1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2009 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 27 /* 28 * PC specific DDI implementation 29 */ 30 #include <sys/types.h> 31 #include <sys/autoconf.h> 32 #include <sys/avintr.h> 33 #include <sys/bootconf.h> 34 #include <sys/conf.h> 35 #include <sys/cpuvar.h> 36 #include <sys/ddi_impldefs.h> 37 #include <sys/ddi_subrdefs.h> 38 #include <sys/ethernet.h> 39 #include <sys/fp.h> 40 #include <sys/instance.h> 41 #include <sys/kmem.h> 42 #include <sys/machsystm.h> 43 #include <sys/modctl.h> 44 #include <sys/promif.h> 45 #include <sys/prom_plat.h> 46 #include <sys/sunndi.h> 47 #include <sys/ndi_impldefs.h> 48 #include <sys/ddi_impldefs.h> 49 #include <sys/sysmacros.h> 50 #include <sys/systeminfo.h> 51 #include <sys/utsname.h> 52 #include <sys/atomic.h> 53 #include <sys/spl.h> 54 #include <sys/archsystm.h> 55 #include <vm/seg_kmem.h> 56 #include <sys/ontrap.h> 57 #include <sys/fm/protocol.h> 58 #include <sys/ramdisk.h> 59 #include <sys/sunndi.h> 60 #include <sys/vmem.h> 61 #include <sys/pci_impl.h> 62 #if defined(__xpv) 63 #include <sys/hypervisor.h> 64 #endif 65 #include <sys/mach_intr.h> 66 #include <vm/hat_i86.h> 67 #include <sys/x86_archext.h> 68 69 /* 70 * DDI Boot Configuration 71 */ 72 73 /* 74 * Platform drivers on this platform 75 */ 76 char *platform_module_list[] = { 77 "acpippm", 78 "ppm", 79 (char *)0 80 }; 81 82 /* pci bus resource maps */ 83 struct pci_bus_resource *pci_bus_res; 84 85 size_t dma_max_copybuf_size = 0x101000; /* 1M + 4K */ 86 87 uint64_t ramdisk_start, ramdisk_end; 88 89 int pseudo_isa = 0; 90 91 /* 92 * Forward declarations 93 */ 94 static int getlongprop_buf(); 95 static void get_boot_properties(void); 96 static void impl_bus_initialprobe(void); 97 static void impl_bus_reprobe(void); 98 99 static int poke_mem(peekpoke_ctlops_t *in_args); 100 static int peek_mem(peekpoke_ctlops_t *in_args); 101 102 static int kmem_override_cache_attrs(caddr_t, size_t, uint_t); 103 104 #define CTGENTRIES 15 105 106 static struct ctgas { 107 struct ctgas *ctg_next; 108 int ctg_index; 109 void *ctg_addr[CTGENTRIES]; 110 size_t ctg_size[CTGENTRIES]; 111 } ctglist; 112 113 static kmutex_t ctgmutex; 114 #define CTGLOCK() mutex_enter(&ctgmutex) 115 #define CTGUNLOCK() mutex_exit(&ctgmutex) 116 117 /* 118 * Minimum pfn value of page_t's put on the free list. This is to simplify 119 * support of ddi dma memory requests which specify small, non-zero addr_lo 120 * values. 121 * 122 * The default value of 2, which corresponds to the only known non-zero addr_lo 123 * value used, means a single page will be sacrificed (pfn typically starts 124 * at 1). ddiphysmin can be set to 0 to disable. It cannot be set above 0x100 125 * otherwise mp startup panics. 126 */ 127 pfn_t ddiphysmin = 2; 128 129 static void 130 check_driver_disable(void) 131 { 132 int proplen = 128; 133 char *prop_name; 134 char *drv_name, *propval; 135 major_t major; 136 137 prop_name = kmem_alloc(proplen, KM_SLEEP); 138 for (major = 0; major < devcnt; major++) { 139 drv_name = ddi_major_to_name(major); 140 if (drv_name == NULL) 141 continue; 142 (void) snprintf(prop_name, proplen, "disable-%s", drv_name); 143 if (ddi_prop_lookup_string(DDI_DEV_T_ANY, ddi_root_node(), 144 DDI_PROP_DONTPASS, prop_name, &propval) == DDI_SUCCESS) { 145 if (strcmp(propval, "true") == 0) { 146 devnamesp[major].dn_flags |= DN_DRIVER_REMOVED; 147 cmn_err(CE_NOTE, "driver %s disabled", 148 drv_name); 149 } 150 ddi_prop_free(propval); 151 } 152 } 153 kmem_free(prop_name, proplen); 154 } 155 156 157 /* 158 * Configure the hardware on the system. 159 * Called before the rootfs is mounted 160 */ 161 void 162 configure(void) 163 { 164 extern void i_ddi_init_root(); 165 166 #if defined(__i386) 167 extern int fpu_pentium_fdivbug; 168 #endif /* __i386 */ 169 extern int fpu_ignored; 170 171 /* 172 * Determine if an FPU is attached 173 */ 174 175 fpu_probe(); 176 177 #if defined(__i386) 178 if (fpu_pentium_fdivbug) { 179 printf("\ 180 FP hardware exhibits Pentium floating point divide problem\n"); 181 } 182 #endif /* __i386 */ 183 184 if (fpu_ignored) { 185 printf("FP hardware will not be used\n"); 186 } else if (!fpu_exists) { 187 printf("No FPU in configuration\n"); 188 } 189 190 /* 191 * Initialize devices on the machine. 192 * Uses configuration tree built by the PROMs to determine what 193 * is present, and builds a tree of prototype dev_info nodes 194 * corresponding to the hardware which identified itself. 195 */ 196 #if !defined(SAS) && !defined(MPSAS) 197 /* 198 * Check for disabled drivers and initialize root node. 199 */ 200 check_driver_disable(); 201 i_ddi_init_root(); 202 203 /* 204 * attach the isa nexus to get ACPI resource usage 205 * isa is "kind of" a pseudo node 206 */ 207 #if defined(__xpv) 208 if (DOMAIN_IS_INITDOMAIN(xen_info)) { 209 if (pseudo_isa) 210 (void) i_ddi_attach_pseudo_node("isa"); 211 else 212 (void) i_ddi_attach_hw_nodes("isa"); 213 } 214 #else 215 if (pseudo_isa) 216 (void) i_ddi_attach_pseudo_node("isa"); 217 else 218 (void) i_ddi_attach_hw_nodes("isa"); 219 #endif 220 221 /* reprogram devices not set up by firmware (BIOS) */ 222 impl_bus_reprobe(); 223 #endif /* !SAS && !MPSAS */ 224 } 225 226 /* 227 * The "status" property indicates the operational status of a device. 228 * If this property is present, the value is a string indicating the 229 * status of the device as follows: 230 * 231 * "okay" operational. 232 * "disabled" not operational, but might become operational. 233 * "fail" not operational because a fault has been detected, 234 * and it is unlikely that the device will become 235 * operational without repair. no additional details 236 * are available. 237 * "fail-xxx" not operational because a fault has been detected, 238 * and it is unlikely that the device will become 239 * operational without repair. "xxx" is additional 240 * human-readable information about the particular 241 * fault condition that was detected. 242 * 243 * The absence of this property means that the operational status is 244 * unknown or okay. 245 * 246 * This routine checks the status property of the specified device node 247 * and returns 0 if the operational status indicates failure, and 1 otherwise. 248 * 249 * The property may exist on plug-in cards the existed before IEEE 1275-1994. 250 * And, in that case, the property may not even be a string. So we carefully 251 * check for the value "fail", in the beginning of the string, noting 252 * the property length. 253 */ 254 int 255 status_okay(int id, char *buf, int buflen) 256 { 257 char status_buf[OBP_MAXPROPNAME]; 258 char *bufp = buf; 259 int len = buflen; 260 int proplen; 261 static const char *status = "status"; 262 static const char *fail = "fail"; 263 int fail_len = (int)strlen(fail); 264 265 /* 266 * Get the proplen ... if it's smaller than "fail", 267 * or doesn't exist ... then we don't care, since 268 * the value can't begin with the char string "fail". 269 * 270 * NB: proplen, if it's a string, includes the NULL in the 271 * the size of the property, and fail_len does not. 272 */ 273 proplen = prom_getproplen((pnode_t)id, (caddr_t)status); 274 if (proplen <= fail_len) /* nonexistant or uninteresting len */ 275 return (1); 276 277 /* 278 * if a buffer was provided, use it 279 */ 280 if ((buf == (char *)NULL) || (buflen <= 0)) { 281 bufp = status_buf; 282 len = sizeof (status_buf); 283 } 284 *bufp = (char)0; 285 286 /* 287 * Get the property into the buffer, to the extent of the buffer, 288 * and in case the buffer is smaller than the property size, 289 * NULL terminate the buffer. (This handles the case where 290 * a buffer was passed in and the caller wants to print the 291 * value, but the buffer was too small). 292 */ 293 (void) prom_bounded_getprop((pnode_t)id, (caddr_t)status, 294 (caddr_t)bufp, len); 295 *(bufp + len - 1) = (char)0; 296 297 /* 298 * If the value begins with the char string "fail", 299 * then it means the node is failed. We don't care 300 * about any other values. We assume the node is ok 301 * although it might be 'disabled'. 302 */ 303 if (strncmp(bufp, fail, fail_len) == 0) 304 return (0); 305 306 return (1); 307 } 308 309 /* 310 * Check the status of the device node passed as an argument. 311 * 312 * if ((status is OKAY) || (status is DISABLED)) 313 * return DDI_SUCCESS 314 * else 315 * print a warning and return DDI_FAILURE 316 */ 317 /*ARGSUSED1*/ 318 int 319 check_status(int id, char *name, dev_info_t *parent) 320 { 321 char status_buf[64]; 322 char devtype_buf[OBP_MAXPROPNAME]; 323 int retval = DDI_FAILURE; 324 325 /* 326 * is the status okay? 327 */ 328 if (status_okay(id, status_buf, sizeof (status_buf))) 329 return (DDI_SUCCESS); 330 331 /* 332 * a status property indicating bad memory will be associated 333 * with a node which has a "device_type" property with a value of 334 * "memory-controller". in this situation, return DDI_SUCCESS 335 */ 336 if (getlongprop_buf(id, OBP_DEVICETYPE, devtype_buf, 337 sizeof (devtype_buf)) > 0) { 338 if (strcmp(devtype_buf, "memory-controller") == 0) 339 retval = DDI_SUCCESS; 340 } 341 342 /* 343 * print the status property information 344 */ 345 cmn_err(CE_WARN, "status '%s' for '%s'", status_buf, name); 346 return (retval); 347 } 348 349 /*ARGSUSED*/ 350 uint_t 351 softlevel1(caddr_t arg1, caddr_t arg2) 352 { 353 softint(); 354 return (1); 355 } 356 357 /* 358 * Allow for implementation specific correction of PROM property values. 359 */ 360 361 /*ARGSUSED*/ 362 void 363 impl_fix_props(dev_info_t *dip, dev_info_t *ch_dip, char *name, int len, 364 caddr_t buffer) 365 { 366 /* 367 * There are no adjustments needed in this implementation. 