1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License, Version 1.0 only 6 * (the "License"). You may not use this file except in compliance 7 * with the License. 8 * 9 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 10 * or http://www.opensolaris.org/os/licensing. 11 * See the License for the specific language governing permissions 12 * and limitations under the License. 13 * 14 * When distributing Covered Code, include this CDDL HEADER in each 15 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 16 * If applicable, add the following below this CDDL HEADER, with the 17 * fields enclosed by brackets "[]" replaced with your own identifying 18 * information: Portions Copyright [yyyy] [name of copyright owner] 19 * 20 * CDDL HEADER END 21 */ 22 /* 23 * Copyright 2005 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 27 #pragma ident "%Z%%M% %I% %E% SMI" 28 29 #include <sys/dtrace.h> 30 #include <sys/fasttrap.h> 31 #include <sys/x_call.h> 32 #include <sys/cmn_err.h> 33 #include <sys/trap.h> 34 #include <sys/psw.h> 35 #include <sys/privregs.h> 36 #include <sys/machsystm.h> 37 #include <vm/seg_kmem.h> 38 39 typedef struct dtrace_invop_hdlr { 40 int (*dtih_func)(uintptr_t, uintptr_t *, uintptr_t); 41 struct dtrace_invop_hdlr *dtih_next; 42 } dtrace_invop_hdlr_t; 43 44 dtrace_invop_hdlr_t *dtrace_invop_hdlr; 45 46 int 47 dtrace_invop(uintptr_t addr, uintptr_t *stack, uintptr_t eax) 48 { 49 dtrace_invop_hdlr_t *hdlr; 50 int rval; 51 52 for (hdlr = dtrace_invop_hdlr; hdlr != NULL; hdlr = hdlr->dtih_next) { 53 if ((rval = hdlr->dtih_func(addr, stack, eax)) != 0) 54 return (rval); 55 } 56 57 return (0); 58 } 59 60 void 61 dtrace_invop_add(int (*func)(uintptr_t, uintptr_t *, uintptr_t)) 62 { 63 dtrace_invop_hdlr_t *hdlr; 64 65 hdlr = kmem_alloc(sizeof (dtrace_invop_hdlr_t), KM_SLEEP); 66 hdlr->dtih_func = func; 67 hdlr->dtih_next = dtrace_invop_hdlr; 68 dtrace_invop_hdlr = hdlr; 69 } 70 71 void 72 dtrace_invop_remove(int (*func)(uintptr_t, uintptr_t *, uintptr_t)) 73 { 74 dtrace_invop_hdlr_t *hdlr = dtrace_invop_hdlr, *prev = NULL; 75 76 for (;;) { 77 if (hdlr == NULL) 78 panic("attempt to remove non-existent invop handler"); 79 80 if (hdlr->dtih_func == func) 81 break; 82 83 prev = hdlr; 84 hdlr = hdlr->dtih_next; 85 } 86 87 if (prev == NULL) { 88 ASSERT(dtrace_invop_hdlr == hdlr); 89 dtrace_invop_hdlr = hdlr->dtih_next; 90 } else { 91 ASSERT(dtrace_invop_hdlr != hdlr); 92 prev->dtih_next = hdlr->dtih_next; 93 } 94 95 kmem_free(hdlr, sizeof (dtrace_invop_hdlr_t)); 96 } 97 98 int 99 dtrace_getipl(void) 100 { 101 return (CPU->cpu_pri); 102 } 103 104 /*ARGSUSED*/ 105 void 106 dtrace_toxic_ranges(void (*func)(uintptr_t base, uintptr_t limit)) 107 { 108 #ifdef __amd64 109 extern uintptr_t toxic_addr; 110 extern size_t toxic_size; 111 112 (*func)(0, _userlimit); 113 114 if (hole_end > hole_start) 115 (*func)(hole_start, hole_end); 116 (*func)(toxic_addr, toxic_addr + toxic_size); 117 #else 118 extern void *device_arena_contains(void *, size_t, size_t *); 119 caddr_t vaddr; 120 size_t len; 121 122 for (vaddr = (caddr_t)kernelbase; vaddr < (caddr_t)KERNEL_TEXT; 123 vaddr += len) { 124 len = (caddr_t)KERNEL_TEXT - vaddr; 125 vaddr = device_arena_contains(vaddr, len, &len); 126 if (vaddr == NULL) 127 break; 128 (*func)((uintptr_t)vaddr, (uintptr_t)vaddr + len); 129 } 130 #endif 131 (*func)(0, _userlimit); 132 } 133 134 static int 135 dtrace_xcall_func(dtrace_xcall_t func, void *arg) 136 { 137 (*func)(arg); 138 139 return (0); 140 } 141 142 /*ARGSUSED*/ 143 void 144 dtrace_xcall(processorid_t cpu, dtrace_xcall_t func, void *arg) 145 { 146 cpuset_t set; 147 148 CPUSET_ZERO(set); 149 150 if (cpu == DTRACE_CPUALL) { 151 CPUSET_ALL(set); 152 } else { 153 CPUSET_ADD(set, cpu); 154 } 155 156 kpreempt_disable(); 157 xc_sync((xc_arg_t)func, (xc_arg_t)arg, 0, X_CALL_HIPRI, set, 158 (xc_func_t)dtrace_xcall_func); 159 kpreempt_enable(); 160 } 161 162 void 163 dtrace_sync_func(void) 164 {} 165 166 void 167 dtrace_sync(void) 168 { 169 dtrace_xcall(DTRACE_CPUALL, (dtrace_xcall_t)dtrace_sync_func, NULL); 170 } 171 172 int (*dtrace_fasttrap_probe_ptr)(struct regs *); 173 int (*dtrace_pid_probe_ptr)(struct regs *); 174 int (*dtrace_return_probe_ptr)(struct regs *); 175 176 void 177 dtrace_user_probe(struct regs *rp, caddr_t addr, processorid_t cpuid) 178 { 179 krwlock_t *rwp; 180 proc_t *p = curproc; 181 extern void trap(struct regs *, caddr_t, processorid_t); 182 183 if (USERMODE(rp->r_cs) || (rp->r_ps & PS_VM)) { 184 if (curthread->t_cred != p->p_cred) { 185 cred_t *oldcred = curthread->t_cred; 186 /* 187 * DTrace accesses t_cred in probe context. t_cred 188 * must always be either NULL, or point to a valid, 189 * allocated cred structure. 190 */ 191 curthread->t_cred = crgetcred(); 192 crfree(oldcred); 193 } 194 } 195 196 if (rp->r_trapno == T_DTRACE_RET) { 197 uint8_t step = curthread->t_dtrace_step; 198 uint8_t ret = curthread->t_dtrace_ret; 199 uintptr_t npc = curthread->t_dtrace_npc; 200 201 if (curthread->t_dtrace_ast) { 202 aston(curthread); 203 curthread->t_sig_check = 1; 204 } 205 206 /* 207 * Clear all user tracing flags. 208 */ 209 curthread->t_dtrace_ft = 0; 210 211 /* 212 * If we weren't expecting to take a return probe trap, kill 213 * the process as though it had just executed an unassigned 214 * trap instruction. 215 */ 216 if (step == 0) { 217 tsignal(curthread, SIGILL); 218 return; 219 } 220 221 /* 222 * If we hit this trap unrelated to a return probe, we're 223 * just here to reset the AST flag since we deferred a signal 224 * until after we logically single-stepped the instruction we 225 * copied out. 226 */ 227 if (ret == 0) { 228 rp->r_pc = npc; 229 return; 230 } 231 232 /* 233 * We need to wait until after we've called the 234 * dtrace_return_probe_ptr function pointer to set %pc. 235 */ 236 rwp = &CPU->cpu_ft_lock; 237 rw_enter(rwp, RW_READER); 238 if (dtrace_return_probe_ptr != NULL) 239 (void) (*dtrace_return_probe_ptr)(rp); 240 rw_exit(rwp); 241 rp->r_pc = npc; 242 243 } else if (rp->r_trapno == T_DTRACE_PROBE) { 244 rwp = &CPU->cpu_ft_lock; 245 rw_enter(rwp, RW_READER); 246 if (dtrace_fasttrap_probe_ptr != NULL) 247 (void) (*dtrace_fasttrap_probe_ptr)(rp); 248 rw_exit(rwp); 249 250 } else if (rp->r_trapno == T_BPTFLT) { 251 uint8_t instr; 252 rwp = &CPU->cpu_ft_lock; 253 254 /* 255 * The DTrace fasttrap provider uses the breakpoint trap 256 * (int 3). We let DTrace take the first crack at handling 257 * this trap; if it's not a probe that DTrace knowns about, 258 * we call into the trap() routine to handle it like a 259 * breakpoint placed by a conventional debugger. 