1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2010 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 27 /* 28 * This file contains the functionality that mimics the boot operations 29 * on SPARC systems or the old boot.bin/multiboot programs on x86 systems. 30 * The x86 kernel now does everything on its own. 31 */ 32 33 #include <sys/types.h> 34 #include <sys/bootconf.h> 35 #include <sys/bootsvcs.h> 36 #include <sys/bootinfo.h> 37 #include <sys/multiboot.h> 38 #include <sys/bootvfs.h> 39 #include <sys/bootprops.h> 40 #include <sys/varargs.h> 41 #include <sys/param.h> 42 #include <sys/machparam.h> 43 #include <sys/archsystm.h> 44 #include <sys/boot_console.h> 45 #include <sys/cmn_err.h> 46 #include <sys/systm.h> 47 #include <sys/promif.h> 48 #include <sys/archsystm.h> 49 #include <sys/x86_archext.h> 50 #include <sys/kobj.h> 51 #include <sys/privregs.h> 52 #include <sys/sysmacros.h> 53 #include <sys/ctype.h> 54 #include <sys/fastboot.h> 55 #ifdef __xpv 56 #include <sys/hypervisor.h> 57 #include <net/if.h> 58 #endif 59 #include <vm/kboot_mmu.h> 60 #include <vm/hat_pte.h> 61 #include <sys/dmar_acpi.h> 62 #include <sys/kobj.h> 63 #include <sys/kobj_lex.h> 64 #include <sys/pci_cfgspace_impl.h> 65 #include "acpi_fw.h" 66 67 static int have_console = 0; /* set once primitive console is initialized */ 68 static char *boot_args = ""; 69 70 /* 71 * Debugging macros 72 */ 73 static uint_t kbm_debug = 0; 74 #define DBG_MSG(s) { if (kbm_debug) bop_printf(NULL, "%s", s); } 75 #define DBG(x) { if (kbm_debug) \ 76 bop_printf(NULL, "%s is %" PRIx64 "\n", #x, (uint64_t)(x)); \ 77 } 78 79 #define PUT_STRING(s) { \ 80 char *cp; \ 81 for (cp = (s); *cp; ++cp) \ 82 bcons_putchar(*cp); \ 83 } 84 85 struct xboot_info *xbootp; /* boot info from "glue" code in low memory */ 86 bootops_t bootop; /* simple bootops we'll pass on to kernel */ 87 struct bsys_mem bm; 88 89 static uintptr_t next_virt; /* next available virtual address */ 90 static paddr_t next_phys; /* next available physical address from dboot */ 91 static paddr_t high_phys = -(paddr_t)1; /* last used physical address */ 92 93 /* 94 * buffer for vsnprintf for console I/O 95 */ 96 #define BUFFERSIZE 256 97 static char buffer[BUFFERSIZE]; 98 /* 99 * stuff to store/report/manipulate boot property settings. 100 */ 101 typedef struct bootprop { 102 struct bootprop *bp_next; 103 char *bp_name; 104 uint_t bp_vlen; 105 char *bp_value; 106 } bootprop_t; 107 108 static bootprop_t *bprops = NULL; 109 static char *curr_page = NULL; /* ptr to avail bprop memory */ 110 static int curr_space = 0; /* amount of memory at curr_page */ 111 112 #ifdef __xpv 113 start_info_t *xen_info; 114 shared_info_t *HYPERVISOR_shared_info; 115 #endif 116 117 /* 118 * some allocator statistics 119 */ 120 static ulong_t total_bop_alloc_scratch = 0; 121 static ulong_t total_bop_alloc_kernel = 0; 122 123 static void build_firmware_properties(void); 124 125 static int early_allocation = 1; 126 127 int force_fastreboot = 0; 128 volatile int fastreboot_onpanic = 0; 129 int post_fastreboot = 0; 130 #ifdef __xpv 131 int fastreboot_capable = 0; 132 #else 133 int fastreboot_capable = 1; 134 #endif 135 136 /* 137 * Information saved from current boot for fast reboot. 138 * If the information size exceeds what we have allocated, fast reboot 139 * will not be supported. 140 */ 141 multiboot_info_t saved_mbi; 142 mb_memory_map_t saved_mmap[FASTBOOT_SAVED_MMAP_COUNT]; 143 uint8_t saved_drives[FASTBOOT_SAVED_DRIVES_SIZE]; 144 char saved_cmdline[FASTBOOT_SAVED_CMDLINE_LEN]; 145 int saved_cmdline_len = 0; 146 size_t saved_file_size[FASTBOOT_MAX_FILES_MAP]; 147 148 /* 149 * Turn off fastreboot_onpanic to avoid panic loop. 150 */ 151 char fastreboot_onpanic_cmdline[FASTBOOT_SAVED_CMDLINE_LEN]; 152 static const char fastreboot_onpanic_args[] = " -B fastreboot_onpanic=0"; 153 154 /* 155 * Pointers to where System Resource Affinity Table (SRAT) and 156 * System Locality Information Table (SLIT) are mapped into virtual memory 157 */ 158 struct srat *srat_ptr = NULL; 159 struct slit *slit_ptr = NULL; 160 161 162 /* 163 * Allocate aligned physical memory at boot time. This allocator allocates 164 * from the highest possible addresses. This avoids exhausting memory that 165 * would be useful for DMA buffers. 166 */ 167 paddr_t 168 do_bop_phys_alloc(uint64_t size, uint64_t align) 169 { 170 paddr_t pa = 0; 171 paddr_t start; 172 paddr_t end; 173 struct memlist *ml = (struct memlist *)xbootp->bi_phys_install; 174 175 /* 176 * Be careful if high memory usage is limited in startup.c 177 * Since there are holes in the low part of the physical address 178 * space we can treat physmem as a pfn (not just a pgcnt) and 179 * get a conservative upper limit. 180 */ 181 if (physmem != 0 && high_phys > pfn_to_pa(physmem)) 182 high_phys = pfn_to_pa(physmem); 183 184 /* 185 * find the lowest or highest available memory in physinstalled 186 * On 32 bit avoid physmem above 4Gig if PAE isn't enabled 187 */ 188 #if defined(__i386) 189 if (xbootp->bi_use_pae == 0 && high_phys > FOUR_GIG) 190 high_phys = FOUR_GIG; 191 #endif 192 193 /* 194 * find the highest available memory in physinstalled 195 */ 196 size = P2ROUNDUP(size, align); 197 for (; ml; ml = ml->ml_next) { 198 start = P2ROUNDUP(ml->ml_address, align); 199 end = P2ALIGN(ml->ml_address + ml->ml_size, align); 200 if (start < next_phys) 201 start = P2ROUNDUP(next_phys, align); 202 if (end > high_phys) 203 end = P2ALIGN(high_phys, align); 204 205 if (end <= start) 206 continue; 207 if (end - start < size) 208 continue; 209 210 /* 211 * Early allocations need to use low memory, since 212 * physmem might be further limited by bootenv.rc 213 */ 214 if (early_allocation) { 215 if (pa == 0 || start < pa) 216 pa = start; 217 } else { 218 if (end - size > pa) 219 pa = end - size; 220 } 221 } 222 if (pa != 0) { 223 if (early_allocation) 224 next_phys = pa + size; 225 else 226 high_phys = pa; 227 return (pa); 228 } 229 bop_panic("do_bop_phys_alloc(0x%" PRIx64 ", 0x%" PRIx64 230 ") Out of memory\n", size, align); 231 /*NOTREACHED*/ 232 } 233 234 uintptr_t 235 alloc_vaddr(size_t size, paddr_t align) 236 { 237 uintptr_t rv; 238 239 next_virt = P2ROUNDUP(next_virt, (uintptr_t)align); 240 rv = (uintptr_t)next_virt; 241 next_virt += size; 242 return (rv); 243 } 244 245 /* 246 * Allocate virtual memory. The size is always rounded up to a multiple 247 * of base pagesize. 248 */ 249 250 /*ARGSUSED*/ 251 static caddr_t 252 do_bsys_alloc(bootops_t *bop, caddr_t virthint, size_t size, int align) 253 { 254 paddr_t a = align; /* same type as pa for masking */ 255 uint_t pgsize; 256 paddr_t pa; 257 uintptr_t va; 258 ssize_t s; /* the aligned size */ 259 uint_t level; 260 uint_t is_kernel = (virthint != 0); 261 262 if (a < MMU_PAGESIZE) 263 a = MMU_PAGESIZE; 264 else if (!ISP2(a)) 265 prom_panic("do_bsys_alloc() incorrect alignment"); 266 size = P2ROUNDUP(size, MMU_PAGESIZE); 267 268 /* 269 * Use the next aligned virtual address if we weren't given one. 270 */ 271 if (virthint == NULL) { 272 virthint = (caddr_t)alloc_vaddr(size, a); 273 total_bop_alloc_scratch += size; 274 } else { 275 total_bop_alloc_kernel += size; 276 } 277 278 /* 279 * allocate the physical memory 280 */ 281 pa = do_bop_phys_alloc(size, a); 282 283 /* 284 * Add the mappings to the page tables, try large pages first. 