1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2009 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 27 /* 28 * This file contains the functionality that mimics the boot operations 29 * on SPARC systems or the old boot.bin/multiboot programs on x86 systems. 30 * The x86 kernel now does everything on its own. 31 */ 32 33 #include <sys/types.h> 34 #include <sys/bootconf.h> 35 #include <sys/bootsvcs.h> 36 #include <sys/bootinfo.h> 37 #include <sys/multiboot.h> 38 #include <sys/bootvfs.h> 39 #include <sys/bootprops.h> 40 #include <sys/varargs.h> 41 #include <sys/param.h> 42 #include <sys/machparam.h> 43 #include <sys/archsystm.h> 44 #include <sys/boot_console.h> 45 #include <sys/cmn_err.h> 46 #include <sys/systm.h> 47 #include <sys/promif.h> 48 #include <sys/archsystm.h> 49 #include <sys/x86_archext.h> 50 #include <sys/kobj.h> 51 #include <sys/privregs.h> 52 #include <sys/sysmacros.h> 53 #include <sys/ctype.h> 54 #include <sys/fastboot.h> 55 #ifdef __xpv 56 #include <sys/hypervisor.h> 57 #include <net/if.h> 58 #endif 59 #include <vm/kboot_mmu.h> 60 #include <vm/hat_pte.h> 61 #include <sys/dmar_acpi.h> 62 #include <sys/kobj.h> 63 #include <sys/kobj_lex.h> 64 #include "acpi_fw.h" 65 66 static int have_console = 0; /* set once primitive console is initialized */ 67 static char *boot_args = ""; 68 69 /* 70 * Debugging macros 71 */ 72 static uint_t kbm_debug = 0; 73 #define DBG_MSG(s) { if (kbm_debug) bop_printf(NULL, "%s", s); } 74 #define DBG(x) { if (kbm_debug) \ 75 bop_printf(NULL, "%s is %" PRIx64 "\n", #x, (uint64_t)(x)); \ 76 } 77 78 #define PUT_STRING(s) { \ 79 char *cp; \ 80 for (cp = (s); *cp; ++cp) \ 81 bcons_putchar(*cp); \ 82 } 83 84 struct xboot_info *xbootp; /* boot info from "glue" code in low memory */ 85 bootops_t bootop; /* simple bootops we'll pass on to kernel */ 86 struct bsys_mem bm; 87 88 static uintptr_t next_virt; /* next available virtual address */ 89 static paddr_t next_phys; /* next available physical address from dboot */ 90 static paddr_t high_phys = -(paddr_t)1; /* last used physical address */ 91 92 /* 93 * buffer for vsnprintf for console I/O 94 */ 95 #define BUFFERSIZE 256 96 static char buffer[BUFFERSIZE]; 97 /* 98 * stuff to store/report/manipulate boot property settings. 99 */ 100 typedef struct bootprop { 101 struct bootprop *bp_next; 102 char *bp_name; 103 uint_t bp_vlen; 104 char *bp_value; 105 } bootprop_t; 106 107 static bootprop_t *bprops = NULL; 108 static char *curr_page = NULL; /* ptr to avail bprop memory */ 109 static int curr_space = 0; /* amount of memory at curr_page */ 110 111 #ifdef __xpv 112 start_info_t *xen_info; 113 shared_info_t *HYPERVISOR_shared_info; 114 #endif 115 116 /* 117 * some allocator statistics 118 */ 119 static ulong_t total_bop_alloc_scratch = 0; 120 static ulong_t total_bop_alloc_kernel = 0; 121 122 static void build_firmware_properties(void); 123 124 static int early_allocation = 1; 125 126 int force_fastreboot = 0; 127 int fastreboot_onpanic = 0; 128 int post_fastreboot = 0; 129 #ifdef __xpv 130 int fastreboot_capable = 0; 131 #else 132 int fastreboot_capable = 1; 133 #endif 134 135 /* 136 * Information saved from current boot for fast reboot. 137 * If the information size exceeds what we have allocated, fast reboot 138 * will not be supported. 139 */ 140 multiboot_info_t saved_mbi; 141 mb_memory_map_t saved_mmap[FASTBOOT_SAVED_MMAP_COUNT]; 142 struct sol_netinfo saved_drives[FASTBOOT_SAVED_DRIVES_COUNT]; 143 char saved_cmdline[FASTBOOT_SAVED_CMDLINE_LEN]; 144 int saved_cmdline_len = 0; 145 size_t saved_file_size[FASTBOOT_MAX_FILES_MAP]; 146 147 /* 148 * Turn off fastreboot_onpanic to avoid panic loop. 149 */ 150 char fastreboot_onpanic_cmdline[FASTBOOT_SAVED_CMDLINE_LEN]; 151 static const char fastreboot_onpanic_args[] = " -B fastreboot_onpanic=0"; 152 153 /* 154 * Pointers to where System Resource Affinity Table (SRAT) and 155 * System Locality Information Table (SLIT) are mapped into virtual memory 156 */ 157 struct srat *srat_ptr = NULL; 158 struct slit *slit_ptr = NULL; 159 160 161 /* 162 * Allocate aligned physical memory at boot time. This allocator allocates 163 * from the highest possible addresses. This avoids exhausting memory that 164 * would be useful for DMA buffers. 165 */ 166 paddr_t 167 do_bop_phys_alloc(uint64_t size, uint64_t align) 168 { 169 paddr_t pa = 0; 170 paddr_t start; 171 paddr_t end; 172 struct memlist *ml = (struct memlist *)xbootp->bi_phys_install; 173 174 /* 175 * Be careful if high memory usage is limited in startup.c 176 * Since there are holes in the low part of the physical address 177 * space we can treat physmem as a pfn (not just a pgcnt) and 178 * get a conservative upper limit. 179 */ 180 if (physmem != 0 && high_phys > pfn_to_pa(physmem)) 181 high_phys = pfn_to_pa(physmem); 182 183 /* 184 * find the lowest or highest available memory in physinstalled 185 * On 32 bit avoid physmem above 4Gig if PAE isn't enabled 186 */ 187 #if defined(__i386) 188 if (xbootp->bi_use_pae == 0 && high_phys > FOUR_GIG) 189 high_phys = FOUR_GIG; 190 #endif 191 192 /* 193 * find the highest available memory in physinstalled 194 */ 195 size = P2ROUNDUP(size, align); 196 for (; ml; ml = ml->next) { 197 start = P2ROUNDUP(ml->address, align); 198 end = P2ALIGN(ml->address + ml->size, align); 199 if (start < next_phys) 200 start = P2ROUNDUP(next_phys, align); 201 if (end > high_phys) 202 end = P2ALIGN(high_phys, align); 203 204 if (end <= start) 205 continue; 206 if (end - start < size) 207 continue; 208 209 /* 210 * Early allocations need to use low memory, since 211 * physmem might be further limited by bootenv.rc 212 */ 213 if (early_allocation) { 214 if (pa == 0 || start < pa) 215 pa = start; 216 } else { 217 if (end - size > pa) 218 pa = end - size; 219 } 220 } 221 if (pa != 0) { 222 if (early_allocation) 223 next_phys = pa + size; 224 else 225 high_phys = pa; 226 return (pa); 227 } 228 bop_panic("do_bop_phys_alloc(0x%" PRIx64 ", 0x%" PRIx64 229 ") Out of memory\n", size, align); 230 /*NOTREACHED*/ 231 } 232 233 static uintptr_t 234 alloc_vaddr(size_t size, paddr_t align) 235 { 236 uintptr_t rv; 237 238 next_virt = P2ROUNDUP(next_virt, (uintptr_t)align); 239 rv = (uintptr_t)next_virt; 240 next_virt += size; 241 return (rv); 242 } 243 244 /* 245 * Allocate virtual memory. The size is always rounded up to a multiple 246 * of base pagesize. 247 */ 248 249 /*ARGSUSED*/ 250 static caddr_t 251 do_bsys_alloc(bootops_t *bop, caddr_t virthint, size_t size, int align) 252 { 253 paddr_t a = align; /* same type as pa for masking */ 254 uint_t pgsize; 255 paddr_t pa; 256 uintptr_t va; 257 ssize_t s; /* the aligned size */ 258 uint_t level; 259 uint_t is_kernel = (virthint != 0); 260 261 if (a < MMU_PAGESIZE) 262 a = MMU_PAGESIZE; 263 else if (!ISP2(a)) 264 prom_panic("do_bsys_alloc() incorrect alignment"); 265 size = P2ROUNDUP(size, MMU_PAGESIZE); 266 267 /* 268 * Use the next aligned virtual address if we weren't given one. 269 */ 270 if (virthint == NULL) { 271 virthint = (caddr_t)alloc_vaddr(size, a); 272 total_bop_alloc_scratch += size; 273 } else { 274 total_bop_alloc_kernel += size; 275 } 276 277 /* 278 * allocate the physical memory 279 */ 280 pa = do_bop_phys_alloc(size, a); 281 282 /* 283 * Add the mappings to the page tables, try large pages first. 