1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2007 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 27 #pragma ident "%Z%%M% %I% %E% SMI" 28 29 /* 30 * PC specific DDI implementation 31 */ 32 #include <sys/types.h> 33 #include <sys/autoconf.h> 34 #include <sys/avintr.h> 35 #include <sys/bootconf.h> 36 #include <sys/conf.h> 37 #include <sys/cpuvar.h> 38 #include <sys/ddi_impldefs.h> 39 #include <sys/ddi_subrdefs.h> 40 #include <sys/ethernet.h> 41 #include <sys/fp.h> 42 #include <sys/instance.h> 43 #include <sys/kmem.h> 44 #include <sys/machsystm.h> 45 #include <sys/modctl.h> 46 #include <sys/promif.h> 47 #include <sys/prom_plat.h> 48 #include <sys/sunndi.h> 49 #include <sys/ndi_impldefs.h> 50 #include <sys/ddi_impldefs.h> 51 #include <sys/sysmacros.h> 52 #include <sys/systeminfo.h> 53 #include <sys/utsname.h> 54 #include <sys/atomic.h> 55 #include <sys/spl.h> 56 #include <sys/archsystm.h> 57 #include <vm/seg_kmem.h> 58 #include <sys/ontrap.h> 59 #include <sys/fm/protocol.h> 60 #include <sys/ramdisk.h> 61 #include <sys/sunndi.h> 62 #include <sys/vmem.h> 63 #include <sys/pci_impl.h> 64 #if defined(__xpv) 65 #include <sys/hypervisor.h> 66 #endif 67 #include <sys/mach_intr.h> 68 #include <vm/hat_i86.h> 69 #include <sys/x86_archext.h> 70 71 /* 72 * DDI Boot Configuration 73 */ 74 75 /* 76 * Platform drivers on this platform 77 */ 78 char *platform_module_list[] = { 79 "acpippm", 80 "ppm", 81 (char *)0 82 }; 83 84 /* pci bus resource maps */ 85 struct pci_bus_resource *pci_bus_res; 86 87 size_t dma_max_copybuf_size = 0x101000; /* 1M + 4K */ 88 89 extern int root_is_svm; 90 uint64_t ramdisk_start, ramdisk_end; 91 92 /* 93 * Forward declarations 94 */ 95 static int getlongprop_buf(); 96 static void get_boot_properties(void); 97 static void impl_bus_initialprobe(void); 98 static void impl_bus_reprobe(void); 99 100 static int poke_mem(peekpoke_ctlops_t *in_args); 101 static int peek_mem(peekpoke_ctlops_t *in_args); 102 103 static int kmem_override_cache_attrs(caddr_t, size_t, uint_t); 104 105 #define CTGENTRIES 15 106 107 static struct ctgas { 108 struct ctgas *ctg_next; 109 int ctg_index; 110 void *ctg_addr[CTGENTRIES]; 111 size_t ctg_size[CTGENTRIES]; 112 } ctglist; 113 114 static kmutex_t ctgmutex; 115 #define CTGLOCK() mutex_enter(&ctgmutex) 116 #define CTGUNLOCK() mutex_exit(&ctgmutex) 117 118 /* 119 * Minimum pfn value of page_t's put on the free list. This is to simplify 120 * support of ddi dma memory requests which specify small, non-zero addr_lo 121 * values. 122 * 123 * The default value of 2, which corresponds to the only known non-zero addr_lo 124 * value used, means a single page will be sacrificed (pfn typically starts 125 * at 1). ddiphysmin can be set to 0 to disable. It cannot be set above 0x100 126 * otherwise mp startup panics. 127 */ 128 pfn_t ddiphysmin = 2; 129 130 static void 131 check_driver_disable(void) 132 { 133 int proplen = 128; 134 char *prop_name; 135 char *drv_name, *propval; 136 major_t major; 137 138 prop_name = kmem_alloc(proplen, KM_SLEEP); 139 for (major = 0; major < devcnt; major++) { 140 drv_name = ddi_major_to_name(major); 141 if (drv_name == NULL) 142 continue; 143 (void) snprintf(prop_name, proplen, "disable-%s", drv_name); 144 if (ddi_prop_lookup_string(DDI_DEV_T_ANY, ddi_root_node(), 145 DDI_PROP_DONTPASS, prop_name, &propval) == DDI_SUCCESS) { 146 if (strcmp(propval, "true") == 0) { 147 devnamesp[major].dn_flags |= DN_DRIVER_REMOVED; 148 cmn_err(CE_NOTE, "driver %s disabled", 149 drv_name); 150 } 151 ddi_prop_free(propval); 152 } 153 } 154 kmem_free(prop_name, proplen); 155 } 156 157 158 /* 159 * Configure the hardware on the system. 160 * Called before the rootfs is mounted 161 */ 162 void 163 configure(void) 164 { 165 extern void i_ddi_init_root(); 166 167 #if defined(__i386) 168 extern int fpu_pentium_fdivbug; 169 #endif /* __i386 */ 170 extern int fpu_ignored; 171 172 /* 173 * Determine if an FPU is attached 174 */ 175 176 fpu_probe(); 177 178 #if defined(__i386) 179 if (fpu_pentium_fdivbug) { 180 printf("\ 181 FP hardware exhibits Pentium floating point divide problem\n"); 182 } 183 #endif /* __i386 */ 184 185 if (fpu_ignored) { 186 printf("FP hardware will not be used\n"); 187 } else if (!fpu_exists) { 188 printf("No FPU in configuration\n"); 189 } 190 191 /* 192 * Initialize devices on the machine. 193 * Uses configuration tree built by the PROMs to determine what 194 * is present, and builds a tree of prototype dev_info nodes 195 * corresponding to the hardware which identified itself. 196 */ 197 #if !defined(SAS) && !defined(MPSAS) 198 /* 199 * Check for disabled drivers and initialize root node. 200 */ 201 check_driver_disable(); 202 i_ddi_init_root(); 203 204 /* 205 * attach the isa nexus to get ACPI resource usage 206 * isa is "kind of" a pseudo node 207 */ 208 #if defined(__xpv) 209 if (DOMAIN_IS_INITDOMAIN(xen_info)) 210 (void) i_ddi_attach_pseudo_node("isa"); 211 #else 212 (void) i_ddi_attach_pseudo_node("isa"); 213 #endif 214 215 /* reprogram devices not set up by firmware (BIOS) */ 216 impl_bus_reprobe(); 217 #endif /* !SAS && !MPSAS */ 218 } 219 220 /* 221 * The "status" property indicates the operational status of a device. 222 * If this property is present, the value is a string indicating the 223 * status of the device as follows: 224 * 225 * "okay" operational. 226 * "disabled" not operational, but might become operational. 227 * "fail" not operational because a fault has been detected, 228 * and it is unlikely that the device will become 229 * operational without repair. no additional details 230 * are available. 231 * "fail-xxx" not operational because a fault has been detected, 232 * and it is unlikely that the device will become 233 * operational without repair. "xxx" is additional 234 * human-readable information about the particular 235 * fault condition that was detected. 236 * 237 * The absence of this property means that the operational status is 238 * unknown or okay. 239 * 240 * This routine checks the status property of the specified device node 241 * and returns 0 if the operational status indicates failure, and 1 otherwise. 242 * 243 * The property may exist on plug-in cards the existed before IEEE 1275-1994. 244 * And, in that case, the property may not even be a string. So we carefully 245 * check for the value "fail", in the beginning of the string, noting 246 * the property length. 247 */ 248 int 249 status_okay(int id, char *buf, int buflen) 250 { 251 char status_buf[OBP_MAXPROPNAME]; 252 char *bufp = buf; 253 int len = buflen; 254 int proplen; 255 static const char *status = "status"; 256 static const char *fail = "fail"; 257 int fail_len = (int)strlen(fail); 258 259 /* 260 * Get the proplen ... if it's smaller than "fail", 261 * or doesn't exist ... then we don't care, since 262 * the value can't begin with the char string "fail". 263 * 264 * NB: proplen, if it's a string, includes the NULL in the 265 * the size of the property, and fail_len does not. 266 */ 267 proplen = prom_getproplen((pnode_t)id, (caddr_t)status); 268 if (proplen <= fail_len) /* nonexistant or uninteresting len */ 269 return (1); 270 271 /* 272 * if a buffer was provided, use it 273 */ 274 if ((buf == (char *)NULL) || (buflen <= 0)) { 275 bufp = status_buf; 276 len = sizeof (status_buf); 277 } 278 *bufp = (char)0; 279 280 /* 281 * Get the property into the buffer, to the extent of the buffer, 282 * and in case the buffer is smaller than the property size, 283 * NULL terminate the buffer. (This handles the case where 284 * a buffer was passed in and the caller wants to print the 285 * value, but the buffer was too small). 286 */ 287 (void) prom_bounded_getprop((pnode_t)id, (caddr_t)status, 288 (caddr_t)bufp, len); 289 *(bufp + len - 1) = (char)0; 290 291 /* 292 * If the value begins with the char string "fail", 293 * then it means the node is failed. We don't care 294 * about any other values. We assume the node is ok 295 * although it might be 'disabled'. 