368 */ 369 } 370 371 static int 372 getlongprop_buf(int id, char *name, char *buf, int maxlen) 373 { 374 int size; 375 376 size = prom_getproplen((pnode_t)id, name); 377 if (size <= 0 || (size > maxlen - 1)) 378 return (-1); 379 380 if (-1 == prom_getprop((pnode_t)id, name, buf)) 381 return (-1); 382 383 if (strcmp("name", name) == 0) { 384 if (buf[size - 1] != '\0') { 385 buf[size] = '\0'; 386 size += 1; 387 } 388 } 389 390 return (size); 391 } 392 393 static int 394 get_prop_int_array(dev_info_t *di, char *pname, int **pval, uint_t *plen) 395 { 396 int ret; 397 398 if ((ret = ddi_prop_lookup_int_array(DDI_DEV_T_ANY, di, 399 DDI_PROP_DONTPASS, pname, pval, plen)) 400 == DDI_PROP_SUCCESS) { 401 *plen = (*plen) * (sizeof (int)); 402 } 403 return (ret); 404 } 405 406 407 /* 408 * Node Configuration 409 */ 410 411 struct prop_ispec { 412 uint_t pri, vec; 413 }; 414 415 /* 416 * For the x86, we're prepared to claim that the interrupt string 417 * is in the form of a list of <ipl,vec> specifications. 418 */ 419 420 #define VEC_MIN 1 421 #define VEC_MAX 255 422 423 static int 424 impl_xlate_intrs(dev_info_t *child, int *in, 425 struct ddi_parent_private_data *pdptr) 426 { 427 size_t size; 428 int n; 429 struct intrspec *new; 430 caddr_t got_prop; 431 int *inpri; 432 int got_len; 433 extern int ignore_hardware_nodes; /* force flag from ddi_impl.c */ 434 435 static char bad_intr_fmt[] = 436 "bad interrupt spec from %s%d - ipl %d, irq %d\n"; 437 438 /* 439 * determine if the driver is expecting the new style "interrupts" 440 * property which just contains the IRQ, or the old style which 441 * contains pairs of <IPL,IRQ>. if it is the new style, we always 442 * assign IPL 5 unless an "interrupt-priorities" property exists. 443 * in that case, the "interrupt-priorities" property contains the 444 * IPL values that match, one for one, the IRQ values in the 445 * "interrupts" property. 446 */ 447 inpri = NULL; 448 if ((ddi_getprop(DDI_DEV_T_ANY, child, DDI_PROP_DONTPASS, 449 "ignore-hardware-nodes", -1) != -1) || ignore_hardware_nodes) { 450 /* the old style "interrupts" property... */ 451 452 /* 453 * The list consists of <ipl,vec> elements 454 */ 455 if ((n = (*in++ >> 1)) < 1) 456 return (DDI_FAILURE); 457 458 pdptr->par_nintr = n; 459 size = n * sizeof (struct intrspec); 460 new = pdptr->par_intr = kmem_zalloc(size, KM_SLEEP); 461 462 while (n--) { 463 int level = *in++; 464 int vec = *in++; 465 466 if (level < 1 || level > MAXIPL || 467 vec < VEC_MIN || vec > VEC_MAX) { 468 cmn_err(CE_CONT, bad_intr_fmt, 469 DEVI(child)->devi_name, 470 DEVI(child)->devi_instance, level, vec); 471 goto broken; 472 } 473 new->intrspec_pri = level; 474 if (vec != 2) 475 new->intrspec_vec = vec; 476 else 477 /* 478 * irq 2 on the PC bus is tied to irq 9 479 * on ISA, EISA and MicroChannel 480 */ 481 new->intrspec_vec = 9; 482 new++; 483 } 484 485 return (DDI_SUCCESS); 486 } else { 487 /* the new style "interrupts" property... */ 488 489 /* 490 * The list consists of <vec> elements 491 */ 492 if ((n = (*in++)) < 1) 493 return (DDI_FAILURE); 494 495 pdptr->par_nintr = n; 496 size = n * sizeof (struct intrspec); 497 new = pdptr->par_intr = kmem_zalloc(size, KM_SLEEP); 498 499 /* XXX check for "interrupt-priorities" property... */ 500 if (ddi_getlongprop(DDI_DEV_T_ANY, child, DDI_PROP_DONTPASS, 501 "interrupt-priorities", (caddr_t)&got_prop, &got_len) 502 == DDI_PROP_SUCCESS) { 503 if (n != (got_len / sizeof (int))) { 504 cmn_err(CE_CONT, 505 "bad interrupt-priorities length" 506 " from %s%d: expected %d, got %d\n", 507 DEVI(child)->devi_name, 508 DEVI(child)->devi_instance, n, 509 (int)(got_len / sizeof (int))); 510 goto broken; 511 } 512 inpri = (int *)got_prop; 513 } 514 515 while (n--) { 516 int level; 517 int vec = *in++; 518 519 if (inpri == NULL) 520 level = 5; 521 else 522 level = *inpri++; 523 524 if (level < 1 || level > MAXIPL || 525 vec < VEC_MIN || vec > VEC_MAX) { 526 cmn_err(CE_CONT, bad_intr_fmt, 527 DEVI(child)->devi_name, 528 DEVI(child)->devi_instance, level, vec); 529 goto broken; 530 } 531 new->intrspec_pri = level; 532 if (vec != 2) 533 new->intrspec_vec = vec; 534 else 535 /* 536 * irq 2 on the PC bus is tied to irq 9 537 * on ISA, EISA and MicroChannel 538 */ 539 new->intrspec_vec = 9; 540 new++; 541 } 542 543 if (inpri != NULL) 544 kmem_free(got_prop, got_len); 545 return (DDI_SUCCESS); 546 } 547 548 broken: 549 kmem_free(pdptr->par_intr, size); 550 pdptr->par_intr = NULL; 551 pdptr->par_nintr = 0; 552 if (inpri != NULL) 553 kmem_free(got_prop, got_len); 554 555 return (DDI_FAILURE); 556 } 557 558 /* 559 * Create a ddi_parent_private_data structure from the ddi properties of 560 * the dev_info node. 561 * 562 * The "reg" and either an "intr" or "interrupts" properties are required 563 * if the driver wishes to create mappings or field interrupts on behalf 564 * of the device. 565 * 566 * The "reg" property is assumed to be a list of at least one triple 567 * 568 * <bustype, address, size>*1 569 * 570 * The "intr" property is assumed to be a list of at least one duple 571 * 572 * <SPARC ipl, vector#>*1 573 * 574 * The "interrupts" property is assumed to be a list of at least one 575 * n-tuples that describes the interrupt capabilities of the bus the device 576 * is connected to. For SBus, this looks like 577 * 578 * <SBus-level>*1 579 * 580 * (This property obsoletes the 'intr' property). 581 * 582 * The "ranges" property is optional. 583 */ 584 void 585 make_ddi_ppd(dev_info_t *child, struct ddi_parent_private_data **ppd) 586 { 587 struct ddi_parent_private_data *pdptr; 588 int n; 589 int *reg_prop, *rng_prop, *intr_prop, *irupts_prop; 590 uint_t reg_len, rng_len, intr_len, irupts_len; 591 592 *ppd = pdptr = kmem_zalloc(sizeof (*pdptr), KM_SLEEP); 593 594 /* 595 * Handle the 'reg' property. 596 */ 597 if ((get_prop_int_array(child, "reg", ®_prop, ®_len) == 598 DDI_PROP_SUCCESS) && (reg_len != 0)) { 599 pdptr->par_nreg = reg_len / (int)sizeof (struct regspec); 600 pdptr->par_reg = (struct regspec *)reg_prop; 601 } 602 603 /* 604 * See if I have a range (adding one where needed - this 605 * means to add one for sbus node in sun4c, when romvec > 0, 606 * if no range is already defined in the PROM node. 607 * (Currently no sun4c PROMS define range properties, 608 * but they should and may in the future.) For the SBus 609 * node, the range is defined by the SBus reg property. 610 */ 611 if (get_prop_int_array(child, "ranges", &rng_prop, &rng_len) 612 == DDI_PROP_SUCCESS) { 613 pdptr->par_nrng = rng_len / (int)(sizeof (struct rangespec)); 614 pdptr->par_rng = (struct rangespec *)rng_prop; 615 } 616 617 /* 618 * Handle the 'intr' and 'interrupts' properties 619 */ 620 621 /* 622 * For backwards compatibility 623 * we first look for the 'intr' property for the device. 624 */ 625 if (get_prop_int_array(child, "intr", &intr_prop, &intr_len) 626 != DDI_PROP_SUCCESS) { 627 intr_len = 0; 628 } 629 630 /* 631 * If we're to support bus adapters and future platforms cleanly, 632 * we need to support the generalized 'interrupts' property. 633 */ 634 if (get_prop_int_array(child, "interrupts", &irupts_prop, 635 &irupts_len) != DDI_PROP_SUCCESS) { 636 irupts_len = 0; 637 } else if (intr_len != 0) { 638 /* 639 * If both 'intr' and 'interrupts' are defined, 640 * then 'interrupts' wins and we toss the 'intr' away. 641 */ 642 ddi_prop_free((void *)intr_prop); 643 intr_len = 0; 644 } 645 646 if (intr_len != 0) { 647 648 /* 649 * Translate the 'intr' property into an array 650 * an array of struct intrspec's. There's not really 651 * very much to do here except copy what's out there. 652 */ 653 654 struct intrspec *new; 655 struct prop_ispec *l; 656 657 n = pdptr->par_nintr = intr_len / sizeof (struct prop_ispec); 658 l = (struct prop_ispec *)intr_prop; 659 pdptr->par_intr = 660 new = kmem_zalloc(n * sizeof (struct intrspec), KM_SLEEP); 661 while (n--) { 662 new->intrspec_pri = l->pri; 663 new->intrspec_vec = l->vec; 664 new++; 665 l++; 666 } 667 ddi_prop_free((void *)intr_prop); 668 669 } else if ((n = irupts_len) != 0) { 670 size_t size; 671 int *out; 672 673 /* 674 * Translate the 'interrupts' property into an array 675 * of intrspecs for the rest of the DDI framework to 676 * toy with. Only our ancestors really know how to 677 * do this, so ask 'em. We massage the 'interrupts' 678 * property so that it is pre-pended by a count of 679 * the number of integers in the argument. 680 */ 681 size = sizeof (int) + n; 682 out = kmem_alloc(size, KM_SLEEP); 683 *out = n / sizeof (int); 684 bcopy(irupts_prop, out + 1, (size_t)n); 685 ddi_prop_free((void *)irupts_prop); 686 if (impl_xlate_intrs(child, out, pdptr) != DDI_SUCCESS) { 687 cmn_err(CE_CONT, 688 "Unable to translate 'interrupts' for %s%d\n", 689 DEVI(child)->devi_binding_name, 690 DEVI(child)->devi_instance); 691 } 692 kmem_free(out, size); 693 } 694 } 695 696 /* 697 * Name a child 698 */ 699 static int 700 impl_sunbus_name_child(dev_info_t *child, char *name, int namelen) 701 { 702 /* 703 * Fill in parent-private data and this function returns to us 704 * an indication if it used "registers" to fill in the data. 705 */ 706 if (ddi_get_parent_data(child) == NULL) { 707 struct ddi_parent_private_data *pdptr; 708 make_ddi_ppd(child, &pdptr); 709 ddi_set_parent_data(child, pdptr); 710 } 711 712 name[0] = '\0'; 713 if (sparc_pd_getnreg(child) > 0) { 714 (void) snprintf(name, namelen, "%x,%x", 715 (uint_t)sparc_pd_getreg(child, 0)->regspec_bustype, 716 (uint_t)sparc_pd_getreg(child, 0)->regspec_addr); 717 } 718 719 return (DDI_SUCCESS); 720 } 721 722 /* 723 * Called from the bus_ctl op of sunbus (sbus, obio, etc) nexus drivers 724 * to implement the DDI_CTLOPS_INITCHILD operation. That is, it names 725 * the children of sun busses based on the reg spec. 726 * 727 * Handles the following properties (in make_ddi_ppd): 728 * Property value 729 * Name type 730 * reg register spec 731 * intr old-form interrupt spec 732 * interrupts new (bus-oriented) interrupt spec 733 * ranges range spec 734 */ 735 int 736 impl_ddi_sunbus_initchild(dev_info_t *child) 737 { 738 char name[MAXNAMELEN]; 739 void impl_ddi_sunbus_removechild(dev_info_t *); 740 741 /* 742 * Name the child, also makes parent private data 743 */ 744 (void) impl_sunbus_name_child(child, name, MAXNAMELEN); 745 ddi_set_name_addr(child, name); 746 747 /* 748 * Attempt to merge a .conf node; if successful, remove the 749 * .conf node. 750 */ 751 if ((ndi_dev_is_persistent_node(child) == 0) && 752 (ndi_merge_node(child, impl_sunbus_name_child) == DDI_SUCCESS)) { 753 /* 754 * Return failure to remove node 755 */ 756 impl_ddi_sunbus_removechild(child); 757 return (DDI_FAILURE); 758 } 759 return (DDI_SUCCESS); 760 } 761 762 void 763 impl_free_ddi_ppd(dev_info_t *dip) 764 { 765 struct ddi_parent_private_data *pdptr; 766 size_t n; 767 768 if ((pdptr = ddi_get_parent_data(dip)) == NULL) 769 return; 770 771 if ((n = (size_t)pdptr->par_nintr) != 0) 772 /* 773 * Note that kmem_free is used here (instead of 774 * ddi_prop_free) because the contents of the 775 * property were placed into a separate buffer and 776 * mucked with a bit before being stored in par_intr. 777 * The actual return value from the prop lookup 778 * was freed with ddi_prop_free previously. 