284 */ 285 va = (uintptr_t)virthint; 286 s = size; 287 level = 1; 288 pgsize = xbootp->bi_use_pae ? TWO_MEG : FOUR_MEG; 289 if (xbootp->bi_use_largepage && a == pgsize) { 290 while (IS_P2ALIGNED(pa, pgsize) && IS_P2ALIGNED(va, pgsize) && 291 s >= pgsize) { 292 kbm_map(va, pa, level, is_kernel); 293 va += pgsize; 294 pa += pgsize; 295 s -= pgsize; 296 } 297 } 298 299 /* 300 * Map remaining pages use small mappings 301 */ 302 level = 0; 303 pgsize = MMU_PAGESIZE; 304 while (s > 0) { 305 kbm_map(va, pa, level, is_kernel); 306 va += pgsize; 307 pa += pgsize; 308 s -= pgsize; 309 } 310 return (virthint); 311 } 312 313 /* 314 * Free virtual memory - we'll just ignore these. 315 */ 316 /*ARGSUSED*/ 317 static void 318 do_bsys_free(bootops_t *bop, caddr_t virt, size_t size) 319 { 320 bop_printf(NULL, "do_bsys_free(virt=0x%p, size=0x%lx) ignored\n", 321 (void *)virt, size); 322 } 323 324 /* 325 * Old interface 326 */ 327 /*ARGSUSED*/ 328 static caddr_t 329 do_bsys_ealloc( 330 bootops_t *bop, 331 caddr_t virthint, 332 size_t size, 333 int align, 334 int flags) 335 { 336 prom_panic("unsupported call to BOP_EALLOC()\n"); 337 return (0); 338 } 339 340 341 static void 342 bsetprop(char *name, int nlen, void *value, int vlen) 343 { 344 uint_t size; 345 uint_t need_size; 346 bootprop_t *b; 347 348 /* 349 * align the size to 16 byte boundary 350 */ 351 size = sizeof (bootprop_t) + nlen + 1 + vlen; 352 size = (size + 0xf) & ~0xf; 353 if (size > curr_space) { 354 need_size = (size + (MMU_PAGEOFFSET)) & MMU_PAGEMASK; 355 curr_page = do_bsys_alloc(NULL, 0, need_size, MMU_PAGESIZE); 356 curr_space = need_size; 357 } 358 359 /* 360 * use a bootprop_t at curr_page and link into list 361 */ 362 b = (bootprop_t *)curr_page; 363 curr_page += sizeof (bootprop_t); 364 curr_space -= sizeof (bootprop_t); 365 b->bp_next = bprops; 366 bprops = b; 367 368 /* 369 * follow by name and ending zero byte 370 */ 371 b->bp_name = curr_page; 372 bcopy(name, curr_page, nlen); 373 curr_page += nlen; 374 *curr_page++ = 0; 375 curr_space -= nlen + 1; 376 377 /* 378 * copy in value, but no ending zero byte 379 */ 380 b->bp_value = curr_page; 381 b->bp_vlen = vlen; 382 if (vlen > 0) { 383 bcopy(value, curr_page, vlen); 384 curr_page += vlen; 385 curr_space -= vlen; 386 } 387 388 /* 389 * align new values of curr_page, curr_space 390 */ 391 while (curr_space & 0xf) { 392 ++curr_page; 393 --curr_space; 394 } 395 } 396 397 static void 398 bsetprops(char *name, char *value) 399 { 400 bsetprop(name, strlen(name), value, strlen(value) + 1); 401 } 402 403 static void 404 bsetprop64(char *name, uint64_t value) 405 { 406 bsetprop(name, strlen(name), (void *)&value, sizeof (value)); 407 } 408 409 static void 410 bsetpropsi(char *name, int value) 411 { 412 char prop_val[32]; 413 414 (void) snprintf(prop_val, sizeof (prop_val), "%d", value); 415 bsetprops(name, prop_val); 416 } 417 418 /* 419 * to find the size of the buffer to allocate 420 */ 421 /*ARGSUSED*/ 422 int 423 do_bsys_getproplen(bootops_t *bop, const char *name) 424 { 425 bootprop_t *b; 426 427 for (b = bprops; b; b = b->bp_next) { 428 if (strcmp(name, b->bp_name) != 0) 429 continue; 430 return (b->bp_vlen); 431 } 432 return (-1); 433 } 434 435 /* 436 * get the value associated with this name 437 */ 438 /*ARGSUSED*/ 439 int 440 do_bsys_getprop(bootops_t *bop, const char *name, void *value) 441 { 442 bootprop_t *b; 443 444 for (b = bprops; b; b = b->bp_next) { 445 if (strcmp(name, b->bp_name) != 0) 446 continue; 447 bcopy(b->bp_value, value, b->bp_vlen); 448 return (0); 449 } 450 return (-1); 451 } 452 453 /* 454 * get the name of the next property in succession from the standalone 455 */ 456 /*ARGSUSED*/ 457 static char * 458 do_bsys_nextprop(bootops_t *bop, char *name) 459 { 460 bootprop_t *b; 461 462 /* 463 * A null name is a special signal for the 1st boot property 464 */ 465 if (name == NULL || strlen(name) == 0) { 466 if (bprops == NULL) 467 return (NULL); 468 return (bprops->bp_name); 469 } 470 471 for (b = bprops; b; b = b->bp_next) { 472 if (name != b->bp_name) 473 continue; 474 b = b->bp_next; 475 if (b == NULL) 476 return (NULL); 477 return (b->bp_name); 478 } 479 return (NULL); 480 } 481 482 /* 483 * Parse numeric value from a string. Understands decimal, hex, octal, - and ~ 484 */ 485 static int 486 parse_value(char *p, uint64_t *retval) 487 { 488 int adjust = 0; 489 uint64_t tmp = 0; 490 int digit; 491 int radix = 10; 492 493 *retval = 0; 494 if (*p == '-' || *p == '~') 495 adjust = *p++; 496 497 if (*p == '0') { 498 ++p; 499 if (*p == 0) 500 return (0); 501 if (*p == 'x' || *p == 'X') { 502 radix = 16; 503 ++p; 504 } else { 505 radix = 8; 506 ++p; 507 } 508 } 509 while (*p) { 510 if ('0' <= *p && *p <= '9') 511 digit = *p - '0'; 512 else if ('a' <= *p && *p <= 'f') 513 digit = 10 + *p - 'a'; 514 else if ('A' <= *p && *p <= 'F') 515 digit = 10 + *p - 'A'; 516 else 517 return (-1); 518 if (digit >= radix) 519 return (-1); 520 tmp = tmp * radix + digit; 521 ++p; 522 } 523 if (adjust == '-') 524 tmp = -tmp; 525 else if (adjust == '~') 526 tmp = ~tmp; 527 *retval = tmp; 528 return (0); 529 } 530 531 /* 532 * 2nd part of building the table of boot properties. This includes: 533 * - values from /boot/solaris/bootenv.rc (ie. eeprom(1m) values) 534 * 535 * lines look like one of: 536 * ^$ 537 * ^# comment till end of line 538 * setprop name 'value' 539 * setprop name value 540 * setprop name "value" 541 * 542 * we do single character I/O since this is really just looking at memory 543 */ 544 void 545 boot_prop_finish(void) 546 { 547 int fd; 548 char *line; 549 int c; 550 int bytes_read; 551 char *name; 552 int n_len; 553 char *value; 554 int v_len; 555 char *inputdev; /* these override the command line if serial ports */ 556 char *outputdev; 557 char *consoledev; 558 uint64_t lvalue; 559 int use_xencons = 0; 560 561 #ifdef __xpv 562 if (!DOMAIN_IS_INITDOMAIN(xen_info)) 563 use_xencons = 1; 564 #endif /* __xpv */ 565 566 DBG_MSG("Opening /boot/solaris/bootenv.rc\n"); 567 fd = BRD_OPEN(bfs_ops, "/boot/solaris/bootenv.rc", 0); 568 DBG(fd); 569 570 line = do_bsys_alloc(NULL, NULL, MMU_PAGESIZE, MMU_PAGESIZE); 571 while (fd >= 0) { 572 573 /* 574 * get a line 575 */ 576 for (c = 0; ; ++c) { 577 bytes_read = BRD_READ(bfs_ops, fd, line + c, 1); 578 if (bytes_read == 0) { 579 if (c == 0) 580 goto done; 581 break; 582 } 583 if (line[c] == '\n') 584 break; 585 } 586 line[c] = 0; 587 588 /* 589 * ignore comment lines 590 */ 591 c = 0; 592 while (ISSPACE(line[c])) 593 ++c; 594 if (line[c] == '#' || line[c] == 0) 595 continue; 596 597 /* 598 * must have "setprop " or "setprop\t" 599 */ 600 if (strncmp(line + c, "setprop ", 8) != 0 && 601 strncmp(line + c, "setprop\t", 8) != 0) 602 continue; 603 c += 8; 604 while (ISSPACE(line[c])) 605 ++c; 606 if (line[c] == 0) 607 continue; 608 609 /* 610 * gather up the property name 611 */ 612 name = line + c; 613 n_len = 0; 614 while (line[c] && !ISSPACE(line[c])) 615 ++n_len, ++c; 616 617 /* 618 * gather up the value, if any 619 */ 620 value = ""; 621 v_len = 0; 622 while (ISSPACE(line[c])) 623 ++c; 624 if (line[c] != 0) { 625 value = line + c; 626 while (line[c] && !ISSPACE(line[c])) 627 ++v_len, ++c; 628 } 629 630 if (v_len >= 2 && value[0] == value[v_len - 1] && 631 (value[0] == '\'' || value[0] == '"')) { 632 ++value; 633 