285 */ 286 va = (uintptr_t)virthint; 287 s = size; 288 level = 1; 289 pgsize = xbootp->bi_use_pae ? TWO_MEG : FOUR_MEG; 290 if (xbootp->bi_use_largepage && a == pgsize) { 291 while (IS_P2ALIGNED(pa, pgsize) && IS_P2ALIGNED(va, pgsize) && 292 s >= pgsize) { 293 kbm_map(va, pa, level, is_kernel); 294 va += pgsize; 295 pa += pgsize; 296 s -= pgsize; 297 } 298 } 299 300 /* 301 * Map remaining pages use small mappings 302 */ 303 level = 0; 304 pgsize = MMU_PAGESIZE; 305 while (s > 0) { 306 kbm_map(va, pa, level, is_kernel); 307 va += pgsize; 308 pa += pgsize; 309 s -= pgsize; 310 } 311 return (virthint); 312 } 313 314 /* 315 * Free virtual memory - we'll just ignore these. 316 */ 317 /*ARGSUSED*/ 318 static void 319 do_bsys_free(bootops_t *bop, caddr_t virt, size_t size) 320 { 321 bop_printf(NULL, "do_bsys_free(virt=0x%p, size=0x%lx) ignored\n", 322 (void *)virt, size); 323 } 324 325 /* 326 * Old interface 327 */ 328 /*ARGSUSED*/ 329 static caddr_t 330 do_bsys_ealloc( 331 bootops_t *bop, 332 caddr_t virthint, 333 size_t size, 334 int align, 335 int flags) 336 { 337 prom_panic("unsupported call to BOP_EALLOC()\n"); 338 return (0); 339 } 340 341 342 static void 343 bsetprop(char *name, int nlen, void *value, int vlen) 344 { 345 uint_t size; 346 uint_t need_size; 347 bootprop_t *b; 348 349 /* 350 * align the size to 16 byte boundary 351 */ 352 size = sizeof (bootprop_t) + nlen + 1 + vlen; 353 size = (size + 0xf) & ~0xf; 354 if (size > curr_space) { 355 need_size = (size + (MMU_PAGEOFFSET)) & MMU_PAGEMASK; 356 curr_page = do_bsys_alloc(NULL, 0, need_size, MMU_PAGESIZE); 357 curr_space = need_size; 358 } 359 360 /* 361 * use a bootprop_t at curr_page and link into list 362 */ 363 b = (bootprop_t *)curr_page; 364 curr_page += sizeof (bootprop_t); 365 curr_space -= sizeof (bootprop_t); 366 b->bp_next = bprops; 367 bprops = b; 368 369 /* 370 * follow by name and ending zero byte 371 */ 372 b->bp_name = curr_page; 373 bcopy(name, curr_page, nlen); 374 curr_page += nlen; 375 *curr_page++ = 0; 376 curr_space -= nlen + 1; 377 378 /* 379 * copy in value, but no ending zero byte 380 */ 381 b->bp_value = curr_page; 382 b->bp_vlen = vlen; 383 if (vlen > 0) { 384 bcopy(value, curr_page, vlen); 385 curr_page += vlen; 386 curr_space -= vlen; 387 } 388 389 /* 390 * align new values of curr_page, curr_space 391 */ 392 while (curr_space & 0xf) { 393 ++curr_page; 394 --curr_space; 395 } 396 } 397 398 static void 399 bsetprops(char *name, char *value) 400 { 401 bsetprop(name, strlen(name), value, strlen(value) + 1); 402 } 403 404 static void 405 bsetprop64(char *name, uint64_t value) 406 { 407 bsetprop(name, strlen(name), (void *)&value, sizeof (value)); 408 } 409 410 static void 411 bsetpropsi(char *name, int value) 412 { 413 char prop_val[32]; 414 415 (void) snprintf(prop_val, sizeof (prop_val), "%d", value); 416 bsetprops(name, prop_val); 417 } 418 419 /* 420 * to find the size of the buffer to allocate 421 */ 422 /*ARGSUSED*/ 423 int 424 do_bsys_getproplen(bootops_t *bop, const char *name) 425 { 426 bootprop_t *b; 427 428 for (b = bprops; b; b = b->bp_next) { 429 if (strcmp(name, b->bp_name) != 0) 430 continue; 431 return (b->bp_vlen); 432 } 433 return (-1); 434 } 435 436 /* 437 * get the value associated with this name 438 */ 439 /*ARGSUSED*/ 440 int 441 do_bsys_getprop(bootops_t *bop, const char *name, void *value) 442 { 443 bootprop_t *b; 444 445 for (b = bprops; b; b = b->bp_next) { 446 if (strcmp(name, b->bp_name) != 0) 447 continue; 448 bcopy(b->bp_value, value, b->bp_vlen); 449 return (0); 450 } 451 return (-1); 452 } 453 454 /* 455 * get the name of the next property in succession from the standalone 456 */ 457 /*ARGSUSED*/ 458 static char * 459 do_bsys_nextprop(bootops_t *bop, char *name) 460 { 461 bootprop_t *b; 462 463 /* 464 * A null name is a special signal for the 1st boot property 465 */ 466 if (name == NULL || strlen(name) == 0) { 467 if (bprops == NULL) 468 return (NULL); 469 return (bprops->bp_name); 470 } 471 472 for (b = bprops; b; b = b->bp_next) { 473 if (name != b->bp_name) 474 continue; 475 b = b->bp_next; 476 if (b == NULL) 477 return (NULL); 478 return (b->bp_name); 479 } 480 return (NULL); 481 } 482 483 /* 484 * Parse numeric value from a string. Understands decimal, hex, octal, - and ~ 485 */ 486 static int 487 parse_value(char *p, uint64_t *retval) 488 { 489 int adjust = 0; 490 uint64_t tmp = 0; 491 int digit; 492 int radix = 10; 493 494 *retval = 0; 495 if (*p == '-' || *p == '~') 496 adjust = *p++; 497 498 if (*p == '0') { 499 ++p; 500 if (*p == 0) 501 return (0); 502 if (*p == 'x' || *p == 'X') { 503 radix = 16; 504 ++p; 505 } else { 506 radix = 8; 507 ++p; 508 } 509 } 510 while (*p) { 511 if ('0' <= *p && *p <= '9') 512 digit = *p - '0'; 513 else if ('a' <= *p && *p <= 'f') 514 digit = 10 + *p - 'a'; 515 else if ('A' <= *p && *p <= 'F') 516 digit = 10 + *p - 'A'; 517 else 518 return (-1); 519 if (digit >= radix) 520 return (-1); 521 tmp = tmp * radix + digit; 522 ++p; 523 } 524 if (adjust == '-') 525 tmp = -tmp; 526 else if (adjust == '~') 527 tmp = ~tmp; 528 *retval = tmp; 529 return (0); 530 } 531 532 /* 533 * 2nd part of building the table of boot properties. This includes: 534 * - values from /boot/solaris/bootenv.rc (ie. eeprom(1m) values) 535 * 536 * lines look like one of: 537 * ^$ 538 * ^# comment till end of line 539 * setprop name 'value' 540 * setprop name value 541 * setprop name "value" 542 * 543 * we do single character I/O since this is really just looking at memory 544 */ 545 void 546 boot_prop_finish(void) 547 { 548 int fd; 549 char *line; 550 int c; 551 int bytes_read; 552 char *name; 553 int n_len; 554 char *value; 555 int v_len; 556 char *inputdev; /* these override the command line if serial ports */ 557 char *outputdev; 558 char *consoledev; 559 uint64_t lvalue; 560 int use_xencons = 0; 561 562 #ifdef __xpv 563 if (!DOMAIN_IS_INITDOMAIN(xen_info)) 564 use_xencons = 1; 565 #endif /* __xpv */ 566 567 DBG_MSG("Opening /boot/solaris/bootenv.rc\n"); 568 fd = BRD_OPEN(bfs_ops, "/boot/solaris/bootenv.rc", 0); 569 DBG(fd); 570 571 line = do_bsys_alloc(NULL, NULL, MMU_PAGESIZE, MMU_PAGESIZE); 572 while (fd >= 0) { 573 574 /* 575 * get a line 576 */ 577 for (c = 0; ; ++c) { 578 bytes_read = BRD_READ(bfs_ops, fd, line + c, 1); 579 if (bytes_read == 0) { 580 if (c == 0) 581 goto done; 582 break; 583 } 584 if (line[c] == '\n') 585 break; 586 } 587 line[c] = 0; 588 589 /* 590 * ignore comment lines 591 */ 592 c = 0; 593 while (ISSPACE(line[c])) 594 ++c; 595 if (line[c] == '#' || line[c] == 0) 596 continue; 597 598 /* 599 * must have "setprop " or "setprop\t" 600 */ 601 if (strncmp(line + c, "setprop ", 8) != 0 && 602 strncmp(line + c, "setprop\t", 8) != 0) 603 continue; 604 c += 8; 605 while (ISSPACE(line[c])) 606 ++c; 607 if (line[c] == 0) 608 continue; 609 610 /* 611 * gather up the property name 612 */ 613 name = line + c; 614 n_len = 0; 615 while (line[c] && !ISSPACE(line[c])) 616 ++n_len, ++c; 617 618 /* 619 * gather up the value, if any 620 */ 621 value = ""; 622 v_len = 0; 623 while (ISSPACE(line[c])) 624 ++c; 625 if (line[c] != 0) { 626 value = line + c; 627 while (line[c] && !ISSPACE(line[c])) 628 ++v_len, ++c; 629 } 630 631 if (v_len >= 2 && value[0] == value[v_len - 1] && 632 (value[0] == '\'' || value[0] == '"')) { 633 ++value; 634 v_len -= 2; 635 } 636 name[n_len] = 0; 637 if (v_len > 0) 638 value[v_len] = 0; 639 else 640 continue; 641 642 /* 643 * ignore "boot-file" property, it's now meaningless 644 */ 645 if (strcmp(name, "boot-file") == 0) 646 continue; 647 if (strcmp(name, "boot-args") == 0 && 648 strlen(boot_args) > 0) 649 continue; 