260 */ 261 rw_enter(rwp, RW_READER); 262 if (dtrace_pid_probe_ptr != NULL && 263 (*dtrace_pid_probe_ptr)(rp) == 0) { 264 rw_exit(rwp); 265 return; 266 } 267 rw_exit(rwp); 268 269 /* 270 * If the instruction that caused the breakpoint trap doesn't 271 * look like an int 3 anymore, it may be that this tracepoint 272 * was removed just after the user thread executed it. In 273 * that case, return to user land to retry the instuction. 274 */ 275 if (fuword8((void *)(rp->r_pc - 1), &instr) == 0 && 276 instr != FASTTRAP_INSTR) { 277 rp->r_pc--; 278 return; 279 } 280 281 trap(rp, addr, cpuid); 282 283 } else { 284 trap(rp, addr, cpuid); 285 } 286 } 287 288 void 289 dtrace_safe_synchronous_signal(void) 290 { 291 kthread_t *t = curthread; 292 struct regs *rp = lwptoregs(ttolwp(t)); 293 size_t isz = t->t_dtrace_npc - t->t_dtrace_pc; 294 295 ASSERT(t->t_dtrace_on); 296 297 /* 298 * If we're not in the range of scratch addresses, we're not actually 299 * tracing user instructions so turn off the flags. If the instruction 300 * we copied out caused a synchonous trap, reset the pc back to its 301 * original value and turn off the flags. 302 */ 303 if (rp->r_pc < t->t_dtrace_scrpc || 304 rp->r_pc > t->t_dtrace_astpc + isz) { 305 t->t_dtrace_ft = 0; 306 } else if (rp->r_pc == t->t_dtrace_scrpc || 307 rp->r_pc == t->t_dtrace_astpc) { 308 rp->r_pc = t->t_dtrace_pc; 309 t->t_dtrace_ft = 0; 310 } 311 } 312 313 int 314 dtrace_safe_defer_signal(void) 315 { 316 kthread_t *t = curthread; 317 struct regs *rp = lwptoregs(ttolwp(t)); 318 size_t isz = t->t_dtrace_npc - t->t_dtrace_pc; 319 320 ASSERT(t->t_dtrace_on); 321 322 /* 323 * If we're not in the range of scratch addresses, we're not actually 324 * tracing user instructions so turn off the flags. 325 */ 326 if (rp->r_pc < t->t_dtrace_scrpc || 327 rp->r_pc > t->t_dtrace_astpc + isz) { 328 t->t_dtrace_ft = 0; 329 return (0); 330 } 331 332 /* 333 * If we've executed the original instruction, but haven't performed 334 * the jmp back to t->t_dtrace_npc or the clean up of any registers 335 * used to emulate %rip-relative instructions in 64-bit mode, do that 336 * here and take the signal right away. We detect this condition by 337 * seeing if the program counter is the range [scrpc + isz, astpc). 338 */ 339 if (t->t_dtrace_astpc - rp->r_pc < 340 t->t_dtrace_astpc - t->t_dtrace_scrpc - isz) { 341 #ifdef __amd64 342 /* 343 * If there is a scratch register and we're on the 344 * instruction immediately after the modified instruction, 345 * restore the value of that scratch register. 346 */ 347 if (t->t_dtrace_reg != 0 && 348 rp->r_pc == t->t_dtrace_scrpc + isz) { 349 switch (t->t_dtrace_reg) { 350 case REG_RAX: 351 rp->r_rax = t->t_dtrace_regv; 352 break; 353 case REG_RCX: 354 rp->r_rcx = t->t_dtrace_regv; 355 break; 356 case REG_R8: 357 rp->r_r8 = t->t_dtrace_regv; 358 break; 359 case REG_R9: 360 rp->r_r9 = t->t_dtrace_regv; 361 break; 362 } 363 } 364 #endif 365 rp->r_pc = t->t_dtrace_npc; 366 t->t_dtrace_ft = 0; 367 return (0); 368 } 369 370 /* 371 * Otherwise, make sure we'll return to the kernel after executing 372 * the copied out instruction and defer the signal. 373 */ 374 if (!t->t_dtrace_step) { 375 ASSERT(rp->r_pc < t->t_dtrace_astpc); 376 rp->r_pc += t->t_dtrace_astpc - t->t_dtrace_scrpc; 377 t->t_dtrace_step = 1; 378 } 379 380 t->t_dtrace_ast = 1; 381 382 return (1); 383 } 384