779 */ 780 kmem_free(pdptr->par_intr, n * sizeof (struct intrspec)); 781 782 if ((n = (size_t)pdptr->par_nrng) != 0) 783 ddi_prop_free((void *)pdptr->par_rng); 784 785 if ((n = pdptr->par_nreg) != 0) 786 ddi_prop_free((void *)pdptr->par_reg); 787 788 kmem_free(pdptr, sizeof (*pdptr)); 789 ddi_set_parent_data(dip, NULL); 790 } 791 792 void 793 impl_ddi_sunbus_removechild(dev_info_t *dip) 794 { 795 impl_free_ddi_ppd(dip); 796 ddi_set_name_addr(dip, NULL); 797 /* 798 * Strip the node to properly convert it back to prototype form 799 */ 800 impl_rem_dev_props(dip); 801 } 802 803 /* 804 * DDI Interrupt 805 */ 806 807 /* 808 * turn this on to force isa, eisa, and mca device to ignore the new 809 * hardware nodes in the device tree (normally turned on only for 810 * drivers that need it by setting the property "ignore-hardware-nodes" 811 * in their driver.conf file). 812 * 813 * 7/31/96 -- Turned off globally. Leaving variable in for the moment 814 * as safety valve. 815 */ 816 int ignore_hardware_nodes = 0; 817 818 /* 819 * Local data 820 */ 821 static struct impl_bus_promops *impl_busp; 822 823 824 /* 825 * New DDI interrupt framework 826 */ 827 828 /* 829 * i_ddi_intr_ops: 830 * 831 * This is the interrupt operator function wrapper for the bus function 832 * bus_intr_op. 833 */ 834 int 835 i_ddi_intr_ops(dev_info_t *dip, dev_info_t *rdip, ddi_intr_op_t op, 836 ddi_intr_handle_impl_t *hdlp, void * result) 837 { 838 dev_info_t *pdip = (dev_info_t *)DEVI(dip)->devi_parent; 839 int ret = DDI_FAILURE; 840 841 /* request parent to process this interrupt op */ 842 if (NEXUS_HAS_INTR_OP(pdip)) 843 ret = (*(DEVI(pdip)->devi_ops->devo_bus_ops->bus_intr_op))( 844 pdip, rdip, op, hdlp, result); 845 else 846 cmn_err(CE_WARN, "Failed to process interrupt " 847 "for %s%d due to down-rev nexus driver %s%d", 848 ddi_get_name(rdip), ddi_get_instance(rdip), 849 ddi_get_name(pdip), ddi_get_instance(pdip)); 850 return (ret); 851 } 852 853 /* 854 * i_ddi_add_softint - allocate and add a soft interrupt to the system 855 */ 856 int 857 i_ddi_add_softint(ddi_softint_hdl_impl_t *hdlp) 858 { 859 int ret; 860 861 /* add soft interrupt handler */ 862 ret = add_avsoftintr((void *)hdlp, hdlp->ih_pri, hdlp->ih_cb_func, 863 DEVI(hdlp->ih_dip)->devi_name, hdlp->ih_cb_arg1, hdlp->ih_cb_arg2); 864 return (ret ? DDI_SUCCESS : DDI_FAILURE); 865 } 866 867 868 void 869 i_ddi_remove_softint(ddi_softint_hdl_impl_t *hdlp) 870 { 871 (void) rem_avsoftintr((void *)hdlp, hdlp->ih_pri, hdlp->ih_cb_func); 872 } 873 874 875 extern void (*setsoftint)(int, struct av_softinfo *); 876 extern boolean_t av_check_softint_pending(struct av_softinfo *, boolean_t); 877 878 int 879 i_ddi_trigger_softint(ddi_softint_hdl_impl_t *hdlp, void *arg2) 880 { 881 if (av_check_softint_pending(hdlp->ih_pending, B_FALSE)) 882 return (DDI_EPENDING); 883 884 update_avsoftintr_args((void *)hdlp, hdlp->ih_pri, arg2); 885 886 (*setsoftint)(hdlp->ih_pri, hdlp->ih_pending); 887 return (DDI_SUCCESS); 888 } 889 890 /* 891 * i_ddi_set_softint_pri: 892 * 893 * The way this works is that it first tries to add a softint vector 894 * at the new priority in hdlp. If that succeeds; then it removes the 895 * existing softint vector at the old priority. 896 */ 897 int 898 i_ddi_set_softint_pri(ddi_softint_hdl_impl_t *hdlp, uint_t old_pri) 899 { 900 int ret; 901 902 /* 903 * If a softint is pending at the old priority then fail the request. 904 */ 905 if (av_check_softint_pending(hdlp->ih_pending, B_TRUE)) 906 return (DDI_FAILURE); 907 908 ret = av_softint_movepri((void *)hdlp, old_pri); 909 return (ret ? DDI_SUCCESS : DDI_FAILURE); 910 } 911 912 void 913 i_ddi_alloc_intr_phdl(ddi_intr_handle_impl_t *hdlp) 914 { 915 hdlp->ih_private = (void *)kmem_zalloc(sizeof (ihdl_plat_t), KM_SLEEP); 916 } 917 918 void 919 i_ddi_free_intr_phdl(ddi_intr_handle_impl_t *hdlp) 920 { 921 kmem_free(hdlp->ih_private, sizeof (ihdl_plat_t)); 922 hdlp->ih_private = NULL; 923 } 924 925 int 926 i_ddi_get_intx_nintrs(dev_info_t *dip) 927 { 928 struct ddi_parent_private_data *pdp; 929 930 if ((pdp = ddi_get_parent_data(dip)) == NULL) 931 return (0); 932 933 return (pdp->par_nintr); 934 } 935 936 /* 937 * DDI Memory/DMA 938 */ 939 940 /* 941 * Support for allocating DMAable memory to implement 942 * ddi_dma_mem_alloc(9F) interface. 943 */ 944 945 #define KA_ALIGN_SHIFT 7 946 #define KA_ALIGN (1 << KA_ALIGN_SHIFT) 947 #define KA_NCACHE (PAGESHIFT + 1 - KA_ALIGN_SHIFT) 948 949 /* 950 * Dummy DMA attribute template for kmem_io[].kmem_io_attr. We only 951 * care about addr_lo, addr_hi, and align. addr_hi will be dynamically set. 952 */ 953 954 static ddi_dma_attr_t kmem_io_attr = { 955 DMA_ATTR_V0, 956 0x0000000000000000ULL, /* dma_attr_addr_lo */ 957 0x0000000000000000ULL, /* dma_attr_addr_hi */ 958 0x00ffffff, 959 0x1000, /* dma_attr_align */ 960 1, 1, 0xffffffffULL, 0xffffffffULL, 0x1, 1, 0 961 }; 962 963 /* kmem io memory ranges and indices */ 964 enum { 965 IO_4P, IO_64G, IO_4G, IO_2G, IO_1G, IO_512M, 966 IO_256M, IO_128M, IO_64M, IO_32M, IO_16M, MAX_MEM_RANGES 967 }; 968 969 static struct { 970 vmem_t *kmem_io_arena; 971 kmem_cache_t *kmem_io_cache[KA_NCACHE]; 972 ddi_dma_attr_t kmem_io_attr; 973 } kmem_io[MAX_MEM_RANGES]; 974 975 static int kmem_io_idx; /* index of first populated kmem_io[] */ 976 977 static page_t * 978 page_create_io_wrapper(void *addr, size_t len, int vmflag, void *arg) 979 { 980 extern page_t *page_create_io(vnode_t *, u_offset_t, uint_t, 981 uint_t, struct as *, caddr_t, ddi_dma_attr_t *); 982 983 return (page_create_io(&kvp, (u_offset_t)(uintptr_t)addr, len, 984 PG_EXCL | ((vmflag & VM_NOSLEEP) ? 0 : PG_WAIT), &kas, addr, arg)); 985 } 986 987 #ifdef __xpv 988 static void 989 segkmem_free_io(vmem_t *vmp, void * ptr, size_t size) 990 { 991 extern void page_destroy_io(page_t *); 992 segkmem_xfree(vmp, ptr, size, page_destroy_io); 993 } 994 #endif 995 996 static void * 997 segkmem_alloc_io_4P(vmem_t *vmp, size_t size, int vmflag) 998 { 999 return (segkmem_xalloc(vmp, NULL, size, vmflag, 0, 1000 page_create_io_wrapper, &kmem_io[IO_4P].kmem_io_attr)); 1001 } 1002 1003 static void * 1004 segkmem_alloc_io_64G(vmem_t *vmp, size_t size, int vmflag) 1005 { 1006 return (segkmem_xalloc(vmp, NULL, size, vmflag, 0, 1007 page_create_io_wrapper, &kmem_io[IO_64G].kmem_io_attr)); 1008 } 1009 1010 static void * 1011 segkmem_alloc_io_4G(vmem_t *vmp, size_t size, int vmflag) 1012 { 1013 return (segkmem_xalloc(vmp, NULL, size, vmflag, 0, 1014 page_create_io_wrapper, &kmem_io[IO_4G].kmem_io_attr)); 1015 } 1016 1017 static void * 1018 segkmem_alloc_io_2G(vmem_t *vmp, size_t size, int vmflag) 1019 { 1020 return (segkmem_xalloc(vmp, NULL, size, vmflag, 0, 1021 page_create_io_wrapper, &kmem_io[IO_2G].kmem_io_attr)); 1022 } 1023 1024 static void * 1025 segkmem_alloc_io_1G(vmem_t *vmp, size_t size, int vmflag) 1026 { 1027 return (segkmem_xalloc(vmp, NULL, size, vmflag, 0, 1028 page_create_io_wrapper, &kmem_io[IO_1G].kmem_io_attr)); 1029 } 1030 1031 static void * 1032 segkmem_alloc_io_512M(vmem_t *vmp, size_t size, int vmflag) 1033 { 1034 return (segkmem_xalloc(vmp, NULL, size, vmflag, 0, 1035 page_create_io_wrapper, &kmem_io[IO_512M].kmem_io_attr)); 1036 } 1037 1038 static void * 1039 segkmem_alloc_io_256M(vmem_t *vmp, size_t size, int vmflag) 1040 { 1041 return (segkmem_xalloc(vmp, NULL, size, vmflag, 0, 1042 page_create_io_wrapper, &kmem_io[IO_256M].kmem_io_attr)); 1043 } 1044 1045 static void * 1046 segkmem_alloc_io_128M(vmem_t *vmp, size_t size, int vmflag) 1047 { 1048 return (segkmem_xalloc(vmp, NULL, size, vmflag, 0, 1049 page_create_io_wrapper, &kmem_io[IO_128M].kmem_io_attr)); 1050 } 1051 1052 static void * 1053 segkmem_alloc_io_64M(vmem_t *vmp, size_t size, int vmflag) 1054 { 1055 return (segkmem_xalloc(vmp, NULL, size, vmflag, 0, 1056 page_create_io_wrapper, &kmem_io[IO_64M].kmem_io_attr)); 1057 } 1058 1059 static void * 1060 segkmem_alloc_io_32M(vmem_t *vmp, size_t size, int vmflag) 1061 { 1062 return (segkmem_xalloc(vmp, NULL, size, vmflag, 0, 1063 page_create_io_wrapper, &kmem_io[IO_32M].kmem_io_attr)); 1064 } 1065 1066 static void * 1067 segkmem_alloc_io_16M(vmem_t *vmp, size_t size, int vmflag) 1068 { 1069 return (segkmem_xalloc(vmp, NULL, size, vmflag, 0, 1070 page_create_io_wrapper, &kmem_io[IO_16M].kmem_io_attr)); 1071 } 1072 1073 struct { 1074 uint64_t io_limit; 1075 char *io_name; 1076 void *(*io_alloc)(vmem_t *, size_t, int); 1077 int io_initial; /* kmem_io_init during startup */ 1078 } io_arena_params[MAX_MEM_RANGES] = { 1079 {0x000fffffffffffffULL, "kmem_io_4P", segkmem_alloc_io_4P, 1}, 1080 {0x0000000fffffffffULL, "kmem_io_64G", segkmem_alloc_io_64G, 0}, 1081 {0x00000000ffffffffULL, "kmem_io_4G", segkmem_alloc_io_4G, 1}, 1082 {0x000000007fffffffULL, "kmem_io_2G", segkmem_alloc_io_2G, 1}, 1083 {0x000000003fffffffULL, "kmem_io_1G", segkmem_alloc_io_1G, 0}, 1084 {0x000000001fffffffULL, "kmem_io_512M", segkmem_alloc_io_512M, 0}, 1085 {0x000000000fffffffULL, "kmem_io_256M", segkmem_alloc_io_256M, 0}, 1086 {0x0000000007ffffffULL, "kmem_io_128M", segkmem_alloc_io_128M, 0}, 1087 {0x0000000003ffffffULL, "kmem_io_64M", segkmem_alloc_io_64M, 0}, 1088 {0x0000000001ffffffULL, "kmem_io_32M", segkmem_alloc_io_32M, 0}, 1089 {0x0000000000ffffffULL, "kmem_io_16M", segkmem_alloc_io_16M, 1} 1090 }; 1091 1092 void 1093 kmem_io_init(int a) 1094 { 1095 int c; 1096 char name[40]; 1097 1098 kmem_io[a].kmem_io_arena = vmem_create(io_arena_params[a].io_name, 1099 NULL, 0, PAGESIZE, io_arena_params[a].io_alloc, 1100 #ifdef __xpv 1101 segkmem_free_io, 1102 #else 1103 segkmem_free, 1104 #endif 1105 heap_arena, 0, VM_SLEEP); 1106 1107 for (c = 0; c < KA_NCACHE; c++) { 1108 size_t size = KA_ALIGN << c; 1109 (void) sprintf(name, "%s_%lu", 1110 io_arena_params[a].io_name, size); 1111 kmem_io[a].kmem_io_cache[c] = kmem_cache_create(name, 1112 size, size, NULL, NULL, NULL, NULL, 1113 kmem_io[a].kmem_io_arena, 0); 1114 } 1115 } 1116 1117 /* 1118 * Return the index of the highest memory range for addr. 1119 */ 1120 static int 1121 kmem_io_index(uint64_t addr) 1122 { 1123 int n; 1124 1125 for (n = kmem_io_idx; n < MAX_MEM_RANGES; n++) { 1126 if (kmem_io[n].kmem_io_attr.dma_attr_addr_hi <= addr) { 1127 if (kmem_io[n].kmem_io_arena == NULL) 1128 kmem_io_init(n); 1129 return (n); 1130 } 1131 } 1132 panic("kmem_io_index: invalid addr - must be at least 16m"); 1133 1134 /*NOTREACHED*/ 1135 } 1136 1137 /* 1138 * Return the index of the next kmem_io populated memory range 1139 * after curindex. 