xref: /titanic_41/usr/src/uts/i86pc/os/ddi_impl.c (revision e4b86885570d77af552e9cf94f142f4d744fb8c8)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright 2008 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 #pragma ident	"%Z%%M%	%I%	%E% SMI"
28 
29 /*
30  * PC specific DDI implementation
31  */
32 #include <sys/types.h>
33 #include <sys/autoconf.h>
34 #include <sys/avintr.h>
35 #include <sys/bootconf.h>
36 #include <sys/conf.h>
37 #include <sys/cpuvar.h>
38 #include <sys/ddi_impldefs.h>
39 #include <sys/ddi_subrdefs.h>
40 #include <sys/ethernet.h>
41 #include <sys/fp.h>
42 #include <sys/instance.h>
43 #include <sys/kmem.h>
44 #include <sys/machsystm.h>
45 #include <sys/modctl.h>
46 #include <sys/promif.h>
47 #include <sys/prom_plat.h>
48 #include <sys/sunndi.h>
49 #include <sys/ndi_impldefs.h>
50 #include <sys/ddi_impldefs.h>
51 #include <sys/sysmacros.h>
52 #include <sys/systeminfo.h>
53 #include <sys/utsname.h>
54 #include <sys/atomic.h>
55 #include <sys/spl.h>
56 #include <sys/archsystm.h>
57 #include <vm/seg_kmem.h>
58 #include <sys/ontrap.h>
59 #include <sys/fm/protocol.h>
60 #include <sys/ramdisk.h>
61 #include <sys/sunndi.h>
62 #include <sys/vmem.h>
63 #include <sys/pci_impl.h>
64 #if defined(__xpv)
65 #include <sys/hypervisor.h>
66 #endif
67 #include <sys/mach_intr.h>
68 #include <vm/hat_i86.h>
69 #include <sys/x86_archext.h>
70 
71 /*
72  * DDI Boot Configuration
73  */
74 
75 /*
76  * Platform drivers on this platform
77  */
78 char *platform_module_list[] = {
79 	"acpippm",
80 	"ppm",
81 	(char *)0
82 };
83 
84 /* pci bus resource maps */
85 struct pci_bus_resource *pci_bus_res;
86 
87 size_t dma_max_copybuf_size = 0x101000;		/* 1M + 4K */
88 
89 uint64_t ramdisk_start, ramdisk_end;
90 
91 /*
92  * Forward declarations
93  */
94 static int getlongprop_buf();
95 static void get_boot_properties(void);
96 static void impl_bus_initialprobe(void);
97 static void impl_bus_reprobe(void);
98 
99 static int poke_mem(peekpoke_ctlops_t *in_args);
100 static int peek_mem(peekpoke_ctlops_t *in_args);
101 
102 static int kmem_override_cache_attrs(caddr_t, size_t, uint_t);
103 
104 #define	CTGENTRIES	15
105 
106 static struct ctgas {
107 	struct ctgas	*ctg_next;
108 	int		ctg_index;
109 	void		*ctg_addr[CTGENTRIES];
110 	size_t		ctg_size[CTGENTRIES];
111 } ctglist;
112 
113 static kmutex_t		ctgmutex;
114 #define	CTGLOCK()	mutex_enter(&ctgmutex)
115 #define	CTGUNLOCK()	mutex_exit(&ctgmutex)
116 
117 /*
118  * Minimum pfn value of page_t's put on the free list.  This is to simplify
119  * support of ddi dma memory requests which specify small, non-zero addr_lo
120  * values.
121  *
122  * The default value of 2, which corresponds to the only known non-zero addr_lo
123  * value used, means a single page will be sacrificed (pfn typically starts
124  * at 1).  ddiphysmin can be set to 0 to disable. It cannot be set above 0x100
125  * otherwise mp startup panics.
126  */
127 pfn_t	ddiphysmin = 2;
128 
129 static void
130 check_driver_disable(void)
131 {
132 	int proplen = 128;
133 	char *prop_name;
134 	char *drv_name, *propval;
135 	major_t major;
136 
137 	prop_name = kmem_alloc(proplen, KM_SLEEP);
138 	for (major = 0; major < devcnt; major++) {
139 		drv_name = ddi_major_to_name(major);
140 		if (drv_name == NULL)
141 			continue;
142 		(void) snprintf(prop_name, proplen, "disable-%s", drv_name);
143 		if (ddi_prop_lookup_string(DDI_DEV_T_ANY, ddi_root_node(),
144 		    DDI_PROP_DONTPASS, prop_name, &propval) == DDI_SUCCESS) {
145 			if (strcmp(propval, "true") == 0) {
146 				devnamesp[major].dn_flags |= DN_DRIVER_REMOVED;
147 				cmn_err(CE_NOTE, "driver %s disabled",
148 				    drv_name);
149 			}
150 			ddi_prop_free(propval);
151 		}
152 	}
153 	kmem_free(prop_name, proplen);
154 }
155 
156 
157 /*
158  * Configure the hardware on the system.
159  * Called before the rootfs is mounted
160  */
161 void
162 configure(void)
163 {
164 	extern void i_ddi_init_root();
165 
166 #if defined(__i386)
167 	extern int fpu_pentium_fdivbug;
168 #endif	/* __i386 */
169 	extern int fpu_ignored;
170 
171 	/*
172 	 * Determine if an FPU is attached
173 	 */
174 
175 	fpu_probe();
176 
177 #if defined(__i386)
178 	if (fpu_pentium_fdivbug) {
179 		printf("\
180 FP hardware exhibits Pentium floating point divide problem\n");
181 	}
182 #endif	/* __i386 */
183 
184 	if (fpu_ignored) {
185 		printf("FP hardware will not be used\n");
186 	} else if (!fpu_exists) {
187 		printf("No FPU in configuration\n");
188 	}
189 
190 	/*
191 	 * Initialize devices on the machine.
192 	 * Uses configuration tree built by the PROMs to determine what
193 	 * is present, and builds a tree of prototype dev_info nodes
194 	 * corresponding to the hardware which identified itself.
195 	 */
196 #if !defined(SAS) && !defined(MPSAS)
197 	/*
198 	 * Check for disabled drivers and initialize root node.
199 	 */
200 	check_driver_disable();
201 	i_ddi_init_root();
202 
203 	/*
204 	 * attach the isa nexus to get ACPI resource usage
205 	 * isa is "kind of" a pseudo node
206 	 */
207 #if defined(__xpv)
208 	if (DOMAIN_IS_INITDOMAIN(xen_info))
209 		(void) i_ddi_attach_pseudo_node("isa");
210 #else
211 	(void) i_ddi_attach_pseudo_node("isa");
212 #endif
213 
214 	/* reprogram devices not set up by firmware (BIOS) */
215 	impl_bus_reprobe();
216 #endif	/* !SAS && !MPSAS */
217 }
218 
219 /*
220  * The "status" property indicates the operational status of a device.
221  * If this property is present, the value is a string indicating the
222  * status of the device as follows:
223  *
224  *	"okay"		operational.
225  *	"disabled"	not operational, but might become operational.
226  *	"fail"		not operational because a fault has been detected,
227  *			and it is unlikely that the device will become
228  *			operational without repair. no additional details
229  *			are available.
230  *	"fail-xxx"	not operational because a fault has been detected,
231  *			and it is unlikely that the device will become
232  *			operational without repair. "xxx" is additional
233  *			human-readable information about the particular
234  *			fault condition that was detected.
235  *
236  * The absence of this property means that the operational status is
237  * unknown or okay.
238  *
239  * This routine checks the status property of the specified device node
240  * and returns 0 if the operational status indicates failure, and 1 otherwise.
241  *
242  * The property may exist on plug-in cards the existed before IEEE 1275-1994.
243  * And, in that case, the property may not even be a string. So we carefully
244  * check for the value "fail", in the beginning of the string, noting
245  * the property length.
246  */
247 int
248 status_okay(int id, char *buf, int buflen)
249 {
250 	char status_buf[OBP_MAXPROPNAME];
251 	char *bufp = buf;
252 	int len = buflen;
253 	int proplen;
254 	static const char *status = "status";
255 	static const char *fail = "fail";
256 	int fail_len = (int)strlen(fail);
257 
258 	/*
259 	 * Get the proplen ... if it's smaller than "fail",
260 	 * or doesn't exist ... then we don't care, since
261 	 * the value can't begin with the char string "fail".
262 	 *
263 	 * NB: proplen, if it's a string, includes the NULL in the
264 	 * the size of the property, and fail_len does not.
265 	 */
266 	proplen = prom_getproplen((pnode_t)id, (caddr_t)status);
267 	if (proplen <= fail_len)	/* nonexistant or uninteresting len */
268 		return (1);
269 
270 	/*
271 	 * if a buffer was provided, use it
272 	 */
273 	if ((buf == (char *)NULL) || (buflen <= 0)) {
274 		bufp = status_buf;
275 		len = sizeof (status_buf);
276 	}
277 	*bufp = (char)0;
278 
279 	/*
280 	 * Get the property into the buffer, to the extent of the buffer,
281 	 * and in case the buffer is smaller than the property size,
282 	 * NULL terminate the buffer. (This handles the case where
283 	 * a buffer was passed in and the caller wants to print the
284 	 * value, but the buffer was too small).
285 	 */
286 	(void) prom_bounded_getprop((pnode_t)id, (caddr_t)status,
287 	    (caddr_t)bufp, len);
288 	*(bufp + len - 1) = (char)0;
289 
290 	/*
291 	 * If the value begins with the char string "fail",
292 	 * then it means the node is failed. We don't care
293 	 * about any other values. We assume the node is ok
294 	 * although it might be 'disabled'.
295 	 */
296 	if (strncmp(bufp, fail, fail_len) == 0)
297 		return (0);
298 
299 	return (1);
300 }
301 
302 /*
303  * Check the status of the device node passed as an argument.
304  *
305  *	if ((status is OKAY) || (status is DISABLED))
306  *		return DDI_SUCCESS
307  *	else
308  *		print a warning and return DDI_FAILURE
309  */
310 /*ARGSUSED1*/
311 int
312 check_status(int id, char *name, dev_info_t *parent)
313 {
314 	char status_buf[64];
315 	char devtype_buf[OBP_MAXPROPNAME];
316 	int retval = DDI_FAILURE;
317 
318 	/*
319 	 * is the status okay?
320 	 */
321 	if (status_okay(id, status_buf, sizeof (status_buf)))
322 		return (DDI_SUCCESS);
323 
324 	/*
325 	 * a status property indicating bad memory will be associated
326 	 * with a node which has a "device_type" property with a value of
327 	 * "memory-controller". in this situation, return DDI_SUCCESS
328 	 */
329 	if (getlongprop_buf(id, OBP_DEVICETYPE, devtype_buf,
330 	    sizeof (devtype_buf)) > 0) {
331 		if (strcmp(devtype_buf, "memory-controller") == 0)
332 			retval = DDI_SUCCESS;
333 	}
334 
335 	/*
336 	 * print the status property information
337 	 */
338 	cmn_err(CE_WARN, "status '%s' for '%s'", status_buf, name);
339 	return (retval);
340 }
341 
342 /*ARGSUSED*/
343 uint_t
344 softlevel1(caddr_t arg1, caddr_t arg2)
345 {
346 	softint();
347 	return (1);
348 }
349 
350 /*
351  * Allow for implementation specific correction of PROM property values.
352  */
353 
354 /*ARGSUSED*/
355 void
356 impl_fix_props(dev_info_t *dip, dev_info_t *ch_dip, char *name, int len,
357     caddr_t buffer)
358 {
359 	/*
360 	 * There are no adjustments needed in this implementation.
361 	 */
362 }
363 
364 static int
365 getlongprop_buf(int id, char *name, char *buf, int maxlen)
366 {
367 	int size;
368 
369 	size = prom_getproplen((pnode_t)id, name);
370 	if (size <= 0 || (size > maxlen - 1))
371 		return (-1);
372 
373 	if (-1 == prom_getprop((pnode_t)id, name, buf))
374 		return (-1);
375 
376 	if (strcmp("name", name) == 0) {
377 		if (buf[size - 1] != '\0') {
378 			buf[size] = '\0';
379 			size += 1;
380 		}
381 	}
382 
383 	return (size);
384 }
385 
386 static int
387 get_prop_int_array(dev_info_t *di, char *pname, int **pval, uint_t *plen)
388 {
389 	int ret;
390 
391 	if ((ret = ddi_prop_lookup_int_array(DDI_DEV_T_ANY, di,
392 	    DDI_PROP_DONTPASS, pname, pval, plen))
393 	    == DDI_PROP_SUCCESS) {
394 		*plen = (*plen) * (sizeof (int));
395 	}
396 	return (ret);
397 }
398 
399 
400 /*
401  * Node Configuration
402  */
403 
404 struct prop_ispec {
405 	uint_t	pri, vec;
406 };
407 
408 /*
409  * For the x86, we're prepared to claim that the interrupt string
410  * is in the form of a list of <ipl,vec> specifications.
411  */
412 
413 #define	VEC_MIN	1
414 #define	VEC_MAX	255
415 
416 static int
417 impl_xlate_intrs(dev_info_t *child, int *in,
418     struct ddi_parent_private_data *pdptr)
419 {
420 	size_t size;
421 	int n;
422 	struct intrspec *new;
423 	caddr_t got_prop;
424 	int *inpri;
425 	int got_len;
426 	extern int ignore_hardware_nodes;	/* force flag from ddi_impl.c */
427 
428 	static char bad_intr_fmt[] =
429 	    "bad interrupt spec from %s%d - ipl %d, irq %d\n";
430 
431 	/*
432 	 * determine if the driver is expecting the new style "interrupts"
433 	 * property which just contains the IRQ, or the old style which
434 	 * contains pairs of <IPL,IRQ>.  if it is the new style, we always
435 	 * assign IPL 5 unless an "interrupt-priorities" property exists.
436 	 * in that case, the "interrupt-priorities" property contains the
437 	 * IPL values that match, one for one, the IRQ values in the
438 	 * "interrupts" property.
