B */ 172 #else 173 0x0000000FFFFFFFFFULL, /* dma_attr_addr_hi: 64GB */ 174 #endif /* __amd64 */ 175 0x00000000FFFFFFFFULL, /* dma_attr_count_max */ 176 0x0000000000001000ULL, /* dma_attr_align: 4KB */ 177 1, /* dma_attr_burstsize */ 178 1, /* dma_attr_minxfer */ 179 0x00000000FFFFFFFFULL, /* dma_attr_maxxfer */ 180 0x00000000FFFFFFFFULL, /* dma_attr_seg */ 181 1, /* dma_attr_sgllen */ 182 0x1000ULL, /* dma_attr_granular */ 183 0, /* dma_attr_flags */ 184 }; 185 186 /* 187 * Various information saved from the previous boot to reconstruct 188 * multiboot_info. 189 */ 190 extern multiboot_info_t saved_mbi; 191 extern mb_memory_map_t saved_mmap[FASTBOOT_SAVED_MMAP_COUNT]; 192 extern struct sol_netinfo saved_drives[FASTBOOT_SAVED_DRIVES_COUNT]; 193 extern char saved_cmdline[FASTBOOT_SAVED_CMDLINE_LEN]; 194 extern int saved_cmdline_len; 195 extern size_t saved_file_size[]; 196 197 extern void* contig_alloc(size_t size, ddi_dma_attr_t *attr, 198 uintptr_t align, int cansleep); 199 extern void contig_free(void *addr, size_t size); 200 201 202 /* PRINTLIKE */ 203 extern void vprintf(const char *, va_list); 204 205 206 /* 207 * Need to be able to get boot_archives from other places 208 */ 209 #define BOOTARCHIVE64 "/platform/i86pc/amd64/boot_archive" 210 #define BOOTARCHIVE32 "/platform/i86pc/boot_archive" 211 #define BOOTARCHIVE32_FAILSAFE "/boot/x86.miniroot-safe" 212 #define BOOTARCHIVE64_FAILSAFE "/boot/amd64/x86.miniroot-safe" 213 #define FAILSAFE_BOOTFILE32 "/boot/platform/i86pc/kernel/unix" 214 #define FAILSAFE_BOOTFILE64 "/boot/platform/i86pc/kernel/amd64/unix" 215 216 static uint_t fastboot_vatoindex(fastboot_info_t *, uintptr_t, int); 217 static void fastboot_map_with_size(fastboot_info_t *, uintptr_t, 218 paddr_t, size_t, int); 219 static void fastboot_build_pagetables(fastboot_info_t *); 220 static int fastboot_build_mbi(char *, fastboot_info_t *); 221 static void fastboot_free_file(fastboot_file_t *); 222 223 static const char fastboot_enomem_msg[] = "Fastboot: Couldn't allocate 0x%" 224 PRIx64" bytes below %s to do fast reboot"; 225 226 static void 227 dprintf(char *fmt, ...) 228 { 229 va_list adx; 230 231 if (!fastboot_debug) 232 return; 233 234 va_start(adx, fmt); 235 vprintf(fmt, adx); 236 va_end(adx); 237 } 238 239 240 /* 241 * Return the index corresponding to a virt address at a given page table level. 242 */ 243 static uint_t 244 fastboot_vatoindex(fastboot_info_t *nk, uintptr_t va, int level) 245 { 246 return ((va >> nk->fi_shift_amt[level]) & (nk->fi_ptes_per_table - 1)); 247 } 248 249 250 /* 251 * Add mapping from vstart to pstart for the specified size. 252 * vstart, pstart and size should all have been aligned at 2M boundaries. 253 */ 254 static void 255 fastboot_map_with_size(fastboot_info_t *nk, uintptr_t vstart, paddr_t pstart, 256 size_t size, int level) 257 { 258 x86pte_t pteval, *table; 259 uintptr_t vaddr; 260 paddr_t paddr; 261 int index, l; 262 263 table = (x86pte_t *)(nk->fi_pagetable_va); 264 265 for (l = nk->fi_top_level; l >= level; l--) { 266 267 index = fastboot_vatoindex(nk, vstart, l); 268 269 if (l == level) { 270 /* 271 * Last level. Program the page table entries. 272 */ 273 for (vaddr = vstart, paddr = pstart; 274 vaddr < vstart + size; 275 vaddr += (1ULL << nk->fi_shift_amt[l]), 276 paddr += (1ULL << nk->fi_shift_amt[l])) { 277 278 uint_t index = fastboot_vatoindex(nk, vaddr, l); 279 280 if (l > 0) 281 pteval = paddr | pte_bits | PT_PAGESIZE; 282 else 283 pteval = paddr | pte_bits; 284 285 table[index] = pteval; 286 } 287 } else if (table[index] & PT_VALID) { 288 289 table = (x86pte_t *) 290 ((uintptr_t)(((paddr_t)table[index] & MMU_PAGEMASK) 291 - nk->fi_pagetable_pa) + nk->fi_pagetable_va); 292 } else { 293 /* 294 * Intermediate levels. 295 * Program with either valid bit or PTP bits. 296 */ 297 if (l == nk->fi_top_level) { 298 #ifdef __amd64 299 ASSERT(nk->fi_top_level == 3); 300 table[index] = nk->fi_next_table_pa | ptp_bits; 301 #else 302 table[index] = nk->fi_next_table_pa | PT_VALID; 303 #endif /* __amd64 */ 304 } else { 305 table[index] = nk->fi_next_table_pa | ptp_bits; 306 } 307 table = (x86pte_t *)(nk->fi_next_table_va); 308 nk->fi_next_table_va += MMU_PAGESIZE; 309 nk->fi_next_table_pa += MMU_PAGESIZE; 310 } 311 } 312 } 313 314 /* 315 * Build page tables for the lower 1G of physical memory using 2M 316 * pages, and prepare page tables for mapping new kernel and boot 317 * archive pages using 4K pages. 