v_len -= 2; 634 } 635 name[n_len] = 0; 636 if (v_len > 0) 637 value[v_len] = 0; 638 else 639 continue; 640 641 /* 642 * ignore "boot-file" property, it's now meaningless 643 */ 644 if (strcmp(name, "boot-file") == 0) 645 continue; 646 if (strcmp(name, "boot-args") == 0 && 647 strlen(boot_args) > 0) 648 continue; 649 650 /* 651 * If a property was explicitly set on the command line 652 * it will override a setting in bootenv.rc 653 */ 654 if (do_bsys_getproplen(NULL, name) > 0) 655 continue; 656 657 bsetprop(name, n_len, value, v_len + 1); 658 } 659 done: 660 if (fd >= 0) 661 BRD_CLOSE(bfs_ops, fd); 662 663 /* 664 * Check if we have to limit the boot time allocator 665 */ 666 if (do_bsys_getproplen(NULL, "physmem") != -1 && 667 do_bsys_getprop(NULL, "physmem", line) >= 0 && 668 parse_value(line, &lvalue) != -1) { 669 if (0 < lvalue && (lvalue < physmem || physmem == 0)) { 670 physmem = (pgcnt_t)lvalue; 671 DBG(physmem); 672 } 673 } 674 early_allocation = 0; 675 676 /* 677 * check to see if we have to override the default value of the console 678 */ 679 if (!use_xencons) { 680 inputdev = line; 681 v_len = do_bsys_getproplen(NULL, "input-device"); 682 if (v_len > 0) 683 (void) do_bsys_getprop(NULL, "input-device", inputdev); 684 else 685 v_len = 0; 686 inputdev[v_len] = 0; 687 688 outputdev = inputdev + v_len + 1; 689 v_len = do_bsys_getproplen(NULL, "output-device"); 690 if (v_len > 0) 691 (void) do_bsys_getprop(NULL, "output-device", 692 outputdev); 693 else 694 v_len = 0; 695 outputdev[v_len] = 0; 696 697 consoledev = outputdev + v_len + 1; 698 v_len = do_bsys_getproplen(NULL, "console"); 699 if (v_len > 0) 700 (void) do_bsys_getprop(NULL, "console", consoledev); 701 else 702 v_len = 0; 703 consoledev[v_len] = 0; 704 bcons_init2(inputdev, outputdev, consoledev); 705 } else { 706 /* 707 * Ensure console property exists 708 * If not create it as "hypervisor" 709 */ 710 v_len = do_bsys_getproplen(NULL, "console"); 711 if (v_len < 0) 712 bsetprops("console", "hypervisor"); 713 inputdev = outputdev = consoledev = "hypervisor"; 714 bcons_init2(inputdev, outputdev, consoledev); 715 } 716 717 if (strstr((char *)xbootp->bi_cmdline, "prom_debug") || kbm_debug) { 718 value = line; 719 bop_printf(NULL, "\nBoot properties:\n"); 720 name = ""; 721 while ((name = do_bsys_nextprop(NULL, name)) != NULL) { 722 bop_printf(NULL, "\t0x%p %s = ", (void *)name, name); 723 (void) do_bsys_getprop(NULL, name, value); 724 v_len = do_bsys_getproplen(NULL, name); 725 bop_printf(NULL, "len=%d ", v_len); 726 value[v_len] = 0; 727 bop_printf(NULL, "%s\n", value); 728 } 729 } 730 } 731 732 /* 733 * print formatted output 734 */ 735 /*PRINTFLIKE2*/ 736 /*ARGSUSED*/ 737 void 738 bop_printf(bootops_t *bop, const char *fmt, ...) 739 { 740 va_list ap; 741 742 if (have_console == 0) 743 return; 744 745 va_start(ap, fmt); 746 (void) vsnprintf(buffer, BUFFERSIZE, fmt, ap); 747 va_end(ap); 748 PUT_STRING(buffer); 749 } 750 751 /* 752 * Another panic() variant; this one can be used even earlier during boot than 753 * prom_panic(). 754 */ 755 /*PRINTFLIKE1*/ 756 void 757 bop_panic(const char *fmt, ...) 758 { 759 va_list ap; 760 761 va_start(ap, fmt); 762 bop_printf(NULL, fmt, ap); 763 va_end(ap); 764 765 bop_printf(NULL, "\nPress any key to reboot.\n"); 766 (void) bcons_getchar(); 767 bop_printf(NULL, "Resetting...\n"); 768 pc_reset(); 769 } 770 771 /* 772 * Do a real mode interrupt BIOS call 773 */ 774 typedef struct bios_regs { 775 unsigned short ax, bx, cx, dx, si, di, bp, es, ds; 776 } bios_regs_t; 777 typedef int (*bios_func_t)(int, bios_regs_t *); 778 779 /*ARGSUSED*/ 780 static void 781 do_bsys_doint(bootops_t *bop, int intnum, struct bop_regs *rp) 782 { 783 #if defined(__xpv) 784 prom_panic("unsupported call to BOP_DOINT()\n"); 785 #else /* __xpv */ 786 static int firsttime = 1; 787 bios_func_t bios_func = (bios_func_t)(void *)(uintptr_t)0x5000; 788 bios_regs_t br; 789 790 /* 791 * The first time we do this, we have to copy the pre-packaged 792 * low memory bios call code image into place. 793 */ 794 if (firsttime) { 795 extern char bios_image[]; 796 extern uint32_t bios_size; 797 798 bcopy(bios_image, (void *)bios_func, bios_size); 799 firsttime = 0; 800 } 801 802 br.ax = rp->eax.word.ax; 803 br.bx = rp->ebx.word.bx; 804 br.cx = rp->ecx.word.cx; 805 br.dx = rp->edx.word.dx; 806 br.bp = rp->ebp.word.bp; 807 br.si = rp->esi.word.si; 808 br.di = rp->edi.word.di; 809 br.ds = rp->ds; 810 br.es = rp->es; 811 812 DBG_MSG("Doing BIOS call..."); 813 DBG(br.ax); 814 DBG(br.bx); 815 DBG(br.dx); 816 rp->eflags = bios_func(intnum, &br); 817 DBG_MSG("done\n"); 818 819 rp->eax.word.ax = br.ax; 820 rp->ebx.word.bx = br.bx; 821 rp->ecx.word.cx = br.cx; 822 rp->edx.word.dx = br.dx; 823 rp->ebp.word.bp = br.bp; 824 rp->esi.word.si = br.si; 825 rp->edi.word.di = br.di; 826 rp->ds = br.ds; 827 rp->es = br.es; 828 #endif /* __xpv */ 829 } 830 831 static struct boot_syscalls bop_sysp = { 832 bcons_getchar, 833 bcons_putchar, 834 bcons_ischar, 835 }; 836 837 static char *whoami; 838 839 #define BUFLEN 64 840 841 #if defined(__xpv) 842 843 static char namebuf[32]; 844 845 static void 846 xen_parse_props(char *s, char *prop_map[], int n_prop) 847 { 848 char **prop_name = prop_map; 849 char *cp = s, *scp; 850 851 do { 852 scp = cp; 853 while ((*cp != NULL) && (*cp != ':')) 854 cp++; 855 856 if ((scp != cp) && (*prop_name != NULL)) { 857 *cp = NULL; 858 bsetprops(*prop_name, scp); 859 } 860 861 cp++; 862 prop_name++; 863 n_prop--; 864 } while (n_prop > 0); 865 } 866 867 #define VBDPATHLEN 64 868 869 /* 870 * parse the 'xpv-root' property to create properties used by 871 * ufs_mountroot. 872 */ 873 static void 874 xen_vbdroot_props(char *s) 875 { 876 char vbdpath[VBDPATHLEN] = "/xpvd/xdf@"; 877 const char lnamefix[] = "/dev/dsk/c0d"; 878 char *pnp; 879 char *prop_p; 880 char mi; 881 short minor; 882 long addr = 0; 883 884 pnp = vbdpath + strlen(vbdpath); 885 prop_p = s + strlen(lnamefix); 886 while ((*prop_p != '\0') && (*prop_p != 's') && (*prop_p != 'p')) 887 addr = addr * 10 + *prop_p++ - '0'; 888 (void) snprintf(pnp, VBDPATHLEN, "%lx", addr); 889 pnp = vbdpath + strlen(vbdpath); 890 if (*prop_p == 's') 891 mi = 'a'; 892 else if (*prop_p == 'p') 893 mi = 'q'; 894 else 895 ASSERT(0); /* shouldn't be here */ 896 prop_p++; 897 ASSERT(*prop_p != '\0'); 898 if (ISDIGIT(*prop_p)) { 899 minor = *prop_p - '0'; 900 prop_p++; 901 if (ISDIGIT(*prop_p)) { 902 minor = minor * 10 + *prop_p - '0'; 903 } 904 } else { 905 /* malformed root path, use 0 as default */ 906 minor = 0; 907 } 908 ASSERT(minor < 16); /* at most 16 partitions */ 909 mi += minor; 910 *pnp++ = ':'; 911 *pnp++ = mi; 912 *pnp++ = '\0'; 913 bsetprops("fstype", "ufs"); 914 bsetprops("bootpath", vbdpath); 915 916 DBG_MSG("VBD bootpath set to "); 917 DBG_MSG(vbdpath); 918 DBG_MSG("\n"); 919 } 920 921 /* 922 * parse the xpv-nfsroot property to create properties used by 923 * nfs_mountroot. 924 */ 925 static void 926 xen_nfsroot_props(char *s) 927 { 928 char *prop_map[] = { 929 BP_SERVER_IP, /* server IP address */ 930 BP_SERVER_NAME, /* server hostname */ 931 BP_SERVER_PATH, /* root path */ 932 }; 933 int n_prop = sizeof (prop_map) / sizeof (prop_map[0]); 934 935 bsetprop("fstype", 6, "nfs", 4); 936 937 xen_parse_props(s, prop_map, n_prop); 938 939 /* 940 * If a server name wasn't specified, use a default. 