650 651 /* 652 * If a property was explicitly set on the command line 653 * it will override a setting in bootenv.rc 654 */ 655 if (do_bsys_getproplen(NULL, name) > 0) 656 continue; 657 658 bsetprop(name, n_len, value, v_len + 1); 659 } 660 done: 661 if (fd >= 0) 662 BRD_CLOSE(bfs_ops, fd); 663 664 /* 665 * Check if we have to limit the boot time allocator 666 */ 667 if (do_bsys_getproplen(NULL, "physmem") != -1 && 668 do_bsys_getprop(NULL, "physmem", line) >= 0 && 669 parse_value(line, &lvalue) != -1) { 670 if (0 < lvalue && (lvalue < physmem || physmem == 0)) { 671 physmem = (pgcnt_t)lvalue; 672 DBG(physmem); 673 } 674 } 675 early_allocation = 0; 676 677 /* 678 * check to see if we have to override the default value of the console 679 */ 680 if (!use_xencons) { 681 inputdev = line; 682 v_len = do_bsys_getproplen(NULL, "input-device"); 683 if (v_len > 0) 684 (void) do_bsys_getprop(NULL, "input-device", inputdev); 685 else 686 v_len = 0; 687 inputdev[v_len] = 0; 688 689 outputdev = inputdev + v_len + 1; 690 v_len = do_bsys_getproplen(NULL, "output-device"); 691 if (v_len > 0) 692 (void) do_bsys_getprop(NULL, "output-device", 693 outputdev); 694 else 695 v_len = 0; 696 outputdev[v_len] = 0; 697 698 consoledev = outputdev + v_len + 1; 699 v_len = do_bsys_getproplen(NULL, "console"); 700 if (v_len > 0) { 701 (void) do_bsys_getprop(NULL, "console", consoledev); 702 if (post_fastreboot && 703 strcmp(consoledev, "graphics") == 0) { 704 bsetprops("console", "text"); 705 v_len = strlen("text"); 706 bcopy("text", consoledev, v_len); 707 } 708 } else { 709 v_len = 0; 710 } 711 consoledev[v_len] = 0; 712 bcons_init2(inputdev, outputdev, consoledev); 713 } else { 714 /* 715 * Ensure console property exists 716 * If not create it as "hypervisor" 717 */ 718 v_len = do_bsys_getproplen(NULL, "console"); 719 if (v_len < 0) 720 bsetprops("console", "hypervisor"); 721 inputdev = outputdev = consoledev = "hypervisor"; 722 bcons_init2(inputdev, outputdev, consoledev); 723 } 724 725 if (strstr((char *)xbootp->bi_cmdline, "prom_debug") || kbm_debug) { 726 value = line; 727 bop_printf(NULL, "\nBoot properties:\n"); 728 name = ""; 729 while ((name = do_bsys_nextprop(NULL, name)) != NULL) { 730 bop_printf(NULL, "\t0x%p %s = ", (void *)name, name); 731 (void) do_bsys_getprop(NULL, name, value); 732 v_len = do_bsys_getproplen(NULL, name); 733 bop_printf(NULL, "len=%d ", v_len); 734 value[v_len] = 0; 735 bop_printf(NULL, "%s\n", value); 736 } 737 } 738 } 739 740 /* 741 * print formatted output 742 */ 743 /*PRINTFLIKE2*/ 744 /*ARGSUSED*/ 745 void 746 bop_printf(bootops_t *bop, const char *fmt, ...) 747 { 748 va_list ap; 749 750 if (have_console == 0) 751 return; 752 753 va_start(ap, fmt); 754 (void) vsnprintf(buffer, BUFFERSIZE, fmt, ap); 755 va_end(ap); 756 PUT_STRING(buffer); 757 } 758 759 /* 760 * Another panic() variant; this one can be used even earlier during boot than 761 * prom_panic(). 762 */ 763 /*PRINTFLIKE1*/ 764 void 765 bop_panic(const char *fmt, ...) 766 { 767 va_list ap; 768 769 va_start(ap, fmt); 770 bop_printf(NULL, fmt, ap); 771 va_end(ap); 772 773 bop_printf(NULL, "\nPress any key to reboot.\n"); 774 (void) bcons_getchar(); 775 bop_printf(NULL, "Resetting...\n"); 776 pc_reset(); 777 } 778 779 /* 780 * Do a real mode interrupt BIOS call 781 */ 782 typedef struct bios_regs { 783 unsigned short ax, bx, cx, dx, si, di, bp, es, ds; 784 } bios_regs_t; 785 typedef int (*bios_func_t)(int, bios_regs_t *); 786 787 /*ARGSUSED*/ 788 static void 789 do_bsys_doint(bootops_t *bop, int intnum, struct bop_regs *rp) 790 { 791 #if defined(__xpv) 792 prom_panic("unsupported call to BOP_DOINT()\n"); 793 #else /* __xpv */ 794 static int firsttime = 1; 795 bios_func_t bios_func = (bios_func_t)(void *)(uintptr_t)0x5000; 796 bios_regs_t br; 797 798 /* 799 * The first time we do this, we have to copy the pre-packaged 800 * low memory bios call code image into place. 801 */ 802 if (firsttime) { 803 extern char bios_image[]; 804 extern uint32_t bios_size; 805 806 bcopy(bios_image, (void *)bios_func, bios_size); 807 firsttime = 0; 808 } 809 810 br.ax = rp->eax.word.ax; 811 br.bx = rp->ebx.word.bx; 812 br.cx = rp->ecx.word.cx; 813 br.dx = rp->edx.word.dx; 814 br.bp = rp->ebp.word.bp; 815 br.si = rp->esi.word.si; 816 br.di = rp->edi.word.di; 817 br.ds = rp->ds; 818 br.es = rp->es; 819 820 DBG_MSG("Doing BIOS call..."); 821 DBG(br.ax); 822 DBG(br.bx); 823 DBG(br.dx); 824 rp->eflags = bios_func(intnum, &br); 825 DBG_MSG("done\n"); 826 827 rp->eax.word.ax = br.ax; 828 rp->ebx.word.bx = br.bx; 829 rp->ecx.word.cx = br.cx; 830 rp->edx.word.dx = br.dx; 831 rp->ebp.word.bp = br.bp; 832 rp->esi.word.si = br.si; 833 rp->edi.word.di = br.di; 834 rp->ds = br.ds; 835 rp->es = br.es; 836 #endif /* __xpv */ 837 } 838 839 static struct boot_syscalls bop_sysp = { 840 bcons_getchar, 841 bcons_putchar, 842 bcons_ischar, 843 }; 844 845 static char *whoami; 846 847 #define BUFLEN 64 848 849 #if defined(__xpv) 850 851 static char namebuf[32]; 852 853 static void 854 xen_parse_props(char *s, char *prop_map[], int n_prop) 855 { 856 char **prop_name = prop_map; 857 char *cp = s, *scp; 858 859 do { 860 scp = cp; 861 while ((*cp != NULL) && (*cp != ':')) 862 cp++; 863 864 if ((scp != cp) && (*prop_name != NULL)) { 865 *cp = NULL; 866 bsetprops(*prop_name, scp); 867 } 868 869 cp++; 870 prop_name++; 871 n_prop--; 872 } while (n_prop > 0); 873 } 874 875 #define VBDPATHLEN 64 876 877 /* 878 * parse the 'xpv-root' property to create properties used by 879 * ufs_mountroot. 880 */ 881 static void 882 xen_vbdroot_props(char *s) 883 { 884 char vbdpath[VBDPATHLEN] = "/xpvd/xdf@"; 885 const char lnamefix[] = "/dev/dsk/c0d"; 886 char *pnp; 887 char *prop_p; 888 char mi; 889 short minor; 890 long addr = 0; 891 892 pnp = vbdpath + strlen(vbdpath); 893 prop_p = s + strlen(lnamefix); 894 while ((*prop_p != '\0') && (*prop_p != 's') && (*prop_p != 'p')) 895 addr = addr * 10 + *prop_p++ - '0'; 896 (void) snprintf(pnp, VBDPATHLEN, "%lx", addr); 897 pnp = vbdpath + strlen(vbdpath); 898 if (*prop_p == 's') 899 mi = 'a'; 900 else if (*prop_p == 'p') 901 mi = 'q'; 902 else 903 ASSERT(0); /* shouldn't be here */ 904 prop_p++; 905 ASSERT(*prop_p != '\0'); 906 if (ISDIGIT(*prop_p)) { 907 minor = *prop_p - '0'; 908 prop_p++; 909 if (ISDIGIT(*prop_p)) { 910 minor = minor * 10 + *prop_p - '0'; 911 } 912 } else { 913 /* malformed root path, use 0 as default */ 914 minor = 0; 915 } 916 ASSERT(minor < 16); /* at most 16 partitions */ 917 mi += minor; 918 *pnp++ = ':'; 919 *pnp++ = mi; 920 *pnp++ = '\0'; 921 bsetprops("fstype", "ufs"); 922 bsetprops("bootpath", vbdpath); 923 924 DBG_MSG("VBD bootpath set to "); 925 DBG_MSG(vbdpath); 926 DBG_MSG("\n"); 927 } 928 929 /* 930 * parse the xpv-nfsroot property to create properties used by 931 * nfs_mountroot. 932 */ 933 static void 934 xen_nfsroot_props(char *s) 935 { 936 char *prop_map[] = { 937 BP_SERVER_IP, /* server IP address */ 938 BP_SERVER_NAME, /* server hostname */ 939 BP_SERVER_PATH, /* root path */ 940 }; 941 int n_prop = sizeof (prop_map) / sizeof (prop_map[0]); 942 943 bsetprop("fstype", 6, "nfs", 4); 944 945 xen_parse_props(s, prop_map, n_prop); 946 947 /* 948 * If a server name wasn't specified, use a default. 949 */ 950 if (do_bsys_getproplen(NULL, BP_SERVER_NAME) == -1) 951 bsetprops(BP_SERVER_NAME, "unknown"); 952 } 953 954 /* 955 * Extract our IP address, etc. from the "xpv-ip" property. 