318 */ 319 static void 320 fastboot_build_pagetables(fastboot_info_t *nk) 321 { 322 /* 323 * Map lower 1G physical memory. Use large pages. 324 */ 325 fastboot_map_with_size(nk, 0, 0, ONE_GIG, 1); 326 327 /* 328 * Map one 4K page to get the middle page tables set up. 329 */ 330 fake_va = P2ALIGN_TYPED(fake_va, nk->fi_lpagesize, uintptr_t); 331 fastboot_map_with_size(nk, fake_va, 332 nk->fi_files[0].fb_pte_list_va[0] & MMU_PAGEMASK, PAGESIZE, 0); 333 } 334 335 336 /* 337 * Sanity check. Look for dboot offset. 338 */ 339 static int 340 fastboot_elf64_find_dboot_load_offset(void *img, off_t imgsz, uint32_t *offp) 341 { 342 Elf64_Ehdr *ehdr = (Elf64_Ehdr *)img; 343 Elf64_Phdr *phdr; 344 uint8_t *phdrbase; 345 int i; 346 347 if ((ehdr->e_phoff + ehdr->e_phnum * ehdr->e_phentsize) >= imgsz) 348 return (-1); 349 350 phdrbase = (uint8_t *)img + ehdr->e_phoff; 351 352 for (i = 0; i < ehdr->e_phnum; i++) { 353 phdr = (Elf64_Phdr *)(phdrbase + ehdr->e_phentsize * i); 354 355 if (phdr->p_type == PT_LOAD) { 356 if (phdr->p_vaddr == phdr->p_paddr && 357 phdr->p_vaddr == DBOOT_ENTRY_ADDRESS) { 358 ASSERT(phdr->p_offset <= UINT32_MAX); 359 *offp = (uint32_t)phdr->p_offset; 360 return (0); 361 } 362 } 363 } 364 365 return (-1); 366 } 367 368 369 /* 370 * Initialize text and data section information for 32-bit kernel. 371 * sectcntp - is both input/output parameter. 372 * On entry, *sectcntp contains maximum allowable number of sections; 373 * on return, it contains the actual number of sections filled. 374 */ 375 static int 376 fastboot_elf32_find_loadables(void *img, off_t imgsz, fastboot_section_t *sectp, 377 int *sectcntp, uint32_t *offp) 378 { 379 Elf32_Ehdr *ehdr = (Elf32_Ehdr *)img; 380 Elf32_Phdr *phdr; 381 uint8_t *phdrbase; 382 int i; 383 int used_sections = 0; 384 const int max_sectcnt = *sectcntp; 385 386 if ((ehdr->e_phoff + ehdr->e_phnum * ehdr->e_phentsize) >= imgsz) 387 return (-1); 388 389 phdrbase = (uint8_t *)img + ehdr->e_phoff; 390 391 for (i = 0; i < ehdr->e_phnum; i++) { 392 phdr = (Elf32_Phdr *)(phdrbase + ehdr->e_phentsize * i); 393 394 if (phdr->p_type == PT_INTERP) 395 return (-1); 396 397 if (phdr->p_type != PT_LOAD) 398 continue; 399 400 if (phdr->p_vaddr == phdr->p_paddr && 401 phdr->p_paddr == DBOOT_ENTRY_ADDRESS) { 402 *offp = (uint32_t)phdr->p_offset; 403 } else { 404 if (max_sectcnt <= used_sections) 405 return (-1); 406 407 sectp[used_sections].fb_sec_offset = phdr->p_offset; 408 sectp[used_sections].fb_sec_paddr = phdr->p_paddr; 409 sectp[used_sections].fb_sec_size = phdr->p_filesz; 410 sectp[used_sections].fb_sec_bss_size = 411 (phdr->p_filesz < phdr->p_memsz) ? 412 (phdr->p_memsz - phdr->p_filesz) : 0; 413 414 /* Extra sanity check for the input object file */ 415 if (sectp[used_sections].fb_sec_paddr + 416 sectp[used_sections].fb_sec_size + 417 sectp[used_sections].fb_sec_bss_size >= 418 DBOOT_ENTRY_ADDRESS) 419 return (-1); 420 421 used_sections++; 422 } 423 } 424 425 *sectcntp = used_sections; 426 return (0); 427 } 428 429 /* 430 * Create multiboot info structure (mbi) base on the saved mbi. 431 * Recalculate values of the pointer type fields in the data 432 * structure based on the new starting physical address of the 433 * data structure. 434 */ 435 static int 436 fastboot_build_mbi(char *mdep, fastboot_info_t *nk) 437 { 438 mb_module_t *mbp; 439 multiboot_info_t *mbi; /* pointer to multiboot structure */ 440 uintptr_t start_addr_va; /* starting VA of mbi */ 441 uintptr_t start_addr_pa; /* starting PA of mbi */ 442 size_t offs = 0; /* offset from the starting address */ 443 size_t arglen; /* length of the command line arg */ 444 size_t size; /* size of the memory reserved for mbi */ 445 size_t mdnsz; /* length of the boot archive name */ 446 447 /* 448 * If mdep is not NULL or empty, use the length of mdep + 1 449 * (for NULL terminating) as the length of the new command 450 * line; else use the saved command line length as the 451 * length for the new command line. 452 */ 453 if (mdep != NULL && strlen(mdep) != 0) { 454 arglen = strlen(mdep) + 1; 455 } else { 456 arglen = saved_cmdline_len; 457 } 458 459 /* 460 * Allocate memory for the new multiboot info structure (mbi). 461 * If we have reserved memory for mbi but it's not enough, 462 * free it and reallocate. 