941 */ 942 if (do_bsys_getproplen(NULL, BP_SERVER_NAME) == -1) 943 bsetprops(BP_SERVER_NAME, "unknown"); 944 } 945 946 /* 947 * Extract our IP address, etc. from the "xpv-ip" property. 948 */ 949 static void 950 xen_ip_props(char *s) 951 { 952 char *prop_map[] = { 953 BP_HOST_IP, /* IP address */ 954 NULL, /* NFS server IP address (ignored in */ 955 /* favour of xpv-nfsroot) */ 956 BP_ROUTER_IP, /* IP gateway */ 957 BP_SUBNET_MASK, /* IP subnet mask */ 958 "xpv-hostname", /* hostname (ignored) */ 959 BP_NETWORK_INTERFACE, /* interface name */ 960 "xpv-hcp", /* host configuration protocol */ 961 }; 962 int n_prop = sizeof (prop_map) / sizeof (prop_map[0]); 963 char ifname[IFNAMSIZ]; 964 965 xen_parse_props(s, prop_map, n_prop); 966 967 /* 968 * A Linux dom0 administrator expects all interfaces to be 969 * called "ethX", which is not the case here. 970 * 971 * If the interface name specified is "eth0", presume that 972 * this is really intended to be "xnf0" (the first domU -> 973 * dom0 interface for this domain). 974 */ 975 if ((do_bsys_getprop(NULL, BP_NETWORK_INTERFACE, ifname) == 0) && 976 (strcmp("eth0", ifname) == 0)) { 977 bsetprops(BP_NETWORK_INTERFACE, "xnf0"); 978 bop_printf(NULL, 979 "network interface name 'eth0' replaced with 'xnf0'\n"); 980 } 981 } 982 983 #else /* __xpv */ 984 985 static void 986 setup_rarp_props(struct sol_netinfo *sip) 987 { 988 char buf[BUFLEN]; /* to hold ip/mac addrs */ 989 uint8_t *val; 990 991 val = (uint8_t *)&sip->sn_ciaddr; 992 (void) snprintf(buf, BUFLEN, "%d.%d.%d.%d", 993 val[0], val[1], val[2], val[3]); 994 bsetprops(BP_HOST_IP, buf); 995 996 val = (uint8_t *)&sip->sn_siaddr; 997 (void) snprintf(buf, BUFLEN, "%d.%d.%d.%d", 998 val[0], val[1], val[2], val[3]); 999 bsetprops(BP_SERVER_IP, buf); 1000 1001 if (sip->sn_giaddr != 0) { 1002 val = (uint8_t *)&sip->sn_giaddr; 1003 (void) snprintf(buf, BUFLEN, "%d.%d.%d.%d", 1004 val[0], val[1], val[2], val[3]); 1005 bsetprops(BP_ROUTER_IP, buf); 1006 } 1007 1008 if (sip->sn_netmask != 0) { 1009 val = (uint8_t *)&sip->sn_netmask; 1010 (void) snprintf(buf, BUFLEN, "%d.%d.%d.%d", 1011 val[0], val[1], val[2], val[3]); 1012 bsetprops(BP_SUBNET_MASK, buf); 1013 } 1014 1015 if (sip->sn_mactype != 4 || sip->sn_maclen != 6) { 1016 bop_printf(NULL, "unsupported mac type %d, mac len %d\n", 1017 sip->sn_mactype, sip->sn_maclen); 1018 } else { 1019 val = sip->sn_macaddr; 1020 (void) snprintf(buf, BUFLEN, "%x:%x:%x:%x:%x:%x", 1021 val[0], val[1], val[2], val[3], val[4], val[5]); 1022 bsetprops(BP_BOOT_MAC, buf); 1023 } 1024 } 1025 1026 #endif /* __xpv */ 1027 1028 static void 1029 build_panic_cmdline(const char *cmd, int cmdlen) 1030 { 1031 int proplen; 1032 size_t arglen; 1033 1034 arglen = sizeof (fastreboot_onpanic_args); 1035 /* 1036 * If we allready have fastreboot-onpanic set to zero, 1037 * don't add them again. 1038 */ 1039 if ((proplen = do_bsys_getproplen(NULL, FASTREBOOT_ONPANIC)) > 0 && 1040 proplen <= sizeof (fastreboot_onpanic_cmdline)) { 1041 (void) do_bsys_getprop(NULL, FASTREBOOT_ONPANIC, 1042 fastreboot_onpanic_cmdline); 1043 if (FASTREBOOT_ONPANIC_NOTSET(fastreboot_onpanic_cmdline)) 1044 arglen = 1; 1045 } 1046 1047 /* 1048 * construct fastreboot_onpanic_cmdline 1049 */ 1050 if (cmdlen + arglen > sizeof (fastreboot_onpanic_cmdline)) { 1051 DBG_MSG("Command line too long: clearing " 1052 FASTREBOOT_ONPANIC "\n"); 1053 fastreboot_onpanic = 0; 1054 } else { 1055 bcopy(cmd, fastreboot_onpanic_cmdline, cmdlen); 1056 if (arglen != 1) 1057 bcopy(fastreboot_onpanic_args, 1058 fastreboot_onpanic_cmdline + cmdlen, arglen); 1059 else 1060 fastreboot_onpanic_cmdline[cmdlen] = 0; 1061 } 1062 } 1063 1064 1065 #ifndef __xpv 1066 /* 1067 * Construct boot command line for Fast Reboot 1068 */ 1069 static void 1070 build_fastboot_cmdline(void) 1071 { 1072 saved_cmdline_len = strlen(xbootp->bi_cmdline) + 1; 1073 if (saved_cmdline_len > FASTBOOT_SAVED_CMDLINE_LEN) { 1074 DBG(saved_cmdline_len); 1075 DBG_MSG("Command line too long: clearing fastreboot_capable\n"); 1076 fastreboot_capable = 0; 1077 } else { 1078 bcopy((void *)(xbootp->bi_cmdline), (void *)saved_cmdline, 1079 saved_cmdline_len); 1080 saved_cmdline[saved_cmdline_len - 1] = '\0'; 1081 build_panic_cmdline(saved_cmdline, saved_cmdline_len - 1); 1082 } 1083 } 1084 1085 /* 1086 * Save memory layout, disk drive information, unix and boot archive sizes for 1087 * Fast Reboot. 1088 */ 1089 static void 1090 save_boot_info(multiboot_info_t *mbi, struct xboot_info *xbi) 1091 { 1092 struct boot_modules *modp; 1093 int i; 1094 1095 bcopy(mbi, &saved_mbi, sizeof (multiboot_info_t)); 1096 if (mbi->mmap_length > sizeof (saved_mmap)) { 1097 DBG_MSG("mbi->mmap_length too big: clearing " 1098 "fastreboot_capable\n"); 1099 fastreboot_capable = 0; 1100 } else { 1101 bcopy((void *)(uintptr_t)mbi->mmap_addr, (void *)saved_mmap, 1102 mbi->mmap_length); 1103 } 1104 1105 if (mbi->drives_length > sizeof (saved_drives)) { 1106 DBG(mbi->drives_length); 1107 DBG_MSG("mbi->drives_length too big: clearing " 1108 "fastreboot_capable\n"); 1109 fastreboot_capable = 0; 1110 } else { 1111 bcopy((void *)(uintptr_t)mbi->drives_addr, (void *)saved_drives, 1112 mbi->drives_length); 1113 } 1114 1115 /* 1116 * Current file sizes. Used by fastboot.c to figure out how much 1117 * memory to reserve for panic reboot. 1118 * Use the module list from the dboot-constructed xboot_info 1119 * instead of the list referenced by the multiboot structure 1120 * because that structure may not be addressable now. 1121 */ 1122 saved_file_size[FASTBOOT_NAME_UNIX] = FOUR_MEG - PAGESIZE; 1123 for (i = 0, modp = (struct boot_modules *)(uintptr_t)xbi->bi_modules; 1124 i < xbi->bi_module_cnt; i++, modp++) { 1125 saved_file_size[FASTBOOT_NAME_BOOTARCHIVE] += modp->bm_size; 1126 } 1127 1128 } 1129 #endif /* __xpv */ 1130 1131 1132 /* 1133 * 1st pass at building the table of boot properties. This includes: 1134 * - values set on the command line: -B a=x,b=y,c=z .... 1135 * - known values we just compute (ie. from xbootp) 1136 * - values from /boot/solaris/bootenv.rc (ie. eeprom(1m) values) 1137 * 1138 * the grub command line looked like: 1139 * kernel boot-file [-B prop=value[,prop=value]...] [boot-args] 1140 * 1141 * whoami is the same as boot-file 1142 */ 1143 static void 1144 build_boot_properties(void) 1145 { 1146 char *name; 1147 int name_len; 1148 char *value; 1149 int value_len; 1150 struct boot_modules *bm; 1151 char *propbuf; 1152 int quoted = 0; 1153 int boot_arg_len; 1154 #ifndef __xpv 1155 static int stdout_val = 0; 1156 uchar_t boot_device; 1157 char str[3]; 1158 multiboot_info_t *mbi; 1159 int netboot; 1160 struct sol_netinfo *sip; 1161 #endif 1162 1163 /* 1164 * These have to be done first, so that kobj_mount_root() works 1165 */ 1166 DBG_MSG("Building boot properties\n"); 1167 propbuf = do_bsys_alloc(NULL, NULL, MMU_PAGESIZE, 0); 1168 DBG((uintptr_t)propbuf); 1169 if (xbootp->bi_module_cnt > 0) { 1170 bm = xbootp->bi_modules; 1171 bsetprop64("ramdisk_start", (uint64_t)(uintptr_t)bm->bm_addr); 1172 bsetprop64("ramdisk_end", (uint64_t)(uintptr_t)bm->bm_addr + 1173 bm->bm_size); 1174 } 1175 1176 DBG_MSG("Parsing command line for boot properties\n"); 1177 value = xbootp->bi_cmdline; 1178 1179 /* 1180 * allocate memory to collect boot_args into 1181 */ 1182 boot_arg_len = strlen(xbootp->bi_cmdline) + 1; 1183 boot_args = do_bsys_alloc(NULL, NULL, boot_arg_len, MMU_PAGESIZE); 1184 boot_args[0] = 0; 1185 boot_arg_len = 0; 1186 1187 #ifdef __xpv 1188 /* 1189 * Xen puts a lot of device information in front of the kernel name 1190 * let's grab them and make them boot properties. The first 1191 * string w/o an "=" in it will be the boot-file property. 