1140 */ 1141 static int 1142 kmem_io_index_next(int curindex) 1143 { 1144 int n; 1145 1146 for (n = curindex + 1; n < MAX_MEM_RANGES; n++) { 1147 if (kmem_io[n].kmem_io_arena) 1148 return (n); 1149 } 1150 return (-1); 1151 } 1152 1153 /* 1154 * allow kmem to be mapped in with different PTE cache attribute settings. 1155 * Used by i_ddi_mem_alloc() 1156 */ 1157 int 1158 kmem_override_cache_attrs(caddr_t kva, size_t size, uint_t order) 1159 { 1160 uint_t hat_flags; 1161 caddr_t kva_end; 1162 uint_t hat_attr; 1163 pfn_t pfn; 1164 1165 if (hat_getattr(kas.a_hat, kva, &hat_attr) == -1) { 1166 return (-1); 1167 } 1168 1169 hat_attr &= ~HAT_ORDER_MASK; 1170 hat_attr |= order | HAT_NOSYNC; 1171 hat_flags = HAT_LOAD_LOCK; 1172 1173 kva_end = (caddr_t)(((uintptr_t)kva + size + PAGEOFFSET) & 1174 (uintptr_t)PAGEMASK); 1175 kva = (caddr_t)((uintptr_t)kva & (uintptr_t)PAGEMASK); 1176 1177 while (kva < kva_end) { 1178 pfn = hat_getpfnum(kas.a_hat, kva); 1179 hat_unload(kas.a_hat, kva, PAGESIZE, HAT_UNLOAD_UNLOCK); 1180 hat_devload(kas.a_hat, kva, PAGESIZE, pfn, hat_attr, hat_flags); 1181 kva += MMU_PAGESIZE; 1182 } 1183 1184 return (0); 1185 } 1186 1187 void 1188 ka_init(void) 1189 { 1190 int a; 1191 paddr_t maxphysaddr; 1192 #if !defined(__xpv) 1193 extern pfn_t physmax; 1194 1195 maxphysaddr = mmu_ptob((paddr_t)physmax) + MMU_PAGEOFFSET; 1196 #else 1197 maxphysaddr = mmu_ptob((paddr_t)HYPERVISOR_memory_op( 1198 XENMEM_maximum_ram_page, NULL)) + MMU_PAGEOFFSET; 1199 #endif 1200 1201 ASSERT(maxphysaddr <= io_arena_params[0].io_limit); 1202 1203 for (a = 0; a < MAX_MEM_RANGES; a++) { 1204 if (maxphysaddr >= io_arena_params[a + 1].io_limit) { 1205 if (maxphysaddr > io_arena_params[a + 1].io_limit) 1206 io_arena_params[a].io_limit = maxphysaddr; 1207 else 1208 a++; 1209 break; 1210 } 1211 } 1212 kmem_io_idx = a; 1213 1214 for (; a < MAX_MEM_RANGES; a++) { 1215 kmem_io[a].kmem_io_attr = kmem_io_attr; 1216 kmem_io[a].kmem_io_attr.dma_attr_addr_hi = 1217 io_arena_params[a].io_limit; 1218 /* 1219 * initialize kmem_io[] arena/cache corresponding to 1220 * maxphysaddr and to the "common" io memory ranges that 1221 * have io_initial set to a non-zero value. 1222 */ 1223 if (io_arena_params[a].io_initial || a == kmem_io_idx) 1224 kmem_io_init(a); 1225 } 1226 } 1227 1228 /* 1229 * put contig address/size 1230 */ 1231 static void * 1232 putctgas(void *addr, size_t size) 1233 { 1234 struct ctgas *ctgp = &ctglist; 1235 int i; 1236 1237 CTGLOCK(); 1238 do { 1239 if ((i = ctgp->ctg_index) < CTGENTRIES) { 1240 ctgp->ctg_addr[i] = addr; 1241 ctgp->ctg_size[i] = size; 1242 ctgp->ctg_index++; 1243 break; 1244 } 1245 if (!ctgp->ctg_next) 1246 ctgp->ctg_next = kmem_zalloc(sizeof (struct ctgas), 1247 KM_NOSLEEP); 1248 ctgp = ctgp->ctg_next; 1249 } while (ctgp); 1250 1251 CTGUNLOCK(); 1252 return (ctgp); 1253 } 1254 1255 /* 1256 * get contig size by addr 1257 */ 1258 static size_t 1259 getctgsz(void *addr) 1260 { 1261 struct ctgas *ctgp = &ctglist; 1262 int i, j; 1263 size_t sz; 1264 1265 ASSERT(addr); 1266 CTGLOCK(); 1267 1268 while (ctgp) { 1269 for (i = 0; i < ctgp->ctg_index; i++) { 1270 if (addr != ctgp->ctg_addr[i]) 1271 continue; 1272 1273 sz = ctgp->ctg_size[i]; 1274 j = --ctgp->ctg_index; 1275 if (i != j) { 1276 ctgp->ctg_size[i] = ctgp->ctg_size[j]; 1277 ctgp->ctg_addr[i] = ctgp->ctg_addr[j]; 1278 } 1279 CTGUNLOCK(); 1280 return (sz); 1281 } 1282 ctgp = ctgp->ctg_next; 1283 } 1284 1285 CTGUNLOCK(); 1286 return (0); 1287 } 1288 1289 /* 1290 * contig_alloc: 1291 * 1292 * allocates contiguous memory to satisfy the 'size' and dma attributes 1293 * specified in 'attr'. 1294 * 1295 * Not all of memory need to be physically contiguous if the 1296 * scatter-gather list length is greater than 1. 1297 */ 1298 1299 /*ARGSUSED*/ 1300 void * 1301 contig_alloc(size_t size, ddi_dma_attr_t *attr, uintptr_t align, int cansleep) 1302 { 1303 pgcnt_t pgcnt = btopr(size); 1304 size_t asize = pgcnt * PAGESIZE; 1305 page_t *ppl; 1306 int pflag; 1307 void *addr; 1308 1309 extern page_t *page_create_io(vnode_t *, u_offset_t, uint_t, 1310 uint_t, struct as *, caddr_t, ddi_dma_attr_t *); 1311 1312 /* segkmem_xalloc */ 1313 1314 if (align <= PAGESIZE) 1315 addr = vmem_alloc(heap_arena, asize, 1316 (cansleep) ? VM_SLEEP : VM_NOSLEEP); 1317 else 1318 addr = vmem_xalloc(heap_arena, asize, align, 0, 0, NULL, NULL, 1319 (cansleep) ? VM_SLEEP : VM_NOSLEEP); 1320 if (addr) { 1321 ASSERT(!((uintptr_t)addr & (align - 1))); 1322 1323 if (page_resv(pgcnt, (cansleep) ? KM_SLEEP : KM_NOSLEEP) == 0) { 1324 vmem_free(heap_arena, addr, asize); 1325 return (NULL); 1326 } 1327 pflag = PG_EXCL; 1328 1329 if (cansleep) 1330 pflag |= PG_WAIT; 1331 1332 /* 4k req gets from freelists rather than pfn search */ 1333 if (pgcnt > 1 || align > PAGESIZE) 1334 pflag |= PG_PHYSCONTIG; 1335 1336 ppl = page_create_io(&kvp, (u_offset_t)(uintptr_t)addr, 1337 asize, pflag, &kas, (caddr_t)addr, attr); 1338 1339 if (!ppl) { 1340 vmem_free(heap_arena, addr, asize); 1341 page_unresv(pgcnt); 1342 return (NULL); 1343 } 1344 1345 while (ppl != NULL) { 1346 page_t *pp = ppl; 1347 page_sub(&ppl, pp); 1348 ASSERT(page_iolock_assert(pp)); 1349 page_io_unlock(pp); 1350 page_downgrade(pp); 1351 hat_memload(kas.a_hat, (caddr_t)(uintptr_t)pp->p_offset, 1352 pp, (PROT_ALL & ~PROT_USER) | 1353 HAT_NOSYNC, HAT_LOAD_LOCK); 1354 } 1355 } 1356 return (addr); 1357 } 1358 1359 void 1360 contig_free(void *addr, size_t size) 1361 { 1362 pgcnt_t pgcnt = btopr(size); 1363 size_t asize = pgcnt * PAGESIZE; 1364 caddr_t a, ea; 1365 page_t *pp; 1366 1367 hat_unload(kas.a_hat, addr, asize, HAT_UNLOAD_UNLOCK); 1368 1369 for (a = addr, ea = a + asize; a < ea; a += PAGESIZE) { 1370 pp = page_find(&kvp, (u_offset_t)(uintptr_t)a); 1371 if (!pp) 1372 panic("contig_free: contig pp not found"); 1373 1374 if (!page_tryupgrade(pp)) { 1375 page_unlock(pp); 1376 pp = page_lookup(&kvp, 1377 (u_offset_t)(uintptr_t)a, SE_EXCL); 1378 if (pp == NULL) 1379 panic("contig_free: page freed"); 1380 } 1381 page_destroy(pp, 0); 1382 } 1383 1384 page_unresv(pgcnt); 1385 vmem_free(heap_arena, addr, asize); 1386 } 1387 1388 /* 1389 * Allocate from the system, aligned on a specific boundary. 1390 * The alignment, if non-zero, must be a power of 2. 1391 */ 1392 static void * 1393 kalloca(size_t size, size_t align, int cansleep, int physcontig, 1394 ddi_dma_attr_t *attr) 1395 { 1396 size_t *addr, *raddr, rsize; 1397 size_t hdrsize = 4 * sizeof (size_t); /* must be power of 2 */ 1398 int a, i, c; 1399 vmem_t *vmp; 1400 kmem_cache_t *cp = NULL; 1401 1402 if (attr->dma_attr_addr_lo > mmu_ptob((uint64_t)ddiphysmin)) 1403 return (NULL); 1404 1405 align = MAX(align, hdrsize); 1406 ASSERT((align & (align - 1)) == 0); 1407 1408 /* 1409 * All of our allocators guarantee 16-byte alignment, so we don't 1410 * need to reserve additional space for the header. 1411 * To simplify picking the correct kmem_io_cache, we round up to 1412 * a multiple of KA_ALIGN. 1413 */ 1414 rsize = P2ROUNDUP_TYPED(size + align, KA_ALIGN, size_t); 1415 1416 if (physcontig && rsize > PAGESIZE) { 1417 if (addr = contig_alloc(size, attr, align, cansleep)) { 1418 if (!putctgas(addr, size)) 1419 contig_free(addr, size); 1420 else 1421 return (addr); 1422 } 1423 return (NULL); 1424 } 1425 1426 a = kmem_io_index(attr->dma_attr_addr_hi); 1427 1428 if (rsize > PAGESIZE) { 1429 vmp = kmem_io[a].kmem_io_arena; 1430 raddr = vmem_alloc(vmp, rsize, 1431 (cansleep) ? VM_SLEEP : VM_NOSLEEP); 1432 } else { 1433 c = highbit((rsize >> KA_ALIGN_SHIFT) - 1); 1434 cp = kmem_io[a].kmem_io_cache[c]; 1435 raddr = kmem_cache_alloc(cp, (cansleep) ? KM_SLEEP : 1436 KM_NOSLEEP); 1437 } 1438 1439 if (raddr == NULL) { 1440 int na; 1441 1442 ASSERT(cansleep == 0); 1443 if (rsize > PAGESIZE) 1444 return (NULL); 1445 /* 1446 * System does not have memory in the requested range. 1447 * Try smaller kmem io ranges and larger cache sizes 1448 * to see if there might be memory available in 1449 * these other caches. 1450 */ 1451 1452 for (na = kmem_io_index_next(a); na >= 0; 1453 na = kmem_io_index_next(na)) { 1454 ASSERT(kmem_io[na].kmem_io_arena); 1455 cp = kmem_io[na].kmem_io_cache[c]; 1456 raddr = kmem_cache_alloc(cp, KM_NOSLEEP); 1457 if (raddr) 1458 goto kallocdone; 1459 } 1460 /* now try the larger kmem io cache sizes */ 1461 for (na = a; na >= 0; na = kmem_io_index_next(na)) { 1462 for (i = c + 1; i < KA_NCACHE; i++) { 1463 cp = kmem_io[na].kmem_io_cache[i]; 1464 raddr = kmem_cache_alloc(cp, KM_NOSLEEP); 1465 if (raddr) 1466 goto kallocdone; 1467 } 1468 } 1469 return (NULL); 1470 } 1471 1472 kallocdone: 1473 ASSERT(!P2BOUNDARY((uintptr_t)raddr, rsize, PAGESIZE) || 1474 rsize > PAGESIZE); 1475 1476 addr = (size_t *)P2ROUNDUP((uintptr_t)raddr + hdrsize, align); 1477 ASSERT((uintptr_t)addr + size - (uintptr_t)raddr <= rsize); 1478 1479 addr[-4] = (size_t)cp; 1480 addr[-3] = (size_t)vmp; 1481 addr[-2] = (size_t)raddr; 1482 addr[-1] = rsize; 1483 1484 return (addr); 1485 } 1486 1487 static void 1488 kfreea(void *addr) 1489 { 1490 size_t size; 1491 1492 if (!