956 */ 957 static void 958 xen_ip_props(char *s) 959 { 960 char *prop_map[] = { 961 BP_HOST_IP, /* IP address */ 962 NULL, /* NFS server IP address (ignored in */ 963 /* favour of xpv-nfsroot) */ 964 BP_ROUTER_IP, /* IP gateway */ 965 BP_SUBNET_MASK, /* IP subnet mask */ 966 "xpv-hostname", /* hostname (ignored) */ 967 BP_NETWORK_INTERFACE, /* interface name */ 968 "xpv-hcp", /* host configuration protocol */ 969 }; 970 int n_prop = sizeof (prop_map) / sizeof (prop_map[0]); 971 char ifname[IFNAMSIZ]; 972 973 xen_parse_props(s, prop_map, n_prop); 974 975 /* 976 * A Linux dom0 administrator expects all interfaces to be 977 * called "ethX", which is not the case here. 978 * 979 * If the interface name specified is "eth0", presume that 980 * this is really intended to be "xnf0" (the first domU -> 981 * dom0 interface for this domain). 982 */ 983 if ((do_bsys_getprop(NULL, BP_NETWORK_INTERFACE, ifname) == 0) && 984 (strcmp("eth0", ifname) == 0)) { 985 bsetprops(BP_NETWORK_INTERFACE, "xnf0"); 986 bop_printf(NULL, 987 "network interface name 'eth0' replaced with 'xnf0'\n"); 988 } 989 } 990 991 #else /* __xpv */ 992 993 static void 994 setup_rarp_props(struct sol_netinfo *sip) 995 { 996 char buf[BUFLEN]; /* to hold ip/mac addrs */ 997 uint8_t *val; 998 999 val = (uint8_t *)&sip->sn_ciaddr; 1000 (void) snprintf(buf, BUFLEN, "%d.%d.%d.%d", 1001 val[0], val[1], val[2], val[3]); 1002 bsetprops(BP_HOST_IP, buf); 1003 1004 val = (uint8_t *)&sip->sn_siaddr; 1005 (void) snprintf(buf, BUFLEN, "%d.%d.%d.%d", 1006 val[0], val[1], val[2], val[3]); 1007 bsetprops(BP_SERVER_IP, buf); 1008 1009 if (sip->sn_giaddr != 0) { 1010 val = (uint8_t *)&sip->sn_giaddr; 1011 (void) snprintf(buf, BUFLEN, "%d.%d.%d.%d", 1012 val[0], val[1], val[2], val[3]); 1013 bsetprops(BP_ROUTER_IP, buf); 1014 } 1015 1016 if (sip->sn_netmask != 0) { 1017 val = (uint8_t *)&sip->sn_netmask; 1018 (void) snprintf(buf, BUFLEN, "%d.%d.%d.%d", 1019 val[0], val[1], val[2], val[3]); 1020 bsetprops(BP_SUBNET_MASK, buf); 1021 } 1022 1023 if (sip->sn_mactype != 4 || sip->sn_maclen != 6) { 1024 bop_printf(NULL, "unsupported mac type %d, mac len %d\n", 1025 sip->sn_mactype, sip->sn_maclen); 1026 } else { 1027 val = sip->sn_macaddr; 1028 (void) snprintf(buf, BUFLEN, "%x:%x:%x:%x:%x:%x", 1029 val[0], val[1], val[2], val[3], val[4], val[5]); 1030 bsetprops(BP_BOOT_MAC, buf); 1031 } 1032 } 1033 1034 #endif /* __xpv */ 1035 1036 static void 1037 build_panic_cmdline(const char *cmd, int cmdlen) 1038 { 1039 int proplen; 1040 size_t arglen; 1041 1042 arglen = sizeof (fastreboot_onpanic_args); 1043 /* 1044 * If we allready have fastreboot-onpanic set to zero, 1045 * don't add them again. 1046 */ 1047 if ((proplen = do_bsys_getproplen(NULL, FASTREBOOT_ONPANIC)) > 0 && 1048 proplen <= sizeof (fastreboot_onpanic_cmdline)) { 1049 (void) do_bsys_getprop(NULL, FASTREBOOT_ONPANIC, 1050 fastreboot_onpanic_cmdline); 1051 if (FASTREBOOT_ONPANIC_NOTSET(fastreboot_onpanic_cmdline)) 1052 arglen = 1; 1053 } 1054 1055 /* 1056 * construct fastreboot_onpanic_cmdline 1057 */ 1058 if (cmdlen + arglen > sizeof (fastreboot_onpanic_cmdline)) { 1059 DBG_MSG("Command line too long: clearing " 1060 FASTREBOOT_ONPANIC "\n"); 1061 fastreboot_onpanic = 0; 1062 } else { 1063 bcopy(cmd, fastreboot_onpanic_cmdline, cmdlen); 1064 if (arglen != 1) 1065 bcopy(fastreboot_onpanic_args, 1066 fastreboot_onpanic_cmdline + cmdlen, arglen); 1067 else 1068 fastreboot_onpanic_cmdline[cmdlen] = 0; 1069 } 1070 } 1071 1072 1073 #ifndef __xpv 1074 /* 1075 * Construct boot command line for Fast Reboot 1076 */ 1077 static void 1078 build_fastboot_cmdline(void) 1079 { 1080 saved_cmdline_len = strlen(xbootp->bi_cmdline) + 1; 1081 if (saved_cmdline_len > FASTBOOT_SAVED_CMDLINE_LEN) { 1082 DBG(saved_cmdline_len); 1083 DBG_MSG("Command line too long: clearing fastreboot_capable\n"); 1084 fastreboot_capable = 0; 1085 } else { 1086 bcopy((void *)(xbootp->bi_cmdline), (void *)saved_cmdline, 1087 saved_cmdline_len); 1088 saved_cmdline[saved_cmdline_len - 1] = '\0'; 1089 build_panic_cmdline(saved_cmdline, saved_cmdline_len - 1); 1090 } 1091 } 1092 1093 /* 1094 * Save memory layout, disk drive information, unix and boot archive sizes for 1095 * Fast Reboot. 1096 */ 1097 static void 1098 save_boot_info(multiboot_info_t *mbi, struct xboot_info *xbi) 1099 { 1100 struct boot_modules *modp; 1101 int i; 1102 1103 bcopy(mbi, &saved_mbi, sizeof (multiboot_info_t)); 1104 if (mbi->mmap_length > sizeof (saved_mmap)) { 1105 DBG_MSG("mbi->mmap_length too big: clearing " 1106 "fastreboot_capable\n"); 1107 fastreboot_capable = 0; 1108 } else { 1109 bcopy((void *)(uintptr_t)mbi->mmap_addr, (void *)saved_mmap, 1110 mbi->mmap_length); 1111 } 1112 1113 if ((mbi->flags & MB_INFO_DRIVE_INFO) != 0) { 1114 if (mbi->drives_length > sizeof (saved_drives)) { 1115 DBG(mbi->drives_length); 1116 DBG_MSG("mbi->drives_length too big: clearing " 1117 "fastreboot_capable\n"); 1118 fastreboot_capable = 0; 1119 } else { 1120 bcopy((void *)(uintptr_t)mbi->drives_addr, 1121 (void *)saved_drives, mbi->drives_length); 1122 } 1123 } else { 1124 saved_mbi.drives_length = 0; 1125 saved_mbi.drives_addr = NULL; 1126 } 1127 1128 /* 1129 * Current file sizes. Used by fastboot.c to figure out how much 1130 * memory to reserve for panic reboot. 1131 * Use the module list from the dboot-constructed xboot_info 1132 * instead of the list referenced by the multiboot structure 1133 * because that structure may not be addressable now. 1134 */ 1135 saved_file_size[FASTBOOT_NAME_UNIX] = FOUR_MEG - PAGESIZE; 1136 for (i = 0, modp = (struct boot_modules *)(uintptr_t)xbi->bi_modules; 1137 i < xbi->bi_module_cnt; i++, modp++) { 1138 saved_file_size[FASTBOOT_NAME_BOOTARCHIVE] += modp->bm_size; 1139 } 1140 } 1141 #endif /* __xpv */ 1142 1143 1144 /* 1145 * 1st pass at building the table of boot properties. This includes: 1146 * - values set on the command line: -B a=x,b=y,c=z .... 1147 * - known values we just compute (ie. from xbootp) 1148 * - values from /boot/solaris/bootenv.rc (ie. eeprom(1m) values) 1149 * 1150 * the grub command line looked like: 1151 * kernel boot-file [-B prop=value[,prop=value]...] [boot-args] 1152 * 1153 * whoami is the same as boot-file 1154 */ 1155 static void 1156 build_boot_properties(void) 1157 { 1158 char *name; 1159 int name_len; 1160 char *value; 1161 int value_len; 1162 struct boot_modules *bm; 1163 char *propbuf; 1164 int quoted = 0; 1165 int boot_arg_len; 1166 #ifndef __xpv 1167 static int stdout_val = 0; 1168 uchar_t boot_device; 1169 char str[3]; 1170 multiboot_info_t *mbi; 1171 int netboot; 1172 struct sol_netinfo *sip; 1173 #endif 1174 1175 /* 1176 * These have to be done first, so that kobj_mount_root() works 1177 */ 1178 DBG_MSG("Building boot properties\n"); 1179 propbuf = do_bsys_alloc(NULL, NULL, MMU_PAGESIZE, 0); 1180 DBG((uintptr_t)propbuf); 1181 if (xbootp->bi_module_cnt > 0) { 1182 bm = xbootp->bi_modules; 1183 bsetprop64("ramdisk_start", (uint64_t)(uintptr_t)bm->bm_addr); 1184 bsetprop64("ramdisk_end", (uint64_t)(uintptr_t)bm->bm_addr + 1185 bm->bm_size); 1186 } 1187 1188 DBG_MSG("Parsing command line for boot properties\n"); 1189 value = xbootp->bi_cmdline; 1190 1191 /* 1192 * allocate memory to collect boot_args into 1193 */ 1194 boot_arg_len = strlen(xbootp->bi_cmdline) + 1; 1195 boot_args = do_bsys_alloc(NULL, NULL, boot_arg_len, MMU_PAGESIZE); 1196 boot_args[0] = 0; 1197 boot_arg_len = 0; 1198 1199 #ifdef __xpv 1200 /* 1201 * Xen puts a lot of device information in front of the kernel name 1202 * let's grab them and make them boot properties. The first 1203 * string w/o an "=" in it will be the boot-file property. 