296 */ 297 if (strncmp(bufp, fail, fail_len) == 0) 298 return (0); 299 300 return (1); 301 } 302 303 /* 304 * Check the status of the device node passed as an argument. 305 * 306 * if ((status is OKAY) || (status is DISABLED)) 307 * return DDI_SUCCESS 308 * else 309 * print a warning and return DDI_FAILURE 310 */ 311 /*ARGSUSED1*/ 312 int 313 check_status(int id, char *name, dev_info_t *parent) 314 { 315 char status_buf[64]; 316 char devtype_buf[OBP_MAXPROPNAME]; 317 int retval = DDI_FAILURE; 318 319 /* 320 * is the status okay? 321 */ 322 if (status_okay(id, status_buf, sizeof (status_buf))) 323 return (DDI_SUCCESS); 324 325 /* 326 * a status property indicating bad memory will be associated 327 * with a node which has a "device_type" property with a value of 328 * "memory-controller". in this situation, return DDI_SUCCESS 329 */ 330 if (getlongprop_buf(id, OBP_DEVICETYPE, devtype_buf, 331 sizeof (devtype_buf)) > 0) { 332 if (strcmp(devtype_buf, "memory-controller") == 0) 333 retval = DDI_SUCCESS; 334 } 335 336 /* 337 * print the status property information 338 */ 339 cmn_err(CE_WARN, "status '%s' for '%s'", status_buf, name); 340 return (retval); 341 } 342 343 /*ARGSUSED*/ 344 uint_t 345 softlevel1(caddr_t arg1, caddr_t arg2) 346 { 347 softint(); 348 return (1); 349 } 350 351 /* 352 * Allow for implementation specific correction of PROM property values. 353 */ 354 355 /*ARGSUSED*/ 356 void 357 impl_fix_props(dev_info_t *dip, dev_info_t *ch_dip, char *name, int len, 358 caddr_t buffer) 359 { 360 /* 361 * There are no adjustments needed in this implementation. 362 */ 363 } 364 365 static int 366 getlongprop_buf(int id, char *name, char *buf, int maxlen) 367 { 368 int size; 369 370 size = prom_getproplen((pnode_t)id, name); 371 if (size <= 0 || (size > maxlen - 1)) 372 return (-1); 373 374 if (-1 == prom_getprop((pnode_t)id, name, buf)) 375 return (-1); 376 377 if (strcmp("name", name) == 0) { 378 if (buf[size - 1] != '\0') { 379 buf[size] = '\0'; 380 size += 1; 381 } 382 } 383 384 return (size); 385 } 386 387 static int 388 get_prop_int_array(dev_info_t *di, char *pname, int **pval, uint_t *plen) 389 { 390 int ret; 391 392 if ((ret = ddi_prop_lookup_int_array(DDI_DEV_T_ANY, di, 393 DDI_PROP_DONTPASS, pname, pval, plen)) 394 == DDI_PROP_SUCCESS) { 395 *plen = (*plen) * (sizeof (int)); 396 } 397 return (ret); 398 } 399 400 401 /* 402 * Node Configuration 403 */ 404 405 struct prop_ispec { 406 uint_t pri, vec; 407 }; 408 409 /* 410 * For the x86, we're prepared to claim that the interrupt string 411 * is in the form of a list of <ipl,vec> specifications. 412 */ 413 414 #define VEC_MIN 1 415 #define VEC_MAX 255 416 417 static int 418 impl_xlate_intrs(dev_info_t *child, int *in, 419 struct ddi_parent_private_data *pdptr) 420 { 421 size_t size; 422 int n; 423 struct intrspec *new; 424 caddr_t got_prop; 425 int *inpri; 426 int got_len; 427 extern int ignore_hardware_nodes; /* force flag from ddi_impl.c */ 428 429 static char bad_intr_fmt[] = 430 "bad interrupt spec from %s%d - ipl %d, irq %d\n"; 431 432 /* 433 * determine if the driver is expecting the new style "interrupts" 434 * property which just contains the IRQ, or the old style which 435 * contains pairs of <IPL,IRQ>. if it is the new style, we always 436 * assign IPL 5 unless an "interrupt-priorities" property exists. 437 * in that case, the "interrupt-priorities" property contains the 438 * IPL values that match, one for one, the IRQ values in the 439 * "interrupts" property. 440 */ 441 inpri = NULL; 442 if ((ddi_getprop(DDI_DEV_T_ANY, child, DDI_PROP_DONTPASS, 443 "ignore-hardware-nodes", -1) != -1) || ignore_hardware_nodes) { 444 /* the old style "interrupts" property... */ 445 446 /* 447 * The list consists of <ipl,vec> elements 448 */ 449 if ((n = (*in++ >> 1)) < 1) 450 return (DDI_FAILURE); 451 452 pdptr->par_nintr = n; 453 size = n * sizeof (struct intrspec); 454 new = pdptr->par_intr = kmem_zalloc(size, KM_SLEEP); 455 456 while (n--) { 457 int level = *in++; 458 int vec = *in++; 459 460 if (level < 1 || level > MAXIPL || 461 vec < VEC_MIN || vec > VEC_MAX) { 462 cmn_err(CE_CONT, bad_intr_fmt, 463 DEVI(child)->devi_name, 464 DEVI(child)->devi_instance, level, vec); 465 goto broken; 466 } 467 new->intrspec_pri = level; 468 if (vec != 2) 469 new->intrspec_vec = vec; 470 else 471 /* 472 * irq 2 on the PC bus is tied to irq 9 473 * on ISA, EISA and MicroChannel 474 */ 475 new->intrspec_vec = 9; 476 new++; 477 } 478 479 return (DDI_SUCCESS); 480 } else { 481 /* the new style "interrupts" property... */ 482 483 /* 484 * The list consists of <vec> elements 485 */ 486 if ((n = (*in++)) < 1) 487 return (DDI_FAILURE); 488 489 pdptr->par_nintr = n; 490 size = n * sizeof (struct intrspec); 491 new = pdptr->par_intr = kmem_zalloc(size, KM_SLEEP); 492 493 /* XXX check for "interrupt-priorities" property... */ 494 if (ddi_getlongprop(DDI_DEV_T_ANY, child, DDI_PROP_DONTPASS, 495 "interrupt-priorities", (caddr_t)&got_prop, &got_len) 496 == DDI_PROP_SUCCESS) { 497 if (n != (got_len / sizeof (int))) { 498 cmn_err(CE_CONT, 499 "bad interrupt-priorities length" 500 " from %s%d: expected %d, got %d\n", 501 DEVI(child)->devi_name, 502 DEVI(child)->devi_instance, n, 503 (int)(got_len / sizeof (int))); 504 goto broken; 505 } 506 inpri = (int *)got_prop; 507 } 508 509 while (n--) { 510 int level; 511 int vec = *in++; 512 513 if (inpri == NULL) 514 level = 5; 515 else 516 level = *inpri++; 517 518 if (level < 1 || level > MAXIPL || 519 vec < VEC_MIN || vec > VEC_MAX) { 520 cmn_err(CE_CONT, bad_intr_fmt, 521 DEVI(child)->devi_name, 522 DEVI(child)->devi_instance, level, vec); 523 goto broken; 524 } 525 new->intrspec_pri = level; 526 if (vec != 2) 527 new->intrspec_vec = vec; 528 else 529 /* 530 * irq 2 on the PC bus is tied to irq 9 531 * on ISA, EISA and MicroChannel 532 */ 533 new->intrspec_vec = 9; 534 new++; 535 } 536 537 if (inpri != NULL) 538 kmem_free(got_prop, got_len); 539 return (DDI_SUCCESS); 540 } 541 542 broken: 543 kmem_free(pdptr->par_intr, size); 544 pdptr->par_intr = NULL; 545 pdptr->par_nintr = 0; 546 if (inpri != NULL) 547 kmem_free(got_prop, got_len); 548 549 return (DDI_FAILURE); 550 } 551 552 /* 553 * Create a ddi_parent_private_data structure from the ddi properties of 554 * the dev_info node. 555 * 556 * The "reg" and either an "intr" or "interrupts" properties are required 557 * if the driver wishes to create mappings or field interrupts on behalf 558 * of the device. 559 * 560 * The "reg" property is assumed to be a list of at least one triple 561 * 562 * <bustype, address, size>*1 563 * 564 * The "intr" property is assumed to be a list of at least one duple 565 * 566 * <SPARC ipl, vector#>*1 567 * 568 * The "interrupts" property is assumed to be a list of at least one 569 * n-tuples that describes the interrupt capabilities of the bus the device 570 * is connected to. For SBus, this looks like 571 * 572 * <SBus-level>*1 573 * 574 * (This property obsoletes the 'intr' property). 575 * 576 * The "ranges" property is optional. 577 */ 578 void 579 make_ddi_ppd(dev_info_t *child, struct ddi_parent_private_data **ppd) 580 { 581 struct ddi_parent_private_data *pdptr; 582 int n; 583 int *reg_prop, *rng_prop, *intr_prop, *irupts_prop; 584 uint_t reg_len, rng_len, intr_len, irupts_len; 585 586 *ppd = pdptr = kmem_zalloc(sizeof (*pdptr), KM_SLEEP); 587 588 /* 589 * Handle the 'reg' property. 590 */ 591 if ((get_prop_int_array(child, "reg", ®_prop, ®_len) == 592 DDI_PROP_SUCCESS) && (reg_len != 0)) { 593 pdptr->par_nreg = reg_len / (int)sizeof (struct regspec); 594 pdptr->par_reg = (struct regspec *)reg_prop; 595 } 596 597 /* 598 * See if I have a range (adding one where needed - this 599 * means to add one for sbus node in sun4c, when romvec > 0, 600 * if no range is already defined in the PROM node. 601 * (Currently no sun4c PROMS define range properties, 602 * but they should and may in the future.) For the SBus 603 * node, the range is defined by the SBus reg property. 