1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 1992, 2010, Oracle and/or its affiliates. All rights reserved. 24 * Copyright 2012 Garrett D'Amore <garrett@damore.org>. All rights reserved. 25 */ 26 27 /* 28 * PC specific DDI implementation 29 */ 30 #include <sys/types.h> 31 #include <sys/autoconf.h> 32 #include <sys/avintr.h> 33 #include <sys/bootconf.h> 34 #include <sys/conf.h> 35 #include <sys/cpuvar.h> 36 #include <sys/ddi_impldefs.h> 37 #include <sys/ddi_subrdefs.h> 38 #include <sys/ethernet.h> 39 #include <sys/fp.h> 40 #include <sys/instance.h> 41 #include <sys/kmem.h> 42 #include <sys/machsystm.h> 43 #include <sys/modctl.h> 44 #include <sys/promif.h> 45 #include <sys/prom_plat.h> 46 #include <sys/sunndi.h> 47 #include <sys/ndi_impldefs.h> 48 #include <sys/ddi_impldefs.h> 49 #include <sys/sysmacros.h> 50 #include <sys/systeminfo.h> 51 #include <sys/utsname.h> 52 #include <sys/atomic.h> 53 #include <sys/spl.h> 54 #include <sys/archsystm.h> 55 #include <vm/seg_kmem.h> 56 #include <sys/ontrap.h> 57 #include <sys/fm/protocol.h> 58 #include <sys/ramdisk.h> 59 #include <sys/sunndi.h> 60 #include <sys/vmem.h> 61 #include <sys/pci_impl.h> 62 #if defined(__xpv) 63 #include <sys/hypervisor.h> 64 #endif 65 #include <sys/mach_intr.h> 66 #include <vm/hat_i86.h> 67 #include <sys/x86_archext.h> 68 69 /* 70 * DDI Boot Configuration 71 */ 72 73 /* 74 * Platform drivers on this platform 75 */ 76 char *platform_module_list[] = { 77 "acpippm", 78 "ppm", 79 (char *)0 80 }; 81 82 /* pci bus resource maps */ 83 struct pci_bus_resource *pci_bus_res; 84 85 size_t dma_max_copybuf_size = 0x101000; /* 1M + 4K */ 86 87 uint64_t ramdisk_start, ramdisk_end; 88 89 int pseudo_isa = 0; 90 91 /* 92 * Forward declarations 93 */ 94 static int getlongprop_buf(); 95 static void get_boot_properties(void); 96 static void impl_bus_initialprobe(void); 97 static void impl_bus_reprobe(void); 98 99 static int poke_mem(peekpoke_ctlops_t *in_args); 100 static int peek_mem(peekpoke_ctlops_t *in_args); 101 102 static int kmem_override_cache_attrs(caddr_t, size_t, uint_t); 103 104 #if defined(__amd64) && !defined(__xpv) 105 extern void immu_init(void); 106 #endif 107 108 #define CTGENTRIES 15 109 110 static struct ctgas { 111 struct ctgas *ctg_next; 112 int ctg_index; 113 void *ctg_addr[CTGENTRIES]; 114 size_t ctg_size[CTGENTRIES]; 115 } ctglist; 116 117 static kmutex_t ctgmutex; 118 #define CTGLOCK() mutex_enter(&ctgmutex) 119 #define CTGUNLOCK() mutex_exit(&ctgmutex) 120 121 /* 122 * Minimum pfn value of page_t's put on the free list. This is to simplify 123 * support of ddi dma memory requests which specify small, non-zero addr_lo 124 * values. 125 * 126 * The default value of 2, which corresponds to the only known non-zero addr_lo 127 * value used, means a single page will be sacrificed (pfn typically starts 128 * at 1). ddiphysmin can be set to 0 to disable. It cannot be set above 0x100 129 * otherwise mp startup panics. 130 */ 131 pfn_t ddiphysmin = 2; 132 133 static void 134 check_driver_disable(void) 135 { 136 int proplen = 128; 137 char *prop_name; 138 char *drv_name, *propval; 139 major_t major; 140 141 prop_name = kmem_alloc(proplen, KM_SLEEP); 142 for (major = 0; major < devcnt; major++) { 143 drv_name = ddi_major_to_name(major); 144 if (drv_name == NULL) 145 continue; 146 (void) snprintf(prop_name, proplen, "disable-%s", drv_name); 147 if (ddi_prop_lookup_string(DDI_DEV_T_ANY, ddi_root_node(), 148 DDI_PROP_DONTPASS, prop_name, &propval) == DDI_SUCCESS) { 149 if (strcmp(propval, "true") == 0) { 150 devnamesp[major].dn_flags |= DN_DRIVER_REMOVED; 151 cmn_err(CE_NOTE, "driver %s disabled", 152 drv_name); 153 } 154 ddi_prop_free(propval); 155 } 156 } 157 kmem_free(prop_name, proplen); 158 } 159 160 161 /* 162 * Configure the hardware on the system. 163 * Called before the rootfs is mounted 164 */ 165 void 166 configure(void) 167 { 168 extern void i_ddi_init_root(); 169 170 #if defined(__i386) 171 extern int fpu_pentium_fdivbug; 172 #endif /* __i386 */ 173 extern int fpu_ignored; 174 175 /* 176 * Determine if an FPU is attached 177 */ 178 179 fpu_probe(); 180 181 #if defined(__i386) 182 if (fpu_pentium_fdivbug) { 183 printf("\ 184 FP hardware exhibits Pentium floating point divide problem\n"); 185 } 186 #endif /* __i386 */ 187 188 if (fpu_ignored) { 189 printf("FP hardware will not be used\n"); 190 } else if (!fpu_exists) { 191 printf("No FPU in configuration\n"); 192 } 193 194 /* 195 * Initialize devices on the machine. 196 * Uses configuration tree built by the PROMs to determine what 197 * is present, and builds a tree of prototype dev_info nodes 198 * corresponding to the hardware which identified itself. 199 */ 200 201 /* 202 * Initialize root node. 203 */ 204 i_ddi_init_root(); 205 206 /* reprogram devices not set up by firmware (BIOS) */ 207 impl_bus_reprobe(); 208 209 #if defined(__amd64) && !defined(__xpv) 210 /* 211 * Setup but don't startup the IOMMU 212 * Startup happens later via a direct call 213 * to IOMMU code by boot code. 214 * At this point, all PCI bus renumbering 215 * is done, so safe to init the IMMU 216 * AKA Intel IOMMU. 217 */ 218 immu_init(); 219 #endif 220 221 /* 222 * attach the isa nexus to get ACPI resource usage 223 * isa is "kind of" a pseudo node 224 */ 225 #if defined(__xpv) 226 if (DOMAIN_IS_INITDOMAIN(xen_info)) { 227 if (pseudo_isa) 228 (void) i_ddi_attach_pseudo_node("isa"); 229 else 230 (void) i_ddi_attach_hw_nodes("isa"); 231 } 232 #else 233 if (pseudo_isa) 234 (void) i_ddi_attach_pseudo_node("isa"); 235 else 236 (void) i_ddi_attach_hw_nodes("isa"); 237 #endif 238 } 239 240 /* 241 * The "status" property indicates the operational status of a device. 242 * If this property is present, the value is a string indicating the 243 * status of the device as follows: 244 * 245 * "okay" operational. 246 * "disabled" not operational, but might become operational. 247 * "fail" not operational because a fault has been detected, 248 * and it is unlikely that the device will become 249 * operational without repair. no additional details 250 * are available. 251 * "fail-xxx" not operational because a fault has been detected, 252 * and it is unlikely that the device will become 253 * operational without repair. "xxx" is additional 254 * human-readable information about the particular 255 * fault condition that was detected. 256 * 257 * The absence of this property means that the operational status is 258 * unknown or okay. 259 * 260 * This routine checks the status property of the specified device node 261 * and returns 0 if the operational status indicates failure, and 1 otherwise. 262 * 263 * The property may exist on plug-in cards the existed before IEEE 1275-1994. 264 * And, in that case, the property may not even be a string. So we carefully 265 * check for the value "fail", in the beginning of the string, noting 266 * the property length. 267 */ 268 int 269 status_okay(int id, char *buf, int buflen) 270 { 271 char status_buf[OBP_MAXPROPNAME]; 272 char *bufp = buf; 273 int len = buflen; 274 int proplen; 275 static const char *status = "status"; 276 static const char *fail = "fail"; 277 int fail_len = (int)strlen(fail); 278 279 /* 280 * Get the proplen ... if it's smaller than "fail", 281 * or doesn't exist ... then we don't care, since 282 * the value can't begin with the char string "fail". 283 * 284 * NB: proplen, if it's a string, includes the NULL in the 285 * the size of the property, and fail_len does not. 286 */ 287 proplen = prom_getproplen((pnode_t)id, (caddr_t)status); 288 if (proplen <= fail_len) /* nonexistant or uninteresting len */ 289 return (1); 290 291 /* 292 * if a buffer was provided, use it 293 */ 294 if ((buf == (char *)NULL) || (buflen <= 0)) { 295 bufp = status_buf; 296 len = sizeof (status_buf); 297 } 298 *bufp = (char)0; 299 300 /* 301 * Get the property into the buffer, to the extent of the buffer, 302 * and in case the buffer is smaller than the property size, 303 * NULL terminate the buffer. (This handles the case where 304 * a buffer was passed in and the caller wants to print the 305 * value, but the buffer was too small). 306 */ 307 (void) prom_bounded_getprop((pnode_t)id, (caddr_t)status, 308 (caddr_t)bufp, len); 309 *(bufp + len - 1) = (char)0; 310 311 /* 312 * If the value begins with the char string "fail", 313 * then it means the node is failed. We don't care 314 * about any other values. We assume the node is ok 315 * although it might be 'disabled'. 316 */ 317 if (strncmp(bufp, fail, fail_len) == 0) 318 return (0); 319 320 return (1); 321 } 322 323 /* 324 * Check the status of the device node passed as an argument. 325 * 326 * if ((status is OKAY) || (status is DISABLED)) 327 * return DDI_SUCCESS 328 * else 329 * print a warning and return DDI_FAILURE 330 */ 331 /*ARGSUSED1*/ 332 int 333 check_status(int id, char *name, dev_info_t *parent) 334 { 335 char status_buf[64]; 336 char devtype_buf[OBP_MAXPROPNAME]; 337 int retval = DDI_FAILURE; 338 339 /* 340 * is the status okay? 341 */ 342 if (status_okay(id, status_buf, sizeof (status_buf))) 343 return (DDI_SUCCESS); 344 345 /* 346 * a status property indicating bad memory will be associated 347 * with a node which has a "device_type" property with a value of 348 * "memory-controller". in this situation, return DDI_SUCCESS 349 */ 350 if (getlongprop_buf(id, OBP_DEVICETYPE, devtype_buf, 351 sizeof (devtype_buf)) > 0) { 352 if (strcmp(devtype_buf, "memory-controller") == 0) 353 retval = DDI_SUCCESS; 354 } 355 356 /* 357 * print the status property information 358 */ 359 cmn_err(CE_WARN, "status '%s' for '%s'", status_buf, name); 360 return (retval); 361 } 362 363 /*ARGSUSED*/ 364 uint_t 365 softlevel1(caddr_t arg1, caddr_t arg2) 366 { 367 softint(); 368 return (1); 369 } 370 371 /* 372 * Allow for implementation specific correction of PROM property values. 373 */ 374 375 /*ARGSUSED*/ 376 void 377 impl_fix_props(dev_info_t *dip, dev_info_t *ch_dip, char *name, int len, 378 caddr_t buffer) 379 { 380 /* 381 * There are no adjustments needed in this implementation. 