1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 1992, 2010, Oracle and/or its affiliates. All rights reserved. 24 */ 25 26 /* 27 * PC specific DDI implementation 28 */ 29 #include <sys/types.h> 30 #include <sys/autoconf.h> 31 #include <sys/avintr.h> 32 #include <sys/bootconf.h> 33 #include <sys/conf.h> 34 #include <sys/cpuvar.h> 35 #include <sys/ddi_impldefs.h> 36 #include <sys/ddi_subrdefs.h> 37 #include <sys/ethernet.h> 38 #include <sys/fp.h> 39 #include <sys/instance.h> 40 #include <sys/kmem.h> 41 #include <sys/machsystm.h> 42 #include <sys/modctl.h> 43 #include <sys/promif.h> 44 #include <sys/prom_plat.h> 45 #include <sys/sunndi.h> 46 #include <sys/ndi_impldefs.h> 47 #include <sys/ddi_impldefs.h> 48 #include <sys/sysmacros.h> 49 #include <sys/systeminfo.h> 50 #include <sys/utsname.h> 51 #include <sys/atomic.h> 52 #include <sys/spl.h> 53 #include <sys/archsystm.h> 54 #include <vm/seg_kmem.h> 55 #include <sys/ontrap.h> 56 #include <sys/fm/protocol.h> 57 #include <sys/ramdisk.h> 58 #include <sys/sunndi.h> 59 #include <sys/vmem.h> 60 #include <sys/pci_impl.h> 61 #if defined(__xpv) 62 #include <sys/hypervisor.h> 63 #endif 64 #include <sys/mach_intr.h> 65 #include <vm/hat_i86.h> 66 #include <sys/x86_archext.h> 67 68 /* 69 * DDI Boot Configuration 70 */ 71 72 /* 73 * Platform drivers on this platform 74 */ 75 char *platform_module_list[] = { 76 "acpippm", 77 "ppm", 78 (char *)0 79 }; 80 81 /* pci bus resource maps */ 82 struct pci_bus_resource *pci_bus_res; 83 84 size_t dma_max_copybuf_size = 0x101000; /* 1M + 4K */ 85 86 uint64_t ramdisk_start, ramdisk_end; 87 88 int pseudo_isa = 0; 89 90 /* 91 * Forward declarations 92 */ 93 static int getlongprop_buf(); 94 static void get_boot_properties(void); 95 static void impl_bus_initialprobe(void); 96 static void impl_bus_reprobe(void); 97 98 static int poke_mem(peekpoke_ctlops_t *in_args); 99 static int peek_mem(peekpoke_ctlops_t *in_args); 100 101 static int kmem_override_cache_attrs(caddr_t, size_t, uint_t); 102 103 #if defined(__amd64) && !defined(__xpv) 104 extern void immu_init(void); 105 #endif 106 107 #define CTGENTRIES 15 108 109 static struct ctgas { 110 struct ctgas *ctg_next; 111 int ctg_index; 112 void *ctg_addr[CTGENTRIES]; 113 size_t ctg_size[CTGENTRIES]; 114 } ctglist; 115 116 static kmutex_t ctgmutex; 117 #define CTGLOCK() mutex_enter(&ctgmutex) 118 #define CTGUNLOCK() mutex_exit(&ctgmutex) 119 120 /* 121 * Minimum pfn value of page_t's put on the free list. This is to simplify 122 * support of ddi dma memory requests which specify small, non-zero addr_lo 123 * values. 124 * 125 * The default value of 2, which corresponds to the only known non-zero addr_lo 126 * value used, means a single page will be sacrificed (pfn typically starts 127 * at 1). ddiphysmin can be set to 0 to disable. It cannot be set above 0x100 128 * otherwise mp startup panics. 129 */ 130 pfn_t ddiphysmin = 2; 131 132 static void 133 check_driver_disable(void) 134 { 135 int proplen = 128; 136 char *prop_name; 137 char *drv_name, *propval; 138 major_t major; 139 140 prop_name = kmem_alloc(proplen, KM_SLEEP); 141 for (major = 0; major < devcnt; major++) { 142 drv_name = ddi_major_to_name(major); 143 if (drv_name == NULL) 144 continue; 145 (void) snprintf(prop_name, proplen, "disable-%s", drv_name); 146 if (ddi_prop_lookup_string(DDI_DEV_T_ANY, ddi_root_node(), 147 DDI_PROP_DONTPASS, prop_name, &propval) == DDI_SUCCESS) { 148 if (strcmp(propval, "true") == 0) { 149 devnamesp[major].dn_flags |= DN_DRIVER_REMOVED; 150 cmn_err(CE_NOTE, "driver %s disabled", 151 drv_name); 152 } 153 ddi_prop_free(propval); 154 } 155 } 156 kmem_free(prop_name, proplen); 157 } 158 159 160 /* 161 * Configure the hardware on the system. 162 * Called before the rootfs is mounted 163 */ 164 void 165 configure(void) 166 { 167 extern void i_ddi_init_root(); 168 169 #if defined(__i386) 170 extern int fpu_pentium_fdivbug; 171 #endif /* __i386 */ 172 extern int fpu_ignored; 173 174 /* 175 * Determine if an FPU is attached 176 */ 177 178 fpu_probe(); 179 180 #if defined(__i386) 181 if (fpu_pentium_fdivbug) { 182 printf("\ 183 FP hardware exhibits Pentium floating point divide problem\n"); 184 } 185 #endif /* __i386 */ 186 187 if (fpu_ignored) { 188 printf("FP hardware will not be used\n"); 189 } else if (!fpu_exists) { 190 printf("No FPU in configuration\n"); 191 } 192 193 /* 194 * Initialize devices on the machine. 195 * Uses configuration tree built by the PROMs to determine what 196 * is present, and builds a tree of prototype dev_info nodes 197 * corresponding to the hardware which identified itself. 198 */ 199 200 /* 201 * Initialize root node. 202 */ 203 i_ddi_init_root(); 204 205 /* reprogram devices not set up by firmware (BIOS) */ 206 impl_bus_reprobe(); 207 208 #if defined(__amd64) && !defined(__xpv) 209 /* 210 * Setup but don't startup the IOMMU 211 * Startup happens later via a direct call 212 * to IOMMU code by boot code. 213 * At this point, all PCI bus renumbering 214 * is done, so safe to init the IMMU 215 * AKA Intel IOMMU. 216 */ 217 immu_init(); 218 #endif 219 220 /* 221 * attach the isa nexus to get ACPI resource usage 222 * isa is "kind of" a pseudo node 223 */ 224 #if defined(__xpv) 225 if (DOMAIN_IS_INITDOMAIN(xen_info)) { 226 if (pseudo_isa) 227 (void) i_ddi_attach_pseudo_node("isa"); 228 else 229 (void) i_ddi_attach_hw_nodes("isa"); 230 } 231 #else 232 if (pseudo_isa) 233 (void) i_ddi_attach_pseudo_node("isa"); 234 else 235 (void) i_ddi_attach_hw_nodes("isa"); 236 #endif 237 } 238 239 /* 240 * The "status" property indicates the operational status of a device. 241 * If this property is present, the value is a string indicating the 242 * status of the device as follows: 243 * 244 * "okay" operational. 245 * "disabled" not operational, but might become operational. 246 * "fail" not operational because a fault has been detected, 247 * and it is unlikely that the device will become 248 * operational without repair. no additional details 249 * are available. 250 * "fail-xxx" not operational because a fault has been detected, 251 * and it is unlikely that the device will become 252 * operational without repair. "xxx" is additional 253 * human-readable information about the particular 254 * fault condition that was detected. 255 * 256 * The absence of this property means that the operational status is 257 * unknown or okay. 258 * 259 * This routine checks the status property of the specified device node 260 * and returns 0 if the operational status indicates failure, and 1 otherwise. 261 * 262 * The property may exist on plug-in cards the existed before IEEE 1275-1994. 263 * And, in that case, the property may not even be a string. So we carefully 264 * check for the value "fail", in the beginning of the string, noting 265 * the property length. 266 */ 267 int 268 status_okay(int id, char *buf, int buflen) 269 { 270 char status_buf[OBP_MAXPROPNAME]; 271 char *bufp = buf; 272 int len = buflen; 273 int proplen; 274 static const char *status = "status"; 275 static const char *fail = "fail"; 276 int fail_len = (int)strlen(fail); 277 278 /* 279 * Get the proplen ... if it's smaller than "fail", 280 * or doesn't exist ... then we don't care, since 281 * the value can't begin with the char string "fail". 282 * 283 * NB: proplen, if it's a string, includes the NULL in the 284 * the size of the property, and fail_len does not. 285 */ 286 proplen = prom_getproplen((pnode_t)id, (caddr_t)status); 287 if (proplen <= fail_len) /* nonexistant or uninteresting len */ 288 return (1); 289 290 /* 291 * if a buffer was provided, use it 292 */ 293 if ((buf == (char *)NULL) || (buflen <= 0)) { 294 bufp = status_buf; 295 len = sizeof (status_buf); 296 } 297 *bufp = (char)0; 298 299 /* 300 * Get the property into the buffer, to the extent of the buffer, 301 * and in case the buffer is smaller than the property size, 302 * NULL terminate the buffer. (This handles the case where 303 * a buffer was passed in and the caller wants to print the 304 * value, but the buffer was too small). 305 */ 306 (void) prom_bounded_getprop((pnode_t)id, (caddr_t)status, 307 (caddr_t)bufp, len); 308 *(bufp + len - 1) = (char)0; 309 310 /* 311 * If the value begins with the char string "fail", 312 * then it means the node is failed. We don't care 313 * about any other values. We assume the node is ok 314 * although it might be 'disabled'. 315 */ 316 if (strncmp(bufp, fail, fail_len) == 0) 317 return (0); 318 319 return (1); 320 } 321 322 /* 323 * Check the status of the device node passed as an argument. 324 * 325 * if ((status is OKAY) || (status is DISABLED)) 326 * return DDI_SUCCESS 327 * else 328 * print a warning and return DDI_FAILURE 329 */ 330 /*ARGSUSED1*/ 331 int 332 check_status(int id, char *name, dev_info_t *parent) 333 { 334 char status_buf[64]; 335 char devtype_buf[OBP_MAXPROPNAME]; 336 int retval = DDI_FAILURE; 337 338 /* 339 * is the status okay? 340 */ 341 if (status_okay(id, status_buf, sizeof (status_buf))) 342 return (DDI_SUCCESS); 343 344 /* 345 * a status property indicating bad memory will be associated 346 * with a node which has a "device_type" property with a value of 347 * "memory-controller". in this situation, return DDI_SUCCESS 348 */ 349 if (getlongprop_buf(id, OBP_DEVICETYPE, devtype_buf, 350 sizeof (devtype_buf)) > 0) { 351 if (strcmp(devtype_buf, "memory-controller") == 0) 352 retval = DDI_SUCCESS; 353 } 354 355 /* 356 * print the status property information 357 */ 358 cmn_err(CE_WARN, "status '%s' for '%s'", status_buf, name); 359 return (retval); 360 } 361 362 /*ARGSUSED*/ 363 uint_t 364 softlevel1(caddr_t arg1, caddr_t arg2) 365 { 366 softint(); 367 return (1); 368 } 369 370 /* 371 * Allow for implementation specific correction of PROM property values. 372 */ 373 374 /*ARGSUSED*/ 375 void 376 impl_fix_props(dev_info_t *dip, dev_info_t *ch_dip, char *name, int len, 377 caddr_t buffer) 378 { 379 /* 380 * There are no adjustments needed in this implementation. 