604 */ 605 if (get_prop_int_array(child, "ranges", &rng_prop, &rng_len) 606 == DDI_PROP_SUCCESS) { 607 pdptr->par_nrng = rng_len / (int)(sizeof (struct rangespec)); 608 pdptr->par_rng = (struct rangespec *)rng_prop; 609 } 610 611 /* 612 * Handle the 'intr' and 'interrupts' properties 613 */ 614 615 /* 616 * For backwards compatibility 617 * we first look for the 'intr' property for the device. 618 */ 619 if (get_prop_int_array(child, "intr", &intr_prop, &intr_len) 620 != DDI_PROP_SUCCESS) { 621 intr_len = 0; 622 } 623 624 /* 625 * If we're to support bus adapters and future platforms cleanly, 626 * we need to support the generalized 'interrupts' property. 627 */ 628 if (get_prop_int_array(child, "interrupts", &irupts_prop, 629 &irupts_len) != DDI_PROP_SUCCESS) { 630 irupts_len = 0; 631 } else if (intr_len != 0) { 632 /* 633 * If both 'intr' and 'interrupts' are defined, 634 * then 'interrupts' wins and we toss the 'intr' away. 635 */ 636 ddi_prop_free((void *)intr_prop); 637 intr_len = 0; 638 } 639 640 if (intr_len != 0) { 641 642 /* 643 * Translate the 'intr' property into an array 644 * an array of struct intrspec's. There's not really 645 * very much to do here except copy what's out there. 646 */ 647 648 struct intrspec *new; 649 struct prop_ispec *l; 650 651 n = pdptr->par_nintr = intr_len / sizeof (struct prop_ispec); 652 l = (struct prop_ispec *)intr_prop; 653 pdptr->par_intr = 654 new = kmem_zalloc(n * sizeof (struct intrspec), KM_SLEEP); 655 while (n--) { 656 new->intrspec_pri = l->pri; 657 new->intrspec_vec = l->vec; 658 new++; 659 l++; 660 } 661 ddi_prop_free((void *)intr_prop); 662 663 } else if ((n = irupts_len) != 0) { 664 size_t size; 665 int *out; 666 667 /* 668 * Translate the 'interrupts' property into an array 669 * of intrspecs for the rest of the DDI framework to 670 * toy with. Only our ancestors really know how to 671 * do this, so ask 'em. We massage the 'interrupts' 672 * property so that it is pre-pended by a count of 673 * the number of integers in the argument. 674 */ 675 size = sizeof (int) + n; 676 out = kmem_alloc(size, KM_SLEEP); 677 *out = n / sizeof (int); 678 bcopy(irupts_prop, out + 1, (size_t)n); 679 ddi_prop_free((void *)irupts_prop); 680 if (impl_xlate_intrs(child, out, pdptr) != DDI_SUCCESS) { 681 cmn_err(CE_CONT, 682 "Unable to translate 'interrupts' for %s%d\n", 683 DEVI(child)->devi_binding_name, 684 DEVI(child)->devi_instance); 685 } 686 kmem_free(out, size); 687 } 688 } 689 690 /* 691 * Name a child 692 */ 693 static int 694 impl_sunbus_name_child(dev_info_t *child, char *name, int namelen) 695 { 696 /* 697 * Fill in parent-private data and this function returns to us 698 * an indication if it used "registers" to fill in the data. 699 */ 700 if (ddi_get_parent_data(child) == NULL) { 701 struct ddi_parent_private_data *pdptr; 702 make_ddi_ppd(child, &pdptr); 703 ddi_set_parent_data(child, pdptr); 704 } 705 706 name[0] = '\0'; 707 if (sparc_pd_getnreg(child) > 0) { 708 (void) snprintf(name, namelen, "%x,%x", 709 (uint_t)sparc_pd_getreg(child, 0)->regspec_bustype, 710 (uint_t)sparc_pd_getreg(child, 0)->regspec_addr); 711 } 712 713 return (DDI_SUCCESS); 714 } 715 716 /* 717 * Called from the bus_ctl op of sunbus (sbus, obio, etc) nexus drivers 718 * to implement the DDI_CTLOPS_INITCHILD operation. That is, it names 719 * the children of sun busses based on the reg spec. 720 * 721 * Handles the following properties (in make_ddi_ppd): 722 * Property value 723 * Name type 724 * reg register spec 725 * intr old-form interrupt spec 726 * interrupts new (bus-oriented) interrupt spec 727 * ranges range spec 728 */ 729 int 730 impl_ddi_sunbus_initchild(dev_info_t *child) 731 { 732 char name[MAXNAMELEN]; 733 void impl_ddi_sunbus_removechild(dev_info_t *); 734 735 /* 736 * Name the child, also makes parent private data 737 */ 738 (void) impl_sunbus_name_child(child, name, MAXNAMELEN); 739 ddi_set_name_addr(child, name); 740 741 /* 742 * Attempt to merge a .conf node; if successful, remove the 743 * .conf node. 744 */ 745 if ((ndi_dev_is_persistent_node(child) == 0) && 746 (ndi_merge_node(child, impl_sunbus_name_child) == DDI_SUCCESS)) { 747 /* 748 * Return failure to remove node 749 */ 750 impl_ddi_sunbus_removechild(child); 751 return (DDI_FAILURE); 752 } 753 return (DDI_SUCCESS); 754 } 755 756 void 757 impl_free_ddi_ppd(dev_info_t *dip) 758 { 759 struct ddi_parent_private_data *pdptr; 760 size_t n; 761 762 if ((pdptr = ddi_get_parent_data(dip)) == NULL) 763 return; 764 765 if ((n = (size_t)pdptr->par_nintr) != 0) 766 /* 767 * Note that kmem_free is used here (instead of 768 * ddi_prop_free) because the contents of the 769 * property were placed into a separate buffer and 770 * mucked with a bit before being stored in par_intr. 771 * The actual return value from the prop lookup 772 * was freed with ddi_prop_free previously. 773 */ 774 kmem_free(pdptr->par_intr, n * sizeof (struct intrspec)); 775 776 if ((n = (size_t)pdptr->par_nrng) != 0) 777 ddi_prop_free((void *)pdptr->par_rng); 778 779 if ((n = pdptr->par_nreg) != 0) 780 ddi_prop_free((void *)pdptr->par_reg); 781 782 kmem_free(pdptr, sizeof (*pdptr)); 783 ddi_set_parent_data(dip, NULL); 784 } 785 786 void 787 impl_ddi_sunbus_removechild(dev_info_t *dip) 788 { 789 impl_free_ddi_ppd(dip); 790 ddi_set_name_addr(dip, NULL); 791 /* 792 * Strip the node to properly convert it back to prototype form 793 */ 794 impl_rem_dev_props(dip); 795 } 796 797 /* 798 * DDI Interrupt 799 */ 800 801 /* 802 * turn this on to force isa, eisa, and mca device to ignore the new 803 * hardware nodes in the device tree (normally turned on only for 804 * drivers that need it by setting the property "ignore-hardware-nodes" 805 * in their driver.conf file). 806 * 807 * 7/31/96 -- Turned off globally. Leaving variable in for the moment 808 * as safety valve. 809 */ 810 int ignore_hardware_nodes = 0; 811 812 /* 813 * Local data 814 */ 815 static struct impl_bus_promops *impl_busp; 816 817 818 /* 819 * New DDI interrupt framework 820 */ 821 822 /* 823 * i_ddi_intr_ops: 824 * 825 * This is the interrupt operator function wrapper for the bus function 826 * bus_intr_op. 827 */ 828 int 829 i_ddi_intr_ops(dev_info_t *dip, dev_info_t *rdip, ddi_intr_op_t op, 830 ddi_intr_handle_impl_t *hdlp, void * result) 831 { 832 dev_info_t *pdip = (dev_info_t *)DEVI(dip)->devi_parent; 833 int ret = DDI_FAILURE; 834 835 /* request parent to process this interrupt op */ 836 if (NEXUS_HAS_INTR_OP(pdip)) 837 ret = (*(DEVI(pdip)->devi_ops->devo_bus_ops->bus_intr_op))( 838 pdip, rdip, op, hdlp, result); 839 else 840 cmn_err(CE_WARN, "Failed to process interrupt " 841 "for %s%d due to down-rev nexus driver %s%d", 842 ddi_get_name(rdip), ddi_get_instance(rdip), 843 ddi_get_name(pdip), ddi_get_instance(pdip)); 844 return (ret); 845 } 846 847 /* 848 * i_ddi_add_softint - allocate and add a soft interrupt to the system 849 */ 850 int 851 i_ddi_add_softint(ddi_softint_hdl_impl_t *hdlp) 852 { 853 int ret; 854 855 /* add soft interrupt handler */ 856 ret = add_avsoftintr((void *)hdlp, hdlp->ih_pri, hdlp->ih_cb_func, 857 DEVI(hdlp->ih_dip)->devi_name, hdlp->ih_cb_arg1, hdlp->ih_cb_arg2); 858 return (ret ? DDI_SUCCESS : DDI_FAILURE); 859 } 860 861 862 void 863 i_ddi_remove_softint(ddi_softint_hdl_impl_t *hdlp) 864 { 865 (void) rem_avsoftintr((void *)hdlp, hdlp->ih_pri, hdlp->ih_cb_func); 866 } 867 868 869 extern void (*setsoftint)(int, struct av_softinfo *); 870 extern boolean_t av_check_softint_pending(struct av_softinfo *, boolean_t); 871 872 int 873 i_ddi_trigger_softint(ddi_softint_hdl_impl_t *hdlp, void *arg2) 874 { 875 if (av_check_softint_pending(hdlp->ih_pending, B_FALSE)) 876 return (DDI_EPENDING); 877 878 update_avsoftintr_args((void *)hdlp, hdlp->ih_pri, arg2); 879 880 (*setsoftint)(hdlp->ih_pri, hdlp->ih_pending); 881 return (DDI_SUCCESS); 882 } 883 884 /* 885 * i_ddi_set_softint_pri: 886 * 887 * The way this works is that it first tries to add a softint vector 888 * at the new priority in hdlp. If that succeeds; then it removes the 889 * existing softint vector at the old priority. 