439 	 */
440 	inpri = NULL;
441 	if ((ddi_getprop(DDI_DEV_T_ANY, child, DDI_PROP_DONTPASS,
442 	    "ignore-hardware-nodes", -1) != -1) || ignore_hardware_nodes) {
443 		/* the old style "interrupts" property... */
444 
445 		/*
446 		 * The list consists of <ipl,vec> elements
447 		 */
448 		if ((n = (*in++ >> 1)) < 1)
449 			return (DDI_FAILURE);
450 
451 		pdptr->par_nintr = n;
452 		size = n * sizeof (struct intrspec);
453 		new = pdptr->par_intr = kmem_zalloc(size, KM_SLEEP);
454 
455 		while (n--) {
456 			int level = *in++;
457 			int vec = *in++;
458 
459 			if (level < 1 || level > MAXIPL ||
460 			    vec < VEC_MIN || vec > VEC_MAX) {
461 				cmn_err(CE_CONT, bad_intr_fmt,
462 				    DEVI(child)->devi_name,
463 				    DEVI(child)->devi_instance, level, vec);
464 				goto broken;
465 			}
466 			new->intrspec_pri = level;
467 			if (vec != 2)
468 				new->intrspec_vec = vec;
469 			else
470 				/*
471 				 * irq 2 on the PC bus is tied to irq 9
472 				 * on ISA, EISA and MicroChannel
473 				 */
474 				new->intrspec_vec = 9;
475 			new++;
476 		}
477 
478 		return (DDI_SUCCESS);
479 	} else {
480 		/* the new style "interrupts" property... */
481 
482 		/*
483 		 * The list consists of <vec> elements
484 		 */
485 		if ((n = (*in++)) < 1)
486 			return (DDI_FAILURE);
487 
488 		pdptr->par_nintr = n;
489 		size = n * sizeof (struct intrspec);
490 		new = pdptr->par_intr = kmem_zalloc(size, KM_SLEEP);
491 
492 		/* XXX check for "interrupt-priorities" property... */
493 		if (ddi_getlongprop(DDI_DEV_T_ANY, child, DDI_PROP_DONTPASS,
494 		    "interrupt-priorities", (caddr_t)&got_prop, &got_len)
495 		    == DDI_PROP_SUCCESS) {
496 			if (n != (got_len / sizeof (int))) {
497 				cmn_err(CE_CONT,
498 				    "bad interrupt-priorities length"
499 				    " from %s%d: expected %d, got %d\n",
500 				    DEVI(child)->devi_name,
501 				    DEVI(child)->devi_instance, n,
502 				    (int)(got_len / sizeof (int)));
503 				goto broken;
504 			}
505 			inpri = (int *)got_prop;
506 		}
507 
508 		while (n--) {
509 			int level;
510 			int vec = *in++;
511 
512 			if (inpri == NULL)
513 				level = 5;
514 			else
515 				level = *inpri++;
516 
517 			if (level < 1 || level > MAXIPL ||
518 			    vec < VEC_MIN || vec > VEC_MAX) {
519 				cmn_err(CE_CONT, bad_intr_fmt,
520 				    DEVI(child)->devi_name,
521 				    DEVI(child)->devi_instance, level, vec);
522 				goto broken;
523 			}
524 			new->intrspec_pri = level;
525 			if (vec != 2)
526 				new->intrspec_vec = vec;
527 			else
528 				/*
529 				 * irq 2 on the PC bus is tied to irq 9
530 				 * on ISA, EISA and MicroChannel
531 				 */
532 				new->intrspec_vec = 9;
533 			new++;
534 		}
535 
536 		if (inpri != NULL)
537 			kmem_free(got_prop, got_len);
538 		return (DDI_SUCCESS);
539 	}
540 
541 broken:
542 	kmem_free(pdptr->par_intr, size);
543 	pdptr->par_intr = NULL;
544 	pdptr->par_nintr = 0;
545 	if (inpri != NULL)
546 		kmem_free(got_prop, got_len);
547 
548 	return (DDI_FAILURE);
549 }
550 
551 /*
552  * Create a ddi_parent_private_data structure from the ddi properties of
553  * the dev_info node.
554  *
555  * The "reg" and either an "intr" or "interrupts" properties are required
556  * if the driver wishes to create mappings or field interrupts on behalf
557  * of the device.
558  *
559  * The "reg" property is assumed to be a list of at least one triple
560  *
561  *	<bustype, address, size>*1
562  *
563  * The "intr" property is assumed to be a list of at least one duple
564  *
565  *	<SPARC ipl, vector#>*1
566  *
567  * The "interrupts" property is assumed to be a list of at least one
568  * n-tuples that describes the interrupt capabilities of the bus the device
569  * is connected to.  For SBus, this looks like
570  *
571  *	<SBus-level>*1
572  *
573  * (This property obsoletes the 'intr' property).
574  *
575  * The "ranges" property is optional.
576  */
577 void
578 make_ddi_ppd(dev_info_t *child, struct ddi_parent_private_data **ppd)
579 {
580 	struct ddi_parent_private_data *pdptr;
581 	int n;
582 	int *reg_prop, *rng_prop, *intr_prop, *irupts_prop;
583 	uint_t reg_len, rng_len, intr_len, irupts_len;
584 
585 	*ppd = pdptr = kmem_zalloc(sizeof (*pdptr), KM_SLEEP);
586 
587 	/*
588 	 * Handle the 'reg' property.
589 	 */
590 	if ((get_prop_int_array(child, "reg", &reg_prop, &reg_len) ==
591 	    DDI_PROP_SUCCESS) && (reg_len != 0)) {
592 		pdptr->par_nreg = reg_len / (int)sizeof (struct regspec);
593 		pdptr->par_reg = (struct regspec *)reg_prop;
594 	}
595 
596 	/*
597 	 * See if I have a range (adding one where needed - this
598 	 * means to add one for sbus node in sun4c, when romvec > 0,
599 	 * if no range is already defined in the PROM node.
600 	 * (Currently no sun4c PROMS define range properties,
601 	 * but they should and may in the future.)  For the SBus
602 	 * node, the range is defined by the SBus reg property.
603 	 */
604 	if (get_prop_int_array(child, "ranges", &rng_prop, &rng_len)
605 	    == DDI_PROP_SUCCESS) {
606 		pdptr->par_nrng = rng_len / (int)(sizeof (struct rangespec));
607 		pdptr->par_rng = (struct rangespec *)rng_prop;
608 	}
609 
610 	/*
611 	 * Handle the 'intr' and 'interrupts' properties
612 	 */
613 
614 	/*
615 	 * For backwards compatibility
616 	 * we first look for the 'intr' property for the device.
617 	 */
618 	if (get_prop_int_array(child, "intr", &intr_prop, &intr_len)
619 	    != DDI_PROP_SUCCESS) {
620 		intr_len = 0;
621 	}
622 
623 	/*
624 	 * If we're to support bus adapters and future platforms cleanly,
625 	 * we need to support the generalized 'interrupts' property.
626 	 */
627 	if (get_prop_int_array(child, "interrupts", &irupts_prop,
628 	    &irupts_len) != DDI_PROP_SUCCESS) {
629 		irupts_len = 0;
630 	} else if (intr_len != 0) {
631 		/*
632 		 * If both 'intr' and 'interrupts' are defined,
633 		 * then 'interrupts' wins and we toss the 'intr' away.
634 		 */
635 		ddi_prop_free((void *)intr_prop);
636 		intr_len = 0;
637 	}
638 
639 	if (intr_len != 0) {
640 
641 		/*
642 		 * Translate the 'intr' property into an array
643 		 * an array of struct intrspec's.  There's not really
644 		 * very much to do here except copy what's out there.
645 		 */
646 
647 		struct intrspec *new;
648 		struct prop_ispec *l;
649 
650 		n = pdptr->par_nintr = intr_len / sizeof (struct prop_ispec);
651 		l = (struct prop_ispec *)intr_prop;
652 		pdptr->par_intr =
653 		    new = kmem_zalloc(n * sizeof (struct intrspec), KM_SLEEP);
654 		while (n--) {
655 			new->intrspec_pri = l->pri;
656 			new->intrspec_vec = l->vec;
657 			new++;
658 			l++;
659 		}
660 		ddi_prop_free((void *)intr_prop);
661 
662 	} else if ((n = irupts_len) != 0) {
663 		size_t size;
664 		int *out;
665 
666 		/*
667 		 * Translate the 'interrupts' property into an array
668 		 * of intrspecs for the rest of the DDI framework to
669 		 * toy with.  Only our ancestors really know how to
670 		 * do this, so ask 'em.  We massage the 'interrupts'
671 		 * property so that it is pre-pended by a count of
672 		 * the number of integers in the argument.
673 		 */
674 		size = sizeof (int) + n;
675 		out = kmem_alloc(size, KM_SLEEP);
676 		*out = n / sizeof (int);
677 		bcopy(irupts_prop, out + 1, (size_t)n);
678 		ddi_prop_free((void *)irupts_prop);
679 		if (impl_xlate_intrs(child, out, pdptr) != DDI_SUCCESS) {
680 			cmn_err(CE_CONT,
681 			    "Unable to translate 'interrupts' for %s%d\n",
682 			    DEVI(child)->devi_binding_name,
683 			    DEVI(child)->devi_instance);
684 		}
685 		kmem_free(out, size);
686 	}
687 }
688 
689 /*
690  * Name a child
691  */
692 static int
693 impl_sunbus_name_child(dev_info_t *child, char *name, int namelen)
694 {
695 	/*
696 	 * Fill in parent-private data and this function returns to us
697 	 * an indication if it used "registers" to fill in the data.
698 	 */
699 	if (ddi_get_parent_data(child) == NULL) {
700 		struct ddi_parent_private_data *pdptr;
701 		make_ddi_ppd(child, &pdptr);
702 		ddi_set_parent_data(child, pdptr);
703 	}
704 
705 	name[0] = '\0';
706 	if (sparc_pd_getnreg(child) > 0) {
707 		(void) snprintf(name, namelen, "%x,%x",
708 		    (uint_t)sparc_pd_getreg(child, 0)->regspec_bustype,
709 		    (uint_t)sparc_pd_getreg(child, 0)->regspec_addr);
710 	}
711 
712 	return (DDI_SUCCESS);
713 }
714 
715 /*
716  * Called from the bus_ctl op of sunbus (sbus, obio, etc) nexus drivers
717  * to implement the DDI_CTLOPS_INITCHILD operation.  That is, it names
718  * the children of sun busses based on the reg spec.
719  *
720  * Handles the following properties (in make_ddi_ppd):
721  *	Property		value
722  *	  Name			type
723  *	reg		register spec
724  *	intr		old-form interrupt spec
725  *	interrupts	new (bus-oriented) interrupt spec
726  *	ranges		range spec
727  */
728 int
729 impl_ddi_sunbus_initchild(dev_info_t *child)
730 {
731 	char name[MAXNAMELEN];
732 	void impl_ddi_sunbus_removechild(dev_info_t *);
733 
734 	/*
735 	 * Name the child, also makes parent private data
736 	 */
737 	(void) impl_sunbus_name_child(child, name, MAXNAMELEN);
738 	ddi_set_name_addr(child, name);
739 
740 	/*
741 	 * Attempt to merge a .conf node; if successful, remove the
742 	 * .conf node.
743 	 */
744 	if ((ndi_dev_is_persistent_node(child) == 0) &&
745 	    (ndi_merge_node(child, impl_sunbus_name_child) == DDI_SUCCESS)) {
746 		/*
747 		 * Return failure to remove node
748 		 */
749 		impl_ddi_sunbus_removechild(child);
750 		return (DDI_FAILURE);
751 	}
752 	return (DDI_SUCCESS);
753 }
754 
755 void
756 impl_free_ddi_ppd(dev_info_t *dip)
757 {
758 	struct ddi_parent_private_data *pdptr;
759 	size_t n;
760 
761 	if ((pdptr = ddi_get_parent_data(dip)) == NULL)
762 		return;
763 
764 	if ((n = (size_t)pdptr->par_nintr) != 0)
765 		/*
766 		 * Note that kmem_free is used here (instead of
767 		 * ddi_prop_free) because the contents of the
768 		 * property were placed into a separate buffer and
769 		 * mucked with a bit before being stored in par_intr.
770 		 * The actual return value from the prop lookup
771 		 * was freed with ddi_prop_free previously.
772 		 */
773 		kmem_free(pdptr->par_intr, n * sizeof (struct intrspec));
774 
775 	if ((n = (size_t)pdptr->par_nrng) != 0)
776 		ddi_prop_free((void *)pdptr->par_rng);
777 
778 	if ((n = pdptr->par_nreg) != 0)
779 		ddi_prop_free((void *)pdptr->par_reg);
780 
781 	kmem_free(pdptr, sizeof (*pdptr));
782 	ddi_set_parent_data(dip, NULL);
783 }
784 
785 void
786 impl_ddi_sunbus_removechild(dev_info_t *dip)
787 {
788 	impl_free_ddi_ppd(dip);
789 	ddi_set_name_addr(dip, NULL);
790 	/*
791 	 * Strip the node to properly convert it back to prototype form
792 	 */
793 	impl_rem_dev_props(dip);
794 }
795 
796 /*
797  * DDI Interrupt
798  */
799 
800 /*
801  * turn this on to force isa, eisa, and mca device to ignore the new
802  * hardware nodes in the device tree (normally turned on only for
803  * drivers that need it by setting the property "ignore-hardware-nodes"
804  * in their driver.conf file).
805  *
806  * 7/31/96 -- Turned off globally.  Leaving variable in for the moment
807  *		as safety valve.
808  */
809 int ignore_hardware_nodes = 0;
810 
811 /*
812  * Local data
813  */
814 static struct impl_bus_promops *impl_busp;
815 
816 
817 /*
818  * New DDI interrupt framework
819  */
820 
821 /*
822  * i_ddi_intr_ops:
823  *
824  * This is the interrupt operator function wrapper for the bus function
825  * bus_intr_op.