382 */ 383 } 384 385 static int 386 getlongprop_buf(int id, char *name, char *buf, int maxlen) 387 { 388 int size; 389 390 size = prom_getproplen((pnode_t)id, name); 391 if (size <= 0 || (size > maxlen - 1)) 392 return (-1); 393 394 if (-1 == prom_getprop((pnode_t)id, name, buf)) 395 return (-1); 396 397 if (strcmp("name", name) == 0) { 398 if (buf[size - 1] != '\0') { 399 buf[size] = '\0'; 400 size += 1; 401 } 402 } 403 404 return (size); 405 } 406 407 static int 408 get_prop_int_array(dev_info_t *di, char *pname, int **pval, uint_t *plen) 409 { 410 int ret; 411 412 if ((ret = ddi_prop_lookup_int_array(DDI_DEV_T_ANY, di, 413 DDI_PROP_DONTPASS, pname, pval, plen)) 414 == DDI_PROP_SUCCESS) { 415 *plen = (*plen) * (sizeof (int)); 416 } 417 return (ret); 418 } 419 420 421 /* 422 * Node Configuration 423 */ 424 425 struct prop_ispec { 426 uint_t pri, vec; 427 }; 428 429 /* 430 * For the x86, we're prepared to claim that the interrupt string 431 * is in the form of a list of <ipl,vec> specifications. 432 */ 433 434 #define VEC_MIN 1 435 #define VEC_MAX 255 436 437 static int 438 impl_xlate_intrs(dev_info_t *child, int *in, 439 struct ddi_parent_private_data *pdptr) 440 { 441 size_t size; 442 int n; 443 struct intrspec *new; 444 caddr_t got_prop; 445 int *inpri; 446 int got_len; 447 extern int ignore_hardware_nodes; /* force flag from ddi_impl.c */ 448 449 static char bad_intr_fmt[] = 450 "bad interrupt spec from %s%d - ipl %d, irq %d\n"; 451 452 /* 453 * determine if the driver is expecting the new style "interrupts" 454 * property which just contains the IRQ, or the old style which 455 * contains pairs of <IPL,IRQ>. if it is the new style, we always 456 * assign IPL 5 unless an "interrupt-priorities" property exists. 457 * in that case, the "interrupt-priorities" property contains the 458 * IPL values that match, one for one, the IRQ values in the 459 * "interrupts" property. 460 */ 461 inpri = NULL; 462 if ((ddi_getprop(DDI_DEV_T_ANY, child, DDI_PROP_DONTPASS, 463 "ignore-hardware-nodes", -1) != -1) || ignore_hardware_nodes) { 464 /* the old style "interrupts" property... */ 465 466 /* 467 * The list consists of <ipl,vec> elements 468 */ 469 if ((n = (*in++ >> 1)) < 1) 470 return (DDI_FAILURE); 471 472 pdptr->par_nintr = n; 473 size = n * sizeof (struct intrspec); 474 new = pdptr->par_intr = kmem_zalloc(size, KM_SLEEP); 475 476 while (n--) { 477 int level = *in++; 478 int vec = *in++; 479 480 if (level < 1 || level > MAXIPL || 481 vec < VEC_MIN || vec > VEC_MAX) { 482 cmn_err(CE_CONT, bad_intr_fmt, 483 DEVI(child)->devi_name, 484 DEVI(child)->devi_instance, level, vec); 485 goto broken; 486 } 487 new->intrspec_pri = level; 488 if (vec != 2) 489 new->intrspec_vec = vec; 490 else 491 /* 492 * irq 2 on the PC bus is tied to irq 9 493 * on ISA, EISA and MicroChannel 494 */ 495 new->intrspec_vec = 9; 496 new++; 497 } 498 499 return (DDI_SUCCESS); 500 } else { 501 /* the new style "interrupts" property... */ 502 503 /* 504 * The list consists of <vec> elements 505 */ 506 if ((n = (*in++)) < 1) 507 return (DDI_FAILURE); 508 509 pdptr->par_nintr = n; 510 size = n * sizeof (struct intrspec); 511 new = pdptr->par_intr = kmem_zalloc(size, KM_SLEEP); 512 513 /* XXX check for "interrupt-priorities" property... */ 514 if (ddi_getlongprop(DDI_DEV_T_ANY, child, DDI_PROP_DONTPASS, 515 "interrupt-priorities", (caddr_t)&got_prop, &got_len) 516 == DDI_PROP_SUCCESS) { 517 if (n != (got_len / sizeof (int))) { 518 cmn_err(CE_CONT, 519 "bad interrupt-priorities length" 520 " from %s%d: expected %d, got %d\n", 521 DEVI(child)->devi_name, 522 DEVI(child)->devi_instance, n, 523 (int)(got_len / sizeof (int))); 524 goto broken; 525 } 526 inpri = (int *)got_prop; 527 } 528 529 while (n--) { 530 int level; 531 int vec = *in++; 532 533 if (inpri == NULL) 534 level = 5; 535 else 536 level = *inpri++; 537 538 if (level < 1 || level > MAXIPL || 539 vec < VEC_MIN || vec > VEC_MAX) { 540 cmn_err(CE_CONT, bad_intr_fmt, 541 DEVI(child)->devi_name, 542 DEVI(child)->devi_instance, level, vec); 543 goto broken; 544 } 545 new->intrspec_pri = level; 546 if (vec != 2) 547 new->intrspec_vec = vec; 548 else 549 /* 550 * irq 2 on the PC bus is tied to irq 9 551 * on ISA, EISA and MicroChannel 552 */ 553 new->intrspec_vec = 9; 554 new++; 555 } 556 557 if (inpri != NULL) 558 kmem_free(got_prop, got_len); 559 return (DDI_SUCCESS); 560 } 561 562 broken: 563 kmem_free(pdptr->par_intr, size); 564 pdptr->par_intr = NULL; 565 pdptr->par_nintr = 0; 566 if (inpri != NULL) 567 kmem_free(got_prop, got_len); 568 569 return (DDI_FAILURE); 570 } 571 572 /* 573 * Create a ddi_parent_private_data structure from the ddi properties of 574 * the dev_info node. 575 * 576 * The "reg" and either an "intr" or "interrupts" properties are required 577 * if the driver wishes to create mappings or field interrupts on behalf 578 * of the device. 579 * 580 * The "reg" property is assumed to be a list of at least one triple 581 * 582 * <bustype, address, size>*1 583 * 584 * The "intr" property is assumed to be a list of at least one duple 585 * 586 * <SPARC ipl, vector#>*1 587 * 588 * The "interrupts" property is assumed to be a list of at least one 589 * n-tuples that describes the interrupt capabilities of the bus the device 590 * is connected to. For SBus, this looks like 591 * 592 * <SBus-level>*1 593 * 594 * (This property obsoletes the 'intr' property). 595 * 596 * The "ranges" property is optional. 597 */ 598 void 599 make_ddi_ppd(dev_info_t *child, struct ddi_parent_private_data **ppd) 600 { 601 struct ddi_parent_private_data *pdptr; 602 int n; 603 int *reg_prop, *rng_prop, *intr_prop, *irupts_prop; 604 uint_t reg_len, rng_len, intr_len, irupts_len; 605 606 *ppd = pdptr = kmem_zalloc(sizeof (*pdptr), KM_SLEEP); 607 608 /* 609 * Handle the 'reg' property. 610 */ 611 if ((get_prop_int_array(child, "reg", ®_prop, ®_len) == 612 DDI_PROP_SUCCESS) && (reg_len != 0)) { 613 pdptr->par_nreg = reg_len / (int)sizeof (struct regspec); 614 pdptr->par_reg = (struct regspec *)reg_prop; 615 } 616 617 /* 618 * See if I have a range (adding one where needed - this 619 * means to add one for sbus node in sun4c, when romvec > 0, 620 * if no range is already defined in the PROM node. 621 * (Currently no sun4c PROMS define range properties, 622 * but they should and may in the future.) For the SBus 623 * node, the range is defined by the SBus reg property. 624 */ 625 if (get_prop_int_array(child, "ranges", &rng_prop, &rng_len) 626 == DDI_PROP_SUCCESS) { 627 pdptr->par_nrng = rng_len / (int)(sizeof (struct rangespec)); 628 pdptr->par_rng = (struct rangespec *)rng_prop; 629 } 630 631 /* 632 * Handle the 'intr' and 'interrupts' properties 633 */ 634 635 /* 636 * For backwards compatibility 637 * we first look for the 'intr' property for the device. 638 */ 639 if (get_prop_int_array(child, "intr", &intr_prop, &intr_len) 640 != DDI_PROP_SUCCESS) { 641 intr_len = 0; 642 } 643 644 /* 645 * If we're to support bus adapters and future platforms cleanly, 646 * we need to support the generalized 'interrupts' property. 647 */ 648 if (get_prop_int_array(child, "interrupts", &irupts_prop, 649 &irupts_len) != DDI_PROP_SUCCESS) { 650 irupts_len = 0; 651 } else if (intr_len != 0) { 652 /* 653 * If both 'intr' and 'interrupts' are defined, 654 * then 'interrupts' wins and we toss the 'intr' away. 655 */ 656 ddi_prop_free((void *)intr_prop); 657 intr_len = 0; 658 } 659 660 if (intr_len != 0) { 661 662 /* 663 * Translate the 'intr' property into an array 664 * an array of struct intrspec's. There's not really 665 * very much to do here except copy what's out there. 666 */ 667 668 struct intrspec *new; 669 struct prop_ispec *l; 670 671 n = pdptr->par_nintr = intr_len / sizeof (struct prop_ispec); 672 l = (struct prop_ispec *)intr_prop; 673 pdptr->par_intr = 674 new = kmem_zalloc(n * sizeof (struct intrspec), KM_SLEEP); 675 while (n--) { 676 new->intrspec_pri = l->pri; 677 new->intrspec_vec = l->vec; 678 new++; 679 l++; 680 } 681 ddi_prop_free((void *)intr_prop); 682 683 } else if ((n = irupts_len) != 0) { 684 size_t size; 685 int *out; 686 687 /* 688 * Translate the 'interrupts' property into an array 689 * of intrspecs for the rest of the DDI framework to 690 * toy with. Only our ancestors really know how to 691 * do this, so ask 'em. We massage the 'interrupts' 692 * property so that it is pre-pended by a count of 693 * the number of integers in the argument. 694 */ 695 size = sizeof (int) + n; 696 out = kmem_alloc(size, KM_SLEEP); 697 *out = n / sizeof (int); 698 bcopy(irupts_prop, out + 1, (size_t)n); 699 ddi_prop_free((void *)irupts_prop); 700 if (impl_xlate_intrs(child, out, pdptr) != DDI_SUCCESS) { 701 cmn_err(CE_CONT, 702 "Unable to translate 'interrupts' for %s%d\n", 703 DEVI(child)->devi_binding_name, 704 DEVI(child)->devi_instance); 705 } 706 kmem_free(out, size); 707 } 708 } 709 710 /* 711 * Name a child 712 */ 713 static int 714 impl_sunbus_name_child(dev_info_t *child, char *name, int namelen) 715 { 716 /* 717 * Fill in parent-private data and this function returns to us 718 * an indication if it used "registers" to fill in the data. 719 */ 720 if (ddi_get_parent_data(child) == NULL) { 721 struct ddi_parent_private_data *pdptr; 722 make_ddi_ppd(child, &pdptr); 723 ddi_set_parent_data(child, pdptr); 724 } 725 726 name[0] = '\0'; 727 if (sparc_pd_getnreg(child) > 0) { 728 (void) snprintf(name, namelen, "%x,%x", 729 (uint_t)sparc_pd_getreg(child, 0)->regspec_bustype, 730 (uint_t)sparc_pd_getreg(child, 0)->regspec_addr); 731 } 732 733 return (DDI_SUCCESS); 734 } 735 736 /* 737 * Called from the bus_ctl op of sunbus (sbus, obio, etc) nexus drivers 738 * to implement the DDI_CTLOPS_INITCHILD operation. That is, it names 739 * the children of sun busses based on the reg spec. 740 * 741 * Handles the following properties (in make_ddi_ppd): 742 * Property value 743 * Name type 744 * reg register spec 745 * intr old-form interrupt spec 746 * interrupts new (bus-oriented) interrupt spec 747 * ranges range spec 748 */ 749 int 750 impl_ddi_sunbus_initchild(dev_info_t *child) 751 { 752 char name[MAXNAMELEN]; 753 void impl_ddi_sunbus_removechild(dev_info_t *); 754 755 /* 756 * Name the child, also makes parent private data 757 */ 758 (void) impl_sunbus_name_child(child, name, MAXNAMELEN); 759 ddi_set_name_addr(child, name); 760 761 /* 762 * Attempt to merge a .conf node; if successful, remove the 763 * .conf node. 764 */ 765 if ((ndi_dev_is_persistent_node(child) == 0) && 766 (ndi_merge_node(child, impl_sunbus_name_child) == DDI_SUCCESS)) { 767 /* 768 * Return failure to remove node 769 */ 770 impl_ddi_sunbus_removechild(child); 771 return (DDI_FAILURE); 772 } 773 return (DDI_SUCCESS); 774 } 775 776 void 777 impl_free_ddi_ppd(dev_info_t *dip) 778 { 779 struct ddi_parent_private_data *pdptr; 780 size_t n; 781 782 if ((pdptr = ddi_get_parent_data(dip)) == NULL) 783 return; 784 785 if ((n = (size_t)pdptr->par_nintr) != 0) 786 /* 787 * Note that kmem_free is used here (instead of 788 * ddi_prop_free) because the contents of the 789 * property were placed into a separate buffer and 790 * mucked with a bit before being stored in par_intr. 791 * The actual return value from the prop lookup 792 * was freed with ddi_prop_free previously. 