1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2009 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 27 /* 28 * This file contains the functionality that mimics the boot operations 29 * on SPARC systems or the old boot.bin/multiboot programs on x86 systems. 30 * The x86 kernel now does everything on its own. 31 */ 32 33 #include <sys/types.h> 34 #include <sys/bootconf.h> 35 #include <sys/bootsvcs.h> 36 #include <sys/bootinfo.h> 37 #include <sys/multiboot.h> 38 #include <sys/bootvfs.h> 39 #include <sys/bootprops.h> 40 #include <sys/varargs.h> 41 #include <sys/param.h> 42 #include <sys/machparam.h> 43 #include <sys/archsystm.h> 44 #include <sys/boot_console.h> 45 #include <sys/cmn_err.h> 46 #include <sys/systm.h> 47 #include <sys/promif.h> 48 #include <sys/archsystm.h> 49 #include <sys/x86_archext.h> 50 #include <sys/kobj.h> 51 #include <sys/privregs.h> 52 #include <sys/sysmacros.h> 53 #include <sys/ctype.h> 54 #include <sys/fastboot.h> 55 #ifdef __xpv 56 #include <sys/hypervisor.h> 57 #include <net/if.h> 58 #endif 59 #include <vm/kboot_mmu.h> 60 #include <vm/hat_pte.h> 61 #include <sys/dmar_acpi.h> 62 #include <sys/kobj.h> 63 #include <sys/kobj_lex.h> 64 #include "acpi_fw.h" 65 66 static int have_console = 0; /* set once primitive console is initialized */ 67 static char *boot_args = ""; 68 69 /* 70 * Debugging macros 71 */ 72 static uint_t kbm_debug = 0; 73 #define DBG_MSG(s) { if (kbm_debug) bop_printf(NULL, "%s", s); } 74 #define DBG(x) { if (kbm_debug) \ 75 bop_printf(NULL, "%s is %" PRIx64 "\n", #x, (uint64_t)(x)); \ 76 } 77 78 #define PUT_STRING(s) { \ 79 char *cp; \ 80 for (cp = (s); *cp; ++cp) \ 81 bcons_putchar(*cp); \ 82 } 83 84 struct xboot_info *xbootp; /* boot info from "glue" code in low memory */ 85 bootops_t bootop; /* simple bootops we'll pass on to kernel */ 86 struct bsys_mem bm; 87 88 static uintptr_t next_virt; /* next available virtual address */ 89 static paddr_t next_phys; /* next available physical address from dboot */ 90 static paddr_t high_phys = -(paddr_t)1; /* last used physical address */ 91 92 /* 93 * buffer for vsnprintf for console I/O 94 */ 95 #define BUFFERSIZE 256 96 static char buffer[BUFFERSIZE]; 97 /* 98 * stuff to store/report/manipulate boot property settings. 99 */ 100 typedef struct bootprop { 101 struct bootprop *bp_next; 102 char *bp_name; 103 uint_t bp_vlen; 104 char *bp_value; 105 } bootprop_t; 106 107 static bootprop_t *bprops = NULL; 108 static char *curr_page = NULL; /* ptr to avail bprop memory */ 109 static int curr_space = 0; /* amount of memory at curr_page */ 110 111 #ifdef __xpv 112 start_info_t *xen_info; 113 shared_info_t *HYPERVISOR_shared_info; 114 #endif 115 116 /* 117 * some allocator statistics 118 */ 119 static ulong_t total_bop_alloc_scratch = 0; 120 static ulong_t total_bop_alloc_kernel = 0; 121 122 static void build_firmware_properties(void); 123 124 static int early_allocation = 1; 125 126 #ifdef __xpv 127 int fastreboot_capable = 0; 128 int force_fastreboot = 0; 129 int post_fastreboot = 0; 130 #else 131 int fastreboot_capable = 1; 132 int force_fastreboot = 0; 133 int post_fastreboot = 0; 134 #endif 135 136 /* 137 * Information saved from current boot for fast reboot. 138 * If the information size exceeds what we have allocated, fast reboot 139 * will not be supported. 140 */ 141 multiboot_info_t saved_mbi; 142 mb_memory_map_t saved_mmap[FASTBOOT_SAVED_MMAP_COUNT]; 143 struct sol_netinfo saved_drives[FASTBOOT_SAVED_DRIVES_COUNT]; 144 char saved_cmdline[FASTBOOT_SAVED_CMDLINE_LEN]; 145 int saved_cmdline_len = 0; 146 147 /* 148 * Pointers to where System Resource Affinity Table (SRAT) and 149 * System Locality Information Table (SLIT) are mapped into virtual memory 150 */ 151 struct srat *srat_ptr = NULL; 152 struct slit *slit_ptr = NULL; 153 154 155 /* 156 * Allocate aligned physical memory at boot time. This allocator allocates 157 * from the highest possible addresses. This avoids exhausting memory that 158 * would be useful for DMA buffers. 159 */ 160 paddr_t 161 do_bop_phys_alloc(uint64_t size, uint64_t align) 162 { 163 paddr_t pa = 0; 164 paddr_t start; 165 paddr_t end; 166 struct memlist *ml = (struct memlist *)xbootp->bi_phys_install; 167 168 /* 169 * Be careful if high memory usage is limited in startup.c 170 * Since there are holes in the low part of the physical address 171 * space we can treat physmem as a pfn (not just a pgcnt) and 172 * get a conservative upper limit. 173 */ 174 if (physmem != 0 && high_phys > pfn_to_pa(physmem)) 175 high_phys = pfn_to_pa(physmem); 176 177 /* 178 * find the lowest or highest available memory in physinstalled 179 * On 32 bit avoid physmem above 4Gig if PAE isn't enabled 180 */ 181 #if defined(__i386) 182 if (xbootp->bi_use_pae == 0 && high_phys > FOUR_GIG) 183 high_phys = FOUR_GIG; 184 #endif 185 186 /* 187 * find the highest available memory in physinstalled 188 */ 189 size = P2ROUNDUP(size, align); 190 for (; ml; ml = ml->next) { 191 start = P2ROUNDUP(ml->address, align); 192 end = P2ALIGN(ml->address + ml->size, align); 193 if (start < next_phys) 194 start = P2ROUNDUP(next_phys, align); 195 if (end > high_phys) 196 end = P2ALIGN(high_phys, align); 197 198 if (end <= start) 199 continue; 200 if (end - start < size) 201 continue; 202 203 /* 204 * Early allocations need to use low memory, since 205 * physmem might be further limited by bootenv.rc 206 */ 207 if (early_allocation) { 208 if (pa == 0 || start < pa) 209 pa = start; 210 } else { 211 if (end - size > pa) 212 pa = end - size; 213 } 214 } 215 if (pa != 0) { 216 if (early_allocation) 217 next_phys = pa + size; 218 else 219 high_phys = pa; 220 return (pa); 221 } 222 bop_panic("do_bop_phys_alloc(0x%" PRIx64 ", 0x%" PRIx64 223 ") Out of memory\n", size, align); 224 /*NOTREACHED*/ 225 } 226 227 static uintptr_t 228 alloc_vaddr(size_t size, paddr_t align) 229 { 230 uintptr_t rv; 231 232 next_virt = P2ROUNDUP(next_virt, (uintptr_t)align); 233 rv = (uintptr_t)next_virt; 234 next_virt += size; 235 return (rv); 236 } 237 238 /* 239 * Allocate virtual memory. The size is always rounded up to a multiple 240 * of base pagesize. 241 */ 242 243 /*ARGSUSED*/ 244 static caddr_t 245 do_bsys_alloc(bootops_t *bop, caddr_t virthint, size_t size, int align) 246 { 247 paddr_t a = align; /* same type as pa for masking */ 248 uint_t pgsize; 249 paddr_t pa; 250 uintptr_t va; 251 ssize_t s; /* the aligned size */ 252 uint_t level; 253 uint_t is_kernel = (virthint != 0); 254 255 if (a < MMU_PAGESIZE) 256 a = MMU_PAGESIZE; 257 else if (!ISP2(a)) 258 prom_panic("do_bsys_alloc() incorrect alignment"); 259 size = P2ROUNDUP(size, MMU_PAGESIZE); 260 261 /* 262 * Use the next aligned virtual address if we weren't given one. 263 */ 264 if (virthint == NULL) { 265 virthint = (caddr_t)alloc_vaddr(size, a); 266 total_bop_alloc_scratch += size; 267 } else { 268 total_bop_alloc_kernel += size; 269 } 270 271 /* 272 * allocate the physical memory 273 */ 274 pa = do_bop_phys_alloc(size, a); 275 276 /* 277 * Add the mappings to the page tables, try large pages first. 