463 */ 464 size = PAGESIZE + P2ROUNDUP(arglen, PAGESIZE); 465 if (nk->fi_mbi_size && nk->fi_mbi_size < size) { 466 contig_free((void *)nk->fi_new_mbi_va, nk->fi_mbi_size); 467 nk->fi_mbi_size = 0; 468 } 469 470 if (nk->fi_mbi_size == 0) { 471 if ((nk->fi_new_mbi_va = 472 (uintptr_t)contig_alloc(size, &fastboot_below_1G_dma_attr, 473 PAGESIZE, 0)) == NULL) { 474 cmn_err(CE_WARN, fastboot_enomem_msg, 475 (uint64_t)size, "1G"); 476 return (-1); 477 } 478 /* 479 * fi_mbi_size must be set after the allocation succeeds 480 * as it's used to determine how much memory to free. 481 */ 482 nk->fi_mbi_size = size; 483 } 484 485 /* 486 * Initalize memory 487 */ 488 bzero((void *)nk->fi_new_mbi_va, nk->fi_mbi_size); 489 490 /* 491 * Get PA for the new mbi 492 */ 493 start_addr_va = nk->fi_new_mbi_va; 494 start_addr_pa = mmu_ptob((uint64_t)hat_getpfnum(kas.a_hat, 495 (caddr_t)start_addr_va)); 496 nk->fi_new_mbi_pa = (paddr_t)start_addr_pa; 497 498 /* 499 * Populate the rest of the fields in the data structure 500 */ 501 502 /* 503 * Copy from the saved mbi to preserve all non-pointer type fields. 504 */ 505 mbi = (multiboot_info_t *)start_addr_va; 506 bcopy(&saved_mbi, mbi, sizeof (*mbi)); 507 508 /* 509 * Recalculate mods_addr. Set mod_start and mod_end based on 510 * the physical address of the new boot archive. Set mod_name 511 * to the name of the new boto archive. 512 */ 513 offs += sizeof (multiboot_info_t); 514 mbi->mods_addr = start_addr_pa + offs; 515 mbp = (mb_module_t *)(start_addr_va + offs); 516 mbp->mod_start = nk->fi_files[FASTBOOT_BOOTARCHIVE].fb_dest_pa; 517 mbp->mod_end = nk->fi_files[FASTBOOT_BOOTARCHIVE].fb_next_pa; 518 519 offs += sizeof (mb_module_t); 520 mdnsz = strlen(fastboot_filename[FASTBOOT_NAME_BOOTARCHIVE]) + 1; 521 bcopy(fastboot_filename[FASTBOOT_NAME_BOOTARCHIVE], 522 (void *)(start_addr_va + offs), mdnsz); 523 mbp->mod_name = start_addr_pa + offs; 524 mbp->reserved = 0; 525 526 /* 527 * Make sure the offset is 16-byte aligned to avoid unaligned access. 528 */ 529 offs += mdnsz; 530 offs = P2ROUNDUP_TYPED(offs, 16, size_t); 531 532 /* 533 * Recalculate mmap_addr 534 */ 535 mbi->mmap_addr = start_addr_pa + offs; 536 bcopy((void *)(uintptr_t)saved_mmap, (void *)(start_addr_va + offs), 537 saved_mbi.mmap_length); 538 offs += saved_mbi.mmap_length; 539 540 /* 541 * Recalculate drives_addr 542 */ 543 mbi->drives_addr = start_addr_pa + offs; 544 bcopy((void *)(uintptr_t)saved_drives, (void *)(start_addr_va + offs), 545 saved_mbi.drives_length); 546 offs += saved_mbi.drives_length; 547 548 /* 549 * Recalculate the address of cmdline. Set cmdline to contain the 550 * new boot argument. 551 */ 552 mbi->cmdline = start_addr_pa + offs; 553 554 if (mdep != NULL && strlen(mdep) != 0) { 555 bcopy(mdep, (void *)(start_addr_va + offs), arglen); 556 } else { 557 bcopy((void *)saved_cmdline, (void *)(start_addr_va + offs), 558 arglen); 559 } 560 561 return (0); 562 } 563 564 /* 565 * Initialize HAT related fields 566 */ 567 static void 568 fastboot_init_fields(fastboot_info_t *nk) 569 { 570 if (x86_feature & X86_PAE) { 571 nk->fi_has_pae = 1; 572 nk->fi_shift_amt = fastboot_shift_amt_pae; 573 nk->fi_ptes_per_table = 512; 574 nk->fi_lpagesize = (2 << 20); /* 2M */ 575 #ifdef __amd64 576 nk->fi_top_level = 3; 577 #else 578 nk->fi_top_level = 2; 579 #endif /* __amd64 */ 580 } 581 } 582 583 /* 584 * Process boot argument 585 */ 586 static void 587 fastboot_parse_mdep(char *mdep, char *kern_bootpath, int *bootpath_len, 588 char *bootargs) 589 { 590 int i; 591 592 /* 593 * If mdep is not NULL, it comes in the format of 594 * mountpoint unix args 595 */ 596 if (mdep != NULL && strlen(mdep) != 0) { 597 if (mdep[0] != '-') { 598 /* First get the root argument */ 599 i = 0; 600 while (mdep[i] != '\0' && mdep[i] != ' ') { 601 i++; 602 } 603 604 if (i < 4 || strncmp(&mdep[i-4], "unix", 4) != 0) { 605 /* mount point */ 606 bcopy(mdep, kern_bootpath, i); 607 kern_bootpath[i] = '\0'; 608 *bootpath_len = i; 609 610 /* 611 * Get the next argument. It should be unix as 612 * we have validated in in halt.c. 613 */ 614 if (strlen(mdep) > i) { 615 mdep += (i + 1); 616 i = 0; 617 while (mdep[i] != '\0' && 618 mdep[i] != ' ') { 619 i++; 620 } 621 } 622 623 } 624 bcopy(mdep, kern_bootfile, i); 625 kern_bootfile[i] = '\0'; 626 bcopy(mdep, bootargs, strlen(mdep)); 627 } else { 628 int off = strlen(kern_bootfile); 629 bcopy(kern_bootfile, bootargs, off); 630 bcopy(" ", &bootargs[off++], 1); 631 bcopy(mdep, &bootargs[off], strlen(mdep)); 632 off += strlen(mdep); 633 bootargs[off] = '\0'; 634 } 635 } 636 } 637 638 /* 639 * Reserve memory under PA 1G for mapping the new kernel and boot archive. 