1192 */ 1193 (void) strcpy(namebuf, "xpv-"); 1194 for (;;) { 1195 /* 1196 * get to next property 1197 */ 1198 while (ISSPACE(*value)) 1199 ++value; 1200 name = value; 1201 /* 1202 * look for an "=" 1203 */ 1204 while (*value && !ISSPACE(*value) && *value != '=') { 1205 value++; 1206 } 1207 if (*value != '=') { /* no "=" in the property */ 1208 value = name; 1209 break; 1210 } 1211 name_len = value - name; 1212 value_len = 0; 1213 /* 1214 * skip over the "=" 1215 */ 1216 value++; 1217 while (value[value_len] && !ISSPACE(value[value_len])) { 1218 ++value_len; 1219 } 1220 /* 1221 * build property name with "xpv-" prefix 1222 */ 1223 if (name_len + 4 > 32) { /* skip if name too long */ 1224 value += value_len; 1225 continue; 1226 } 1227 bcopy(name, &namebuf[4], name_len); 1228 name_len += 4; 1229 namebuf[name_len] = 0; 1230 bcopy(value, propbuf, value_len); 1231 propbuf[value_len] = 0; 1232 bsetprops(namebuf, propbuf); 1233 1234 /* 1235 * xpv-root is set to the logical disk name of the xen 1236 * VBD when booting from a disk-based filesystem. 1237 */ 1238 if (strcmp(namebuf, "xpv-root") == 0) 1239 xen_vbdroot_props(propbuf); 1240 /* 1241 * While we're here, if we have a "xpv-nfsroot" property 1242 * then we need to set "fstype" to "nfs" so we mount 1243 * our root from the nfs server. Also parse the xpv-nfsroot 1244 * property to create the properties that nfs_mountroot will 1245 * need to find the root and mount it. 1246 */ 1247 if (strcmp(namebuf, "xpv-nfsroot") == 0) 1248 xen_nfsroot_props(propbuf); 1249 1250 if (strcmp(namebuf, "xpv-ip") == 0) 1251 xen_ip_props(propbuf); 1252 value += value_len; 1253 } 1254 #endif 1255 1256 while (ISSPACE(*value)) 1257 ++value; 1258 /* 1259 * value now points at the boot-file 1260 */ 1261 value_len = 0; 1262 while (value[value_len] && !ISSPACE(value[value_len])) 1263 ++value_len; 1264 if (value_len > 0) { 1265 whoami = propbuf; 1266 bcopy(value, whoami, value_len); 1267 whoami[value_len] = 0; 1268 bsetprops("boot-file", whoami); 1269 /* 1270 * strip leading path stuff from whoami, so running from 1271 * PXE/miniroot makes sense. 1272 */ 1273 if (strstr(whoami, "/platform/") != NULL) 1274 whoami = strstr(whoami, "/platform/"); 1275 bsetprops("whoami", whoami); 1276 } 1277 1278 /* 1279 * Values forcibly set boot properties on the command line via -B. 1280 * Allow use of quotes in values. Other stuff goes on kernel 1281 * command line. 1282 */ 1283 name = value + value_len; 1284 while (*name != 0) { 1285 /* 1286 * anything not " -B" is copied to the command line 1287 */ 1288 if (!ISSPACE(name[0]) || name[1] != '-' || name[2] != 'B') { 1289 boot_args[boot_arg_len++] = *name; 1290 boot_args[boot_arg_len] = 0; 1291 ++name; 1292 continue; 1293 } 1294 1295 /* 1296 * skip the " -B" and following white space 1297 */ 1298 name += 3; 1299 while (ISSPACE(*name)) 1300 ++name; 1301 while (*name && !ISSPACE(*name)) { 1302 value = strstr(name, "="); 1303 if (value == NULL) 1304 break; 1305 name_len = value - name; 1306 ++value; 1307 value_len = 0; 1308 quoted = 0; 1309 for (; ; ++value_len) { 1310 if (!value[value_len]) 1311 break; 1312 1313 /* 1314 * is this value quoted? 1315 */ 1316 if (value_len == 0 && 1317 (value[0] == '\'' || value[0] == '"')) { 1318 quoted = value[0]; 1319 ++value_len; 1320 } 1321 1322 /* 1323 * In the quote accept any character, 1324 * but look for ending quote. 1325 */ 1326 if (quoted) { 1327 if (value[value_len] == quoted) 1328 quoted = 0; 1329 continue; 1330 } 1331 1332 /* 1333 * a comma or white space ends the value 1334 */ 1335 if (value[value_len] == ',' || 1336 ISSPACE(value[value_len])) 1337 break; 1338 } 1339 1340 if (value_len == 0) { 1341 bsetprop(name, name_len, "true", 5); 1342 } else { 1343 char *v = value; 1344 int l = value_len; 1345 if (v[0] == v[l - 1] && 1346 (v[0] == '\'' || v[0] == '"')) { 1347 ++v; 1348 l -= 2; 1349 } 1350 bcopy(v, propbuf, l); 1351 propbuf[l] = '\0'; 1352 bsetprop(name, name_len, propbuf, 1353 l + 1); 1354 } 1355 name = value + value_len; 1356 while (*name == ',') 1357 ++name; 1358 } 1359 } 1360 1361 /* 1362 * set boot-args property 1363 * 1275 name is bootargs, so set 1364 * that too 1365 */ 1366 bsetprops("boot-args", boot_args); 1367 bsetprops("bootargs", boot_args); 1368 1369 #ifndef __xpv 1370 /* 1371 * set the BIOS boot device from GRUB 1372 */ 1373 netboot = 0; 1374 mbi = xbootp->bi_mb_info; 1375 1376 /* 1377 * Build boot command line for Fast Reboot 1378 */ 1379 build_fastboot_cmdline(); 1380 1381 /* 1382 * Save various boot information for Fast Reboot 1383 */ 1384 save_boot_info(mbi, xbootp); 1385 1386 if (mbi != NULL && mbi->flags & 0x2) { 1387 boot_device = mbi->boot_device >> 24; 1388 if (boot_device == 0x20) 1389 netboot++; 1390 str[0] = (boot_device >> 4) + '0'; 1391 str[1] = (boot_device & 0xf) + '0'; 1392 str[2] = 0; 1393 bsetprops("bios-boot-device", str); 1394 } else { 1395 netboot = 1; 1396 } 1397 1398 /* 1399 * In the netboot case, drives_info is overloaded with the dhcp ack. 1400 * This is not multiboot compliant and requires special pxegrub! 1401 */ 1402 if (netboot && mbi->drives_length != 0) { 1403 sip = (struct sol_netinfo *)(uintptr_t)mbi->drives_addr; 1404 if (sip->sn_infotype == SN_TYPE_BOOTP) 1405 bsetprop("bootp-response", sizeof ("bootp-response"), 1406 (void *)(uintptr_t)mbi->drives_addr, 1407 mbi->drives_length); 1408 else if (sip->sn_infotype == SN_TYPE_RARP) 1409 setup_rarp_props(sip); 1410 } 1411 bsetprop("stdout", strlen("stdout"), 1412 &stdout_val, sizeof (stdout_val)); 1413 #endif /* __xpv */ 1414 1415 /* 1416 * more conjured up values for made up things.... 1417 */ 1418 #if defined(__xpv) 1419 bsetprops("mfg-name", "i86xpv"); 1420 bsetprops("impl-arch-name", "i86xpv"); 1421 #else 1422 bsetprops("mfg-name", "i86pc"); 1423 bsetprops("impl-arch-name", "i86pc"); 1424 #endif 1425 1426 /* 1427 * Build firmware-provided system properties 1428 */ 1429 build_firmware_properties(); 1430 1431 /* 1432 * XXPV 1433 * 1434 * Find out what these are: 1435 * - cpuid_feature_ecx_include 1436 * - cpuid_feature_ecx_exclude 1437 * - cpuid_feature_edx_include 1438 * - cpuid_feature_edx_exclude 1439 * 1440 * Find out what these are in multiboot: 1441 * - netdev-path 1442 * - fstype 1443 */ 1444 } 1445 1446 #ifdef __xpv 1447 /* 1448 * Under the Hypervisor, memory usable for DMA may be scarce. One 1449 * very likely large pool of DMA friendly memory is occupied by 1450 * the boot_archive, as it was loaded by grub into low MFNs. 1451 * 1452 * Here we free up that memory by copying the boot archive to what are 1453 * likely higher MFN pages and then swapping the mfn/pfn mappings. 