278 */ 279 va = (uintptr_t)virthint; 280 s = size; 281 level = 1; 282 pgsize = xbootp->bi_use_pae ? TWO_MEG : FOUR_MEG; 283 if (xbootp->bi_use_largepage && a == pgsize) { 284 while (IS_P2ALIGNED(pa, pgsize) && IS_P2ALIGNED(va, pgsize) && 285 s >= pgsize) { 286 kbm_map(va, pa, level, is_kernel); 287 va += pgsize; 288 pa += pgsize; 289 s -= pgsize; 290 } 291 } 292 293 /* 294 * Map remaining pages use small mappings 295 */ 296 level = 0; 297 pgsize = MMU_PAGESIZE; 298 while (s > 0) { 299 kbm_map(va, pa, level, is_kernel); 300 va += pgsize; 301 pa += pgsize; 302 s -= pgsize; 303 } 304 return (virthint); 305 } 306 307 /* 308 * Free virtual memory - we'll just ignore these. 309 */ 310 /*ARGSUSED*/ 311 static void 312 do_bsys_free(bootops_t *bop, caddr_t virt, size_t size) 313 { 314 bop_printf(NULL, "do_bsys_free(virt=0x%p, size=0x%lx) ignored\n", 315 (void *)virt, size); 316 } 317 318 /* 319 * Old interface 320 */ 321 /*ARGSUSED*/ 322 static caddr_t 323 do_bsys_ealloc( 324 bootops_t *bop, 325 caddr_t virthint, 326 size_t size, 327 int align, 328 int flags) 329 { 330 prom_panic("unsupported call to BOP_EALLOC()\n"); 331 return (0); 332 } 333 334 335 static void 336 bsetprop(char *name, int nlen, void *value, int vlen) 337 { 338 uint_t size; 339 uint_t need_size; 340 bootprop_t *b; 341 342 /* 343 * align the size to 16 byte boundary 344 */ 345 size = sizeof (bootprop_t) + nlen + 1 + vlen; 346 size = (size + 0xf) & ~0xf; 347 if (size > curr_space) { 348 need_size = (size + (MMU_PAGEOFFSET)) & MMU_PAGEMASK; 349 curr_page = do_bsys_alloc(NULL, 0, need_size, MMU_PAGESIZE); 350 curr_space = need_size; 351 } 352 353 /* 354 * use a bootprop_t at curr_page and link into list 355 */ 356 b = (bootprop_t *)curr_page; 357 curr_page += sizeof (bootprop_t); 358 curr_space -= sizeof (bootprop_t); 359 b->bp_next = bprops; 360 bprops = b; 361 362 /* 363 * follow by name and ending zero byte 364 */ 365 b->bp_name = curr_page; 366 bcopy(name, curr_page, nlen); 367 curr_page += nlen; 368 *curr_page++ = 0; 369 curr_space -= nlen + 1; 370 371 /* 372 * copy in value, but no ending zero byte 373 */ 374 b->bp_value = curr_page; 375 b->bp_vlen = vlen; 376 if (vlen > 0) { 377 bcopy(value, curr_page, vlen); 378 curr_page += vlen; 379 curr_space -= vlen; 380 } 381 382 /* 383 * align new values of curr_page, curr_space 384 */ 385 while (curr_space & 0xf) { 386 ++curr_page; 387 --curr_space; 388 } 389 } 390 391 static void 392 bsetprops(char *name, char *value) 393 { 394 bsetprop(name, strlen(name), value, strlen(value) + 1); 395 } 396 397 static void 398 bsetprop64(char *name, uint64_t value) 399 { 400 bsetprop(name, strlen(name), (void *)&value, sizeof (value)); 401 } 402 403 static void 404 bsetpropsi(char *name, int value) 405 { 406 char prop_val[32]; 407 408 (void) snprintf(prop_val, sizeof (prop_val), "%d", value); 409 bsetprops(name, prop_val); 410 } 411 412 /* 413 * to find the size of the buffer to allocate 414 */ 415 /*ARGSUSED*/ 416 int 417 do_bsys_getproplen(bootops_t *bop, const char *name) 418 { 419 bootprop_t *b; 420 421 for (b = bprops; b; b = b->bp_next) { 422 if (strcmp(name, b->bp_name) != 0) 423 continue; 424 return (b->bp_vlen); 425 } 426 return (-1); 427 } 428 429 /* 430 * get the value associated with this name 431 */ 432 /*ARGSUSED*/ 433 int 434 do_bsys_getprop(bootops_t *bop, const char *name, void *value) 435 { 436 bootprop_t *b; 437 438 for (b = bprops; b; b = b->bp_next) { 439 if (strcmp(name, b->bp_name) != 0) 440 continue; 441 bcopy(b->bp_value, value, b->bp_vlen); 442 return (0); 443 } 444 return (-1); 445 } 446 447 /* 448 * get the name of the next property in succession from the standalone 449 */ 450 /*ARGSUSED*/ 451 static char * 452 do_bsys_nextprop(bootops_t *bop, char *name) 453 { 454 bootprop_t *b; 455 456 /* 457 * A null name is a special signal for the 1st boot property 458 */ 459 if (name == NULL || strlen(name) == 0) { 460 if (bprops == NULL) 461 return (NULL); 462 return (bprops->bp_name); 463 } 464 465 for (b = bprops; b; b = b->bp_next) { 466 if (name != b->bp_name) 467 continue; 468 b = b->bp_next; 469 if (b == NULL) 470 return (NULL); 471 return (b->bp_name); 472 } 473 return (NULL); 474 } 475 476 /* 477 * Parse numeric value from a string. Understands decimal, hex, octal, - and ~ 478 */ 479 static int 480 parse_value(char *p, uint64_t *retval) 481 { 482 int adjust = 0; 483 uint64_t tmp = 0; 484 int digit; 485 int radix = 10; 486 487 *retval = 0; 488 if (*p == '-' || *p == '~') 489 adjust = *p++; 490 491 if (*p == '0') { 492 ++p; 493 if (*p == 0) 494 return (0); 495 if (*p == 'x' || *p == 'X') { 496 radix = 16; 497 ++p; 498 } else { 499 radix = 8; 500 ++p; 501 } 502 } 503 while (*p) { 504 if ('0' <= *p && *p <= '9') 505 digit = *p - '0'; 506 else if ('a' <= *p && *p <= 'f') 507 digit = 10 + *p - 'a'; 508 else if ('A' <= *p && *p <= 'F') 509 digit = 10 + *p - 'A'; 510 else 511 return (-1); 512 if (digit >= radix) 513 return (-1); 514 tmp = tmp * radix + digit; 515 ++p; 516 } 517 if (adjust == '-') 518 tmp = -tmp; 519 else if (adjust == '~') 520 tmp = ~tmp; 521 *retval = tmp; 522 return (0); 523 } 524 525 /* 526 * 2nd part of building the table of boot properties. This includes: 527 * - values from /boot/solaris/bootenv.rc (ie. eeprom(1m) values) 528 * 529 * lines look like one of: 530 * ^$ 531 * ^# comment till end of line 532 * setprop name 'value' 533 * setprop name value 534 * setprop name "value" 535 * 536 * we do single character I/O since this is really just looking at memory 537 */ 538 void 539 boot_prop_finish(void) 540 { 541 int fd; 542 char *line; 543 int c; 544 int bytes_read; 545 char *name; 546 int n_len; 547 char *value; 548 int v_len; 549 char *inputdev; /* these override the command line if serial ports */ 550 char *outputdev; 551 char *consoledev; 552 uint64_t lvalue; 553 int use_xencons = 0; 554 555 #ifdef __xpv 556 if (!DOMAIN_IS_INITDOMAIN(xen_info)) 557 use_xencons = 1; 558 #endif /* __xpv */ 559 560 DBG_MSG("Opening /boot/solaris/bootenv.rc\n"); 561 fd = BRD_OPEN(bfs_ops, "/boot/solaris/bootenv.rc", 0); 562 DBG(fd); 563 564 line = do_bsys_alloc(NULL, NULL, MMU_PAGESIZE, MMU_PAGESIZE); 565 while (fd >= 0) { 566 567 /* 568 * get a line 569 */ 570 for (c = 0; ; ++c) { 571 bytes_read = BRD_READ(bfs_ops, fd, line + c, 1); 572 if (bytes_read == 0) { 573 if (c == 0) 574 goto done; 575 break; 576 } 577 if (line[c] == '\n') 578 break; 579 } 580 line[c] = 0; 581 582 /* 583 * ignore comment lines 584 */ 585 c = 0; 586 while (ISSPACE(line[c])) 587 ++c; 588 if (line[c] == '#' || line[c] == 0) 589 continue; 590 591 /* 592 * must have "setprop " or "setprop\t" 593 */ 594 if (strncmp(line + c, "setprop ", 8) != 0 && 595 strncmp(line + c, "setprop\t", 8) != 0) 596 continue; 597 c += 8; 598 while (ISSPACE(line[c])) 599 ++c; 600 if (line[c] == 0) 601 continue; 602 603 /* 604 * gather up the property name 605 */ 606 name = line + c; 607 n_len = 0; 