381 */ 382 } 383 384 static int 385 getlongprop_buf(int id, char *name, char *buf, int maxlen) 386 { 387 int size; 388 389 size = prom_getproplen((pnode_t)id, name); 390 if (size <= 0 || (size > maxlen - 1)) 391 return (-1); 392 393 if (-1 == prom_getprop((pnode_t)id, name, buf)) 394 return (-1); 395 396 if (strcmp("name", name) == 0) { 397 if (buf[size - 1] != '\0') { 398 buf[size] = '\0'; 399 size += 1; 400 } 401 } 402 403 return (size); 404 } 405 406 static int 407 get_prop_int_array(dev_info_t *di, char *pname, int **pval, uint_t *plen) 408 { 409 int ret; 410 411 if ((ret = ddi_prop_lookup_int_array(DDI_DEV_T_ANY, di, 412 DDI_PROP_DONTPASS, pname, pval, plen)) 413 == DDI_PROP_SUCCESS) { 414 *plen = (*plen) * (sizeof (int)); 415 } 416 return (ret); 417 } 418 419 420 /* 421 * Node Configuration 422 */ 423 424 struct prop_ispec { 425 uint_t pri, vec; 426 }; 427 428 /* 429 * For the x86, we're prepared to claim that the interrupt string 430 * is in the form of a list of <ipl,vec> specifications. 431 */ 432 433 #define VEC_MIN 1 434 #define VEC_MAX 255 435 436 static int 437 impl_xlate_intrs(dev_info_t *child, int *in, 438 struct ddi_parent_private_data *pdptr) 439 { 440 size_t size; 441 int n; 442 struct intrspec *new; 443 caddr_t got_prop; 444 int *inpri; 445 int got_len; 446 extern int ignore_hardware_nodes; /* force flag from ddi_impl.c */ 447 448 static char bad_intr_fmt[] = 449 "bad interrupt spec from %s%d - ipl %d, irq %d\n"; 450 451 /* 452 * determine if the driver is expecting the new style "interrupts" 453 * property which just contains the IRQ, or the old style which 454 * contains pairs of <IPL,IRQ>. if it is the new style, we always 455 * assign IPL 5 unless an "interrupt-priorities" property exists. 456 * in that case, the "interrupt-priorities" property contains the 457 * IPL values that match, one for one, the IRQ values in the 458 * "interrupts" property. 459 */ 460 inpri = NULL; 461 if ((ddi_getprop(DDI_DEV_T_ANY, child, DDI_PROP_DONTPASS, 462 "ignore-hardware-nodes", -1) != -1) || ignore_hardware_nodes) { 463 /* the old style "interrupts" property... */ 464 465 /* 466 * The list consists of <ipl,vec> elements 467 */ 468 if ((n = (*in++ >> 1)) < 1) 469 return (DDI_FAILURE); 470 471 pdptr->par_nintr = n; 472 size = n * sizeof (struct intrspec); 473 new = pdptr->par_intr = kmem_zalloc(size, KM_SLEEP); 474 475 while (n--) { 476 int level = *in++; 477 int vec = *in++; 478 479 if (level < 1 || level > MAXIPL || 480 vec < VEC_MIN || vec > VEC_MAX) { 481 cmn_err(CE_CONT, bad_intr_fmt, 482 DEVI(child)->devi_name, 483 DEVI(child)->devi_instance, level, vec); 484 goto broken; 485 } 486 new->intrspec_pri = level; 487 if (vec != 2) 488 new->intrspec_vec = vec; 489 else 490 /* 491 * irq 2 on the PC bus is tied to irq 9 492 * on ISA, EISA and MicroChannel 493 */ 494 new->intrspec_vec = 9; 495 new++; 496 } 497 498 return (DDI_SUCCESS); 499 } else { 500 /* the new style "interrupts" property... */ 501 502 /* 503 * The list consists of <vec> elements 504 */ 505 if ((n = (*in++)) < 1) 506 return (DDI_FAILURE); 507 508 pdptr->par_nintr = n; 509 size = n * sizeof (struct intrspec); 510 new = pdptr->par_intr = kmem_zalloc(size, KM_SLEEP); 511 512 /* XXX check for "interrupt-priorities" property... */ 513 if (ddi_getlongprop(DDI_DEV_T_ANY, child, DDI_PROP_DONTPASS, 514 "interrupt-priorities", (caddr_t)&got_prop, &got_len) 515 == DDI_PROP_SUCCESS) { 516 if (n != (got_len / sizeof (int))) { 517 cmn_err(CE_CONT, 518 "bad interrupt-priorities length" 519 " from %s%d: expected %d, got %d\n", 520 DEVI(child)->devi_name, 521 DEVI(child)->devi_instance, n, 522 (int)(got_len / sizeof (int))); 523 goto broken; 524 } 525 inpri = (int *)got_prop; 526 } 527 528 while (n--) { 529 int level; 530 int vec = *in++; 531 532 if (inpri == NULL) 533 level = 5; 534 else 535 level = *inpri++; 536 537 if (level < 1 || level > MAXIPL || 538 vec < VEC_MIN || vec > VEC_MAX) { 539 cmn_err(CE_CONT, bad_intr_fmt, 540 DEVI(child)->devi_name, 541 DEVI(child)->devi_instance, level, vec); 542 goto broken; 543 } 544 new->intrspec_pri = level; 545 if (vec != 2) 546 new->intrspec_vec = vec; 547 else 548 /* 549 * irq 2 on the PC bus is tied to irq 9 550 * on ISA, EISA and MicroChannel 551 */ 552 new->intrspec_vec = 9; 553 new++; 554 } 555 556 if (inpri != NULL) 557 kmem_free(got_prop, got_len); 558 return (DDI_SUCCESS); 559 } 560 561 broken: 562 kmem_free(pdptr->par_intr, size); 563 pdptr->par_intr = NULL; 564 pdptr->par_nintr = 0; 565 if (inpri != NULL) 566 kmem_free(got_prop, got_len); 567 568 return (DDI_FAILURE); 569 } 570 571 /* 572 * Create a ddi_parent_private_data structure from the ddi properties of 573 * the dev_info node. 574 * 575 * The "reg" and either an "intr" or "interrupts" properties are required 576 * if the driver wishes to create mappings or field interrupts on behalf 577 * of the device. 578 * 579 * The "reg" property is assumed to be a list of at least one triple 580 * 581 * <bustype, address, size>*1 582 * 583 * The "intr" property is assumed to be a list of at least one duple 584 * 585 * <SPARC ipl, vector#>*1 586 * 587 * The "interrupts" property is assumed to be a list of at least one 588 * n-tuples that describes the interrupt capabilities of the bus the device 589 * is connected to. For SBus, this looks like 590 * 591 * <SBus-level>*1 592 * 593 * (This property obsoletes the 'intr' property). 594 * 595 * The "ranges" property is optional. 596 */ 597 void 598 make_ddi_ppd(dev_info_t *child, struct ddi_parent_private_data **ppd) 599 { 600 struct ddi_parent_private_data *pdptr; 601 int n; 602 int *reg_prop, *rng_prop, *intr_prop, *irupts_prop; 603 uint_t reg_len, rng_len, intr_len, irupts_len; 604 605 *ppd = pdptr = kmem_zalloc(sizeof (*pdptr), KM_SLEEP); 606 607 /* 608 * Handle the 'reg' property. 609 */ 610 if ((get_prop_int_array(child, "reg", ®_prop, ®_len) == 611 DDI_PROP_SUCCESS) && (reg_len != 0)) { 612 pdptr->par_nreg = reg_len / (int)sizeof (struct regspec); 613 pdptr->par_reg = (struct regspec *)reg_prop; 614 } 615 616 /* 617 * See if I have a range (adding one where needed - this 618 * means to add one for sbus node in sun4c, when romvec > 0, 619 * if no range is already defined in the PROM node. 620 * (Currently no sun4c PROMS define range properties, 621 * but they should and may in the future.) For the SBus 622 * node, the range is defined by the SBus reg property. 623 */ 624 if (get_prop_int_array(child, "ranges", &rng_prop, &rng_len) 625 == DDI_PROP_SUCCESS) { 626 pdptr->par_nrng = rng_len / (int)(sizeof (struct rangespec)); 627 pdptr->par_rng = (struct rangespec *)rng_prop; 628 } 629 630 /* 631 * Handle the 'intr' and 'interrupts' properties 632 */ 633 634 /* 635 * For backwards compatibility 636 * we first look for the 'intr' property for the device. 637 */ 638 if (get_prop_int_array(child, "intr", &intr_prop, &intr_len) 639 != DDI_PROP_SUCCESS) { 640 intr_len = 0; 641 } 642 643 /* 644 * If we're to support bus adapters and future platforms cleanly, 645 * we need to support the generalized 'interrupts' property. 646 */ 647 if (get_prop_int_array(child, "interrupts", &irupts_prop, 648 &irupts_len) != DDI_PROP_SUCCESS) { 649 irupts_len = 0; 650 } else if (intr_len != 0) { 651 /* 652 * If both 'intr' and 'interrupts' are defined, 653 * then 'interrupts' wins and we toss the 'intr' away. 654 */ 655 ddi_prop_free((void *)intr_prop); 656 intr_len = 0; 657 } 658 659 if (intr_len != 0) { 660 661 /* 662 * Translate the 'intr' property into an array 663 * an array of struct intrspec's. There's not really 664 * very much to do here except copy what's out there. 665 */ 666 667 struct intrspec *new; 668 struct prop_ispec *l; 669 670 n = pdptr->par_nintr = intr_len / sizeof (struct prop_ispec); 671 l = (struct prop_ispec *)intr_prop; 672 pdptr->par_intr = 673 new = kmem_zalloc(n * sizeof (struct intrspec), KM_SLEEP); 674 while (n--) { 675 new->intrspec_pri = l->pri; 676 new->intrspec_vec = l->vec; 677 new++; 678 l++; 679 } 680 ddi_prop_free((void *)intr_prop); 681 682 } else if ((n = irupts_len) != 0) { 683 size_t size; 684 int *out; 685 686 /* 687 * Translate the 'interrupts' property into an array 688 * of intrspecs for the rest of the DDI framework to 689 * toy with. Only our ancestors really know how to 690 * do this, so ask 'em. We massage the 'interrupts' 691 * property so that it is pre-pended by a count of 692 * the number of integers in the argument. 693 */ 694 size = sizeof (int) + n; 695 out = kmem_alloc(size, KM_SLEEP); 696 *out = n / sizeof (int); 697 bcopy(irupts_prop, out + 1, (size_t)n); 698 ddi_prop_free((void *)irupts_prop); 699 if (impl_xlate_intrs(child, out, pdptr) != DDI_SUCCESS) { 700 cmn_err(CE_CONT, 701 "Unable to translate 'interrupts' for %s%d\n", 702 DEVI(child)->devi_binding_name, 703 DEVI(child)->devi_instance); 704 } 705 kmem_free(out, size); 706 } 707 } 708 709 /* 710 * Name a child 711 */ 712 static int 713 impl_sunbus_name_child(dev_info_t *child, char *name, int namelen) 714 { 715 /* 716 * Fill in parent-private data and this function returns to us 717 * an indication if it used "registers" to fill in the data. 718 */ 719 if (ddi_get_parent_data(child) == NULL) { 720 struct ddi_parent_private_data *pdptr; 721 make_ddi_ppd(child, &pdptr); 722 ddi_set_parent_data(child, pdptr); 723 } 724 725 name[0] = '\0'; 726 if (sparc_pd_getnreg(child) > 0) { 727 (void) snprintf(name, namelen, "%x,%x", 728 (uint_t)sparc_pd_getreg(child, 0)->regspec_bustype, 729 (uint_t)sparc_pd_getreg(child, 0)->regspec_addr); 730 } 731 732 return (DDI_SUCCESS); 733 } 734 735 /* 736 * Called from the bus_ctl op of sunbus (sbus, obio, etc) nexus drivers 737 * to implement the DDI_CTLOPS_INITCHILD operation. That is, it names 738 * the children of sun busses based on the reg spec. 739 * 740 * Handles the following properties (in make_ddi_ppd): 741 * Property value 742 * Name type 743 * reg register spec 744 * intr old-form interrupt spec 745 * interrupts new (bus-oriented) interrupt spec 746 * ranges range spec 747 */ 748 int 749 impl_ddi_sunbus_initchild(dev_info_t *child) 750 { 751 char name[MAXNAMELEN]; 752 void impl_ddi_sunbus_removechild(dev_info_t *); 753 754 /* 755 * Name the child, also makes parent private data 756 */ 757 (void) impl_sunbus_name_child(child, name, MAXNAMELEN); 758 ddi_set_name_addr(child, name); 759 760 /* 761 * Attempt to merge a .conf node; if successful, remove the 762 * .conf node. 763 */ 764 if ((ndi_dev_is_persistent_node(child) == 0) && 765 (ndi_merge_node(child, impl_sunbus_name_child) == DDI_SUCCESS)) { 766 /* 767 * Return failure to remove node 768 */ 769 impl_ddi_sunbus_removechild(child); 770 return (DDI_FAILURE); 771 } 772 return (DDI_SUCCESS); 773 } 774 775 void 776 impl_free_ddi_ppd(dev_info_t *dip) 777 { 778 struct ddi_parent_private_data *pdptr; 779 size_t n; 780 781 if ((pdptr = ddi_get_parent_data(dip)) == NULL) 782 return; 783 784 if ((n = (size_t)pdptr->par_nintr) != 0) 785 /* 786 * Note that kmem_free is used here (instead of 787 * ddi_prop_free) because the contents of the 788 * property were placed into a separate buffer and 789 * mucked with a bit before being stored in par_intr. 790 * The actual return value from the prop lookup 791 * was freed with ddi_prop_free previously. 