1454 */ 1455 #define PFN_2GIG 0x80000 1456 static void 1457 relocate_boot_archive(void) 1458 { 1459 mfn_t max_mfn = HYPERVISOR_memory_op(XENMEM_maximum_ram_page, NULL); 1460 struct boot_modules *bm = xbootp->bi_modules; 1461 uintptr_t va; 1462 pfn_t va_pfn; 1463 mfn_t va_mfn; 1464 caddr_t copy; 1465 pfn_t copy_pfn; 1466 mfn_t copy_mfn; 1467 size_t len; 1468 int slop; 1469 int total = 0; 1470 int relocated = 0; 1471 int mmu_update_return; 1472 mmu_update_t t[2]; 1473 x86pte_t pte; 1474 1475 /* 1476 * If all MFN's are below 2Gig, don't bother doing this. 1477 */ 1478 if (max_mfn < PFN_2GIG) 1479 return; 1480 if (xbootp->bi_module_cnt < 1) { 1481 DBG_MSG("no boot_archive!"); 1482 return; 1483 } 1484 1485 DBG_MSG("moving boot_archive to high MFN memory\n"); 1486 va = (uintptr_t)bm->bm_addr; 1487 len = bm->bm_size; 1488 slop = va & MMU_PAGEOFFSET; 1489 if (slop) { 1490 va += MMU_PAGESIZE - slop; 1491 len -= MMU_PAGESIZE - slop; 1492 } 1493 len = P2ALIGN(len, MMU_PAGESIZE); 1494 1495 /* 1496 * Go through all boot_archive pages, swapping any low MFN pages 1497 * with memory at next_phys. 1498 */ 1499 while (len != 0) { 1500 ++total; 1501 va_pfn = mmu_btop(va - ONE_GIG); 1502 va_mfn = mfn_list[va_pfn]; 1503 if (mfn_list[va_pfn] < PFN_2GIG) { 1504 copy = kbm_remap_window(next_phys, 1); 1505 bcopy((void *)va, copy, MMU_PAGESIZE); 1506 copy_pfn = mmu_btop(next_phys); 1507 copy_mfn = mfn_list[copy_pfn]; 1508 1509 pte = mfn_to_ma(copy_mfn) | PT_NOCONSIST | PT_VALID; 1510 if (HYPERVISOR_update_va_mapping(va, pte, 1511 UVMF_INVLPG | UVMF_LOCAL)) 1512 bop_panic("relocate_boot_archive(): " 1513 "HYPERVISOR_update_va_mapping() failed"); 1514 1515 mfn_list[va_pfn] = copy_mfn; 1516 mfn_list[copy_pfn] = va_mfn; 1517 1518 t[0].ptr = mfn_to_ma(copy_mfn) | MMU_MACHPHYS_UPDATE; 1519 t[0].val = va_pfn; 1520 t[1].ptr = mfn_to_ma(va_mfn) | MMU_MACHPHYS_UPDATE; 1521 t[1].val = copy_pfn; 1522 if (HYPERVISOR_mmu_update(t, 2, &mmu_update_return, 1523 DOMID_SELF) != 0 || mmu_update_return != 2) 1524 bop_panic("relocate_boot_archive(): " 1525 "HYPERVISOR_mmu_update() failed"); 1526 1527 next_phys += MMU_PAGESIZE; 1528 ++relocated; 1529 } 1530 len -= MMU_PAGESIZE; 1531 va += MMU_PAGESIZE; 1532 } 1533 DBG_MSG("Relocated pages:\n"); 1534 DBG(relocated); 1535 DBG_MSG("Out of total pages:\n"); 1536 DBG(total); 1537 } 1538 #endif /* __xpv */ 1539 1540 #if !defined(__xpv) 1541 /* 1542 * Install a temporary IDT that lets us catch errors in the boot time code. 1543 * We shouldn't get any faults at all while this is installed, so we'll 1544 * just generate a traceback and exit. 1545 */ 1546 #ifdef __amd64 1547 static const int bcode_sel = B64CODE_SEL; 1548 #else 1549 static const int bcode_sel = B32CODE_SEL; 1550 #endif 1551 1552 /* 1553 * simple description of a stack frame (args are 32 bit only currently) 1554 */ 1555 typedef struct bop_frame { 1556 struct bop_frame *old_frame; 1557 pc_t retaddr; 1558 long arg[1]; 1559 } bop_frame_t; 1560 1561 void 1562 bop_traceback(bop_frame_t *frame) 1563 { 1564 pc_t pc; 1565 int cnt; 1566 int a; 1567 char *ksym; 1568 ulong_t off; 1569 1570 bop_printf(NULL, "Stack traceback:\n"); 1571 for (cnt = 0; cnt < 30; ++cnt) { /* up to 30 frames */ 1572 pc = frame->retaddr; 1573 if (pc == 0) 1574 break; 1575 ksym = kobj_getsymname(pc, &off); 1576 if (ksym) 1577 bop_printf(NULL, " %s+%lx", ksym, off); 1578 else 1579 bop_printf(NULL, " 0x%lx", pc); 1580 1581 frame = frame->old_frame; 1582 if (frame == 0) { 1583 bop_printf(NULL, "\n"); 1584 break; 1585 } 1586 for (a = 0; a < 6; ++a) { /* try for 6 args */ 1587 #if defined(__i386) 1588 if ((void *)&frame->arg[a] == (void *)frame->old_frame) 1589 break; 1590 if (a == 0) 1591 bop_printf(NULL, "("); 1592 else 1593 bop_printf(NULL, ","); 1594 bop_printf(NULL, "0x%lx", frame->arg[a]); 1595 #endif 1596 } 1597 bop_printf(NULL, ")\n"); 1598 } 1599 } 1600 1601 struct trapframe { 1602 ulong_t frame_ptr; /* %[er]bp pushed by our code */ 1603 ulong_t error_code; /* optional */ 1604 ulong_t inst_ptr; 1605 ulong_t code_seg; 1606 ulong_t flags_reg; 1607 #ifdef __amd64 1608 ulong_t stk_ptr; 1609 ulong_t stk_seg; 1610 #endif 1611 }; 1612 1613 void 1614 bop_trap(struct trapframe *tf) 1615 { 1616 bop_frame_t fakeframe; 1617 static int depth = 0; 1618 1619 /* 1620 * Check for an infinite loop of traps. 1621 */ 1622 if (++depth > 2) 1623 bop_panic("Nested trap"); 1624 1625 /* 1626 * adjust the tf for optional error_code by detecting the code selector 1627 */ 1628 if (tf->code_seg != bcode_sel) 1629 tf = (struct trapframe *)((uintptr_t)tf - sizeof (ulong_t)); 1630 1631 bop_printf(NULL, "Unexpected trap\n"); 1632 bop_printf(NULL, "instruction pointer 0x%lx\n", tf->inst_ptr); 1633 bop_printf(NULL, "error code, optional 0x%lx\n", 1634 tf->error_code & 0xffffffff); 1635 bop_printf(NULL, "code segment 0x%lx\n", tf->code_seg & 0xffff); 1636 bop_printf(NULL, "flags register 0x%lx\n", tf->flags_reg); 1637 #ifdef __amd64 1638 bop_printf(NULL, "return %%rsp 0x%lx\n", tf->stk_ptr); 1639 bop_printf(NULL, "return %%ss 0x%lx\n", tf->stk_seg & 0xffff); 1640 #endif 1641 fakeframe.old_frame = (bop_frame_t *)tf->frame_ptr; 1642 fakeframe.retaddr = (pc_t)tf->inst_ptr; 1643 bop_printf(NULL, "Attempting stack backtrace:\n"); 1644 bop_traceback(&fakeframe); 1645 bop_panic("unexpected trap in early boot"); 1646 } 1647 1648 extern void bop_trap_handler(void); 1649 1650 static gate_desc_t *bop_idt; 1651 1652 static desctbr_t bop_idt_info; 1653 1654 static void 1655 bop_idt_init(void) 1656 { 1657 int t; 1658 1659 bop_idt = (gate_desc_t *) 1660 do_bsys_alloc(NULL, NULL, MMU_PAGESIZE, MMU_PAGESIZE); 1661 bzero(bop_idt, MMU_PAGESIZE); 1662 for (t = 0; t < NIDT; ++t) { 1663 /* 1664 * Note that since boot runs without a TSS, the 1665 * double fault handler cannot use an alternate stack 1666 * (64-bit) or a task gate (32-bit). 1667 */ 1668 set_gatesegd(&bop_idt[t], &bop_trap_handler, bcode_sel, 1669 SDT_SYSIGT, TRP_KPL, 0); 1670 } 1671 bop_idt_info.dtr_limit = (NIDT * sizeof (gate_desc_t)) - 1; 1672 bop_idt_info.dtr_base = (uintptr_t)bop_idt; 1673 wr_idtr(&bop_idt_info); 1674 } 1675 #endif /* !defined(__xpv) */ 1676 1677 /* 1678 * This is where we enter the kernel. It dummies up the boot_ops and 1679 * boot_syscalls vectors and jumps off to _kobj_boot() 1680 */ 1681 void 1682 _start(struct xboot_info *xbp) 1683 { 1684 bootops_t *bops = &bootop; 1685 extern void _kobj_boot(); 1686 1687 /* 1688 * 1st off - initialize the console for any error messages 1689 */ 1690 xbootp = xbp; 1691 #ifdef __xpv 1692 HYPERVISOR_shared_info = (void *)xbootp->bi_shared_info; 1693 xen_info = xbootp->bi_xen_start_info; 1694 #endif 1695 bcons_init((void *)xbootp->bi_cmdline); 1696 have_console = 1; 1697 1698 #ifndef __xpv 1699 if (*((uint32_t *)(FASTBOOT_SWTCH_PA + FASTBOOT_STACK_OFFSET)) == 1700 FASTBOOT_MAGIC) { 1701 post_fastreboot = 1; 1702 *((uint32_t *)(FASTBOOT_SWTCH_PA + FASTBOOT_STACK_OFFSET)) = 0; 1703 } 1704 #endif 1705 1706 /* 1707 * enable debugging 1708 */ 1709 if (strstr((char *)xbootp->bi_cmdline, "kbm_debug")) 1710 kbm_debug = 1; 1711 1712 DBG_MSG("\n\n*** Entered Solaris in _start() cmdline is: "); 1713 DBG_MSG((char *)xbootp->bi_cmdline); 1714 DBG_MSG("\n\n\n"); 1715 1716 /* 1717 * physavail is no longer used by startup 1718 */ 1719 bm.physinstalled = xbp->bi_phys_install; 1720 bm.pcimem = xbp->bi_pcimem; 1721 bm.rsvdmem = xbp->bi_rsvdmem; 1722 bm.physavail = NULL; 1723 1724 /* 1725 * initialize the boot time allocator 1726 */ 1727 next_phys = xbootp->bi_next_paddr; 1728 DBG(next_phys); 1729 next_virt = (uintptr_t)xbootp->bi_next_vaddr; 1730 