608 while (line[c] && !ISSPACE(line[c])) 609 ++n_len, ++c; 610 611 /* 612 * gather up the value, if any 613 */ 614 value = ""; 615 v_len = 0; 616 while (ISSPACE(line[c])) 617 ++c; 618 if (line[c] != 0) { 619 value = line + c; 620 while (line[c] && !ISSPACE(line[c])) 621 ++v_len, ++c; 622 } 623 624 if (v_len >= 2 && value[0] == value[v_len - 1] && 625 (value[0] == '\'' || value[0] == '"')) { 626 ++value; 627 v_len -= 2; 628 } 629 name[n_len] = 0; 630 if (v_len > 0) 631 value[v_len] = 0; 632 else 633 continue; 634 635 /* 636 * ignore "boot-file" property, it's now meaningless 637 */ 638 if (strcmp(name, "boot-file") == 0) 639 continue; 640 if (strcmp(name, "boot-args") == 0 && 641 strlen(boot_args) > 0) 642 continue; 643 644 /* 645 * If a property was explicitly set on the command line 646 * it will override a setting in bootenv.rc 647 */ 648 if (do_bsys_getproplen(NULL, name) > 0) 649 continue; 650 651 bsetprop(name, n_len, value, v_len + 1); 652 } 653 done: 654 if (fd >= 0) 655 BRD_CLOSE(bfs_ops, fd); 656 657 /* 658 * Check if we have to limit the boot time allocator 659 */ 660 if (do_bsys_getproplen(NULL, "physmem") != -1 && 661 do_bsys_getprop(NULL, "physmem", line) >= 0 && 662 parse_value(line, &lvalue) != -1) { 663 if (0 < lvalue && (lvalue < physmem || physmem == 0)) { 664 physmem = (pgcnt_t)lvalue; 665 DBG(physmem); 666 } 667 } 668 early_allocation = 0; 669 670 /* 671 * check to see if we have to override the default value of the console 672 */ 673 if (!use_xencons) { 674 inputdev = line; 675 v_len = do_bsys_getproplen(NULL, "input-device"); 676 if (v_len > 0) 677 (void) do_bsys_getprop(NULL, "input-device", inputdev); 678 else 679 v_len = 0; 680 inputdev[v_len] = 0; 681 682 outputdev = inputdev + v_len + 1; 683 v_len = do_bsys_getproplen(NULL, "output-device"); 684 if (v_len > 0) 685 (void) do_bsys_getprop(NULL, "output-device", 686 outputdev); 687 else 688 v_len = 0; 689 outputdev[v_len] = 0; 690 691 consoledev = outputdev + v_len + 1; 692 v_len = do_bsys_getproplen(NULL, "console"); 693 if (v_len > 0) 694 (void) do_bsys_getprop(NULL, "console", consoledev); 695 else 696 v_len = 0; 697 consoledev[v_len] = 0; 698 bcons_init2(inputdev, outputdev, consoledev); 699 } else { 700 /* 701 * Ensure console property exists 702 * If not create it as "hypervisor" 703 */ 704 v_len = do_bsys_getproplen(NULL, "console"); 705 if (v_len < 0) 706 bsetprops("console", "hypervisor"); 707 inputdev = outputdev = consoledev = "hypervisor"; 708 bcons_init2(inputdev, outputdev, consoledev); 709 } 710 711 if (strstr((char *)xbootp->bi_cmdline, "prom_debug") || kbm_debug) { 712 value = line; 713 bop_printf(NULL, "\nBoot properties:\n"); 714 name = ""; 715 while ((name = do_bsys_nextprop(NULL, name)) != NULL) { 716 bop_printf(NULL, "\t0x%p %s = ", (void *)name, name); 717 (void) do_bsys_getprop(NULL, name, value); 718 v_len = do_bsys_getproplen(NULL, name); 719 bop_printf(NULL, "len=%d ", v_len); 720 value[v_len] = 0; 721 bop_printf(NULL, "%s\n", value); 722 } 723 } 724 } 725 726 /* 727 * print formatted output 728 */ 729 /*PRINTFLIKE2*/ 730 /*ARGSUSED*/ 731 void 732 bop_printf(bootops_t *bop, const char *fmt, ...) 733 { 734 va_list ap; 735 736 if (have_console == 0) 737 return; 738 739 va_start(ap, fmt); 740 (void) vsnprintf(buffer, BUFFERSIZE, fmt, ap); 741 va_end(ap); 742 PUT_STRING(buffer); 743 } 744 745 /* 746 * Another panic() variant; this one can be used even earlier during boot than 747 * prom_panic(). 748 */ 749 /*PRINTFLIKE1*/ 750 void 751 bop_panic(const char *fmt, ...) 752 { 753 va_list ap; 754 755 va_start(ap, fmt); 756 bop_printf(NULL, fmt, ap); 757 va_end(ap); 758 759 bop_printf(NULL, "\nPress any key to reboot.\n"); 760 (void) bcons_getchar(); 761 bop_printf(NULL, "Resetting...\n"); 762 pc_reset(); 763 } 764 765 /* 766 * Do a real mode interrupt BIOS call 767 */ 768 typedef struct bios_regs { 769 unsigned short ax, bx, cx, dx, si, di, bp, es, ds; 770 } bios_regs_t; 771 typedef int (*bios_func_t)(int, bios_regs_t *); 772 773 /*ARGSUSED*/ 774 static void 775 do_bsys_doint(bootops_t *bop, int intnum, struct bop_regs *rp) 776 { 777 #if defined(__xpv) 778 prom_panic("unsupported call to BOP_DOINT()\n"); 779 #else /* __xpv */ 780 static int firsttime = 1; 781 bios_func_t bios_func = (bios_func_t)(void *)(uintptr_t)0x5000; 782 bios_regs_t br; 783 784 /* 785 * The first time we do this, we have to copy the pre-packaged 786 * low memory bios call code image into place. 787 */ 788 if (firsttime) { 789 extern char bios_image[]; 790 extern uint32_t bios_size; 791 792 bcopy(bios_image, (void *)bios_func, bios_size); 793 firsttime = 0; 794 } 795 796 br.ax = rp->eax.word.ax; 797 br.bx = rp->ebx.word.bx; 798 br.cx = rp->ecx.word.cx; 799 br.dx = rp->edx.word.dx; 800 br.bp = rp->ebp.word.bp; 801 br.si = rp->esi.word.si; 802 br.di = rp->edi.word.di; 803 br.ds = rp->ds; 804 br.es = rp->es; 805 806 DBG_MSG("Doing BIOS call..."); 807 DBG(br.ax); 808 DBG(br.bx); 809 DBG(br.dx); 810 rp->eflags = bios_func(intnum, &br); 811 DBG_MSG("done\n"); 812 813 rp->eax.word.ax = br.ax; 814 rp->ebx.word.bx = br.bx; 815 rp->ecx.word.cx = br.cx; 816 rp->edx.word.dx = br.dx; 817 rp->ebp.word.bp = br.bp; 818 rp->esi.word.si = br.si; 819 rp->edi.word.di = br.di; 820 rp->ds = br.ds; 821 rp->es = br.es; 822 #endif /* __xpv */ 823 } 824 825 static struct boot_syscalls bop_sysp = { 826 bcons_getchar, 827 bcons_putchar, 828 bcons_ischar, 829 }; 830 831 static char *whoami; 832 833 #define BUFLEN 64 834 835 #if defined(__xpv) 836 837 static char namebuf[32]; 838 839 static void 840 xen_parse_props(char *s, char *prop_map[], int n_prop) 841 { 842 char **prop_name = prop_map; 843 char *cp = s, *scp; 844 845 do { 846 scp = cp; 847 while ((*cp != NULL) && (*cp != ':')) 848 cp++; 849 850 if ((scp != cp) && (*prop_name != NULL)) { 851 *cp = NULL; 852 bsetprops(*prop_name, scp); 853 } 854 855 cp++; 856 prop_name++; 857 n_prop--; 858 } while (n_prop > 0); 859 } 860 861 #define VBDPATHLEN 64 862 863 /* 864 * parse the 'xpv-root' property to create properties used by 865 * ufs_mountroot. 866 */ 867 static void 868 xen_vbdroot_props(char *s) 869 { 870 char vbdpath[VBDPATHLEN] = "/xpvd/xdf@"; 871 const char lnamefix[] = "/dev/dsk/c0d"; 872 char *pnp; 873 char *prop_p; 874 char mi; 875 short minor; 876 long addr = 0; 877 878 pnp = vbdpath + strlen(vbdpath); 879 prop_p = s + strlen(lnamefix); 880 while ((*prop_p != '\0') && (*prop_p != 's') && (*prop_p != 'p')) 881 addr = addr * 10 + *prop_p++ - '0'; 882 (void) snprintf(pnp, VBDPATHLEN, "%lx", addr); 883 pnp = vbdpath + strlen(vbdpath); 884 if (*prop_p == 's') 885 mi = 'a'; 886 else if (*prop_p == 'p') 887 mi = 'q'; 888 else 889 ASSERT(0); /* shouldn't be here */ 890 prop_p++; 891 ASSERT(*prop_p != '\0'); 892 if (ISDIGIT(*prop_p)) { 893 minor = *prop_p - '0'; 894 prop_p++; 895 if (ISDIGIT(*prop_p)) { 896 minor = minor * 10 + *prop_p - '0'; 897 } 898 } else { 899 /* malformed root path, use 0 as default */ 900 minor = 0; 901 } 902 ASSERT(minor < 16); /* at most 16 partitions */ 903 mi += minor; 904 *pnp++ = ':'; 905 *pnp++ = mi; 906 *pnp++ = '\0'; 907 bsetprops("fstype", "ufs"); 908 bsetprops("bootpath", vbdpath); 909 910 DBG_MSG("VBD bootpath set to "); 911 DBG_MSG(vbdpath); 912 DBG_MSG("\n"); 913 } 914 915 /* 916 * parse the xpv-nfsroot property to create properties used by 917 * nfs_mountroot. 