((uintptr_t)addr & PAGEOFFSET) && (size = getctgsz(addr))) { 1493 contig_free(addr, size); 1494 } else { 1495 size_t *saddr = addr; 1496 if (saddr[-4] == 0) 1497 vmem_free((vmem_t *)saddr[-3], (void *)saddr[-2], 1498 saddr[-1]); 1499 else 1500 kmem_cache_free((kmem_cache_t *)saddr[-4], 1501 (void *)saddr[-2]); 1502 } 1503 } 1504 1505 /*ARGSUSED*/ 1506 void 1507 i_ddi_devacc_to_hatacc(ddi_device_acc_attr_t *devaccp, uint_t *hataccp) 1508 { 1509 } 1510 1511 /* 1512 * Check if the specified cache attribute is supported on the platform. 1513 * This function must be called before i_ddi_cacheattr_to_hatacc(). 1514 */ 1515 boolean_t 1516 i_ddi_check_cache_attr(uint_t flags) 1517 { 1518 /* 1519 * The cache attributes are mutually exclusive. Any combination of 1520 * the attributes leads to a failure. 1521 */ 1522 uint_t cache_attr = IOMEM_CACHE_ATTR(flags); 1523 if ((cache_attr != 0) && ((cache_attr & (cache_attr - 1)) != 0)) 1524 return (B_FALSE); 1525 1526 /* All cache attributes are supported on X86/X64 */ 1527 if (cache_attr & (IOMEM_DATA_UNCACHED | IOMEM_DATA_CACHED | 1528 IOMEM_DATA_UC_WR_COMBINE)) 1529 return (B_TRUE); 1530 1531 /* undefined attributes */ 1532 return (B_FALSE); 1533 } 1534 1535 /* set HAT cache attributes from the cache attributes */ 1536 void 1537 i_ddi_cacheattr_to_hatacc(uint_t flags, uint_t *hataccp) 1538 { 1539 uint_t cache_attr = IOMEM_CACHE_ATTR(flags); 1540 static char *fname = "i_ddi_cacheattr_to_hatacc"; 1541 1542 /* 1543 * If write-combining is not supported, then it falls back 1544 * to uncacheable. 1545 */ 1546 if (cache_attr == IOMEM_DATA_UC_WR_COMBINE && !(x86_feature & X86_PAT)) 1547 cache_attr = IOMEM_DATA_UNCACHED; 1548 1549 /* 1550 * set HAT attrs according to the cache attrs. 1551 */ 1552 switch (cache_attr) { 1553 case IOMEM_DATA_UNCACHED: 1554 *hataccp &= ~HAT_ORDER_MASK; 1555 *hataccp |= (HAT_STRICTORDER | HAT_PLAT_NOCACHE); 1556 break; 1557 case IOMEM_DATA_UC_WR_COMBINE: 1558 *hataccp &= ~HAT_ORDER_MASK; 1559 *hataccp |= (HAT_MERGING_OK | HAT_PLAT_NOCACHE); 1560 break; 1561 case IOMEM_DATA_CACHED: 1562 *hataccp &= ~HAT_ORDER_MASK; 1563 *hataccp |= HAT_UNORDERED_OK; 1564 break; 1565 /* 1566 * This case must not occur because the cache attribute is scrutinized 1567 * before this function is called. 1568 */ 1569 default: 1570 /* 1571 * set cacheable to hat attrs. 1572 */ 1573 *hataccp &= ~HAT_ORDER_MASK; 1574 *hataccp |= HAT_UNORDERED_OK; 1575 cmn_err(CE_WARN, "%s: cache_attr=0x%x is ignored.", 1576 fname, cache_attr); 1577 } 1578 } 1579 1580 /* 1581 * This should actually be called i_ddi_dma_mem_alloc. There should 1582 * also be an i_ddi_pio_mem_alloc. i_ddi_dma_mem_alloc should call 1583 * through the device tree with the DDI_CTLOPS_DMA_ALIGN ctl ops to 1584 * get alignment requirements for DMA memory. i_ddi_pio_mem_alloc 1585 * should use DDI_CTLOPS_PIO_ALIGN. Since we only have i_ddi_mem_alloc 1586 * so far which is used for both, DMA and PIO, we have to use the DMA 1587 * ctl ops to make everybody happy. 1588 */ 1589 /*ARGSUSED*/ 1590 int 1591 i_ddi_mem_alloc(dev_info_t *dip, ddi_dma_attr_t *attr, 1592 size_t length, int cansleep, int flags, 1593 ddi_device_acc_attr_t *accattrp, caddr_t *kaddrp, 1594 size_t *real_length, ddi_acc_hdl_t *ap) 1595 { 1596 caddr_t a; 1597 int iomin; 1598 ddi_acc_impl_t *iap; 1599 int physcontig = 0; 1600 pgcnt_t npages; 1601 pgcnt_t minctg; 1602 uint_t order; 1603 int e; 1604 1605 /* 1606 * Check legality of arguments 1607 */ 1608 if (length == 0 || kaddrp == NULL || attr == NULL) { 1609 return (DDI_FAILURE); 1610 } 1611 1612 if (attr->dma_attr_minxfer == 0 || attr->dma_attr_align == 0 || 1613 (attr->dma_attr_align & (attr->dma_attr_align - 1)) || 1614 (attr->dma_attr_minxfer & (attr->dma_attr_minxfer - 1))) { 1615 return (DDI_FAILURE); 1616 } 1617 1618 /* 1619 * figure out most restrictive alignment requirement 1620 */ 1621 iomin = attr->dma_attr_minxfer; 1622 iomin = maxbit(iomin, attr->dma_attr_align); 1623 if (iomin == 0) 1624 return (DDI_FAILURE); 1625 1626 ASSERT((iomin & (iomin - 1)) == 0); 1627 1628 /* 1629 * if we allocate memory with IOMEM_DATA_UNCACHED or 1630 * IOMEM_DATA_UC_WR_COMBINE, make sure we allocate a page aligned 1631 * memory that ends on a page boundry. 1632 * Don't want to have to different cache mappings to the same 1633 * physical page. 1634 */ 1635 if (OVERRIDE_CACHE_ATTR(flags)) { 1636 iomin = (iomin + MMU_PAGEOFFSET) & MMU_PAGEMASK; 1637 length = (length + MMU_PAGEOFFSET) & (size_t)MMU_PAGEMASK; 1638 } 1639 1640 /* 1641 * Determine if we need to satisfy the request for physically 1642 * contiguous memory or alignments larger than pagesize. 1643 */ 1644 npages = btopr(length + attr->dma_attr_align); 1645 minctg = howmany(npages, attr->dma_attr_sgllen); 1646 1647 if (minctg > 1) { 1648 uint64_t pfnseg = attr->dma_attr_seg >> PAGESHIFT; 1649 /* 1650 * verify that the minimum contig requirement for the 1651 * actual length does not cross segment boundary. 1652 */ 1653 length = P2ROUNDUP_TYPED(length, attr->dma_attr_minxfer, 1654 size_t); 1655 npages = btopr(length); 1656 minctg = howmany(npages, attr->dma_attr_sgllen); 1657 if (minctg > pfnseg + 1) 1658 return (DDI_FAILURE); 1659 physcontig = 1; 1660 } else { 1661 length = P2ROUNDUP_TYPED(length, iomin, size_t); 1662 } 1663 1664 /* 1665 * Allocate the requested amount from the system. 1666 */ 1667 a = kalloca(length, iomin, cansleep, physcontig, attr); 1668 1669 if ((*kaddrp = a) == NULL) 1670 return (DDI_FAILURE); 1671 1672 /* 1673 * if we to modify the cache attributes, go back and muck with the 1674 * mappings. 1675 */ 1676 if (OVERRIDE_CACHE_ATTR(flags)) { 1677 order = 0; 1678 i_ddi_cacheattr_to_hatacc(flags, &order); 1679 e = kmem_override_cache_attrs(a, length, order); 1680 if (e != 0) { 1681 kfreea(a); 1682 return (DDI_FAILURE); 1683 } 1684 } 1685 1686 if (real_length) { 1687 *real_length = length; 1688 } 1689 if (ap) { 1690 /* 1691 * initialize access handle 1692 */ 1693 iap = (ddi_acc_impl_t *)ap->ah_platform_private; 1694 iap->ahi_acc_attr |= DDI_ACCATTR_CPU_VADDR; 1695 impl_acc_hdl_init(ap); 1696 } 1697 1698 return (DDI_SUCCESS); 1699 } 1700 1701 /* 1702 * covert old DMA limits structure to DMA attribute structure 1703 * and continue 1704 */ 1705 int 1706 i_ddi_mem_alloc_lim(dev_info_t *dip, ddi_dma_lim_t *limits, 1707 size_t length, int cansleep, int streaming, 1708 ddi_device_acc_attr_t *accattrp, caddr_t *kaddrp, 1709 uint_t *real_length, ddi_acc_hdl_t *ap) 1710 { 1711 ddi_dma_attr_t dma_attr, *attrp; 1712 size_t rlen; 1713 int ret; 1714 1715 if (limits == NULL) { 1716 return (DDI_FAILURE); 1717 } 1718 1719 /* 1720 * set up DMA attribute structure to pass to i_ddi_mem_alloc() 1721 */ 1722 attrp = &dma_attr; 1723 attrp->dma_attr_version = DMA_ATTR_V0; 1724 attrp->dma_attr_addr_lo = (uint64_t)limits->dlim_addr_lo; 1725 attrp->dma_attr_addr_hi = (uint64_t)limits->dlim_addr_hi; 1726 attrp->dma_attr_count_max = (uint64_t)limits->dlim_ctreg_max; 1727 attrp->dma_attr_align = 1; 1728 attrp->dma_attr_burstsizes = (uint_t)limits->dlim_burstsizes; 1729 attrp->dma_attr_minxfer = (uint32_t)limits->dlim_minxfer; 1730 attrp->dma_attr_maxxfer = (uint64_t)limits->dlim_reqsize; 1731 attrp->dma_attr_seg = (uint64_t)limits->dlim_adreg_max; 1732 attrp->dma_attr_sgllen = limits->dlim_sgllen; 1733 attrp->dma_attr_granular = (uint32_t)limits->dlim_granular; 1734 attrp->dma_attr_flags = 0; 1735 1736 ret = i_ddi_mem_alloc(dip, attrp, length, cansleep, streaming, 1737 accattrp, kaddrp, &rlen, ap); 1738 if (ret == DDI_SUCCESS) { 1739 if (real_length) 1740 *real_length = (uint_t)rlen; 1741 } 1742 return (ret); 1743 } 1744 1745 /* ARGSUSED */ 1746 void 1747 i_ddi_mem_free(caddr_t kaddr, ddi_acc_hdl_t *ap) 1748 { 1749 if (ap != NULL) { 1750 /* 1751 * if we modified the cache attributes on alloc, go back and 1752 * fix them since this memory could be returned to the 1753 * general pool. 1754 */ 1755 if (OVERRIDE_CACHE_ATTR(ap->ah_xfermodes)) { 1756 uint_t order = 0; 1757 int e; 1758 i_ddi_cacheattr_to_hatacc(IOMEM_DATA_CACHED, &order); 1759 e = kmem_override_cache_attrs(kaddr, ap->ah_len, order); 1760 if (e != 0) { 1761 cmn_err(CE_WARN, "i_ddi_mem_free() failed to " 1762 "override cache attrs, memory leaked\n"); 1763 return; 1764 } 1765 } 1766 } 1767 kfreea(kaddr); 1768 } 1769 1770 /* 1771 * Access Barriers 1772 * 1773 */ 1774 /*ARGSUSED*/ 1775 int 1776 i_ddi_ontrap(ddi_acc_handle_t hp) 1777 { 1778 return (DDI_FAILURE); 1779 } 1780 1781 /*ARGSUSED*/ 1782 void 1783 i_ddi_notrap(ddi_acc_handle_t hp) 1784 { 1785 } 1786 1787 1788 /* 1789 * Misc Functions 1790 */ 1791 1792 /* 1793 * Implementation instance override functions 1794 * 1795 * No override on i86pc 1796 */ 1797 /*ARGSUSED*/ 1798 uint_t 1799 impl_assign_instance(dev_info_t *dip) 1800 { 1801 return ((uint_t)-1); 1802 } 1803 1804 /*ARGSUSED*/ 1805 int 1806 impl_keep_instance(dev_info_t *dip) 1807 { 1808 1809 #if defined(__xpv) 1810 /* 1811 * Do not persist instance numbers assigned to devices in dom0 1812 */ 1813 dev_info_t *pdip; 1814 if (DOMAIN_IS_INITDOMAIN(xen_info)) { 1815 if (((pdip = ddi_get_parent(dip)) != NULL) && 1816 (strcmp(ddi_get_name(pdip), "xpvd") == 0)) 1817 return (DDI_SUCCESS); 1818 } 1819 #endif 1820 return (DDI_FAILURE); 1821 } 1822 1823 /*ARGSUSED*/ 1824 int 1825 impl_free_instance(dev_info_t *dip) 1826 { 1827 return (DDI_FAILURE); 1828 } 1829 1830 /*ARGSUSED*/ 1831 int 1832 impl_check_cpu(dev_info_t *devi) 1833 { 1834 return (DDI_SUCCESS); 1835 } 1836 1837 /* 1838 * Referenced in common/cpr_driver.c: Power off machine. 1839 * Don't know how to power off i86pc. 1840 */ 1841 void 1842 arch_power_down() 1843 {} 1844 1845 /* 1846 * Copy name to property_name, since name 1847 * is in the low address range below kernelbase. 1848 */ 1849 static void 1850 copy_boot_str(const char *boot_str, char *kern_str, int len) 1851 { 1852 int i = 0; 1853 1854 while (i < len - 1 && boot_str[i] != '\0') { 1855 kern_str[i] = boot_str[i]; 1856 i++; 1857 } 1858 1859 kern_str[i] = 0; /* null terminate */ 1860 if (boot_str[i] != '\0') 1861 cmn_err(CE_WARN, 1862 "boot property string is truncated to %s", kern_str); 1863 } 1864 1865 static void 1866 get_boot_properties(void) 1867 { 1868 extern char hw_provider[]; 1869 dev_info_t *devi; 1870 char *name; 1871 int length; 1872 char property_name[50], property_val[50]; 1873 void *bop_staging_area; 1874 1875 bop_staging_area = kmem_zalloc(MMU_PAGESIZE, KM_NOSLEEP); 1876 1877 /* 1878 * Import "root" properties from the boot. 1879 * 1880 * We do this by invoking BOP_NEXTPROP until the list 1881 * is completely copied in. 1882 */ 1883 1884 devi = ddi_root_node(); 1885 for (name = BOP_NEXTPROP(bootops, ""); /* get first */ 1886 name; /* NULL => DONE */ 1887 name = BOP_NEXTPROP(bootops, name)) { /* get next */ 1888 1889 /* copy string to memory above kernelbase */ 1890 copy_boot_str(name, property_name, 50); 1891 1892 /* 1893 * Skip vga properties. They will be picked up later 1894 * by get_vga_properties. 