1204 */ 1205 (void) strcpy(namebuf, "xpv-"); 1206 for (;;) { 1207 /* 1208 * get to next property 1209 */ 1210 while (ISSPACE(*value)) 1211 ++value; 1212 name = value; 1213 /* 1214 * look for an "=" 1215 */ 1216 while (*value && !ISSPACE(*value) && *value != '=') { 1217 value++; 1218 } 1219 if (*value != '=') { /* no "=" in the property */ 1220 value = name; 1221 break; 1222 } 1223 name_len = value - name; 1224 value_len = 0; 1225 /* 1226 * skip over the "=" 1227 */ 1228 value++; 1229 while (value[value_len] && !ISSPACE(value[value_len])) { 1230 ++value_len; 1231 } 1232 /* 1233 * build property name with "xpv-" prefix 1234 */ 1235 if (name_len + 4 > 32) { /* skip if name too long */ 1236 value += value_len; 1237 continue; 1238 } 1239 bcopy(name, &namebuf[4], name_len); 1240 name_len += 4; 1241 namebuf[name_len] = 0; 1242 bcopy(value, propbuf, value_len); 1243 propbuf[value_len] = 0; 1244 bsetprops(namebuf, propbuf); 1245 1246 /* 1247 * xpv-root is set to the logical disk name of the xen 1248 * VBD when booting from a disk-based filesystem. 1249 */ 1250 if (strcmp(namebuf, "xpv-root") == 0) 1251 xen_vbdroot_props(propbuf); 1252 /* 1253 * While we're here, if we have a "xpv-nfsroot" property 1254 * then we need to set "fstype" to "nfs" so we mount 1255 * our root from the nfs server. Also parse the xpv-nfsroot 1256 * property to create the properties that nfs_mountroot will 1257 * need to find the root and mount it. 1258 */ 1259 if (strcmp(namebuf, "xpv-nfsroot") == 0) 1260 xen_nfsroot_props(propbuf); 1261 1262 if (strcmp(namebuf, "xpv-ip") == 0) 1263 xen_ip_props(propbuf); 1264 value += value_len; 1265 } 1266 #endif 1267 1268 while (ISSPACE(*value)) 1269 ++value; 1270 /* 1271 * value now points at the boot-file 1272 */ 1273 value_len = 0; 1274 while (value[value_len] && !ISSPACE(value[value_len])) 1275 ++value_len; 1276 if (value_len > 0) { 1277 whoami = propbuf; 1278 bcopy(value, whoami, value_len); 1279 whoami[value_len] = 0; 1280 bsetprops("boot-file", whoami); 1281 /* 1282 * strip leading path stuff from whoami, so running from 1283 * PXE/miniroot makes sense. 1284 */ 1285 if (strstr(whoami, "/platform/") != NULL) 1286 whoami = strstr(whoami, "/platform/"); 1287 bsetprops("whoami", whoami); 1288 } 1289 1290 /* 1291 * Values forcibly set boot properties on the command line via -B. 1292 * Allow use of quotes in values. Other stuff goes on kernel 1293 * command line. 1294 */ 1295 name = value + value_len; 1296 while (*name != 0) { 1297 /* 1298 * anything not " -B" is copied to the command line 1299 */ 1300 if (!ISSPACE(name[0]) || name[1] != '-' || name[2] != 'B') { 1301 boot_args[boot_arg_len++] = *name; 1302 boot_args[boot_arg_len] = 0; 1303 ++name; 1304 continue; 1305 } 1306 1307 /* 1308 * skip the " -B" and following white space 1309 */ 1310 name += 3; 1311 while (ISSPACE(*name)) 1312 ++name; 1313 while (*name && !ISSPACE(*name)) { 1314 value = strstr(name, "="); 1315 if (value == NULL) 1316 break; 1317 name_len = value - name; 1318 ++value; 1319 value_len = 0; 1320 quoted = 0; 1321 for (; ; ++value_len) { 1322 if (!value[value_len]) 1323 break; 1324 1325 /* 1326 * is this value quoted? 1327 */ 1328 if (value_len == 0 && 1329 (value[0] == '\'' || value[0] == '"')) { 1330 quoted = value[0]; 1331 ++value_len; 1332 } 1333 1334 /* 1335 * In the quote accept any character, 1336 * but look for ending quote. 1337 */ 1338 if (quoted) { 1339 if (value[value_len] == quoted) 1340 quoted = 0; 1341 continue; 1342 } 1343 1344 /* 1345 * a comma or white space ends the value 1346 */ 1347 if (value[value_len] == ',' || 1348 ISSPACE(value[value_len])) 1349 break; 1350 } 1351 1352 if (value_len == 0) { 1353 bsetprop(name, name_len, "true", 5); 1354 } else { 1355 char *v = value; 1356 int l = value_len; 1357 if (v[0] == v[l - 1] && 1358 (v[0] == '\'' || v[0] == '"')) { 1359 ++v; 1360 l -= 2; 1361 } 1362 bcopy(v, propbuf, l); 1363 propbuf[l] = '\0'; 1364 bsetprop(name, name_len, propbuf, 1365 l + 1); 1366 } 1367 name = value + value_len; 1368 while (*name == ',') 1369 ++name; 1370 } 1371 } 1372 1373 /* 1374 * set boot-args property 1375 * 1275 name is bootargs, so set 1376 * that too 1377 */ 1378 bsetprops("boot-args", boot_args); 1379 bsetprops("bootargs", boot_args); 1380 1381 #ifndef __xpv 1382 /* 1383 * set the BIOS boot device from GRUB 1384 */ 1385 netboot = 0; 1386 mbi = xbootp->bi_mb_info; 1387 1388 /* 1389 * Build boot command line for Fast Reboot 1390 */ 1391 build_fastboot_cmdline(); 1392 1393 /* 1394 * Save various boot information for Fast Reboot 1395 */ 1396 save_boot_info(mbi, xbootp); 1397 1398 if (mbi != NULL && mbi->flags & MB_INFO_BOOTDEV) { 1399 boot_device = mbi->boot_device >> 24; 1400 if (boot_device == 0x20) 1401 netboot++; 1402 str[0] = (boot_device >> 4) + '0'; 1403 str[1] = (boot_device & 0xf) + '0'; 1404 str[2] = 0; 1405 bsetprops("bios-boot-device", str); 1406 } else { 1407 netboot = 1; 1408 } 1409 1410 /* 1411 * In the netboot case, drives_info is overloaded with the dhcp ack. 1412 * This is not multiboot compliant and requires special pxegrub! 1413 */ 1414 if (netboot && mbi->drives_length != 0) { 1415 sip = (struct sol_netinfo *)(uintptr_t)mbi->drives_addr; 1416 if (sip->sn_infotype == SN_TYPE_BOOTP) 1417 bsetprop("bootp-response", sizeof ("bootp-response"), 1418 (void *)(uintptr_t)mbi->drives_addr, 1419 mbi->drives_length); 1420 else if (sip->sn_infotype == SN_TYPE_RARP) 1421 setup_rarp_props(sip); 1422 } 1423 bsetprop("stdout", strlen("stdout"), 1424 &stdout_val, sizeof (stdout_val)); 1425 #endif /* __xpv */ 1426 1427 /* 1428 * more conjured up values for made up things.... 1429 */ 1430 #if defined(__xpv) 1431 bsetprops("mfg-name", "i86xpv"); 1432 bsetprops("impl-arch-name", "i86xpv"); 1433 #else 1434 bsetprops("mfg-name", "i86pc"); 1435 bsetprops("impl-arch-name", "i86pc"); 1436 #endif 1437 1438 /* 1439 * Build firmware-provided system properties 1440 */ 1441 build_firmware_properties(); 1442 1443 /* 1444 * XXPV 1445 * 1446 * Find out what these are: 1447 * - cpuid_feature_ecx_include 1448 * - cpuid_feature_ecx_exclude 1449 * - cpuid_feature_edx_include 1450 * - cpuid_feature_edx_exclude 1451 * 1452 * Find out what these are in multiboot: 1453 * - netdev-path 1454 * - fstype 1455 */ 1456 } 1457 1458 #ifdef __xpv 1459 /* 1460 * Under the Hypervisor, memory usable for DMA may be scarce. One 1461 * very likely large pool of DMA friendly memory is occupied by 1462 * the boot_archive, as it was loaded by grub into low MFNs. 1463 * 1464 * Here we free up that memory by copying the boot archive to what are 1465 * likely higher MFN pages and then swapping the mfn/pfn mappings. 