793 */ 794 kmem_free(pdptr->par_intr, n * sizeof (struct intrspec)); 795 796 if ((n = (size_t)pdptr->par_nrng) != 0) 797 ddi_prop_free((void *)pdptr->par_rng); 798 799 if ((n = pdptr->par_nreg) != 0) 800 ddi_prop_free((void *)pdptr->par_reg); 801 802 kmem_free(pdptr, sizeof (*pdptr)); 803 ddi_set_parent_data(dip, NULL); 804 } 805 806 void 807 impl_ddi_sunbus_removechild(dev_info_t *dip) 808 { 809 impl_free_ddi_ppd(dip); 810 ddi_set_name_addr(dip, NULL); 811 /* 812 * Strip the node to properly convert it back to prototype form 813 */ 814 impl_rem_dev_props(dip); 815 } 816 817 /* 818 * DDI Interrupt 819 */ 820 821 /* 822 * turn this on to force isa, eisa, and mca device to ignore the new 823 * hardware nodes in the device tree (normally turned on only for 824 * drivers that need it by setting the property "ignore-hardware-nodes" 825 * in their driver.conf file). 826 * 827 * 7/31/96 -- Turned off globally. Leaving variable in for the moment 828 * as safety valve. 829 */ 830 int ignore_hardware_nodes = 0; 831 832 /* 833 * Local data 834 */ 835 static struct impl_bus_promops *impl_busp; 836 837 838 /* 839 * New DDI interrupt framework 840 */ 841 842 /* 843 * i_ddi_intr_ops: 844 * 845 * This is the interrupt operator function wrapper for the bus function 846 * bus_intr_op. 847 */ 848 int 849 i_ddi_intr_ops(dev_info_t *dip, dev_info_t *rdip, ddi_intr_op_t op, 850 ddi_intr_handle_impl_t *hdlp, void * result) 851 { 852 dev_info_t *pdip = (dev_info_t *)DEVI(dip)->devi_parent; 853 int ret = DDI_FAILURE; 854 855 /* request parent to process this interrupt op */ 856 if (NEXUS_HAS_INTR_OP(pdip)) 857 ret = (*(DEVI(pdip)->devi_ops->devo_bus_ops->bus_intr_op))( 858 pdip, rdip, op, hdlp, result); 859 else 860 cmn_err(CE_WARN, "Failed to process interrupt " 861 "for %s%d due to down-rev nexus driver %s%d", 862 ddi_get_name(rdip), ddi_get_instance(rdip), 863 ddi_get_name(pdip), ddi_get_instance(pdip)); 864 return (ret); 865 } 866 867 /* 868 * i_ddi_add_softint - allocate and add a soft interrupt to the system 869 */ 870 int 871 i_ddi_add_softint(ddi_softint_hdl_impl_t *hdlp) 872 { 873 int ret; 874 875 /* add soft interrupt handler */ 876 ret = add_avsoftintr((void *)hdlp, hdlp->ih_pri, hdlp->ih_cb_func, 877 DEVI(hdlp->ih_dip)->devi_name, hdlp->ih_cb_arg1, hdlp->ih_cb_arg2); 878 return (ret ? DDI_SUCCESS : DDI_FAILURE); 879 } 880 881 882 void 883 i_ddi_remove_softint(ddi_softint_hdl_impl_t *hdlp) 884 { 885 (void) rem_avsoftintr((void *)hdlp, hdlp->ih_pri, hdlp->ih_cb_func); 886 } 887 888 889 extern void (*setsoftint)(int, struct av_softinfo *); 890 extern boolean_t av_check_softint_pending(struct av_softinfo *, boolean_t); 891 892 int 893 i_ddi_trigger_softint(ddi_softint_hdl_impl_t *hdlp, void *arg2) 894 { 895 if (av_check_softint_pending(hdlp->ih_pending, B_FALSE)) 896 return (DDI_EPENDING); 897 898 update_avsoftintr_args((void *)hdlp, hdlp->ih_pri, arg2); 899 900 (*setsoftint)(hdlp->ih_pri, hdlp->ih_pending); 901 return (DDI_SUCCESS); 902 } 903 904 /* 905 * i_ddi_set_softint_pri: 906 * 907 * The way this works is that it first tries to add a softint vector 908 * at the new priority in hdlp. If that succeeds; then it removes the 909 * existing softint vector at the old priority. 910 */ 911 int 912 i_ddi_set_softint_pri(ddi_softint_hdl_impl_t *hdlp, uint_t old_pri) 913 { 914 int ret; 915 916 /* 917 * If a softint is pending at the old priority then fail the request. 918 */ 919 if (av_check_softint_pending(hdlp->ih_pending, B_TRUE)) 920 return (DDI_FAILURE); 921 922 ret = av_softint_movepri((void *)hdlp, old_pri); 923 return (ret ? DDI_SUCCESS : DDI_FAILURE); 924 } 925 926 void 927 i_ddi_alloc_intr_phdl(ddi_intr_handle_impl_t *hdlp) 928 { 929 hdlp->ih_private = (void *)kmem_zalloc(sizeof (ihdl_plat_t), KM_SLEEP); 930 } 931 932 void 933 i_ddi_free_intr_phdl(ddi_intr_handle_impl_t *hdlp) 934 { 935 kmem_free(hdlp->ih_private, sizeof (ihdl_plat_t)); 936 hdlp->ih_private = NULL; 937 } 938 939 int 940 i_ddi_get_intx_nintrs(dev_info_t *dip) 941 { 942 struct ddi_parent_private_data *pdp; 943 944 if ((pdp = ddi_get_parent_data(dip)) == NULL) 945 return (0); 946 947 return (pdp->par_nintr); 948 } 949 950 /* 951 * DDI Memory/DMA 952 */ 953 954 /* 955 * Support for allocating DMAable memory to implement 956 * ddi_dma_mem_alloc(9F) interface. 957 */ 958 959 #define KA_ALIGN_SHIFT 7 960 #define KA_ALIGN (1 << KA_ALIGN_SHIFT) 961 #define KA_NCACHE (PAGESHIFT + 1 - KA_ALIGN_SHIFT) 962 963 /* 964 * Dummy DMA attribute template for kmem_io[].kmem_io_attr. We only 965 * care about addr_lo, addr_hi, and align. addr_hi will be dynamically set. 966 */ 967 968 static ddi_dma_attr_t kmem_io_attr = { 969 DMA_ATTR_V0, 970 0x0000000000000000ULL, /* dma_attr_addr_lo */ 971 0x0000000000000000ULL, /* dma_attr_addr_hi */ 972 0x00ffffff, 973 0x1000, /* dma_attr_align */ 974 1, 1, 0xffffffffULL, 0xffffffffULL, 0x1, 1, 0 975 }; 976 977 /* kmem io memory ranges and indices */ 978 enum { 979 IO_4P, IO_64G, IO_4G, IO_2G, IO_1G, IO_512M, 980 IO_256M, IO_128M, IO_64M, IO_32M, IO_16M, MAX_MEM_RANGES 981 }; 982 983 static struct { 984 vmem_t *kmem_io_arena; 985 kmem_cache_t *kmem_io_cache[KA_NCACHE]; 986 ddi_dma_attr_t kmem_io_attr; 987 } kmem_io[MAX_MEM_RANGES]; 988 989 static int kmem_io_idx; /* index of first populated kmem_io[] */ 990 991 static page_t * 992 page_create_io_wrapper(void *addr, size_t len, int vmflag, void *arg) 993 { 994 extern page_t *page_create_io(vnode_t *, u_offset_t, uint_t, 995 uint_t, struct as *, caddr_t, ddi_dma_attr_t *); 996 997 return (page_create_io(&kvp, (u_offset_t)(uintptr_t)addr, len, 998 PG_EXCL | ((vmflag & VM_NOSLEEP) ? 0 : PG_WAIT), &kas, addr, arg)); 999 } 1000 1001 #ifdef __xpv 1002 static void 1003 segkmem_free_io(vmem_t *vmp, void * ptr, size_t size) 1004 { 1005 extern void page_destroy_io(page_t *); 1006 segkmem_xfree(vmp, ptr, size, page_destroy_io); 1007 } 1008 #endif 1009 1010 static void * 1011 segkmem_alloc_io_4P(vmem_t *vmp, size_t size, int vmflag) 1012 { 1013 return (segkmem_xalloc(vmp, NULL, size, vmflag, 0, 1014 page_create_io_wrapper, &kmem_io[IO_4P].kmem_io_attr)); 1015 } 1016 1017 static void * 1018 segkmem_alloc_io_64G(vmem_t *vmp, size_t size, int vmflag) 1019 { 1020 return (segkmem_xalloc(vmp, NULL, size, vmflag, 0, 1021 page_create_io_wrapper, &kmem_io[IO_64G].kmem_io_attr)); 1022 } 1023 1024 static void * 1025 segkmem_alloc_io_4G(vmem_t *vmp, size_t size, int vmflag) 1026 { 1027 return (segkmem_xalloc(vmp, NULL, size, vmflag, 0, 1028 page_create_io_wrapper, &kmem_io[IO_4G].kmem_io_attr)); 1029 } 1030 1031 static void * 1032 segkmem_alloc_io_2G(vmem_t *vmp, size_t size, int vmflag) 1033 { 1034 return (segkmem_xalloc(vmp, NULL, size, vmflag, 0, 1035 page_create_io_wrapper, &kmem_io[IO_2G].kmem_io_attr)); 1036 } 1037 1038 static void * 1039 segkmem_alloc_io_1G(vmem_t *vmp, size_t size, int vmflag) 1040 { 1041 return (segkmem_xalloc(vmp, NULL, size, vmflag, 0, 1042 page_create_io_wrapper, &kmem_io[IO_1G].kmem_io_attr)); 1043 } 1044 1045 static void * 1046 segkmem_alloc_io_512M(vmem_t *vmp, size_t size, int vmflag) 1047 { 1048 return (segkmem_xalloc(vmp, NULL, size, vmflag, 0, 1049 page_create_io_wrapper, &kmem_io[IO_512M].kmem_io_attr)); 1050 } 1051 1052 static void * 1053 segkmem_alloc_io_256M(vmem_t *vmp, size_t size, int vmflag) 1054 { 1055 return (segkmem_xalloc(vmp, NULL, size, vmflag, 0, 1056 page_create_io_wrapper, &kmem_io[IO_256M].kmem_io_attr)); 1057 } 1058 1059 static void * 1060 segkmem_alloc_io_128M(vmem_t *vmp, size_t size, int vmflag) 1061 { 1062 return (segkmem_xalloc(vmp, NULL, size, vmflag, 0, 1063 page_create_io_wrapper, &kmem_io[IO_128M].kmem_io_attr)); 1064 } 1065 1066 static void * 1067 segkmem_alloc_io_64M(vmem_t *vmp, size_t size, int vmflag) 1068 { 1069 return (segkmem_xalloc(vmp, NULL, size, vmflag, 0, 1070 page_create_io_wrapper, &kmem_io[IO_64M].kmem_io_attr)); 1071 } 1072 1073 static void * 1074 segkmem_alloc_io_32M(vmem_t *vmp, size_t size, int vmflag) 1075 { 1076 return (segkmem_xalloc(vmp, NULL, size, vmflag, 0, 1077 page_create_io_wrapper, &kmem_io[IO_32M].kmem_io_attr)); 1078 } 1079 1080 static void * 1081 segkmem_alloc_io_16M(vmem_t *vmp, size_t size, int vmflag) 1082 { 1083 return (segkmem_xalloc(vmp, NULL, size, vmflag, 0, 1084 page_create_io_wrapper, &kmem_io[IO_16M].kmem_io_attr)); 1085 } 1086 1087 struct { 1088 uint64_t io_limit; 1089 char *io_name; 1090 void *(*io_alloc)(vmem_t *, size_t, int); 1091 int io_initial; /* kmem_io_init during startup */ 1092 } io_arena_params[MAX_MEM_RANGES] = { 1093 {0x000fffffffffffffULL, "kmem_io_4P", segkmem_alloc_io_4P, 1}, 1094 {0x0000000fffffffffULL, "kmem_io_64G", segkmem_alloc_io_64G, 0}, 1095 {0x00000000ffffffffULL, "kmem_io_4G", segkmem_alloc_io_4G, 1}, 1096 {0x000000007fffffffULL, "kmem_io_2G", segkmem_alloc_io_2G, 1}, 1097 {0x000000003fffffffULL, "kmem_io_1G", segkmem_alloc_io_1G, 0}, 1098 {0x000000001fffffffULL, "kmem_io_512M", segkmem_alloc_io_512M, 0}, 1099 {0x000000000fffffffULL, "kmem_io_256M", segkmem_alloc_io_256M, 0}, 1100 {0x0000000007ffffffULL, "kmem_io_128M", segkmem_alloc_io_128M, 0}, 1101 {0x0000000003ffffffULL, "kmem_io_64M", segkmem_alloc_io_64M, 0}, 1102 {0x0000000001ffffffULL, "kmem_io_32M", segkmem_alloc_io_32M, 0}, 1103 {0x0000000000ffffffULL, "kmem_io_16M", segkmem_alloc_io_16M, 1} 1104 }; 1105 1106 void 1107 kmem_io_init(int a) 1108 { 1109 int c; 1110 char name[40]; 1111 1112 kmem_io[a].kmem_io_arena = vmem_create(io_arena_params[a].io_name, 1113 NULL, 0, PAGESIZE, io_arena_params[a].io_alloc, 1114 #ifdef __xpv 1115 segkmem_free_io, 1116 #else 1117 segkmem_free, 1118 #endif 1119 heap_arena, 0, VM_SLEEP); 1120 1121 for (c = 0; c < KA_NCACHE; c++) { 1122 size_t size = KA_ALIGN << c; 1123 (void) sprintf(name, "%s_%lu", 1124 io_arena_params[a].io_name, size); 1125 kmem_io[a].kmem_io_cache[c] = kmem_cache_create(name, 1126 size, size, NULL, NULL, NULL, NULL, 1127 kmem_io[a].kmem_io_arena, 0); 1128 } 1129 } 1130 1131 /* 1132 * Return the index of the highest memory range for addr. 1133 */ 1134 static int 1135 kmem_io_index(uint64_t addr) 1136 { 1137 int n; 1138 1139 for (n = kmem_io_idx; n < MAX_MEM_RANGES; n++) { 1140 if (kmem_io[n].kmem_io_attr.dma_attr_addr_hi <= addr) { 1141 if (kmem_io[n].kmem_io_arena == NULL) 1142 kmem_io_init(n); 1143 return (n); 1144 } 1145 } 1146 panic("kmem_io_index: invalid addr - must be at least 16m"); 1147 1148 /*NOTREACHED*/ 1149 } 1150 1151 /* 1152 * Return the index of the next kmem_io populated memory range 1153 * after curindex. 