890 */ 891 int 892 i_ddi_set_softint_pri(ddi_softint_hdl_impl_t *hdlp, uint_t old_pri) 893 { 894 int ret; 895 896 /* 897 * If a softint is pending at the old priority then fail the request. 898 */ 899 if (av_check_softint_pending(hdlp->ih_pending, B_TRUE)) 900 return (DDI_FAILURE); 901 902 ret = av_softint_movepri((void *)hdlp, old_pri); 903 return (ret ? DDI_SUCCESS : DDI_FAILURE); 904 } 905 906 void 907 i_ddi_alloc_intr_phdl(ddi_intr_handle_impl_t *hdlp) 908 { 909 hdlp->ih_private = (void *)kmem_zalloc(sizeof (ihdl_plat_t), KM_SLEEP); 910 } 911 912 void 913 i_ddi_free_intr_phdl(ddi_intr_handle_impl_t *hdlp) 914 { 915 kmem_free(hdlp->ih_private, sizeof (ihdl_plat_t)); 916 hdlp->ih_private = NULL; 917 } 918 919 int 920 i_ddi_get_intx_nintrs(dev_info_t *dip) 921 { 922 struct ddi_parent_private_data *pdp; 923 924 if ((pdp = ddi_get_parent_data(dip)) == NULL) 925 return (0); 926 927 return (pdp->par_nintr); 928 } 929 930 /* 931 * DDI Memory/DMA 932 */ 933 934 /* 935 * Support for allocating DMAable memory to implement 936 * ddi_dma_mem_alloc(9F) interface. 937 */ 938 939 #define KA_ALIGN_SHIFT 7 940 #define KA_ALIGN (1 << KA_ALIGN_SHIFT) 941 #define KA_NCACHE (PAGESHIFT + 1 - KA_ALIGN_SHIFT) 942 943 /* 944 * Dummy DMA attribute template for kmem_io[].kmem_io_attr. We only 945 * care about addr_lo, addr_hi, and align. addr_hi will be dynamically set. 946 */ 947 948 static ddi_dma_attr_t kmem_io_attr = { 949 DMA_ATTR_V0, 950 0x0000000000000000ULL, /* dma_attr_addr_lo */ 951 0x0000000000000000ULL, /* dma_attr_addr_hi */ 952 0x00ffffff, 953 0x1000, /* dma_attr_align */ 954 1, 1, 0xffffffffULL, 0xffffffffULL, 0x1, 1, 0 955 }; 956 957 /* kmem io memory ranges and indices */ 958 enum { 959 IO_4P, IO_64G, IO_4G, IO_2G, IO_1G, IO_512M, 960 IO_256M, IO_128M, IO_64M, IO_32M, IO_16M, MAX_MEM_RANGES 961 }; 962 963 static struct { 964 vmem_t *kmem_io_arena; 965 kmem_cache_t *kmem_io_cache[KA_NCACHE]; 966 ddi_dma_attr_t kmem_io_attr; 967 } kmem_io[MAX_MEM_RANGES]; 968 969 static int kmem_io_idx; /* index of first populated kmem_io[] */ 970 971 static page_t * 972 page_create_io_wrapper(void *addr, size_t len, int vmflag, void *arg) 973 { 974 extern page_t *page_create_io(vnode_t *, u_offset_t, uint_t, 975 uint_t, struct as *, caddr_t, ddi_dma_attr_t *); 976 977 return (page_create_io(&kvp, (u_offset_t)(uintptr_t)addr, len, 978 PG_EXCL | ((vmflag & VM_NOSLEEP) ? 0 : PG_WAIT), &kas, addr, arg)); 979 } 980 981 #ifdef __xpv 982 static void 983 segkmem_free_io(vmem_t *vmp, void * ptr, size_t size) 984 { 985 extern void page_destroy_io(page_t *); 986 segkmem_xfree(vmp, ptr, size, page_destroy_io); 987 } 988 #endif 989 990 static void * 991 segkmem_alloc_io_4P(vmem_t *vmp, size_t size, int vmflag) 992 { 993 return (segkmem_xalloc(vmp, NULL, size, vmflag, 0, 994 page_create_io_wrapper, &kmem_io[IO_4P].kmem_io_attr)); 995 } 996 997 static void * 998 segkmem_alloc_io_64G(vmem_t *vmp, size_t size, int vmflag) 999 { 1000 return (segkmem_xalloc(vmp, NULL, size, vmflag, 0, 1001 page_create_io_wrapper, &kmem_io[IO_64G].kmem_io_attr)); 1002 } 1003 1004 static void * 1005 segkmem_alloc_io_4G(vmem_t *vmp, size_t size, int vmflag) 1006 { 1007 return (segkmem_xalloc(vmp, NULL, size, vmflag, 0, 1008 page_create_io_wrapper, &kmem_io[IO_4G].kmem_io_attr)); 1009 } 1010 1011 static void * 1012 segkmem_alloc_io_2G(vmem_t *vmp, size_t size, int vmflag) 1013 { 1014 return (segkmem_xalloc(vmp, NULL, size, vmflag, 0, 1015 page_create_io_wrapper, &kmem_io[IO_2G].kmem_io_attr)); 1016 } 1017 1018 static void * 1019 segkmem_alloc_io_1G(vmem_t *vmp, size_t size, int vmflag) 1020 { 1021 return (segkmem_xalloc(vmp, NULL, size, vmflag, 0, 1022 page_create_io_wrapper, &kmem_io[IO_1G].kmem_io_attr)); 1023 } 1024 1025 static void * 1026 segkmem_alloc_io_512M(vmem_t *vmp, size_t size, int vmflag) 1027 { 1028 return (segkmem_xalloc(vmp, NULL, size, vmflag, 0, 1029 page_create_io_wrapper, &kmem_io[IO_512M].kmem_io_attr)); 1030 } 1031 1032 static void * 1033 segkmem_alloc_io_256M(vmem_t *vmp, size_t size, int vmflag) 1034 { 1035 return (segkmem_xalloc(vmp, NULL, size, vmflag, 0, 1036 page_create_io_wrapper, &kmem_io[IO_256M].kmem_io_attr)); 1037 } 1038 1039 static void * 1040 segkmem_alloc_io_128M(vmem_t *vmp, size_t size, int vmflag) 1041 { 1042 return (segkmem_xalloc(vmp, NULL, size, vmflag, 0, 1043 page_create_io_wrapper, &kmem_io[IO_128M].kmem_io_attr)); 1044 } 1045 1046 static void * 1047 segkmem_alloc_io_64M(vmem_t *vmp, size_t size, int vmflag) 1048 { 1049 return (segkmem_xalloc(vmp, NULL, size, vmflag, 0, 1050 page_create_io_wrapper, &kmem_io[IO_64M].kmem_io_attr)); 1051 } 1052 1053 static void * 1054 segkmem_alloc_io_32M(vmem_t *vmp, size_t size, int vmflag) 1055 { 1056 return (segkmem_xalloc(vmp, NULL, size, vmflag, 0, 1057 page_create_io_wrapper, &kmem_io[IO_32M].kmem_io_attr)); 1058 } 1059 1060 static void * 1061 segkmem_alloc_io_16M(vmem_t *vmp, size_t size, int vmflag) 1062 { 1063 return (segkmem_xalloc(vmp, NULL, size, vmflag, 0, 1064 page_create_io_wrapper, &kmem_io[IO_16M].kmem_io_attr)); 1065 } 1066 1067 struct { 1068 uint64_t io_limit; 1069 char *io_name; 1070 void *(*io_alloc)(vmem_t *, size_t, int); 1071 int io_initial; /* kmem_io_init during startup */ 1072 } io_arena_params[MAX_MEM_RANGES] = { 1073 {0x000fffffffffffffULL, "kmem_io_4P", segkmem_alloc_io_4P, 1}, 1074 {0x0000000fffffffffULL, "kmem_io_64G", segkmem_alloc_io_64G, 0}, 1075 {0x00000000ffffffffULL, "kmem_io_4G", segkmem_alloc_io_4G, 1}, 1076 {0x000000007fffffffULL, "kmem_io_2G", segkmem_alloc_io_2G, 1}, 1077 {0x000000003fffffffULL, "kmem_io_1G", segkmem_alloc_io_1G, 0}, 1078 {0x000000001fffffffULL, "kmem_io_512M", segkmem_alloc_io_512M, 0}, 1079 {0x000000000fffffffULL, "kmem_io_256M", segkmem_alloc_io_256M, 0}, 1080 {0x0000000007ffffffULL, "kmem_io_128M", segkmem_alloc_io_128M, 0}, 1081 {0x0000000003ffffffULL, "kmem_io_64M", segkmem_alloc_io_64M, 0}, 1082 {0x0000000001ffffffULL, "kmem_io_32M", segkmem_alloc_io_32M, 0}, 1083 {0x0000000000ffffffULL, "kmem_io_16M", segkmem_alloc_io_16M, 1} 1084 }; 1085 1086 void 1087 kmem_io_init(int a) 1088 { 1089 int c; 1090 char name[40]; 1091 1092 kmem_io[a].kmem_io_arena = vmem_create(io_arena_params[a].io_name, 1093 NULL, 0, PAGESIZE, io_arena_params[a].io_alloc, 1094 #ifdef __xpv 1095 segkmem_free_io, 1096 #else 1097 segkmem_free, 1098 #endif 1099 heap_arena, 0, VM_SLEEP); 1100 1101 for (c = 0; c < KA_NCACHE; c++) { 1102 size_t size = KA_ALIGN << c; 1103 (void) sprintf(name, "%s_%lu", 1104 io_arena_params[a].io_name, size); 1105 kmem_io[a].kmem_io_cache[c] = kmem_cache_create(name, 1106 size, size, NULL, NULL, NULL, NULL, 1107 kmem_io[a].kmem_io_arena, 0); 1108 } 1109 } 1110 1111 /* 1112 * Return the index of the highest memory range for addr. 1113 */ 1114 static int 1115 kmem_io_index(uint64_t addr) 1116 { 1117 int n; 1118 1119 for (n = kmem_io_idx; n < MAX_MEM_RANGES; n++) { 1120 if (kmem_io[n].kmem_io_attr.dma_attr_addr_hi <= addr) { 1121 if (kmem_io[n].kmem_io_arena == NULL) 1122 kmem_io_init(n); 1123 return (n); 1124 } 1125 } 1126 panic("kmem_io_index: invalid addr - must be at least 16m"); 1127 1128 /*NOTREACHED*/ 1129 } 1130 1131 /* 1132 * Return the index of the next kmem_io populated memory range 1133 * after curindex. 1134 */ 1135 static int 1136 kmem_io_index_next(int curindex) 1137 { 1138 int n; 1139 1140 for (n = curindex + 1; n < MAX_MEM_RANGES; n++) { 1141 if (kmem_io[n].kmem_io_arena) 1142 return (n); 1143 } 1144 return (-1); 1145 } 1146 1147 /* 1148 * allow kmem to be mapped in with different PTE cache attribute settings. 