640 * This function is only called if fastreboot_onpanic is *not* set. 641 */ 642 static void 643 fastboot_reserve_mem(fastboot_info_t *nk) 644 { 645 int i; 646 647 /* 648 * A valid kernel is in place. No need to reserve any memory. 649 */ 650 if (nk->fi_valid) 651 return; 652 653 /* 654 * Reserve memory under PA 1G for PTE lists. 655 */ 656 for (i = 0; i < FASTBOOT_MAX_FILES_MAP; i++) { 657 fastboot_file_t *fb = &nk->fi_files[i]; 658 size_t fsize_roundup, size; 659 660 fsize_roundup = P2ROUNDUP_TYPED(saved_file_size[i], 661 PAGESIZE, size_t); 662 size = FASTBOOT_PTE_LIST_SIZE(fsize_roundup); 663 if ((fb->fb_pte_list_va = contig_alloc(size, 664 &fastboot_below_1G_dma_attr, PAGESIZE, 0)) == NULL) { 665 return; 666 } 667 fb->fb_pte_list_size = size; 668 } 669 670 /* 671 * Reserve memory under PA 1G for page tables. 672 */ 673 if ((nk->fi_pagetable_va = 674 (uintptr_t)contig_alloc(fastboot_pagetable_size, 675 &fastboot_below_1G_dma_attr, PAGESIZE, 0)) == NULL) { 676 return; 677 } 678 nk->fi_pagetable_size = fastboot_pagetable_size; 679 680 /* 681 * Reserve memory under PA 1G for multiboot structure. 682 */ 683 if ((nk->fi_new_mbi_va = (uintptr_t)contig_alloc(fastboot_mbi_size, 684 &fastboot_below_1G_dma_attr, PAGESIZE, 0)) == NULL) { 685 return; 686 } 687 nk->fi_mbi_size = fastboot_mbi_size; 688 } 689 690 /* 691 * Calculate MD5 digest for the given fastboot_file. 692 * Assumes that the file is allready loaded properly. 693 */ 694 static void 695 fastboot_cksum_file(fastboot_file_t *fb, uchar_t *md5_hash) 696 { 697 MD5_CTX md5_ctx; 698 699 MD5Init(&md5_ctx); 700 MD5Update(&md5_ctx, (void *)fb->fb_va, fb->fb_size); 701 MD5Final(md5_hash, &md5_ctx); 702 } 703 704 /* 705 * Free up the memory we have allocated for a file 706 */ 707 static void 708 fastboot_free_file(fastboot_file_t *fb) 709 { 710 size_t fsize_roundup; 711 712 fsize_roundup = P2ROUNDUP_TYPED(fb->fb_size, PAGESIZE, size_t); 713 if (fsize_roundup) { 714 contig_free((void *)fb->fb_va, fsize_roundup); 715 fb->fb_va = NULL; 716 fb->fb_size = 0; 717 } 718 } 719 720 /* 721 * Free up memory used by the PTEs for a file. 722 */ 723 static void 724 fastboot_free_file_pte(fastboot_file_t *fb, uint64_t endaddr) 725 { 726 if (fb->fb_pte_list_size && fb->fb_pte_list_pa < endaddr) { 727 contig_free((void *)fb->fb_pte_list_va, fb->fb_pte_list_size); 728 fb->fb_pte_list_va = 0; 729 fb->fb_pte_list_pa = 0; 730 fb->fb_pte_list_size = 0; 731 } 732 } 733 734 /* 735 * Free up all the memory used for representing a kernel with 736 * fastboot_info_t. 737 */ 738 static void 739 fastboot_free_mem(fastboot_info_t *nk, uint64_t endaddr) 740 { 741 int i; 742 743 for (i = 0; i < FASTBOOT_MAX_FILES_MAP; i++) { 744 fastboot_free_file(nk->fi_files + i); 745 fastboot_free_file_pte(nk->fi_files + i, endaddr); 746 } 747 748 if (nk->fi_pagetable_size && nk->fi_pagetable_pa < endaddr) { 749 contig_free((void *)nk->fi_pagetable_va, nk->fi_pagetable_size); 750 nk->fi_pagetable_va = 0; 751 nk->fi_pagetable_pa = 0; 752 nk->fi_pagetable_size = 0; 753 } 754 755 if (nk->fi_mbi_size && nk->fi_new_mbi_pa < endaddr) { 756 contig_free((void *)nk->fi_new_mbi_va, nk->fi_mbi_size); 757 nk->fi_new_mbi_va = 0; 758 nk->fi_new_mbi_pa = 0; 759 nk->fi_mbi_size = 0; 760 } 761 } 762 763 /* 764 * Only free up the memory allocated for the kernel and boot archive, 765 * but not for the page tables. 766 */ 767 void 768 fastboot_free_newkernel(fastboot_info_t *nk) 769 { 770 int i; 771 772 nk->fi_valid = 0; 773 /* 774 * Free the memory we have allocated 775 */ 776 for (i = 0; i < FASTBOOT_MAX_FILES_MAP; i++) { 777 fastboot_free_file(&(nk->fi_files[i])); 778 } 779 } 780 781 static void 782 fastboot_cksum_cdata(fastboot_info_t *nk, uchar_t *md5_hash) 783 { 784 int i; 785 MD5_CTX md5_ctx; 786 787 MD5Init(&md5_ctx); 788 for (i = 0; i < FASTBOOT_MAX_FILES_MAP; i++) { 789 MD5Update(&md5_ctx, nk->fi_files[i].fb_pte_list_va, 790 nk->fi_files[i].fb_pte_list_size); 791 } 792 MD5Update(&md5_ctx, (void *)nk->fi_pagetable_va, nk->fi_pagetable_size); 793 MD5Update(&md5_ctx, (void *)nk->fi_new_mbi_va, nk->fi_mbi_size); 794 795 MD5Final(md5_hash, &md5_ctx); 796 } 797 798 /* 799 * Generate MD5 checksum of the given kernel. 800 */ 801 static void 802 fastboot_cksum_generate(fastboot_info_t *nk) 803 { 804 int i; 805 806 for (i = 0; i < FASTBOOT_MAX_FILES_MAP; i++) { 807 fastboot_cksum_file(nk->fi_files + i, nk->fi_md5_hash[i]); 808 } 809 fastboot_cksum_cdata(nk, nk->fi_md5_hash[i]); 810 } 811 812 /* 813 * Calculate MD5 checksum of the given kernel and verify that 814 * it matches with what was calculated before. 