1895 */ 1896 if (strcmp(property_name, "display-edif-block") == 0 || 1897 strcmp(property_name, "display-edif-id") == 0) { 1898 continue; 1899 } 1900 1901 length = BOP_GETPROPLEN(bootops, property_name); 1902 if (length == 0) 1903 continue; 1904 if (length > MMU_PAGESIZE) { 1905 cmn_err(CE_NOTE, 1906 "boot property %s longer than 0x%x, ignored\n", 1907 property_name, MMU_PAGESIZE); 1908 continue; 1909 } 1910 BOP_GETPROP(bootops, property_name, bop_staging_area); 1911 1912 /* 1913 * special properties: 1914 * si-machine, si-hw-provider 1915 * goes to kernel data structures. 1916 * bios-boot-device and stdout 1917 * goes to hardware property list so it may show up 1918 * in the prtconf -vp output. This is needed by 1919 * Install/Upgrade. Once we fix install upgrade, 1920 * this can be taken out. 1921 */ 1922 if (strcmp(name, "si-machine") == 0) { 1923 (void) strncpy(utsname.machine, bop_staging_area, 1924 SYS_NMLN); 1925 utsname.machine[SYS_NMLN - 1] = (char)NULL; 1926 } else if (strcmp(name, "si-hw-provider") == 0) { 1927 (void) strncpy(hw_provider, bop_staging_area, SYS_NMLN); 1928 hw_provider[SYS_NMLN - 1] = (char)NULL; 1929 } else if (strcmp(name, "bios-boot-device") == 0) { 1930 copy_boot_str(bop_staging_area, property_val, 50); 1931 (void) ndi_prop_update_string(DDI_DEV_T_NONE, devi, 1932 property_name, property_val); 1933 } else if (strcmp(name, "stdout") == 0) { 1934 (void) ndi_prop_update_int(DDI_DEV_T_NONE, devi, 1935 property_name, *((int *)bop_staging_area)); 1936 } else { 1937 /* Property type unknown, use old prop interface */ 1938 (void) e_ddi_prop_create(DDI_DEV_T_NONE, devi, 1939 DDI_PROP_CANSLEEP, property_name, bop_staging_area, 1940 length); 1941 } 1942 } 1943 1944 kmem_free(bop_staging_area, MMU_PAGESIZE); 1945 } 1946 1947 static void 1948 get_vga_properties(void) 1949 { 1950 dev_info_t *devi; 1951 major_t major; 1952 char *name; 1953 int length; 1954 char property_val[50]; 1955 void *bop_staging_area; 1956 1957 /* 1958 * XXXX Hack Allert! 1959 * There really needs to be a better way for identifying various 1960 * console framebuffers and their related issues. Till then, 1961 * check for this one as a replacement to vgatext. 1962 */ 1963 major = ddi_name_to_major("ragexl"); 1964 if (major == (major_t)-1) { 1965 major = ddi_name_to_major("vgatext"); 1966 if (major == (major_t)-1) 1967 return; 1968 } 1969 devi = devnamesp[major].dn_head; 1970 if (devi == NULL) 1971 return; 1972 1973 bop_staging_area = kmem_zalloc(MMU_PAGESIZE, KM_SLEEP); 1974 1975 /* 1976 * Import "vga" properties from the boot. 1977 */ 1978 name = "display-edif-block"; 1979 length = BOP_GETPROPLEN(bootops, name); 1980 if (length > 0 && length < MMU_PAGESIZE) { 1981 BOP_GETPROP(bootops, name, bop_staging_area); 1982 (void) ndi_prop_update_byte_array(DDI_DEV_T_NONE, 1983 devi, name, bop_staging_area, length); 1984 } 1985 1986 /* 1987 * kdmconfig is also looking for display-type and 1988 * video-adapter-type. We default to color and svga. 1989 * 1990 * Could it be "monochrome", "vga"? 1991 * Nah, you've got to come to the 21st century... 1992 * And you can set monitor type manually in kdmconfig 1993 * if you are really an old junky. 1994 */ 1995 (void) ndi_prop_update_string(DDI_DEV_T_NONE, 1996 devi, "display-type", "color"); 1997 (void) ndi_prop_update_string(DDI_DEV_T_NONE, 1998 devi, "video-adapter-type", "svga"); 1999 2000 name = "display-edif-id"; 2001 length = BOP_GETPROPLEN(bootops, name); 2002 if (length > 0 && length < MMU_PAGESIZE) { 2003 BOP_GETPROP(bootops, name, bop_staging_area); 2004 copy_boot_str(bop_staging_area, property_val, length); 2005 (void) ndi_prop_update_string(DDI_DEV_T_NONE, 2006 devi, name, property_val); 2007 } 2008 2009 kmem_free(bop_staging_area, MMU_PAGESIZE); 2010 } 2011 2012 2013 /* 2014 * This is temporary, but absolutely necessary. If we are being 2015 * booted with a device tree created by the DevConf project's bootconf 2016 * program, then we have device information nodes that reflect 2017 * reality. At this point in time in the Solaris release schedule, the 2018 * kernel drivers aren't prepared for reality. They still depend on their 2019 * own ad-hoc interpretations of the properties created when their .conf 2020 * files were interpreted. These drivers use an "ignore-hardware-nodes" 2021 * property to prevent them from using the nodes passed up from the bootconf 2022 * device tree. 2023 * 2024 * Trying to assemble root file system drivers as we are booting from 2025 * devconf will fail if the kernel driver is basing its name_addr's on the 2026 * psuedo-node device info while the bootpath passed up from bootconf is using 2027 * reality-based name_addrs. We help the boot along in this case by 2028 * looking at the pre-bootconf bootpath and determining if we would have 2029 * successfully matched if that had been the bootpath we had chosen. 2030 * 2031 * Note that we only even perform this extra check if we've booted 2032 * using bootconf's 1275 compliant bootpath, this is the boot device, and 2033 * we're trying to match the name_addr specified in the 1275 bootpath. 2034 */ 2035 2036 #define MAXCOMPONENTLEN 32 2037 2038 int 2039 x86_old_bootpath_name_addr_match(dev_info_t *cdip, char *caddr, char *naddr) 2040 { 2041 /* 2042 * There are multiple criteria to be met before we can even 2043 * consider allowing a name_addr match here. 2044 * 2045 * 1) We must have been booted such that the bootconf program 2046 * created device tree nodes and properties. This can be 2047 * determined by examining the 'bootpath' property. This 2048 * property will be a non-null string iff bootconf was 2049 * involved in the boot. 2050 * 2051 * 2) The module that we want to match must be the boot device. 2052 * 2053 * 3) The instance of the module we are thinking of letting be 2054 * our match must be ignoring hardware nodes. 2055 * 2056 * 4) The name_addr we want to match must be the name_addr 2057 * specified in the 1275 bootpath. 2058 */ 2059 static char bootdev_module[MAXCOMPONENTLEN]; 2060 static char bootdev_oldmod[MAXCOMPONENTLEN]; 2061 static char bootdev_newaddr[MAXCOMPONENTLEN]; 2062 static char bootdev_oldaddr[MAXCOMPONENTLEN]; 2063 static int quickexit; 2064 2065 char *daddr; 2066 int dlen; 2067 2068 char *lkupname; 2069 int rv = DDI_FAILURE; 2070 2071 if ((ddi_getlongprop(DDI_DEV_T_ANY, cdip, DDI_PROP_DONTPASS, 2072 "devconf-addr", (caddr_t)&daddr, &dlen) == DDI_PROP_SUCCESS) && 2073 (ddi_getprop(DDI_DEV_T_ANY, cdip, DDI_PROP_DONTPASS, 2074 "ignore-hardware-nodes", -1) != -1)) { 2075 if (strcmp(daddr, caddr) == 0) { 2076 return (DDI_SUCCESS); 2077 } 2078 } 2079 2080 if (quickexit) 2081 return (rv); 2082 2083 if (bootdev_module[0] == '\0') { 2084 char *addrp, *eoaddrp; 2085 char *busp, *modp, *atp; 2086 char *bp1275, *bp; 2087 int bp1275len, bplen; 2088 2089 bp1275 = bp = addrp = eoaddrp = busp = modp = atp = NULL; 2090 2091 if (ddi_getlongprop(DDI_DEV_T_ANY, 2092 ddi_root_node(), 0, "bootpath", 2093 (caddr_t)&bp1275, &bp1275len) != DDI_PROP_SUCCESS || 2094 bp1275len <= 1) { 2095 /* 2096 * We didn't boot from bootconf so we never need to 2097 * do any special matches. 2098 */ 2099 quickexit = 1; 2100 if (bp1275) 2101 kmem_free(bp1275, bp1275len); 2102 return (rv); 2103 } 2104 2105 if (ddi_getlongprop(DDI_DEV_T_ANY, 2106 ddi_root_node(), 0, "boot-path", 2107 (caddr_t)&bp, &bplen) != DDI_PROP_SUCCESS || bplen <= 1) { 2108 /* 2109 * No fallback position for matching. This is 2110 * certainly unexpected, but we'll handle it 2111 * just in case. 2112 */ 2113 quickexit = 1; 2114 kmem_free(bp1275, bp1275len); 2115 if (bp) 2116 kmem_free(bp, bplen); 2117 return (rv); 2118 } 2119 2120 /* 2121 * Determine boot device module and 1275 name_addr 2122 * 2123 * bootpath assumed to be of the form /bus/module@name_addr 2124 */ 2125 if (busp = strchr(bp1275, '/')) { 2126 if (modp = strchr(busp + 1, '/')) { 2127 if (atp = strchr(modp + 1, '@')) { 2128 *atp = '\0'; 2129 addrp = atp + 1; 2130 if (eoaddrp = strchr(addrp, '/')) 2131 *eoaddrp = '\0'; 2132 } 2133 } 2134 } 2135 2136 if (modp && addrp) { 2137 (void) strncpy(bootdev_module, modp + 1, 2138 MAXCOMPONENTLEN); 2139 bootdev_module[MAXCOMPONENTLEN - 1] = '\0'; 2140 2141 (void) strncpy(bootdev_newaddr, addrp, MAXCOMPONENTLEN); 2142 bootdev_newaddr[MAXCOMPONENTLEN - 1] = '\0'; 2143 } else { 2144 quickexit = 1; 2145 kmem_free(bp1275, bp1275len); 2146 kmem_free(bp, bplen); 2147 return (rv); 2148 } 2149 2150 /* 2151 * Determine fallback name_addr 2152 * 2153 * 10/3/96 - Also save fallback module name because it 2154 * might actually be different than the current module 2155 * name. E.G., ISA pnp drivers have new names. 2156 * 2157 * bootpath assumed to be of the form /bus/module@name_addr 2158 */ 2159 addrp = NULL; 2160 if (busp = strchr(bp, '/')) { 2161 if (modp = strchr(busp + 1, '/')) { 2162 if (atp = strchr(modp + 1, '@')) { 2163 *atp = '\0'; 2164 addrp = atp + 1; 2165 if (eoaddrp = strchr(addrp, '/')) 2166 *eoaddrp = '\0'; 2167 } 2168 } 2169 } 2170 2171 if (modp && addrp) { 2172 (void) strncpy(bootdev_oldmod, modp + 1, 2173 MAXCOMPONENTLEN); 2174 bootdev_module[MAXCOMPONENTLEN - 1] = '\0'; 2175 2176 (void) strncpy(bootdev_oldaddr, addrp, MAXCOMPONENTLEN); 2177 bootdev_oldaddr[MAXCOMPONENTLEN - 1] = '\0'; 2178 } 2179 2180 /* Free up the bootpath storage now that we're done with it. */ 2181 kmem_free(bp1275, bp1275len); 2182 kmem_free(bp, bplen); 2183 2184 if (bootdev_oldaddr[0] == '\0') { 2185 quickexit = 1; 2186 return (rv); 2187 } 2188 } 2189 2190 if (((lkupname = ddi_get_name(cdip)) != NULL) && 2191 (strcmp(bootdev_module, lkupname) == 0 || 2192 strcmp(bootdev_oldmod, lkupname) == 0) && 2193 ((ddi_getprop(DDI_DEV_T_ANY, cdip, DDI_PROP_DONTPASS, 2194 "ignore-hardware-nodes", -1) != -1) || 2195 ignore_hardware_nodes) && 2196 strcmp(bootdev_newaddr, caddr) == 0 && 2197 strcmp(bootdev_oldaddr, naddr) == 0) { 2198 rv = DDI_SUCCESS; 2199 } 2200 2201 return (rv); 2202 } 2203 2204 /* 2205 * Perform a copy from a memory mapped device (whose devinfo pointer is devi) 2206 * separately mapped at devaddr in the kernel to a kernel buffer at kaddr. 