792 */ 793 kmem_free(pdptr->par_intr, n * sizeof (struct intrspec)); 794 795 if ((n = (size_t)pdptr->par_nrng) != 0) 796 ddi_prop_free((void *)pdptr->par_rng); 797 798 if ((n = pdptr->par_nreg) != 0) 799 ddi_prop_free((void *)pdptr->par_reg); 800 801 kmem_free(pdptr, sizeof (*pdptr)); 802 ddi_set_parent_data(dip, NULL); 803 } 804 805 void 806 impl_ddi_sunbus_removechild(dev_info_t *dip) 807 { 808 impl_free_ddi_ppd(dip); 809 ddi_set_name_addr(dip, NULL); 810 /* 811 * Strip the node to properly convert it back to prototype form 812 */ 813 impl_rem_dev_props(dip); 814 } 815 816 /* 817 * DDI Interrupt 818 */ 819 820 /* 821 * turn this on to force isa, eisa, and mca device to ignore the new 822 * hardware nodes in the device tree (normally turned on only for 823 * drivers that need it by setting the property "ignore-hardware-nodes" 824 * in their driver.conf file). 825 * 826 * 7/31/96 -- Turned off globally. Leaving variable in for the moment 827 * as safety valve. 828 */ 829 int ignore_hardware_nodes = 0; 830 831 /* 832 * Local data 833 */ 834 static struct impl_bus_promops *impl_busp; 835 836 837 /* 838 * New DDI interrupt framework 839 */ 840 841 /* 842 * i_ddi_intr_ops: 843 * 844 * This is the interrupt operator function wrapper for the bus function 845 * bus_intr_op. 846 */ 847 int 848 i_ddi_intr_ops(dev_info_t *dip, dev_info_t *rdip, ddi_intr_op_t op, 849 ddi_intr_handle_impl_t *hdlp, void * result) 850 { 851 dev_info_t *pdip = (dev_info_t *)DEVI(dip)->devi_parent; 852 int ret = DDI_FAILURE; 853 854 /* request parent to process this interrupt op */ 855 if (NEXUS_HAS_INTR_OP(pdip)) 856 ret = (*(DEVI(pdip)->devi_ops->devo_bus_ops->bus_intr_op))( 857 pdip, rdip, op, hdlp, result); 858 else 859 cmn_err(CE_WARN, "Failed to process interrupt " 860 "for %s%d due to down-rev nexus driver %s%d", 861 ddi_get_name(rdip), ddi_get_instance(rdip), 862 ddi_get_name(pdip), ddi_get_instance(pdip)); 863 return (ret); 864 } 865 866 /* 867 * i_ddi_add_softint - allocate and add a soft interrupt to the system 868 */ 869 int 870 i_ddi_add_softint(ddi_softint_hdl_impl_t *hdlp) 871 { 872 int ret; 873 874 /* add soft interrupt handler */ 875 ret = add_avsoftintr((void *)hdlp, hdlp->ih_pri, hdlp->ih_cb_func, 876 DEVI(hdlp->ih_dip)->devi_name, hdlp->ih_cb_arg1, hdlp->ih_cb_arg2); 877 return (ret ? DDI_SUCCESS : DDI_FAILURE); 878 } 879 880 881 void 882 i_ddi_remove_softint(ddi_softint_hdl_impl_t *hdlp) 883 { 884 (void) rem_avsoftintr((void *)hdlp, hdlp->ih_pri, hdlp->ih_cb_func); 885 } 886 887 888 extern void (*setsoftint)(int, struct av_softinfo *); 889 extern boolean_t av_check_softint_pending(struct av_softinfo *, boolean_t); 890 891 int 892 i_ddi_trigger_softint(ddi_softint_hdl_impl_t *hdlp, void *arg2) 893 { 894 if (av_check_softint_pending(hdlp->ih_pending, B_FALSE)) 895 return (DDI_EPENDING); 896 897 update_avsoftintr_args((void *)hdlp, hdlp->ih_pri, arg2); 898 899 (*setsoftint)(hdlp->ih_pri, hdlp->ih_pending); 900 return (DDI_SUCCESS); 901 } 902 903 /* 904 * i_ddi_set_softint_pri: 905 * 906 * The way this works is that it first tries to add a softint vector 907 * at the new priority in hdlp. If that succeeds; then it removes the 908 * existing softint vector at the old priority. 909 */ 910 int 911 i_ddi_set_softint_pri(ddi_softint_hdl_impl_t *hdlp, uint_t old_pri) 912 { 913 int ret; 914 915 /* 916 * If a softint is pending at the old priority then fail the request. 917 */ 918 if (av_check_softint_pending(hdlp->ih_pending, B_TRUE)) 919 return (DDI_FAILURE); 920 921 ret = av_softint_movepri((void *)hdlp, old_pri); 922 return (ret ? DDI_SUCCESS : DDI_FAILURE); 923 } 924 925 void 926 i_ddi_alloc_intr_phdl(ddi_intr_handle_impl_t *hdlp) 927 { 928 hdlp->ih_private = (void *)kmem_zalloc(sizeof (ihdl_plat_t), KM_SLEEP); 929 } 930 931 void 932 i_ddi_free_intr_phdl(ddi_intr_handle_impl_t *hdlp) 933 { 934 kmem_free(hdlp->ih_private, sizeof (ihdl_plat_t)); 935 hdlp->ih_private = NULL; 936 } 937 938 int 939 i_ddi_get_intx_nintrs(dev_info_t *dip) 940 { 941 struct ddi_parent_private_data *pdp; 942 943 if ((pdp = ddi_get_parent_data(dip)) == NULL) 944 return (0); 945 946 return (pdp->par_nintr); 947 } 948 949 /* 950 * DDI Memory/DMA 951 */ 952 953 /* 954 * Support for allocating DMAable memory to implement 955 * ddi_dma_mem_alloc(9F) interface. 956 */ 957 958 #define KA_ALIGN_SHIFT 7 959 #define KA_ALIGN (1 << KA_ALIGN_SHIFT) 960 #define KA_NCACHE (PAGESHIFT + 1 - KA_ALIGN_SHIFT) 961 962 /* 963 * Dummy DMA attribute template for kmem_io[].kmem_io_attr. We only 964 * care about addr_lo, addr_hi, and align. addr_hi will be dynamically set. 965 */ 966 967 static ddi_dma_attr_t kmem_io_attr = { 968 DMA_ATTR_V0, 969 0x0000000000000000ULL, /* dma_attr_addr_lo */ 970 0x0000000000000000ULL, /* dma_attr_addr_hi */ 971 0x00ffffff, 972 0x1000, /* dma_attr_align */ 973 1, 1, 0xffffffffULL, 0xffffffffULL, 0x1, 1, 0 974 }; 975 976 /* kmem io memory ranges and indices */ 977 enum { 978 IO_4P, IO_64G, IO_4G, IO_2G, IO_1G, IO_512M, 979 IO_256M, IO_128M, IO_64M, IO_32M, IO_16M, MAX_MEM_RANGES 980 }; 981 982 static struct { 983 vmem_t *kmem_io_arena; 984 kmem_cache_t *kmem_io_cache[KA_NCACHE]; 985 ddi_dma_attr_t kmem_io_attr; 986 } kmem_io[MAX_MEM_RANGES]; 987 988 static int kmem_io_idx; /* index of first populated kmem_io[] */ 989 990 static page_t * 991 page_create_io_wrapper(void *addr, size_t len, int vmflag, void *arg) 992 { 993 extern page_t *page_create_io(vnode_t *, u_offset_t, uint_t, 994 uint_t, struct as *, caddr_t, ddi_dma_attr_t *); 995 996 return (page_create_io(&kvp, (u_offset_t)(uintptr_t)addr, len, 997 PG_EXCL | ((vmflag & VM_NOSLEEP) ? 0 : PG_WAIT), &kas, addr, arg)); 998 } 999 1000 #ifdef __xpv 1001 static void 1002 segkmem_free_io(vmem_t *vmp, void * ptr, size_t size) 1003 { 1004 extern void page_destroy_io(page_t *); 1005 segkmem_xfree(vmp, ptr, size, page_destroy_io); 1006 } 1007 #endif 1008 1009 static void * 1010 segkmem_alloc_io_4P(vmem_t *vmp, size_t size, int vmflag) 1011 { 1012 return (segkmem_xalloc(vmp, NULL, size, vmflag, 0, 1013 page_create_io_wrapper, &kmem_io[IO_4P].kmem_io_attr)); 1014 } 1015 1016 static void * 1017 segkmem_alloc_io_64G(vmem_t *vmp, size_t size, int vmflag) 1018 { 1019 return (segkmem_xalloc(vmp, NULL, size, vmflag, 0, 1020 page_create_io_wrapper, &kmem_io[IO_64G].kmem_io_attr)); 1021 } 1022 1023 static void * 1024 segkmem_alloc_io_4G(vmem_t *vmp, size_t size, int vmflag) 1025 { 1026 return (segkmem_xalloc(vmp, NULL, size, vmflag, 0, 1027 page_create_io_wrapper, &kmem_io[IO_4G].kmem_io_attr)); 1028 } 1029 1030 static void * 1031 segkmem_alloc_io_2G(vmem_t *vmp, size_t size, int vmflag) 1032 { 1033 return (segkmem_xalloc(vmp, NULL, size, vmflag, 0, 1034 page_create_io_wrapper, &kmem_io[IO_2G].kmem_io_attr)); 1035 } 1036 1037 static void * 1038 segkmem_alloc_io_1G(vmem_t *vmp, size_t size, int vmflag) 1039 { 1040 return (segkmem_xalloc(vmp, NULL, size, vmflag, 0, 1041 page_create_io_wrapper, &kmem_io[IO_1G].kmem_io_attr)); 1042 } 1043 1044 static void * 1045 segkmem_alloc_io_512M(vmem_t *vmp, size_t size, int vmflag) 1046 { 1047 return (segkmem_xalloc(vmp, NULL, size, vmflag, 0, 1048 page_create_io_wrapper, &kmem_io[IO_512M].kmem_io_attr)); 1049 } 1050 1051 static void * 1052 segkmem_alloc_io_256M(vmem_t *vmp, size_t size, int vmflag) 1053 { 1054 return (segkmem_xalloc(vmp, NULL, size, vmflag, 0, 1055 page_create_io_wrapper, &kmem_io[IO_256M].kmem_io_attr)); 1056 } 1057 1058 static void * 1059 segkmem_alloc_io_128M(vmem_t *vmp, size_t size, int vmflag) 1060 { 1061 return (segkmem_xalloc(vmp, NULL, size, vmflag, 0, 1062 page_create_io_wrapper, &kmem_io[IO_128M].kmem_io_attr)); 1063 } 1064 1065 static void * 1066 segkmem_alloc_io_64M(vmem_t *vmp, size_t size, int vmflag) 1067 { 1068 return (segkmem_xalloc(vmp, NULL, size, vmflag, 0, 1069 page_create_io_wrapper, &kmem_io[IO_64M].kmem_io_attr)); 1070 } 1071 1072 static void * 1073 segkmem_alloc_io_32M(vmem_t *vmp, size_t size, int vmflag) 1074 { 1075 return (segkmem_xalloc(vmp, NULL, size, vmflag, 0, 1076 page_create_io_wrapper, &kmem_io[IO_32M].kmem_io_attr)); 1077 } 1078 1079 static void * 1080 segkmem_alloc_io_16M(vmem_t *vmp, size_t size, int vmflag) 1081 { 1082 return (segkmem_xalloc(vmp, NULL, size, vmflag, 0, 1083 page_create_io_wrapper, &kmem_io[IO_16M].kmem_io_attr)); 1084 } 1085 1086 struct { 1087 uint64_t io_limit; 1088 char *io_name; 1089 void *(*io_alloc)(vmem_t *, size_t, int); 1090 int io_initial; /* kmem_io_init during startup */ 1091 } io_arena_params[MAX_MEM_RANGES] = { 1092 {0x000fffffffffffffULL, "kmem_io_4P", segkmem_alloc_io_4P, 1}, 1093 {0x0000000fffffffffULL, "kmem_io_64G", segkmem_alloc_io_64G, 0}, 1094 {0x00000000ffffffffULL, "kmem_io_4G", segkmem_alloc_io_4G, 1}, 1095 {0x000000007fffffffULL, "kmem_io_2G", segkmem_alloc_io_2G, 1}, 1096 {0x000000003fffffffULL, "kmem_io_1G", segkmem_alloc_io_1G, 0}, 1097 {0x000000001fffffffULL, "kmem_io_512M", segkmem_alloc_io_512M, 0}, 1098 {0x000000000fffffffULL, "kmem_io_256M", segkmem_alloc_io_256M, 0}, 1099 {0x0000000007ffffffULL, "kmem_io_128M", segkmem_alloc_io_128M, 0}, 1100 {0x0000000003ffffffULL, "kmem_io_64M", segkmem_alloc_io_64M, 0}, 1101 {0x0000000001ffffffULL, "kmem_io_32M", segkmem_alloc_io_32M, 0}, 1102 {0x0000000000ffffffULL, "kmem_io_16M", segkmem_alloc_io_16M, 1} 1103 }; 1104 1105 void 1106 kmem_io_init(int a) 1107 { 1108 int c; 1109 char name[40]; 1110 1111 kmem_io[a].kmem_io_arena = vmem_create(io_arena_params[a].io_name, 1112 NULL, 0, PAGESIZE, io_arena_params[a].io_alloc, 1113 #ifdef __xpv 1114 segkmem_free_io, 1115 #else 1116 segkmem_free, 1117 #endif 1118 heap_arena, 0, VM_SLEEP); 1119 1120 for (c = 0; c < KA_NCACHE; c++) { 1121 size_t size = KA_ALIGN << c; 1122 (void) sprintf(name, "%s_%lu", 1123 io_arena_params[a].io_name, size); 1124 kmem_io[a].kmem_io_cache[c] = kmem_cache_create(name, 1125 size, size, NULL, NULL, NULL, NULL, 1126 kmem_io[a].kmem_io_arena, 0); 1127 } 1128 } 1129 1130 /* 1131 * Return the index of the highest memory range for addr. 1132 */ 1133 static int 1134 kmem_io_index(uint64_t addr) 1135 { 1136 int n; 1137 1138 for (n = kmem_io_idx; n < MAX_MEM_RANGES; n++) { 1139 if (kmem_io[n].kmem_io_attr.dma_attr_addr_hi <= addr) { 1140 if (kmem_io[n].kmem_io_arena == NULL) 1141 kmem_io_init(n); 1142 return (n); 1143 } 1144 } 1145 panic("kmem_io_index: invalid addr - must be at least 16m"); 1146 1147 /*NOTREACHED*/ 1148 } 1149 1150 /* 1151 * Return the index of the next kmem_io populated memory range 1152 * after curindex. 