918 */ 919 static void 920 xen_nfsroot_props(char *s) 921 { 922 char *prop_map[] = { 923 BP_SERVER_IP, /* server IP address */ 924 BP_SERVER_NAME, /* server hostname */ 925 BP_SERVER_PATH, /* root path */ 926 }; 927 int n_prop = sizeof (prop_map) / sizeof (prop_map[0]); 928 929 bsetprop("fstype", 6, "nfs", 4); 930 931 xen_parse_props(s, prop_map, n_prop); 932 933 /* 934 * If a server name wasn't specified, use a default. 935 */ 936 if (do_bsys_getproplen(NULL, BP_SERVER_NAME) == -1) 937 bsetprops(BP_SERVER_NAME, "unknown"); 938 } 939 940 /* 941 * Extract our IP address, etc. from the "xpv-ip" property. 942 */ 943 static void 944 xen_ip_props(char *s) 945 { 946 char *prop_map[] = { 947 BP_HOST_IP, /* IP address */ 948 NULL, /* NFS server IP address (ignored in */ 949 /* favour of xpv-nfsroot) */ 950 BP_ROUTER_IP, /* IP gateway */ 951 BP_SUBNET_MASK, /* IP subnet mask */ 952 "xpv-hostname", /* hostname (ignored) */ 953 BP_NETWORK_INTERFACE, /* interface name */ 954 "xpv-hcp", /* host configuration protocol */ 955 }; 956 int n_prop = sizeof (prop_map) / sizeof (prop_map[0]); 957 char ifname[IFNAMSIZ]; 958 959 xen_parse_props(s, prop_map, n_prop); 960 961 /* 962 * A Linux dom0 administrator expects all interfaces to be 963 * called "ethX", which is not the case here. 964 * 965 * If the interface name specified is "eth0", presume that 966 * this is really intended to be "xnf0" (the first domU -> 967 * dom0 interface for this domain). 968 */ 969 if ((do_bsys_getprop(NULL, BP_NETWORK_INTERFACE, ifname) == 0) && 970 (strcmp("eth0", ifname) == 0)) { 971 bsetprops(BP_NETWORK_INTERFACE, "xnf0"); 972 bop_printf(NULL, 973 "network interface name 'eth0' replaced with 'xnf0'\n"); 974 } 975 } 976 977 #else /* __xpv */ 978 979 static void 980 setup_rarp_props(struct sol_netinfo *sip) 981 { 982 char buf[BUFLEN]; /* to hold ip/mac addrs */ 983 uint8_t *val; 984 985 val = (uint8_t *)&sip->sn_ciaddr; 986 (void) snprintf(buf, BUFLEN, "%d.%d.%d.%d", 987 val[0], val[1], val[2], val[3]); 988 bsetprops(BP_HOST_IP, buf); 989 990 val = (uint8_t *)&sip->sn_siaddr; 991 (void) snprintf(buf, BUFLEN, "%d.%d.%d.%d", 992 val[0], val[1], val[2], val[3]); 993 bsetprops(BP_SERVER_IP, buf); 994 995 if (sip->sn_giaddr != 0) { 996 val = (uint8_t *)&sip->sn_giaddr; 997 (void) snprintf(buf, BUFLEN, "%d.%d.%d.%d", 998 val[0], val[1], val[2], val[3]); 999 bsetprops(BP_ROUTER_IP, buf); 1000 } 1001 1002 if (sip->sn_netmask != 0) { 1003 val = (uint8_t *)&sip->sn_netmask; 1004 (void) snprintf(buf, BUFLEN, "%d.%d.%d.%d", 1005 val[0], val[1], val[2], val[3]); 1006 bsetprops(BP_SUBNET_MASK, buf); 1007 } 1008 1009 if (sip->sn_mactype != 4 || sip->sn_maclen != 6) { 1010 bop_printf(NULL, "unsupported mac type %d, mac len %d\n", 1011 sip->sn_mactype, sip->sn_maclen); 1012 } else { 1013 val = sip->sn_macaddr; 1014 (void) snprintf(buf, BUFLEN, "%x:%x:%x:%x:%x:%x", 1015 val[0], val[1], val[2], val[3], val[4], val[5]); 1016 bsetprops(BP_BOOT_MAC, buf); 1017 } 1018 } 1019 1020 #endif /* __xpv */ 1021 1022 /* 1023 * 1st pass at building the table of boot properties. This includes: 1024 * - values set on the command line: -B a=x,b=y,c=z .... 1025 * - known values we just compute (ie. from xbootp) 1026 * - values from /boot/solaris/bootenv.rc (ie. eeprom(1m) values) 1027 * 1028 * the grub command line looked like: 1029 * kernel boot-file [-B prop=value[,prop=value]...] [boot-args] 1030 * 1031 * whoami is the same as boot-file 1032 */ 1033 static void 1034 build_boot_properties(void) 1035 { 1036 char *name; 1037 int name_len; 1038 char *value; 1039 int value_len; 1040 struct boot_modules *bm; 1041 char *propbuf; 1042 int quoted = 0; 1043 int boot_arg_len; 1044 #ifndef __xpv 1045 static int stdout_val = 0; 1046 uchar_t boot_device; 1047 char str[3]; 1048 multiboot_info_t *mbi; 1049 int netboot; 1050 struct sol_netinfo *sip; 1051 #endif 1052 1053 /* 1054 * These have to be done first, so that kobj_mount_root() works 1055 */ 1056 DBG_MSG("Building boot properties\n"); 1057 propbuf = do_bsys_alloc(NULL, NULL, MMU_PAGESIZE, 0); 1058 DBG((uintptr_t)propbuf); 1059 if (xbootp->bi_module_cnt > 0) { 1060 bm = xbootp->bi_modules; 1061 bsetprop64("ramdisk_start", (uint64_t)(uintptr_t)bm->bm_addr); 1062 bsetprop64("ramdisk_end", (uint64_t)(uintptr_t)bm->bm_addr + 1063 bm->bm_size); 1064 } 1065 1066 DBG_MSG("Parsing command line for boot properties\n"); 1067 value = xbootp->bi_cmdline; 1068 1069 /* 1070 * allocate memory to collect boot_args into 1071 */ 1072 boot_arg_len = strlen(xbootp->bi_cmdline) + 1; 1073 boot_args = do_bsys_alloc(NULL, NULL, boot_arg_len, MMU_PAGESIZE); 1074 boot_args[0] = 0; 1075 boot_arg_len = 0; 1076 1077 #ifndef __xpv 1078 saved_cmdline_len = strlen(xbootp->bi_cmdline) + 1; 1079 if (saved_cmdline_len > FASTBOOT_SAVED_CMDLINE_LEN) { 1080 DBG(saved_cmdline_len); 1081 DBG_MSG("Command line too long: clearing fastreboot_capable\n"); 1082 fastreboot_capable = 0; 1083 } else { 1084 bcopy((void *)(xbootp->bi_cmdline), (void *)saved_cmdline, 1085 saved_cmdline_len); 1086 saved_cmdline[saved_cmdline_len - 1] = '\0'; 1087 } 1088 #endif 1089 1090 1091 #ifdef __xpv 1092 /* 1093 * Xen puts a lot of device information in front of the kernel name 1094 * let's grab them and make them boot properties. The first 1095 * string w/o an "=" in it will be the boot-file property. 1096 */ 1097 (void) strcpy(namebuf, "xpv-"); 1098 for (;;) { 1099 /* 1100 * get to next property 1101 */ 1102 while (ISSPACE(*value)) 1103 ++value; 1104 name = value; 1105 /* 1106 * look for an "=" 1107 */ 1108 while (*value && !ISSPACE(*value) && *value != '=') { 1109 value++; 1110 } 1111 if (*value != '=') { /* no "=" in the property */ 1112 value = name; 1113 break; 1114 } 1115 name_len = value - name; 1116 value_len = 0; 1117 /* 1118 * skip over the "=" 1119 */ 1120 value++; 1121 while (value[value_len] && !ISSPACE(value[value_len])) { 1122 ++value_len; 1123 } 1124 /* 1125 * build property name with "xpv-" prefix 1126 */ 1127 if (name_len + 4 > 32) { /* skip if name too long */ 1128 value += value_len; 1129 continue; 1130 } 1131 bcopy(name, &namebuf[4], name_len); 1132 name_len += 4; 1133 namebuf[name_len] = 0; 1134 bcopy(value, propbuf, value_len); 1135 propbuf[value_len] = 0; 1136 bsetprops(namebuf, propbuf); 1137 1138 /* 1139 * xpv-root is set to the logical disk name of the xen 1140 * VBD when booting from a disk-based filesystem. 