826  */
827 int
828 i_ddi_intr_ops(dev_info_t *dip, dev_info_t *rdip, ddi_intr_op_t op,
829     ddi_intr_handle_impl_t *hdlp, void * result)
830 {
831 	dev_info_t	*pdip = (dev_info_t *)DEVI(dip)->devi_parent;
832 	int		ret = DDI_FAILURE;
833 
834 	/* request parent to process this interrupt op */
835 	if (NEXUS_HAS_INTR_OP(pdip))
836 		ret = (*(DEVI(pdip)->devi_ops->devo_bus_ops->bus_intr_op))(
837 		    pdip, rdip, op, hdlp, result);
838 	else
839 		cmn_err(CE_WARN, "Failed to process interrupt "
840 		    "for %s%d due to down-rev nexus driver %s%d",
841 		    ddi_get_name(rdip), ddi_get_instance(rdip),
842 		    ddi_get_name(pdip), ddi_get_instance(pdip));
843 	return (ret);
844 }
845 
846 /*
847  * i_ddi_add_softint - allocate and add a soft interrupt to the system
848  */
849 int
850 i_ddi_add_softint(ddi_softint_hdl_impl_t *hdlp)
851 {
852 	int ret;
853 
854 	/* add soft interrupt handler */
855 	ret = add_avsoftintr((void *)hdlp, hdlp->ih_pri, hdlp->ih_cb_func,
856 	    DEVI(hdlp->ih_dip)->devi_name, hdlp->ih_cb_arg1, hdlp->ih_cb_arg2);
857 	return (ret ? DDI_SUCCESS : DDI_FAILURE);
858 }
859 
860 
861 void
862 i_ddi_remove_softint(ddi_softint_hdl_impl_t *hdlp)
863 {
864 	(void) rem_avsoftintr((void *)hdlp, hdlp->ih_pri, hdlp->ih_cb_func);
865 }
866 
867 
868 extern void (*setsoftint)(int, struct av_softinfo *);
869 extern boolean_t av_check_softint_pending(struct av_softinfo *, boolean_t);
870 
871 int
872 i_ddi_trigger_softint(ddi_softint_hdl_impl_t *hdlp, void *arg2)
873 {
874 	if (av_check_softint_pending(hdlp->ih_pending, B_FALSE))
875 		return (DDI_EPENDING);
876 
877 	update_avsoftintr_args((void *)hdlp, hdlp->ih_pri, arg2);
878 
879 	(*setsoftint)(hdlp->ih_pri, hdlp->ih_pending);
880 	return (DDI_SUCCESS);
881 }
882 
883 /*
884  * i_ddi_set_softint_pri:
885  *
886  * The way this works is that it first tries to add a softint vector
887  * at the new priority in hdlp. If that succeeds; then it removes the
888  * existing softint vector at the old priority.
889  */
890 int
891 i_ddi_set_softint_pri(ddi_softint_hdl_impl_t *hdlp, uint_t old_pri)
892 {
893 	int ret;
894 
895 	/*
896 	 * If a softint is pending at the old priority then fail the request.
897 	 */
898 	if (av_check_softint_pending(hdlp->ih_pending, B_TRUE))
899 		return (DDI_FAILURE);
900 
901 	ret = av_softint_movepri((void *)hdlp, old_pri);
902 	return (ret ? DDI_SUCCESS : DDI_FAILURE);
903 }
904 
905 void
906 i_ddi_alloc_intr_phdl(ddi_intr_handle_impl_t *hdlp)
907 {
908 	hdlp->ih_private = (void *)kmem_zalloc(sizeof (ihdl_plat_t), KM_SLEEP);
909 }
910 
911 void
912 i_ddi_free_intr_phdl(ddi_intr_handle_impl_t *hdlp)
913 {
914 	kmem_free(hdlp->ih_private, sizeof (ihdl_plat_t));
915 	hdlp->ih_private = NULL;
916 }
917 
918 int
919 i_ddi_get_intx_nintrs(dev_info_t *dip)
920 {
921 	struct ddi_parent_private_data *pdp;
922 
923 	if ((pdp = ddi_get_parent_data(dip)) == NULL)
924 		return (0);
925 
926 	return (pdp->par_nintr);
927 }
928 
929 /*
930  * DDI Memory/DMA
931  */
932 
933 /*
934  * Support for allocating DMAable memory to implement
935  * ddi_dma_mem_alloc(9F) interface.
936  */
937 
938 #define	KA_ALIGN_SHIFT	7
939 #define	KA_ALIGN	(1 << KA_ALIGN_SHIFT)
940 #define	KA_NCACHE	(PAGESHIFT + 1 - KA_ALIGN_SHIFT)
941 
942 /*
943  * Dummy DMA attribute template for kmem_io[].kmem_io_attr.  We only
944  * care about addr_lo, addr_hi, and align.  addr_hi will be dynamically set.
945  */
946 
947 static ddi_dma_attr_t kmem_io_attr = {
948 	DMA_ATTR_V0,
949 	0x0000000000000000ULL,		/* dma_attr_addr_lo */
950 	0x0000000000000000ULL,		/* dma_attr_addr_hi */
951 	0x00ffffff,
952 	0x1000,				/* dma_attr_align */
953 	1, 1, 0xffffffffULL, 0xffffffffULL, 0x1, 1, 0
954 };
955 
956 /* kmem io memory ranges and indices */
957 enum {
958 	IO_4P, IO_64G, IO_4G, IO_2G, IO_1G, IO_512M,
959 	IO_256M, IO_128M, IO_64M, IO_32M, IO_16M, MAX_MEM_RANGES
960 };
961 
962 static struct {
963 	vmem_t		*kmem_io_arena;
964 	kmem_cache_t	*kmem_io_cache[KA_NCACHE];
965 	ddi_dma_attr_t	kmem_io_attr;
966 } kmem_io[MAX_MEM_RANGES];
967 
968 static int kmem_io_idx;		/* index of first populated kmem_io[] */
969 
970 static page_t *
971 page_create_io_wrapper(void *addr, size_t len, int vmflag, void *arg)
972 {
973 	extern page_t *page_create_io(vnode_t *, u_offset_t, uint_t,
974 	    uint_t, struct as *, caddr_t, ddi_dma_attr_t *);
975 
976 	return (page_create_io(&kvp, (u_offset_t)(uintptr_t)addr, len,
977 	    PG_EXCL | ((vmflag & VM_NOSLEEP) ? 0 : PG_WAIT), &kas, addr, arg));
978 }
979 
980 #ifdef __xpv
981 static void
982 segkmem_free_io(vmem_t *vmp, void * ptr, size_t size)
983 {
984 	extern void page_destroy_io(page_t *);
985 	segkmem_xfree(vmp, ptr, size, page_destroy_io);
986 }
987 #endif
988 
989 static void *
990 segkmem_alloc_io_4P(vmem_t *vmp, size_t size, int vmflag)
991 {
992 	return (segkmem_xalloc(vmp, NULL, size, vmflag, 0,
993 	    page_create_io_wrapper, &kmem_io[IO_4P].kmem_io_attr));
994 }
995 
996 static void *
997 segkmem_alloc_io_64G(vmem_t *vmp, size_t size, int vmflag)
998 {
999 	return (segkmem_xalloc(vmp, NULL, size, vmflag, 0,
1000 	    page_create_io_wrapper, &kmem_io[IO_64G].kmem_io_attr));
1001 }
1002 
1003 static void *
1004 segkmem_alloc_io_4G(vmem_t *vmp, size_t size, int vmflag)
1005 {
1006 	return (segkmem_xalloc(vmp, NULL, size, vmflag, 0,
1007 	    page_create_io_wrapper, &kmem_io[IO_4G].kmem_io_attr));
1008 }
1009 
1010 static void *
1011 segkmem_alloc_io_2G(vmem_t *vmp, size_t size, int vmflag)
1012 {
1013 	return (segkmem_xalloc(vmp, NULL, size, vmflag, 0,
1014 	    page_create_io_wrapper, &kmem_io[IO_2G].kmem_io_attr));
1015 }
1016 
1017 static void *
1018 segkmem_alloc_io_1G(vmem_t *vmp, size_t size, int vmflag)
1019 {
1020 	return (segkmem_xalloc(vmp, NULL, size, vmflag, 0,
1021 	    page_create_io_wrapper, &kmem_io[IO_1G].kmem_io_attr));
1022 }
1023 
1024 static void *
1025 segkmem_alloc_io_512M(vmem_t *vmp, size_t size, int vmflag)
1026 {
1027 	return (segkmem_xalloc(vmp, NULL, size, vmflag, 0,
1028 	    page_create_io_wrapper, &kmem_io[IO_512M].kmem_io_attr));
1029 }
1030 
1031 static void *
1032 segkmem_alloc_io_256M(vmem_t *vmp, size_t size, int vmflag)
1033 {
1034 	return (segkmem_xalloc(vmp, NULL, size, vmflag, 0,
1035 	    page_create_io_wrapper, &kmem_io[IO_256M].kmem_io_attr));
1036 }
1037 
1038 static void *
1039 segkmem_alloc_io_128M(vmem_t *vmp, size_t size, int vmflag)
1040 {
1041 	return (segkmem_xalloc(vmp, NULL, size, vmflag, 0,
1042 	    page_create_io_wrapper, &kmem_io[IO_128M].kmem_io_attr));
1043 }
1044 
1045 static void *
1046 segkmem_alloc_io_64M(vmem_t *vmp, size_t size, int vmflag)
1047 {
1048 	return (segkmem_xalloc(vmp, NULL, size, vmflag, 0,
1049 	    page_create_io_wrapper, &kmem_io[IO_64M].kmem_io_attr));
1050 }
1051 
1052 static void *
1053 segkmem_alloc_io_32M(vmem_t *vmp, size_t size, int vmflag)
1054 {
1055 	return (segkmem_xalloc(vmp, NULL, size, vmflag, 0,
1056 	    page_create_io_wrapper, &kmem_io[IO_32M].kmem_io_attr));
1057 }
1058 
1059 static void *
1060 segkmem_alloc_io_16M(vmem_t *vmp, size_t size, int vmflag)
1061 {
1062 	return (segkmem_xalloc(vmp, NULL, size, vmflag, 0,
1063 	    page_create_io_wrapper, &kmem_io[IO_16M].kmem_io_attr));
1064 }
1065 
1066 struct {
1067 	uint64_t	io_limit;
1068 	char		*io_name;
1069 	void		*(*io_alloc)(vmem_t *, size_t, int);
1070 	int		io_initial;	/* kmem_io_init during startup */
1071 } io_arena_params[MAX_MEM_RANGES] = {
1072 	{0x000fffffffffffffULL,	"kmem_io_4P",	segkmem_alloc_io_4P,	1},
1073 	{0x0000000fffffffffULL,	"kmem_io_64G",	segkmem_alloc_io_64G,	0},
1074 	{0x00000000ffffffffULL,	"kmem_io_4G",	segkmem_alloc_io_4G,	1},
1075 	{0x000000007fffffffULL,	"kmem_io_2G",	segkmem_alloc_io_2G,	1},
1076 	{0x000000003fffffffULL,	"kmem_io_1G",	segkmem_alloc_io_1G,	0},
1077 	{0x000000001fffffffULL,	"kmem_io_512M",	segkmem_alloc_io_512M,	0},
1078 	{0x000000000fffffffULL,	"kmem_io_256M",	segkmem_alloc_io_256M,	0},
1079 	{0x0000000007ffffffULL,	"kmem_io_128M",	segkmem_alloc_io_128M,	0},
1080 	{0x0000000003ffffffULL,	"kmem_io_64M",	segkmem_alloc_io_64M,	0},
1081 	{0x0000000001ffffffULL,	"kmem_io_32M",	segkmem_alloc_io_32M,	0},
1082 	{0x0000000000ffffffULL,	"kmem_io_16M",	segkmem_alloc_io_16M,	1}
1083 };
1084 
1085 void
1086 kmem_io_init(int a)
1087 {
1088 	int	c;
1089 	char name[40];
1090 
1091 	kmem_io[a].kmem_io_arena = vmem_create(io_arena_params[a].io_name,
1092 	    NULL, 0, PAGESIZE, io_arena_params[a].io_alloc,
1093 #ifdef __xpv
1094 	    segkmem_free_io,
1095 #else
1096 	    segkmem_free,
1097 #endif
1098 	    heap_arena, 0, VM_SLEEP);
1099 
1100 	for (c = 0; c < KA_NCACHE; c++) {
1101 		size_t size = KA_ALIGN << c;
1102 		(void) sprintf(name, "%s_%lu",
1103 		    io_arena_params[a].io_name, size);
1104 		kmem_io[a].kmem_io_cache[c] = kmem_cache_create(name,
1105 		    size, size, NULL, NULL, NULL, NULL,
1106 		    kmem_io[a].kmem_io_arena, 0);
1107 	}
1108 }
1109 
1110 /*
1111  * Return the index of the highest memory range for addr.
1112  */
1113 static int
1114 kmem_io_index(uint64_t addr)
1115 {
1116 	int n;
1117 
1118 	for (n = kmem_io_idx; n < MAX_MEM_RANGES; n++) {
1119 		if (kmem_io[n].kmem_io_attr.dma_attr_addr_hi <= addr) {
1120 			if (kmem_io[n].kmem_io_arena == NULL)
1121 				kmem_io_init(n);
1122 			return (n);
1123 		}
1124 	}
1125 	panic("kmem_io_index: invalid addr - must be at least 16m");
1126 
1127 	/*NOTREACHED*/
1128 }
1129 
1130 /*
1131  * Return the index of the next kmem_io populated memory range
1132  * after curindex.
1133  */
1134 static int
1135 kmem_io_index_next(int curindex)
1136 {
1137 	int n;
1138 
1139 	for (n = curindex + 1; n < MAX_MEM_RANGES; n++) {
1140 		if (kmem_io[n].kmem_io_arena)
1141 			return (n);
1142 	}
1143 	return (-1);
1144 }
1145 
1146 /*
1147  * allow kmem to be mapped in with different PTE cache attribute settings.