1153 */ 1154 static int 1155 kmem_io_index_next(int curindex) 1156 { 1157 int n; 1158 1159 for (n = curindex + 1; n < MAX_MEM_RANGES; n++) { 1160 if (kmem_io[n].kmem_io_arena) 1161 return (n); 1162 } 1163 return (-1); 1164 } 1165 1166 /* 1167 * allow kmem to be mapped in with different PTE cache attribute settings. 1168 * Used by i_ddi_mem_alloc() 1169 */ 1170 int 1171 kmem_override_cache_attrs(caddr_t kva, size_t size, uint_t order) 1172 { 1173 uint_t hat_flags; 1174 caddr_t kva_end; 1175 uint_t hat_attr; 1176 pfn_t pfn; 1177 1178 if (hat_getattr(kas.a_hat, kva, &hat_attr) == -1) { 1179 return (-1); 1180 } 1181 1182 hat_attr &= ~HAT_ORDER_MASK; 1183 hat_attr |= order | HAT_NOSYNC; 1184 hat_flags = HAT_LOAD_LOCK; 1185 1186 kva_end = (caddr_t)(((uintptr_t)kva + size + PAGEOFFSET) & 1187 (uintptr_t)PAGEMASK); 1188 kva = (caddr_t)((uintptr_t)kva & (uintptr_t)PAGEMASK); 1189 1190 while (kva < kva_end) { 1191 pfn = hat_getpfnum(kas.a_hat, kva); 1192 hat_unload(kas.a_hat, kva, PAGESIZE, HAT_UNLOAD_UNLOCK); 1193 hat_devload(kas.a_hat, kva, PAGESIZE, pfn, hat_attr, hat_flags); 1194 kva += MMU_PAGESIZE; 1195 } 1196 1197 return (0); 1198 } 1199 1200 void 1201 ka_init(void) 1202 { 1203 int a; 1204 paddr_t maxphysaddr; 1205 #if !defined(__xpv) 1206 extern pfn_t physmax; 1207 1208 maxphysaddr = mmu_ptob((paddr_t)physmax) + MMU_PAGEOFFSET; 1209 #else 1210 maxphysaddr = mmu_ptob((paddr_t)HYPERVISOR_memory_op( 1211 XENMEM_maximum_ram_page, NULL)) + MMU_PAGEOFFSET; 1212 #endif 1213 1214 ASSERT(maxphysaddr <= io_arena_params[0].io_limit); 1215 1216 for (a = 0; a < MAX_MEM_RANGES; a++) { 1217 if (maxphysaddr >= io_arena_params[a + 1].io_limit) { 1218 if (maxphysaddr > io_arena_params[a + 1].io_limit) 1219 io_arena_params[a].io_limit = maxphysaddr; 1220 else 1221 a++; 1222 break; 1223 } 1224 } 1225 kmem_io_idx = a; 1226 1227 for (; a < MAX_MEM_RANGES; a++) { 1228 kmem_io[a].kmem_io_attr = kmem_io_attr; 1229 kmem_io[a].kmem_io_attr.dma_attr_addr_hi = 1230 io_arena_params[a].io_limit; 1231 /* 1232 * initialize kmem_io[] arena/cache corresponding to 1233 * maxphysaddr and to the "common" io memory ranges that 1234 * have io_initial set to a non-zero value. 1235 */ 1236 if (io_arena_params[a].io_initial || a == kmem_io_idx) 1237 kmem_io_init(a); 1238 } 1239 } 1240 1241 /* 1242 * put contig address/size 1243 */ 1244 static void * 1245 putctgas(void *addr, size_t size) 1246 { 1247 struct ctgas *ctgp = &ctglist; 1248 int i; 1249 1250 CTGLOCK(); 1251 do { 1252 if ((i = ctgp->ctg_index) < CTGENTRIES) { 1253 ctgp->ctg_addr[i] = addr; 1254 ctgp->ctg_size[i] = size; 1255 ctgp->ctg_index++; 1256 break; 1257 } 1258 if (!ctgp->ctg_next) 1259 ctgp->ctg_next = kmem_zalloc(sizeof (struct ctgas), 1260 KM_NOSLEEP); 1261 ctgp = ctgp->ctg_next; 1262 } while (ctgp); 1263 1264 CTGUNLOCK(); 1265 return (ctgp); 1266 } 1267 1268 /* 1269 * get contig size by addr 1270 */ 1271 static size_t 1272 getctgsz(void *addr) 1273 { 1274 struct ctgas *ctgp = &ctglist; 1275 int i, j; 1276 size_t sz; 1277 1278 ASSERT(addr); 1279 CTGLOCK(); 1280 1281 while (ctgp) { 1282 for (i = 0; i < ctgp->ctg_index; i++) { 1283 if (addr != ctgp->ctg_addr[i]) 1284 continue; 1285 1286 sz = ctgp->ctg_size[i]; 1287 j = --ctgp->ctg_index; 1288 if (i != j) { 1289 ctgp->ctg_size[i] = ctgp->ctg_size[j]; 1290 ctgp->ctg_addr[i] = ctgp->ctg_addr[j]; 1291 } 1292 CTGUNLOCK(); 1293 return (sz); 1294 } 1295 ctgp = ctgp->ctg_next; 1296 } 1297 1298 CTGUNLOCK(); 1299 return (0); 1300 } 1301 1302 /* 1303 * contig_alloc: 1304 * 1305 * allocates contiguous memory to satisfy the 'size' and dma attributes 1306 * specified in 'attr'. 1307 * 1308 * Not all of memory need to be physically contiguous if the 1309 * scatter-gather list length is greater than 1. 1310 */ 1311 1312 /*ARGSUSED*/ 1313 void * 1314 contig_alloc(size_t size, ddi_dma_attr_t *attr, uintptr_t align, int cansleep) 1315 { 1316 pgcnt_t pgcnt = btopr(size); 1317 size_t asize = pgcnt * PAGESIZE; 1318 page_t *ppl; 1319 int pflag; 1320 void *addr; 1321 1322 extern page_t *page_create_io(vnode_t *, u_offset_t, uint_t, 1323 uint_t, struct as *, caddr_t, ddi_dma_attr_t *); 1324 1325 /* segkmem_xalloc */ 1326 1327 if (align <= PAGESIZE) 1328 addr = vmem_alloc(heap_arena, asize, 1329 (cansleep) ? VM_SLEEP : VM_NOSLEEP); 1330 else 1331 addr = vmem_xalloc(heap_arena, asize, align, 0, 0, NULL, NULL, 1332 (cansleep) ? VM_SLEEP : VM_NOSLEEP); 1333 if (addr) { 1334 ASSERT(!((uintptr_t)addr & (align - 1))); 1335 1336 if (page_resv(pgcnt, (cansleep) ? KM_SLEEP : KM_NOSLEEP) == 0) { 1337 vmem_free(heap_arena, addr, asize); 1338 return (NULL); 1339 } 1340 pflag = PG_EXCL; 1341 1342 if (cansleep) 1343 pflag |= PG_WAIT; 1344 1345 /* 4k req gets from freelists rather than pfn search */ 1346 if (pgcnt > 1 || align > PAGESIZE) 1347 pflag |= PG_PHYSCONTIG; 1348 1349 ppl = page_create_io(&kvp, (u_offset_t)(uintptr_t)addr, 1350 asize, pflag, &kas, (caddr_t)addr, attr); 1351 1352 if (!ppl) { 1353 vmem_free(heap_arena, addr, asize); 1354 page_unresv(pgcnt); 1355 return (NULL); 1356 } 1357 1358 while (ppl != NULL) { 1359 page_t *pp = ppl; 1360 page_sub(&ppl, pp); 1361 ASSERT(page_iolock_assert(pp)); 1362 page_io_unlock(pp); 1363 page_downgrade(pp); 1364 hat_memload(kas.a_hat, (caddr_t)(uintptr_t)pp->p_offset, 1365 pp, (PROT_ALL & ~PROT_USER) | 1366 HAT_NOSYNC, HAT_LOAD_LOCK); 1367 } 1368 } 1369 return (addr); 1370 } 1371 1372 void 1373 contig_free(void *addr, size_t size) 1374 { 1375 pgcnt_t pgcnt = btopr(size); 1376 size_t asize = pgcnt * PAGESIZE; 1377 caddr_t a, ea; 1378 page_t *pp; 1379 1380 hat_unload(kas.a_hat, addr, asize, HAT_UNLOAD_UNLOCK); 1381 1382 for (a = addr, ea = a + asize; a < ea; a += PAGESIZE) { 1383 pp = page_find(&kvp, (u_offset_t)(uintptr_t)a); 1384 if (!pp) 1385 panic("contig_free: contig pp not found"); 1386 1387 if (!page_tryupgrade(pp)) { 1388 page_unlock(pp); 1389 pp = page_lookup(&kvp, 1390 (u_offset_t)(uintptr_t)a, SE_EXCL); 1391 if (pp == NULL) 1392 panic("contig_free: page freed"); 1393 } 1394 page_destroy(pp, 0); 1395 } 1396 1397 page_unresv(pgcnt); 1398 vmem_free(heap_arena, addr, asize); 1399 } 1400 1401 /* 1402 * Allocate from the system, aligned on a specific boundary. 1403 * The alignment, if non-zero, must be a power of 2. 1404 */ 1405 static void * 1406 kalloca(size_t size, size_t align, int cansleep, int physcontig, 1407 ddi_dma_attr_t *attr) 1408 { 1409 size_t *addr, *raddr, rsize; 1410 size_t hdrsize = 4 * sizeof (size_t); /* must be power of 2 */ 1411 int a, i, c; 1412 vmem_t *vmp; 1413 kmem_cache_t *cp = NULL; 1414 1415 if (attr->dma_attr_addr_lo > mmu_ptob((uint64_t)ddiphysmin)) 1416 return (NULL); 1417 1418 align = MAX(align, hdrsize); 1419 ASSERT((align & (align - 1)) == 0); 1420 1421 /* 1422 * All of our allocators guarantee 16-byte alignment, so we don't 1423 * need to reserve additional space for the header. 1424 * To simplify picking the correct kmem_io_cache, we round up to 1425 * a multiple of KA_ALIGN. 1426 */ 1427 rsize = P2ROUNDUP_TYPED(size + align, KA_ALIGN, size_t); 1428 1429 if (physcontig && rsize > PAGESIZE) { 1430 if (addr = contig_alloc(size, attr, align, cansleep)) { 1431 if (!putctgas(addr, size)) 1432 contig_free(addr, size); 1433 else 1434 return (addr); 1435 } 1436 return (NULL); 1437 } 1438 1439 a = kmem_io_index(attr->dma_attr_addr_hi); 1440 1441 if (rsize > PAGESIZE) { 1442 vmp = kmem_io[a].kmem_io_arena; 1443 raddr = vmem_alloc(vmp, rsize, 1444 (cansleep) ? VM_SLEEP : VM_NOSLEEP); 1445 } else { 1446 c = highbit((rsize >> KA_ALIGN_SHIFT) - 1); 1447 cp = kmem_io[a].kmem_io_cache[c]; 1448 raddr = kmem_cache_alloc(cp, (cansleep) ? KM_SLEEP : 1449 KM_NOSLEEP); 1450 } 1451 1452 if (raddr == NULL) { 1453 int na; 1454 1455 ASSERT(cansleep == 0); 1456 if (rsize > PAGESIZE) 1457 return (NULL); 1458 /* 1459 * System does not have memory in the requested range. 1460 * Try smaller kmem io ranges and larger cache sizes 1461 * to see if there might be memory available in 1462 * these other caches. 1463 */ 1464 1465 for (na = kmem_io_index_next(a); na >= 0; 1466 na = kmem_io_index_next(na)) { 1467 ASSERT(kmem_io[na].kmem_io_arena); 1468 cp = kmem_io[na].kmem_io_cache[c]; 1469 raddr = kmem_cache_alloc(cp, KM_NOSLEEP); 1470 if (raddr) 1471 goto kallocdone; 1472 } 1473 /* now try the larger kmem io cache sizes */ 1474 for (na = a; na >= 0; na = kmem_io_index_next(na)) { 1475 for (i = c + 1; i < KA_NCACHE; i++) { 1476 cp = kmem_io[na].kmem_io_cache[i]; 1477 raddr = kmem_cache_alloc(cp, KM_NOSLEEP); 1478 if (raddr) 1479 goto kallocdone; 1480 } 1481 } 1482 return (NULL); 1483 } 1484 1485 kallocdone: 1486 ASSERT(!P2BOUNDARY((uintptr_t)raddr, rsize, PAGESIZE) || 1487 rsize > PAGESIZE); 1488 1489 addr = (size_t *)P2ROUNDUP((uintptr_t)raddr + hdrsize, align); 1490 ASSERT((uintptr_t)addr + size - (uintptr_t)raddr <= rsize); 1491 1492 addr[-4] = (size_t)cp; 1493 addr[-3] = (size_t)vmp; 1494 addr[-2] = (size_t)raddr; 1495 addr[-1] = rsize; 1496 1497 return (addr); 1498 } 1499 1500 static void 1501 kfreea(void *addr) 1502 { 1503 size_t size; 1504 1505 if (!((uintptr_t)addr & PAGEOFFSET) && (size = getctgsz(addr))) { 1506 contig_free(addr, size); 1507 } else { 1508 size_t *saddr = addr; 1509 if (saddr[-4] == 0) 1510 vmem_free((vmem_t *)saddr[-3], (void *)saddr[-2], 1511 saddr[-1]); 1512 else 1513 kmem_cache_free((kmem_cache_t *)saddr[-4], 1514 (void *)saddr[-2]); 1515 } 1516 } 1517 1518 /*ARGSUSED*/ 1519 void 1520 i_ddi_devacc_to_hatacc(ddi_device_acc_attr_t *devaccp, uint_t *hataccp) 1521 { 1522 } 1523 1524 /* 1525 * Check if the specified cache attribute is supported on the platform. 1526 * This function must be called before i_ddi_cacheattr_to_hatacc(). 