2207 */ 2208 /*ARGSUSED*/ 2209 int 2210 e_ddi_copyfromdev(dev_info_t *devi, 2211 off_t off, const void *devaddr, void *kaddr, size_t len) 2212 { 2213 bcopy(devaddr, kaddr, len); 2214 return (0); 2215 } 2216 2217 /* 2218 * Perform a copy to a memory mapped device (whose devinfo pointer is devi) 2219 * separately mapped at devaddr in the kernel from a kernel buffer at kaddr. 2220 */ 2221 /*ARGSUSED*/ 2222 int 2223 e_ddi_copytodev(dev_info_t *devi, 2224 off_t off, const void *kaddr, void *devaddr, size_t len) 2225 { 2226 bcopy(kaddr, devaddr, len); 2227 return (0); 2228 } 2229 2230 2231 static int 2232 poke_mem(peekpoke_ctlops_t *in_args) 2233 { 2234 int err = DDI_SUCCESS; 2235 on_trap_data_t otd; 2236 2237 /* Set up protected environment. */ 2238 if (!on_trap(&otd, OT_DATA_ACCESS)) { 2239 switch (in_args->size) { 2240 case sizeof (uint8_t): 2241 *(uint8_t *)(in_args->dev_addr) = 2242 *(uint8_t *)in_args->host_addr; 2243 break; 2244 2245 case sizeof (uint16_t): 2246 *(uint16_t *)(in_args->dev_addr) = 2247 *(uint16_t *)in_args->host_addr; 2248 break; 2249 2250 case sizeof (uint32_t): 2251 *(uint32_t *)(in_args->dev_addr) = 2252 *(uint32_t *)in_args->host_addr; 2253 break; 2254 2255 case sizeof (uint64_t): 2256 *(uint64_t *)(in_args->dev_addr) = 2257 *(uint64_t *)in_args->host_addr; 2258 break; 2259 2260 default: 2261 err = DDI_FAILURE; 2262 break; 2263 } 2264 } else 2265 err = DDI_FAILURE; 2266 2267 /* Take down protected environment. */ 2268 no_trap(); 2269 2270 return (err); 2271 } 2272 2273 2274 static int 2275 peek_mem(peekpoke_ctlops_t *in_args) 2276 { 2277 int err = DDI_SUCCESS; 2278 on_trap_data_t otd; 2279 2280 if (!on_trap(&otd, OT_DATA_ACCESS)) { 2281 switch (in_args->size) { 2282 case sizeof (uint8_t): 2283 *(uint8_t *)in_args->host_addr = 2284 *(uint8_t *)in_args->dev_addr; 2285 break; 2286 2287 case sizeof (uint16_t): 2288 *(uint16_t *)in_args->host_addr = 2289 *(uint16_t *)in_args->dev_addr; 2290 break; 2291 2292 case sizeof (uint32_t): 2293 *(uint32_t *)in_args->host_addr = 2294 *(uint32_t *)in_args->dev_addr; 2295 break; 2296 2297 case sizeof (uint64_t): 2298 *(uint64_t *)in_args->host_addr = 2299 *(uint64_t *)in_args->dev_addr; 2300 break; 2301 2302 default: 2303 err = DDI_FAILURE; 2304 break; 2305 } 2306 } else 2307 err = DDI_FAILURE; 2308 2309 no_trap(); 2310 return (err); 2311 } 2312 2313 2314 /* 2315 * This is called only to process peek/poke when the DIP is NULL. 2316 * Assume that this is for memory, as nexi take care of device safe accesses. 2317 */ 2318 int 2319 peekpoke_mem(ddi_ctl_enum_t cmd, peekpoke_ctlops_t *in_args) 2320 { 2321 return (cmd == DDI_CTLOPS_PEEK ? peek_mem(in_args) : poke_mem(in_args)); 2322 } 2323 2324 /* 2325 * we've just done a cautious put/get. Check if it was successful by 2326 * calling pci_ereport_post() on all puts and for any gets that return -1 2327 */ 2328 static int 2329 pci_peekpoke_check_fma(dev_info_t *dip, void *arg, ddi_ctl_enum_t ctlop, 2330 void (*scan)(dev_info_t *, ddi_fm_error_t *)) 2331 { 2332 int rval = DDI_SUCCESS; 2333 peekpoke_ctlops_t *in_args = (peekpoke_ctlops_t *)arg; 2334 ddi_fm_error_t de; 2335 ddi_acc_impl_t *hp = (ddi_acc_impl_t *)in_args->handle; 2336 ddi_acc_hdl_t *hdlp = (ddi_acc_hdl_t *)in_args->handle; 2337 int check_err = 0; 2338 int repcount = in_args->repcount; 2339 2340 if (ctlop == DDI_CTLOPS_POKE && 2341 hdlp->ah_acc.devacc_attr_access != DDI_CAUTIOUS_ACC) 2342 return (DDI_SUCCESS); 2343 2344 if (ctlop == DDI_CTLOPS_PEEK && 2345 hdlp->ah_acc.devacc_attr_access != DDI_CAUTIOUS_ACC) { 2346 for (; repcount; repcount--) { 2347 switch (in_args->size) { 2348 case sizeof (uint8_t): 2349 if (*(uint8_t *)in_args->host_addr == 0xff) 2350 check_err = 1; 2351 break; 2352 case sizeof (uint16_t): 2353 if (*(uint16_t *)in_args->host_addr == 0xffff) 2354 check_err = 1; 2355 break; 2356 case sizeof (uint32_t): 2357 if (*(uint32_t *)in_args->host_addr == 2358 0xffffffff) 2359 check_err = 1; 2360 break; 2361 case sizeof (uint64_t): 2362 if (*(uint64_t *)in_args->host_addr == 2363 0xffffffffffffffff) 2364 check_err = 1; 2365 break; 2366 } 2367 } 2368 if (check_err == 0) 2369 return (DDI_SUCCESS); 2370 } 2371 /* 2372 * for a cautious put or get or a non-cautious get that returned -1 call 2373 * io framework to see if there really was an error 2374 */ 2375 bzero(&de, sizeof (ddi_fm_error_t)); 2376 de.fme_version = DDI_FME_VERSION; 2377 de.fme_ena = fm_ena_generate(0, FM_ENA_FMT1); 2378 if (hdlp->ah_acc.devacc_attr_access == DDI_CAUTIOUS_ACC) { 2379 de.fme_flag = DDI_FM_ERR_EXPECTED; 2380 de.fme_acc_handle = in_args->handle; 2381 } else if (hdlp->ah_acc.devacc_attr_access == DDI_DEFAULT_ACC) { 2382 /* 2383 * We only get here with DDI_DEFAULT_ACC for config space gets. 2384 * Non-hardened drivers may be probing the hardware and 2385 * expecting -1 returned. So need to treat errors on 2386 * DDI_DEFAULT_ACC as DDI_FM_ERR_EXPECTED. 2387 */ 2388 de.fme_flag = DDI_FM_ERR_EXPECTED; 2389 de.fme_acc_handle = in_args->handle; 2390 } else { 2391 /* 2392 * Hardened driver doing protected accesses shouldn't 2393 * get errors unless there's a hardware problem. Treat 2394 * as nonfatal if there's an error, but set UNEXPECTED 2395 * so we raise ereports on any errors and potentially 2396 * fault the device 2397 */ 2398 de.fme_flag = DDI_FM_ERR_UNEXPECTED; 2399 } 2400 (void) scan(dip, &de); 2401 if (hdlp->ah_acc.devacc_attr_access != DDI_DEFAULT_ACC && 2402 de.fme_status != DDI_FM_OK) { 2403 ndi_err_t *errp = (ndi_err_t *)hp->ahi_err; 2404 rval = DDI_FAILURE; 2405 errp->err_ena = de.fme_ena; 2406 errp->err_expected = de.fme_flag; 2407 errp->err_status = DDI_FM_NONFATAL; 2408 } 2409 return (rval); 2410 } 2411 2412 /* 2413 * pci_peekpoke_check_nofma() is for when an error occurs on a register access 2414 * during pci_ereport_post(). We can't call pci_ereport_post() again or we'd 2415 * recurse, so assume all puts are OK and gets have failed if they return -1 2416 */ 2417 static int 2418 pci_peekpoke_check_nofma(void *arg, ddi_ctl_enum_t ctlop) 2419 { 2420 int rval = DDI_SUCCESS; 2421 peekpoke_ctlops_t *in_args = (peekpoke_ctlops_t *)arg; 2422 ddi_acc_impl_t *hp = (ddi_acc_impl_t *)in_args->handle; 2423 ddi_acc_hdl_t *hdlp = (ddi_acc_hdl_t *)in_args->handle; 2424 int repcount = in_args->repcount; 2425 2426 if (ctlop == DDI_CTLOPS_POKE) 2427 return (rval); 2428 2429 for (; repcount; repcount--) { 2430 switch (in_args->size) { 2431 case sizeof (uint8_t): 2432 if (*(uint8_t *)in_args->host_addr == 0xff) 2433 rval = DDI_FAILURE; 2434 break; 2435 case sizeof (uint16_t): 2436 if (*(uint16_t *)in_args->host_addr == 0xffff) 2437 rval = DDI_FAILURE; 2438 break; 2439 case sizeof (uint32_t): 2440 if (*(uint32_t *)in_args->host_addr == 0xffffffff) 2441 rval = DDI_FAILURE; 2442 break; 2443 case sizeof (uint64_t): 2444 if (*(uint64_t *)in_args->host_addr == 2445 0xffffffffffffffff) 2446 rval = DDI_FAILURE; 2447 break; 2448 } 2449 } 2450 if (hdlp->ah_acc.devacc_attr_access != DDI_DEFAULT_ACC && 2451 rval == DDI_FAILURE) { 2452 ndi_err_t *errp = (ndi_err_t *)hp->ahi_err; 2453 errp->err_ena = fm_ena_generate(0, FM_ENA_FMT1); 2454 errp->err_expected = DDI_FM_ERR_UNEXPECTED; 2455 errp->err_status = DDI_FM_NONFATAL; 2456 } 2457 return (rval); 2458 } 2459 2460 int 2461 pci_peekpoke_check(dev_info_t *dip, dev_info_t *rdip, 2462 ddi_ctl_enum_t ctlop, void *arg, void *result, 2463 int (*handler)(dev_info_t *, dev_info_t *, ddi_ctl_enum_t, void *, 2464 void *), kmutex_t *err_mutexp, kmutex_t *peek_poke_mutexp, 2465 void (*scan)(dev_info_t *, ddi_fm_error_t *)) 2466 { 2467 int rval; 2468 peekpoke_ctlops_t *in_args = (peekpoke_ctlops_t *)arg; 2469 ddi_acc_impl_t *hp = (ddi_acc_impl_t *)in_args->handle; 2470 2471 /* 2472 * this function only supports cautious accesses, not peeks/pokes 2473 * which don't have a handle 2474 */ 2475 if (hp == NULL) 2476 return (DDI_FAILURE); 2477 2478 if (hp->ahi_acc_attr & DDI_ACCATTR_CONFIG_SPACE) { 2479 if (!mutex_tryenter(err_mutexp)) { 2480 /* 2481 * As this may be a recursive call from within 2482 * pci_ereport_post() we can't wait for the mutexes. 2483 * Fortunately we know someone is already calling 2484 * pci_ereport_post() which will handle the error bits 2485 * for us, and as this is a config space access we can 2486 * just do the access and check return value for -1 2487 * using pci_peekpoke_check_nofma(). 2488 */ 2489 rval = handler(dip, rdip, ctlop, arg, result); 2490 if (rval == DDI_SUCCESS) 2491 rval = pci_peekpoke_check_nofma(arg, ctlop); 2492 return (rval); 2493 } 2494 /* 2495 * This can't be a recursive call. Drop the err_mutex and get 2496 * both mutexes in the right order. If an error hasn't already 2497 * been detected by the ontrap code, use pci_peekpoke_check_fma 2498 * which will call pci_ereport_post() to check error status. 