1149 * Used by i_ddi_mem_alloc() 1150 */ 1151 int 1152 kmem_override_cache_attrs(caddr_t kva, size_t size, uint_t order) 1153 { 1154 uint_t hat_flags; 1155 caddr_t kva_end; 1156 uint_t hat_attr; 1157 pfn_t pfn; 1158 1159 if (hat_getattr(kas.a_hat, kva, &hat_attr) == -1) { 1160 return (-1); 1161 } 1162 1163 hat_attr &= ~HAT_ORDER_MASK; 1164 hat_attr |= order | HAT_NOSYNC; 1165 hat_flags = HAT_LOAD_LOCK; 1166 1167 kva_end = (caddr_t)(((uintptr_t)kva + size + PAGEOFFSET) & 1168 (uintptr_t)PAGEMASK); 1169 kva = (caddr_t)((uintptr_t)kva & (uintptr_t)PAGEMASK); 1170 1171 while (kva < kva_end) { 1172 pfn = hat_getpfnum(kas.a_hat, kva); 1173 hat_unload(kas.a_hat, kva, PAGESIZE, HAT_UNLOAD_UNLOCK); 1174 hat_devload(kas.a_hat, kva, PAGESIZE, pfn, hat_attr, hat_flags); 1175 kva += MMU_PAGESIZE; 1176 } 1177 1178 return (0); 1179 } 1180 1181 void 1182 ka_init(void) 1183 { 1184 int a; 1185 paddr_t maxphysaddr; 1186 #if !defined(__xpv) 1187 extern pfn_t physmax; 1188 1189 maxphysaddr = mmu_ptob((paddr_t)physmax) + MMU_PAGEOFFSET; 1190 #else 1191 maxphysaddr = mmu_ptob((paddr_t)HYPERVISOR_memory_op( 1192 XENMEM_maximum_ram_page, NULL)) + MMU_PAGEOFFSET; 1193 #endif 1194 1195 ASSERT(maxphysaddr <= io_arena_params[0].io_limit); 1196 1197 for (a = 0; a < MAX_MEM_RANGES; a++) { 1198 if (maxphysaddr >= io_arena_params[a + 1].io_limit) { 1199 if (maxphysaddr > io_arena_params[a + 1].io_limit) 1200 io_arena_params[a].io_limit = maxphysaddr; 1201 else 1202 a++; 1203 break; 1204 } 1205 } 1206 kmem_io_idx = a; 1207 1208 for (; a < MAX_MEM_RANGES; a++) { 1209 kmem_io[a].kmem_io_attr = kmem_io_attr; 1210 kmem_io[a].kmem_io_attr.dma_attr_addr_hi = 1211 io_arena_params[a].io_limit; 1212 /* 1213 * initialize kmem_io[] arena/cache corresponding to 1214 * maxphysaddr and to the "common" io memory ranges that 1215 * have io_initial set to a non-zero value. 1216 */ 1217 if (io_arena_params[a].io_initial || a == kmem_io_idx) 1218 kmem_io_init(a); 1219 } 1220 } 1221 1222 /* 1223 * put contig address/size 1224 */ 1225 static void * 1226 putctgas(void *addr, size_t size) 1227 { 1228 struct ctgas *ctgp = &ctglist; 1229 int i; 1230 1231 CTGLOCK(); 1232 do { 1233 if ((i = ctgp->ctg_index) < CTGENTRIES) { 1234 ctgp->ctg_addr[i] = addr; 1235 ctgp->ctg_size[i] = size; 1236 ctgp->ctg_index++; 1237 break; 1238 } 1239 if (!ctgp->ctg_next) 1240 ctgp->ctg_next = kmem_zalloc(sizeof (struct ctgas), 1241 KM_NOSLEEP); 1242 ctgp = ctgp->ctg_next; 1243 } while (ctgp); 1244 1245 CTGUNLOCK(); 1246 return (ctgp); 1247 } 1248 1249 /* 1250 * get contig size by addr 1251 */ 1252 static size_t 1253 getctgsz(void *addr) 1254 { 1255 struct ctgas *ctgp = &ctglist; 1256 int i, j; 1257 size_t sz; 1258 1259 ASSERT(addr); 1260 CTGLOCK(); 1261 1262 while (ctgp) { 1263 for (i = 0; i < ctgp->ctg_index; i++) { 1264 if (addr != ctgp->ctg_addr[i]) 1265 continue; 1266 1267 sz = ctgp->ctg_size[i]; 1268 j = --ctgp->ctg_index; 1269 if (i != j) { 1270 ctgp->ctg_size[i] = ctgp->ctg_size[j]; 1271 ctgp->ctg_addr[i] = ctgp->ctg_addr[j]; 1272 } 1273 CTGUNLOCK(); 1274 return (sz); 1275 } 1276 ctgp = ctgp->ctg_next; 1277 } 1278 1279 CTGUNLOCK(); 1280 return (0); 1281 } 1282 1283 /* 1284 * contig_alloc: 1285 * 1286 * allocates contiguous memory to satisfy the 'size' and dma attributes 1287 * specified in 'attr'. 1288 * 1289 * Not all of memory need to be physically contiguous if the 1290 * scatter-gather list length is greater than 1. 1291 */ 1292 1293 /*ARGSUSED*/ 1294 void * 1295 contig_alloc(size_t size, ddi_dma_attr_t *attr, uintptr_t align, int cansleep) 1296 { 1297 pgcnt_t pgcnt = btopr(size); 1298 size_t asize = pgcnt * PAGESIZE; 1299 page_t *ppl; 1300 int pflag; 1301 void *addr; 1302 1303 extern page_t *page_create_io(vnode_t *, u_offset_t, uint_t, 1304 uint_t, struct as *, caddr_t, ddi_dma_attr_t *); 1305 1306 /* segkmem_xalloc */ 1307 1308 if (align <= PAGESIZE) 1309 addr = vmem_alloc(heap_arena, asize, 1310 (cansleep) ? VM_SLEEP : VM_NOSLEEP); 1311 else 1312 addr = vmem_xalloc(heap_arena, asize, align, 0, 0, NULL, NULL, 1313 (cansleep) ? VM_SLEEP : VM_NOSLEEP); 1314 if (addr) { 1315 ASSERT(!((uintptr_t)addr & (align - 1))); 1316 1317 if (page_resv(pgcnt, (cansleep) ? KM_SLEEP : KM_NOSLEEP) == 0) { 1318 vmem_free(heap_arena, addr, asize); 1319 return (NULL); 1320 } 1321 pflag = PG_EXCL; 1322 1323 if (cansleep) 1324 pflag |= PG_WAIT; 1325 1326 /* 4k req gets from freelists rather than pfn search */ 1327 if (pgcnt > 1 || align > PAGESIZE) 1328 pflag |= PG_PHYSCONTIG; 1329 1330 ppl = page_create_io(&kvp, (u_offset_t)(uintptr_t)addr, 1331 asize, pflag, &kas, (caddr_t)addr, attr); 1332 1333 if (!ppl) { 1334 vmem_free(heap_arena, addr, asize); 1335 page_unresv(pgcnt); 1336 return (NULL); 1337 } 1338 1339 while (ppl != NULL) { 1340 page_t *pp = ppl; 1341 page_sub(&ppl, pp); 1342 ASSERT(page_iolock_assert(pp)); 1343 page_io_unlock(pp); 1344 page_downgrade(pp); 1345 hat_memload(kas.a_hat, (caddr_t)(uintptr_t)pp->p_offset, 1346 pp, (PROT_ALL & ~PROT_USER) | 1347 HAT_NOSYNC, HAT_LOAD_LOCK); 1348 } 1349 } 1350 return (addr); 1351 } 1352 1353 static void 1354 contig_free(void *addr, size_t size) 1355 { 1356 pgcnt_t pgcnt = btopr(size); 1357 size_t asize = pgcnt * PAGESIZE; 1358 caddr_t a, ea; 1359 page_t *pp; 1360 1361 hat_unload(kas.a_hat, addr, asize, HAT_UNLOAD_UNLOCK); 1362 1363 for (a = addr, ea = a + asize; a < ea; a += PAGESIZE) { 1364 pp = page_find(&kvp, (u_offset_t)(uintptr_t)a); 1365 if (!pp) 1366 panic("contig_free: contig pp not found"); 1367 1368 if (!page_tryupgrade(pp)) { 1369 page_unlock(pp); 1370 pp = page_lookup(&kvp, 1371 (u_offset_t)(uintptr_t)a, SE_EXCL); 1372 if (pp == NULL) 1373 panic("contig_free: page freed"); 1374 } 1375 page_destroy(pp, 0); 1376 } 1377 1378 page_unresv(pgcnt); 1379 vmem_free(heap_arena, addr, asize); 1380 } 1381 1382 /* 1383 * Allocate from the system, aligned on a specific boundary. 1384 * The alignment, if non-zero, must be a power of 2. 1385 */ 1386 static void * 1387 kalloca(size_t size, size_t align, int cansleep, int physcontig, 1388 ddi_dma_attr_t *attr) 1389 { 1390 size_t *addr, *raddr, rsize; 1391 size_t hdrsize = 4 * sizeof (size_t); /* must be power of 2 */ 1392 int a, i, c; 1393 vmem_t *vmp; 1394 kmem_cache_t *cp = NULL; 1395 1396 if (attr->dma_attr_addr_lo > mmu_ptob((uint64_t)ddiphysmin)) 1397 return (NULL); 1398 1399 align = MAX(align, hdrsize); 1400 ASSERT((align & (align - 1)) == 0); 1401 1402 /* 1403 * All of our allocators guarantee 16-byte alignment, so we don't 1404 * need to reserve additional space for the header. 1405 * To simplify picking the correct kmem_io_cache, we round up to 1406 * a multiple of KA_ALIGN. 1407 */ 1408 rsize = P2ROUNDUP_TYPED(size + align, KA_ALIGN, size_t); 1409 1410 if (physcontig && rsize > PAGESIZE) { 1411 if (addr = contig_alloc(size, attr, align, cansleep)) { 1412 if (!putctgas(addr, size)) 1413 contig_free(addr, size); 1414 else 1415 return (addr); 1416 } 1417 return (NULL); 1418 } 1419 1420 a = kmem_io_index(attr->dma_attr_addr_hi); 1421 1422 if (rsize > PAGESIZE) { 1423 vmp = kmem_io[a].kmem_io_arena; 1424 raddr = vmem_alloc(vmp, rsize, 1425 (cansleep) ? VM_SLEEP : VM_NOSLEEP); 1426 } else { 1427 c = highbit((rsize >> KA_ALIGN_SHIFT) - 1); 1428 cp = kmem_io[a].kmem_io_cache[c]; 1429 raddr = kmem_cache_alloc(cp, (cansleep) ? KM_SLEEP : 1430 KM_NOSLEEP); 1431 } 1432 1433 if (raddr == NULL) { 1434 int na; 1435 1436 ASSERT(cansleep == 0); 1437 if (rsize > PAGESIZE) 1438 return (NULL); 1439 /* 1440 * System does not have memory in the requested range. 1441 * Try smaller kmem io ranges and larger cache sizes 1442 * to see if there might be memory available in 1443 * these other caches. 1444 */ 1445 1446 for (na = kmem_io_index_next(a); na >= 0; 1447 na = kmem_io_index_next(na)) { 1448 ASSERT(kmem_io[na].kmem_io_arena); 1449 cp = kmem_io[na].kmem_io_cache[c]; 1450 raddr = kmem_cache_alloc(cp, KM_NOSLEEP); 1451 if (raddr) 1452 goto kallocdone; 1453 } 1454 /* now try the larger kmem io cache sizes */ 1455 for (na = a; na >= 0; na = kmem_io_index_next(na)) { 1456 for (i = c + 1; i < KA_NCACHE; i++) { 1457 cp = kmem_io[na].kmem_io_cache[i]; 1458 raddr = kmem_cache_alloc(cp, KM_NOSLEEP); 1459 if (raddr) 1460 goto kallocdone; 1461 } 1462 } 1463 return (NULL); 1464 } 1465 1466 kallocdone: 1467 ASSERT(!P2CROSS((uintptr_t)raddr, (uintptr_t)raddr + rsize - 1, 1468 PAGESIZE) || rsize > PAGESIZE); 1469 1470 addr = (size_t *)P2ROUNDUP((uintptr_t)raddr + hdrsize, align); 1471 ASSERT((uintptr_t)addr + size - (uintptr_t)raddr <= rsize); 1472 1473 addr[-4] = (size_t)cp; 1474 addr[-3] = (size_t)vmp; 1475 addr[-2] = (size_t)raddr; 1476 addr[-1] = rsize; 1477 1478 return (addr); 1479 } 1480 1481 static void 1482 kfreea(void *addr) 1483 { 1484 size_t size; 1485 1486 if (!