1527 */ 1528 boolean_t 1529 i_ddi_check_cache_attr(uint_t flags) 1530 { 1531 /* 1532 * The cache attributes are mutually exclusive. Any combination of 1533 * the attributes leads to a failure. 1534 */ 1535 uint_t cache_attr = IOMEM_CACHE_ATTR(flags); 1536 if ((cache_attr != 0) && ((cache_attr & (cache_attr - 1)) != 0)) 1537 return (B_FALSE); 1538 1539 /* All cache attributes are supported on X86/X64 */ 1540 if (cache_attr & (IOMEM_DATA_UNCACHED | IOMEM_DATA_CACHED | 1541 IOMEM_DATA_UC_WR_COMBINE)) 1542 return (B_TRUE); 1543 1544 /* undefined attributes */ 1545 return (B_FALSE); 1546 } 1547 1548 /* set HAT cache attributes from the cache attributes */ 1549 void 1550 i_ddi_cacheattr_to_hatacc(uint_t flags, uint_t *hataccp) 1551 { 1552 uint_t cache_attr = IOMEM_CACHE_ATTR(flags); 1553 static char *fname = "i_ddi_cacheattr_to_hatacc"; 1554 1555 /* 1556 * If write-combining is not supported, then it falls back 1557 * to uncacheable. 1558 */ 1559 if (cache_attr == IOMEM_DATA_UC_WR_COMBINE && 1560 !is_x86_feature(x86_featureset, X86FSET_PAT)) 1561 cache_attr = IOMEM_DATA_UNCACHED; 1562 1563 /* 1564 * set HAT attrs according to the cache attrs. 1565 */ 1566 switch (cache_attr) { 1567 case IOMEM_DATA_UNCACHED: 1568 *hataccp &= ~HAT_ORDER_MASK; 1569 *hataccp |= (HAT_STRICTORDER | HAT_PLAT_NOCACHE); 1570 break; 1571 case IOMEM_DATA_UC_WR_COMBINE: 1572 *hataccp &= ~HAT_ORDER_MASK; 1573 *hataccp |= (HAT_MERGING_OK | HAT_PLAT_NOCACHE); 1574 break; 1575 case IOMEM_DATA_CACHED: 1576 *hataccp &= ~HAT_ORDER_MASK; 1577 *hataccp |= HAT_UNORDERED_OK; 1578 break; 1579 /* 1580 * This case must not occur because the cache attribute is scrutinized 1581 * before this function is called. 1582 */ 1583 default: 1584 /* 1585 * set cacheable to hat attrs. 1586 */ 1587 *hataccp &= ~HAT_ORDER_MASK; 1588 *hataccp |= HAT_UNORDERED_OK; 1589 cmn_err(CE_WARN, "%s: cache_attr=0x%x is ignored.", 1590 fname, cache_attr); 1591 } 1592 } 1593 1594 /* 1595 * This should actually be called i_ddi_dma_mem_alloc. There should 1596 * also be an i_ddi_pio_mem_alloc. i_ddi_dma_mem_alloc should call 1597 * through the device tree with the DDI_CTLOPS_DMA_ALIGN ctl ops to 1598 * get alignment requirements for DMA memory. i_ddi_pio_mem_alloc 1599 * should use DDI_CTLOPS_PIO_ALIGN. Since we only have i_ddi_mem_alloc 1600 * so far which is used for both, DMA and PIO, we have to use the DMA 1601 * ctl ops to make everybody happy. 1602 */ 1603 /*ARGSUSED*/ 1604 int 1605 i_ddi_mem_alloc(dev_info_t *dip, ddi_dma_attr_t *attr, 1606 size_t length, int cansleep, int flags, 1607 ddi_device_acc_attr_t *accattrp, caddr_t *kaddrp, 1608 size_t *real_length, ddi_acc_hdl_t *ap) 1609 { 1610 caddr_t a; 1611 int iomin; 1612 ddi_acc_impl_t *iap; 1613 int physcontig = 0; 1614 pgcnt_t npages; 1615 pgcnt_t minctg; 1616 uint_t order; 1617 int e; 1618 1619 /* 1620 * Check legality of arguments 1621 */ 1622 if (length == 0 || kaddrp == NULL || attr == NULL) { 1623 return (DDI_FAILURE); 1624 } 1625 1626 if (attr->dma_attr_minxfer == 0 || attr->dma_attr_align == 0 || 1627 (attr->dma_attr_align & (attr->dma_attr_align - 1)) || 1628 (attr->dma_attr_minxfer & (attr->dma_attr_minxfer - 1))) { 1629 return (DDI_FAILURE); 1630 } 1631 1632 /* 1633 * figure out most restrictive alignment requirement 1634 */ 1635 iomin = attr->dma_attr_minxfer; 1636 iomin = maxbit(iomin, attr->dma_attr_align); 1637 if (iomin == 0) 1638 return (DDI_FAILURE); 1639 1640 ASSERT((iomin & (iomin - 1)) == 0); 1641 1642 /* 1643 * if we allocate memory with IOMEM_DATA_UNCACHED or 1644 * IOMEM_DATA_UC_WR_COMBINE, make sure we allocate a page aligned 1645 * memory that ends on a page boundry. 1646 * Don't want to have to different cache mappings to the same 1647 * physical page. 1648 */ 1649 if (OVERRIDE_CACHE_ATTR(flags)) { 1650 iomin = (iomin + MMU_PAGEOFFSET) & MMU_PAGEMASK; 1651 length = (length + MMU_PAGEOFFSET) & (size_t)MMU_PAGEMASK; 1652 } 1653 1654 /* 1655 * Determine if we need to satisfy the request for physically 1656 * contiguous memory or alignments larger than pagesize. 1657 */ 1658 npages = btopr(length + attr->dma_attr_align); 1659 minctg = howmany(npages, attr->dma_attr_sgllen); 1660 1661 if (minctg > 1) { 1662 uint64_t pfnseg = attr->dma_attr_seg >> PAGESHIFT; 1663 /* 1664 * verify that the minimum contig requirement for the 1665 * actual length does not cross segment boundary. 1666 */ 1667 length = P2ROUNDUP_TYPED(length, attr->dma_attr_minxfer, 1668 size_t); 1669 npages = btopr(length); 1670 minctg = howmany(npages, attr->dma_attr_sgllen); 1671 if (minctg > pfnseg + 1) 1672 return (DDI_FAILURE); 1673 physcontig = 1; 1674 } else { 1675 length = P2ROUNDUP_TYPED(length, iomin, size_t); 1676 } 1677 1678 /* 1679 * Allocate the requested amount from the system. 1680 */ 1681 a = kalloca(length, iomin, cansleep, physcontig, attr); 1682 1683 if ((*kaddrp = a) == NULL) 1684 return (DDI_FAILURE); 1685 1686 /* 1687 * if we to modify the cache attributes, go back and muck with the 1688 * mappings. 1689 */ 1690 if (OVERRIDE_CACHE_ATTR(flags)) { 1691 order = 0; 1692 i_ddi_cacheattr_to_hatacc(flags, &order); 1693 e = kmem_override_cache_attrs(a, length, order); 1694 if (e != 0) { 1695 kfreea(a); 1696 return (DDI_FAILURE); 1697 } 1698 } 1699 1700 if (real_length) { 1701 *real_length = length; 1702 } 1703 if (ap) { 1704 /* 1705 * initialize access handle 1706 */ 1707 iap = (ddi_acc_impl_t *)ap->ah_platform_private; 1708 iap->ahi_acc_attr |= DDI_ACCATTR_CPU_VADDR; 1709 impl_acc_hdl_init(ap); 1710 } 1711 1712 return (DDI_SUCCESS); 1713 } 1714 1715 /* 1716 * covert old DMA limits structure to DMA attribute structure 1717 * and continue 1718 */ 1719 int 1720 i_ddi_mem_alloc_lim(dev_info_t *dip, ddi_dma_lim_t *limits, 1721 size_t length, int cansleep, int streaming, 1722 ddi_device_acc_attr_t *accattrp, caddr_t *kaddrp, 1723 uint_t *real_length, ddi_acc_hdl_t *ap) 1724 { 1725 ddi_dma_attr_t dma_attr, *attrp; 1726 size_t rlen; 1727 int ret; 1728 1729 if (limits == NULL) { 1730 return (DDI_FAILURE); 1731 } 1732 1733 /* 1734 * set up DMA attribute structure to pass to i_ddi_mem_alloc() 1735 */ 1736 attrp = &dma_attr; 1737 attrp->dma_attr_version = DMA_ATTR_V0; 1738 attrp->dma_attr_addr_lo = (uint64_t)limits->dlim_addr_lo; 1739 attrp->dma_attr_addr_hi = (uint64_t)limits->dlim_addr_hi; 1740 attrp->dma_attr_count_max = (uint64_t)limits->dlim_ctreg_max; 1741 attrp->dma_attr_align = 1; 1742 attrp->dma_attr_burstsizes = (uint_t)limits->dlim_burstsizes; 1743 attrp->dma_attr_minxfer = (uint32_t)limits->dlim_minxfer; 1744 attrp->dma_attr_maxxfer = (uint64_t)limits->dlim_reqsize; 1745 attrp->dma_attr_seg = (uint64_t)limits->dlim_adreg_max; 1746 attrp->dma_attr_sgllen = limits->dlim_sgllen; 1747 attrp->dma_attr_granular = (uint32_t)limits->dlim_granular; 1748 attrp->dma_attr_flags = 0; 1749 1750 ret = i_ddi_mem_alloc(dip, attrp, length, cansleep, streaming, 1751 accattrp, kaddrp, &rlen, ap); 1752 if (ret == DDI_SUCCESS) { 1753 if (real_length) 1754 *real_length = (uint_t)rlen; 1755 } 1756 return (ret); 1757 } 1758 1759 /* ARGSUSED */ 1760 void 1761 i_ddi_mem_free(caddr_t kaddr, ddi_acc_hdl_t *ap) 1762 { 1763 if (ap != NULL) { 1764 /* 1765 * if we modified the cache attributes on alloc, go back and 1766 * fix them since this memory could be returned to the 1767 * general pool. 1768 */ 1769 if (OVERRIDE_CACHE_ATTR(ap->ah_xfermodes)) { 1770 uint_t order = 0; 1771 int e; 1772 i_ddi_cacheattr_to_hatacc(IOMEM_DATA_CACHED, &order); 1773 e = kmem_override_cache_attrs(kaddr, ap->ah_len, order); 1774 if (e != 0) { 1775 cmn_err(CE_WARN, "i_ddi_mem_free() failed to " 1776 "override cache attrs, memory leaked\n"); 1777 return; 1778 } 1779 } 1780 } 1781 kfreea(kaddr); 1782 } 1783 1784 /* 1785 * Access Barriers 1786 * 1787 */ 1788 /*ARGSUSED*/ 1789 int 1790 i_ddi_ontrap(ddi_acc_handle_t hp) 1791 { 1792 return (DDI_FAILURE); 1793 } 1794 1795 /*ARGSUSED*/ 1796 void 1797 i_ddi_notrap(ddi_acc_handle_t hp) 1798 { 1799 } 1800 1801 1802 /* 1803 * Misc Functions 1804 */ 1805 1806 /* 1807 * Implementation instance override functions 1808 * 1809 * No override on i86pc 1810 */ 1811 /*ARGSUSED*/ 1812 uint_t 1813 impl_assign_instance(dev_info_t *dip) 1814 { 1815 return ((uint_t)-1); 1816 } 1817 1818 /*ARGSUSED*/ 1819 int 1820 impl_keep_instance(dev_info_t *dip) 1821 { 1822 1823 #if defined(__xpv) 1824 /* 1825 * Do not persist instance numbers assigned to devices in dom0 1826 */ 1827 dev_info_t *pdip; 1828 if (DOMAIN_IS_INITDOMAIN(xen_info)) { 1829 if (((pdip = ddi_get_parent(dip)) != NULL) && 1830 (strcmp(ddi_get_name(pdip), "xpvd") == 0)) 1831 return (DDI_SUCCESS); 1832 } 1833 #endif 1834 return (DDI_FAILURE); 1835 } 1836 1837 /*ARGSUSED*/ 1838 int 1839 impl_free_instance(dev_info_t *dip) 1840 { 1841 return (DDI_FAILURE); 1842 } 1843 1844 /*ARGSUSED*/ 1845 int 1846 impl_check_cpu(dev_info_t *devi) 1847 { 1848 return (DDI_SUCCESS); 1849 } 1850 1851 /* 1852 * Referenced in common/cpr_driver.c: Power off machine. 1853 * Don't know how to power off i86pc. 1854 */ 1855 void 1856 arch_power_down() 1857 {} 1858 1859 /* 1860 * Copy name to property_name, since name 1861 * is in the low address range below kernelbase. 1862 */ 1863 static void 1864 copy_boot_str(const char *boot_str, char *kern_str, int len) 1865 { 1866 int i = 0; 1867 1868 while (i < len - 1 && boot_str[i] != '\0') { 1869 kern_str[i] = boot_str[i]; 1870 i++; 1871 } 1872 1873 kern_str[i] = 0; /* null terminate */ 1874 if (boot_str[i] != '\0') 1875 cmn_err(CE_WARN, 1876 "boot property string is truncated to %s", kern_str); 1877 } 1878 1879 static void 1880 get_boot_properties(void) 1881 { 1882 extern char hw_provider[]; 1883 dev_info_t *devi; 1884 char *name; 1885 int length; 1886 char property_name[50], property_val[50]; 1887 void *bop_staging_area; 1888 1889 bop_staging_area = kmem_zalloc(MMU_PAGESIZE, KM_NOSLEEP); 1890 1891 /* 1892 * Import "root" properties from the boot. 1893 * 1894 * We do this by invoking BOP_NEXTPROP until the list 1895 * is completely copied in. 1896 */ 1897 1898 devi = ddi_root_node(); 1899 for (name = BOP_NEXTPROP(bootops, ""); /* get first */ 1900 name; /* NULL => DONE */ 1901 name = BOP_NEXTPROP(bootops, name)) { /* get next */ 1902 1903 /* copy string to memory above kernelbase */ 1904 copy_boot_str(name, property_name, 50); 1905 1906 /* 1907 * Skip vga properties. They will be picked up later 1908 * by get_vga_properties. 