1466 */ 1467 #define PFN_2GIG 0x80000 1468 static void 1469 relocate_boot_archive(void) 1470 { 1471 mfn_t max_mfn = HYPERVISOR_memory_op(XENMEM_maximum_ram_page, NULL); 1472 struct boot_modules *bm = xbootp->bi_modules; 1473 uintptr_t va; 1474 pfn_t va_pfn; 1475 mfn_t va_mfn; 1476 caddr_t copy; 1477 pfn_t copy_pfn; 1478 mfn_t copy_mfn; 1479 size_t len; 1480 int slop; 1481 int total = 0; 1482 int relocated = 0; 1483 int mmu_update_return; 1484 mmu_update_t t[2]; 1485 x86pte_t pte; 1486 1487 /* 1488 * If all MFN's are below 2Gig, don't bother doing this. 1489 */ 1490 if (max_mfn < PFN_2GIG) 1491 return; 1492 if (xbootp->bi_module_cnt < 1) { 1493 DBG_MSG("no boot_archive!"); 1494 return; 1495 } 1496 1497 DBG_MSG("moving boot_archive to high MFN memory\n"); 1498 va = (uintptr_t)bm->bm_addr; 1499 len = bm->bm_size; 1500 slop = va & MMU_PAGEOFFSET; 1501 if (slop) { 1502 va += MMU_PAGESIZE - slop; 1503 len -= MMU_PAGESIZE - slop; 1504 } 1505 len = P2ALIGN(len, MMU_PAGESIZE); 1506 1507 /* 1508 * Go through all boot_archive pages, swapping any low MFN pages 1509 * with memory at next_phys. 1510 */ 1511 while (len != 0) { 1512 ++total; 1513 va_pfn = mmu_btop(va - ONE_GIG); 1514 va_mfn = mfn_list[va_pfn]; 1515 if (mfn_list[va_pfn] < PFN_2GIG) { 1516 copy = kbm_remap_window(next_phys, 1); 1517 bcopy((void *)va, copy, MMU_PAGESIZE); 1518 copy_pfn = mmu_btop(next_phys); 1519 copy_mfn = mfn_list[copy_pfn]; 1520 1521 pte = mfn_to_ma(copy_mfn) | PT_NOCONSIST | PT_VALID; 1522 if (HYPERVISOR_update_va_mapping(va, pte, 1523 UVMF_INVLPG | UVMF_LOCAL)) 1524 bop_panic("relocate_boot_archive(): " 1525 "HYPERVISOR_update_va_mapping() failed"); 1526 1527 mfn_list[va_pfn] = copy_mfn; 1528 mfn_list[copy_pfn] = va_mfn; 1529 1530 t[0].ptr = mfn_to_ma(copy_mfn) | MMU_MACHPHYS_UPDATE; 1531 t[0].val = va_pfn; 1532 t[1].ptr = mfn_to_ma(va_mfn) | MMU_MACHPHYS_UPDATE; 1533 t[1].val = copy_pfn; 1534 if (HYPERVISOR_mmu_update(t, 2, &mmu_update_return, 1535 DOMID_SELF) != 0 || mmu_update_return != 2) 1536 bop_panic("relocate_boot_archive(): " 1537 "HYPERVISOR_mmu_update() failed"); 1538 1539 next_phys += MMU_PAGESIZE; 1540 ++relocated; 1541 } 1542 len -= MMU_PAGESIZE; 1543 va += MMU_PAGESIZE; 1544 } 1545 DBG_MSG("Relocated pages:\n"); 1546 DBG(relocated); 1547 DBG_MSG("Out of total pages:\n"); 1548 DBG(total); 1549 } 1550 #endif /* __xpv */ 1551 1552 #if !defined(__xpv) 1553 /* 1554 * Install a temporary IDT that lets us catch errors in the boot time code. 1555 * We shouldn't get any faults at all while this is installed, so we'll 1556 * just generate a traceback and exit. 1557 */ 1558 #ifdef __amd64 1559 static const int bcode_sel = B64CODE_SEL; 1560 #else 1561 static const int bcode_sel = B32CODE_SEL; 1562 #endif 1563 1564 /* 1565 * simple description of a stack frame (args are 32 bit only currently) 1566 */ 1567 typedef struct bop_frame { 1568 struct bop_frame *old_frame; 1569 pc_t retaddr; 1570 long arg[1]; 1571 } bop_frame_t; 1572 1573 void 1574 bop_traceback(bop_frame_t *frame) 1575 { 1576 pc_t pc; 1577 int cnt; 1578 char *ksym; 1579 ulong_t off; 1580 #if defined(__i386) 1581 int a; 1582 #endif 1583 1584 bop_printf(NULL, "Stack traceback:\n"); 1585 for (cnt = 0; cnt < 30; ++cnt) { /* up to 30 frames */ 1586 pc = frame->retaddr; 1587 if (pc == 0) 1588 break; 1589 ksym = kobj_getsymname(pc, &off); 1590 if (ksym) 1591 bop_printf(NULL, " %s+%lx", ksym, off); 1592 else 1593 bop_printf(NULL, " 0x%lx", pc); 1594 1595 frame = frame->old_frame; 1596 if (frame == 0) { 1597 bop_printf(NULL, "\n"); 1598 break; 1599 } 1600 #if defined(__i386) 1601 for (a = 0; a < 6; ++a) { /* try for 6 args */ 1602 if ((void *)&frame->arg[a] == (void *)frame->old_frame) 1603 break; 1604 if (a == 0) 1605 bop_printf(NULL, "("); 1606 else 1607 bop_printf(NULL, ","); 1608 bop_printf(NULL, "0x%lx", frame->arg[a]); 1609 } 1610 bop_printf(NULL, ")"); 1611 #endif 1612 bop_printf(NULL, "\n"); 1613 } 1614 } 1615 1616 struct trapframe { 1617 ulong_t error_code; /* optional */ 1618 ulong_t inst_ptr; 1619 ulong_t code_seg; 1620 ulong_t flags_reg; 1621 #ifdef __amd64 1622 ulong_t stk_ptr; 1623 ulong_t stk_seg; 1624 #endif 1625 }; 1626 1627 void 1628 bop_trap(ulong_t *tfp) 1629 { 1630 struct trapframe *tf = (struct trapframe *)tfp; 1631 bop_frame_t fakeframe; 1632 static int depth = 0; 1633 1634 /* 1635 * Check for an infinite loop of traps. 1636 */ 1637 if (++depth > 2) 1638 bop_panic("Nested trap"); 1639 1640 bop_printf(NULL, "Unexpected trap\n"); 1641 1642 /* 1643 * adjust the tf for optional error_code by detecting the code selector 1644 */ 1645 if (tf->code_seg != bcode_sel) 1646 tf = (struct trapframe *)(tfp - 1); 1647 else 1648 bop_printf(NULL, "error code 0x%lx\n", 1649 tf->error_code & 0xffffffff); 1650 1651 bop_printf(NULL, "instruction pointer 0x%lx\n", tf->inst_ptr); 1652 bop_printf(NULL, "code segment 0x%lx\n", tf->code_seg & 0xffff); 1653 bop_printf(NULL, "flags register 0x%lx\n", tf->flags_reg); 1654 #ifdef __amd64 1655 bop_printf(NULL, "return %%rsp 0x%lx\n", tf->stk_ptr); 1656 bop_printf(NULL, "return %%ss 0x%lx\n", tf->stk_seg & 0xffff); 1657 #endif 1658 1659 /* grab %[er]bp pushed by our code from the stack */ 1660 fakeframe.old_frame = (bop_frame_t *)*(tfp - 3); 1661 fakeframe.retaddr = (pc_t)tf->inst_ptr; 1662 bop_printf(NULL, "Attempting stack backtrace:\n"); 1663 bop_traceback(&fakeframe); 1664 bop_panic("unexpected trap in early boot"); 1665 } 1666 1667 extern void bop_trap_handler(void); 1668 1669 static gate_desc_t *bop_idt; 1670 1671 static desctbr_t bop_idt_info; 1672 1673 static void 1674 bop_idt_init(void) 1675 { 1676 int t; 1677 1678 bop_idt = (gate_desc_t *) 1679 do_bsys_alloc(NULL, NULL, MMU_PAGESIZE, MMU_PAGESIZE); 1680 bzero(bop_idt, MMU_PAGESIZE); 1681 for (t = 0; t < NIDT; ++t) { 1682 /* 1683 * Note that since boot runs without a TSS, the 1684 * double fault handler cannot use an alternate stack 1685 * (64-bit) or a task gate (32-bit). 1686 */ 1687 set_gatesegd(&bop_idt[t], &bop_trap_handler, bcode_sel, 1688 SDT_SYSIGT, TRP_KPL, 0); 1689 } 1690 bop_idt_info.dtr_limit = (NIDT * sizeof (gate_desc_t)) - 1; 1691 bop_idt_info.dtr_base = (uintptr_t)bop_idt; 1692 wr_idtr(&bop_idt_info); 1693 } 1694 #endif /* !defined(__xpv) */ 1695 1696 /* 1697 * This is where we enter the kernel. It dummies up the boot_ops and 1698 * boot_syscalls vectors and jumps off to _kobj_boot() 1699 */ 1700 void 1701 _start(struct xboot_info *xbp) 1702 { 1703 bootops_t *bops = &bootop; 1704 extern void _kobj_boot(); 1705 1706 /* 1707 * 1st off - initialize the console for any error messages 1708 */ 1709 xbootp = xbp; 1710 #ifdef __xpv 1711 HYPERVISOR_shared_info = (void *)xbootp->bi_shared_info; 1712 xen_info = xbootp->bi_xen_start_info; 1713 #endif 1714 1715 #ifndef __xpv 1716 if (*((uint32_t *)(FASTBOOT_SWTCH_PA + FASTBOOT_STACK_OFFSET)) == 1717 FASTBOOT_MAGIC) { 1718 post_fastreboot = 1; 1719 *((uint32_t *)(FASTBOOT_SWTCH_PA + FASTBOOT_STACK_OFFSET)) = 0; 1720 } 1721 #endif 1722 1723 bcons_init((void *)xbootp->bi_cmdline); 1724 have_console = 1; 1725 1726 /* 1727 * enable debugging 1728 */ 1729 if (strstr((char *)xbootp->bi_cmdline, "kbm_debug")) 1730 kbm_debug = 1; 1731 1732 DBG_MSG("\n\n*** Entered Solaris in _start() cmdline is: "); 1733 DBG_MSG((char *)xbootp->bi_cmdline); 1734 DBG_MSG("\n\n\n"); 1735 1736 /* 1737 * physavail is no longer used by startup 1738 */ 1739 bm.physinstalled = xbp->bi_phys_install; 1740 bm.pcimem = xbp->bi_pcimem; 1741 bm.rsvdmem = xbp->bi_rsvdmem; 1742 bm.physavail = NULL; 1743 1744 /* 1745 * initialize the boot time allocator 1746 */ 1747 next_phys = xbootp->bi_next_paddr; 1748 DBG(next_phys); 1749 next_virt = (uintptr_t)xbootp->bi_next_vaddr; 1750 DBG(next_virt); 1751 DBG_MSG("Initializing boot time memory management..."); 1752 #ifdef __xpv 1753 { 1754 xen_platform_parameters_t p; 1755 1756 /* This call shouldn't fail, dboot already did it once. */ 1757 (void) HYPERVISOR_xen_version(XENVER_platform_parameters, &p); 1758 mfn_to_pfn_mapping = (pfn_t *)(xen_virt_start = p.virt_start); 1759 DBG(xen_virt_start); 1760 } 1761 #endif 1762 kbm_init(xbootp); 1763 DBG_MSG("done\n"); 1764 1765 /* 1766 * Fill in the bootops vector 1767 */ 1768 bops->bsys_version = BO_VERSION; 1769 bops->boot_mem = &bm; 1770 bops->bsys_alloc = do_bsys_alloc; 1771 bops->bsys_free = do_bsys_free; 1772 bops->bsys_getproplen = do_bsys_getproplen; 1773 bops->bsys_getprop = do_bsys_getprop; 1774 bops->bsys_nextprop = do_bsys_nextprop; 1775 bops->bsys_printf = bop_printf; 1776 bops->bsys_doint = do_bsys_doint; 1777 1778 /* 1779 * BOP_EALLOC() is no longer needed 1780 */ 1781 bops->bsys_ealloc = do_bsys_ealloc; 1782 1783 #ifdef __xpv 1784 /* 1785 * On domain 0 we need to free up some physical memory that is 1786 * usable for DMA. Since GRUB loaded the boot_archive, it is 1787 * sitting in low MFN memory. We'll relocated the boot archive 1788 * pages to high PFN memory. 