1148  * Used by i_ddi_mem_alloc()
1149  */
1150 int
1151 kmem_override_cache_attrs(caddr_t kva, size_t size, uint_t order)
1152 {
1153 	uint_t hat_flags;
1154 	caddr_t kva_end;
1155 	uint_t hat_attr;
1156 	pfn_t pfn;
1157 
1158 	if (hat_getattr(kas.a_hat, kva, &hat_attr) == -1) {
1159 		return (-1);
1160 	}
1161 
1162 	hat_attr &= ~HAT_ORDER_MASK;
1163 	hat_attr |= order | HAT_NOSYNC;
1164 	hat_flags = HAT_LOAD_LOCK;
1165 
1166 	kva_end = (caddr_t)(((uintptr_t)kva + size + PAGEOFFSET) &
1167 	    (uintptr_t)PAGEMASK);
1168 	kva = (caddr_t)((uintptr_t)kva & (uintptr_t)PAGEMASK);
1169 
1170 	while (kva < kva_end) {
1171 		pfn = hat_getpfnum(kas.a_hat, kva);
1172 		hat_unload(kas.a_hat, kva, PAGESIZE, HAT_UNLOAD_UNLOCK);
1173 		hat_devload(kas.a_hat, kva, PAGESIZE, pfn, hat_attr, hat_flags);
1174 		kva += MMU_PAGESIZE;
1175 	}
1176 
1177 	return (0);
1178 }
1179 
1180 void
1181 ka_init(void)
1182 {
1183 	int a;
1184 	paddr_t maxphysaddr;
1185 #if !defined(__xpv)
1186 	extern pfn_t physmax;
1187 
1188 	maxphysaddr = mmu_ptob((paddr_t)physmax) + MMU_PAGEOFFSET;
1189 #else
1190 	maxphysaddr = mmu_ptob((paddr_t)HYPERVISOR_memory_op(
1191 	    XENMEM_maximum_ram_page, NULL)) + MMU_PAGEOFFSET;
1192 #endif
1193 
1194 	ASSERT(maxphysaddr <= io_arena_params[0].io_limit);
1195 
1196 	for (a = 0; a < MAX_MEM_RANGES; a++) {
1197 		if (maxphysaddr >= io_arena_params[a + 1].io_limit) {
1198 			if (maxphysaddr > io_arena_params[a + 1].io_limit)
1199 				io_arena_params[a].io_limit = maxphysaddr;
1200 			else
1201 				a++;
1202 			break;
1203 		}
1204 	}
1205 	kmem_io_idx = a;
1206 
1207 	for (; a < MAX_MEM_RANGES; a++) {
1208 		kmem_io[a].kmem_io_attr = kmem_io_attr;
1209 		kmem_io[a].kmem_io_attr.dma_attr_addr_hi =
1210 		    io_arena_params[a].io_limit;
1211 		/*
1212 		 * initialize kmem_io[] arena/cache corresponding to
1213 		 * maxphysaddr and to the "common" io memory ranges that
1214 		 * have io_initial set to a non-zero value.
1215 		 */
1216 		if (io_arena_params[a].io_initial || a == kmem_io_idx)
1217 			kmem_io_init(a);
1218 	}
1219 }
1220 
1221 /*
1222  * put contig address/size
1223  */
1224 static void *
1225 putctgas(void *addr, size_t size)
1226 {
1227 	struct ctgas	*ctgp = &ctglist;
1228 	int		i;
1229 
1230 	CTGLOCK();
1231 	do {
1232 		if ((i = ctgp->ctg_index) < CTGENTRIES) {
1233 			ctgp->ctg_addr[i] = addr;
1234 			ctgp->ctg_size[i] = size;
1235 			ctgp->ctg_index++;
1236 			break;
1237 		}
1238 		if (!ctgp->ctg_next)
1239 			ctgp->ctg_next = kmem_zalloc(sizeof (struct ctgas),
1240 			    KM_NOSLEEP);
1241 		ctgp = ctgp->ctg_next;
1242 	} while (ctgp);
1243 
1244 	CTGUNLOCK();
1245 	return (ctgp);
1246 }
1247 
1248 /*
1249  * get contig size by addr
1250  */
1251 static size_t
1252 getctgsz(void *addr)
1253 {
1254 	struct ctgas	*ctgp = &ctglist;
1255 	int		i, j;
1256 	size_t		sz;
1257 
1258 	ASSERT(addr);
1259 	CTGLOCK();
1260 
1261 	while (ctgp) {
1262 		for (i = 0; i < ctgp->ctg_index; i++) {
1263 			if (addr != ctgp->ctg_addr[i])
1264 				continue;
1265 
1266 			sz = ctgp->ctg_size[i];
1267 			j = --ctgp->ctg_index;
1268 			if (i != j) {
1269 				ctgp->ctg_size[i] = ctgp->ctg_size[j];
1270 				ctgp->ctg_addr[i] = ctgp->ctg_addr[j];
1271 			}
1272 			CTGUNLOCK();
1273 			return (sz);
1274 		}
1275 		ctgp = ctgp->ctg_next;
1276 	}
1277 
1278 	CTGUNLOCK();
1279 	return (0);
1280 }
1281 
1282 /*
1283  * contig_alloc:
1284  *
1285  *	allocates contiguous memory to satisfy the 'size' and dma attributes
1286  *	specified in 'attr'.
1287  *
1288  *	Not all of memory need to be physically contiguous if the
1289  *	scatter-gather list length is greater than 1.
1290  */
1291 
1292 /*ARGSUSED*/
1293 void *
1294 contig_alloc(size_t size, ddi_dma_attr_t *attr, uintptr_t align, int cansleep)
1295 {
1296 	pgcnt_t		pgcnt = btopr(size);
1297 	size_t		asize = pgcnt * PAGESIZE;
1298 	page_t		*ppl;
1299 	int		pflag;
1300 	void		*addr;
1301 
1302 	extern page_t *page_create_io(vnode_t *, u_offset_t, uint_t,
1303 	    uint_t, struct as *, caddr_t, ddi_dma_attr_t *);
1304 
1305 	/* segkmem_xalloc */
1306 
1307 	if (align <= PAGESIZE)
1308 		addr = vmem_alloc(heap_arena, asize,
1309 		    (cansleep) ? VM_SLEEP : VM_NOSLEEP);
1310 	else
1311 		addr = vmem_xalloc(heap_arena, asize, align, 0, 0, NULL, NULL,
1312 		    (cansleep) ? VM_SLEEP : VM_NOSLEEP);
1313 	if (addr) {
1314 		ASSERT(!((uintptr_t)addr & (align - 1)));
1315 
1316 		if (page_resv(pgcnt, (cansleep) ? KM_SLEEP : KM_NOSLEEP) == 0) {
1317 			vmem_free(heap_arena, addr, asize);
1318 			return (NULL);
1319 		}
1320 		pflag = PG_EXCL;
1321 
1322 		if (cansleep)
1323 			pflag |= PG_WAIT;
1324 
1325 		/* 4k req gets from freelists rather than pfn search */
1326 		if (pgcnt > 1 || align > PAGESIZE)
1327 			pflag |= PG_PHYSCONTIG;
1328 
1329 		ppl = page_create_io(&kvp, (u_offset_t)(uintptr_t)addr,
1330 		    asize, pflag, &kas, (caddr_t)addr, attr);
1331 
1332 		if (!ppl) {
1333 			vmem_free(heap_arena, addr, asize);
1334 			page_unresv(pgcnt);
1335 			return (NULL);
1336 		}
1337 
1338 		while (ppl != NULL) {
1339 			page_t	*pp = ppl;
1340 			page_sub(&ppl, pp);
1341 			ASSERT(page_iolock_assert(pp));
1342 			page_io_unlock(pp);
1343 			page_downgrade(pp);
1344 			hat_memload(kas.a_hat, (caddr_t)(uintptr_t)pp->p_offset,
1345 			    pp, (PROT_ALL & ~PROT_USER) |
1346 			    HAT_NOSYNC, HAT_LOAD_LOCK);
1347 		}
1348 	}
1349 	return (addr);
1350 }
1351 
1352 static void
1353 contig_free(void *addr, size_t size)
1354 {
1355 	pgcnt_t	pgcnt = btopr(size);
1356 	size_t	asize = pgcnt * PAGESIZE;
1357 	caddr_t	a, ea;
1358 	page_t	*pp;
1359 
1360 	hat_unload(kas.a_hat, addr, asize, HAT_UNLOAD_UNLOCK);
1361 
1362 	for (a = addr, ea = a + asize; a < ea; a += PAGESIZE) {
1363 		pp = page_find(&kvp, (u_offset_t)(uintptr_t)a);
1364 		if (!pp)
1365 			panic("contig_free: contig pp not found");
1366 
1367 		if (!page_tryupgrade(pp)) {
1368 			page_unlock(pp);
1369 			pp = page_lookup(&kvp,
1370 			    (u_offset_t)(uintptr_t)a, SE_EXCL);
1371 			if (pp == NULL)
1372 				panic("contig_free: page freed");
1373 		}
1374 		page_destroy(pp, 0);
1375 	}
1376 
1377 	page_unresv(pgcnt);
1378 	vmem_free(heap_arena, addr, asize);
1379 }
1380 
1381 /*
1382  * Allocate from the system, aligned on a specific boundary.
1383  * The alignment, if non-zero, must be a power of 2.
1384  */
1385 static void *
1386 kalloca(size_t size, size_t align, int cansleep, int physcontig,
1387 	ddi_dma_attr_t *attr)
1388 {
1389 	size_t *addr, *raddr, rsize;
1390 	size_t hdrsize = 4 * sizeof (size_t);	/* must be power of 2 */
1391 	int a, i, c;
1392 	vmem_t *vmp;
1393 	kmem_cache_t *cp = NULL;
1394 
1395 	if (attr->dma_attr_addr_lo > mmu_ptob((uint64_t)ddiphysmin))
1396 		return (NULL);
1397 
1398 	align = MAX(align, hdrsize);
1399 	ASSERT((align & (align - 1)) == 0);
1400 
1401 	/*
1402 	 * All of our allocators guarantee 16-byte alignment, so we don't
1403 	 * need to reserve additional space for the header.
1404 	 * To simplify picking the correct kmem_io_cache, we round up to
1405 	 * a multiple of KA_ALIGN.
1406 	 */
1407 	rsize = P2ROUNDUP_TYPED(size + align, KA_ALIGN, size_t);
1408 
1409 	if (physcontig && rsize > PAGESIZE) {
1410 		if (addr = contig_alloc(size, attr, align, cansleep)) {
1411 			if (!putctgas(addr, size))
1412 				contig_free(addr, size);
1413 			else
1414 				return (addr);
1415 		}
1416 		return (NULL);
1417 	}
1418 
1419 	a = kmem_io_index(attr->dma_attr_addr_hi);
1420 
1421 	if (rsize > PAGESIZE) {
1422 		vmp = kmem_io[a].kmem_io_arena;
1423 		raddr = vmem_alloc(vmp, rsize,
1424 		    (cansleep) ? VM_SLEEP : VM_NOSLEEP);
1425 	} else {
1426 		c = highbit((rsize >> KA_ALIGN_SHIFT) - 1);
1427 		cp = kmem_io[a].kmem_io_cache[c];
1428 		raddr = kmem_cache_alloc(cp, (cansleep) ? KM_SLEEP :
1429 		    KM_NOSLEEP);
1430 	}
1431 
1432 	if (raddr == NULL) {
1433 		int	na;
1434 
1435 		ASSERT(cansleep == 0);
1436 		if (rsize > PAGESIZE)
1437 			return (NULL);
1438 		/*
1439 		 * System does not have memory in the requested range.
1440 		 * Try smaller kmem io ranges and larger cache sizes
1441 		 * to see if there might be memory available in
1442 		 * these other caches.
1443 		 */
1444 
1445 		for (na = kmem_io_index_next(a); na >= 0;
1446 		    na = kmem_io_index_next(na)) {
1447 			ASSERT(kmem_io[na].kmem_io_arena);
1448 			cp = kmem_io[na].kmem_io_cache[c];
1449 			raddr = kmem_cache_alloc(cp, KM_NOSLEEP);
1450 			if (raddr)
1451 				goto kallocdone;
1452 		}
1453 		/* now try the larger kmem io cache sizes */
1454 		for (na = a; na >= 0; na = kmem_io_index_next(na)) {
1455 			for (i = c + 1; i < KA_NCACHE; i++) {
1456 				cp = kmem_io[na].kmem_io_cache[i];
1457 				raddr = kmem_cache_alloc(cp, KM_NOSLEEP);
1458 				if (raddr)
1459 					goto kallocdone;
1460 			}
1461 		}
1462 		return (NULL);
1463 	}
1464 
1465 kallocdone:
1466 	ASSERT(!P2CROSS((uintptr_t)raddr, (uintptr_t)raddr + rsize - 1,
1467 	    PAGESIZE) || rsize > PAGESIZE);
1468 
1469 	addr = (size_t *)P2ROUNDUP((uintptr_t)raddr + hdrsize, align);
1470 	ASSERT((uintptr_t)addr + size - (uintptr_t)raddr <= rsize);
1471 
1472 	addr[-4] = (size_t)cp;
1473 	addr[-3] = (size_t)vmp;
1474 	addr[-2] = (size_t)raddr;
1475 	addr[-1] = rsize;
1476 
1477 	return (addr);
1478 }
1479 
1480 static void
1481 kfreea(void *addr)
1482 {
1483 	size_t		size;
1484 
1485 	if (!((uintptr_t)addr & PAGEOFFSET) && (size = getctgsz(addr))) {
1486 		contig_free(addr, size);
1487 	} else {
1488 		size_t	*saddr = addr;
1489 		if (saddr[-4] == 0)
1490 			vmem_free((vmem_t *)saddr[-3], (void *)saddr[-2],
1491 			    saddr[-1]);
1492 		else
1493 			kmem_cache_free((kmem_cache_t *)saddr[-4],
1494 			    (void *)saddr[-2]);
1495 	}
1496 }
1497 
1498 /*ARGSUSED*/
1499 void
1500 i_ddi_devacc_to_hatacc(ddi_device_acc_attr_t *devaccp, uint_t *hataccp)
1501 {
1502 }
1503 
1504 /*
1505  * Check if the specified cache attribute is supported on the platform.
1506  * This function must be called before i_ddi_cacheattr_to_hatacc().
1507  */
1508 boolean_t
1509 i_ddi_check_cache_attr(uint_t flags)
1510 {
1511 	/*
1512 	 * The cache attributes are mutually exclusive. Any combination of
1513 	 * the attributes leads to a failure.