1909 */ 1910 if (strcmp(property_name, "display-edif-block") == 0 || 1911 strcmp(property_name, "display-edif-id") == 0) { 1912 continue; 1913 } 1914 1915 length = BOP_GETPROPLEN(bootops, property_name); 1916 if (length == 0) 1917 continue; 1918 if (length > MMU_PAGESIZE) { 1919 cmn_err(CE_NOTE, 1920 "boot property %s longer than 0x%x, ignored\n", 1921 property_name, MMU_PAGESIZE); 1922 continue; 1923 } 1924 BOP_GETPROP(bootops, property_name, bop_staging_area); 1925 1926 /* 1927 * special properties: 1928 * si-machine, si-hw-provider 1929 * goes to kernel data structures. 1930 * bios-boot-device and stdout 1931 * goes to hardware property list so it may show up 1932 * in the prtconf -vp output. This is needed by 1933 * Install/Upgrade. Once we fix install upgrade, 1934 * this can be taken out. 1935 */ 1936 if (strcmp(name, "si-machine") == 0) { 1937 (void) strncpy(utsname.machine, bop_staging_area, 1938 SYS_NMLN); 1939 utsname.machine[SYS_NMLN - 1] = (char)NULL; 1940 } else if (strcmp(name, "si-hw-provider") == 0) { 1941 (void) strncpy(hw_provider, bop_staging_area, SYS_NMLN); 1942 hw_provider[SYS_NMLN - 1] = (char)NULL; 1943 } else if (strcmp(name, "bios-boot-device") == 0) { 1944 copy_boot_str(bop_staging_area, property_val, 50); 1945 (void) ndi_prop_update_string(DDI_DEV_T_NONE, devi, 1946 property_name, property_val); 1947 } else if (strcmp(name, "stdout") == 0) { 1948 (void) ndi_prop_update_int(DDI_DEV_T_NONE, devi, 1949 property_name, *((int *)bop_staging_area)); 1950 } else { 1951 /* Property type unknown, use old prop interface */ 1952 (void) e_ddi_prop_create(DDI_DEV_T_NONE, devi, 1953 DDI_PROP_CANSLEEP, property_name, bop_staging_area, 1954 length); 1955 } 1956 } 1957 1958 kmem_free(bop_staging_area, MMU_PAGESIZE); 1959 } 1960 1961 static void 1962 get_vga_properties(void) 1963 { 1964 dev_info_t *devi; 1965 major_t major; 1966 char *name; 1967 int length; 1968 char property_val[50]; 1969 void *bop_staging_area; 1970 1971 /* 1972 * XXXX Hack Allert! 1973 * There really needs to be a better way for identifying various 1974 * console framebuffers and their related issues. Till then, 1975 * check for this one as a replacement to vgatext. 1976 */ 1977 major = ddi_name_to_major("ragexl"); 1978 if (major == (major_t)-1) { 1979 major = ddi_name_to_major("vgatext"); 1980 if (major == (major_t)-1) 1981 return; 1982 } 1983 devi = devnamesp[major].dn_head; 1984 if (devi == NULL) 1985 return; 1986 1987 bop_staging_area = kmem_zalloc(MMU_PAGESIZE, KM_SLEEP); 1988 1989 /* 1990 * Import "vga" properties from the boot. 1991 */ 1992 name = "display-edif-block"; 1993 length = BOP_GETPROPLEN(bootops, name); 1994 if (length > 0 && length < MMU_PAGESIZE) { 1995 BOP_GETPROP(bootops, name, bop_staging_area); 1996 (void) ndi_prop_update_byte_array(DDI_DEV_T_NONE, 1997 devi, name, bop_staging_area, length); 1998 } 1999 2000 /* 2001 * kdmconfig is also looking for display-type and 2002 * video-adapter-type. We default to color and svga. 2003 * 2004 * Could it be "monochrome", "vga"? 2005 * Nah, you've got to come to the 21st century... 2006 * And you can set monitor type manually in kdmconfig 2007 * if you are really an old junky. 2008 */ 2009 (void) ndi_prop_update_string(DDI_DEV_T_NONE, 2010 devi, "display-type", "color"); 2011 (void) ndi_prop_update_string(DDI_DEV_T_NONE, 2012 devi, "video-adapter-type", "svga"); 2013 2014 name = "display-edif-id"; 2015 length = BOP_GETPROPLEN(bootops, name); 2016 if (length > 0 && length < MMU_PAGESIZE) { 2017 BOP_GETPROP(bootops, name, bop_staging_area); 2018 copy_boot_str(bop_staging_area, property_val, length); 2019 (void) ndi_prop_update_string(DDI_DEV_T_NONE, 2020 devi, name, property_val); 2021 } 2022 2023 kmem_free(bop_staging_area, MMU_PAGESIZE); 2024 } 2025 2026 2027 /* 2028 * This is temporary, but absolutely necessary. If we are being 2029 * booted with a device tree created by the DevConf project's bootconf 2030 * program, then we have device information nodes that reflect 2031 * reality. At this point in time in the Solaris release schedule, the 2032 * kernel drivers aren't prepared for reality. They still depend on their 2033 * own ad-hoc interpretations of the properties created when their .conf 2034 * files were interpreted. These drivers use an "ignore-hardware-nodes" 2035 * property to prevent them from using the nodes passed up from the bootconf 2036 * device tree. 2037 * 2038 * Trying to assemble root file system drivers as we are booting from 2039 * devconf will fail if the kernel driver is basing its name_addr's on the 2040 * psuedo-node device info while the bootpath passed up from bootconf is using 2041 * reality-based name_addrs. We help the boot along in this case by 2042 * looking at the pre-bootconf bootpath and determining if we would have 2043 * successfully matched if that had been the bootpath we had chosen. 2044 * 2045 * Note that we only even perform this extra check if we've booted 2046 * using bootconf's 1275 compliant bootpath, this is the boot device, and 2047 * we're trying to match the name_addr specified in the 1275 bootpath. 2048 */ 2049 2050 #define MAXCOMPONENTLEN 32 2051 2052 int 2053 x86_old_bootpath_name_addr_match(dev_info_t *cdip, char *caddr, char *naddr) 2054 { 2055 /* 2056 * There are multiple criteria to be met before we can even 2057 * consider allowing a name_addr match here. 2058 * 2059 * 1) We must have been booted such that the bootconf program 2060 * created device tree nodes and properties. This can be 2061 * determined by examining the 'bootpath' property. This 2062 * property will be a non-null string iff bootconf was 2063 * involved in the boot. 2064 * 2065 * 2) The module that we want to match must be the boot device. 2066 * 2067 * 3) The instance of the module we are thinking of letting be 2068 * our match must be ignoring hardware nodes. 2069 * 2070 * 4) The name_addr we want to match must be the name_addr 2071 * specified in the 1275 bootpath. 2072 */ 2073 static char bootdev_module[MAXCOMPONENTLEN]; 2074 static char bootdev_oldmod[MAXCOMPONENTLEN]; 2075 static char bootdev_newaddr[MAXCOMPONENTLEN]; 2076 static char bootdev_oldaddr[MAXCOMPONENTLEN]; 2077 static int quickexit; 2078 2079 char *daddr; 2080 int dlen; 2081 2082 char *lkupname; 2083 int rv = DDI_FAILURE; 2084 2085 if ((ddi_getlongprop(DDI_DEV_T_ANY, cdip, DDI_PROP_DONTPASS, 2086 "devconf-addr", (caddr_t)&daddr, &dlen) == DDI_PROP_SUCCESS) && 2087 (ddi_getprop(DDI_DEV_T_ANY, cdip, DDI_PROP_DONTPASS, 2088 "ignore-hardware-nodes", -1) != -1)) { 2089 if (strcmp(daddr, caddr) == 0) { 2090 return (DDI_SUCCESS); 2091 } 2092 } 2093 2094 if (quickexit) 2095 return (rv); 2096 2097 if (bootdev_module[0] == '\0') { 2098 char *addrp, *eoaddrp; 2099 char *busp, *modp, *atp; 2100 char *bp1275, *bp; 2101 int bp1275len, bplen; 2102 2103 bp1275 = bp = addrp = eoaddrp = busp = modp = atp = NULL; 2104 2105 if (ddi_getlongprop(DDI_DEV_T_ANY, 2106 ddi_root_node(), 0, "bootpath", 2107 (caddr_t)&bp1275, &bp1275len) != DDI_PROP_SUCCESS || 2108 bp1275len <= 1) { 2109 /* 2110 * We didn't boot from bootconf so we never need to 2111 * do any special matches. 2112 */ 2113 quickexit = 1; 2114 if (bp1275) 2115 kmem_free(bp1275, bp1275len); 2116 return (rv); 2117 } 2118 2119 if (ddi_getlongprop(DDI_DEV_T_ANY, 2120 ddi_root_node(), 0, "boot-path", 2121 (caddr_t)&bp, &bplen) != DDI_PROP_SUCCESS || bplen <= 1) { 2122 /* 2123 * No fallback position for matching. This is 2124 * certainly unexpected, but we'll handle it 2125 * just in case. 2126 */ 2127 quickexit = 1; 2128 kmem_free(bp1275, bp1275len); 2129 if (bp) 2130 kmem_free(bp, bplen); 2131 return (rv); 2132 } 2133 2134 /* 2135 * Determine boot device module and 1275 name_addr 2136 * 2137 * bootpath assumed to be of the form /bus/module@name_addr 2138 */ 2139 if (busp = strchr(bp1275, '/')) { 2140 if (modp = strchr(busp + 1, '/')) { 2141 if (atp = strchr(modp + 1, '@')) { 2142 *atp = '\0'; 2143 addrp = atp + 1; 2144 if (eoaddrp = strchr(addrp, '/')) 2145 *eoaddrp = '\0'; 2146 } 2147 } 2148 } 2149 2150 if (modp && addrp) { 2151 (void) strncpy(bootdev_module, modp + 1, 2152 MAXCOMPONENTLEN); 2153 bootdev_module[MAXCOMPONENTLEN - 1] = '\0'; 2154 2155 (void) strncpy(bootdev_newaddr, addrp, MAXCOMPONENTLEN); 2156 bootdev_newaddr[MAXCOMPONENTLEN - 1] = '\0'; 2157 } else { 2158 quickexit = 1; 2159 kmem_free(bp1275, bp1275len); 2160 kmem_free(bp, bplen); 2161 return (rv); 2162 } 2163 2164 /* 2165 * Determine fallback name_addr 2166 * 2167 * 10/3/96 - Also save fallback module name because it 2168 * might actually be different than the current module 2169 * name. E.G., ISA pnp drivers have new names. 2170 * 2171 * bootpath assumed to be of the form /bus/module@name_addr 2172 */ 2173 addrp = NULL; 2174 if (busp = strchr(bp, '/')) { 2175 if (modp = strchr(busp + 1, '/')) { 2176 if (atp = strchr(modp + 1, '@')) { 2177 *atp = '\0'; 2178 addrp = atp + 1; 2179 if (eoaddrp = strchr(addrp, '/')) 2180 *eoaddrp = '\0'; 2181 } 2182 } 2183 } 2184 2185 if (modp && addrp) { 2186 (void) strncpy(bootdev_oldmod, modp + 1, 2187 MAXCOMPONENTLEN); 2188 bootdev_module[MAXCOMPONENTLEN - 1] = '\0'; 2189 2190 (void) strncpy(bootdev_oldaddr, addrp, MAXCOMPONENTLEN); 2191 bootdev_oldaddr[MAXCOMPONENTLEN - 1] = '\0'; 2192 } 2193 2194 /* Free up the bootpath storage now that we're done with it. */ 2195 kmem_free(bp1275, bp1275len); 2196 kmem_free(bp, bplen); 2197 2198 if (bootdev_oldaddr[0] == '\0') { 2199 quickexit = 1; 2200 return (rv); 2201 } 2202 } 2203 2204 if (((lkupname = ddi_get_name(cdip)) != NULL) && 2205 (strcmp(bootdev_module, lkupname) == 0 || 2206 strcmp(bootdev_oldmod, lkupname) == 0) && 2207 ((ddi_getprop(DDI_DEV_T_ANY, cdip, DDI_PROP_DONTPASS, 2208 "ignore-hardware-nodes", -1) != -1) || 2209 ignore_hardware_nodes) && 2210 strcmp(bootdev_newaddr, caddr) == 0 && 2211 strcmp(bootdev_oldaddr, naddr) == 0) { 2212 rv = DDI_SUCCESS; 2213 } 2214 2215 return (rv); 2216 } 2217 2218 /* 2219 * Perform a copy from a memory mapped device (whose devinfo pointer is devi) 2220 * separately mapped at devaddr in the kernel to a kernel buffer at kaddr. 2221 */ 2222 /*ARGSUSED*/ 2223 int 2224 e_ddi_copyfromdev(dev_info_t *devi, 2225 off_t off, const void *devaddr, void *kaddr, size_t len) 2226 { 2227 bcopy(devaddr, kaddr, len); 2228 return (0); 2229 } 2230 2231 /* 2232 * Perform a copy to a memory mapped device (whose devinfo pointer is devi) 2233 * separately mapped at devaddr in the kernel from a kernel buffer at kaddr. 