((uintptr_t)addr & PAGEOFFSET) && (size = getctgsz(addr))) { 1487 contig_free(addr, size); 1488 } else { 1489 size_t *saddr = addr; 1490 if (saddr[-4] == 0) 1491 vmem_free((vmem_t *)saddr[-3], (void *)saddr[-2], 1492 saddr[-1]); 1493 else 1494 kmem_cache_free((kmem_cache_t *)saddr[-4], 1495 (void *)saddr[-2]); 1496 } 1497 } 1498 1499 /*ARGSUSED*/ 1500 void 1501 i_ddi_devacc_to_hatacc(ddi_device_acc_attr_t *devaccp, uint_t *hataccp) 1502 { 1503 } 1504 1505 /* 1506 * Check if the specified cache attribute is supported on the platform. 1507 * This function must be called before i_ddi_cacheattr_to_hatacc(). 1508 */ 1509 boolean_t 1510 i_ddi_check_cache_attr(uint_t flags) 1511 { 1512 /* 1513 * The cache attributes are mutually exclusive. Any combination of 1514 * the attributes leads to a failure. 1515 */ 1516 uint_t cache_attr = IOMEM_CACHE_ATTR(flags); 1517 if ((cache_attr != 0) && ((cache_attr & (cache_attr - 1)) != 0)) 1518 return (B_FALSE); 1519 1520 /* All cache attributes are supported on X86/X64 */ 1521 if (cache_attr & (IOMEM_DATA_UNCACHED | IOMEM_DATA_CACHED | 1522 IOMEM_DATA_UC_WR_COMBINE)) 1523 return (B_TRUE); 1524 1525 /* undefined attributes */ 1526 return (B_FALSE); 1527 } 1528 1529 /* set HAT cache attributes from the cache attributes */ 1530 void 1531 i_ddi_cacheattr_to_hatacc(uint_t flags, uint_t *hataccp) 1532 { 1533 uint_t cache_attr = IOMEM_CACHE_ATTR(flags); 1534 static char *fname = "i_ddi_cacheattr_to_hatacc"; 1535 1536 /* 1537 * If write-combining is not supported, then it falls back 1538 * to uncacheable. 1539 */ 1540 if (cache_attr == IOMEM_DATA_UC_WR_COMBINE && !(x86_feature & X86_PAT)) 1541 cache_attr = IOMEM_DATA_UNCACHED; 1542 1543 /* 1544 * set HAT attrs according to the cache attrs. 1545 */ 1546 switch (cache_attr) { 1547 case IOMEM_DATA_UNCACHED: 1548 *hataccp &= ~HAT_ORDER_MASK; 1549 *hataccp |= (HAT_STRICTORDER | HAT_PLAT_NOCACHE); 1550 break; 1551 case IOMEM_DATA_UC_WR_COMBINE: 1552 *hataccp &= ~HAT_ORDER_MASK; 1553 *hataccp |= (HAT_MERGING_OK | HAT_PLAT_NOCACHE); 1554 break; 1555 case IOMEM_DATA_CACHED: 1556 *hataccp &= ~HAT_ORDER_MASK; 1557 *hataccp |= HAT_UNORDERED_OK; 1558 break; 1559 /* 1560 * This case must not occur because the cache attribute is scrutinized 1561 * before this function is called. 1562 */ 1563 default: 1564 /* 1565 * set cacheable to hat attrs. 1566 */ 1567 *hataccp &= ~HAT_ORDER_MASK; 1568 *hataccp |= HAT_UNORDERED_OK; 1569 cmn_err(CE_WARN, "%s: cache_attr=0x%x is ignored.", 1570 fname, cache_attr); 1571 } 1572 } 1573 1574 /* 1575 * This should actually be called i_ddi_dma_mem_alloc. There should 1576 * also be an i_ddi_pio_mem_alloc. i_ddi_dma_mem_alloc should call 1577 * through the device tree with the DDI_CTLOPS_DMA_ALIGN ctl ops to 1578 * get alignment requirements for DMA memory. i_ddi_pio_mem_alloc 1579 * should use DDI_CTLOPS_PIO_ALIGN. Since we only have i_ddi_mem_alloc 1580 * so far which is used for both, DMA and PIO, we have to use the DMA 1581 * ctl ops to make everybody happy. 1582 */ 1583 /*ARGSUSED*/ 1584 int 1585 i_ddi_mem_alloc(dev_info_t *dip, ddi_dma_attr_t *attr, 1586 size_t length, int cansleep, int flags, 1587 ddi_device_acc_attr_t *accattrp, caddr_t *kaddrp, 1588 size_t *real_length, ddi_acc_hdl_t *ap) 1589 { 1590 caddr_t a; 1591 int iomin; 1592 ddi_acc_impl_t *iap; 1593 int physcontig = 0; 1594 pgcnt_t npages; 1595 pgcnt_t minctg; 1596 uint_t order; 1597 int e; 1598 1599 /* 1600 * Check legality of arguments 1601 */ 1602 if (length == 0 || kaddrp == NULL || attr == NULL) { 1603 return (DDI_FAILURE); 1604 } 1605 1606 if (attr->dma_attr_minxfer == 0 || attr->dma_attr_align == 0 || 1607 (attr->dma_attr_align & (attr->dma_attr_align - 1)) || 1608 (attr->dma_attr_minxfer & (attr->dma_attr_minxfer - 1))) { 1609 return (DDI_FAILURE); 1610 } 1611 1612 /* 1613 * figure out most restrictive alignment requirement 1614 */ 1615 iomin = attr->dma_attr_minxfer; 1616 iomin = maxbit(iomin, attr->dma_attr_align); 1617 if (iomin == 0) 1618 return (DDI_FAILURE); 1619 1620 ASSERT((iomin & (iomin - 1)) == 0); 1621 1622 /* 1623 * if we allocate memory with IOMEM_DATA_UNCACHED or 1624 * IOMEM_DATA_UC_WR_COMBINE, make sure we allocate a page aligned 1625 * memory that ends on a page boundry. 1626 * Don't want to have to different cache mappings to the same 1627 * physical page. 1628 */ 1629 if (OVERRIDE_CACHE_ATTR(flags)) { 1630 iomin = (iomin + MMU_PAGEOFFSET) & MMU_PAGEMASK; 1631 length = (length + MMU_PAGEOFFSET) & (size_t)MMU_PAGEMASK; 1632 } 1633 1634 /* 1635 * Determine if we need to satisfy the request for physically 1636 * contiguous memory or alignments larger than pagesize. 1637 */ 1638 npages = btopr(length + attr->dma_attr_align); 1639 minctg = howmany(npages, attr->dma_attr_sgllen); 1640 1641 if (minctg > 1) { 1642 uint64_t pfnseg = attr->dma_attr_seg >> PAGESHIFT; 1643 /* 1644 * verify that the minimum contig requirement for the 1645 * actual length does not cross segment boundary. 1646 */ 1647 length = P2ROUNDUP_TYPED(length, attr->dma_attr_minxfer, 1648 size_t); 1649 npages = btopr(length); 1650 minctg = howmany(npages, attr->dma_attr_sgllen); 1651 if (minctg > pfnseg + 1) 1652 return (DDI_FAILURE); 1653 physcontig = 1; 1654 } else { 1655 length = P2ROUNDUP_TYPED(length, iomin, size_t); 1656 } 1657 1658 /* 1659 * Allocate the requested amount from the system. 1660 */ 1661 a = kalloca(length, iomin, cansleep, physcontig, attr); 1662 1663 if ((*kaddrp = a) == NULL) 1664 return (DDI_FAILURE); 1665 1666 /* 1667 * if we to modify the cache attributes, go back and muck with the 1668 * mappings. 1669 */ 1670 if (OVERRIDE_CACHE_ATTR(flags)) { 1671 order = 0; 1672 i_ddi_cacheattr_to_hatacc(flags, &order); 1673 e = kmem_override_cache_attrs(a, length, order); 1674 if (e != 0) { 1675 kfreea(a); 1676 return (DDI_FAILURE); 1677 } 1678 } 1679 1680 if (real_length) { 1681 *real_length = length; 1682 } 1683 if (ap) { 1684 /* 1685 * initialize access handle 1686 */ 1687 iap = (ddi_acc_impl_t *)ap->ah_platform_private; 1688 iap->ahi_acc_attr |= DDI_ACCATTR_CPU_VADDR; 1689 impl_acc_hdl_init(ap); 1690 } 1691 1692 return (DDI_SUCCESS); 1693 } 1694 1695 /* 1696 * covert old DMA limits structure to DMA attribute structure 1697 * and continue 1698 */ 1699 int 1700 i_ddi_mem_alloc_lim(dev_info_t *dip, ddi_dma_lim_t *limits, 1701 size_t length, int cansleep, int streaming, 1702 ddi_device_acc_attr_t *accattrp, caddr_t *kaddrp, 1703 uint_t *real_length, ddi_acc_hdl_t *ap) 1704 { 1705 ddi_dma_attr_t dma_attr, *attrp; 1706 size_t rlen; 1707 int ret; 1708 1709 if (limits == NULL) { 1710 return (DDI_FAILURE); 1711 } 1712 1713 /* 1714 * set up DMA attribute structure to pass to i_ddi_mem_alloc() 1715 */ 1716 attrp = &dma_attr; 1717 attrp->dma_attr_version = DMA_ATTR_V0; 1718 attrp->dma_attr_addr_lo = (uint64_t)limits->dlim_addr_lo; 1719 attrp->dma_attr_addr_hi = (uint64_t)limits->dlim_addr_hi; 1720 attrp->dma_attr_count_max = (uint64_t)limits->dlim_ctreg_max; 1721 attrp->dma_attr_align = 1; 1722 attrp->dma_attr_burstsizes = (uint_t)limits->dlim_burstsizes; 1723 attrp->dma_attr_minxfer = (uint32_t)limits->dlim_minxfer; 1724 attrp->dma_attr_maxxfer = (uint64_t)limits->dlim_reqsize; 1725 attrp->dma_attr_seg = (uint64_t)limits->dlim_adreg_max; 1726 attrp->dma_attr_sgllen = limits->dlim_sgllen; 1727 attrp->dma_attr_granular = (uint32_t)limits->dlim_granular; 1728 attrp->dma_attr_flags = 0; 1729 1730 ret = i_ddi_mem_alloc(dip, attrp, length, cansleep, streaming, 1731 accattrp, kaddrp, &rlen, ap); 1732 if (ret == DDI_SUCCESS) { 1733 if (real_length) 1734 *real_length = (uint_t)rlen; 1735 } 1736 