815 */ 816 int 817 fastboot_cksum_verify(fastboot_info_t *nk) 818 { 819 int i; 820 uchar_t md5_hash[MD5_DIGEST_LENGTH]; 821 822 for (i = 0; i < FASTBOOT_MAX_FILES_MAP; i++) { 823 fastboot_cksum_file(nk->fi_files + i, md5_hash); 824 if (bcmp(nk->fi_md5_hash[i], md5_hash, 825 sizeof (nk->fi_md5_hash[i])) != 0) 826 return (i + 1); 827 } 828 829 fastboot_cksum_cdata(nk, md5_hash); 830 if (bcmp(nk->fi_md5_hash[i], md5_hash, 831 sizeof (nk->fi_md5_hash[i])) != 0) 832 return (i + 1); 833 834 return (0); 835 } 836 837 /* 838 * This function performs the following tasks: 839 * - Read the sizes of the new kernel and boot archive. 840 * - Allocate memory for the new kernel and boot archive. 841 * - Allocate memory for page tables necessary for mapping the memory 842 * allocated for the files. 843 * - Read the new kernel and boot archive into memory. 844 * - Map in the fast reboot switcher. 845 * - Load the fast reboot switcher to FASTBOOT_SWTCH_PA. 846 * - Build the new multiboot_info structure 847 * - Build page tables for the low 1G of physical memory. 848 * - Mark the data structure as valid if all steps have succeeded. 849 */ 850 void 851 fastboot_load_kernel(char *mdep) 852 { 853 void *buf = NULL; 854 int i; 855 fastboot_file_t *fb; 856 uint32_t dboot_start_offset; 857 char kern_bootpath[OBP_MAXPATHLEN]; 858 extern uintptr_t postbootkernelbase; 859 uintptr_t saved_kernelbase; 860 int bootpath_len = 0; 861 int is_failsafe = 0; 862 int is_retry = 0; 863 uint64_t end_addr; 864 865 ASSERT(fastreboot_capable); 866 867 if (newkernel.fi_valid) 868 fastboot_free_newkernel(&newkernel); 869 870 saved_kernelbase = postbootkernelbase; 871 872 postbootkernelbase = 0; 873 874 /* 875 * Initialize various HAT related fields in the data structure 876 */ 877 fastboot_init_fields(&newkernel); 878 879 bzero(kern_bootpath, OBP_MAXPATHLEN); 880 881 /* 882 * Process the boot argument 883 */ 884 bzero(fastboot_args, OBP_MAXPATHLEN); 885 fastboot_parse_mdep(mdep, kern_bootpath, &bootpath_len, fastboot_args); 886 887 /* 888 * Make sure we get the null character 889 */ 890 bcopy(kern_bootpath, fastboot_filename[FASTBOOT_NAME_UNIX], 891 bootpath_len); 892 bcopy(kern_bootfile, 893 &fastboot_filename[FASTBOOT_NAME_UNIX][bootpath_len], 894 strlen(kern_bootfile) + 1); 895 896 bcopy(kern_bootpath, fastboot_filename[FASTBOOT_NAME_BOOTARCHIVE], 897 bootpath_len); 898 899 if (bcmp(kern_bootfile, FAILSAFE_BOOTFILE32, 900 (sizeof (FAILSAFE_BOOTFILE32) - 1)) == 0 || 901 bcmp(kern_bootfile, FAILSAFE_BOOTFILE64, 902 (sizeof (FAILSAFE_BOOTFILE64) - 1)) == 0) { 903 is_failsafe = 1; 904 } 905 906 load_kernel_retry: 907 /* 908 * Read in unix and boot_archive 909 */ 910 end_addr = DBOOT_ENTRY_ADDRESS; 911 for (i = 0; i < FASTBOOT_MAX_FILES_MAP; i++) { 912 struct _buf *file; 913 uintptr_t va; 914 uint64_t fsize; 915 size_t fsize_roundup, pt_size; 916 int page_index; 917 uintptr_t offset; 918 ddi_dma_attr_t dma_attr = fastboot_dma_attr; 919 920 921 dprintf("fastboot_filename[%d] = %s\n", 922 i, fastboot_filename[i]); 923 924 if ((file = kobj_open_file(fastboot_filename[i])) == 925 (struct _buf *)-1) { 926 cmn_err(CE_WARN, "Fastboot: Couldn't open %s", 927 fastboot_filename[i]); 928 goto err_out; 929 } 930 931 if (kobj_get_filesize(file, &fsize) != 0) { 932 cmn_err(CE_WARN, 933 "Fastboot: Couldn't get filesize for %s", 934 fastboot_filename[i]); 935 goto err_out; 936 } 937 938 fsize_roundup = P2ROUNDUP_TYPED(fsize, PAGESIZE, size_t); 939 940 /* 941 * Where the files end in physical memory after being 942 * relocated by the fast boot switcher. 943 */ 944 end_addr += fsize_roundup; 945 if (end_addr > fastboot_below_1G_dma_attr.dma_attr_addr_hi) { 946 cmn_err(CE_WARN, "Fastboot: boot archive is too big"); 947 goto err_out; 948 } 949 950 /* 951 * Adjust dma_attr_addr_lo so that the new kernel and boot 952 * archive will not be overridden during relocation. 953 */ 954 if (end_addr > fastboot_dma_attr.dma_attr_addr_lo || 955 end_addr > fastboot_below_1G_dma_attr.dma_attr_addr_lo) { 956 957 if (is_retry) { 958 /* 959 * If we have already tried and didn't succeed, 960 * just give up. 961 */ 962 cmn_err(CE_WARN, 963 "Fastboot: boot archive is too big"); 964 goto err_out; 965 } else { 966 /* Set the flag so we don't keep retrying */ 967 is_retry++; 968 969 /* Adjust dma_attr_addr_lo */ 970 fastboot_dma_attr.dma_attr_addr_lo = end_addr; 971 fastboot_below_1G_dma_attr.dma_attr_addr_lo = 972 end_addr; 973 974 /* 975 * Free the memory we have already allocated 976 * whose physical addresses might not fit 977 * the new lo and hi constraints. 