2234 */ 2235 /*ARGSUSED*/ 2236 int 2237 e_ddi_copytodev(dev_info_t *devi, 2238 off_t off, const void *kaddr, void *devaddr, size_t len) 2239 { 2240 bcopy(kaddr, devaddr, len); 2241 return (0); 2242 } 2243 2244 2245 static int 2246 poke_mem(peekpoke_ctlops_t *in_args) 2247 { 2248 int err = DDI_SUCCESS; 2249 on_trap_data_t otd; 2250 2251 /* Set up protected environment. */ 2252 if (!on_trap(&otd, OT_DATA_ACCESS)) { 2253 switch (in_args->size) { 2254 case sizeof (uint8_t): 2255 *(uint8_t *)(in_args->dev_addr) = 2256 *(uint8_t *)in_args->host_addr; 2257 break; 2258 2259 case sizeof (uint16_t): 2260 *(uint16_t *)(in_args->dev_addr) = 2261 *(uint16_t *)in_args->host_addr; 2262 break; 2263 2264 case sizeof (uint32_t): 2265 *(uint32_t *)(in_args->dev_addr) = 2266 *(uint32_t *)in_args->host_addr; 2267 break; 2268 2269 case sizeof (uint64_t): 2270 *(uint64_t *)(in_args->dev_addr) = 2271 *(uint64_t *)in_args->host_addr; 2272 break; 2273 2274 default: 2275 err = DDI_FAILURE; 2276 break; 2277 } 2278 } else 2279 err = DDI_FAILURE; 2280 2281 /* Take down protected environment. */ 2282 no_trap(); 2283 2284 return (err); 2285 } 2286 2287 2288 static int 2289 peek_mem(peekpoke_ctlops_t *in_args) 2290 { 2291 int err = DDI_SUCCESS; 2292 on_trap_data_t otd; 2293 2294 if (!on_trap(&otd, OT_DATA_ACCESS)) { 2295 switch (in_args->size) { 2296 case sizeof (uint8_t): 2297 *(uint8_t *)in_args->host_addr = 2298 *(uint8_t *)in_args->dev_addr; 2299 break; 2300 2301 case sizeof (uint16_t): 2302 *(uint16_t *)in_args->host_addr = 2303 *(uint16_t *)in_args->dev_addr; 2304 break; 2305 2306 case sizeof (uint32_t): 2307 *(uint32_t *)in_args->host_addr = 2308 *(uint32_t *)in_args->dev_addr; 2309 break; 2310 2311 case sizeof (uint64_t): 2312 *(uint64_t *)in_args->host_addr = 2313 *(uint64_t *)in_args->dev_addr; 2314 break; 2315 2316 default: 2317 err = DDI_FAILURE; 2318 break; 2319 } 2320 } else 2321 err = DDI_FAILURE; 2322 2323 no_trap(); 2324 return (err); 2325 } 2326 2327 2328 /* 2329 * This is called only to process peek/poke when the DIP is NULL. 2330 * Assume that this is for memory, as nexi take care of device safe accesses. 2331 */ 2332 int 2333 peekpoke_mem(ddi_ctl_enum_t cmd, peekpoke_ctlops_t *in_args) 2334 { 2335 return (cmd == DDI_CTLOPS_PEEK ? peek_mem(in_args) : poke_mem(in_args)); 2336 } 2337 2338 /* 2339 * we've just done a cautious put/get. Check if it was successful by 2340 * calling pci_ereport_post() on all puts and for any gets that return -1 2341 */ 2342 static int 2343 pci_peekpoke_check_fma(dev_info_t *dip, void *arg, ddi_ctl_enum_t ctlop, 2344 void (*scan)(dev_info_t *, ddi_fm_error_t *)) 2345 { 2346 int rval = DDI_SUCCESS; 2347 peekpoke_ctlops_t *in_args = (peekpoke_ctlops_t *)arg; 2348 ddi_fm_error_t de; 2349 ddi_acc_impl_t *hp = (ddi_acc_impl_t *)in_args->handle; 2350 ddi_acc_hdl_t *hdlp = (ddi_acc_hdl_t *)in_args->handle; 2351 int check_err = 0; 2352 int repcount = in_args->repcount; 2353 2354 if (ctlop == DDI_CTLOPS_POKE && 2355 hdlp->ah_acc.devacc_attr_access != DDI_CAUTIOUS_ACC) 2356 return (DDI_SUCCESS); 2357 2358 if (ctlop == DDI_CTLOPS_PEEK && 2359 hdlp->ah_acc.devacc_attr_access != DDI_CAUTIOUS_ACC) { 2360 for (; repcount; repcount--) { 2361 switch (in_args->size) { 2362 case sizeof (uint8_t): 2363 if (*(uint8_t *)in_args->host_addr == 0xff) 2364 check_err = 1; 2365 break; 2366 case sizeof (uint16_t): 2367 if (*(uint16_t *)in_args->host_addr == 0xffff) 2368 check_err = 1; 2369 break; 2370 case sizeof (uint32_t): 2371 if (*(uint32_t *)in_args->host_addr == 2372 0xffffffff) 2373 check_err = 1; 2374 break; 2375 case sizeof (uint64_t): 2376 if (*(uint64_t *)in_args->host_addr == 2377 0xffffffffffffffff) 2378 check_err = 1; 2379 break; 2380 } 2381 } 2382 if (check_err == 0) 2383 return (DDI_SUCCESS); 2384 } 2385 /* 2386 * for a cautious put or get or a non-cautious get that returned -1 call 2387 * io framework to see if there really was an error 2388 */ 2389 bzero(&de, sizeof (ddi_fm_error_t)); 2390 de.fme_version = DDI_FME_VERSION; 2391 de.fme_ena = fm_ena_generate(0, FM_ENA_FMT1); 2392 if (hdlp->ah_acc.devacc_attr_access == DDI_CAUTIOUS_ACC) { 2393 de.fme_flag = DDI_FM_ERR_EXPECTED; 2394 de.fme_acc_handle = in_args->handle; 2395 } else if (hdlp->ah_acc.devacc_attr_access == DDI_DEFAULT_ACC) { 2396 /* 2397 * We only get here with DDI_DEFAULT_ACC for config space gets. 2398 * Non-hardened drivers may be probing the hardware and 2399 * expecting -1 returned. So need to treat errors on 2400 * DDI_DEFAULT_ACC as DDI_FM_ERR_EXPECTED. 2401 */ 2402 de.fme_flag = DDI_FM_ERR_EXPECTED; 2403 de.fme_acc_handle = in_args->handle; 2404 } else { 2405 /* 2406 * Hardened driver doing protected accesses shouldn't 2407 * get errors unless there's a hardware problem. Treat 2408 * as nonfatal if there's an error, but set UNEXPECTED 2409 * so we raise ereports on any errors and potentially 2410 * fault the device 2411 */ 2412 de.fme_flag = DDI_FM_ERR_UNEXPECTED; 2413 } 2414 (void) scan(dip, &de); 2415 if (hdlp->ah_acc.devacc_attr_access != DDI_DEFAULT_ACC && 2416 de.fme_status != DDI_FM_OK) { 2417 ndi_err_t *errp = (ndi_err_t *)hp->ahi_err; 2418 rval = DDI_FAILURE; 2419 errp->err_ena = de.fme_ena; 2420 errp->err_expected = de.fme_flag; 2421 errp->err_status = DDI_FM_NONFATAL; 2422 } 2423 return (rval); 2424 } 2425 2426 /* 2427 * pci_peekpoke_check_nofma() is for when an error occurs on a register access 2428 * during pci_ereport_post(). We can't call pci_ereport_post() again or we'd 2429 * recurse, so assume all puts are OK and gets have failed if they return -1 2430 */ 2431 static int 2432 pci_peekpoke_check_nofma(void *arg, ddi_ctl_enum_t ctlop) 2433 { 2434 int rval = DDI_SUCCESS; 2435 peekpoke_ctlops_t *in_args = (peekpoke_ctlops_t *)arg; 2436 ddi_acc_impl_t *hp = (ddi_acc_impl_t *)in_args->handle; 2437 ddi_acc_hdl_t *hdlp = (ddi_acc_hdl_t *)in_args->handle; 2438 int repcount = in_args->repcount; 2439 2440 if (ctlop == DDI_CTLOPS_POKE) 2441 return (rval); 2442 2443 for (; repcount; repcount--) { 2444 switch (in_args->size) { 2445 case sizeof (uint8_t): 2446 if (*(uint8_t *)in_args->host_addr == 0xff) 2447 rval = DDI_FAILURE; 2448 break; 2449 case sizeof (uint16_t): 2450 if (*(uint16_t *)in_args->host_addr == 0xffff) 2451 rval = DDI_FAILURE; 2452 break; 2453 case sizeof (uint32_t): 2454 if (*(uint32_t *)in_args->host_addr == 0xffffffff) 2455 rval = DDI_FAILURE; 2456 break; 2457 case sizeof (uint64_t): 2458 if (*(uint64_t *)in_args->host_addr == 2459 0xffffffffffffffff) 2460 rval = DDI_FAILURE; 2461 break; 2462 } 2463 } 2464 if (hdlp->ah_acc.devacc_attr_access != DDI_DEFAULT_ACC && 2465 rval == DDI_FAILURE) { 2466 ndi_err_t *errp = (ndi_err_t *)hp->ahi_err; 2467 errp->err_ena = fm_ena_generate(0, FM_ENA_FMT1); 2468 errp->err_expected = DDI_FM_ERR_UNEXPECTED; 2469 errp->err_status = DDI_FM_NONFATAL; 2470 } 2471 return (rval); 2472 } 2473 2474 int 2475 pci_peekpoke_check(dev_info_t *dip, dev_info_t *rdip, 2476 ddi_ctl_enum_t ctlop, void *arg, void *result, 2477 int (*handler)(dev_info_t *, dev_info_t *, ddi_ctl_enum_t, void *, 2478 void *), kmutex_t *err_mutexp, kmutex_t *peek_poke_mutexp, 2479 void (*scan)(dev_info_t *, ddi_fm_error_t *)) 2480 { 2481 int rval; 2482 peekpoke_ctlops_t *in_args = (peekpoke_ctlops_t *)arg; 2483 ddi_acc_impl_t *hp = (ddi_acc_impl_t *)in_args->handle; 2484 2485 /* 2486 * this function only supports cautious accesses, not peeks/pokes 2487 * which don't have a handle 2488 */ 2489 if (hp == NULL) 2490 return (DDI_FAILURE); 2491 2492 if (hp->ahi_acc_attr & DDI_ACCATTR_CONFIG_SPACE) { 2493 if (!mutex_tryenter(err_mutexp)) { 2494 /* 2495 * As this may be a recursive call from within 2496 * pci_ereport_post() we can't wait for the mutexes. 2497 * Fortunately we know someone is already calling 2498 * pci_ereport_post() which will handle the error bits 2499 * for us, and as this is a config space access we can 2500 * just do the access and check return value for -1 2501 * using pci_peekpoke_check_nofma(). 2502 */ 2503 rval = handler(dip, rdip, ctlop, arg, result); 2504 if (rval == DDI_SUCCESS) 2505 rval = pci_peekpoke_check_nofma(arg, ctlop); 2506 return (rval); 2507 } 2508 /* 2509 * This can't be a recursive call. Drop the err_mutex and get 2510 * both mutexes in the right order. If an error hasn't already 2511 * been detected by the ontrap code, use pci_peekpoke_check_fma 2512 * which will call pci_ereport_post() to check error status. 2513 */ 2514 mutex_exit(err_mutexp); 2515 } 2516 mutex_enter(peek_poke_mutexp); 2517 rval = handler(dip, rdip, ctlop, arg, result); 2518 if (rval == DDI_SUCCESS) { 2519 mutex_enter(err_mutexp); 2520 rval = pci_peekpoke_check_fma(dip, arg, ctlop, scan); 2521 mutex_exit(err_mutexp); 2522 } 2523 mutex_exit(peek_poke_mutexp); 2524 return (rval); 2525 } 2526 2527 void 2528 impl_setup_ddi(void) 2529 { 2530 #if !defined(__xpv) 2531 extern void startup_bios_disk(void); 2532 extern int post_fastreboot; 2533 #endif 2534 dev_info_t *xdip, *isa_dip; 2535 rd_existing_t rd_mem_prop; 2536 int err; 2537 2538 ndi_devi_alloc_sleep(ddi_root_node(), "ramdisk", 2539 (pnode_t)DEVI_SID_NODEID, &xdip); 2540 2541 (void) BOP_GETPROP(bootops, 2542 "ramdisk_start", (void *)&ramdisk_start); 2543 (void) BOP_GETPROP(bootops, 2544 "ramdisk_end", (void *)&ramdisk_end); 2545 2546 #ifdef __xpv 2547 ramdisk_start -= ONE_GIG; 2548 ramdisk_end -= ONE_GIG; 2549 #endif 2550 rd_mem_prop.phys = ramdisk_start; 2551 rd_mem_prop.size = ramdisk_end - ramdisk_start + 1; 2552 2553 (void) ndi_prop_update_byte_array(DDI_DEV_T_NONE, xdip, 2554 RD_EXISTING_PROP_NAME, (uchar_t *)&rd_mem_prop, 2555 sizeof (rd_mem_prop)); 2556 err = ndi_devi_bind_driver(xdip, 0); 2557 ASSERT(err == 0); 2558 2559 /* isa node */ 2560 if (pseudo_isa) { 2561 ndi_devi_alloc_sleep(ddi_root_node(), "isa", 2562 (pnode_t)DEVI_SID_NODEID, &isa_dip); 2563 (void) ndi_prop_update_string(DDI_DEV_T_NONE, isa_dip, 2564 "device_type", "isa"); 2565 (void) ndi_prop_update_string(DDI_DEV_T_NONE, isa_dip, 2566 "bus-type", "isa"); 2567 (void) ndi_devi_bind_driver(isa_dip, 0); 2568 } 2569 2570 /* 2571 * Read in the properties from the boot. 2572 */ 2573 get_boot_properties(); 2574 2575 /* not framebuffer should be enumerated, if present */ 2576 get_vga_properties(); 2577 2578 /* 2579 * Check for administratively disabled drivers. 