1514 	 */
1515 	uint_t cache_attr = IOMEM_CACHE_ATTR(flags);
1516 	if ((cache_attr != 0) && ((cache_attr & (cache_attr - 1)) != 0))
1517 		return (B_FALSE);
1518 
1519 	/* All cache attributes are supported on X86/X64 */
1520 	if (cache_attr & (IOMEM_DATA_UNCACHED | IOMEM_DATA_CACHED |
1521 	    IOMEM_DATA_UC_WR_COMBINE))
1522 		return (B_TRUE);
1523 
1524 	/* undefined attributes */
1525 	return (B_FALSE);
1526 }
1527 
1528 /* set HAT cache attributes from the cache attributes */
1529 void
1530 i_ddi_cacheattr_to_hatacc(uint_t flags, uint_t *hataccp)
1531 {
1532 	uint_t cache_attr = IOMEM_CACHE_ATTR(flags);
1533 	static char *fname = "i_ddi_cacheattr_to_hatacc";
1534 
1535 	/*
1536 	 * If write-combining is not supported, then it falls back
1537 	 * to uncacheable.
1538 	 */
1539 	if (cache_attr == IOMEM_DATA_UC_WR_COMBINE && !(x86_feature & X86_PAT))
1540 		cache_attr = IOMEM_DATA_UNCACHED;
1541 
1542 	/*
1543 	 * set HAT attrs according to the cache attrs.
1544 	 */
1545 	switch (cache_attr) {
1546 	case IOMEM_DATA_UNCACHED:
1547 		*hataccp &= ~HAT_ORDER_MASK;
1548 		*hataccp |= (HAT_STRICTORDER | HAT_PLAT_NOCACHE);
1549 		break;
1550 	case IOMEM_DATA_UC_WR_COMBINE:
1551 		*hataccp &= ~HAT_ORDER_MASK;
1552 		*hataccp |= (HAT_MERGING_OK | HAT_PLAT_NOCACHE);
1553 		break;
1554 	case IOMEM_DATA_CACHED:
1555 		*hataccp &= ~HAT_ORDER_MASK;
1556 		*hataccp |= HAT_UNORDERED_OK;
1557 		break;
1558 	/*
1559 	 * This case must not occur because the cache attribute is scrutinized
1560 	 * before this function is called.
1561 	 */
1562 	default:
1563 		/*
1564 		 * set cacheable to hat attrs.
1565 		 */
1566 		*hataccp &= ~HAT_ORDER_MASK;
1567 		*hataccp |= HAT_UNORDERED_OK;
1568 		cmn_err(CE_WARN, "%s: cache_attr=0x%x is ignored.",
1569 		    fname, cache_attr);
1570 	}
1571 }
1572 
1573 /*
1574  * This should actually be called i_ddi_dma_mem_alloc. There should
1575  * also be an i_ddi_pio_mem_alloc. i_ddi_dma_mem_alloc should call
1576  * through the device tree with the DDI_CTLOPS_DMA_ALIGN ctl ops to
1577  * get alignment requirements for DMA memory. i_ddi_pio_mem_alloc
1578  * should use DDI_CTLOPS_PIO_ALIGN. Since we only have i_ddi_mem_alloc
1579  * so far which is used for both, DMA and PIO, we have to use the DMA
1580  * ctl ops to make everybody happy.
1581  */
1582 /*ARGSUSED*/
1583 int
1584 i_ddi_mem_alloc(dev_info_t *dip, ddi_dma_attr_t *attr,
1585 	size_t length, int cansleep, int flags,
1586 	ddi_device_acc_attr_t *accattrp, caddr_t *kaddrp,
1587 	size_t *real_length, ddi_acc_hdl_t *ap)
1588 {
1589 	caddr_t a;
1590 	int iomin;
1591 	ddi_acc_impl_t *iap;
1592 	int physcontig = 0;
1593 	pgcnt_t npages;
1594 	pgcnt_t minctg;
1595 	uint_t order;
1596 	int e;
1597 
1598 	/*
1599 	 * Check legality of arguments
1600 	 */
1601 	if (length == 0 || kaddrp == NULL || attr == NULL) {
1602 		return (DDI_FAILURE);
1603 	}
1604 
1605 	if (attr->dma_attr_minxfer == 0 || attr->dma_attr_align == 0 ||
1606 	    (attr->dma_attr_align & (attr->dma_attr_align - 1)) ||
1607 	    (attr->dma_attr_minxfer & (attr->dma_attr_minxfer - 1))) {
1608 			return (DDI_FAILURE);
1609 	}
1610 
1611 	/*
1612 	 * figure out most restrictive alignment requirement
1613 	 */
1614 	iomin = attr->dma_attr_minxfer;
1615 	iomin = maxbit(iomin, attr->dma_attr_align);
1616 	if (iomin == 0)
1617 		return (DDI_FAILURE);
1618 
1619 	ASSERT((iomin & (iomin - 1)) == 0);
1620 
1621 	/*
1622 	 * if we allocate memory with IOMEM_DATA_UNCACHED or
1623 	 * IOMEM_DATA_UC_WR_COMBINE, make sure we allocate a page aligned
1624 	 * memory that ends on a page boundry.
1625 	 * Don't want to have to different cache mappings to the same
1626 	 * physical page.
1627 	 */
1628 	if (OVERRIDE_CACHE_ATTR(flags)) {
1629 		iomin = (iomin + MMU_PAGEOFFSET) & MMU_PAGEMASK;
1630 		length = (length + MMU_PAGEOFFSET) & (size_t)MMU_PAGEMASK;
1631 	}
1632 
1633 	/*
1634 	 * Determine if we need to satisfy the request for physically
1635 	 * contiguous memory or alignments larger than pagesize.
1636 	 */
1637 	npages = btopr(length + attr->dma_attr_align);
1638 	minctg = howmany(npages, attr->dma_attr_sgllen);
1639 
1640 	if (minctg > 1) {
1641 		uint64_t pfnseg = attr->dma_attr_seg >> PAGESHIFT;
1642 		/*
1643 		 * verify that the minimum contig requirement for the
1644 		 * actual length does not cross segment boundary.
1645 		 */
1646 		length = P2ROUNDUP_TYPED(length, attr->dma_attr_minxfer,
1647 		    size_t);
1648 		npages = btopr(length);
1649 		minctg = howmany(npages, attr->dma_attr_sgllen);
1650 		if (minctg > pfnseg + 1)
1651 			return (DDI_FAILURE);
1652 		physcontig = 1;
1653 	} else {
1654 		length = P2ROUNDUP_TYPED(length, iomin, size_t);
1655 	}
1656 
1657 	/*
1658 	 * Allocate the requested amount from the system.
1659 	 */
1660 	a = kalloca(length, iomin, cansleep, physcontig, attr);
1661 
1662 	if ((*kaddrp = a) == NULL)
1663 		return (DDI_FAILURE);
1664 
1665 	/*
1666 	 * if we to modify the cache attributes, go back and muck with the
1667 	 * mappings.
1668 	 */
1669 	if (OVERRIDE_CACHE_ATTR(flags)) {
1670 		order = 0;
1671 		i_ddi_cacheattr_to_hatacc(flags, &order);
1672 		e = kmem_override_cache_attrs(a, length, order);
1673 		if (e != 0) {
1674 			kfreea(a);
1675 			return (DDI_FAILURE);
1676 		}
1677 	}
1678 
1679 	if (real_length) {
1680 		*real_length = length;
1681 	}
1682 	if (ap) {
1683 		/*
1684 		 * initialize access handle
1685 		 */
1686 		iap = (ddi_acc_impl_t *)ap->ah_platform_private;
1687 		iap->ahi_acc_attr |= DDI_ACCATTR_CPU_VADDR;
1688 		impl_acc_hdl_init(ap);
1689 	}
1690 
1691 	return (DDI_SUCCESS);
1692 }
1693 
1694 /*
1695  * covert old DMA limits structure to DMA attribute structure
1696  * and continue
1697  */
1698 int
1699 i_ddi_mem_alloc_lim(dev_info_t *dip, ddi_dma_lim_t *limits,
1700 	size_t length, int cansleep, int streaming,
1701 	ddi_device_acc_attr_t *accattrp, caddr_t *kaddrp,
1702 	uint_t *real_length, ddi_acc_hdl_t *ap)
1703 {
1704 	ddi_dma_attr_t dma_attr, *attrp;
1705 	size_t rlen;
1706 	int ret;
1707 
1708 	if (limits == NULL) {
1709 		return (DDI_FAILURE);
1710 	}
1711 
1712 	/*
1713 	 * set up DMA attribute structure to pass to i_ddi_mem_alloc()
1714 	 */
1715 	attrp = &dma_attr;
1716 	attrp->dma_attr_version = DMA_ATTR_V0;
1717 	attrp->dma_attr_addr_lo = (uint64_t)limits->dlim_addr_lo;
1718 	attrp->dma_attr_addr_hi = (uint64_t)limits->dlim_addr_hi;
1719 	attrp->dma_attr_count_max = (uint64_t)limits->dlim_ctreg_max;
1720 	attrp->dma_attr_align = 1;
1721 	attrp->dma_attr_burstsizes = (uint_t)limits->dlim_burstsizes;
1722 	attrp->dma_attr_minxfer = (uint32_t)limits->dlim_minxfer;
1723 	attrp->dma_attr_maxxfer = (uint64_t)limits->dlim_reqsize;
1724 	attrp->dma_attr_seg = (uint64_t)limits->dlim_adreg_max;
1725 	attrp->dma_attr_sgllen = limits->dlim_sgllen;
1726 	attrp->dma_attr_granular = (uint32_t)limits->dlim_granular;
1727 	attrp->dma_attr_flags = 0;
1728 
1729 	ret = i_ddi_mem_alloc(dip, attrp, length, cansleep, streaming,
1730 	    accattrp, kaddrp, &rlen, ap);
1731 	if (ret == DDI_SUCCESS) {
1732 		if (real_length)
1733 			*real_length = (uint_t)rlen;
1734 	}
1735 	return (ret);
1736 }
1737 
1738 /* ARGSUSED */
1739 void
1740 i_ddi_mem_free(caddr_t kaddr, ddi_acc_hdl_t *ap)
1741 {
1742 	if (ap != NULL) {
1743 		/*
1744 		 * if we modified the cache attributes on alloc, go back and
1745 		 * fix them since this memory could be returned to the
1746 		 * general pool.
1747 		 */
1748 		if (OVERRIDE_CACHE_ATTR(ap->ah_xfermodes)) {
1749 			uint_t order = 0;
1750 			int e;
1751 			i_ddi_cacheattr_to_hatacc(IOMEM_DATA_CACHED, &order);
1752 			e = kmem_override_cache_attrs(kaddr, ap->ah_len, order);
1753 			if (e != 0) {
1754 				cmn_err(CE_WARN, "i_ddi_mem_free() failed to "
1755 				    "override cache attrs, memory leaked\n");
1756 				return;
1757 			}
1758 		}
1759 	}
1760 	kfreea(kaddr);
1761 }
1762 
1763 /*
1764  * Access Barriers
1765  *
1766  */
1767 /*ARGSUSED*/
1768 int
1769 i_ddi_ontrap(ddi_acc_handle_t hp)
1770 {
1771 	return (DDI_FAILURE);
1772 }
1773 
1774 /*ARGSUSED*/
1775 void
1776 i_ddi_notrap(ddi_acc_handle_t hp)
1777 {
1778 }
1779 
1780 
1781 /*
1782  * Misc Functions
1783  */
1784 
1785 /*
1786  * Implementation instance override functions
1787  *
1788  * No override on i86pc
1789  */
1790 /*ARGSUSED*/
1791 uint_t
1792 impl_assign_instance(dev_info_t *dip)
1793 {
1794 	return ((uint_t)-1);
1795 }
1796 
1797 /*ARGSUSED*/
1798 int
1799 impl_keep_instance(dev_info_t *dip)
1800 {
1801 
1802 #if defined(__xpv)
1803 	/*
1804 	 * Do not persist instance numbers assigned to devices in dom0
1805 	 */
1806 	dev_info_t *pdip;
1807 	if (DOMAIN_IS_INITDOMAIN(xen_info)) {
1808 		if (((pdip = ddi_get_parent(dip)) != NULL) &&
1809 		    (strcmp(ddi_get_name(pdip), "xpvd") == 0))
1810 			return (DDI_SUCCESS);
1811 	}
1812 #endif
1813 	return (DDI_FAILURE);
1814 }
1815 
1816 /*ARGSUSED*/
1817 int
1818 impl_free_instance(dev_info_t *dip)
1819 {
1820 	return (DDI_FAILURE);
1821 }
1822 
1823 /*ARGSUSED*/
1824 int
1825 impl_check_cpu(dev_info_t *devi)
1826 {
1827 	return (DDI_SUCCESS);
1828 }
1829 
1830 /*
1831  * Referenced in common/cpr_driver.c: Power off machine.
1832  * Don't know how to power off i86pc.
1833  */
1834 void
1835 arch_power_down()
1836 {}
1837 
1838 /*
1839  * Copy name to property_name, since name
1840  * is in the low address range below kernelbase.
1841  */
1842 static void
1843 copy_boot_str(const char *boot_str, char *kern_str, int len)
1844 {
1845 	int i = 0;
1846 
1847 	while (i < len - 1 && boot_str[i] != '\0') {
1848 		kern_str[i] = boot_str[i];
1849 		i++;
1850 	}
1851 
1852 	kern_str[i] = 0;	/* null terminate */
1853 	if (boot_str[i] != '\0')
1854 		cmn_err(CE_WARN,
1855 		    "boot property string is truncated to %s", kern_str);
1856 }
1857 
1858 static void
1859 get_boot_properties(void)
1860 {
1861 	extern char hw_provider[];
1862 	dev_info_t *devi;
1863 	char *name;
1864 	int length;
1865 	char property_name[50], property_val[50];
1866 	void *bop_staging_area;
1867 
1868 	bop_staging_area = kmem_zalloc(MMU_PAGESIZE, KM_NOSLEEP);
1869 
1870 	/*
1871 	 * Import "root" properties from the boot.
1872 	 *
1873 	 * We do this by invoking BOP_NEXTPROP until the list
1874 	 * is completely copied in.
1875 	 */
1876 
1877 	devi = ddi_root_node();
1878 	for (name = BOP_NEXTPROP(bootops, "");		/* get first */
1879 	    name;					/* NULL => DONE */
1880 	    name = BOP_NEXTPROP(bootops, name)) {	/* get next */
1881 
1882 		/* copy string to memory above kernelbase */
1883 		copy_boot_str(name, property_name, 50);
1884 
1885 		/*
1886 		 * Skip vga properties. They will be picked up later
1887 		 * by get_vga_properties.