return (ret); 1737 } 1738 1739 /* ARGSUSED */ 1740 void 1741 i_ddi_mem_free(caddr_t kaddr, ddi_acc_hdl_t *ap) 1742 { 1743 if (ap != NULL) { 1744 /* 1745 * if we modified the cache attributes on alloc, go back and 1746 * fix them since this memory could be returned to the 1747 * general pool. 1748 */ 1749 if (OVERRIDE_CACHE_ATTR(ap->ah_xfermodes)) { 1750 uint_t order = 0; 1751 int e; 1752 i_ddi_cacheattr_to_hatacc(IOMEM_DATA_CACHED, &order); 1753 e = kmem_override_cache_attrs(kaddr, ap->ah_len, order); 1754 if (e != 0) { 1755 cmn_err(CE_WARN, "i_ddi_mem_free() failed to " 1756 "override cache attrs, memory leaked\n"); 1757 return; 1758 } 1759 } 1760 } 1761 kfreea(kaddr); 1762 } 1763 1764 /* 1765 * Access Barriers 1766 * 1767 */ 1768 /*ARGSUSED*/ 1769 int 1770 i_ddi_ontrap(ddi_acc_handle_t hp) 1771 { 1772 return (DDI_FAILURE); 1773 } 1774 1775 /*ARGSUSED*/ 1776 void 1777 i_ddi_notrap(ddi_acc_handle_t hp) 1778 { 1779 } 1780 1781 1782 /* 1783 * Misc Functions 1784 */ 1785 1786 /* 1787 * Implementation instance override functions 1788 * 1789 * No override on i86pc 1790 */ 1791 /*ARGSUSED*/ 1792 uint_t 1793 impl_assign_instance(dev_info_t *dip) 1794 { 1795 return ((uint_t)-1); 1796 } 1797 1798 /*ARGSUSED*/ 1799 int 1800 impl_keep_instance(dev_info_t *dip) 1801 { 1802 1803 #if defined(__xpv) 1804 /* 1805 * Do not persist instance numbers assigned to devices in dom0 1806 */ 1807 dev_info_t *pdip; 1808 if (DOMAIN_IS_INITDOMAIN(xen_info)) { 1809 if (((pdip = ddi_get_parent(dip)) != NULL) && 1810 (strcmp(ddi_get_name(pdip), "xpvd") == 0)) 1811 return (DDI_SUCCESS); 1812 } 1813 #endif 1814 return (DDI_FAILURE); 1815 } 1816 1817 /*ARGSUSED*/ 1818 int 1819 impl_free_instance(dev_info_t *dip) 1820 { 1821 return (DDI_FAILURE); 1822 } 1823 1824 /*ARGSUSED*/ 1825 int 1826 impl_check_cpu(dev_info_t *devi) 1827 { 1828 return (DDI_SUCCESS); 1829 } 1830 1831 /* 1832 * Referenced in common/cpr_driver.c: Power off machine. 1833 * Don't know how to power off i86pc. 1834 */ 1835 void 1836 arch_power_down() 1837 {} 1838 1839 /* 1840 * Copy name to property_name, since name 1841 * is in the low address range below kernelbase. 1842 */ 1843 static void 1844 copy_boot_str(const char *boot_str, char *kern_str, int len) 1845 { 1846 int i = 0; 1847 1848 while (i < len - 1 && boot_str[i] != '\0') { 1849 kern_str[i] = boot_str[i]; 1850 i++; 1851 } 1852 1853 kern_str[i] = 0; /* null terminate */ 1854 if (boot_str[i] != '\0') 1855 cmn_err(CE_WARN, 1856 "boot property string is truncated to %s", kern_str); 1857 } 1858 1859 static void 1860 get_boot_properties(void) 1861 { 1862 extern char hw_provider[]; 1863 dev_info_t *devi; 1864 char *name; 1865 int length; 1866 char property_name[50], property_val[50]; 1867 void *bop_staging_area; 1868 1869 bop_staging_area = kmem_zalloc(MMU_PAGESIZE, KM_NOSLEEP); 1870 1871 /* 1872 * Import "root" properties from the boot. 1873 * 1874 * We do this by invoking BOP_NEXTPROP until the list 1875 * is completely copied in. 1876 */ 1877 1878 devi = ddi_root_node(); 1879 for (name = BOP_NEXTPROP(bootops, ""); /* get first */ 1880 name; /* NULL => DONE */ 1881 name = BOP_NEXTPROP(bootops, name)) { /* get next */ 1882 1883 /* copy string to memory above kernelbase */ 1884 copy_boot_str(name, property_name, 50); 1885 1886 /* 1887 * Skip vga properties. They will be picked up later 1888 * by get_vga_properties. 1889 */ 1890 if (strcmp(property_name, "display-edif-block") == 0 || 1891 strcmp(property_name, "display-edif-id") == 0) { 1892 continue; 1893 } 1894 1895 length = BOP_GETPROPLEN(bootops, property_name); 1896 if (length == 0) 1897 continue; 1898 if (length > MMU_PAGESIZE) { 1899 cmn_err(CE_NOTE, 1900 "boot property %s longer than 0x%x, ignored\n", 1901 property_name, MMU_PAGESIZE); 1902 continue; 1903 } 1904 BOP_GETPROP(bootops, property_name, bop_staging_area); 1905 1906 /* 1907 * special properties: 1908 * si-machine, si-hw-provider 1909 * goes to kernel data structures. 1910 * bios-boot-device and stdout 1911 * goes to hardware property list so it may show up 1912 * in the prtconf -vp output. This is needed by 1913 * Install/Upgrade. Once we fix install upgrade, 1914 * this can be taken out. 1915 */ 1916 if (strcmp(name, "si-machine") == 0) { 1917 (void) strncpy(utsname.machine, bop_staging_area, 1918 SYS_NMLN); 1919 utsname.machine[SYS_NMLN - 1] = (char)NULL; 1920 } else if (strcmp(name, "si-hw-provider") == 0) { 1921 (void) strncpy(hw_provider, bop_staging_area, SYS_NMLN); 1922 hw_provider[SYS_NMLN - 1] = (char)NULL; 1923 } else if (strcmp(name, "bios-boot-device") == 0) { 1924 copy_boot_str(bop_staging_area, property_val, 50); 1925 (void) ndi_prop_update_string(DDI_DEV_T_NONE, devi, 1926 property_name, property_val); 1927 } else if (strcmp(name, "stdout") == 0) { 1928 (void) ndi_prop_update_int(DDI_DEV_T_NONE, devi, 1929 property_name, *((int *)bop_staging_area)); 1930 } else { 1931 /* Property type unknown, use old prop interface */ 1932 (void) e_ddi_prop_create(DDI_DEV_T_NONE, devi, 1933 DDI_PROP_CANSLEEP, property_name, bop_staging_area, 1934 length); 1935 } 1936 } 1937 1938 kmem_free(bop_staging_area, MMU_PAGESIZE); 1939 } 1940 1941 static void 1942 get_vga_properties(void) 1943 { 1944 dev_info_t *devi; 1945 major_t major; 1946 char *name; 1947 int length; 1948 char property_val[50]; 1949 void *bop_staging_area; 1950 1951 /* 1952 * XXXX Hack Allert! 1953 * There really needs to be a better way for identifying various 1954 * console framebuffers and their related issues. Till then, 1955 * check for this one as a replacement to vgatext. 1956 */ 1957 major = ddi_name_to_major("ragexl"); 1958 if (major == (major_t)-1) { 1959 major = ddi_name_to_major("vgatext"); 1960 if (major == (major_t)-1) 1961 return; 1962 } 1963 devi = devnamesp[major].dn_head; 1964 if (devi == NULL) 1965 return; 1966 1967 bop_staging_area = kmem_zalloc(MMU_PAGESIZE, KM_SLEEP); 1968 1969 /* 1970 * Import "vga" properties from the boot. 1971 */ 1972 name = "display-edif-block"; 1973 length = BOP_GETPROPLEN(bootops, name); 1974 if (length > 0 && length < MMU_PAGESIZE) { 1975 BOP_GETPROP(bootops, name, bop_staging_area); 1976 (void) ndi_prop_update_byte_array(DDI_DEV_T_NONE, 1977 devi, name, bop_staging_area, length); 1978 } 1979 1980 /* 1981 * kdmconfig is also looking for display-type and 1982 * video-adapter-type. We default to color and svga. 1983 * 1984 * Could it be "monochrome", "vga"? 1985 * Nah, you've got to come to the 21st century... 1986 * And you can set monitor type manually in kdmconfig 1987 * if you are really an old junky. 1988 */ 1989 (void) ndi_prop_update_string(DDI_DEV_T_NONE, 1990 devi, "display-type", "color"); 1991 (void) ndi_prop_update_string(DDI_DEV_T_NONE, 1992 devi, "video-adapter-type", "svga"); 1993 1994 name = "display-edif-id"; 1995 length = BOP_GETPROPLEN(bootops, name); 1996 if (length > 0 && length < MMU_PAGESIZE) { 1997 BOP_GETPROP(bootops, name, bop_staging_area); 1998 copy_boot_str(bop_staging_area, property_val, length); 1999 (void) ndi_prop_update_string(DDI_DEV_T_NONE, 2000 devi, name, property_val); 2001 } 2002 2003 kmem_free(bop_staging_area, MMU_PAGESIZE); 2004 } 2005 2006 2007 /* 2008 * This is temporary, but absolutely necessary. If we are being 2009 * booted with a device tree created by the DevConf project's bootconf 2010 * program, then we have device information nodes that reflect 2011 * reality. At this point in time in the Solaris release schedule, the 2012 * kernel drivers aren't prepared for reality. They still depend on their 2013 * own ad-hoc interpretations of the properties created when their .conf 2014 * files were interpreted. These drivers use an "ignore-hardware-nodes" 2015 * property to prevent them from using the nodes passed up from the bootconf 2016 * device tree. 2017 * 2018 * Trying to assemble root file system drivers as we are booting from 2019 * devconf will fail if the kernel driver is basing its name_addr's on the 2020 * psuedo-node device info while the bootpath passed up from bootconf is using 2021 * reality-based name_addrs. We help the boot along in this case by 2022 * looking at the pre-bootconf bootpath and determining if we would have 2023 * successfully matched if that had been the bootpath we had chosen. 