2580 */ 2581 check_driver_disable(); 2582 2583 #if !defined(__xpv) 2584 if (!post_fastreboot) 2585 startup_bios_disk(); 2586 #endif 2587 /* do bus dependent probes. */ 2588 impl_bus_initialprobe(); 2589 } 2590 2591 dev_t 2592 getrootdev(void) 2593 { 2594 /* 2595 * Precedence given to rootdev if set in /etc/system 2596 */ 2597 if (root_is_svm == B_TRUE) { 2598 return (ddi_pathname_to_dev_t(svm_bootpath)); 2599 } 2600 2601 /* 2602 * Usually rootfs.bo_name is initialized by the 2603 * the bootpath property from bootenv.rc, but 2604 * defaults to "/ramdisk:a" otherwise. 2605 */ 2606 return (ddi_pathname_to_dev_t(rootfs.bo_name)); 2607 } 2608 2609 static struct bus_probe { 2610 struct bus_probe *next; 2611 void (*probe)(int); 2612 } *bus_probes; 2613 2614 void 2615 impl_bus_add_probe(void (*func)(int)) 2616 { 2617 struct bus_probe *probe; 2618 struct bus_probe *lastprobe = NULL; 2619 2620 probe = kmem_alloc(sizeof (*probe), KM_SLEEP); 2621 probe->probe = func; 2622 probe->next = NULL; 2623 2624 if (!bus_probes) { 2625 bus_probes = probe; 2626 return; 2627 } 2628 2629 lastprobe = bus_probes; 2630 while (lastprobe->next) 2631 lastprobe = lastprobe->next; 2632 lastprobe->next = probe; 2633 } 2634 2635 /*ARGSUSED*/ 2636 void 2637 impl_bus_delete_probe(void (*func)(int)) 2638 { 2639 struct bus_probe *prev = NULL; 2640 struct bus_probe *probe = bus_probes; 2641 2642 while (probe) { 2643 if (probe->probe == func) 2644 break; 2645 prev = probe; 2646 probe = probe->next; 2647 } 2648 2649 if (probe == NULL) 2650 return; 2651 2652 if (prev) 2653 prev->next = probe->next; 2654 else 2655 bus_probes = probe->next; 2656 2657 kmem_free(probe, sizeof (struct bus_probe)); 2658 } 2659 2660 /* 2661 * impl_bus_initialprobe 2662 * Modload the prom simulator, then let it probe to verify existence 2663 * and type of PCI support. 2664 */ 2665 static void 2666 impl_bus_initialprobe(void) 2667 { 2668 struct bus_probe *probe; 2669 2670 /* load modules to install bus probes */ 2671 #if defined(__xpv) 2672 if (DOMAIN_IS_INITDOMAIN(xen_info)) { 2673 if (modload("misc", "pci_autoconfig") < 0) { 2674 panic("failed to load misc/pci_autoconfig"); 2675 } 2676 2677 if (modload("drv", "isa") < 0) 2678 panic("failed to load drv/isa"); 2679 } 2680 2681 (void) modload("misc", "xpv_autoconfig"); 2682 #else 2683 if (modload("misc", "pci_autoconfig") < 0) { 2684 panic("failed to load misc/pci_autoconfig"); 2685 } 2686 2687 (void) modload("misc", "acpidev"); 2688 2689 if (modload("drv", "isa") < 0) 2690 panic("failed to load drv/isa"); 2691 #endif 2692 2693 probe = bus_probes; 2694 while (probe) { 2695 /* run the probe functions */ 2696 (*probe->probe)(0); 2697 probe = probe->next; 2698 } 2699 } 2700 2701 /* 2702 * impl_bus_reprobe 2703 * Reprogram devices not set up by firmware. 2704 */ 2705 static void 2706 impl_bus_reprobe(void) 2707 { 2708 struct bus_probe *probe; 2709 2710 probe = bus_probes; 2711 while (probe) { 2712 /* run the probe function */ 2713 (*probe->probe)(1); 2714 probe = probe->next; 2715 } 2716 } 2717 2718 2719 /* 2720 * The following functions ready a cautious request to go up to the nexus 2721 * driver. It is up to the nexus driver to decide how to process the request. 2722 * It may choose to call i_ddi_do_caut_get/put in this file, or do it 2723 * differently. 2724 */ 2725 2726 static void 2727 i_ddi_caut_getput_ctlops(ddi_acc_impl_t *hp, uint64_t host_addr, 2728 uint64_t dev_addr, size_t size, size_t repcount, uint_t flags, 2729 ddi_ctl_enum_t cmd) 2730 { 2731 peekpoke_ctlops_t cautacc_ctlops_arg; 2732 2733 cautacc_ctlops_arg.size = size; 2734 cautacc_ctlops_arg.dev_addr = dev_addr; 2735 cautacc_ctlops_arg.host_addr = host_addr; 2736 cautacc_ctlops_arg.handle = (ddi_acc_handle_t)hp; 2737 cautacc_ctlops_arg.repcount = repcount; 2738 cautacc_ctlops_arg.flags = flags; 2739 2740 (void) ddi_ctlops(hp->ahi_common.ah_dip, hp->ahi_common.ah_dip, cmd, 2741 &cautacc_ctlops_arg, NULL); 2742 } 2743 2744 uint8_t 2745 i_ddi_caut_get8(ddi_acc_impl_t *hp, uint8_t *addr) 2746 { 2747 uint8_t value; 2748 i_ddi_caut_getput_ctlops(hp, (uintptr_t)&value, (uintptr_t)addr, 2749 sizeof (uint8_t), 1, 0, DDI_CTLOPS_PEEK); 2750 2751 return (value); 2752 } 2753 2754 uint16_t 2755 i_ddi_caut_get16(ddi_acc_impl_t *hp, uint16_t *addr) 2756 { 2757 uint16_t value; 2758 i_ddi_caut_getput_ctlops(hp, (uintptr_t)&value, (uintptr_t)addr, 2759 sizeof (uint16_t), 1, 0, DDI_CTLOPS_PEEK); 2760 2761 return (value); 2762 } 2763 2764 uint32_t 2765 i_ddi_caut_get32(ddi_acc_impl_t *hp, uint32_t *addr) 2766 { 2767 uint32_t value; 2768 i_ddi_caut_getput_ctlops(hp, (uintptr_t)&value, (uintptr_t)addr, 2769 sizeof (uint32_t), 1, 0, DDI_CTLOPS_PEEK); 2770 2771 return (value); 2772 } 2773 2774 uint64_t 2775 i_ddi_caut_get64(ddi_acc_impl_t *hp, uint64_t *addr) 2776 { 2777 uint64_t value; 2778 i_ddi_caut_getput_ctlops(hp, (uintptr_t)&value, (uintptr_t)addr, 2779 sizeof (uint64_t), 1, 0, DDI_CTLOPS_PEEK); 2780 2781 return (value); 2782 } 2783 2784 void 2785 i_ddi_caut_put8(ddi_acc_impl_t *hp, uint8_t *addr, uint8_t value) 2786 { 2787 i_ddi_caut_getput_ctlops(hp, (uintptr_t)&value, (uintptr_t)addr, 2788 sizeof (uint8_t), 1, 0, DDI_CTLOPS_POKE); 2789 } 2790 2791 void 2792 i_ddi_caut_put16(ddi_acc_impl_t *hp, uint16_t *addr, uint16_t value) 2793 { 2794 i_ddi_caut_getput_ctlops(hp, (uintptr_t)&value, (uintptr_t)addr, 2795 sizeof (uint16_t), 1, 0, DDI_CTLOPS_POKE); 2796 } 2797 2798 void 2799 i_ddi_caut_put32(ddi_acc_impl_t *hp, uint32_t *addr, uint32_t value) 2800 { 2801 i_ddi_caut_getput_ctlops(hp, (uintptr_t)&value, (uintptr_t)addr, 2802 sizeof (uint32_t), 1, 0, DDI_CTLOPS_POKE); 2803 } 2804 2805 void 2806 i_ddi_caut_put64(ddi_acc_impl_t *hp, uint64_t *addr, uint64_t value) 2807 { 2808 i_ddi_caut_getput_ctlops(hp, (uintptr_t)&value, (uintptr_t)addr, 2809 sizeof (uint64_t), 1, 0, DDI_CTLOPS_POKE); 2810 } 2811 2812 void 2813 i_ddi_caut_rep_get8(ddi_acc_impl_t *hp, uint8_t *host_addr, uint8_t *dev_addr, 2814 size_t repcount, uint_t flags) 2815 { 2816 i_ddi_caut_getput_ctlops(hp, (uintptr_t)host_addr, (uintptr_t)dev_addr, 2817 sizeof (uint8_t), repcount, flags, DDI_CTLOPS_PEEK); 2818 } 2819 2820 void 2821 i_ddi_caut_rep_get16(ddi_acc_impl_t *hp, uint16_t *host_addr, 2822 uint16_t *dev_addr, size_t repcount, uint_t flags) 2823 { 2824 i_ddi_caut_getput_ctlops(hp, (uintptr_t)host_addr, (uintptr_t)dev_addr, 2825 sizeof (uint16_t), repcount, flags, DDI_CTLOPS_PEEK); 2826 } 2827 2828 void 2829 i_ddi_caut_rep_get32(ddi_acc_impl_t *hp, uint32_t *host_addr, 2830 uint32_t *dev_addr, size_t repcount, uint_t flags) 2831 { 2832 i_ddi_caut_getput_ctlops(hp, (uintptr_t)host_addr, (uintptr_t)dev_addr, 2833 sizeof (uint32_t), repcount, flags, DDI_CTLOPS_PEEK); 2834 } 2835 2836 void 2837 i_ddi_caut_rep_get64(ddi_acc_impl_t *hp, uint64_t *host_addr, 2838 uint64_t *dev_addr, size_t repcount, uint_t flags) 2839 { 2840 i_ddi_caut_getput_ctlops(hp, (uintptr_t)host_addr, (uintptr_t)dev_addr, 2841 sizeof (uint64_t), repcount, flags, DDI_CTLOPS_PEEK); 2842 } 2843 2844 void 2845 i_ddi_caut_rep_put8(ddi_acc_impl_t *hp, uint8_t *host_addr, uint8_t *dev_addr, 2846 size_t repcount, uint_t flags) 2847 { 2848 i_ddi_caut_getput_ctlops(hp, (uintptr_t)host_addr, (uintptr_t)dev_addr, 2849 sizeof (uint8_t), repcount, flags, DDI_CTLOPS_POKE); 2850 } 2851 2852 void 2853 i_ddi_caut_rep_put16(ddi_acc_impl_t *hp, uint16_t *host_addr, 2854 uint16_t *dev_addr, size_t repcount, uint_t flags) 2855 { 2856 i_ddi_caut_getput_ctlops(hp, (uintptr_t)host_addr, (uintptr_t)dev_addr, 2857 sizeof (uint16_t), repcount, flags, DDI_CTLOPS_POKE); 2858 } 2859 2860 void 2861 i_ddi_caut_rep_put32(ddi_acc_impl_t *hp, uint32_t *host_addr, 2862 uint32_t *dev_addr, size_t repcount, uint_t flags) 2863 { 2864 i_ddi_caut_getput_ctlops(hp, (uintptr_t)host_addr, (uintptr_t)dev_addr, 2865 sizeof (uint32_t), repcount, flags, DDI_CTLOPS_POKE); 2866 } 2867 2868 void 2869 i_ddi_caut_rep_put64(ddi_acc_impl_t *hp, uint64_t *host_addr, 2870 uint64_t *dev_addr, size_t repcount, uint_t flags) 2871 { 2872 i_ddi_caut_getput_ctlops(hp, (uintptr_t)host_addr, (uintptr_t)dev_addr, 2873 sizeof (uint64_t), repcount, flags, DDI_CTLOPS_POKE); 2874 } 2875 2876 boolean_t 2877 i_ddi_copybuf_required(ddi_dma_attr_t *attrp) 2878 { 2879 uint64_t hi_pa; 2880 2881 hi_pa = ((uint64_t)physmax + 1ull) << PAGESHIFT; 2882 if (attrp->dma_attr_addr_hi < hi_pa) { 2883 return (B_TRUE); 2884 } 2885 2886 return (B_FALSE); 2887 } 2888 2889 size_t 2890 i_ddi_copybuf_size() 2891 { 2892 return (dma_max_copybuf_size); 2893 } 2894 2895 /* 2896 * i_ddi_dma_max() 2897 * returns the maximum DMA size which can be performed in a single DMA 2898 * window taking into account the devices DMA contraints (attrp), the 2899 * maximum copy buffer size (if applicable), and the worse case buffer 2900 * fragmentation. 2901 */ 2902 /*ARGSUSED*/ 2903 uint32_t 2904 i_ddi_dma_max(dev_info_t *dip, ddi_dma_attr_t *attrp) 2905 { 2906 uint64_t maxxfer; 2907 2908 2909 /* 2910 * take the min of maxxfer and the the worse case fragementation 2911 * (e.g. every cookie <= 1 page) 2912 */ 2913 maxxfer = MIN(attrp->dma_attr_maxxfer, 2914 ((uint64_t)(attrp->dma_attr_sgllen - 1) << PAGESHIFT)); 2915 2916 /* 2917 * If the DMA engine can't reach all off memory, we also need to take 2918 * the max size of the copybuf into consideration. 2919 */ 2920 if (i_ddi_copybuf_required(attrp)) { 2921 maxxfer = MIN(i_ddi_copybuf_size(), maxxfer); 2922 } 2923 2924 /* 2925 * we only return a 32-bit value. Make sure it's not -1. Round to a 2926 * page so it won't be mistaken for an error value during debug. 2927 */ 2928 if (maxxfer >= 0xFFFFFFFF) { 2929 maxxfer = 0xFFFFF000; 2930 } 2931 2932 /* 2933 * make sure the value we return is a whole multiple of the 2934 * granlarity. 2935 */ 2936 if (attrp->dma_attr_granular > 1) { 2937 maxxfer = maxxfer - (maxxfer % attrp->dma_attr_granular); 2938 } 2939 2940 return ((uint32_t)maxxfer); 2941 } 2942 2943 /*ARGSUSED*/ 2944 void 2945 translate_devid(dev_info_t *dip) 2946 { 2947 } 2948 2949 pfn_t 2950 i_ddi_paddr_to_pfn(paddr_t paddr) 2951 { 2952 pfn_t pfn; 2953 2954 #ifdef __xpv 2955 if (DOMAIN_IS_INITDOMAIN(xen_info)) { 2956 pfn = xen_assign_pfn(mmu_btop(paddr)); 2957 } else { 2958 pfn = mmu_btop(paddr); 2959 } 2960 #else 2961 pfn = mmu_btop(paddr); 2962 #endif 2963 2964 return (pfn); 2965 } 2966