1154 */ 1155 static int 1156 kmem_io_index_next(int curindex) 1157 { 1158 int n; 1159 1160 for (n = curindex + 1; n < MAX_MEM_RANGES; n++) { 1161 if (kmem_io[n].kmem_io_arena) 1162 return (n); 1163 } 1164 return (-1); 1165 } 1166 1167 /* 1168 * allow kmem to be mapped in with different PTE cache attribute settings. 1169 * Used by i_ddi_mem_alloc() 1170 */ 1171 int 1172 kmem_override_cache_attrs(caddr_t kva, size_t size, uint_t order) 1173 { 1174 uint_t hat_flags; 1175 caddr_t kva_end; 1176 uint_t hat_attr; 1177 pfn_t pfn; 1178 1179 if (hat_getattr(kas.a_hat, kva, &hat_attr) == -1) { 1180 return (-1); 1181 } 1182 1183 hat_attr &= ~HAT_ORDER_MASK; 1184 hat_attr |= order | HAT_NOSYNC; 1185 hat_flags = HAT_LOAD_LOCK; 1186 1187 kva_end = (caddr_t)(((uintptr_t)kva + size + PAGEOFFSET) & 1188 (uintptr_t)PAGEMASK); 1189 kva = (caddr_t)((uintptr_t)kva & (uintptr_t)PAGEMASK); 1190 1191 while (kva < kva_end) { 1192 pfn = hat_getpfnum(kas.a_hat, kva); 1193 hat_unload(kas.a_hat, kva, PAGESIZE, HAT_UNLOAD_UNLOCK); 1194 hat_devload(kas.a_hat, kva, PAGESIZE, pfn, hat_attr, hat_flags); 1195 kva += MMU_PAGESIZE; 1196 } 1197 1198 return (0); 1199 } 1200 1201 void 1202 ka_init(void) 1203 { 1204 int a; 1205 paddr_t maxphysaddr; 1206 #if !defined(__xpv) 1207 extern pfn_t physmax; 1208 1209 maxphysaddr = mmu_ptob((paddr_t)physmax) + MMU_PAGEOFFSET; 1210 #else 1211 maxphysaddr = mmu_ptob((paddr_t)HYPERVISOR_memory_op( 1212 XENMEM_maximum_ram_page, NULL)) + MMU_PAGEOFFSET; 1213 #endif 1214 1215 ASSERT(maxphysaddr <= io_arena_params[0].io_limit); 1216 1217 for (a = 0; a < MAX_MEM_RANGES; a++) { 1218 if (maxphysaddr >= io_arena_params[a + 1].io_limit) { 1219 if (maxphysaddr > io_arena_params[a + 1].io_limit) 1220 io_arena_params[a].io_limit = maxphysaddr; 1221 else 1222 a++; 1223 break; 1224 } 1225 } 1226 kmem_io_idx = a; 1227 1228 for (; a < MAX_MEM_RANGES; a++) { 1229 kmem_io[a].kmem_io_attr = kmem_io_attr; 1230 kmem_io[a].kmem_io_attr.dma_attr_addr_hi = 1231 io_arena_params[a].io_limit; 1232 /* 1233 * initialize kmem_io[] arena/cache corresponding to 1234 * maxphysaddr and to the "common" io memory ranges that 1235 * have io_initial set to a non-zero value. 1236 */ 1237 if (io_arena_params[a].io_initial || a == kmem_io_idx) 1238 kmem_io_init(a); 1239 } 1240 } 1241 1242 /* 1243 * put contig address/size 1244 */ 1245 static void * 1246 putctgas(void *addr, size_t size) 1247 { 1248 struct ctgas *ctgp = &ctglist; 1249 int i; 1250 1251 CTGLOCK(); 1252 do { 1253 if ((i = ctgp->ctg_index) < CTGENTRIES) { 1254 ctgp->ctg_addr[i] = addr; 1255 ctgp->ctg_size[i] = size; 1256 ctgp->ctg_index++; 1257 break; 1258 } 1259 if (!ctgp->ctg_next) 1260 ctgp->ctg_next = kmem_zalloc(sizeof (struct ctgas), 1261 KM_NOSLEEP); 1262 ctgp = ctgp->ctg_next; 1263 } while (ctgp); 1264 1265 CTGUNLOCK(); 1266 return (ctgp); 1267 } 1268 1269 /* 1270 * get contig size by addr 1271 */ 1272 static size_t 1273 getctgsz(void *addr) 1274 { 1275 struct ctgas *ctgp = &ctglist; 1276 int i, j; 1277 size_t sz; 1278 1279 ASSERT(addr); 1280 CTGLOCK(); 1281 1282 while (ctgp) { 1283 for (i = 0; i < ctgp->ctg_index; i++) { 1284 if (addr != ctgp->ctg_addr[i]) 1285 continue; 1286 1287 sz = ctgp->ctg_size[i]; 1288 j = --ctgp->ctg_index; 1289 if (i != j) { 1290 ctgp->ctg_size[i] = ctgp->ctg_size[j]; 1291 ctgp->ctg_addr[i] = ctgp->ctg_addr[j]; 1292 } 1293 CTGUNLOCK(); 1294 return (sz); 1295 } 1296 ctgp = ctgp->ctg_next; 1297 } 1298 1299 CTGUNLOCK(); 1300 return (0); 1301 } 1302 1303 /* 1304 * contig_alloc: 1305 * 1306 * allocates contiguous memory to satisfy the 'size' and dma attributes 1307 * specified in 'attr'. 1308 * 1309 * Not all of memory need to be physically contiguous if the 1310 * scatter-gather list length is greater than 1. 1311 */ 1312 1313 /*ARGSUSED*/ 1314 void * 1315 contig_alloc(size_t size, ddi_dma_attr_t *attr, uintptr_t align, int cansleep) 1316 { 1317 pgcnt_t pgcnt = btopr(size); 1318 size_t asize = pgcnt * PAGESIZE; 1319 page_t *ppl; 1320 int pflag; 1321 void *addr; 1322 1323 extern page_t *page_create_io(vnode_t *, u_offset_t, uint_t, 1324 uint_t, struct as *, caddr_t, ddi_dma_attr_t *); 1325 1326 /* segkmem_xalloc */ 1327 1328 if (align <= PAGESIZE) 1329 addr = vmem_alloc(heap_arena, asize, 1330 (cansleep) ? VM_SLEEP : VM_NOSLEEP); 1331 else 1332 addr = vmem_xalloc(heap_arena, asize, align, 0, 0, NULL, NULL, 1333 (cansleep) ? VM_SLEEP : VM_NOSLEEP); 1334 if (addr) { 1335 ASSERT(!((uintptr_t)addr & (align - 1))); 1336 1337 if (page_resv(pgcnt, (cansleep) ? KM_SLEEP : KM_NOSLEEP) == 0) { 1338 vmem_free(heap_arena, addr, asize); 1339 return (NULL); 1340 } 1341 pflag = PG_EXCL; 1342 1343 if (cansleep) 1344 pflag |= PG_WAIT; 1345 1346 /* 4k req gets from freelists rather than pfn search */ 1347 if (pgcnt > 1 || align > PAGESIZE) 1348 pflag |= PG_PHYSCONTIG; 1349 1350 ppl = page_create_io(&kvp, (u_offset_t)(uintptr_t)addr, 1351 asize, pflag, &kas, (caddr_t)addr, attr); 1352 1353 if (!ppl) { 1354 vmem_free(heap_arena, addr, asize); 1355 page_unresv(pgcnt); 1356 return (NULL); 1357 } 1358 1359 while (ppl != NULL) { 1360 page_t *pp = ppl; 1361 page_sub(&ppl, pp); 1362 ASSERT(page_iolock_assert(pp)); 1363 page_io_unlock(pp); 1364 page_downgrade(pp); 1365 hat_memload(kas.a_hat, (caddr_t)(uintptr_t)pp->p_offset, 1366 pp, (PROT_ALL & ~PROT_USER) | 1367 HAT_NOSYNC, HAT_LOAD_LOCK); 1368 } 1369 } 1370 return (addr); 1371 } 1372 1373 void 1374 contig_free(void *addr, size_t size) 1375 { 1376 pgcnt_t pgcnt = btopr(size); 1377 size_t asize = pgcnt * PAGESIZE; 1378 caddr_t a, ea; 1379 page_t *pp; 1380 1381 hat_unload(kas.a_hat, addr, asize, HAT_UNLOAD_UNLOCK); 1382 1383 for (a = addr, ea = a + asize; a < ea; a += PAGESIZE) { 1384 pp = page_find(&kvp, (u_offset_t)(uintptr_t)a); 1385 if (!pp) 1386 panic("contig_free: contig pp not found"); 1387 1388 if (!page_tryupgrade(pp)) { 1389 page_unlock(pp); 1390 pp = page_lookup(&kvp, 1391 (u_offset_t)(uintptr_t)a, SE_EXCL); 1392 if (pp == NULL) 1393 panic("contig_free: page freed"); 1394 } 1395 page_destroy(pp, 0); 1396 } 1397 1398 page_unresv(pgcnt); 1399 vmem_free(heap_arena, addr, asize); 1400 } 1401 1402 /* 1403 * Allocate from the system, aligned on a specific boundary. 1404 * The alignment, if non-zero, must be a power of 2. 1405 */ 1406 static void * 1407 kalloca(size_t size, size_t align, int cansleep, int physcontig, 1408 ddi_dma_attr_t *attr) 1409 { 1410 size_t *addr, *raddr, rsize; 1411 size_t hdrsize = 4 * sizeof (size_t); /* must be power of 2 */ 1412 int a, i, c; 1413 vmem_t *vmp; 1414 kmem_cache_t *cp = NULL; 1415 1416 if (attr->dma_attr_addr_lo > mmu_ptob((uint64_t)ddiphysmin)) 1417 return (NULL); 1418 1419 align = MAX(align, hdrsize); 1420 ASSERT((align & (align - 1)) == 0); 1421 1422 /* 1423 * All of our allocators guarantee 16-byte alignment, so we don't 1424 * need to reserve additional space for the header. 1425 * To simplify picking the correct kmem_io_cache, we round up to 1426 * a multiple of KA_ALIGN. 1427 */ 1428 rsize = P2ROUNDUP_TYPED(size + align, KA_ALIGN, size_t); 1429 1430 if (physcontig && rsize > PAGESIZE) { 1431 if (addr = contig_alloc(size, attr, align, cansleep)) { 1432 if (!putctgas(addr, size)) 1433 contig_free(addr, size); 1434 else 1435 return (addr); 1436 } 1437 return (NULL); 1438 } 1439 1440 a = kmem_io_index(attr->dma_attr_addr_hi); 1441 1442 if (rsize > PAGESIZE) { 1443 vmp = kmem_io[a].kmem_io_arena; 1444 raddr = vmem_alloc(vmp, rsize, 1445 (cansleep) ? VM_SLEEP : VM_NOSLEEP); 1446 } else { 1447 c = highbit((rsize >> KA_ALIGN_SHIFT) - 1); 1448 cp = kmem_io[a].kmem_io_cache[c]; 1449 raddr = kmem_cache_alloc(cp, (cansleep) ? KM_SLEEP : 1450 KM_NOSLEEP); 1451 } 1452 1453 if (raddr == NULL) { 1454 int na; 1455 1456 ASSERT(cansleep == 0); 1457 if (rsize > PAGESIZE) 1458 return (NULL); 1459 /* 1460 * System does not have memory in the requested range. 1461 * Try smaller kmem io ranges and larger cache sizes 1462 * to see if there might be memory available in 1463 * these other caches. 1464 */ 1465 1466 for (na = kmem_io_index_next(a); na >= 0; 1467 na = kmem_io_index_next(na)) { 1468 ASSERT(kmem_io[na].kmem_io_arena); 1469 cp = kmem_io[na].kmem_io_cache[c]; 1470 raddr = kmem_cache_alloc(cp, KM_NOSLEEP); 1471 if (raddr) 1472 goto kallocdone; 1473 } 1474 /* now try the larger kmem io cache sizes */ 1475 for (na = a; na >= 0; na = kmem_io_index_next(na)) { 1476 for (i = c + 1; i < KA_NCACHE; i++) { 1477 cp = kmem_io[na].kmem_io_cache[i]; 1478 raddr = kmem_cache_alloc(cp, KM_NOSLEEP); 1479 if (raddr) 1480 goto kallocdone; 1481 } 1482 } 1483 return (NULL); 1484 } 1485 1486 kallocdone: 1487 ASSERT(!P2BOUNDARY((uintptr_t)raddr, rsize, PAGESIZE) || 1488 rsize > PAGESIZE); 1489 1490 addr = (size_t *)P2ROUNDUP((uintptr_t)raddr + hdrsize, align); 1491 ASSERT((uintptr_t)addr + size - (uintptr_t)raddr <= rsize); 1492 1493 addr[-4] = (size_t)cp; 1494 addr[-3] = (size_t)vmp; 1495 addr[-2] = (size_t)raddr; 1496 addr[-1] = rsize; 1497 1498 return (addr); 1499 } 1500 1501 static void 1502 kfreea(void *addr) 1503 { 1504 size_t size; 1505 1506 if (!