DBG(next_virt); 1731 DBG_MSG("Initializing boot time memory management..."); 1732 #ifdef __xpv 1733 { 1734 xen_platform_parameters_t p; 1735 1736 /* This call shouldn't fail, dboot already did it once. */ 1737 (void) HYPERVISOR_xen_version(XENVER_platform_parameters, &p); 1738 mfn_to_pfn_mapping = (pfn_t *)(xen_virt_start = p.virt_start); 1739 DBG(xen_virt_start); 1740 } 1741 #endif 1742 kbm_init(xbootp); 1743 DBG_MSG("done\n"); 1744 1745 /* 1746 * Fill in the bootops vector 1747 */ 1748 bops->bsys_version = BO_VERSION; 1749 bops->boot_mem = &bm; 1750 bops->bsys_alloc = do_bsys_alloc; 1751 bops->bsys_free = do_bsys_free; 1752 bops->bsys_getproplen = do_bsys_getproplen; 1753 bops->bsys_getprop = do_bsys_getprop; 1754 bops->bsys_nextprop = do_bsys_nextprop; 1755 bops->bsys_printf = bop_printf; 1756 bops->bsys_doint = do_bsys_doint; 1757 1758 /* 1759 * BOP_EALLOC() is no longer needed 1760 */ 1761 bops->bsys_ealloc = do_bsys_ealloc; 1762 1763 #ifdef __xpv 1764 /* 1765 * On domain 0 we need to free up some physical memory that is 1766 * usable for DMA. Since GRUB loaded the boot_archive, it is 1767 * sitting in low MFN memory. We'll relocated the boot archive 1768 * pages to high PFN memory. 1769 */ 1770 if (DOMAIN_IS_INITDOMAIN(xen_info)) 1771 relocate_boot_archive(); 1772 #endif 1773 1774 #ifndef __xpv 1775 /* 1776 * Install an IDT to catch early pagefaults (shouldn't have any). 1777 * Also needed for kmdb. 1778 */ 1779 bop_idt_init(); 1780 #endif 1781 1782 /* 1783 * Start building the boot properties from the command line 1784 */ 1785 DBG_MSG("Initializing boot properties:\n"); 1786 build_boot_properties(); 1787 1788 if (strstr((char *)xbootp->bi_cmdline, "prom_debug") || kbm_debug) { 1789 char *name; 1790 char *value; 1791 char *cp; 1792 int len; 1793 1794 value = do_bsys_alloc(NULL, NULL, MMU_PAGESIZE, MMU_PAGESIZE); 1795 bop_printf(NULL, "\nBoot properties:\n"); 1796 name = ""; 1797 while ((name = do_bsys_nextprop(NULL, name)) != NULL) { 1798 bop_printf(NULL, "\t0x%p %s = ", (void *)name, name); 1799 (void) do_bsys_getprop(NULL, name, value); 1800 len = do_bsys_getproplen(NULL, name); 1801 bop_printf(NULL, "len=%d ", len); 1802 value[len] = 0; 1803 for (cp = value; *cp; ++cp) { 1804 if (' ' <= *cp && *cp <= '~') 1805 bop_printf(NULL, "%c", *cp); 1806 else 1807 bop_printf(NULL, "-0x%x-", *cp); 1808 } 1809 bop_printf(NULL, "\n"); 1810 } 1811 } 1812 1813 /* 1814 * jump into krtld... 1815 */ 1816 _kobj_boot(&bop_sysp, NULL, bops, NULL); 1817 } 1818 1819 1820 /*ARGSUSED*/ 1821 static caddr_t 1822 no_more_alloc(bootops_t *bop, caddr_t virthint, size_t size, int align) 1823 { 1824 panic("Attempt to bsys_alloc() too late\n"); 1825 return (NULL); 1826 } 1827 1828 /*ARGSUSED*/ 1829 static void 1830 no_more_free(bootops_t *bop, caddr_t virt, size_t size) 1831 { 1832 panic("Attempt to bsys_free() too late\n"); 1833 } 1834 1835 void 1836 bop_no_more_mem(void) 1837 { 1838 DBG(total_bop_alloc_scratch); 1839 DBG(total_bop_alloc_kernel); 1840 bootops->bsys_alloc = no_more_alloc; 1841 bootops->bsys_free = no_more_free; 1842 } 1843 1844 1845 #ifndef __xpv 1846 /* 1847 * Set ACPI firmware properties 1848 */ 1849 1850 static caddr_t 1851 vmap_phys(size_t length, paddr_t pa) 1852 { 1853 paddr_t start, end; 1854 caddr_t va; 1855 size_t len, page; 1856 1857 start = P2ALIGN(pa, MMU_PAGESIZE); 1858 end = P2ROUNDUP(pa + length, MMU_PAGESIZE); 1859 len = end - start; 1860 va = (caddr_t)alloc_vaddr(len, MMU_PAGESIZE); 1861 for (page = 0; page < len; page += MMU_PAGESIZE) 1862 kbm_map((uintptr_t)va + page, start + page, 0, 0); 1863 return (va + (pa & MMU_PAGEOFFSET)); 1864 } 1865 1866 static uint8_t 1867 checksum_table(uint8_t *tp, size_t len) 1868 { 1869 uint8_t sum = 0; 1870 1871 while (len-- > 0) 1872 sum += *tp++; 1873 1874 return (sum); 1875 } 1876 1877 static int 1878 valid_rsdp(struct rsdp *rp) 1879 { 1880 1881 /* validate the V1.x checksum */ 1882 if (checksum_table((uint8_t *)&rp->v1, sizeof (struct rsdp_v1)) != 0) 1883 return (0); 1884 1885 /* If pre-ACPI 2.0, this is a valid RSDP */ 1886 if (rp->v1.revision < 2) 1887 return (1); 1888 1889 /* validate the V2.x checksum */ 1890 if (checksum_table((uint8_t *)rp, sizeof (struct rsdp)) != 0) 1891 return (0); 1892 1893 return (1); 1894 } 1895 1896 /* 1897 * Scan memory range for an RSDP; 1898 * see ACPI 3.0 Spec, 5.2.5.1 1899 */ 1900 static struct rsdp * 1901 scan_rsdp(paddr_t start, paddr_t end) 1902 { 1903 size_t len = end - start + 1; 1904 caddr_t ptr; 1905 1906 ptr = vmap_phys(len, start); 1907 while (len > 0) { 1908 if (strncmp(ptr, ACPI_RSDP_SIG, ACPI_RSDP_SIG_LEN) == 0) 1909 if (valid_rsdp((struct rsdp *)ptr)) 1910 return ((struct rsdp *)ptr); 1911 ptr += 16; 1912 len -= 16; 1913 } 1914 1915 return (NULL); 1916 } 1917 1918 /* 1919 * Refer to ACPI 3.0 Spec, section 5.2.5.1 to understand this function 1920 */ 1921 static struct rsdp * 1922 find_rsdp() { 1923 struct rsdp *rsdp; 1924 uint16_t *ebda_seg; 1925 paddr_t ebda_addr; 1926 1927 /* 1928 * Get the EBDA segment and scan the first 1K 1929 */ 1930 ebda_seg = (uint16_t *)vmap_phys(sizeof (uint16_t), ACPI_EBDA_SEG_ADDR); 1931 ebda_addr = *ebda_seg << 4; 1932 rsdp = scan_rsdp(ebda_addr, ebda_addr + ACPI_EBDA_LEN - 1); 1933 if (rsdp == NULL) 1934 /* if EBDA doesn't contain RSDP, look in BIOS memory */ 1935 rsdp = scan_rsdp(0xe0000, 0xfffff); 1936 return (rsdp); 1937 } 1938 1939 static struct table_header * 1940 map_fw_table(paddr_t table_addr) 1941 { 1942 struct table_header *tp; 1943 size_t len = MAX(sizeof (struct table_header), MMU_PAGESIZE); 1944 1945 /* 1946 * Map at least a page; if the table is larger than this, remap it 1947 */ 1948 tp = (struct table_header *)vmap_phys(len, table_addr); 1949 if (tp->len > len) 1950 tp = (struct table_header *)vmap_phys(tp->len, table_addr); 1951 return (tp); 1952 } 1953 1954 static struct table_header * 1955 find_fw_table(char *signature) 1956 { 1957 static int revision = 0; 1958 static struct xsdt *xsdt; 1959 static int len; 1960 paddr_t xsdt_addr; 1961 struct rsdp *rsdp; 1962 struct table_header *tp; 1963 paddr_t table_addr; 1964 int n; 1965 1966 if (strlen(signature) != ACPI_TABLE_SIG_LEN) 1967 return (NULL); 1968 1969 /* 1970 * Reading the ACPI 3.0 Spec, section 5.2.5.3 will help 1971 * understand this code. If we haven't already found the RSDT/XSDT, 1972 * revision will be 0. Find the RSDP and check the revision 1973 * to find out whether to use the RSDT or XSDT. If revision is 1974 * 0 or 1, use the RSDT and set internal revision to 1; if it is 2, 1975 * use the XSDT. If the XSDT address is 0, though, fall back to 1976 * revision 1 and use the RSDT. 1977 */ 1978 if (revision == 0) { 1979 if ((rsdp = (struct rsdp *)find_rsdp()) != NULL) { 1980 revision = rsdp->v1.revision; 1981 switch (revision) { 1982 case 2: 1983 /* 1984 * Use the XSDT unless BIOS is buggy and 1985 * claims to be rev 2 but has a null XSDT 1986 * address 1987 */ 1988 xsdt_addr = rsdp->xsdt; 1989 if (xsdt_addr != 0) 1990 break; 1991 /* FALLTHROUGH */ 1992 case 0: 1993 /* treat RSDP rev 0 as revision 1 internally */ 1994 revision = 1; 1995 /* FALLTHROUGH */ 1996 case 1: 1997 /* use the RSDT for rev 0/1 */ 1998 xsdt_addr = rsdp->v1.rsdt; 1999 break; 2000 default: 2001 /* unknown revision */ 2002 revision = 0; 2003 break; 2004 } 2005 } 2006 if (revision == 0) 2007 