1141 */ 1142 if (strcmp(namebuf, "xpv-root") == 0) 1143 xen_vbdroot_props(propbuf); 1144 /* 1145 * While we're here, if we have a "xpv-nfsroot" property 1146 * then we need to set "fstype" to "nfs" so we mount 1147 * our root from the nfs server. Also parse the xpv-nfsroot 1148 * property to create the properties that nfs_mountroot will 1149 * need to find the root and mount it. 1150 */ 1151 if (strcmp(namebuf, "xpv-nfsroot") == 0) 1152 xen_nfsroot_props(propbuf); 1153 1154 if (strcmp(namebuf, "xpv-ip") == 0) 1155 xen_ip_props(propbuf); 1156 value += value_len; 1157 } 1158 #endif 1159 1160 while (ISSPACE(*value)) 1161 ++value; 1162 /* 1163 * value now points at the boot-file 1164 */ 1165 value_len = 0; 1166 while (value[value_len] && !ISSPACE(value[value_len])) 1167 ++value_len; 1168 if (value_len > 0) { 1169 whoami = propbuf; 1170 bcopy(value, whoami, value_len); 1171 whoami[value_len] = 0; 1172 bsetprops("boot-file", whoami); 1173 /* 1174 * strip leading path stuff from whoami, so running from 1175 * PXE/miniroot makes sense. 1176 */ 1177 if (strstr(whoami, "/platform/") != NULL) 1178 whoami = strstr(whoami, "/platform/"); 1179 bsetprops("whoami", whoami); 1180 } 1181 1182 /* 1183 * Values forcibly set boot properties on the command line via -B. 1184 * Allow use of quotes in values. Other stuff goes on kernel 1185 * command line. 1186 */ 1187 name = value + value_len; 1188 while (*name != 0) { 1189 /* 1190 * anything not " -B" is copied to the command line 1191 */ 1192 if (!ISSPACE(name[0]) || name[1] != '-' || name[2] != 'B') { 1193 boot_args[boot_arg_len++] = *name; 1194 boot_args[boot_arg_len] = 0; 1195 ++name; 1196 continue; 1197 } 1198 1199 /* 1200 * skip the " -B" and following white space 1201 */ 1202 name += 3; 1203 while (ISSPACE(*name)) 1204 ++name; 1205 while (*name && !ISSPACE(*name)) { 1206 value = strstr(name, "="); 1207 if (value == NULL) 1208 break; 1209 name_len = value - name; 1210 ++value; 1211 value_len = 0; 1212 quoted = 0; 1213 for (; ; ++value_len) { 1214 if (!value[value_len]) 1215 break; 1216 1217 /* 1218 * is this value quoted? 1219 */ 1220 if (value_len == 0 && 1221 (value[0] == '\'' || value[0] == '"')) { 1222 quoted = value[0]; 1223 ++value_len; 1224 } 1225 1226 /* 1227 * In the quote accept any character, 1228 * but look for ending quote. 1229 */ 1230 if (quoted) { 1231 if (value[value_len] == quoted) 1232 quoted = 0; 1233 continue; 1234 } 1235 1236 /* 1237 * a comma or white space ends the value 1238 */ 1239 if (value[value_len] == ',' || 1240 ISSPACE(value[value_len])) 1241 break; 1242 } 1243 1244 if (value_len == 0) { 1245 bsetprop(name, name_len, "true", 5); 1246 } else { 1247 char *v = value; 1248 int l = value_len; 1249 if (v[0] == v[l - 1] && 1250 (v[0] == '\'' || v[0] == '"')) { 1251 ++v; 1252 l -= 2; 1253 } 1254 bcopy(v, propbuf, l); 1255 propbuf[l] = '\0'; 1256 bsetprop(name, name_len, propbuf, 1257 l + 1); 1258 } 1259 name = value + value_len; 1260 while (*name == ',') 1261 ++name; 1262 } 1263 } 1264 1265 /* 1266 * set boot-args property 1267 * 1275 name is bootargs, so set 1268 * that too 1269 */ 1270 bsetprops("boot-args", boot_args); 1271 bsetprops("bootargs", boot_args); 1272 1273 #ifndef __xpv 1274 /* 1275 * set the BIOS boot device from GRUB 1276 */ 1277 netboot = 0; 1278 mbi = xbootp->bi_mb_info; 1279 bcopy(mbi, &saved_mbi, sizeof (multiboot_info_t)); 1280 if (mbi->mmap_length > sizeof (saved_mmap)) { 1281 DBG_MSG("mbi->mmap_length too big: clearing " 1282 "fastreboot_capable\n"); 1283 fastreboot_capable = 0; 1284 } else { 1285 bcopy((void *)(uintptr_t)mbi->mmap_addr, (void *)saved_mmap, 1286 mbi->mmap_length); 1287 } 1288 1289 if (mbi->drives_length > sizeof (saved_drives)) { 1290 DBG(mbi->drives_length); 1291 DBG_MSG("mbi->drives_length too big: clearing " 1292 "fastreboot_capable\n"); 1293 fastreboot_capable = 0; 1294 } else { 1295 bcopy((void *)(uintptr_t)mbi->drives_addr, (void *)saved_drives, 1296 mbi->drives_length); 1297 } 1298 1299 if (mbi != NULL && mbi->flags & 0x2) { 1300 boot_device = mbi->boot_device >> 24; 1301 if (boot_device == 0x20) 1302 netboot++; 1303 str[0] = (boot_device >> 4) + '0'; 1304 str[1] = (boot_device & 0xf) + '0'; 1305 str[2] = 0; 1306 bsetprops("bios-boot-device", str); 1307 } else { 1308 netboot = 1; 1309 } 1310 1311 /* 1312 * In the netboot case, drives_info is overloaded with the dhcp ack. 1313 * This is not multiboot compliant and requires special pxegrub! 1314 */ 1315 if (netboot && mbi->drives_length != 0) { 1316 sip = (struct sol_netinfo *)(uintptr_t)mbi->drives_addr; 1317 if (sip->sn_infotype == SN_TYPE_BOOTP) 1318 bsetprop("bootp-response", sizeof ("bootp-response"), 1319 (void *)(uintptr_t)mbi->drives_addr, 1320 mbi->drives_length); 1321 else if (sip->sn_infotype == SN_TYPE_RARP) 1322 setup_rarp_props(sip); 1323 } 1324 bsetprop("stdout", strlen("stdout"), 1325 &stdout_val, sizeof (stdout_val)); 1326 #endif /* __xpv */ 1327 1328 /* 1329 * more conjured up values for made up things.... 1330 */ 1331 #if defined(__xpv) 1332 bsetprops("mfg-name", "i86xpv"); 1333 bsetprops("impl-arch-name", "i86xpv"); 1334 #else 1335 bsetprops("mfg-name", "i86pc"); 1336 bsetprops("impl-arch-name", "i86pc"); 1337 #endif 1338 1339 /* 1340 * Build firmware-provided system properties 1341 */ 1342 build_firmware_properties(); 1343 1344 /* 1345 * XXPV 1346 * 1347 * Find out what these are: 1348 * - cpuid_feature_ecx_include 1349 * - cpuid_feature_ecx_exclude 1350 * - cpuid_feature_edx_include 1351 * - cpuid_feature_edx_exclude 1352 * 1353 * Find out what these are in multiboot: 1354 * - netdev-path 1355 * - fstype 1356 */ 1357 } 1358 1359 #ifdef __xpv 1360 /* 1361 * Under the Hypervisor, memory usable for DMA may be scarce. One 1362 * very likely large pool of DMA friendly memory is occupied by 1363 * the boot_archive, as it was loaded by grub into low MFNs. 1364 * 1365 * Here we free up that memory by copying the boot archive to what are 1366 * likely higher MFN pages and then swapping the mfn/pfn mappings. 1367 */ 1368 #define PFN_2GIG 0x80000 1369 static void 1370 relocate_boot_archive(void) 1371 { 1372 mfn_t max_mfn = HYPERVISOR_memory_op(XENMEM_maximum_ram_page, NULL); 1373 struct boot_modules *bm = xbootp->bi_modules; 1374 uintptr_t va; 1375 pfn_t va_pfn; 1376 mfn_t va_mfn; 1377 caddr_t copy; 1378 pfn_t copy_pfn; 1379 mfn_t copy_mfn; 1380 size_t len; 1381 int slop; 1382 int total = 0; 1383 int relocated = 0; 1384 int mmu_update_return; 1385 mmu_update_t t[2]; 1386 x86pte_t pte; 1387 1388 /* 1389 * If all MFN's are below 2Gig, don't bother doing this. 1390 */ 1391 if (max_mfn < PFN_2GIG) 1392 return; 1393 if (xbootp->bi_module_cnt < 1) { 1394 DBG_MSG("no boot_archive!"); 1395 return; 1396 } 1397 1398 DBG_MSG("moving boot_archive to high MFN memory\n"); 1399 va = (uintptr_t)bm->bm_addr; 1400 len = bm->bm_size; 1401 slop = va & MMU_PAGEOFFSET; 1402 if (slop) { 1403 va += MMU_PAGESIZE - slop; 1404 len -= MMU_PAGESIZE - slop; 1405 } 1406 len = P2ALIGN(len, MMU_PAGESIZE); 1407 1408 /* 1409 * Go through all boot_archive pages, swapping any low MFN pages 1410 * with memory at next_phys. 1411 */ 1412 while (len != 0) { 1413 ++total; 1414 va_pfn = mmu_btop(va - ONE_GIG); 1415 va_mfn = mfn_list[va_pfn]; 1416 if (mfn_list[va_pfn] < PFN_2GIG) { 1417 copy = kbm_remap_window(next_phys, 1); 1418 bcopy((void *)va, copy, MMU_PAGESIZE); 1419 copy_pfn = mmu_btop(next_phys); 1420 copy_mfn = mfn_list[copy_pfn]; 1421 1422 pte = mfn_to_ma(copy_mfn) | PT_NOCONSIST | PT_VALID; 1423 if (HYPERVISOR_update_va_mapping(va, pte, 1424 UVMF_INVLPG | UVMF_LOCAL)) 1425 bop_panic("relocate_boot_archive(): " 1426 "HYPERVISOR_update_va_mapping() failed"); 1427 1428 mfn_list[va_pfn] = copy_mfn; 1429 mfn_list[copy_pfn] = va_mfn; 1430 1431 t[0].ptr = mfn_to_ma(copy_mfn) | MMU_MACHPHYS_UPDATE; 1432 t[0].val = va_pfn; 1433 t[1].ptr = mfn_to_ma(va_mfn) | MMU_MACHPHYS_UPDATE; 1434 t[1].val = copy_pfn; 1435 if (HYPERVISOR_mmu_update(t, 2, &mmu_update_return, 1436 DOMID_SELF) != 0 || mmu_update_return != 2) 1437 bop_panic("relocate_boot_archive(): " 1438 "HYPERVISOR_mmu_update() failed"); 1439 1440 next_phys += MMU_PAGESIZE; 1441 ++relocated; 1442 } 1443 len -= MMU_PAGESIZE; 1444 va += MMU_PAGESIZE; 1445 } 1446 DBG_MSG("Relocated pages:\n"); 1447 DBG(relocated); 1448 DBG_MSG("Out of total pages:\n"); 1449 DBG(total); 1450 } 1451 #endif /* __xpv */ 1452 1453 #if !defined(__xpv) 1454 /* 1455 * Install a temporary IDT that lets us catch errors in the boot time code. 1456 * We shouldn't get any faults at all while this is installed, so we'll 1457 * just generate a traceback and exit. 1458 */ 1459 #ifdef __amd64 1460 static const int bcode_sel = B64CODE_SEL; 1461 #else 1462 static const int bcode_sel = B32CODE_SEL; 1463 #endif 1464 1465 /* 1466 * simple description of a stack frame (args are 32 bit only currently) 1467 */ 1468 typedef struct bop_frame { 1469 struct bop_frame *old_frame; 1470 pc_t retaddr; 1471 long arg[1]; 1472 } bop_frame_t; 1473 1474 void 1475 bop_traceback(bop_frame_t *frame) 1476 { 1477 pc_t pc; 1478 int cnt; 1479 int a; 1480 char *ksym; 1481 ulong_t off; 1482 1483 bop_printf(NULL, "Stack traceback:\n"); 1484 for (cnt = 0; cnt < 30; ++cnt) { /* up to 30 frames */ 1485 pc = frame->retaddr; 1486 if (pc == 0) 1487 break; 1488 ksym = kobj_getsymname(pc, &off); 1489 if (ksym) 1490 bop_printf(NULL, " %s+%lx", ksym, off); 1491 else 1492 bop_printf(NULL, " 0x%lx", pc); 1493 1494 frame = frame->old_frame; 1495 if (frame == 0) { 1496 bop_printf(NULL, "\n"); 1497 break; 1498 } 1499 for (a = 0; a < 6; ++a) { /* try for 6 args */ 1500 #if defined(__i386) 1501 if ((void *)&frame->arg[a] == (void *)frame->old_frame) 1502 break; 1503 if (a == 0) 1504 bop_printf(NULL, "("); 1505 else 1506 bop_printf(NULL, ","); 1507 bop_printf(NULL, "0x%lx", frame->arg[a]); 1508 #endif 1509 } 1510 bop_printf(NULL, ")\n"); 1511 } 1512 } 1513 1514 struct trapframe { 1515 ulong_t frame_ptr; /* %[er]bp pushed by our code */ 1516 ulong_t error_code; /* optional */ 1517 ulong_t inst_ptr; 1518 ulong_t code_seg; 1519 ulong_t flags_reg; 1520 #ifdef __amd64 1521 ulong_t stk_ptr; 1522 ulong_t stk_seg; 1523 #endif 1524 }; 1525 1526 void 1527 bop_trap(struct trapframe *tf) 1528 { 1529 bop_frame_t fakeframe; 1530 static int depth = 0; 1531 1532 /* 1533 * Check for an infinite loop of traps. 1534 */ 1535 if (++depth > 2) 1536 bop_panic("Nested trap"); 1537 1538 /* 1539 * adjust the tf for optional error_code by detecting the code selector 1540 */ 1541 if (tf->code_seg != bcode_sel) 1542 tf = (struct trapframe *)((uintptr_t)tf - sizeof (ulong_t)); 1543 1544 bop_printf(NULL, "Unexpected trap\n"); 1545 bop_printf(NULL, "instruction pointer 0x%lx\n", tf->inst_ptr); 1546 bop_printf(NULL, "error code, optional 0x%lx\n", 1547 tf->error_code & 0xffffffff); 1548 bop_printf(NULL, "code segment 0x%lx\n", tf->code_seg & 0xffff); 1549 bop_printf(NULL, "flags register 0x%lx\n", tf->flags_reg); 1550 #ifdef __amd64 1551 bop_printf(NULL, "return %%rsp 0x%lx\n", tf->stk_ptr); 1552 bop_printf(NULL, "return %%ss 0x%lx\n", tf->stk_seg & 0xffff); 1553 #endif 1554 fakeframe.old_frame = (bop_frame_t *)tf->frame_ptr; 1555 fakeframe.retaddr = (pc_t)tf->inst_ptr; 1556 bop_printf(NULL, "Attempting stack backtrace:\n"); 1557 bop_traceback(&fakeframe); 1558 bop_panic("unexpected trap in early boot"); 1559 } 1560 1561 extern void bop_trap_handler(void); 1562 1563 static gate_desc_t *bop_idt; 1564 1565 static desctbr_t bop_idt_info; 1566 1567 static void 1568 bop_idt_init(void) 1569 { 1570 int t; 1571 1572 bop_idt = (gate_desc_t *) 1573 do_bsys_alloc(NULL, NULL, MMU_PAGESIZE, MMU_PAGESIZE); 1574 bzero(bop_idt, MMU_PAGESIZE); 1575 for (t = 0; t < NIDT; ++t) { 1576 /* 1577 * Note that since boot runs without a TSS, the 1578 * double fault handler cannot use an alternate stack 1579 * (64-bit) or a task gate (32-bit). 1580 */ 1581 set_gatesegd(&bop_idt[t], &bop_trap_handler, bcode_sel, 1582 SDT_SYSIGT, TRP_KPL, 0); 1583 } 1584 bop_idt_info.dtr_limit = (NIDT * sizeof (gate_desc_t)) - 1; 1585 bop_idt_info.dtr_base = (uintptr_t)bop_idt; 1586 wr_idtr(&bop_idt_info); 1587 } 1588 #endif /* !defined(__xpv) */ 1589 1590 /* 1591 * This is where we enter the kernel. It dummies up the boot_ops and 1592 * boot_syscalls vectors and jumps off to _kobj_boot() 1593 */ 1594 void 1595 _start(struct xboot_info *xbp) 1596 { 1597 bootops_t *bops = &bootop; 1598 extern void _kobj_boot(); 1599 1600 /* 1601 * 1st off - initialize the console for any error messages 1602 */ 1603 xbootp = xbp; 1604 #ifdef __xpv 1605 HYPERVISOR_shared_info = (void *)xbootp->bi_shared_info; 1606 xen_info = xbootp->bi_xen_start_info; 1607 #endif 1608 bcons_init((void *)xbootp->bi_cmdline); 1609 have_console = 1; 1610 1611 #ifndef __xpv 1612 if (*((uint32_t *)(FASTBOOT_SWTCH_PA + FASTBOOT_STACK_OFFSET)) == 1613 FASTBOOT_MAGIC) { 1614 post_fastreboot = 1; 1615 *((uint32_t *)(FASTBOOT_SWTCH_PA + FASTBOOT_STACK_OFFSET)) = 0; 1616 } 1617 #endif 1618 1619 /* 1620 * enable debugging 1621 */ 1622 if (strstr((char *)xbootp->bi_cmdline, "kbm_debug")) 1623 kbm_debug = 1; 1624 1625 DBG_MSG("\n\n*** Entered Solaris in _start() cmdline is: "); 1626 DBG_MSG((char *)xbootp->bi_cmdline); 1627 DBG_MSG("\n\n\n"); 1628 1629 /* 1630 * physavail is no longer used by startup 1631 */ 1632 bm.physinstalled = xbp->bi_phys_install; 1633 bm.pcimem = xbp->bi_pcimem; 1634 bm.physavail = NULL; 1635 1636 /* 1637 * initialize the boot time allocator 1638 */ 1639 next_phys = xbootp->bi_next_paddr; 1640 DBG(next_phys); 1641 next_virt = (uintptr_t)xbootp->bi_next_vaddr; 1642 DBG(next_virt); 1643 DBG_MSG("Initializing boot time memory management..."); 1644 #ifdef __xpv 1645 { 1646 xen_platform_parameters_t p; 1647 1648 /* This call shouldn't fail, dboot already did it once. */ 1649 (void) HYPERVISOR_xen_version(XENVER_platform_parameters, &p); 1650 mfn_to_pfn_mapping = (pfn_t *)(xen_virt_start = p.virt_start); 1651 DBG(xen_virt_start); 1652 } 1653 #endif 1654 kbm_init(xbootp); 1655 DBG_MSG("done\n"); 1656 1657 /* 1658 * Fill in the bootops vector 1659 */ 1660 bops->bsys_version = BO_VERSION; 1661 bops->boot_mem = &bm; 1662 bops->bsys_alloc = do_bsys_alloc; 1663 bops->bsys_free = do_bsys_free; 1664 bops->bsys_getproplen = do_bsys_getproplen; 1665 bops->bsys_getprop = do_bsys_getprop; 1666 bops->bsys_nextprop = do_bsys_nextprop; 1667 bops->bsys_printf = bop_printf; 1668 bops->bsys_doint = do_bsys_doint; 1669 1670 /* 1671 * BOP_EALLOC() is no longer needed 1672 */ 1673 bops->bsys_ealloc = do_bsys_ealloc; 1674 1675 #ifdef __xpv 1676 /* 1677 * On domain 0 we need to free up some physical memory that is 1678 * usable for DMA. Since GRUB loaded the boot_archive, it is 1679 * sitting in low MFN memory. We'll relocated the boot archive 1680 * pages to high PFN memory. 