((uintptr_t)addr & PAGEOFFSET) && (size = getctgsz(addr))) { 1507 contig_free(addr, size); 1508 } else { 1509 size_t *saddr = addr; 1510 if (saddr[-4] == 0) 1511 vmem_free((vmem_t *)saddr[-3], (void *)saddr[-2], 1512 saddr[-1]); 1513 else 1514 kmem_cache_free((kmem_cache_t *)saddr[-4], 1515 (void *)saddr[-2]); 1516 } 1517 } 1518 1519 /*ARGSUSED*/ 1520 void 1521 i_ddi_devacc_to_hatacc(ddi_device_acc_attr_t *devaccp, uint_t *hataccp) 1522 { 1523 } 1524 1525 /* 1526 * Check if the specified cache attribute is supported on the platform. 1527 * This function must be called before i_ddi_cacheattr_to_hatacc(). 1528 */ 1529 boolean_t 1530 i_ddi_check_cache_attr(uint_t flags) 1531 { 1532 /* 1533 * The cache attributes are mutually exclusive. Any combination of 1534 * the attributes leads to a failure. 1535 */ 1536 uint_t cache_attr = IOMEM_CACHE_ATTR(flags); 1537 if ((cache_attr != 0) && ((cache_attr & (cache_attr - 1)) != 0)) 1538 return (B_FALSE); 1539 1540 /* All cache attributes are supported on X86/X64 */ 1541 if (cache_attr & (IOMEM_DATA_UNCACHED | IOMEM_DATA_CACHED | 1542 IOMEM_DATA_UC_WR_COMBINE)) 1543 return (B_TRUE); 1544 1545 /* undefined attributes */ 1546 return (B_FALSE); 1547 } 1548 1549 /* set HAT cache attributes from the cache attributes */ 1550 void 1551 i_ddi_cacheattr_to_hatacc(uint_t flags, uint_t *hataccp) 1552 { 1553 uint_t cache_attr = IOMEM_CACHE_ATTR(flags); 1554 static char *fname = "i_ddi_cacheattr_to_hatacc"; 1555 1556 /* 1557 * If write-combining is not supported, then it falls back 1558 * to uncacheable. 1559 */ 1560 if (cache_attr == IOMEM_DATA_UC_WR_COMBINE && 1561 !is_x86_feature(x86_featureset, X86FSET_PAT)) 1562 cache_attr = IOMEM_DATA_UNCACHED; 1563 1564 /* 1565 * set HAT attrs according to the cache attrs. 1566 */ 1567 switch (cache_attr) { 1568 case IOMEM_DATA_UNCACHED: 1569 *hataccp &= ~HAT_ORDER_MASK; 1570 *hataccp |= (HAT_STRICTORDER | HAT_PLAT_NOCACHE); 1571 break; 1572 case IOMEM_DATA_UC_WR_COMBINE: 1573 *hataccp &= ~HAT_ORDER_MASK; 1574 *hataccp |= (HAT_MERGING_OK | HAT_PLAT_NOCACHE); 1575 break; 1576 case IOMEM_DATA_CACHED: 1577 *hataccp &= ~HAT_ORDER_MASK; 1578 *hataccp |= HAT_UNORDERED_OK; 1579 break; 1580 /* 1581 * This case must not occur because the cache attribute is scrutinized 1582 * before this function is called. 1583 */ 1584 default: 1585 /* 1586 * set cacheable to hat attrs. 1587 */ 1588 *hataccp &= ~HAT_ORDER_MASK; 1589 *hataccp |= HAT_UNORDERED_OK; 1590 cmn_err(CE_WARN, "%s: cache_attr=0x%x is ignored.", 1591 fname, cache_attr); 1592 } 1593 } 1594 1595 /* 1596 * This should actually be called i_ddi_dma_mem_alloc. There should 1597 * also be an i_ddi_pio_mem_alloc. i_ddi_dma_mem_alloc should call 1598 * through the device tree with the DDI_CTLOPS_DMA_ALIGN ctl ops to 1599 * get alignment requirements for DMA memory. i_ddi_pio_mem_alloc 1600 * should use DDI_CTLOPS_PIO_ALIGN. Since we only have i_ddi_mem_alloc 1601 * so far which is used for both, DMA and PIO, we have to use the DMA 1602 * ctl ops to make everybody happy. 1603 */ 1604 /*ARGSUSED*/ 1605 int 1606 i_ddi_mem_alloc(dev_info_t *dip, ddi_dma_attr_t *attr, 1607 size_t length, int cansleep, int flags, 1608 ddi_device_acc_attr_t *accattrp, caddr_t *kaddrp, 1609 size_t *real_length, ddi_acc_hdl_t *ap) 1610 { 1611 caddr_t a; 1612 int iomin; 1613 ddi_acc_impl_t *iap; 1614 int physcontig = 0; 1615 pgcnt_t npages; 1616 pgcnt_t minctg; 1617 uint_t order; 1618 int e; 1619 1620 /* 1621 * Check legality of arguments 1622 */ 1623 if (length == 0 || kaddrp == NULL || attr == NULL) { 1624 return (DDI_FAILURE); 1625 } 1626 1627 if (attr->dma_attr_minxfer == 0 || attr->dma_attr_align == 0 || 1628 (attr->dma_attr_align & (attr->dma_attr_align - 1)) || 1629 (attr->dma_attr_minxfer & (attr->dma_attr_minxfer - 1))) { 1630 return (DDI_FAILURE); 1631 } 1632 1633 /* 1634 * figure out most restrictive alignment requirement 1635 */ 1636 iomin = attr->dma_attr_minxfer; 1637 iomin = maxbit(iomin, attr->dma_attr_align); 1638 if (iomin == 0) 1639 return (DDI_FAILURE); 1640 1641 ASSERT((iomin & (iomin - 1)) == 0); 1642 1643 /* 1644 * if we allocate memory with IOMEM_DATA_UNCACHED or 1645 * IOMEM_DATA_UC_WR_COMBINE, make sure we allocate a page aligned 1646 * memory that ends on a page boundry. 1647 * Don't want to have to different cache mappings to the same 1648 * physical page. 1649 */ 1650 if (OVERRIDE_CACHE_ATTR(flags)) { 1651 iomin = (iomin + MMU_PAGEOFFSET) & MMU_PAGEMASK; 1652 length = (length + MMU_PAGEOFFSET) & (size_t)MMU_PAGEMASK; 1653 } 1654 1655 /* 1656 * Determine if we need to satisfy the request for physically 1657 * contiguous memory or alignments larger than pagesize. 1658 */ 1659 npages = btopr(length + attr->dma_attr_align); 1660 minctg = howmany(npages, attr->dma_attr_sgllen); 1661 1662 if (minctg > 1) { 1663 uint64_t pfnseg = attr->dma_attr_seg >> PAGESHIFT; 1664 /* 1665 * verify that the minimum contig requirement for the 1666 * actual length does not cross segment boundary. 1667 */ 1668 length = P2ROUNDUP_TYPED(length, attr->dma_attr_minxfer, 1669 size_t); 1670 npages = btopr(length); 1671 minctg = howmany(npages, attr->dma_attr_sgllen); 1672 if (minctg > pfnseg + 1) 1673 return (DDI_FAILURE); 1674 physcontig = 1; 1675 } else { 1676 length = P2ROUNDUP_TYPED(length, iomin, size_t); 1677 } 1678 1679 /* 1680 * Allocate the requested amount from the system. 1681 */ 1682 a = kalloca(length, iomin, cansleep, physcontig, attr); 1683 1684 if ((*kaddrp = a) == NULL) 1685 return (DDI_FAILURE); 1686 1687 /* 1688 * if we to modify the cache attributes, go back and muck with the 1689 * mappings. 1690 */ 1691 if (OVERRIDE_CACHE_ATTR(flags)) { 1692 order = 0; 1693 i_ddi_cacheattr_to_hatacc(flags, &order); 1694 e = kmem_override_cache_attrs(a, length, order); 1695 if (e != 0) { 1696 kfreea(a); 1697 return (DDI_FAILURE); 1698 } 1699 } 1700 1701 if (real_length) { 1702 *real_length = length; 1703 } 1704 if (ap) { 1705 /* 1706 * initialize access handle 1707 */ 1708 iap = (ddi_acc_impl_t *)ap->ah_platform_private; 1709 iap->ahi_acc_attr |= DDI_ACCATTR_CPU_VADDR; 1710 impl_acc_hdl_init(ap); 1711 } 1712 1713 return (DDI_SUCCESS); 1714 } 1715 1716 /* ARGSUSED */ 1717 void 1718 i_ddi_mem_free(caddr_t kaddr, ddi_acc_hdl_t *ap) 1719 { 1720 if (ap != NULL) { 1721 /* 1722 * if we modified the cache attributes on alloc, go back and 1723 * fix them since this memory could be returned to the 1724 * general pool. 1725 */ 1726 if (OVERRIDE_CACHE_ATTR(ap->ah_xfermodes)) { 1727 uint_t order = 0; 1728 int e; 1729 i_ddi_cacheattr_to_hatacc(IOMEM_DATA_CACHED, &order); 1730 e = kmem_override_cache_attrs(kaddr, ap->ah_len, order); 1731 if (e != 0) { 1732 cmn_err(CE_WARN, "i_ddi_mem_free() failed to " 1733 "override cache attrs, memory leaked\n"); 1734 return; 1735 } 1736 } 1737 } 1738 kfreea(kaddr); 1739 } 1740 1741 /* 1742 * Access Barriers 1743 * 1744 */ 1745 /*ARGSUSED*/ 1746 int 1747 i_ddi_ontrap(ddi_acc_handle_t hp) 1748 { 1749 return (DDI_FAILURE); 1750 } 1751 1752 /*ARGSUSED*/ 1753 void 1754 i_ddi_notrap(ddi_acc_handle_t hp) 1755 { 1756 } 1757 1758 1759 /* 1760 * Misc Functions 1761 */ 1762 1763 /* 1764 * Implementation instance override functions 1765 * 1766 * No override on i86pc 1767 */ 1768 /*ARGSUSED*/ 1769 uint_t 1770 impl_assign_instance(dev_info_t *dip) 1771 { 1772 return ((uint_t)-1); 1773 } 1774 1775 /*ARGSUSED*/ 1776 int 1777 impl_keep_instance(dev_info_t *dip) 1778 { 1779 1780 #if defined(__xpv) 1781 /* 1782 * Do not persist instance numbers assigned to devices in dom0 1783 */ 1784 dev_info_t *pdip; 1785 if (DOMAIN_IS_INITDOMAIN(xen_info)) { 1786 if (((pdip = ddi_get_parent(dip)) != NULL) && 1787 (strcmp(ddi_get_name(pdip), "xpvd") == 0)) 1788 return (DDI_SUCCESS); 1789 } 1790 #endif 1791 return (DDI_FAILURE); 1792 } 1793 1794 /*ARGSUSED*/ 1795 int 1796 impl_free_instance(dev_info_t *dip) 1797 { 1798 return (DDI_FAILURE); 1799 } 1800 1801 /*ARGSUSED*/ 1802 int 1803 impl_check_cpu(dev_info_t *devi) 1804 { 1805 return (DDI_SUCCESS); 1806 } 1807 1808 /* 1809 * Referenced in common/cpr_driver.c: Power off machine. 1810 * Don't know how to power off i86pc. 1811 */ 1812 void 1813 arch_power_down() 1814 {} 1815 1816 /* 1817 * Copy name to property_name, since name 1818 * is in the low address range below kernelbase. 1819 */ 1820 static void 1821 copy_boot_str(const char *boot_str, char *kern_str, int len) 1822 { 1823 int i = 0; 1824 1825 while (i < len - 1 && boot_str[i] != '\0') { 1826 kern_str[i] = boot_str[i]; 1827 i++; 1828 } 1829 1830 kern_str[i] = 0; /* null terminate */ 1831 if (boot_str[i] != '\0') 1832 cmn_err(CE_WARN, 1833 "boot property string is truncated to %s", kern_str); 1834 } 1835 1836 static void 1837 get_boot_properties(void) 1838 { 1839 extern char hw_provider[]; 1840 dev_info_t *devi; 1841 char *name; 1842 int length; 1843 char property_name[50], property_val[50]; 1844 void *bop_staging_area; 1845 1846 bop_staging_area = kmem_zalloc(MMU_PAGESIZE, KM_NOSLEEP); 1847 1848 /* 1849 * Import "root" properties from the boot. 1850 * 1851 * We do this by invoking BOP_NEXTPROP until the list 1852 * is completely copied in. 1853 */ 1854 1855 devi = ddi_root_node(); 1856 for (name = BOP_NEXTPROP(bootops, ""); /* get first */ 1857 name; /* NULL => DONE */ 1858 name = BOP_NEXTPROP(bootops, name)) { /* get next */ 1859 1860 /* copy string to memory above kernelbase */ 1861 copy_boot_str(name, property_name, 50); 1862 1863 /* 1864 * Skip vga properties. They will be picked up later 1865 * by get_vga_properties. 1866 */ 1867 if (strcmp(property_name, "display-edif-block") == 0 || 1868 strcmp(property_name, "display-edif-id") == 0) { 1869 continue; 1870 } 1871 1872 length = BOP_GETPROPLEN(bootops, property_name); 1873 if (length == 0) 1874 continue; 1875 if (length > MMU_PAGESIZE) { 1876 cmn_err(CE_NOTE, 1877 "boot property %s longer than 0x%x, ignored\n", 1878 property_name, MMU_PAGESIZE); 1879 continue; 1880 } 1881 BOP_GETPROP(bootops, property_name, bop_staging_area); 1882 1883 /* 1884 * special properties: 1885 * si-machine, si-hw-provider 1886 * goes to kernel data structures. 