return (NULL); 2008 2009 /* cache the XSDT info */ 2010 xsdt = (struct xsdt *)map_fw_table(xsdt_addr); 2011 len = (xsdt->hdr.len - sizeof (xsdt->hdr)) / 2012 ((revision == 1) ? sizeof (uint32_t) : sizeof (uint64_t)); 2013 } 2014 2015 /* 2016 * Scan the table headers looking for a signature match 2017 */ 2018 for (n = 0; n < len; n++) { 2019 table_addr = (revision == 1) ? xsdt->p.r[n] : xsdt->p.x[n]; 2020 if (table_addr == 0) 2021 continue; 2022 tp = map_fw_table(table_addr); 2023 if (strncmp(tp->sig, signature, ACPI_TABLE_SIG_LEN) == 0) { 2024 return (tp); 2025 } 2026 } 2027 return (NULL); 2028 } 2029 2030 static void 2031 process_madt(struct madt *tp) 2032 { 2033 struct madt_processor *cpu, *end; 2034 uint32_t cpu_count = 0; 2035 uint8_t cpu_apicid_array[UINT8_MAX + 1]; 2036 2037 if (tp != NULL) { 2038 /* 2039 * Determine number of CPUs and keep track of "final" APIC ID 2040 * for each CPU by walking through ACPI MADT processor list 2041 */ 2042 end = (struct madt_processor *)(tp->hdr.len + (uintptr_t)tp); 2043 cpu = tp->list; 2044 while (cpu < end) { 2045 if (cpu->type == MADT_PROCESSOR) { 2046 if (cpu->flags & 1) { 2047 if (cpu_count < UINT8_MAX) 2048 cpu_apicid_array[cpu_count] = 2049 cpu->apic_id; 2050 cpu_count++; 2051 } 2052 } 2053 2054 cpu = (struct madt_processor *) 2055 (cpu->len + (uintptr_t)cpu); 2056 } 2057 2058 /* 2059 * Make boot property for array of "final" APIC IDs for each 2060 * CPU 2061 */ 2062 bsetprop(BP_CPU_APICID_ARRAY, strlen(BP_CPU_APICID_ARRAY), 2063 cpu_apicid_array, cpu_count * sizeof (uint8_t)); 2064 } 2065 2066 /* 2067 * User-set boot-ncpus overrides firmware count 2068 */ 2069 if (do_bsys_getproplen(NULL, "boot-ncpus") >= 0) 2070 return; 2071 2072 /* 2073 * Set boot property for boot-ncpus to number of CPUs given in MADT 2074 * if user hasn't set the property already 2075 */ 2076 if (tp != NULL) 2077 bsetpropsi("boot-ncpus", cpu_count); 2078 } 2079 2080 static void 2081 process_srat(struct srat *tp) 2082 { 2083 struct srat_item *item, *end; 2084 int i; 2085 int proc_num, mem_num; 2086 #pragma pack(1) 2087 struct { 2088 uint32_t domain; 2089 uint32_t apic_id; 2090 uint32_t sapic_id; 2091 } processor; 2092 struct { 2093 uint32_t domain; 2094 uint32_t x2apic_id; 2095 } x2apic; 2096 struct { 2097 uint32_t domain; 2098 uint64_t addr; 2099 uint64_t length; 2100 uint32_t flags; 2101 } memory; 2102 #pragma pack() 2103 char prop_name[30]; 2104 2105 if (tp == NULL) 2106 return; 2107 2108 proc_num = mem_num = 0; 2109 end = (struct srat_item *)(tp->hdr.len + (uintptr_t)tp); 2110 item = tp->list; 2111 while (item < end) { 2112 switch (item->type) { 2113 case SRAT_PROCESSOR: 2114 if (!(item->i.p.flags & SRAT_ENABLED)) 2115 break; 2116 processor.domain = item->i.p.domain1; 2117 for (i = 0; i < 3; i++) 2118 processor.domain += 2119 item->i.p.domain2[i] << ((i + 1) * 8); 2120 processor.apic_id = item->i.p.apic_id; 2121 processor.sapic_id = item->i.p.local_sapic_eid; 2122 (void) snprintf(prop_name, 30, "acpi-srat-processor-%d", 2123 proc_num); 2124 bsetprop(prop_name, strlen(prop_name), &processor, 2125 sizeof (processor)); 2126 proc_num++; 2127 break; 2128 case SRAT_MEMORY: 2129 if (!(item->i.m.flags & SRAT_ENABLED)) 2130 break; 2131 memory.domain = item->i.m.domain; 2132 memory.addr = item->i.m.base_addr; 2133 memory.length = item->i.m.len; 2134 memory.flags = item->i.m.flags; 2135 (void) snprintf(prop_name, 30, "acpi-srat-memory-%d", 2136 mem_num); 2137 bsetprop(prop_name, strlen(prop_name), &memory, 2138 sizeof (memory)); 2139 mem_num++; 2140 break; 2141 case SRAT_X2APIC: 2142 if (!(item->i.xp.flags & SRAT_ENABLED)) 2143 break; 2144 x2apic.domain = item->i.xp.domain; 2145 x2apic.x2apic_id = item->i.xp.x2apic_id; 2146 (void) snprintf(prop_name, 30, "acpi-srat-processor-%d", 2147 proc_num); 2148 bsetprop(prop_name, strlen(prop_name), &x2apic, 2149 sizeof (x2apic)); 2150 proc_num++; 2151 break; 2152 } 2153 2154 item = (struct srat_item *) 2155 (item->len + (caddr_t)item); 2156 } 2157 } 2158 2159 static void 2160 process_slit(struct slit *tp) 2161 { 2162 2163 /* 2164 * Check the number of localities; if it's too huge, we just 2165 * return and locality enumeration code will handle this later, 2166 * if possible. 2167 * 2168 * Note that the size of the table is the square of the 2169 * number of localities; if the number of localities exceeds 2170 * UINT16_MAX, the table size may overflow an int when being 2171 * passed to bsetprop() below. 2172 */ 2173 if (tp->number >= SLIT_LOCALITIES_MAX) 2174 return; 2175 2176 bsetprop(SLIT_NUM_PROPNAME, strlen(SLIT_NUM_PROPNAME), &tp->number, 2177 sizeof (tp->number)); 2178 bsetprop(SLIT_PROPNAME, strlen(SLIT_PROPNAME), &tp->entry, 2179 tp->number * tp->number); 2180 } 2181 2182 static void 2183 process_dmar(struct dmar *tp) 2184 { 2185 bsetprop(DMAR_TABLE_PROPNAME, strlen(DMAR_TABLE_PROPNAME), 2186 tp, tp->hdr.len); 2187 } 2188 2189 #else /* __xpv */ 2190 static void 2191 enumerate_xen_cpus() 2192 { 2193 processorid_t id, max_id; 2194 2195 /* 2196 * User-set boot-ncpus overrides enumeration 2197 */ 2198 if (do_bsys_getproplen(NULL, "boot-ncpus") >= 0) 2199 return; 2200 2201 /* 2202 * Probe every possible virtual CPU id and remember the 2203 * highest id present; the count of CPUs is one greater 2204 * than this. This tacitly assumes at least cpu 0 is present. 2205 */ 2206 max_id = 0; 2207 for (id = 0; id < MAX_VIRT_CPUS; id++) 2208 if (HYPERVISOR_vcpu_op(VCPUOP_is_up, id, NULL) == 0) 2209 max_id = id; 2210 2211 bsetpropsi("boot-ncpus", max_id+1); 2212 2213 } 2214 #endif /* __xpv */ 2215 2216 static void 2217 build_firmware_properties(void) 2218 { 2219 #ifndef __xpv 2220 struct table_header *tp; 2221 2222 if ((tp = find_fw_table("APIC")) != NULL) 2223 process_madt((struct madt *)tp); 2224 2225 if ((srat_ptr = (struct srat *)find_fw_table("SRAT")) != NULL) 2226 process_srat(srat_ptr); 2227 2228 if (slit_ptr = (struct slit *)find_fw_table("SLIT")) 2229 process_slit(slit_ptr); 2230 2231 if (tp = find_fw_table("DMAR")) 2232 process_dmar((struct dmar *)tp); 2233 #else /* __xpv */ 2234 enumerate_xen_cpus(); 2235 #endif /* __xpv */ 2236 } 2237 2238 /* 2239 * fake up a boot property for deferred early console output 2240 * this is used by both graphical boot and the (developer only) 2241 * USB serial console 2242 */ 2243 void * 2244 defcons_init(size_t size) 2245 { 2246 static char *p = NULL; 2247 2248 p = do_bsys_alloc(NULL, NULL, size, MMU_PAGESIZE); 2249 *p = 0; 2250 bsetprop("deferred-console-buf", strlen("deferred-console-buf") + 1, 2251 &p, sizeof (p)); 2252 return (p); 2253 } 2254 2255 /*ARGSUSED*/ 2256 int 2257 boot_compinfo(int fd, struct compinfo *cbp) 2258 { 2259 cbp->iscmp = 0; 2260 cbp->blksize = MAXBSIZE; 2261 return (0); 2262 } 2263 2264 #define BP_MAX_STRLEN 32 2265 2266 /* 2267 * Get value for given boot property 2268 */ 2269 int 2270 bootprop_getval(const char *prop_name, u_longlong_t *prop_value) 2271 { 2272 int boot_prop_len; 2273 char str[BP_MAX_STRLEN]; 2274 u_longlong_t value; 2275 2276 boot_prop_len = BOP_GETPROPLEN(bootops, prop_name); 2277 if (boot_prop_len < 0 || boot_prop_len > sizeof (str) || 2278 BOP_GETPROP(bootops, prop_name, str) < 0 || 2279 kobj_getvalue(str, &value) == -1) 2280 return (-1); 2281 2282 if (prop_value) 2283 *prop_value = value; 2284 2285 return (0); 2286 } 2287