1681 */ 1682 if (DOMAIN_IS_INITDOMAIN(xen_info)) 1683 relocate_boot_archive(); 1684 #endif 1685 1686 #ifndef __xpv 1687 /* 1688 * Install an IDT to catch early pagefaults (shouldn't have any). 1689 * Also needed for kmdb. 1690 */ 1691 bop_idt_init(); 1692 #endif 1693 1694 /* 1695 * Start building the boot properties from the command line 1696 */ 1697 DBG_MSG("Initializing boot properties:\n"); 1698 build_boot_properties(); 1699 1700 if (strstr((char *)xbootp->bi_cmdline, "prom_debug") || kbm_debug) { 1701 char *name; 1702 char *value; 1703 char *cp; 1704 int len; 1705 1706 value = do_bsys_alloc(NULL, NULL, MMU_PAGESIZE, MMU_PAGESIZE); 1707 bop_printf(NULL, "\nBoot properties:\n"); 1708 name = ""; 1709 while ((name = do_bsys_nextprop(NULL, name)) != NULL) { 1710 bop_printf(NULL, "\t0x%p %s = ", (void *)name, name); 1711 (void) do_bsys_getprop(NULL, name, value); 1712 len = do_bsys_getproplen(NULL, name); 1713 bop_printf(NULL, "len=%d ", len); 1714 value[len] = 0; 1715 for (cp = value; *cp; ++cp) { 1716 if (' ' <= *cp && *cp <= '~') 1717 bop_printf(NULL, "%c", *cp); 1718 else 1719 bop_printf(NULL, "-0x%x-", *cp); 1720 } 1721 bop_printf(NULL, "\n"); 1722 } 1723 } 1724 1725 /* 1726 * jump into krtld... 1727 */ 1728 _kobj_boot(&bop_sysp, NULL, bops, NULL); 1729 } 1730 1731 1732 /*ARGSUSED*/ 1733 static caddr_t 1734 no_more_alloc(bootops_t *bop, caddr_t virthint, size_t size, int align) 1735 { 1736 panic("Attempt to bsys_alloc() too late\n"); 1737 return (NULL); 1738 } 1739 1740 /*ARGSUSED*/ 1741 static void 1742 no_more_free(bootops_t *bop, caddr_t virt, size_t size) 1743 { 1744 panic("Attempt to bsys_free() too late\n"); 1745 } 1746 1747 void 1748 bop_no_more_mem(void) 1749 { 1750 DBG(total_bop_alloc_scratch); 1751 DBG(total_bop_alloc_kernel); 1752 bootops->bsys_alloc = no_more_alloc; 1753 bootops->bsys_free = no_more_free; 1754 } 1755 1756 1757 #ifndef __xpv 1758 /* 1759 * Set ACPI firmware properties 1760 */ 1761 1762 static caddr_t 1763 vmap_phys(size_t length, paddr_t pa) 1764 { 1765 paddr_t start, end; 1766 caddr_t va; 1767 size_t len, page; 1768 1769 start = P2ALIGN(pa, MMU_PAGESIZE); 1770 end = P2ROUNDUP(pa + length, MMU_PAGESIZE); 1771 len = end - start; 1772 va = (caddr_t)alloc_vaddr(len, MMU_PAGESIZE); 1773 for (page = 0; page < len; page += MMU_PAGESIZE) 1774 kbm_map((uintptr_t)va + page, start + page, 0, 0); 1775 return (va + (pa & MMU_PAGEOFFSET)); 1776 } 1777 1778 static uint8_t 1779 checksum_table(uint8_t *tp, size_t len) 1780 { 1781 uint8_t sum = 0; 1782 1783 while (len-- > 0) 1784 sum += *tp++; 1785 1786 return (sum); 1787 } 1788 1789 static int 1790 valid_rsdp(struct rsdp *rp) 1791 { 1792 1793 /* validate the V1.x checksum */ 1794 if (checksum_table((uint8_t *)&rp->v1, sizeof (struct rsdp_v1)) != 0) 1795 return (0); 1796 1797 /* If pre-ACPI 2.0, this is a valid RSDP */ 1798 if (rp->v1.revision < 2) 1799 return (1); 1800 1801 /* validate the V2.x checksum */ 1802 if (checksum_table((uint8_t *)rp, sizeof (struct rsdp)) != 0) 1803 return (0); 1804 1805 return (1); 1806 } 1807 1808 /* 1809 * Scan memory range for an RSDP; 1810 * see ACPI 3.0 Spec, 5.2.5.1 1811 */ 1812 static struct rsdp * 1813 scan_rsdp(paddr_t start, paddr_t end) 1814 { 1815 size_t len = end - start + 1; 1816 caddr_t ptr; 1817 1818 ptr = vmap_phys(len, start); 1819 while (len > 0) { 1820 if (strncmp(ptr, ACPI_RSDP_SIG, ACPI_RSDP_SIG_LEN) == 0) 1821 if (valid_rsdp((struct rsdp *)ptr)) 1822 return ((struct rsdp *)ptr); 1823 ptr += 16; 1824 len -= 16; 1825 } 1826 1827 return (NULL); 1828 } 1829 1830 /* 1831 * Refer to ACPI 3.0 Spec, section 5.2.5.1 to understand this function 1832 */ 1833 static struct rsdp * 1834 find_rsdp() { 1835 struct rsdp *rsdp; 1836 uint16_t *ebda_seg; 1837 paddr_t ebda_addr; 1838 1839 /* 1840 * Get the EBDA segment and scan the first 1K 1841 */ 1842 ebda_seg = (uint16_t *)vmap_phys(sizeof (uint16_t), ACPI_EBDA_SEG_ADDR); 1843 ebda_addr = *ebda_seg << 4; 1844 rsdp = scan_rsdp(ebda_addr, ebda_addr + ACPI_EBDA_LEN - 1); 1845 if (rsdp == NULL) 1846 /* if EBDA doesn't contain RSDP, look in BIOS memory */ 1847 rsdp = scan_rsdp(0xe0000, 0xfffff); 1848 return (rsdp); 1849 } 1850 1851 static struct table_header * 1852 map_fw_table(paddr_t table_addr) 1853 { 1854 struct table_header *tp; 1855 size_t len = MAX(sizeof (struct table_header), MMU_PAGESIZE); 1856 1857 /* 1858 * Map at least a page; if the table is larger than this, remap it 1859 */ 1860 tp = (struct table_header *)vmap_phys(len, table_addr); 1861 if (tp->len > len) 1862 tp = (struct table_header *)vmap_phys(tp->len, table_addr); 1863 return (tp); 1864 } 1865 1866 static struct table_header * 1867 find_fw_table(char *signature) 1868 { 1869 static int revision = 0; 1870 static struct xsdt *xsdt; 1871 static int len; 1872 paddr_t xsdt_addr; 1873 struct rsdp *rsdp; 1874 struct table_header *tp; 1875 paddr_t table_addr; 1876 int n; 1877 1878 if (strlen(signature) != ACPI_TABLE_SIG_LEN) 1879 return (NULL); 1880 1881 /* 1882 * Reading the ACPI 3.0 Spec, section 5.2.5.3 will help 1883 * understand this code. If we haven't already found the RSDT/XSDT, 1884 * revision will be 0. Find the RSDP and check the revision 1885 * to find out whether to use the RSDT or XSDT. If revision is 1886 * 0 or 1, use the RSDT and set internal revision to 1; if it is 2, 1887 * use the XSDT. If the XSDT address is 0, though, fall back to 1888 * revision 1 and use the RSDT. 1889 */ 1890 if (revision == 0) { 1891 if ((rsdp = (struct rsdp *)find_rsdp()) != NULL) { 1892 revision = rsdp->v1.revision; 1893 switch (revision) { 1894 case 2: 1895 /* 1896 * Use the XSDT unless BIOS is buggy and 1897 * claims to be rev 2 but has a null XSDT 1898 * address 1899 */ 1900 xsdt_addr = rsdp->xsdt; 1901 if (xsdt_addr != 0) 1902 break; 1903 /* FALLTHROUGH */ 1904 case 0: 1905 /* treat RSDP rev 0 as revision 1 internally */ 1906 revision = 1; 1907 /* FALLTHROUGH */ 1908 case 1: 1909 /* use the RSDT for rev 0/1 */ 1910 xsdt_addr = rsdp->v1.rsdt; 1911 break; 1912 default: 1913 /* unknown revision */ 1914 revision = 0; 1915 break; 1916 } 1917 } 1918 if (revision == 0) 1919 return (NULL); 1920 1921 /* cache the XSDT info */ 1922 xsdt = (struct xsdt *)map_fw_table(xsdt_addr); 1923 len = (xsdt->hdr.len - sizeof (xsdt->hdr)) / 1924 ((revision == 1) ? sizeof (uint32_t) : sizeof (uint64_t)); 1925 } 1926 1927 /* 1928 * Scan the table headers looking for a signature match 1929 */ 1930 for (n = 0; n < len; n++) { 1931 table_addr = (revision == 1) ? xsdt->p.r[n] : xsdt->p.x[n]; 1932 if (table_addr == 0) 1933 continue; 1934 tp = map_fw_table(table_addr); 1935 if (strncmp(tp->sig, signature, ACPI_TABLE_SIG_LEN) == 0) { 1936 return (tp); 1937 } 1938 } 1939 return (NULL); 1940 } 1941 1942 static void 1943 process_madt(struct madt *tp) 1944 { 1945 struct madt_processor *cpu, *end; 1946 uint32_t cpu_count = 0; 1947 uint8_t cpu_apicid_array[UINT8_MAX + 1]; 1948 1949 if (tp != NULL) { 1950 /* 1951 * Determine number of CPUs and keep track of "final" APIC ID 1952 * for each CPU by walking through ACPI MADT processor list 1953 */ 1954 end = (struct madt_processor *)(tp->hdr.len + (uintptr_t)tp); 1955 cpu = tp->list; 1956 while (cpu < end) { 1957 if (cpu->type == MADT_PROCESSOR) { 1958 if (cpu->flags & 1) { 1959 if (cpu_count < UINT8_MAX) 1960 cpu_apicid_array[cpu_count] = 1961 cpu->apic_id; 1962 cpu_count++; 1963 } 1964 } 1965 1966 cpu = (struct madt_processor *) 1967 (cpu->len + (uintptr_t)cpu); 1968 } 1969 1970 /* 1971 * Make boot property for array of "final" APIC IDs for each 1972 * CPU 1973 */ 1974 bsetprop(BP_CPU_APICID_ARRAY, strlen(BP_CPU_APICID_ARRAY), 1975 cpu_apicid_array, cpu_count * sizeof (uint8_t)); 1976 } 1977 1978 /* 1979 * User-set boot-ncpus overrides firmware count 1980 */ 1981 if (do_bsys_getproplen(NULL, "boot-ncpus") >= 0) 1982 return; 1983 1984 /* 1985 * Set boot property for boot-ncpus to number of CPUs given in MADT 1986 * if user hasn't set the property already 1987 */ 1988 if (tp != NULL) 1989 bsetpropsi("boot-ncpus", cpu_count); 1990 } 1991 1992 static void 1993 process_srat(struct srat *tp) 1994 { 1995 struct srat_item *item, *end; 1996 int i; 1997 int proc_num, mem_num; 1998 #pragma pack(1) 1999 struct { 2000 uint32_t domain; 2001 uint32_t apic_id; 2002 uint32_t sapic_id; 2003 } processor; 2004 struct { 2005 uint32_t domain; 2006 uint32_t x2apic_id; 2007 } x2apic; 2008 struct { 2009 uint32_t domain; 2010 uint64_t addr; 2011 uint64_t length; 2012 uint32_t flags; 2013 } memory; 2014 #pragma pack() 2015 char prop_name[30]; 2016 2017 if (tp == NULL) 2018 return; 2019 2020 proc_num = mem_num = 0; 2021 end = (struct srat_item *)(tp->hdr.len + (uintptr_t)tp); 2022 item = tp->list; 2023 while (item < end) { 2024 switch (item->type) { 2025 case SRAT_PROCESSOR: 2026 if (!(item->i.p.flags & SRAT_ENABLED)) 2027 break; 2028 processor.domain = item->i.p.domain1; 2029 for (i = 0; i < 3; i++) 2030 processor.domain += 2031 item->i.p.domain2[i] << ((i + 1) * 8); 2032 processor.apic_id = item->i.p.apic_id; 2033 processor.sapic_id = item->i.p.local_sapic_eid; 2034 (void) snprintf(prop_name, 30, "acpi-srat-processor-%d", 2035 proc_num); 2036 bsetprop(prop_name, strlen(prop_name), &processor, 2037 sizeof (processor)); 2038 proc_num++; 2039 break; 2040 case SRAT_MEMORY: 2041 if (!(item->i.m.flags & SRAT_ENABLED)) 2042 break; 2043 memory.domain = item->i.m.domain; 2044 memory.addr = item->i.m.base_addr; 2045 memory.length = item->i.m.len; 2046 memory.flags = item->i.m.flags; 2047 (void) snprintf(prop_name, 30, "acpi-srat-memory-%d", 2048 mem_num); 2049 bsetprop(prop_name, strlen(prop_name), &memory, 2050 sizeof (memory)); 2051 mem_num++; 2052 break; 2053 case SRAT_X2APIC: 2054 if (!(item->i.xp.flags & SRAT_ENABLED)) 2055 break; 2056 x2apic.domain = item->i.xp.domain; 2057 x2apic.x2apic_id = item->i.xp.x2apic_id; 2058 (void) snprintf(prop_name, 30, "acpi-srat-processor-%d", 2059 proc_num); 2060 bsetprop(prop_name, strlen(prop_name), &x2apic, 2061 sizeof (x2apic)); 2062 proc_num++; 2063 break; 2064 } 2065 2066 item = (struct srat_item *) 2067 (item->len + (caddr_t)item); 2068 } 2069 } 2070 2071 static void 2072 process_slit(struct slit *tp) 2073 { 2074 2075 /* 2076 * Check the number of localities; if it's too huge, we just 2077 * return and locality enumeration code will handle this later, 2078 * if possible. 2079 * 2080 * Note that the size of the table is the square of the 2081 * number of localities; if the number of localities exceeds 2082 * UINT16_MAX, the table size may overflow an int when being 2083 * passed to bsetprop() below. 2084 */ 2085 if (tp->number >= SLIT_LOCALITIES_MAX) 2086 return; 2087 2088 bsetprop(SLIT_NUM_PROPNAME, strlen(SLIT_NUM_PROPNAME), &tp->number, 2089 sizeof (tp->number)); 2090 bsetprop(SLIT_PROPNAME, strlen(SLIT_PROPNAME), &tp->entry, 2091 tp->number * tp->number); 2092 } 2093 2094 static void 2095 process_dmar(struct dmar *tp) 2096 { 2097 bsetprop(DMAR_TABLE_PROPNAME, strlen(DMAR_TABLE_PROPNAME), 2098 tp, tp->hdr.len); 2099 } 2100 2101 #else /* __xpv */ 2102 static void 2103 enumerate_xen_cpus() 2104 { 2105 processorid_t id, max_id; 2106 2107 /* 2108 * User-set boot-ncpus overrides enumeration 2109 */ 2110 if (do_bsys_getproplen(NULL, "boot-ncpus") >= 0) 2111 return; 2112 2113 /* 2114 * Probe every possible virtual CPU id and remember the 2115 * highest id present; the count of CPUs is one greater 2116 * than this. This tacitly assumes at least cpu 0 is present. 2117 */ 2118 max_id = 0; 2119 for (id = 0; id < MAX_VIRT_CPUS; id++) 2120 if (HYPERVISOR_vcpu_op(VCPUOP_is_up, id, NULL) == 0) 2121 max_id = id; 2122 2123 bsetpropsi("boot-ncpus", max_id+1); 2124 2125 } 2126 #endif /* __xpv */ 2127 2128 static void 2129 build_firmware_properties(void) 2130 { 2131 #ifndef __xpv 2132 struct table_header *tp; 2133 2134 if ((tp = find_fw_table("APIC")) != NULL) 2135 process_madt((struct madt *)tp); 2136 2137 if ((srat_ptr = (struct srat *)find_fw_table("SRAT")) != NULL) 2138 process_srat(srat_ptr); 2139 2140 if (slit_ptr = (struct slit *)find_fw_table("SLIT")) 2141 process_slit(slit_ptr); 2142 2143 if (tp = find_fw_table("DMAR")) 2144 process_dmar((struct dmar *)tp); 2145 #else /* __xpv */ 2146 enumerate_xen_cpus(); 2147 #endif /* __xpv */ 2148 } 2149 2150 /* 2151 * fake up a boot property for deferred early console output 2152 * this is used by both graphical boot and the (developer only) 2153 * USB serial console 2154 */ 2155 void * 2156 defcons_init(size_t size) 2157 { 2158 static char *p = NULL; 2159 2160 p = do_bsys_alloc(NULL, NULL, size, MMU_PAGESIZE); 2161 *p = 0; 2162 bsetprop("deferred-console-buf", strlen("deferred-console-buf") + 1, 2163 &p, sizeof (p)); 2164 return (p); 2165 } 2166 2167 /*ARGSUSED*/ 2168 int 2169 boot_compinfo(int fd, struct compinfo *cbp) 2170 { 2171 cbp->iscmp = 0; 2172 cbp->blksize = MAXBSIZE; 2173 return (0); 2174 } 2175 2176 #define BP_MAX_STRLEN 32 2177 2178 /* 2179 * Get value for given boot property 2180 */ 2181 int 2182 bootprop_getval(const char *prop_name, u_longlong_t *prop_value) 2183 { 2184 int boot_prop_len; 2185 char str[BP_MAX_STRLEN]; 2186 u_longlong_t value; 2187 2188 boot_prop_len = BOP_GETPROPLEN(bootops, prop_name); 2189 if (boot_prop_len < 0 || boot_prop_len > sizeof (str) || 2190 BOP_GETPROP(bootops, prop_name, str) < 0 || 2191 kobj_getvalue(str, &value) == -1) 2192 return (-1); 2193 2194 if (prop_value) 2195 *prop_value = value; 2196 2197 return (0); 2198 } 2199