1887 * bios-boot-device and stdout 1888 * goes to hardware property list so it may show up 1889 * in the prtconf -vp output. This is needed by 1890 * Install/Upgrade. Once we fix install upgrade, 1891 * this can be taken out. 1892 */ 1893 if (strcmp(name, "si-machine") == 0) { 1894 (void) strncpy(utsname.machine, bop_staging_area, 1895 SYS_NMLN); 1896 utsname.machine[SYS_NMLN - 1] = (char)NULL; 1897 } else if (strcmp(name, "si-hw-provider") == 0) { 1898 (void) strncpy(hw_provider, bop_staging_area, SYS_NMLN); 1899 hw_provider[SYS_NMLN - 1] = (char)NULL; 1900 } else if (strcmp(name, "bios-boot-device") == 0) { 1901 copy_boot_str(bop_staging_area, property_val, 50); 1902 (void) ndi_prop_update_string(DDI_DEV_T_NONE, devi, 1903 property_name, property_val); 1904 } else if (strcmp(name, "stdout") == 0) { 1905 (void) ndi_prop_update_int(DDI_DEV_T_NONE, devi, 1906 property_name, *((int *)bop_staging_area)); 1907 } else { 1908 /* Property type unknown, use old prop interface */ 1909 (void) e_ddi_prop_create(DDI_DEV_T_NONE, devi, 1910 DDI_PROP_CANSLEEP, property_name, bop_staging_area, 1911 length); 1912 } 1913 } 1914 1915 kmem_free(bop_staging_area, MMU_PAGESIZE); 1916 } 1917 1918 static void 1919 get_vga_properties(void) 1920 { 1921 dev_info_t *devi; 1922 major_t major; 1923 char *name; 1924 int length; 1925 char property_val[50]; 1926 void *bop_staging_area; 1927 1928 /* 1929 * XXXX Hack Allert! 1930 * There really needs to be a better way for identifying various 1931 * console framebuffers and their related issues. Till then, 1932 * check for this one as a replacement to vgatext. 1933 */ 1934 major = ddi_name_to_major("ragexl"); 1935 if (major == (major_t)-1) { 1936 major = ddi_name_to_major("vgatext"); 1937 if (major == (major_t)-1) 1938 return; 1939 } 1940 devi = devnamesp[major].dn_head; 1941 if (devi == NULL) 1942 return; 1943 1944 bop_staging_area = kmem_zalloc(MMU_PAGESIZE, KM_SLEEP); 1945 1946 /* 1947 * Import "vga" properties from the boot. 1948 */ 1949 name = "display-edif-block"; 1950 length = BOP_GETPROPLEN(bootops, name); 1951 if (length > 0 && length < MMU_PAGESIZE) { 1952 BOP_GETPROP(bootops, name, bop_staging_area); 1953 (void) ndi_prop_update_byte_array(DDI_DEV_T_NONE, 1954 devi, name, bop_staging_area, length); 1955 } 1956 1957 /* 1958 * kdmconfig is also looking for display-type and 1959 * video-adapter-type. We default to color and svga. 1960 * 1961 * Could it be "monochrome", "vga"? 1962 * Nah, you've got to come to the 21st century... 1963 * And you can set monitor type manually in kdmconfig 1964 * if you are really an old junky. 1965 */ 1966 (void) ndi_prop_update_string(DDI_DEV_T_NONE, 1967 devi, "display-type", "color"); 1968 (void) ndi_prop_update_string(DDI_DEV_T_NONE, 1969 devi, "video-adapter-type", "svga"); 1970 1971 name = "display-edif-id"; 1972 length = BOP_GETPROPLEN(bootops, name); 1973 if (length > 0 && length < MMU_PAGESIZE) { 1974 BOP_GETPROP(bootops, name, bop_staging_area); 1975 copy_boot_str(bop_staging_area, property_val, length); 1976 (void) ndi_prop_update_string(DDI_DEV_T_NONE, 1977 devi, name, property_val); 1978 } 1979 1980 kmem_free(bop_staging_area, MMU_PAGESIZE); 1981 } 1982 1983 1984 /* 1985 * This is temporary, but absolutely necessary. If we are being 1986 * booted with a device tree created by the DevConf project's bootconf 1987 * program, then we have device information nodes that reflect 1988 * reality. At this point in time in the Solaris release schedule, the 1989 * kernel drivers aren't prepared for reality. They still depend on their 1990 * own ad-hoc interpretations of the properties created when their .conf 1991 * files were interpreted. These drivers use an "ignore-hardware-nodes" 1992 * property to prevent them from using the nodes passed up from the bootconf 1993 * device tree. 1994 * 1995 * Trying to assemble root file system drivers as we are booting from 1996 * devconf will fail if the kernel driver is basing its name_addr's on the 1997 * psuedo-node device info while the bootpath passed up from bootconf is using 1998 * reality-based name_addrs. We help the boot along in this case by 1999 * looking at the pre-bootconf bootpath and determining if we would have 2000 * successfully matched if that had been the bootpath we had chosen. 2001 * 2002 * Note that we only even perform this extra check if we've booted 2003 * using bootconf's 1275 compliant bootpath, this is the boot device, and 2004 * we're trying to match the name_addr specified in the 1275 bootpath. 2005 */ 2006 2007 #define MAXCOMPONENTLEN 32 2008 2009 int 2010 x86_old_bootpath_name_addr_match(dev_info_t *cdip, char *caddr, char *naddr) 2011 { 2012 /* 2013 * There are multiple criteria to be met before we can even 2014 * consider allowing a name_addr match here. 2015 * 2016 * 1) We must have been booted such that the bootconf program 2017 * created device tree nodes and properties. This can be 2018 * determined by examining the 'bootpath' property. This 2019 * property will be a non-null string iff bootconf was 2020 * involved in the boot. 2021 * 2022 * 2) The module that we want to match must be the boot device. 2023 * 2024 * 3) The instance of the module we are thinking of letting be 2025 * our match must be ignoring hardware nodes. 2026 * 2027 * 4) The name_addr we want to match must be the name_addr 2028 * specified in the 1275 bootpath. 2029 */ 2030 static char bootdev_module[MAXCOMPONENTLEN]; 2031 static char bootdev_oldmod[MAXCOMPONENTLEN]; 2032 static char bootdev_newaddr[MAXCOMPONENTLEN]; 2033 static char bootdev_oldaddr[MAXCOMPONENTLEN]; 2034 static int quickexit; 2035 2036 char *daddr; 2037 int dlen; 2038 2039 char *lkupname; 2040 int rv = DDI_FAILURE; 2041 2042 if ((ddi_getlongprop(DDI_DEV_T_ANY, cdip, DDI_PROP_DONTPASS, 2043 "devconf-addr", (caddr_t)&daddr, &dlen) == DDI_PROP_SUCCESS) && 2044 (ddi_getprop(DDI_DEV_T_ANY, cdip, DDI_PROP_DONTPASS, 2045 "ignore-hardware-nodes", -1) != -1)) { 2046 if (strcmp(daddr, caddr) == 0) { 2047 return (DDI_SUCCESS); 2048 } 2049 } 2050 2051 if (quickexit) 2052 return (rv); 2053 2054 if (bootdev_module[0] == '\0') { 2055 char *addrp, *eoaddrp; 2056 char *busp, *modp, *atp; 2057 char *bp1275, *bp; 2058 int bp1275len, bplen; 2059 2060 bp1275 = bp = addrp = eoaddrp = busp = modp = atp = NULL; 2061 2062 if (ddi_getlongprop(DDI_DEV_T_ANY, 2063 ddi_root_node(), 0, "bootpath", 2064 (caddr_t)&bp1275, &bp1275len) != DDI_PROP_SUCCESS || 2065 bp1275len <= 1) { 2066 /* 2067 * We didn't boot from bootconf so we never need to 2068 * do any special matches. 2069 */ 2070 quickexit = 1; 2071 if (bp1275) 2072 kmem_free(bp1275, bp1275len); 2073 return (rv); 2074 } 2075 2076 if (ddi_getlongprop(DDI_DEV_T_ANY, 2077 ddi_root_node(), 0, "boot-path", 2078 (caddr_t)&bp, &bplen) != DDI_PROP_SUCCESS || bplen <= 1) { 2079 /* 2080 * No fallback position for matching. This is 2081 * certainly unexpected, but we'll handle it 2082 * just in case. 2083 */ 2084 quickexit = 1; 2085 kmem_free(bp1275, bp1275len); 2086 if (bp) 2087 kmem_free(bp, bplen); 2088 return (rv); 2089 } 2090 2091 /* 2092 * Determine boot device module and 1275 name_addr 2093 * 2094 * bootpath assumed to be of the form /bus/module@name_addr 2095 */ 2096 if (busp = strchr(bp1275, '/')) { 2097 if (modp = strchr(busp + 1, '/')) { 2098 if (atp = strchr(modp + 1, '@')) { 2099 *atp = '\0'; 2100 addrp = atp + 1; 2101 if (eoaddrp = strchr(addrp, '/')) 2102 *eoaddrp = '\0'; 2103 } 2104 } 2105 } 2106 2107 if (modp && addrp) { 2108 (void) strncpy(bootdev_module, modp + 1, 2109 MAXCOMPONENTLEN); 2110 bootdev_module[MAXCOMPONENTLEN - 1] = '\0'; 2111 2112 (void) strncpy(bootdev_newaddr, addrp, MAXCOMPONENTLEN); 2113 bootdev_newaddr[MAXCOMPONENTLEN - 1] = '\0'; 2114 } else { 2115 quickexit = 1; 2116 kmem_free(bp1275, bp1275len); 2117 kmem_free(bp, bplen); 2118 return (rv); 2119 } 2120 2121 /* 2122 * Determine fallback name_addr 2123 * 2124 * 10/3/96 - Also save fallback module name because it 2125 * might actually be different than the current module 2126 * name. E.G., ISA pnp drivers have new names. 2127 * 2128 * bootpath assumed to be of the form /bus/module@name_addr 2129 */ 2130 addrp = NULL; 2131 if (busp = strchr(bp, '/')) { 2132 if (modp = strchr(busp + 1, '/')) { 2133 if (atp = strchr(modp + 1, '@')) { 2134 *atp = '\0'; 2135 addrp = atp + 1; 2136 if (eoaddrp = strchr(addrp, '/')) 2137 *eoaddrp = '\0'; 2138 } 2139 } 2140 } 2141 2142 if (modp && addrp) { 2143 (void) strncpy(bootdev_oldmod, modp + 1, 2144 MAXCOMPONENTLEN); 2145 bootdev_module[MAXCOMPONENTLEN - 1] = '\0'; 2146 2147 (void) strncpy(bootdev_oldaddr, addrp, MAXCOMPONENTLEN); 2148 bootdev_oldaddr[MAXCOMPONENTLEN - 1] = '\0'; 2149 } 2150 2151 /* Free up the bootpath storage now that we're done with it. */ 2152 kmem_free(bp1275, bp1275len); 2153 kmem_free(bp, bplen); 2154 2155 if (bootdev_oldaddr[0] == '\0') { 2156 quickexit = 1; 2157 return (rv); 2158 } 2159 } 2160 2161 if (((lkupname = ddi_get_name(cdip)) != NULL) && 2162 (strcmp(bootdev_module, lkupname) == 0 || 2163 strcmp(bootdev_oldmod, lkupname) == 0) && 2164 ((ddi_getprop(DDI_DEV_T_ANY, cdip, DDI_PROP_DONTPASS, 2165 "ignore-hardware-nodes", -1) != -1) || 2166 ignore_hardware_nodes) && 2167 strcmp(bootdev_newaddr, caddr) == 0 && 2168 strcmp(bootdev_oldaddr, naddr) == 0) { 2169 rv = DDI_SUCCESS; 2170 } 2171 2172 return (rv); 2173 } 2174 2175 /* 2176 * Perform a copy from a memory mapped device (whose devinfo pointer is devi) 2177 * separately mapped at devaddr in the kernel to a kernel buffer at kaddr. 2178 */ 2179 /*ARGSUSED*/ 2180 int 2181 e_ddi_copyfromdev(dev_info_t *devi, 2182 off_t off, const void *devaddr, void *kaddr, size_t len) 2183 { 2184 bcopy(devaddr, kaddr, len); 2185 return (0); 2186 } 2187 2188 /* 2189 * Perform a copy to a memory mapped device (whose devinfo pointer is devi) 2190 * separately mapped at devaddr in the kernel from a kernel buffer at kaddr. 