978 */ 979 fastboot_free_mem(&newkernel, end_addr); 980 goto load_kernel_retry; 981 } 982 } 983 984 985 if (!fastboot_contig) 986 dma_attr.dma_attr_sgllen = (fsize / PAGESIZE) + 987 (((fsize % PAGESIZE) == 0) ? 0 : 1); 988 989 if ((buf = contig_alloc(fsize, &dma_attr, PAGESIZE, 0)) 990 == NULL) { 991 cmn_err(CE_WARN, fastboot_enomem_msg, fsize, "64G"); 992 goto err_out; 993 } 994 995 va = P2ROUNDUP_TYPED((uintptr_t)buf, PAGESIZE, uintptr_t); 996 997 if (kobj_read_file(file, (char *)va, fsize, 0) < 0) { 998 cmn_err(CE_WARN, "Fastboot: Couldn't read %s", 999 fastboot_filename[i]); 1000 goto err_out; 1001 } 1002 1003 fb = &newkernel.fi_files[i]; 1004 fb->fb_va = va; 1005 fb->fb_size = fsize; 1006 fb->fb_sectcnt = 0; 1007 1008 pt_size = FASTBOOT_PTE_LIST_SIZE(fsize_roundup); 1009 1010 /* 1011 * If we have reserved memory but it not enough, free it. 1012 */ 1013 if (fb->fb_pte_list_size && fb->fb_pte_list_size < pt_size) { 1014 contig_free((void *)fb->fb_pte_list_va, 1015 fb->fb_pte_list_size); 1016 fb->fb_pte_list_size = 0; 1017 } 1018 1019 if (fb->fb_pte_list_size == 0) { 1020 if ((fb->fb_pte_list_va = 1021 (x86pte_t *)contig_alloc(pt_size, 1022 &fastboot_below_1G_dma_attr, PAGESIZE, 0)) 1023 == NULL) { 1024 cmn_err(CE_WARN, fastboot_enomem_msg, 1025 (uint64_t)pt_size, "1G"); 1026 goto err_out; 1027 } 1028 /* 1029 * fb_pte_list_size must be set after the allocation 1030 * succeeds as it's used to determine how much memory to 1031 * free. 1032 */ 1033 fb->fb_pte_list_size = pt_size; 1034 } 1035 1036 bzero((void *)(fb->fb_pte_list_va), fb->fb_pte_list_size); 1037 1038 fb->fb_pte_list_pa = mmu_ptob((uint64_t)hat_getpfnum(kas.a_hat, 1039 (caddr_t)fb->fb_pte_list_va)); 1040 1041 for (page_index = 0, offset = 0; offset < fb->fb_size; 1042 offset += PAGESIZE) { 1043 uint64_t paddr; 1044 1045 paddr = mmu_ptob((uint64_t)hat_getpfnum(kas.a_hat, 1046 (caddr_t)fb->fb_va + offset)); 1047 1048 ASSERT(paddr >= fastboot_dma_attr.dma_attr_addr_lo); 1049 1050 /* 1051 * Include the pte_bits so we don't have to make 1052 * it in assembly. 1053 */ 1054 fb->fb_pte_list_va[page_index++] = (x86pte_t) 1055 (paddr | pte_bits); 1056 } 1057 1058 fb->fb_pte_list_va[page_index] = FASTBOOT_TERMINATE; 1059 1060 if (i == FASTBOOT_UNIX) { 1061 Ehdr *ehdr = (Ehdr *)va; 1062 int j; 1063 1064 /* 1065 * Sanity checks: 1066 */ 1067 for (j = 0; j < SELFMAG; j++) { 1068 if (ehdr->e_ident[j] != ELFMAG[j]) { 1069 cmn_err(CE_WARN, "Fastboot: Bad ELF " 1070 "signature"); 1071 goto err_out; 1072 } 1073 } 1074 1075 if (ehdr->e_ident[EI_CLASS] == ELFCLASS32 && 1076 ehdr->e_ident[EI_DATA] == ELFDATA2LSB && 1077 ehdr->e_machine == EM_386) { 1078 1079 fb->fb_sectcnt = sizeof (fb->fb_sections) / 1080 sizeof (fb->fb_sections[0]); 1081 1082 if (fastboot_elf32_find_loadables((void *)va, 1083 fsize, &fb->fb_sections[0], 1084 &fb->fb_sectcnt, &dboot_start_offset) < 0) { 1085 cmn_err(CE_WARN, "Fastboot: ELF32 " 1086 "program section failure"); 1087 goto err_out; 1088 } 1089 1090 if (fb->fb_sectcnt == 0) { 1091 cmn_err(CE_WARN, "Fastboot: No ELF32 " 1092 "program sections found"); 1093 goto err_out; 1094 } 1095 1096 if (is_failsafe) { 1097 /* Failsafe boot_archive */ 1098 bcopy(BOOTARCHIVE32_FAILSAFE, 1099 &fastboot_filename 1100 [FASTBOOT_NAME_BOOTARCHIVE] 1101 [bootpath_len], 1102 sizeof (BOOTARCHIVE32_FAILSAFE)); 1103 } else { 1104 bcopy(BOOTARCHIVE32, 1105 &fastboot_filename 1106 [FASTBOOT_NAME_BOOTARCHIVE] 1107 [bootpath_len], 1108 sizeof (BOOTARCHIVE32)); 1109 } 1110 1111 } else if (ehdr->e_ident[EI_CLASS] == ELFCLASS64 && 1112 ehdr->e_ident[EI_DATA] == ELFDATA2LSB && 1113 ehdr->e_machine == EM_AMD64) { 1114 1115 if (fastboot_elf64_find_dboot_load_offset( 1116 (void *)va, fsize, &dboot_start_offset) 1117 != 0) { 1118 cmn_err(CE_WARN, "Fastboot: Couldn't " 1119 "find ELF64 dboot entry offset"); 1120 goto err_out; 1121 } 1122 1123 if ((x86_feature & X86_64) == 0 || 1124 (x86_feature & X86_PAE) == 0) { 1125 cmn_err(CE_WARN, "Fastboot: Cannot " 1126 "reboot to %s: " 1127 "not a 64-bit capable system", 1128 kern_bootfile); 1129 goto err_out; 1130 } 1131 1132 if (is_failsafe) { 1133 /* Failsafe boot_archive */ 1134 