1789 */ 1790 if (DOMAIN_IS_INITDOMAIN(xen_info)) 1791 relocate_boot_archive(); 1792 #endif 1793 1794 #ifndef __xpv 1795 /* 1796 * Install an IDT to catch early pagefaults (shouldn't have any). 1797 * Also needed for kmdb. 1798 */ 1799 bop_idt_init(); 1800 #endif 1801 1802 /* 1803 * Start building the boot properties from the command line 1804 */ 1805 DBG_MSG("Initializing boot properties:\n"); 1806 build_boot_properties(); 1807 1808 if (strstr((char *)xbootp->bi_cmdline, "prom_debug") || kbm_debug) { 1809 char *name; 1810 char *value; 1811 char *cp; 1812 int len; 1813 1814 value = do_bsys_alloc(NULL, NULL, MMU_PAGESIZE, MMU_PAGESIZE); 1815 bop_printf(NULL, "\nBoot properties:\n"); 1816 name = ""; 1817 while ((name = do_bsys_nextprop(NULL, name)) != NULL) { 1818 bop_printf(NULL, "\t0x%p %s = ", (void *)name, name); 1819 (void) do_bsys_getprop(NULL, name, value); 1820 len = do_bsys_getproplen(NULL, name); 1821 bop_printf(NULL, "len=%d ", len); 1822 value[len] = 0; 1823 for (cp = value; *cp; ++cp) { 1824 if (' ' <= *cp && *cp <= '~') 1825 bop_printf(NULL, "%c", *cp); 1826 else 1827 bop_printf(NULL, "-0x%x-", *cp); 1828 } 1829 bop_printf(NULL, "\n"); 1830 } 1831 } 1832 1833 /* 1834 * jump into krtld... 1835 */ 1836 _kobj_boot(&bop_sysp, NULL, bops, NULL); 1837 } 1838 1839 1840 /*ARGSUSED*/ 1841 static caddr_t 1842 no_more_alloc(bootops_t *bop, caddr_t virthint, size_t size, int align) 1843 { 1844 panic("Attempt to bsys_alloc() too late\n"); 1845 return (NULL); 1846 } 1847 1848 /*ARGSUSED*/ 1849 static void 1850 no_more_free(bootops_t *bop, caddr_t virt, size_t size) 1851 { 1852 panic("Attempt to bsys_free() too late\n"); 1853 } 1854 1855 void 1856 bop_no_more_mem(void) 1857 { 1858 DBG(total_bop_alloc_scratch); 1859 DBG(total_bop_alloc_kernel); 1860 bootops->bsys_alloc = no_more_alloc; 1861 bootops->bsys_free = no_more_free; 1862 } 1863 1864 1865 /* 1866 * Set ACPI firmware properties 1867 */ 1868 1869 static caddr_t 1870 vmap_phys(size_t length, paddr_t pa) 1871 { 1872 paddr_t start, end; 1873 caddr_t va; 1874 size_t len, page; 1875 1876 #ifdef __xpv 1877 pa = pfn_to_pa(xen_assign_pfn(mmu_btop(pa))) | (pa & MMU_PAGEOFFSET); 1878 #endif 1879 start = P2ALIGN(pa, MMU_PAGESIZE); 1880 end = P2ROUNDUP(pa + length, MMU_PAGESIZE); 1881 len = end - start; 1882 va = (caddr_t)alloc_vaddr(len, MMU_PAGESIZE); 1883 for (page = 0; page < len; page += MMU_PAGESIZE) 1884 kbm_map((uintptr_t)va + page, start + page, 0, 0); 1885 return (va + (pa & MMU_PAGEOFFSET)); 1886 } 1887 1888 static uint8_t 1889 checksum_table(uint8_t *tp, size_t len) 1890 { 1891 uint8_t sum = 0; 1892 1893 while (len-- > 0) 1894 sum += *tp++; 1895 1896 return (sum); 1897 } 1898 1899 static int 1900 valid_rsdp(struct rsdp *rp) 1901 { 1902 1903 /* validate the V1.x checksum */ 1904 if (checksum_table((uint8_t *)&rp->v1, sizeof (struct rsdp_v1)) != 0) 1905 return (0); 1906 1907 /* If pre-ACPI 2.0, this is a valid RSDP */ 1908 if (rp->v1.revision < 2) 1909 return (1); 1910 1911 /* validate the V2.x checksum */ 1912 if (checksum_table((uint8_t *)rp, sizeof (struct rsdp)) != 0) 1913 return (0); 1914 1915 return (1); 1916 } 1917 1918 /* 1919 * Scan memory range for an RSDP; 1920 * see ACPI 3.0 Spec, 5.2.5.1 1921 */ 1922 static struct rsdp * 1923 scan_rsdp(paddr_t start, paddr_t end) 1924 { 1925 size_t len = end - start + 1; 1926 caddr_t ptr; 1927 1928 ptr = vmap_phys(len, start); 1929 while (len > 0) { 1930 if (strncmp(ptr, ACPI_RSDP_SIG, ACPI_RSDP_SIG_LEN) == 0) 1931 if (valid_rsdp((struct rsdp *)ptr)) 1932 return ((struct rsdp *)ptr); 1933 ptr += 16; 1934 len -= 16; 1935 } 1936 1937 return (NULL); 1938 } 1939 1940 /* 1941 * Refer to ACPI 3.0 Spec, section 5.2.5.1 to understand this function 1942 */ 1943 static struct rsdp * 1944 find_rsdp() { 1945 struct rsdp *rsdp; 1946 uint16_t *ebda_seg; 1947 paddr_t ebda_addr; 1948 1949 /* 1950 * Get the EBDA segment and scan the first 1K 1951 */ 1952 ebda_seg = (uint16_t *)vmap_phys(sizeof (uint16_t), ACPI_EBDA_SEG_ADDR); 1953 ebda_addr = *ebda_seg << 4; 1954 rsdp = scan_rsdp(ebda_addr, ebda_addr + ACPI_EBDA_LEN - 1); 1955 if (rsdp == NULL) 1956 /* if EBDA doesn't contain RSDP, look in BIOS memory */ 1957 rsdp = scan_rsdp(0xe0000, 0xfffff); 1958 return (rsdp); 1959 } 1960 1961 static struct table_header * 1962 map_fw_table(paddr_t table_addr) 1963 { 1964 struct table_header *tp; 1965 size_t len = MAX(sizeof (struct table_header), MMU_PAGESIZE); 1966 1967 /* 1968 * Map at least a page; if the table is larger than this, remap it 1969 */ 1970 tp = (struct table_header *)vmap_phys(len, table_addr); 1971 if (tp->len > len) 1972 tp = (struct table_header *)vmap_phys(tp->len, table_addr); 1973 return (tp); 1974 } 1975 1976 static struct table_header * 1977 find_fw_table(char *signature) 1978 { 1979 static int revision = 0; 1980 static struct xsdt *xsdt; 1981 static int len; 1982 paddr_t xsdt_addr; 1983 struct rsdp *rsdp; 1984 struct table_header *tp; 1985 paddr_t table_addr; 1986 int n; 1987 1988 if (strlen(signature) != ACPI_TABLE_SIG_LEN) 1989 return (NULL); 1990 1991 /* 1992 * Reading the ACPI 3.0 Spec, section 5.2.5.3 will help 1993 * understand this code. If we haven't already found the RSDT/XSDT, 1994 * revision will be 0. Find the RSDP and check the revision 1995 * to find out whether to use the RSDT or XSDT. If revision is 1996 * 0 or 1, use the RSDT and set internal revision to 1; if it is 2, 1997 * use the XSDT. If the XSDT address is 0, though, fall back to 1998 * revision 1 and use the RSDT. 1999 */ 2000 if (revision == 0) { 2001 if ((rsdp = (struct rsdp *)find_rsdp()) != NULL) { 2002 revision = rsdp->v1.revision; 2003 switch (revision) { 2004 case 2: 2005 /* 2006 * Use the XSDT unless BIOS is buggy and 2007 * claims to be rev 2 but has a null XSDT 2008 * address 2009 */ 2010 xsdt_addr = rsdp->xsdt; 2011 if (xsdt_addr != 0) 2012 break; 2013 /* FALLTHROUGH */ 2014 case 0: 2015 /* treat RSDP rev 0 as revision 1 internally */ 2016 revision = 1; 2017 /* FALLTHROUGH */ 2018 case 1: 2019 /* use the RSDT for rev 0/1 */ 2020 xsdt_addr = rsdp->v1.rsdt; 2021 break; 2022 default: 2023 /* unknown revision */ 2024 revision = 0; 2025 break; 2026 } 2027 } 2028 if (revision == 0) 2029 return (NULL); 2030 2031 /* cache the XSDT info */ 2032 xsdt = (struct xsdt *)map_fw_table(xsdt_addr); 2033 len = (xsdt->hdr.len - sizeof (xsdt->hdr)) / 2034 ((revision == 1) ? sizeof (uint32_t) : sizeof (uint64_t)); 2035 } 2036 2037 /* 2038 * Scan the table headers looking for a signature match 2039 */ 2040 for (n = 0; n < len; n++) { 2041 table_addr = (revision == 1) ? xsdt->p.r[n] : xsdt->p.x[n]; 2042 if (table_addr == 0) 2043 continue; 2044 tp = map_fw_table(table_addr); 2045 if (strncmp(tp->sig, signature, ACPI_TABLE_SIG_LEN) == 0) { 2046 return (tp); 2047 } 2048 } 2049 return (NULL); 2050 } 2051 2052 static void 2053 process_mcfg(struct mcfg *tp) 2054 { 2055 