2191 */ 2192 /*ARGSUSED*/ 2193 int 2194 e_ddi_copytodev(dev_info_t *devi, 2195 off_t off, const void *kaddr, void *devaddr, size_t len) 2196 { 2197 bcopy(kaddr, devaddr, len); 2198 return (0); 2199 } 2200 2201 2202 static int 2203 poke_mem(peekpoke_ctlops_t *in_args) 2204 { 2205 int err = DDI_SUCCESS; 2206 on_trap_data_t otd; 2207 2208 /* Set up protected environment. */ 2209 if (!on_trap(&otd, OT_DATA_ACCESS)) { 2210 switch (in_args->size) { 2211 case sizeof (uint8_t): 2212 *(uint8_t *)(in_args->dev_addr) = 2213 *(uint8_t *)in_args->host_addr; 2214 break; 2215 2216 case sizeof (uint16_t): 2217 *(uint16_t *)(in_args->dev_addr) = 2218 *(uint16_t *)in_args->host_addr; 2219 break; 2220 2221 case sizeof (uint32_t): 2222 *(uint32_t *)(in_args->dev_addr) = 2223 *(uint32_t *)in_args->host_addr; 2224 break; 2225 2226 case sizeof (uint64_t): 2227 *(uint64_t *)(in_args->dev_addr) = 2228 *(uint64_t *)in_args->host_addr; 2229 break; 2230 2231 default: 2232 err = DDI_FAILURE; 2233 break; 2234 } 2235 } else 2236 err = DDI_FAILURE; 2237 2238 /* Take down protected environment. */ 2239 no_trap(); 2240 2241 return (err); 2242 } 2243 2244 2245 static int 2246 peek_mem(peekpoke_ctlops_t *in_args) 2247 { 2248 int err = DDI_SUCCESS; 2249 on_trap_data_t otd; 2250 2251 if (!on_trap(&otd, OT_DATA_ACCESS)) { 2252 switch (in_args->size) { 2253 case sizeof (uint8_t): 2254 *(uint8_t *)in_args->host_addr = 2255 *(uint8_t *)in_args->dev_addr; 2256 break; 2257 2258 case sizeof (uint16_t): 2259 *(uint16_t *)in_args->host_addr = 2260 *(uint16_t *)in_args->dev_addr; 2261 break; 2262 2263 case sizeof (uint32_t): 2264 *(uint32_t *)in_args->host_addr = 2265 *(uint32_t *)in_args->dev_addr; 2266 break; 2267 2268 case sizeof (uint64_t): 2269 *(uint64_t *)in_args->host_addr = 2270 *(uint64_t *)in_args->dev_addr; 2271 break; 2272 2273 default: 2274 err = DDI_FAILURE; 2275 break; 2276 } 2277 } else 2278 err = DDI_FAILURE; 2279 2280 no_trap(); 2281 return (err); 2282 } 2283 2284 2285 /* 2286 * This is called only to process peek/poke when the DIP is NULL. 2287 * Assume that this is for memory, as nexi take care of device safe accesses. 2288 */ 2289 int 2290 peekpoke_mem(ddi_ctl_enum_t cmd, peekpoke_ctlops_t *in_args) 2291 { 2292 return (cmd == DDI_CTLOPS_PEEK ? peek_mem(in_args) : poke_mem(in_args)); 2293 } 2294 2295 /* 2296 * we've just done a cautious put/get. Check if it was successful by 2297 * calling pci_ereport_post() on all puts and for any gets that return -1 2298 */ 2299 static int 2300 pci_peekpoke_check_fma(dev_info_t *dip, void *arg, ddi_ctl_enum_t ctlop, 2301 void (*scan)(dev_info_t *, ddi_fm_error_t *)) 2302 { 2303 int rval = DDI_SUCCESS; 2304 peekpoke_ctlops_t *in_args = (peekpoke_ctlops_t *)arg; 2305 ddi_fm_error_t de; 2306 ddi_acc_impl_t *hp = (ddi_acc_impl_t *)in_args->handle; 2307 ddi_acc_hdl_t *hdlp = (ddi_acc_hdl_t *)in_args->handle; 2308 int check_err = 0; 2309 int repcount = in_args->repcount; 2310 2311 if (ctlop == DDI_CTLOPS_POKE && 2312 hdlp->ah_acc.devacc_attr_access != DDI_CAUTIOUS_ACC) 2313 return (DDI_SUCCESS); 2314 2315 if (ctlop == DDI_CTLOPS_PEEK && 2316 hdlp->ah_acc.devacc_attr_access != DDI_CAUTIOUS_ACC) { 2317 for (; repcount; repcount--) { 2318 switch (in_args->size) { 2319 case sizeof (uint8_t): 2320 if (*(uint8_t *)in_args->host_addr == 0xff) 2321 check_err = 1; 2322 break; 2323 case sizeof (uint16_t): 2324 if (*(uint16_t *)in_args->host_addr == 0xffff) 2325 check_err = 1; 2326 break; 2327 case sizeof (uint32_t): 2328 if (*(uint32_t *)in_args->host_addr == 2329 0xffffffff) 2330 check_err = 1; 2331 break; 2332 case sizeof (uint64_t): 2333 if (*(uint64_t *)in_args->host_addr == 2334 0xffffffffffffffff) 2335 check_err = 1; 2336 break; 2337 } 2338 } 2339 if (check_err == 0) 2340 return (DDI_SUCCESS); 2341 } 2342 /* 2343 * for a cautious put or get or a non-cautious get that returned -1 call 2344 * io framework to see if there really was an error 2345 */ 2346 bzero(&de, sizeof (ddi_fm_error_t)); 2347 de.fme_version = DDI_FME_VERSION; 2348 de.fme_ena = fm_ena_generate(0, FM_ENA_FMT1); 2349 if (hdlp->ah_acc.devacc_attr_access == DDI_CAUTIOUS_ACC) { 2350 de.fme_flag = DDI_FM_ERR_EXPECTED; 2351 de.fme_acc_handle = in_args->handle; 2352 } else if (hdlp->ah_acc.devacc_attr_access == DDI_DEFAULT_ACC) { 2353 /* 2354 * We only get here with DDI_DEFAULT_ACC for config space gets. 2355 * Non-hardened drivers may be probing the hardware and 2356 * expecting -1 returned. So need to treat errors on 2357 * DDI_DEFAULT_ACC as DDI_FM_ERR_EXPECTED. 2358 */ 2359 de.fme_flag = DDI_FM_ERR_EXPECTED; 2360 de.fme_acc_handle = in_args->handle; 2361 } else { 2362 /* 2363 * Hardened driver doing protected accesses shouldn't 2364 * get errors unless there's a hardware problem. Treat 2365 * as nonfatal if there's an error, but set UNEXPECTED 2366 * so we raise ereports on any errors and potentially 2367 * fault the device 2368 */ 2369 de.fme_flag = DDI_FM_ERR_UNEXPECTED; 2370 } 2371 (void) scan(dip, &de); 2372 if (hdlp->ah_acc.devacc_attr_access != DDI_DEFAULT_ACC && 2373 de.fme_status != DDI_FM_OK) { 2374 ndi_err_t *errp = (ndi_err_t *)hp->ahi_err; 2375 rval = DDI_FAILURE; 2376 errp->err_ena = de.fme_ena; 2377 errp->err_expected = de.fme_flag; 2378 errp->err_status = DDI_FM_NONFATAL; 2379 } 2380 return (rval); 2381 } 2382 2383 /* 2384 * pci_peekpoke_check_nofma() is for when an error occurs on a register access 2385 * during pci_ereport_post(). We can't call pci_ereport_post() again or we'd 2386 * recurse, so assume all puts are OK and gets have failed if they return -1 2387 */ 2388 static int 2389 pci_peekpoke_check_nofma(void *arg, ddi_ctl_enum_t ctlop) 2390 { 2391 int rval = DDI_SUCCESS; 2392 peekpoke_ctlops_t *in_args = (peekpoke_ctlops_t *)arg; 2393 ddi_acc_impl_t *hp = (ddi_acc_impl_t *)in_args->handle; 2394 ddi_acc_hdl_t *hdlp = (ddi_acc_hdl_t *)in_args->handle; 2395 int repcount = in_args->repcount; 2396 2397 if (ctlop == DDI_CTLOPS_POKE) 2398 return (rval); 2399 2400 for (; repcount; repcount--) { 2401 switch (in_args->size) { 2402 case sizeof (uint8_t): 2403 if (*(uint8_t *)in_args->host_addr == 0xff) 2404 rval = DDI_FAILURE; 2405 break; 2406 case sizeof (uint16_t): 2407 if (*(uint16_t *)in_args->host_addr == 0xffff) 2408 rval = DDI_FAILURE; 2409 break; 2410 case sizeof (uint32_t): 2411 if (*(uint32_t *)in_args->host_addr == 0xffffffff) 2412 rval = DDI_FAILURE; 2413 break; 2414 case sizeof (uint64_t): 2415 if (*(uint64_t *)in_args->host_addr == 2416 0xffffffffffffffff) 2417 rval = DDI_FAILURE; 2418 break; 2419 } 2420 } 2421 if (hdlp->ah_acc.devacc_attr_access != DDI_DEFAULT_ACC && 2422 rval == DDI_FAILURE) { 2423 ndi_err_t *errp = (ndi_err_t *)hp->ahi_err; 2424 errp->err_ena = fm_ena_generate(0, FM_ENA_FMT1); 2425 errp->err_expected = DDI_FM_ERR_UNEXPECTED; 2426 errp->err_status = DDI_FM_NONFATAL; 2427 } 2428 return (rval); 2429 } 2430 2431 int 2432 pci_peekpoke_check(dev_info_t *dip, dev_info_t *rdip, 2433 ddi_ctl_enum_t ctlop, void *arg, void *result, 2434 int (*handler)(dev_info_t *, dev_info_t *, ddi_ctl_enum_t, void *, 2435 void *), kmutex_t *err_mutexp, kmutex_t *peek_poke_mutexp, 2436 void (*scan)(dev_info_t *, ddi_fm_error_t *)) 2437 { 2438 int rval; 2439 peekpoke_ctlops_t *in_args = (peekpoke_ctlops_t *)arg; 2440 ddi_acc_impl_t *hp = (ddi_acc_impl_t *)in_args->handle; 2441 2442 /* 2443 * this function only supports cautious accesses, not peeks/pokes 2444 * which don't have a handle 2445 */ 2446 if (hp == NULL) 2447 return (DDI_FAILURE); 2448 2449 if (hp->ahi_acc_attr & DDI_ACCATTR_CONFIG_SPACE) { 2450 if (!mutex_tryenter(err_mutexp)) { 2451 /* 2452 * As this may be a recursive call from within 2453 * pci_ereport_post() we can't wait for the mutexes. 2454 * Fortunately we know someone is already calling 2455 * pci_ereport_post() which will handle the error bits 2456 * for us, and as this is a config space access we can 2457 * just do the access and check return value for -1 2458 * using pci_peekpoke_check_nofma(). 2459 */ 2460 rval = handler(dip, rdip, ctlop, arg, result); 2461 if (rval == DDI_SUCCESS) 2462 rval = pci_peekpoke_check_nofma(arg, ctlop); 2463 return (rval); 2464 } 2465 /* 2466 * This can't be a recursive call. Drop the err_mutex and get 2467 * both mutexes in the right order. If an error hasn't already 2468 * been detected by the ontrap code, use pci_peekpoke_check_fma 2469 * which will call pci_ereport_post() to check error status. 2470 */ 2471 mutex_exit(err_mutexp); 2472 } 2473 mutex_enter(peek_poke_mutexp); 2474 rval = handler(dip, rdip, ctlop, arg, result); 2475 if (rval == DDI_SUCCESS) { 2476 mutex_enter(err_mutexp); 2477 rval = pci_peekpoke_check_fma(dip, arg, ctlop, scan); 2478 mutex_exit(err_mutexp); 2479 } 2480 mutex_exit(peek_poke_mutexp); 2481 return (rval); 2482 } 2483 2484 void 2485 impl_setup_ddi(void) 2486 { 2487 #if !defined(__xpv) 2488 extern void startup_bios_disk(void); 2489 extern int post_fastreboot; 2490 #endif 2491 dev_info_t *xdip, *isa_dip; 2492 rd_existing_t rd_mem_prop; 2493 int err; 2494 2495 ndi_devi_alloc_sleep(ddi_root_node(), "ramdisk", 2496 (pnode_t)DEVI_SID_NODEID, &xdip); 2497 2498 (void) BOP_GETPROP(bootops, 2499 "ramdisk_start", (void *)&ramdisk_start); 2500 (void) BOP_GETPROP(bootops, 2501 "ramdisk_end", (void *)&ramdisk_end); 2502 2503 #ifdef __xpv 2504 ramdisk_start -= ONE_GIG; 2505 ramdisk_end -= ONE_GIG; 2506 #endif 2507 rd_mem_prop.phys = ramdisk_start; 2508 rd_mem_prop.size = ramdisk_end - ramdisk_start + 1; 2509 2510 (void) ndi_prop_update_byte_array(DDI_DEV_T_NONE, xdip, 2511 RD_EXISTING_PROP_NAME, (uchar_t *)&rd_mem_prop, 2512 sizeof (rd_mem_prop)); 2513 err = ndi_devi_bind_driver(xdip, 0); 2514 ASSERT(err == 0); 2515 2516 /* isa node */ 2517 if (pseudo_isa) { 2518 ndi_devi_alloc_sleep(ddi_root_node(), "isa", 2519 (pnode_t)DEVI_SID_NODEID, &isa_dip); 2520 (void) ndi_prop_update_string(DDI_DEV_T_NONE, isa_dip, 2521 "device_type", "isa"); 2522 (void) ndi_prop_update_string(DDI_DEV_T_NONE, isa_dip, 2523 "bus-type", "isa"); 2524 (void) ndi_devi_bind_driver(isa_dip, 0); 2525 } 2526 2527 /* 2528 * Read in the properties from the boot. 2529 */ 2530 get_boot_properties(); 2531 2532 /* not framebuffer should be enumerated, if present */ 2533 get_vga_properties(); 2534 2535 /* 2536 * Check for administratively disabled drivers. 