1888 		 */
1889 		if (strcmp(property_name, "display-edif-block") == 0 ||
1890 		    strcmp(property_name, "display-edif-id") == 0) {
1891 			continue;
1892 		}
1893 
1894 		length = BOP_GETPROPLEN(bootops, property_name);
1895 		if (length == 0)
1896 			continue;
1897 		if (length > MMU_PAGESIZE) {
1898 			cmn_err(CE_NOTE,
1899 			    "boot property %s longer than 0x%x, ignored\n",
1900 			    property_name, MMU_PAGESIZE);
1901 			continue;
1902 		}
1903 		BOP_GETPROP(bootops, property_name, bop_staging_area);
1904 
1905 		/*
1906 		 * special properties:
1907 		 * si-machine, si-hw-provider
1908 		 *	goes to kernel data structures.
1909 		 * bios-boot-device and stdout
1910 		 *	goes to hardware property list so it may show up
1911 		 *	in the prtconf -vp output. This is needed by
1912 		 *	Install/Upgrade. Once we fix install upgrade,
1913 		 *	this can be taken out.
1914 		 */
1915 		if (strcmp(name, "si-machine") == 0) {
1916 			(void) strncpy(utsname.machine, bop_staging_area,
1917 			    SYS_NMLN);
1918 			utsname.machine[SYS_NMLN - 1] = (char)NULL;
1919 		} else if (strcmp(name, "si-hw-provider") == 0) {
1920 			(void) strncpy(hw_provider, bop_staging_area, SYS_NMLN);
1921 			hw_provider[SYS_NMLN - 1] = (char)NULL;
1922 		} else if (strcmp(name, "bios-boot-device") == 0) {
1923 			copy_boot_str(bop_staging_area, property_val, 50);
1924 			(void) ndi_prop_update_string(DDI_DEV_T_NONE, devi,
1925 			    property_name, property_val);
1926 		} else if (strcmp(name, "stdout") == 0) {
1927 			(void) ndi_prop_update_int(DDI_DEV_T_NONE, devi,
1928 			    property_name, *((int *)bop_staging_area));
1929 		} else {
1930 			/* Property type unknown, use old prop interface */
1931 			(void) e_ddi_prop_create(DDI_DEV_T_NONE, devi,
1932 			    DDI_PROP_CANSLEEP, property_name, bop_staging_area,
1933 			    length);
1934 		}
1935 	}
1936 
1937 	kmem_free(bop_staging_area, MMU_PAGESIZE);
1938 }
1939 
1940 static void
1941 get_vga_properties(void)
1942 {
1943 	dev_info_t *devi;
1944 	major_t major;
1945 	char *name;
1946 	int length;
1947 	char property_val[50];
1948 	void *bop_staging_area;
1949 
1950 	/*
1951 	 * XXXX Hack Allert!
1952 	 * There really needs to be a better way for identifying various
1953 	 * console framebuffers and their related issues.  Till then,
1954 	 * check for this one as a replacement to vgatext.
1955 	 */
1956 	major = ddi_name_to_major("ragexl");
1957 	if (major == (major_t)-1) {
1958 		major = ddi_name_to_major("vgatext");
1959 		if (major == (major_t)-1)
1960 			return;
1961 	}
1962 	devi = devnamesp[major].dn_head;
1963 	if (devi == NULL)
1964 		return;
1965 
1966 	bop_staging_area = kmem_zalloc(MMU_PAGESIZE, KM_SLEEP);
1967 
1968 	/*
1969 	 * Import "vga" properties from the boot.
1970 	 */
1971 	name = "display-edif-block";
1972 	length = BOP_GETPROPLEN(bootops, name);
1973 	if (length > 0 && length < MMU_PAGESIZE) {
1974 		BOP_GETPROP(bootops, name, bop_staging_area);
1975 		(void) ndi_prop_update_byte_array(DDI_DEV_T_NONE,
1976 		    devi, name, bop_staging_area, length);
1977 	}
1978 
1979 	/*
1980 	 * kdmconfig is also looking for display-type and
1981 	 * video-adapter-type. We default to color and svga.
1982 	 *
1983 	 * Could it be "monochrome", "vga"?
1984 	 * Nah, you've got to come to the 21st century...
1985 	 * And you can set monitor type manually in kdmconfig
1986 	 * if you are really an old junky.
1987 	 */
1988 	(void) ndi_prop_update_string(DDI_DEV_T_NONE,
1989 	    devi, "display-type", "color");
1990 	(void) ndi_prop_update_string(DDI_DEV_T_NONE,
1991 	    devi, "video-adapter-type", "svga");
1992 
1993 	name = "display-edif-id";
1994 	length = BOP_GETPROPLEN(bootops, name);
1995 	if (length > 0 && length < MMU_PAGESIZE) {
1996 		BOP_GETPROP(bootops, name, bop_staging_area);
1997 		copy_boot_str(bop_staging_area, property_val, length);
1998 		(void) ndi_prop_update_string(DDI_DEV_T_NONE,
1999 		    devi, name, property_val);
2000 	}
2001 
2002 	kmem_free(bop_staging_area, MMU_PAGESIZE);
2003 }
2004 
2005 
2006 /*
2007  * This is temporary, but absolutely necessary.  If we are being
2008  * booted with a device tree created by the DevConf project's bootconf
2009  * program, then we have device information nodes that reflect
2010  * reality.  At this point in time in the Solaris release schedule, the
2011  * kernel drivers aren't prepared for reality.  They still depend on their
2012  * own ad-hoc interpretations of the properties created when their .conf
2013  * files were interpreted. These drivers use an "ignore-hardware-nodes"
2014  * property to prevent them from using the nodes passed up from the bootconf
2015  * device tree.
2016  *
2017  * Trying to assemble root file system drivers as we are booting from
2018  * devconf will fail if the kernel driver is basing its name_addr's on the
2019  * psuedo-node device info while the bootpath passed up from bootconf is using
2020  * reality-based name_addrs.  We help the boot along in this case by
2021  * looking at the pre-bootconf bootpath and determining if we would have
2022  * successfully matched if that had been the bootpath we had chosen.
2023  *
2024  * Note that we only even perform this extra check if we've booted
2025  * using bootconf's 1275 compliant bootpath, this is the boot device, and
2026  * we're trying to match the name_addr specified in the 1275 bootpath.
2027  */
2028 
2029 #define	MAXCOMPONENTLEN	32
2030 
2031 int
2032 x86_old_bootpath_name_addr_match(dev_info_t *cdip, char *caddr, char *naddr)
2033 {
2034 	/*
2035 	 *  There are multiple criteria to be met before we can even
2036 	 *  consider allowing a name_addr match here.
2037 	 *
2038 	 *  1) We must have been booted such that the bootconf program
2039 	 *	created device tree nodes and properties.  This can be
2040 	 *	determined by examining the 'bootpath' property.  This
2041 	 *	property will be a non-null string iff bootconf was
2042 	 *	involved in the boot.
2043 	 *
2044 	 *  2) The module that we want to match must be the boot device.
2045 	 *
2046 	 *  3) The instance of the module we are thinking of letting be
2047 	 *	our match must be ignoring hardware nodes.
2048 	 *
2049 	 *  4) The name_addr we want to match must be the name_addr
2050 	 *	specified in the 1275 bootpath.
2051 	 */
2052 	static char bootdev_module[MAXCOMPONENTLEN];
2053 	static char bootdev_oldmod[MAXCOMPONENTLEN];
2054 	static char bootdev_newaddr[MAXCOMPONENTLEN];
2055 	static char bootdev_oldaddr[MAXCOMPONENTLEN];
2056 	static int  quickexit;
2057 
2058 	char *daddr;
2059 	int dlen;
2060 
2061 	char	*lkupname;
2062 	int	rv = DDI_FAILURE;
2063 
2064 	if ((ddi_getlongprop(DDI_DEV_T_ANY, cdip, DDI_PROP_DONTPASS,
2065 	    "devconf-addr", (caddr_t)&daddr, &dlen) == DDI_PROP_SUCCESS) &&
2066 	    (ddi_getprop(DDI_DEV_T_ANY, cdip, DDI_PROP_DONTPASS,
2067 	    "ignore-hardware-nodes", -1) != -1)) {
2068 		if (strcmp(daddr, caddr) == 0) {
2069 			return (DDI_SUCCESS);
2070 		}
2071 	}
2072 
2073 	if (quickexit)
2074 		return (rv);
2075 
2076 	if (bootdev_module[0] == '\0') {
2077 		char *addrp, *eoaddrp;
2078 		char *busp, *modp, *atp;
2079 		char *bp1275, *bp;
2080 		int  bp1275len, bplen;
2081 
2082 		bp1275 = bp = addrp = eoaddrp = busp = modp = atp = NULL;
2083 
2084 		if (ddi_getlongprop(DDI_DEV_T_ANY,
2085 		    ddi_root_node(), 0, "bootpath",
2086 		    (caddr_t)&bp1275, &bp1275len) != DDI_PROP_SUCCESS ||
2087 		    bp1275len <= 1) {
2088 			/*
2089 			 * We didn't boot from bootconf so we never need to
2090 			 * do any special matches.
2091 			 */
2092 			quickexit = 1;
2093 			if (bp1275)
2094 				kmem_free(bp1275, bp1275len);
2095 			return (rv);
2096 		}
2097 
2098 		if (ddi_getlongprop(DDI_DEV_T_ANY,
2099 		    ddi_root_node(), 0, "boot-path",
2100 		    (caddr_t)&bp, &bplen) != DDI_PROP_SUCCESS || bplen <= 1) {
2101 			/*
2102 			 * No fallback position for matching. This is
2103 			 * certainly unexpected, but we'll handle it
2104 			 * just in case.
2105 			 */
2106 			quickexit = 1;
2107 			kmem_free(bp1275, bp1275len);
2108 			if (bp)
2109 				kmem_free(bp, bplen);
2110 			return (rv);
2111 		}
2112 
2113 		/*
2114 		 *  Determine boot device module and 1275 name_addr
2115 		 *
2116 		 *  bootpath assumed to be of the form /bus/module@name_addr
2117 		 */
2118 		if (busp = strchr(bp1275, '/')) {
2119 			if (modp = strchr(busp + 1, '/')) {
2120 				if (atp = strchr(modp + 1, '@')) {
2121 					*atp = '\0';
2122 					addrp = atp + 1;
2123 					if (eoaddrp = strchr(addrp, '/'))
2124 						*eoaddrp = '\0';
2125 				}
2126 			}
2127 		}
2128 
2129 		if (modp && addrp) {
2130 			(void) strncpy(bootdev_module, modp + 1,
2131 			    MAXCOMPONENTLEN);
2132 			bootdev_module[MAXCOMPONENTLEN - 1] = '\0';
2133 
2134 			(void) strncpy(bootdev_newaddr, addrp, MAXCOMPONENTLEN);
2135 			bootdev_newaddr[MAXCOMPONENTLEN - 1] = '\0';
2136 		} else {
2137 			quickexit = 1;
2138 			kmem_free(bp1275, bp1275len);
2139 			kmem_free(bp, bplen);
2140 			return (rv);
2141 		}
2142 
2143 		/*
2144 		 *  Determine fallback name_addr
2145 		 *
2146 		 *  10/3/96 - Also save fallback module name because it
2147 		 *  might actually be different than the current module
2148 		 *  name.  E.G., ISA pnp drivers have new names.
2149 		 *
2150 		 *  bootpath assumed to be of the form /bus/module@name_addr
2151 		 */
2152 		addrp = NULL;
2153 		if (busp = strchr(bp, '/')) {
2154 			if (modp = strchr(busp + 1, '/')) {
2155 				if (atp = strchr(modp + 1, '@')) {
2156 					*atp = '\0';
2157 					addrp = atp + 1;
2158 					if (eoaddrp = strchr(addrp, '/'))
2159 						*eoaddrp = '\0';
2160 				}
2161 			}
2162 		}
2163 
2164 		if (modp && addrp) {
2165 			(void) strncpy(bootdev_oldmod, modp + 1,
2166 			    MAXCOMPONENTLEN);
2167 			bootdev_module[MAXCOMPONENTLEN - 1] = '\0';
2168 
2169 			(void) strncpy(bootdev_oldaddr, addrp, MAXCOMPONENTLEN);
2170 			bootdev_oldaddr[MAXCOMPONENTLEN - 1] = '\0';
2171 		}
2172 
2173 		/* Free up the bootpath storage now that we're done with it. */
2174 		kmem_free(bp1275, bp1275len);
2175 		kmem_free(bp, bplen);
2176 
2177 		if (bootdev_oldaddr[0] == '\0') {
2178 			quickexit = 1;
2179 			return (rv);
2180 		}
2181 	}
2182 
2183 	if (((lkupname = ddi_get_name(cdip)) != NULL) &&
2184 	    (strcmp(bootdev_module, lkupname) == 0 ||
2185 	    strcmp(bootdev_oldmod, lkupname) == 0) &&
2186 	    ((ddi_getprop(DDI_DEV_T_ANY, cdip, DDI_PROP_DONTPASS,
2187 	    "ignore-hardware-nodes", -1) != -1) ||
2188 	    ignore_hardware_nodes) &&
2189 	    strcmp(bootdev_newaddr, caddr) == 0 &&
2190 	    strcmp(bootdev_oldaddr, naddr) == 0) {
2191 		rv = DDI_SUCCESS;
2192 	}
2193 
2194 	return (rv);
2195 }
2196 
2197 /*
2198  * Perform a copy from a memory mapped device (whose devinfo pointer is devi)
2199  * separately mapped at devaddr in the kernel to a kernel buffer at kaddr.
2200  */
2201 /*ARGSUSED*/
2202 int
2203 e_ddi_copyfromdev(dev_info_t *devi,
2204     off_t off, const void *devaddr, void *kaddr, size_t len)
2205 {
2206 	bcopy(devaddr, kaddr, len);
2207 	return (0);
2208 }
2209 
2210 /*
2211  * Perform a copy to a memory mapped device (whose devinfo pointer is devi)
2212  * separately mapped at devaddr in the kernel from a kernel buffer at kaddr.