2499 */ 2500 mutex_exit(err_mutexp); 2501 } 2502 mutex_enter(peek_poke_mutexp); 2503 rval = handler(dip, rdip, ctlop, arg, result); 2504 if (rval == DDI_SUCCESS) { 2505 mutex_enter(err_mutexp); 2506 rval = pci_peekpoke_check_fma(dip, arg, ctlop, scan); 2507 mutex_exit(err_mutexp); 2508 } 2509 mutex_exit(peek_poke_mutexp); 2510 return (rval); 2511 } 2512 2513 void 2514 impl_setup_ddi(void) 2515 { 2516 dev_info_t *xdip, *isa_dip; 2517 rd_existing_t rd_mem_prop; 2518 int err; 2519 2520 ndi_devi_alloc_sleep(ddi_root_node(), "ramdisk", 2521 (pnode_t)DEVI_SID_NODEID, &xdip); 2522 2523 (void) BOP_GETPROP(bootops, 2524 "ramdisk_start", (void *)&ramdisk_start); 2525 (void) BOP_GETPROP(bootops, 2526 "ramdisk_end", (void *)&ramdisk_end); 2527 2528 #ifdef __xpv 2529 ramdisk_start -= ONE_GIG; 2530 ramdisk_end -= ONE_GIG; 2531 #endif 2532 rd_mem_prop.phys = ramdisk_start; 2533 rd_mem_prop.size = ramdisk_end - ramdisk_start + 1; 2534 2535 (void) ndi_prop_update_byte_array(DDI_DEV_T_NONE, xdip, 2536 RD_EXISTING_PROP_NAME, (uchar_t *)&rd_mem_prop, 2537 sizeof (rd_mem_prop)); 2538 err = ndi_devi_bind_driver(xdip, 0); 2539 ASSERT(err == 0); 2540 2541 /* isa node */ 2542 if (pseudo_isa) { 2543 ndi_devi_alloc_sleep(ddi_root_node(), "isa", 2544 (pnode_t)DEVI_SID_NODEID, &isa_dip); 2545 (void) ndi_prop_update_string(DDI_DEV_T_NONE, isa_dip, 2546 "device_type", "isa"); 2547 (void) ndi_prop_update_string(DDI_DEV_T_NONE, isa_dip, 2548 "bus-type", "isa"); 2549 (void) ndi_devi_bind_driver(isa_dip, 0); 2550 } 2551 2552 /* 2553 * Read in the properties from the boot. 2554 */ 2555 get_boot_properties(); 2556 2557 /* do bus dependent probes. */ 2558 impl_bus_initialprobe(); 2559 2560 /* not framebuffer should be enumerated, if present */ 2561 get_vga_properties(); 2562 } 2563 2564 dev_t 2565 getrootdev(void) 2566 { 2567 /* 2568 * Precedence given to rootdev if set in /etc/system 2569 */ 2570 if (root_is_svm == B_TRUE) { 2571 return (ddi_pathname_to_dev_t(svm_bootpath)); 2572 } 2573 2574 /* 2575 * Usually rootfs.bo_name is initialized by the 2576 * the bootpath property from bootenv.rc, but 2577 * defaults to "/ramdisk:a" otherwise. 2578 */ 2579 return (ddi_pathname_to_dev_t(rootfs.bo_name)); 2580 } 2581 2582 static struct bus_probe { 2583 struct bus_probe *next; 2584 void (*probe)(int); 2585 } *bus_probes; 2586 2587 void 2588 impl_bus_add_probe(void (*func)(int)) 2589 { 2590 struct bus_probe *probe; 2591 2592 probe = kmem_alloc(sizeof (*probe), KM_SLEEP); 2593 probe->next = bus_probes; 2594 probe->probe = func; 2595 bus_probes = probe; 2596 } 2597 2598 /*ARGSUSED*/ 2599 void 2600 impl_bus_delete_probe(void (*func)(int)) 2601 { 2602 struct bus_probe *prev = NULL; 2603 struct bus_probe *probe = bus_probes; 2604 2605 while (probe) { 2606 if (probe->probe == func) 2607 break; 2608 prev = probe; 2609 probe = probe->next; 2610 } 2611 2612 if (probe == NULL) 2613 return; 2614 2615 if (prev) 2616 prev->next = probe->next; 2617 else 2618 bus_probes = probe->next; 2619 2620 kmem_free(probe, sizeof (struct bus_probe)); 2621 } 2622 2623 /* 2624 * impl_bus_initialprobe 2625 * Modload the prom simulator, then let it probe to verify existence 2626 * and type of PCI support. 2627 */ 2628 static void 2629 impl_bus_initialprobe(void) 2630 { 2631 struct bus_probe *probe; 2632 2633 /* load modules to install bus probes */ 2634 #if defined(__xpv) 2635 if (DOMAIN_IS_INITDOMAIN(xen_info)) { 2636 if (modload("misc", "pci_autoconfig") < 0) { 2637 panic("failed to load misc/pci_autoconfig"); 2638 } 2639 } 2640 (void) modload("misc", "xpv_autoconfig"); 2641 #else 2642 if (modload("misc", "pci_autoconfig") < 0) { 2643 panic("failed to load misc/pci_autoconfig"); 2644 } 2645 #endif 2646 2647 probe = bus_probes; 2648 while (probe) { 2649 /* run the probe functions */ 2650 (*probe->probe)(0); 2651 probe = probe->next; 2652 } 2653 } 2654 2655 /* 2656 * impl_bus_reprobe 2657 * Reprogram devices not set up by firmware. 2658 */ 2659 static void 2660 impl_bus_reprobe(void) 2661 { 2662 struct bus_probe *probe; 2663 2664 probe = bus_probes; 2665 while (probe) { 2666 /* run the probe function */ 2667 (*probe->probe)(1); 2668 probe = probe->next; 2669 } 2670 } 2671 2672 2673 /* 2674 * The following functions ready a cautious request to go up to the nexus 2675 * driver. It is up to the nexus driver to decide how to process the request. 2676 * It may choose to call i_ddi_do_caut_get/put in this file, or do it 2677 * differently. 2678 */ 2679 2680 static void 2681 i_ddi_caut_getput_ctlops(ddi_acc_impl_t *hp, uint64_t host_addr, 2682 uint64_t dev_addr, size_t size, size_t repcount, uint_t flags, 2683 ddi_ctl_enum_t cmd) 2684 { 2685 peekpoke_ctlops_t cautacc_ctlops_arg; 2686 2687 cautacc_ctlops_arg.size = size; 2688 cautacc_ctlops_arg.dev_addr = dev_addr; 2689 cautacc_ctlops_arg.host_addr = host_addr; 2690 cautacc_ctlops_arg.handle = (ddi_acc_handle_t)hp; 2691 cautacc_ctlops_arg.repcount = repcount; 2692 cautacc_ctlops_arg.flags = flags; 2693 2694 (void) ddi_ctlops(hp->ahi_common.ah_dip, hp->ahi_common.ah_dip, cmd, 2695 &cautacc_ctlops_arg, NULL); 2696 } 2697 2698 uint8_t 2699 i_ddi_caut_get8(ddi_acc_impl_t *hp, uint8_t *addr) 2700 { 2701 uint8_t value; 2702 i_ddi_caut_getput_ctlops(hp, (uintptr_t)&value, (uintptr_t)addr, 2703 sizeof (uint8_t), 1, 0, DDI_CTLOPS_PEEK); 2704 2705 return (value); 2706 } 2707 2708 uint16_t 2709 i_ddi_caut_get16(ddi_acc_impl_t *hp, uint16_t *addr) 2710 { 2711 uint16_t value; 2712 i_ddi_caut_getput_ctlops(hp, (uintptr_t)&value, (uintptr_t)addr, 2713 sizeof (uint16_t), 1, 0, DDI_CTLOPS_PEEK); 2714 2715 return (value); 2716 } 2717 2718 uint32_t 2719 i_ddi_caut_get32(ddi_acc_impl_t *hp, uint32_t *addr) 2720 { 2721 uint32_t value; 2722 i_ddi_caut_getput_ctlops(hp, (uintptr_t)&value, (uintptr_t)addr, 2723 sizeof (uint32_t), 1, 0, DDI_CTLOPS_PEEK); 2724 2725 return (value); 2726 } 2727 2728 uint64_t 2729 i_ddi_caut_get64(ddi_acc_impl_t *hp, uint64_t *addr) 2730 { 2731 uint64_t value; 2732 i_ddi_caut_getput_ctlops(hp, (uintptr_t)&value, (uintptr_t)addr, 2733 sizeof (uint64_t), 1, 0, DDI_CTLOPS_PEEK); 2734 2735 return (value); 2736 } 2737 2738 void 2739 i_ddi_caut_put8(ddi_acc_impl_t *hp, uint8_t *addr, uint8_t value) 2740 { 2741 i_ddi_caut_getput_ctlops(hp, (uintptr_t)&value, (uintptr_t)addr, 2742 sizeof (uint8_t), 1, 0, DDI_CTLOPS_POKE); 2743 } 2744 2745 void 2746 i_ddi_caut_put16(ddi_acc_impl_t *hp, uint16_t *addr, uint16_t value) 2747 { 2748 i_ddi_caut_getput_ctlops(hp, (uintptr_t)&value, (uintptr_t)addr, 2749 sizeof (uint16_t), 1, 0, DDI_CTLOPS_POKE); 2750 } 2751 2752 void 2753 i_ddi_caut_put32(ddi_acc_impl_t *hp, uint32_t *addr, uint32_t value) 2754 { 2755 i_ddi_caut_getput_ctlops(hp, (uintptr_t)&value, (uintptr_t)addr, 2756 sizeof (uint32_t), 1, 0, DDI_CTLOPS_POKE); 2757 } 2758 2759 void 2760 i_ddi_caut_put64(ddi_acc_impl_t *hp, uint64_t *addr, uint64_t value) 2761 { 2762 i_ddi_caut_getput_ctlops(hp, (uintptr_t)&value, (uintptr_t)addr, 2763 sizeof (uint64_t), 1, 0, DDI_CTLOPS_POKE); 2764 } 2765 2766 void 2767 i_ddi_caut_rep_get8(ddi_acc_impl_t *hp, uint8_t *host_addr, uint8_t *dev_addr, 2768 size_t repcount, uint_t flags) 2769 { 2770 i_ddi_caut_getput_ctlops(hp, (uintptr_t)host_addr, (uintptr_t)dev_addr, 2771 sizeof (uint8_t), repcount, flags, DDI_CTLOPS_PEEK); 2772 } 2773 2774 void 2775 i_ddi_caut_rep_get16(ddi_acc_impl_t *hp, uint16_t *host_addr, 2776 uint16_t *dev_addr, size_t repcount, uint_t flags) 2777 { 2778 i_ddi_caut_getput_ctlops(hp, (uintptr_t)host_addr, (uintptr_t)dev_addr, 2779 sizeof (uint16_t), repcount, flags, DDI_CTLOPS_PEEK); 2780 } 2781 2782 void 2783 i_ddi_caut_rep_get32(ddi_acc_impl_t *hp, uint32_t *host_addr, 2784 uint32_t *dev_addr, size_t repcount, uint_t flags) 2785 { 2786 i_ddi_caut_getput_ctlops(hp, (uintptr_t)host_addr, (uintptr_t)dev_addr, 2787 sizeof (uint32_t), repcount, flags, DDI_CTLOPS_PEEK); 2788 } 2789 2790 void 2791 i_ddi_caut_rep_get64(ddi_acc_impl_t *hp, uint64_t *host_addr, 2792 uint64_t *dev_addr, size_t repcount, uint_t flags) 2793 { 2794 i_ddi_caut_getput_ctlops(hp, (uintptr_t)host_addr, (uintptr_t)dev_addr, 2795 sizeof (uint64_t), repcount, flags, DDI_CTLOPS_PEEK); 2796 } 2797 2798 void 2799 i_ddi_caut_rep_put8(ddi_acc_impl_t *hp, uint8_t *host_addr, uint8_t *dev_addr, 2800 size_t repcount, uint_t flags) 2801 { 2802 i_ddi_caut_getput_ctlops(hp, (uintptr_t)host_addr, (uintptr_t)dev_addr, 2803 sizeof (uint8_t), repcount, flags, DDI_CTLOPS_POKE); 2804 } 2805 2806 void 2807 i_ddi_caut_rep_put16(ddi_acc_impl_t *hp, uint16_t *host_addr, 2808 uint16_t *dev_addr, size_t repcount, uint_t flags) 2809 { 2810 i_ddi_caut_getput_ctlops(hp, (uintptr_t)host_addr, (uintptr_t)dev_addr, 2811 sizeof (uint16_t), repcount, flags, DDI_CTLOPS_POKE); 2812 } 2813 2814 void 2815 i_ddi_caut_rep_put32(ddi_acc_impl_t *hp, uint32_t *host_addr, 2816 uint32_t *dev_addr, size_t repcount, uint_t flags) 2817 { 2818 i_ddi_caut_getput_ctlops(hp, (uintptr_t)host_addr, (uintptr_t)dev_addr, 2819 sizeof (uint32_t), repcount, flags, DDI_CTLOPS_POKE); 2820 } 2821 2822 void 2823 i_ddi_caut_rep_put64(ddi_acc_impl_t *hp, uint64_t *host_addr, 2824 uint64_t *dev_addr, size_t repcount, uint_t flags) 2825 { 2826 i_ddi_caut_getput_ctlops(hp, (uintptr_t)host_addr, (uintptr_t)dev_addr, 2827 sizeof (uint64_t), repcount, flags, DDI_CTLOPS_POKE); 2828 } 2829 2830 boolean_t 2831 i_ddi_copybuf_required(ddi_dma_attr_t *attrp) 2832 { 2833 uint64_t hi_pa; 2834 2835 hi_pa = ((uint64_t)physmax + 1ull) << PAGESHIFT; 2836 if (attrp->dma_attr_addr_hi < hi_pa) { 2837 return (B_TRUE); 2838 } 2839 2840 return (B_FALSE); 2841 } 2842 2843 size_t 2844 i_ddi_copybuf_size() 2845 { 2846 return (dma_max_copybuf_size); 2847 } 2848 2849 /* 2850 * i_ddi_dma_max() 2851 * returns the maximum DMA size which can be performed in a single DMA 2852 * window taking into account the devices DMA contraints (attrp), the 2853 * maximum copy buffer size (if applicable), and the worse case buffer 2854 * fragmentation. 2855 */ 2856 /*ARGSUSED*/ 2857 uint32_t 2858 i_ddi_dma_max(dev_info_t *dip, ddi_dma_attr_t *attrp) 2859 { 2860 uint64_t maxxfer; 2861 2862 2863 /* 2864 * take the min of maxxfer and the the worse case fragementation 2865 * (e.g. every cookie <= 1 page) 2866 */ 2867 maxxfer = MIN(attrp->dma_attr_maxxfer, 2868 ((uint64_t)(attrp->dma_attr_sgllen - 1) << PAGESHIFT)); 2869 2870 /* 2871 * If the DMA engine can't reach all off memory, we also need to take 2872 * the max size of the copybuf into consideration. 2873 */ 2874 if (i_ddi_copybuf_required(attrp)) { 2875 maxxfer = MIN(i_ddi_copybuf_size(), maxxfer); 2876 } 2877 2878 /* 2879 * we only return a 32-bit value. Make sure it's not -1. Round to a 2880 * page so it won't be mistaken for an error value during debug. 2881 */ 2882 if (maxxfer >= 0xFFFFFFFF) { 2883 maxxfer = 0xFFFFF000; 2884 } 2885 2886 /* 2887 * make sure the value we return is a whole multiple of the 2888 * granlarity. 2889 */ 2890 if (attrp->dma_attr_granular > 1) { 2891 maxxfer = maxxfer - (maxxfer % attrp->dma_attr_granular); 2892 } 2893 2894 return ((uint32_t)maxxfer); 2895 } 2896