bcopy(BOOTARCHIVE64_FAILSAFE, 1135 &fastboot_filename 1136 [FASTBOOT_NAME_BOOTARCHIVE] 1137 [bootpath_len], 1138 sizeof (BOOTARCHIVE64_FAILSAFE)); 1139 } else { 1140 bcopy(BOOTARCHIVE64, 1141 &fastboot_filename 1142 [FASTBOOT_NAME_BOOTARCHIVE] 1143 [bootpath_len], 1144 sizeof (BOOTARCHIVE64)); 1145 } 1146 } else { 1147 cmn_err(CE_WARN, "Fastboot: Unknown ELF type"); 1148 goto err_out; 1149 } 1150 1151 fb->fb_dest_pa = DBOOT_ENTRY_ADDRESS - 1152 dboot_start_offset; 1153 1154 fb->fb_next_pa = DBOOT_ENTRY_ADDRESS + fsize_roundup; 1155 } else { 1156 fb->fb_dest_pa = newkernel.fi_files[i - 1].fb_next_pa; 1157 fb->fb_next_pa = fb->fb_dest_pa + fsize_roundup; 1158 } 1159 1160 kobj_close_file(file); 1161 1162 } 1163 1164 /* 1165 * Add the function that will switch us to 32-bit protected mode 1166 */ 1167 fb = &newkernel.fi_files[FASTBOOT_SWTCH]; 1168 fb->fb_va = fb->fb_dest_pa = FASTBOOT_SWTCH_PA; 1169 fb->fb_size = MMU_PAGESIZE; 1170 1171 hat_devload(kas.a_hat, (caddr_t)fb->fb_va, 1172 MMU_PAGESIZE, mmu_btop(fb->fb_dest_pa), 1173 PROT_READ | PROT_WRITE | PROT_EXEC, 1174 HAT_LOAD_NOCONSIST | HAT_LOAD_LOCK); 1175 1176 /* 1177 * Build the new multiboot_info structure 1178 */ 1179 if (fastboot_build_mbi(fastboot_args, &newkernel) != 0) { 1180 goto err_out; 1181 } 1182 1183 /* 1184 * Build page table for low 1G physical memory. Use big pages. 1185 * Allocate 4 (5 for amd64) pages for the page tables. 1186 * 1 page for PML4 (amd64) 1187 * 1 page for Page-Directory-Pointer Table 1188 * 2 pages for Page Directory 1189 * 1 page for Page Table. 1190 * The page table entry will be rewritten to map the physical 1191 * address as we do the copying. 1192 */ 1193 if (newkernel.fi_has_pae) { 1194 #ifdef __amd64 1195 size_t size = MMU_PAGESIZE * 5; 1196 #else 1197 size_t size = MMU_PAGESIZE * 4; 1198 #endif /* __amd64 */ 1199 1200 if (newkernel.fi_pagetable_size && newkernel.fi_pagetable_size 1201 < size) { 1202 contig_free((void *)newkernel.fi_pagetable_va, 1203 newkernel.fi_pagetable_size); 1204 newkernel.fi_pagetable_size = 0; 1205 } 1206 1207 if (newkernel.fi_pagetable_size == 0) { 1208 if ((newkernel.fi_pagetable_va = (uintptr_t) 1209 contig_alloc(size, &fastboot_below_1G_dma_attr, 1210 MMU_PAGESIZE, 0)) == NULL) { 1211 cmn_err(CE_WARN, fastboot_enomem_msg, 1212 (uint64_t)size, "1G"); 1213 goto err_out; 1214 } 1215 /* 1216 * fi_pagetable_size must be set after the allocation 1217 * succeeds as it's used to determine how much memory to 1218 * free. 1219 */ 1220 newkernel.fi_pagetable_size = size; 1221 } 1222 1223 bzero((void *)(newkernel.fi_pagetable_va), size); 1224 1225 newkernel.fi_pagetable_pa = 1226 mmu_ptob((uint64_t)hat_getpfnum(kas.a_hat, 1227 (caddr_t)newkernel.fi_pagetable_va)); 1228 1229 newkernel.fi_last_table_pa = newkernel.fi_pagetable_pa + 1230 size - MMU_PAGESIZE; 1231 1232 newkernel.fi_next_table_va = newkernel.fi_pagetable_va + 1233 MMU_PAGESIZE; 1234 newkernel.fi_next_table_pa = newkernel.fi_pagetable_pa + 1235 MMU_PAGESIZE; 1236 1237 fastboot_build_pagetables(&newkernel); 1238 } 1239 1240 1241 /* Generate MD5 checksums */ 1242 fastboot_cksum_generate(&newkernel); 1243 1244 /* Mark it as valid */ 1245 newkernel.fi_valid = 1; 1246 newkernel.fi_magic = FASTBOOT_MAGIC; 1247 1248 postbootkernelbase = saved_kernelbase; 1249 return; 1250 1251 err_out: 1252 postbootkernelbase = saved_kernelbase; 1253 newkernel.fi_valid = 0; 1254 fastboot_free_newkernel(&newkernel); 1255 } 1256 1257 1258 /* ARGSUSED */ 1259 static int 1260 fastboot_xc_func(fastboot_info_t *nk, xc_arg_t unused2, xc_arg_t unused3) 1261 { 1262 void (*fastboot_func)(fastboot_info_t *); 1263 fastboot_file_t *fb = &nk->fi_files[FASTBOOT_SWTCH]; 1264 fastboot_func = (void (*)())(fb->fb_va); 1265 kthread_t *t_intr = curthread->t_intr; 1266 1267 if (&kas != curproc->p_as) { 1268 hat_devload(curproc->p_as->a_hat, (caddr_t)fb->fb_va, 1269 MMU_PAGESIZE, mmu_btop(fb->fb_dest_pa), 1270 PROT_READ | PROT_WRITE | PROT_EXEC, 1271 HAT_LOAD_NOCONSIST | HAT_LOAD_LOCK); 1272 } 1273 1274 /* 1275 * If we have pinned a thread, make sure the address is mapped 1276 * in the address space of the pinned thread. 1277 */ 1278 if (t_intr && t_intr->t_procp->p_as->a_hat != curproc->p_as->a_hat && 1279 t_intr->t_procp->p_as != &kas) 1280 hat_devload(t_intr->t_procp->p_as->a_hat, (caddr_t)fb->fb_va, 1281 MMU_PAGESIZE, mmu_btop(fb->fb_dest_pa), 1282 PROT_READ | PROT_WRITE | PROT_EXEC, 1283 HAT_LOAD_NOCONSIST | HAT_LOAD_LOCK); 1284 1285 (*psm_shutdownf)(A_SHUTDOWN, AD_FASTREBOOT); 1286 (*fastboot_func)(nk); 1287 1288 /*NOTREACHED*/ 1289 return (0); 1290 } 1291 1292 /* 1293 * Jump to the fast reboot switcher. This function never returns. 