struct cfg_base_addr_alloc *cfg_baap; 2056 char *cfg_baa_endp; 2057 int64_t ecfginfo[4]; 2058 2059 cfg_baap = tp->CfgBaseAddrAllocList; 2060 cfg_baa_endp = ((char *)tp) + tp->Length; 2061 while ((char *)cfg_baap < cfg_baa_endp) { 2062 if (cfg_baap->base_addr != 0 && cfg_baap->segment == 0) { 2063 ecfginfo[0] = cfg_baap->base_addr; 2064 ecfginfo[1] = cfg_baap->segment; 2065 ecfginfo[2] = cfg_baap->start_bno; 2066 ecfginfo[3] = cfg_baap->end_bno; 2067 bsetprop(MCFG_PROPNAME, strlen(MCFG_PROPNAME), 2068 ecfginfo, sizeof (ecfginfo)); 2069 break; 2070 } 2071 cfg_baap++; 2072 } 2073 } 2074 2075 #ifndef __xpv 2076 static void 2077 process_madt(struct madt *tp) 2078 { 2079 struct madt_processor *cpu, *end; 2080 uint32_t cpu_count = 0; 2081 uint8_t cpu_apicid_array[UINT8_MAX + 1]; 2082 2083 if (tp != NULL) { 2084 /* 2085 * Determine number of CPUs and keep track of "final" APIC ID 2086 * for each CPU by walking through ACPI MADT processor list 2087 */ 2088 end = (struct madt_processor *)(tp->hdr.len + (uintptr_t)tp); 2089 cpu = tp->list; 2090 while (cpu < end) { 2091 if (cpu->type == MADT_PROCESSOR) { 2092 if (cpu->flags & 1) { 2093 if (cpu_count < UINT8_MAX) 2094 cpu_apicid_array[cpu_count] = 2095 cpu->apic_id; 2096 cpu_count++; 2097 } 2098 } 2099 2100 cpu = (struct madt_processor *) 2101 (cpu->len + (uintptr_t)cpu); 2102 } 2103 2104 /* 2105 * Make boot property for array of "final" APIC IDs for each 2106 * CPU 2107 */ 2108 bsetprop(BP_CPU_APICID_ARRAY, strlen(BP_CPU_APICID_ARRAY), 2109 cpu_apicid_array, cpu_count * sizeof (uint8_t)); 2110 } 2111 2112 /* 2113 * User-set boot-ncpus overrides firmware count 2114 */ 2115 if (do_bsys_getproplen(NULL, "boot-ncpus") >= 0) 2116 return; 2117 2118 /* 2119 * Set boot property for boot-ncpus to number of CPUs given in MADT 2120 * if user hasn't set the property already 2121 */ 2122 if (tp != NULL) 2123 bsetpropsi("boot-ncpus", cpu_count); 2124 } 2125 2126 static void 2127 process_srat(struct srat *tp) 2128 { 2129 struct srat_item *item, *end; 2130 int i; 2131 int proc_num, mem_num; 2132 #pragma pack(1) 2133 struct { 2134 uint32_t domain; 2135 uint32_t apic_id; 2136 uint32_t sapic_id; 2137 } processor; 2138 struct { 2139 uint32_t domain; 2140 uint32_t x2apic_id; 2141 } x2apic; 2142 struct { 2143 uint32_t domain; 2144 uint64_t addr; 2145 uint64_t length; 2146 uint32_t flags; 2147 } memory; 2148 #pragma pack() 2149 char prop_name[30]; 2150 2151 if (tp == NULL) 2152 return; 2153 2154 proc_num = mem_num = 0; 2155 end = (struct srat_item *)(tp->hdr.len + (uintptr_t)tp); 2156 item = tp->list; 2157 while (item < end) { 2158 switch (item->type) { 2159 case SRAT_PROCESSOR: 2160 if (!(item->i.p.flags & SRAT_ENABLED)) 2161 break; 2162 processor.domain = item->i.p.domain1; 2163 for (i = 0; i < 3; i++) 2164 processor.domain += 2165 item->i.p.domain2[i] << ((i + 1) * 8); 2166 processor.apic_id = item->i.p.apic_id; 2167 processor.sapic_id = item->i.p.local_sapic_eid; 2168 (void) snprintf(prop_name, 30, "acpi-srat-processor-%d", 2169 proc_num); 2170 bsetprop(prop_name, strlen(prop_name), &processor, 2171 sizeof (processor)); 2172 proc_num++; 2173 break; 2174 case SRAT_MEMORY: 2175 if (!(item->i.m.flags & SRAT_ENABLED)) 2176 break; 2177 memory.domain = item->i.m.domain; 2178 memory.addr = item->i.m.base_addr; 2179 memory.length = item->i.m.len; 2180 memory.flags = item->i.m.flags; 2181 (void) snprintf(prop_name, 30, "acpi-srat-memory-%d", 2182 mem_num); 2183 bsetprop(prop_name, strlen(prop_name), &memory, 2184 sizeof (memory)); 2185 mem_num++; 2186 break; 2187 case SRAT_X2APIC: 2188 if (!(item->i.xp.flags & SRAT_ENABLED)) 2189 break; 2190 x2apic.domain = item->i.xp.domain; 2191 x2apic.x2apic_id = item->i.xp.x2apic_id; 2192 (void) snprintf(prop_name, 30, "acpi-srat-processor-%d", 2193 proc_num); 2194 bsetprop(prop_name, strlen(prop_name), &x2apic, 2195 sizeof (x2apic)); 2196 proc_num++; 2197 break; 2198 } 2199 2200 item = (struct srat_item *) 2201 (item->len + (caddr_t)item); 2202 } 2203 } 2204 2205 static void 2206 process_slit(struct slit *tp) 2207 { 2208 2209 /* 2210 * Check the number of localities; if it's too huge, we just 2211 * return and locality enumeration code will handle this later, 2212 * if possible. 2213 * 2214 * Note that the size of the table is the square of the 2215 * number of localities; if the number of localities exceeds 2216 * UINT16_MAX, the table size may overflow an int when being 2217 * passed to bsetprop() below. 2218 */ 2219 if (tp->number >= SLIT_LOCALITIES_MAX) 2220 return; 2221 2222 bsetprop(SLIT_NUM_PROPNAME, strlen(SLIT_NUM_PROPNAME), &tp->number, 2223 sizeof (tp->number)); 2224 bsetprop(SLIT_PROPNAME, strlen(SLIT_PROPNAME), &tp->entry, 2225 tp->number * tp->number); 2226 } 2227 2228 static void 2229 process_dmar(struct dmar *tp) 2230 { 2231 bsetprop(DMAR_TABLE_PROPNAME, strlen(DMAR_TABLE_PROPNAME), 2232 tp, tp->hdr.len); 2233 } 2234 2235 #else /* __xpv */ 2236 static void 2237 enumerate_xen_cpus() 2238 { 2239 processorid_t id, max_id; 2240 2241 /* 2242 * User-set boot-ncpus overrides enumeration 2243 */ 2244 if (do_bsys_getproplen(NULL, "boot-ncpus") >= 0) 2245 return; 2246 2247 /* 2248 * Probe every possible virtual CPU id and remember the 2249 * highest id present; the count of CPUs is one greater 2250 * than this. This tacitly assumes at least cpu 0 is present. 2251 */ 2252 max_id = 0; 2253 for (id = 0; id < MAX_VIRT_CPUS; id++) 2254 if (HYPERVISOR_vcpu_op(VCPUOP_is_up, id, NULL) == 0) 2255 max_id = id; 2256 2257 bsetpropsi("boot-ncpus", max_id+1); 2258 2259 } 2260 #endif /* __xpv */ 2261 2262 static void 2263 build_firmware_properties(void) 2264 { 2265 struct table_header *tp = NULL; 2266 2267 #ifndef __xpv 2268 if ((tp = find_fw_table("APIC")) != NULL) 2269 process_madt((struct madt *)tp); 2270 2271 if ((srat_ptr = (struct srat *)find_fw_table("SRAT")) != NULL) 2272 process_srat(srat_ptr); 2273 2274 if (slit_ptr = (struct slit *)find_fw_table("SLIT")) 2275 process_slit(slit_ptr); 2276 2277 if (tp = find_fw_table("DMAR")) 2278 process_dmar((struct dmar *)tp); 2279 tp = find_fw_table("MCFG"); 2280 #else /* __xpv */ 2281 enumerate_xen_cpus(); 2282 if (DOMAIN_IS_INITDOMAIN(xen_info)) 2283 tp = find_fw_table("MCFG"); 2284 #endif /* __xpv */ 2285 if (tp != NULL) 2286 process_mcfg((struct mcfg *)tp); 2287 } 2288 2289 /* 2290 * fake up a boot property for deferred early console output 2291 * this is used by both graphical boot and the (developer only) 2292 * USB serial console 2293 */ 2294 void * 2295 defcons_init(size_t size) 2296 { 2297 static char *p = NULL; 2298 2299 p = do_bsys_alloc(NULL, NULL, size, MMU_PAGESIZE); 2300 *p = 0; 2301 bsetprop("deferred-console-buf", strlen("deferred-console-buf") + 1, 2302 &p, sizeof (p)); 2303 return (p); 2304 } 2305 2306 /*ARGSUSED*/ 2307 int 2308 boot_compinfo(int fd, struct compinfo *cbp) 2309 { 2310 cbp->iscmp = 0; 2311 cbp->blksize = MAXBSIZE; 2312 return (0); 2313 } 2314 2315 #define BP_MAX_STRLEN 32 2316 2317 /* 2318 * Get value for given boot property 2319 */ 2320 int 2321 bootprop_getval(const char *prop_name, u_longlong_t *prop_value) 2322 { 2323 int boot_prop_len; 2324 char str[BP_MAX_STRLEN]; 2325 u_longlong_t value; 2326 2327 boot_prop_len = BOP_GETPROPLEN(bootops, prop_name); 2328 if (boot_prop_len < 0 || boot_prop_len > sizeof (str) || 2329 BOP_GETPROP(bootops, prop_name, str) < 0 || 2330 kobj_getvalue(str, &value) == -1) 2331 return (-1); 2332 2333 if (prop_value) 2334 *prop_value = value; 2335 2336 return (0); 2337 } 2338