2537 */ 2538 check_driver_disable(); 2539 2540 #if !defined(__xpv) 2541 if (!post_fastreboot) 2542 startup_bios_disk(); 2543 #endif 2544 /* do bus dependent probes. */ 2545 impl_bus_initialprobe(); 2546 } 2547 2548 dev_t 2549 getrootdev(void) 2550 { 2551 /* 2552 * Precedence given to rootdev if set in /etc/system 2553 */ 2554 if (root_is_svm == B_TRUE) { 2555 return (ddi_pathname_to_dev_t(svm_bootpath)); 2556 } 2557 2558 /* 2559 * Usually rootfs.bo_name is initialized by the 2560 * the bootpath property from bootenv.rc, but 2561 * defaults to "/ramdisk:a" otherwise. 2562 */ 2563 return (ddi_pathname_to_dev_t(rootfs.bo_name)); 2564 } 2565 2566 static struct bus_probe { 2567 struct bus_probe *next; 2568 void (*probe)(int); 2569 } *bus_probes; 2570 2571 void 2572 impl_bus_add_probe(void (*func)(int)) 2573 { 2574 struct bus_probe *probe; 2575 struct bus_probe *lastprobe = NULL; 2576 2577 probe = kmem_alloc(sizeof (*probe), KM_SLEEP); 2578 probe->probe = func; 2579 probe->next = NULL; 2580 2581 if (!bus_probes) { 2582 bus_probes = probe; 2583 return; 2584 } 2585 2586 lastprobe = bus_probes; 2587 while (lastprobe->next) 2588 lastprobe = lastprobe->next; 2589 lastprobe->next = probe; 2590 } 2591 2592 /*ARGSUSED*/ 2593 void 2594 impl_bus_delete_probe(void (*func)(int)) 2595 { 2596 struct bus_probe *prev = NULL; 2597 struct bus_probe *probe = bus_probes; 2598 2599 while (probe) { 2600 if (probe->probe == func) 2601 break; 2602 prev = probe; 2603 probe = probe->next; 2604 } 2605 2606 if (probe == NULL) 2607 return; 2608 2609 if (prev) 2610 prev->next = probe->next; 2611 else 2612 bus_probes = probe->next; 2613 2614 kmem_free(probe, sizeof (struct bus_probe)); 2615 } 2616 2617 /* 2618 * impl_bus_initialprobe 2619 * Modload the prom simulator, then let it probe to verify existence 2620 * and type of PCI support. 2621 */ 2622 static void 2623 impl_bus_initialprobe(void) 2624 { 2625 struct bus_probe *probe; 2626 2627 /* load modules to install bus probes */ 2628 #if defined(__xpv) 2629 if (DOMAIN_IS_INITDOMAIN(xen_info)) { 2630 if (modload("misc", "pci_autoconfig") < 0) { 2631 panic("failed to load misc/pci_autoconfig"); 2632 } 2633 2634 if (modload("drv", "isa") < 0) 2635 panic("failed to load drv/isa"); 2636 } 2637 2638 (void) modload("misc", "xpv_autoconfig"); 2639 #else 2640 if (modload("misc", "pci_autoconfig") < 0) { 2641 panic("failed to load misc/pci_autoconfig"); 2642 } 2643 2644 (void) modload("misc", "acpidev"); 2645 2646 if (modload("drv", "isa") < 0) 2647 panic("failed to load drv/isa"); 2648 #endif 2649 2650 probe = bus_probes; 2651 while (probe) { 2652 /* run the probe functions */ 2653 (*probe->probe)(0); 2654 probe = probe->next; 2655 } 2656 } 2657 2658 /* 2659 * impl_bus_reprobe 2660 * Reprogram devices not set up by firmware. 2661 */ 2662 static void 2663 impl_bus_reprobe(void) 2664 { 2665 struct bus_probe *probe; 2666 2667 probe = bus_probes; 2668 while (probe) { 2669 /* run the probe function */ 2670 (*probe->probe)(1); 2671 probe = probe->next; 2672 } 2673 } 2674 2675 2676 /* 2677 * The following functions ready a cautious request to go up to the nexus 2678 * driver. It is up to the nexus driver to decide how to process the request. 2679 * It may choose to call i_ddi_do_caut_get/put in this file, or do it 2680 * differently. 2681 */ 2682 2683 static void 2684 i_ddi_caut_getput_ctlops(ddi_acc_impl_t *hp, uint64_t host_addr, 2685 uint64_t dev_addr, size_t size, size_t repcount, uint_t flags, 2686 ddi_ctl_enum_t cmd) 2687 { 2688 peekpoke_ctlops_t cautacc_ctlops_arg; 2689 2690 cautacc_ctlops_arg.size = size; 2691 cautacc_ctlops_arg.dev_addr = dev_addr; 2692 cautacc_ctlops_arg.host_addr = host_addr; 2693 cautacc_ctlops_arg.handle = (ddi_acc_handle_t)hp; 2694 cautacc_ctlops_arg.repcount = repcount; 2695 cautacc_ctlops_arg.flags = flags; 2696 2697 (void) ddi_ctlops(hp->ahi_common.ah_dip, hp->ahi_common.ah_dip, cmd, 2698 &cautacc_ctlops_arg, NULL); 2699 } 2700 2701 uint8_t 2702 i_ddi_caut_get8(ddi_acc_impl_t *hp, uint8_t *addr) 2703 { 2704 uint8_t value; 2705 i_ddi_caut_getput_ctlops(hp, (uintptr_t)&value, (uintptr_t)addr, 2706 sizeof (uint8_t), 1, 0, DDI_CTLOPS_PEEK); 2707 2708 return (value); 2709 } 2710 2711 uint16_t 2712 i_ddi_caut_get16(ddi_acc_impl_t *hp, uint16_t *addr) 2713 { 2714 uint16_t value; 2715 i_ddi_caut_getput_ctlops(hp, (uintptr_t)&value, (uintptr_t)addr, 2716 sizeof (uint16_t), 1, 0, DDI_CTLOPS_PEEK); 2717 2718 return (value); 2719 } 2720 2721 uint32_t 2722 i_ddi_caut_get32(ddi_acc_impl_t *hp, uint32_t *addr) 2723 { 2724 uint32_t value; 2725 i_ddi_caut_getput_ctlops(hp, (uintptr_t)&value, (uintptr_t)addr, 2726 sizeof (uint32_t), 1, 0, DDI_CTLOPS_PEEK); 2727 2728 return (value); 2729 } 2730 2731 uint64_t 2732 i_ddi_caut_get64(ddi_acc_impl_t *hp, uint64_t *addr) 2733 { 2734 uint64_t value; 2735 i_ddi_caut_getput_ctlops(hp, (uintptr_t)&value, (uintptr_t)addr, 2736 sizeof (uint64_t), 1, 0, DDI_CTLOPS_PEEK); 2737 2738 return (value); 2739 } 2740 2741 void 2742 i_ddi_caut_put8(ddi_acc_impl_t *hp, uint8_t *addr, uint8_t value) 2743 { 2744 i_ddi_caut_getput_ctlops(hp, (uintptr_t)&value, (uintptr_t)addr, 2745 sizeof (uint8_t), 1, 0, DDI_CTLOPS_POKE); 2746 } 2747 2748 void 2749 i_ddi_caut_put16(ddi_acc_impl_t *hp, uint16_t *addr, uint16_t value) 2750 { 2751 i_ddi_caut_getput_ctlops(hp, (uintptr_t)&value, (uintptr_t)addr, 2752 sizeof (uint16_t), 1, 0, DDI_CTLOPS_POKE); 2753 } 2754 2755 void 2756 i_ddi_caut_put32(ddi_acc_impl_t *hp, uint32_t *addr, uint32_t value) 2757 { 2758 i_ddi_caut_getput_ctlops(hp, (uintptr_t)&value, (uintptr_t)addr, 2759 sizeof (uint32_t), 1, 0, DDI_CTLOPS_POKE); 2760 } 2761 2762 void 2763 i_ddi_caut_put64(ddi_acc_impl_t *hp, uint64_t *addr, uint64_t value) 2764 { 2765 i_ddi_caut_getput_ctlops(hp, (uintptr_t)&value, (uintptr_t)addr, 2766 sizeof (uint64_t), 1, 0, DDI_CTLOPS_POKE); 2767 } 2768 2769 void 2770 i_ddi_caut_rep_get8(ddi_acc_impl_t *hp, uint8_t *host_addr, uint8_t *dev_addr, 2771 size_t repcount, uint_t flags) 2772 { 2773 i_ddi_caut_getput_ctlops(hp, (uintptr_t)host_addr, (uintptr_t)dev_addr, 2774 sizeof (uint8_t), repcount, flags, DDI_CTLOPS_PEEK); 2775 } 2776 2777 void 2778 i_ddi_caut_rep_get16(ddi_acc_impl_t *hp, uint16_t *host_addr, 2779 uint16_t *dev_addr, size_t repcount, uint_t flags) 2780 { 2781 i_ddi_caut_getput_ctlops(hp, (uintptr_t)host_addr, (uintptr_t)dev_addr, 2782 sizeof (uint16_t), repcount, flags, DDI_CTLOPS_PEEK); 2783 } 2784 2785 void 2786 i_ddi_caut_rep_get32(ddi_acc_impl_t *hp, uint32_t *host_addr, 2787 uint32_t *dev_addr, size_t repcount, uint_t flags) 2788 { 2789 i_ddi_caut_getput_ctlops(hp, (uintptr_t)host_addr, (uintptr_t)dev_addr, 2790 sizeof (uint32_t), repcount, flags, DDI_CTLOPS_PEEK); 2791 } 2792 2793 void 2794 i_ddi_caut_rep_get64(ddi_acc_impl_t *hp, uint64_t *host_addr, 2795 uint64_t *dev_addr, size_t repcount, uint_t flags) 2796 { 2797 i_ddi_caut_getput_ctlops(hp, (uintptr_t)host_addr, (uintptr_t)dev_addr, 2798 sizeof (uint64_t), repcount, flags, DDI_CTLOPS_PEEK); 2799 } 2800 2801 void 2802 i_ddi_caut_rep_put8(ddi_acc_impl_t *hp, uint8_t *host_addr, uint8_t *dev_addr, 2803 size_t repcount, uint_t flags) 2804 { 2805 i_ddi_caut_getput_ctlops(hp, (uintptr_t)host_addr, (uintptr_t)dev_addr, 2806 sizeof (uint8_t), repcount, flags, DDI_CTLOPS_POKE); 2807 } 2808 2809 void 2810 i_ddi_caut_rep_put16(ddi_acc_impl_t *hp, uint16_t *host_addr, 2811 uint16_t *dev_addr, size_t repcount, uint_t flags) 2812 { 2813 i_ddi_caut_getput_ctlops(hp, (uintptr_t)host_addr, (uintptr_t)dev_addr, 2814 sizeof (uint16_t), repcount, flags, DDI_CTLOPS_POKE); 2815 } 2816 2817 void 2818 i_ddi_caut_rep_put32(ddi_acc_impl_t *hp, uint32_t *host_addr, 2819 uint32_t *dev_addr, size_t repcount, uint_t flags) 2820 { 2821 i_ddi_caut_getput_ctlops(hp, (uintptr_t)host_addr, (uintptr_t)dev_addr, 2822 sizeof (uint32_t), repcount, flags, DDI_CTLOPS_POKE); 2823 } 2824 2825 void 2826 i_ddi_caut_rep_put64(ddi_acc_impl_t *hp, uint64_t *host_addr, 2827 uint64_t *dev_addr, size_t repcount, uint_t flags) 2828 { 2829 i_ddi_caut_getput_ctlops(hp, (uintptr_t)host_addr, (uintptr_t)dev_addr, 2830 sizeof (uint64_t), repcount, flags, DDI_CTLOPS_POKE); 2831 } 2832 2833 boolean_t 2834 i_ddi_copybuf_required(ddi_dma_attr_t *attrp) 2835 { 2836 uint64_t hi_pa; 2837 2838 hi_pa = ((uint64_t)physmax + 1ull) << PAGESHIFT; 2839 if (attrp->dma_attr_addr_hi < hi_pa) { 2840 return (B_TRUE); 2841 } 2842 2843 return (B_FALSE); 2844 } 2845 2846 size_t 2847 i_ddi_copybuf_size() 2848 { 2849 return (dma_max_copybuf_size); 2850 } 2851 2852 /* 2853 * i_ddi_dma_max() 2854 * returns the maximum DMA size which can be performed in a single DMA 2855 * window taking into account the devices DMA contraints (attrp), the 2856 * maximum copy buffer size (if applicable), and the worse case buffer 2857 * fragmentation. 2858 */ 2859 /*ARGSUSED*/ 2860 uint32_t 2861 i_ddi_dma_max(dev_info_t *dip, ddi_dma_attr_t *attrp) 2862 { 2863 uint64_t maxxfer; 2864 2865 2866 /* 2867 * take the min of maxxfer and the the worse case fragementation 2868 * (e.g. every cookie <= 1 page) 2869 */ 2870 maxxfer = MIN(attrp->dma_attr_maxxfer, 2871 ((uint64_t)(attrp->dma_attr_sgllen - 1) << PAGESHIFT)); 2872 2873 /* 2874 * If the DMA engine can't reach all off memory, we also need to take 2875 * the max size of the copybuf into consideration. 2876 */ 2877 if (i_ddi_copybuf_required(attrp)) { 2878 maxxfer = MIN(i_ddi_copybuf_size(), maxxfer); 2879 } 2880 2881 /* 2882 * we only return a 32-bit value. Make sure it's not -1. Round to a 2883 * page so it won't be mistaken for an error value during debug. 2884 */ 2885 if (maxxfer >= 0xFFFFFFFF) { 2886 maxxfer = 0xFFFFF000; 2887 } 2888 2889 /* 2890 * make sure the value we return is a whole multiple of the 2891 * granlarity. 2892 */ 2893 if (attrp->dma_attr_granular > 1) { 2894 maxxfer = maxxfer - (maxxfer % attrp->dma_attr_granular); 2895 } 2896 2897 return ((uint32_t)maxxfer); 2898 } 2899 2900 /*ARGSUSED*/ 2901 void 2902 translate_devid(dev_info_t *dip) 2903 { 2904 } 2905 2906 pfn_t 2907 i_ddi_paddr_to_pfn(paddr_t paddr) 2908 { 2909 pfn_t pfn; 2910 2911 #ifdef __xpv 2912 if (DOMAIN_IS_INITDOMAIN(xen_info)) { 2913 pfn = xen_assign_pfn(mmu_btop(paddr)); 2914 } else { 2915 pfn = mmu_btop(paddr); 2916 } 2917 #else 2918 pfn = mmu_btop(paddr); 2919 #endif 2920 2921 return (pfn); 2922 } 2923