1294 */ 1295 void 1296 fast_reboot() 1297 { 1298 processorid_t bootcpuid = 0; 1299 extern uintptr_t postbootkernelbase; 1300 extern char fb_swtch_image[]; 1301 fastboot_file_t *fb; 1302 int i; 1303 1304 postbootkernelbase = 0; 1305 1306 fb = &newkernel.fi_files[FASTBOOT_SWTCH]; 1307 1308 /* 1309 * Map the address into both the current proc's address 1310 * space and the kernel's address space in case the panic 1311 * is forced by kmdb. 1312 */ 1313 if (&kas != curproc->p_as) { 1314 hat_devload(curproc->p_as->a_hat, (caddr_t)fb->fb_va, 1315 MMU_PAGESIZE, mmu_btop(fb->fb_dest_pa), 1316 PROT_READ | PROT_WRITE | PROT_EXEC, 1317 HAT_LOAD_NOCONSIST | HAT_LOAD_LOCK); 1318 } 1319 1320 bcopy((void *)fb_swtch_image, (void *)fb->fb_va, fb->fb_size); 1321 1322 1323 /* 1324 * Set fb_va to fake_va 1325 */ 1326 for (i = 0; i < FASTBOOT_MAX_FILES_MAP; i++) { 1327 newkernel.fi_files[i].fb_va = fake_va; 1328 1329 } 1330 1331 if (panicstr && CPU->cpu_id != bootcpuid && 1332 CPU_ACTIVE(cpu_get(bootcpuid))) { 1333 extern void panic_idle(void); 1334 cpuset_t cpuset; 1335 1336 CPUSET_ZERO(cpuset); 1337 CPUSET_ADD(cpuset, bootcpuid); 1338 xc_priority((xc_arg_t)&newkernel, 0, 0, CPUSET2BV(cpuset), 1339 (xc_func_t)fastboot_xc_func); 1340 1341 panic_idle(); 1342 } else 1343 (void) fastboot_xc_func(&newkernel, 0, 0); 1344 } 1345 1346 1347 /* 1348 * Get boot property value for fastreboot_onpanic. 1349 * 1350 * NOTE: If fastreboot_onpanic is set to non-zero in /etc/system, 1351 * new setting passed in via "-B fastreboot_onpanic" is ignored. 1352 * This order of precedence is to enable developers debugging panics 1353 * that occur early in boot to utilize Fast Reboot on panic. 1354 */ 1355 static void 1356 fastboot_get_bootprop(void) 1357 { 1358 int val = 0xaa, len, ret; 1359 dev_info_t *devi; 1360 char *propstr = NULL; 1361 1362 devi = ddi_root_node(); 1363 1364 ret = ddi_prop_lookup_string(DDI_DEV_T_ANY, devi, DDI_PROP_DONTPASS, 1365 FASTREBOOT_ONPANIC, &propstr); 1366 1367 if (ret == DDI_PROP_SUCCESS) { 1368 if (FASTREBOOT_ONPANIC_NOTSET(propstr)) 1369 val = 0; 1370 else if (FASTREBOOT_ONPANIC_ISSET(propstr)) 1371 val = UA_FASTREBOOT_ONPANIC; 1372 1373 /* 1374 * Only set fastreboot_onpanic to the value passed in 1375 * if it's not already set to non-zero, and the value 1376 * has indeed been passed in via command line. 1377 */ 1378 if (!fastreboot_onpanic && val != 0xaa) 1379 fastreboot_onpanic = val; 1380 ddi_prop_free(propstr); 1381 } else if (ret != DDI_PROP_NOT_FOUND && ret != DDI_PROP_UNDEFINED) { 1382 cmn_err(CE_WARN, "%s value is invalid, will be ignored", 1383 FASTREBOOT_ONPANIC); 1384 } 1385 1386 len = sizeof (fastreboot_onpanic_cmdline); 1387 ret = ddi_getlongprop_buf(DDI_DEV_T_ANY, devi, DDI_PROP_DONTPASS, 1388 FASTREBOOT_ONPANIC_CMDLINE, fastreboot_onpanic_cmdline, &len); 1389 1390 if (ret == DDI_PROP_BUF_TOO_SMALL) 1391 cmn_err(CE_WARN, "%s value is too long, will be ignored", 1392 FASTREBOOT_ONPANIC_CMDLINE); 1393 } 1394 1395 /* 1396 * This function is called by main() to either load the backup kernel for panic 1397 * fast reboot, or to reserve low physical memory for fast reboot. 1398 */ 1399 void 1400 fastboot_post_startup() 1401 { 1402 if (!fastreboot_capable) 1403 return; 1404 1405 fastboot_get_bootprop(); 1406 1407 if (fastreboot_onpanic) 1408 fastboot_load_kernel(fastreboot_onpanic_cmdline); 1409 else if (reserve_mem_enabled) 1410 fastboot_reserve_mem(&newkernel); 1411 } 1412 1413 /* 1414 * Update boot configuration settings. 1415 * If the new fastreboot_onpanic setting is false, and a kernel has 1416 * been preloaded, free the memory; 1417 * if the new fastreboot_onpanic setting is true and newkernel is 1418 * not valid, load the new kernel. 1419 */ 1420 void 1421 fastboot_update_config(const char *mdep) 1422 { 1423 uint8_t boot_config = (uint8_t)*mdep; 1424 int cur_fastreboot_onpanic = fastreboot_onpanic; 1425 1426 if (!fastreboot_capable) 1427 return; 1428 1429 fastreboot_onpanic = boot_config & UA_FASTREBOOT_ONPANIC; 1430 if (fastreboot_onpanic && (!cur_fastreboot_onpanic || 1431 !newkernel.fi_valid)) 1432 fastboot_load_kernel(fastreboot_onpanic_cmdline); 1433 if (cur_fastreboot_onpanic && !fastreboot_onpanic) 1434 fastboot_free_newkernel(&newkernel); 1435 } 1436