2213  */
2214 /*ARGSUSED*/
2215 int
2216 e_ddi_copytodev(dev_info_t *devi,
2217     off_t off, const void *kaddr, void *devaddr, size_t len)
2218 {
2219 	bcopy(kaddr, devaddr, len);
2220 	return (0);
2221 }
2222 
2223 
2224 static int
2225 poke_mem(peekpoke_ctlops_t *in_args)
2226 {
2227 	int err = DDI_SUCCESS;
2228 	on_trap_data_t otd;
2229 
2230 	/* Set up protected environment. */
2231 	if (!on_trap(&otd, OT_DATA_ACCESS)) {
2232 		switch (in_args->size) {
2233 		case sizeof (uint8_t):
2234 			*(uint8_t *)(in_args->dev_addr) =
2235 			    *(uint8_t *)in_args->host_addr;
2236 			break;
2237 
2238 		case sizeof (uint16_t):
2239 			*(uint16_t *)(in_args->dev_addr) =
2240 			    *(uint16_t *)in_args->host_addr;
2241 			break;
2242 
2243 		case sizeof (uint32_t):
2244 			*(uint32_t *)(in_args->dev_addr) =
2245 			    *(uint32_t *)in_args->host_addr;
2246 			break;
2247 
2248 		case sizeof (uint64_t):
2249 			*(uint64_t *)(in_args->dev_addr) =
2250 			    *(uint64_t *)in_args->host_addr;
2251 			break;
2252 
2253 		default:
2254 			err = DDI_FAILURE;
2255 			break;
2256 		}
2257 	} else
2258 		err = DDI_FAILURE;
2259 
2260 	/* Take down protected environment. */
2261 	no_trap();
2262 
2263 	return (err);
2264 }
2265 
2266 
2267 static int
2268 peek_mem(peekpoke_ctlops_t *in_args)
2269 {
2270 	int err = DDI_SUCCESS;
2271 	on_trap_data_t otd;
2272 
2273 	if (!on_trap(&otd, OT_DATA_ACCESS)) {
2274 		switch (in_args->size) {
2275 		case sizeof (uint8_t):
2276 			*(uint8_t *)in_args->host_addr =
2277 			    *(uint8_t *)in_args->dev_addr;
2278 			break;
2279 
2280 		case sizeof (uint16_t):
2281 			*(uint16_t *)in_args->host_addr =
2282 			    *(uint16_t *)in_args->dev_addr;
2283 			break;
2284 
2285 		case sizeof (uint32_t):
2286 			*(uint32_t *)in_args->host_addr =
2287 			    *(uint32_t *)in_args->dev_addr;
2288 			break;
2289 
2290 		case sizeof (uint64_t):
2291 			*(uint64_t *)in_args->host_addr =
2292 			    *(uint64_t *)in_args->dev_addr;
2293 			break;
2294 
2295 		default:
2296 			err = DDI_FAILURE;
2297 			break;
2298 		}
2299 	} else
2300 		err = DDI_FAILURE;
2301 
2302 	no_trap();
2303 	return (err);
2304 }
2305 
2306 
2307 /*
2308  * This is called only to process peek/poke when the DIP is NULL.
2309  * Assume that this is for memory, as nexi take care of device safe accesses.
2310  */
2311 int
2312 peekpoke_mem(ddi_ctl_enum_t cmd, peekpoke_ctlops_t *in_args)
2313 {
2314 	return (cmd == DDI_CTLOPS_PEEK ? peek_mem(in_args) : poke_mem(in_args));
2315 }
2316 
2317 /*
2318  * we've just done a cautious put/get. Check if it was successful by
2319  * calling pci_ereport_post() on all puts and for any gets that return -1
2320  */
2321 static int
2322 pci_peekpoke_check_fma(dev_info_t *dip, void *arg, ddi_ctl_enum_t ctlop,
2323     void (*scan)(dev_info_t *, ddi_fm_error_t *))
2324 {
2325 	int	rval = DDI_SUCCESS;
2326 	peekpoke_ctlops_t *in_args = (peekpoke_ctlops_t *)arg;
2327 	ddi_fm_error_t de;
2328 	ddi_acc_impl_t *hp = (ddi_acc_impl_t *)in_args->handle;
2329 	ddi_acc_hdl_t *hdlp = (ddi_acc_hdl_t *)in_args->handle;
2330 	int check_err = 0;
2331 	int repcount = in_args->repcount;
2332 
2333 	if (ctlop == DDI_CTLOPS_POKE &&
2334 	    hdlp->ah_acc.devacc_attr_access != DDI_CAUTIOUS_ACC)
2335 		return (DDI_SUCCESS);
2336 
2337 	if (ctlop == DDI_CTLOPS_PEEK &&
2338 	    hdlp->ah_acc.devacc_attr_access != DDI_CAUTIOUS_ACC) {
2339 		for (; repcount; repcount--) {
2340 			switch (in_args->size) {
2341 			case sizeof (uint8_t):
2342 				if (*(uint8_t *)in_args->host_addr == 0xff)
2343 					check_err = 1;
2344 				break;
2345 			case sizeof (uint16_t):
2346 				if (*(uint16_t *)in_args->host_addr == 0xffff)
2347 					check_err = 1;
2348 				break;
2349 			case sizeof (uint32_t):
2350 				if (*(uint32_t *)in_args->host_addr ==
2351 				    0xffffffff)
2352 					check_err = 1;
2353 				break;
2354 			case sizeof (uint64_t):
2355 				if (*(uint64_t *)in_args->host_addr ==
2356 				    0xffffffffffffffff)
2357 					check_err = 1;
2358 				break;
2359 			}
2360 		}
2361 		if (check_err == 0)
2362 			return (DDI_SUCCESS);
2363 	}
2364 	/*
2365 	 * for a cautious put or get or a non-cautious get that returned -1 call
2366 	 * io framework to see if there really was an error
2367 	 */
2368 	bzero(&de, sizeof (ddi_fm_error_t));
2369 	de.fme_version = DDI_FME_VERSION;
2370 	de.fme_ena = fm_ena_generate(0, FM_ENA_FMT1);
2371 	if (hdlp->ah_acc.devacc_attr_access == DDI_CAUTIOUS_ACC) {
2372 		de.fme_flag = DDI_FM_ERR_EXPECTED;
2373 		de.fme_acc_handle = in_args->handle;
2374 	} else if (hdlp->ah_acc.devacc_attr_access == DDI_DEFAULT_ACC) {
2375 		/*
2376 		 * We only get here with DDI_DEFAULT_ACC for config space gets.
2377 		 * Non-hardened drivers may be probing the hardware and
2378 		 * expecting -1 returned. So need to treat errors on
2379 		 * DDI_DEFAULT_ACC as DDI_FM_ERR_EXPECTED.
2380 		 */
2381 		de.fme_flag = DDI_FM_ERR_EXPECTED;
2382 		de.fme_acc_handle = in_args->handle;
2383 	} else {
2384 		/*
2385 		 * Hardened driver doing protected accesses shouldn't
2386 		 * get errors unless there's a hardware problem. Treat
2387 		 * as nonfatal if there's an error, but set UNEXPECTED
2388 		 * so we raise ereports on any errors and potentially
2389 		 * fault the device
2390 		 */
2391 		de.fme_flag = DDI_FM_ERR_UNEXPECTED;
2392 	}
2393 	(void) scan(dip, &de);
2394 	if (hdlp->ah_acc.devacc_attr_access != DDI_DEFAULT_ACC &&
2395 	    de.fme_status != DDI_FM_OK) {
2396 		ndi_err_t *errp = (ndi_err_t *)hp->ahi_err;
2397 		rval = DDI_FAILURE;
2398 		errp->err_ena = de.fme_ena;
2399 		errp->err_expected = de.fme_flag;
2400 		errp->err_status = DDI_FM_NONFATAL;
2401 	}
2402 	return (rval);
2403 }
2404 
2405 /*
2406  * pci_peekpoke_check_nofma() is for when an error occurs on a register access
2407  * during pci_ereport_post(). We can't call pci_ereport_post() again or we'd
2408  * recurse, so assume all puts are OK and gets have failed if they return -1
2409  */
2410 static int
2411 pci_peekpoke_check_nofma(void *arg, ddi_ctl_enum_t ctlop)
2412 {
2413 	int rval = DDI_SUCCESS;
2414 	peekpoke_ctlops_t *in_args = (peekpoke_ctlops_t *)arg;
2415 	ddi_acc_impl_t *hp = (ddi_acc_impl_t *)in_args->handle;
2416 	ddi_acc_hdl_t *hdlp = (ddi_acc_hdl_t *)in_args->handle;
2417 	int repcount = in_args->repcount;
2418 
2419 	if (ctlop == DDI_CTLOPS_POKE)
2420 		return (rval);
2421 
2422 	for (; repcount; repcount--) {
2423 		switch (in_args->size) {
2424 		case sizeof (uint8_t):
2425 			if (*(uint8_t *)in_args->host_addr == 0xff)
2426 				rval = DDI_FAILURE;
2427 			break;
2428 		case sizeof (uint16_t):
2429 			if (*(uint16_t *)in_args->host_addr == 0xffff)
2430 				rval = DDI_FAILURE;
2431 			break;
2432 		case sizeof (uint32_t):
2433 			if (*(uint32_t *)in_args->host_addr == 0xffffffff)
2434 				rval = DDI_FAILURE;
2435 			break;
2436 		case sizeof (uint64_t):
2437 			if (*(uint64_t *)in_args->host_addr ==
2438 			    0xffffffffffffffff)
2439 				rval = DDI_FAILURE;
2440 			break;
2441 		}
2442 	}
2443 	if (hdlp->ah_acc.devacc_attr_access != DDI_DEFAULT_ACC &&
2444 	    rval == DDI_FAILURE) {
2445 		ndi_err_t *errp = (ndi_err_t *)hp->ahi_err;
2446 		errp->err_ena = fm_ena_generate(0, FM_ENA_FMT1);
2447 		errp->err_expected = DDI_FM_ERR_UNEXPECTED;
2448 		errp->err_status = DDI_FM_NONFATAL;
2449 	}
2450 	return (rval);
2451 }
2452 
2453 int
2454 pci_peekpoke_check(dev_info_t *dip, dev_info_t *rdip,
2455 	ddi_ctl_enum_t ctlop, void *arg, void *result,
2456 	int (*handler)(dev_info_t *, dev_info_t *, ddi_ctl_enum_t, void *,
2457 	void *), kmutex_t *err_mutexp, kmutex_t *peek_poke_mutexp,
2458 	void (*scan)(dev_info_t *, ddi_fm_error_t *))
2459 {
2460 	int rval;
2461 	peekpoke_ctlops_t *in_args = (peekpoke_ctlops_t *)arg;
2462 	ddi_acc_impl_t *hp = (ddi_acc_impl_t *)in_args->handle;
2463 
2464 	/*
2465 	 * this function only supports cautious accesses, not peeks/pokes
2466 	 * which don't have a handle
2467 	 */
2468 	if (hp == NULL)
2469 		return (DDI_FAILURE);
2470 
2471 	if (hp->ahi_acc_attr & DDI_ACCATTR_CONFIG_SPACE) {
2472 		if (!mutex_tryenter(err_mutexp)) {
2473 			/*
2474 			 * As this may be a recursive call from within
2475 			 * pci_ereport_post() we can't wait for the mutexes.
2476 			 * Fortunately we know someone is already calling
2477 			 * pci_ereport_post() which will handle the error bits
2478 			 * for us, and as this is a config space access we can
2479 			 * just do the access and check return value for -1
2480 			 * using pci_peekpoke_check_nofma().
2481 			 */
2482 			rval = handler(dip, rdip, ctlop, arg, result);
2483 			if (rval == DDI_SUCCESS)
2484 				rval = pci_peekpoke_check_nofma(arg, ctlop);
2485 			return (rval);
2486 		}
2487 		/*
2488 		 * This can't be a recursive call. Drop the err_mutex and get
2489 		 * both mutexes in the right order. If an error hasn't already
2490 		 * been detected by the ontrap code, use pci_peekpoke_check_fma
2491 		 * which will call pci_ereport_post() to check error status.
2492 		 */
2493 		mutex_exit(err_mutexp);
2494 	}
2495 	mutex_enter(peek_poke_mutexp);
2496 	rval = handler(dip, rdip, ctlop, arg, result);
2497 	if (rval == DDI_SUCCESS) {
2498 		mutex_enter(err_mutexp);
2499 		rval = pci_peekpoke_check_fma(dip, arg, ctlop, scan);
2500 		mutex_exit(err_mutexp);
2501 	}
2502 	mutex_exit(peek_poke_mutexp);
2503 	return (rval);
2504 }
2505 
2506 void
2507 impl_setup_ddi(void)
2508 {
2509 	dev_info_t *xdip, *isa_dip;
2510 	rd_existing_t rd_mem_prop;
2511 	int err;
2512 
2513 	ndi_devi_alloc_sleep(ddi_root_node(), "ramdisk",
2514 	    (pnode_t)DEVI_SID_NODEID, &xdip);
2515 
2516 	(void) BOP_GETPROP(bootops,
2517 	    "ramdisk_start", (void *)&ramdisk_start);
2518 	(void) BOP_GETPROP(bootops,
2519 	    "ramdisk_end", (void *)&ramdisk_end);
2520 
2521 #ifdef __xpv
2522 	ramdisk_start -= ONE_GIG;
2523 	ramdisk_end -= ONE_GIG;
2524 #endif
2525 	rd_mem_prop.phys = ramdisk_start;
2526 	rd_mem_prop.size = ramdisk_end - ramdisk_start + 1;
2527 
2528 	(void) ndi_prop_update_byte_array(DDI_DEV_T_NONE, xdip,
2529 	    RD_EXISTING_PROP_NAME, (uchar_t *)&rd_mem_prop,
2530 	    sizeof (rd_mem_prop));
2531 	err = ndi_devi_bind_driver(xdip, 0);
2532 	ASSERT(err == 0);
2533 
2534 	/* isa node */
2535 	ndi_devi_alloc_sleep(ddi_root_node(), "isa",
2536 	    (pnode_t)DEVI_SID_NODEID, &isa_dip);
2537 	(void) ndi_prop_update_string(DDI_DEV_T_NONE, isa_dip,
2538 	    "device_type", "isa");
2539 	(void) ndi_prop_update_string(DDI_DEV_T_NONE, isa_dip,
2540 	    "bus-type", "isa");
2541 	(void) ndi_devi_bind_driver(isa_dip, 0);
2542 
2543 	/*
2544 	 * Read in the properties from the boot.
2545 	 */
2546 	get_boot_properties();
2547 
2548 	/* do bus dependent probes. */
2549 	impl_bus_initialprobe();
2550 
2551 	/* not framebuffer should be enumerated, if present */
2552 	get_vga_properties();
2553 }
2554 
2555 dev_t
2556 getrootdev(void)
2557 {
2558 	/*
2559 	 * Precedence given to rootdev if set in /etc/system
2560 	 */
2561 	if (root_is_svm == B_TRUE) {
2562 		return (ddi_pathname_to_dev_t(svm_bootpath));
2563 	}
2564 
2565 	/*
2566 	 * Usually rootfs.bo_name is initialized by the
2567 	 * the bootpath property from bootenv.rc, but
2568 	 * defaults to "/ramdisk:a" otherwise.
2569 	 */
2570 	return (ddi_pathname_to_dev_t(rootfs.bo_name));
2571 }
2572 
2573 static struct bus_probe {
2574 	struct bus_probe *next;
2575 	void (*probe)(int);
2576 } *bus_probes;
2577 
2578 void
2579 impl_bus_add_probe(void (*func)(int))
2580 {
2581 	struct bus_probe *probe;
2582 
2583 	probe = kmem_alloc(sizeof (*probe), KM_SLEEP);
2584 	probe->next = bus_probes;
2585 	probe->probe = func;
2586 	bus_probes = probe;
2587 }
2588 
2589 /*ARGSUSED*/
2590 void
2591 impl_bus_delete_probe(void (*func)(int))
2592 {
2593 	struct bus_probe *prev = NULL;
2594 	struct bus_probe *probe = bus_probes;
2595 
2596 	while (probe) {
2597 		if (probe->probe == func)
2598 			break;
2599 		prev = probe;
2600 		probe = probe->next;
2601 	}
2602 
2603 	if (probe == NULL)
2604 		return;
2605 
2606 	if (prev)
2607 		prev->next = probe->next;
2608 	else
2609 		bus_probes = probe->next;
2610 
2611 	kmem_free(probe, sizeof (struct bus_probe));
2612 }
2613 
2614 /*
2615  * impl_bus_initialprobe
2616  *	Modload the prom simulator, then let it probe to verify existence
2617  *	and type of PCI support.
2618  */
2619 static void
2620 impl_bus_initialprobe(void)
2621 {
2622 	struct bus_probe *probe;
2623 
2624 	/* load modules to install bus probes */
2625 #if defined(__xpv)
2626 	if (DOMAIN_IS_INITDOMAIN(xen_info)) {
2627 		if (modload("misc", "pci_autoconfig") < 0) {
2628 			panic("failed to load misc/pci_autoconfig");
2629 		}
2630 	}
2631 	(void) modload("misc", "xpv_autoconfig");
2632 #else
2633 	if (modload("misc", "pci_autoconfig") < 0) {
2634 		panic("failed to load misc/pci_autoconfig");
2635 	}
2636 #endif
2637 
2638 	probe = bus_probes;
2639 	while (probe) {
2640 		/* run the probe functions */
2641 		(*probe->probe)(0);
2642 		probe = probe->next;
2643 	}
2644 }
2645 
2646 /*
2647  * impl_bus_reprobe
2648  *	Reprogram devices not set up by firmware.
2649  */
2650 static void
2651 impl_bus_reprobe(void)
2652 {
2653 	struct bus_probe *probe;
2654 
2655 	probe = bus_probes;
2656 	while (probe) {
2657 		/* run the probe function */
2658 		(*probe->probe)(1);
2659 		probe = probe->next;
2660 	}
2661 }
2662 
2663 
2664 /*
2665  * The following functions ready a cautious request to go up to the nexus
2666  * driver.  It is up to the nexus driver to decide how to process the request.
2667  * It may choose to call i_ddi_do_caut_get/put in this file, or do it
2668  * differently.
2669  */
2670 
2671 static void
2672 i_ddi_caut_getput_ctlops(ddi_acc_impl_t *hp, uint64_t host_addr,
2673     uint64_t dev_addr, size_t size, size_t repcount, uint_t flags,
2674     ddi_ctl_enum_t cmd)
2675 {
2676 	peekpoke_ctlops_t	cautacc_ctlops_arg;
2677 
2678 	cautacc_ctlops_arg.size = size;
2679 	cautacc_ctlops_arg.dev_addr = dev_addr;
2680 	cautacc_ctlops_arg.host_addr = host_addr;
2681 	cautacc_ctlops_arg.handle = (ddi_acc_handle_t)hp;
2682 	cautacc_ctlops_arg.repcount = repcount;
2683 	cautacc_ctlops_arg.flags = flags;
2684 
2685 	(void) ddi_ctlops(hp->ahi_common.ah_dip, hp->ahi_common.ah_dip, cmd,
2686 	    &cautacc_ctlops_arg, NULL);
2687 }
2688 
2689 uint8_t
2690 i_ddi_caut_get8(ddi_acc_impl_t *hp, uint8_t *addr)
2691 {
2692 	uint8_t value;
2693 	i_ddi_caut_getput_ctlops(hp, (uintptr_t)&value, (uintptr_t)addr,
2694 	    sizeof (uint8_t), 1, 0, DDI_CTLOPS_PEEK);
2695 
2696 	return (value);
2697 }
2698 
2699 uint16_t
2700 i_ddi_caut_get16(ddi_acc_impl_t *hp, uint16_t *addr)
2701 {
2702 	uint16_t value;
2703 	i_ddi_caut_getput_ctlops(hp, (uintptr_t)&value, (uintptr_t)addr,
2704 	    sizeof (uint16_t), 1, 0, DDI_CTLOPS_PEEK);
2705 
2706 	return (value);
2707 }
2708 
2709 uint32_t
2710 i_ddi_caut_get32(ddi_acc_impl_t *hp, uint32_t *addr)
2711 {
2712 	uint32_t value;
2713 	i_ddi_caut_getput_ctlops(hp, (uintptr_t)&value, (uintptr_t)addr,
2714 	    sizeof (uint32_t), 1, 0, DDI_CTLOPS_PEEK);
2715 
2716 	return (value);
2717 }
2718 
2719 uint64_t
2720 i_ddi_caut_get64(ddi_acc_impl_t *hp, uint64_t *addr)
2721 {
2722 	uint64_t value;
2723 	i_ddi_caut_getput_ctlops(hp, (uintptr_t)&value, (uintptr_t)addr,
2724 	    sizeof (uint64_t), 1, 0, DDI_CTLOPS_PEEK);
2725 
2726 	return (value);
2727 }
2728 
2729 void
2730 i_ddi_caut_put8(ddi_acc_impl_t *hp, uint8_t *addr, uint8_t value)
2731 {
2732 	i_ddi_caut_getput_ctlops(hp, (uintptr_t)&value, (uintptr_t)addr,
2733 	    sizeof (uint8_t), 1, 0, DDI_CTLOPS_POKE);
2734 }
2735 
2736 void
2737 i_ddi_caut_put16(ddi_acc_impl_t *hp, uint16_t *addr, uint16_t value)
2738 {
2739 	i_ddi_caut_getput_ctlops(hp, (uintptr_t)&value, (uintptr_t)addr,
2740 	    sizeof (uint16_t), 1, 0, DDI_CTLOPS_POKE);
2741 }
2742 
2743 void
2744 i_ddi_caut_put32(ddi_acc_impl_t *hp, uint32_t *addr, uint32_t value)
2745 {
2746 	i_ddi_caut_getput_ctlops(hp, (uintptr_t)&value, (uintptr_t)addr,
2747 	    sizeof (uint32_t), 1, 0, DDI_CTLOPS_POKE);
2748 }
2749 
2750 void
2751 i_ddi_caut_put64(ddi_acc_impl_t *hp, uint64_t *addr, uint64_t value)
2752 {
2753 	i_ddi_caut_getput_ctlops(hp, (uintptr_t)&value, (uintptr_t)addr,
2754 	    sizeof (uint64_t), 1, 0, DDI_CTLOPS_POKE);
2755 }
2756 
2757 void
2758 i_ddi_caut_rep_get8(ddi_acc_impl_t *hp, uint8_t *host_addr, uint8_t *dev_addr,
2759 	size_t repcount, uint_t flags)
2760 {
2761 	i_ddi_caut_getput_ctlops(hp, (uintptr_t)host_addr, (uintptr_t)dev_addr,
2762 	    sizeof (uint8_t), repcount, flags, DDI_CTLOPS_PEEK);
2763 }
2764 
2765 void
2766 i_ddi_caut_rep_get16(ddi_acc_impl_t *hp, uint16_t *host_addr,
2767     uint16_t *dev_addr, size_t repcount, uint_t flags)
2768 {
2769 	i_ddi_caut_getput_ctlops(hp, (uintptr_t)host_addr, (uintptr_t)dev_addr,
2770 	    sizeof (uint16_t), repcount, flags, DDI_CTLOPS_PEEK);
2771 }
2772 
2773 void
2774 i_ddi_caut_rep_get32(ddi_acc_impl_t *hp, uint32_t *host_addr,
2775     uint32_t *dev_addr, size_t repcount, uint_t flags)
2776 {
2777 	i_ddi_caut_getput_ctlops(hp, (uintptr_t)host_addr, (uintptr_t)dev_addr,
2778 	    sizeof (uint32_t), repcount, flags, DDI_CTLOPS_PEEK);
2779 }
2780 
2781 void
2782 i_ddi_caut_rep_get64(ddi_acc_impl_t *hp, uint64_t *host_addr,
2783     uint64_t *dev_addr, size_t repcount, uint_t flags)
2784 {
2785 	i_ddi_caut_getput_ctlops(hp, (uintptr_t)host_addr, (uintptr_t)dev_addr,
2786 	    sizeof (uint64_t), repcount, flags, DDI_CTLOPS_PEEK);
2787 }
2788 
2789 void
2790 i_ddi_caut_rep_put8(ddi_acc_impl_t *hp, uint8_t *host_addr, uint8_t *dev_addr,
2791 	size_t repcount, uint_t flags)
2792 {
2793 	i_ddi_caut_getput_ctlops(hp, (uintptr_t)host_addr, (uintptr_t)dev_addr,
2794 	    sizeof (uint8_t), repcount, flags, DDI_CTLOPS_POKE);
2795 }
2796 
2797 void
2798 i_ddi_caut_rep_put16(ddi_acc_impl_t *hp, uint16_t *host_addr,
2799     uint16_t *dev_addr, size_t repcount, uint_t flags)
2800 {
2801 	i_ddi_caut_getput_ctlops(hp, (uintptr_t)host_addr, (uintptr_t)dev_addr,
2802 	    sizeof (uint16_t), repcount, flags, DDI_CTLOPS_POKE);
2803 }
2804 
2805 void
2806 i_ddi_caut_rep_put32(ddi_acc_impl_t *hp, uint32_t *host_addr,
2807     uint32_t *dev_addr, size_t repcount, uint_t flags)
2808 {
2809 	i_ddi_caut_getput_ctlops(hp, (uintptr_t)host_addr, (uintptr_t)dev_addr,
2810 	    sizeof (uint32_t), repcount, flags, DDI_CTLOPS_POKE);
2811 }
2812 
2813 void
2814 i_ddi_caut_rep_put64(ddi_acc_impl_t *hp, uint64_t *host_addr,
2815     uint64_t *dev_addr, size_t repcount, uint_t flags)
2816 {
2817 	i_ddi_caut_getput_ctlops(hp, (uintptr_t)host_addr, (uintptr_t)dev_addr,
2818 	    sizeof (uint64_t), repcount, flags, DDI_CTLOPS_POKE);
2819 }
2820 
2821 boolean_t
2822 i_ddi_copybuf_required(ddi_dma_attr_t *attrp)
2823 {
2824 	uint64_t hi_pa;
2825 
2826 	hi_pa = ((uint64_t)physmax + 1ull) << PAGESHIFT;
2827 	if (attrp->dma_attr_addr_hi < hi_pa) {
2828 		return (B_TRUE);
2829 	}
2830 
2831 	return (B_FALSE);
2832 }
2833 
2834 size_t
2835 i_ddi_copybuf_size()
2836 {
2837 	return (dma_max_copybuf_size);
2838 }
2839 
2840 /*
2841  * i_ddi_dma_max()
2842  *    returns the maximum DMA size which can be performed in a single DMA
2843  *    window taking into account the devices DMA contraints (attrp), the
2844  *    maximum copy buffer size (if applicable), and the worse case buffer
2845  *    fragmentation.
2846  */
2847 /*ARGSUSED*/
2848 uint32_t
2849 i_ddi_dma_max(dev_info_t *dip, ddi_dma_attr_t *attrp)
2850 {
2851 	uint64_t maxxfer;
2852 
2853 
2854 	/*
2855 	 * take the min of maxxfer and the the worse case fragementation
2856 	 * (e.g. every cookie <= 1 page)
2857 	 */
2858 	maxxfer = MIN(attrp->dma_attr_maxxfer,
2859 	    ((uint64_t)(attrp->dma_attr_sgllen - 1) << PAGESHIFT));
2860 
2861 	/*
2862 	 * If the DMA engine can't reach all off memory, we also need to take
2863 	 * the max size of the copybuf into consideration.
2864 	 */
2865 	if (i_ddi_copybuf_required(attrp)) {
2866 		maxxfer = MIN(i_ddi_copybuf_size(), maxxfer);
2867 	}
2868 
2869 	/*
2870 	 * we only return a 32-bit value. Make sure it's not -1. Round to a
2871 	 * page so it won't be mistaken for an error value during debug.
2872 	 */
2873 	if (maxxfer >= 0xFFFFFFFF) {
2874 		maxxfer = 0xFFFFF000;
2875 	}
2876 
2877 	/*
2878 	 * make sure the value we return is a whole multiple of the
2879 	 * granlarity.
2880 	 */
2881 	if (attrp->dma_attr_granular > 1) {
2882 		maxxfer = maxxfer - (maxxfer % attrp->dma_attr_granular);
2883 	}
2884 
2885 	return ((uint32_t)maxxfer);
2886 }
2887