2024 * 2025 * Note that we only even perform this extra check if we've booted 2026 * using bootconf's 1275 compliant bootpath, this is the boot device, and 2027 * we're trying to match the name_addr specified in the 1275 bootpath. 2028 */ 2029 2030 #define MAXCOMPONENTLEN 32 2031 2032 int 2033 x86_old_bootpath_name_addr_match(dev_info_t *cdip, char *caddr, char *naddr) 2034 { 2035 /* 2036 * There are multiple criteria to be met before we can even 2037 * consider allowing a name_addr match here. 2038 * 2039 * 1) We must have been booted such that the bootconf program 2040 * created device tree nodes and properties. This can be 2041 * determined by examining the 'bootpath' property. This 2042 * property will be a non-null string iff bootconf was 2043 * involved in the boot. 2044 * 2045 * 2) The module that we want to match must be the boot device. 2046 * 2047 * 3) The instance of the module we are thinking of letting be 2048 * our match must be ignoring hardware nodes. 2049 * 2050 * 4) The name_addr we want to match must be the name_addr 2051 * specified in the 1275 bootpath. 2052 */ 2053 static char bootdev_module[MAXCOMPONENTLEN]; 2054 static char bootdev_oldmod[MAXCOMPONENTLEN]; 2055 static char bootdev_newaddr[MAXCOMPONENTLEN]; 2056 static char bootdev_oldaddr[MAXCOMPONENTLEN]; 2057 static int quickexit; 2058 2059 char *daddr; 2060 int dlen; 2061 2062 char *lkupname; 2063 int rv = DDI_FAILURE; 2064 2065 if ((ddi_getlongprop(DDI_DEV_T_ANY, cdip, DDI_PROP_DONTPASS, 2066 "devconf-addr", (caddr_t)&daddr, &dlen) == DDI_PROP_SUCCESS) && 2067 (ddi_getprop(DDI_DEV_T_ANY, cdip, DDI_PROP_DONTPASS, 2068 "ignore-hardware-nodes", -1) != -1)) { 2069 if (strcmp(daddr, caddr) == 0) { 2070 return (DDI_SUCCESS); 2071 } 2072 } 2073 2074 if (quickexit) 2075 return (rv); 2076 2077 if (bootdev_module[0] == '\0') { 2078 char *addrp, *eoaddrp; 2079 char *busp, *modp, *atp; 2080 char *bp1275, *bp; 2081 int bp1275len, bplen; 2082 2083 bp1275 = bp = addrp = eoaddrp = busp = modp = atp = NULL; 2084 2085 if (ddi_getlongprop(DDI_DEV_T_ANY, 2086 ddi_root_node(), 0, "bootpath", 2087 (caddr_t)&bp1275, &bp1275len) != DDI_PROP_SUCCESS || 2088 bp1275len <= 1) { 2089 /* 2090 * We didn't boot from bootconf so we never need to 2091 * do any special matches. 2092 */ 2093 quickexit = 1; 2094 if (bp1275) 2095 kmem_free(bp1275, bp1275len); 2096 return (rv); 2097 } 2098 2099 if (ddi_getlongprop(DDI_DEV_T_ANY, 2100 ddi_root_node(), 0, "boot-path", 2101 (caddr_t)&bp, &bplen) != DDI_PROP_SUCCESS || bplen <= 1) { 2102 /* 2103 * No fallback position for matching. This is 2104 * certainly unexpected, but we'll handle it 2105 * just in case. 2106 */ 2107 quickexit = 1; 2108 kmem_free(bp1275, bp1275len); 2109 if (bp) 2110 kmem_free(bp, bplen); 2111 return (rv); 2112 } 2113 2114 /* 2115 * Determine boot device module and 1275 name_addr 2116 * 2117 * bootpath assumed to be of the form /bus/module@name_addr 2118 */ 2119 if (busp = strchr(bp1275, '/')) { 2120 if (modp = strchr(busp + 1, '/')) { 2121 if (atp = strchr(modp + 1, '@')) { 2122 *atp = '\0'; 2123 addrp = atp + 1; 2124 if (eoaddrp = strchr(addrp, '/')) 2125 *eoaddrp = '\0'; 2126 } 2127 } 2128 } 2129 2130 if (modp && addrp) { 2131 (void) strncpy(bootdev_module, modp + 1, 2132 MAXCOMPONENTLEN); 2133 bootdev_module[MAXCOMPONENTLEN - 1] = '\0'; 2134 2135 (void) strncpy(bootdev_newaddr, addrp, MAXCOMPONENTLEN); 2136 bootdev_newaddr[MAXCOMPONENTLEN - 1] = '\0'; 2137 } else { 2138 quickexit = 1; 2139 kmem_free(bp1275, bp1275len); 2140 kmem_free(bp, bplen); 2141 return (rv); 2142 } 2143 2144 /* 2145 * Determine fallback name_addr 2146 * 2147 * 10/3/96 - Also save fallback module name because it 2148 * might actually be different than the current module 2149 * name. E.G., ISA pnp drivers have new names. 2150 * 2151 * bootpath assumed to be of the form /bus/module@name_addr 2152 */ 2153 addrp = NULL; 2154 if (busp = strchr(bp, '/')) { 2155 if (modp = strchr(busp + 1, '/')) { 2156 if (atp = strchr(modp + 1, '@')) { 2157 *atp = '\0'; 2158 addrp = atp + 1; 2159 if (eoaddrp = strchr(addrp, '/')) 2160 *eoaddrp = '\0'; 2161 } 2162 } 2163 } 2164 2165 if (modp && addrp) { 2166 (void) strncpy(bootdev_oldmod, modp + 1, 2167 MAXCOMPONENTLEN); 2168 bootdev_module[MAXCOMPONENTLEN - 1] = '\0'; 2169 2170 (void) strncpy(bootdev_oldaddr, addrp, MAXCOMPONENTLEN); 2171 bootdev_oldaddr[MAXCOMPONENTLEN - 1] = '\0'; 2172 } 2173 2174 /* Free up the bootpath storage now that we're done with it. */ 2175 kmem_free(bp1275, bp1275len); 2176 kmem_free(bp, bplen); 2177 2178 if (bootdev_oldaddr[0] == '\0') { 2179 quickexit = 1; 2180 return (rv); 2181 } 2182 } 2183 2184 if (((lkupname = ddi_get_name(cdip)) != NULL) && 2185 (strcmp(bootdev_module, lkupname) == 0 || 2186 strcmp(bootdev_oldmod, lkupname) == 0) && 2187 ((ddi_getprop(DDI_DEV_T_ANY, cdip, DDI_PROP_DONTPASS, 2188 "ignore-hardware-nodes", -1) != -1) || 2189 ignore_hardware_nodes) && 2190 strcmp(bootdev_newaddr, caddr) == 0 && 2191 strcmp(bootdev_oldaddr, naddr) == 0) { 2192 rv = DDI_SUCCESS; 2193 } 2194 2195 return (rv); 2196 } 2197 2198 /* 2199 * Perform a copy from a memory mapped device (whose devinfo pointer is devi) 2200 * separately mapped at devaddr in the kernel to a kernel buffer at kaddr. 2201 */ 2202 /*ARGSUSED*/ 2203 int 2204 e_ddi_copyfromdev(dev_info_t *devi, 2205 off_t off, const void *devaddr, void *kaddr, size_t len) 2206 { 2207 bcopy(devaddr, kaddr, len); 2208 return (0); 2209 } 2210 2211 /* 2212 * Perform a copy to a memory mapped device (whose devinfo pointer is devi) 2213 * separately mapped at devaddr in the kernel from a kernel buffer at kaddr. 2214 */ 2215 /*ARGSUSED*/ 2216 int 2217 e_ddi_copytodev(dev_info_t *devi, 2218 off_t off, const void *kaddr, void *devaddr, size_t len) 2219 { 2220 bcopy(kaddr, devaddr, len); 2221 return (0); 2222 } 2223 2224 2225 static int 2226 poke_mem(peekpoke_ctlops_t *in_args) 2227 { 2228 int err = DDI_SUCCESS; 2229 on_trap_data_t otd; 2230 2231 /* Set up protected environment. */ 2232 if (!on_trap(&otd, OT_DATA_ACCESS)) { 2233 switch (in_args->size) { 2234 case sizeof (uint8_t): 2235 *(uint8_t *)(in_args->dev_addr) = 2236 *(uint8_t *)in_args->host_addr; 2237 break; 2238 2239 case sizeof (uint16_t): 2240 *(uint16_t *)(in_args->dev_addr) = 2241 *(uint16_t *)in_args->host_addr; 2242 break; 2243 2244 case sizeof (uint32_t): 2245 *(uint32_t *)(in_args->dev_addr) = 2246 *(uint32_t *)in_args->host_addr; 2247 break; 2248 2249 case sizeof (uint64_t): 2250 *(uint64_t *)(in_args->dev_addr) = 2251 *(uint64_t *)in_args->host_addr; 2252 break; 2253 2254 default: 2255 err = DDI_FAILURE; 2256 break; 2257 } 2258 } else 2259 err = DDI_FAILURE; 2260 2261 /* Take down protected environment. */ 2262 no_trap(); 2263 2264 return (err); 2265 } 2266 2267 2268 static int 2269 peek_mem(peekpoke_ctlops_t *in_args) 2270 { 2271 int err = DDI_SUCCESS; 2272 on_trap_data_t otd; 2273 2274 if (!on_trap(&otd, OT_DATA_ACCESS)) { 2275 switch (in_args->size) { 2276 case sizeof (uint8_t): 2277 *(uint8_t *)in_args->host_addr = 2278 *(uint8_t *)in_args->dev_addr; 2279 break; 2280 2281 case sizeof (uint16_t): 2282 *(uint16_t *)in_args->host_addr = 2283 *(uint16_t *)in_args->dev_addr; 2284 break; 2285 2286 case sizeof (uint32_t): 2287 *(uint32_t *)in_args->host_addr = 2288 *(uint32_t *)in_args->dev_addr; 2289 break; 2290 2291 case sizeof (uint64_t): 2292 *(uint64_t *)in_args->host_addr = 2293 *(uint64_t *)in_args->dev_addr; 2294 break; 2295 2296 default: 2297 err = DDI_FAILURE; 2298 break; 2299 } 2300 } else 2301 err = DDI_FAILURE; 2302 2303 no_trap(); 2304 return (err); 2305 } 2306 2307 2308 /* 2309 * This is called only to process peek/poke when the DIP is NULL. 2310 * Assume that this is for memory, as nexi take care of device safe accesses. 2311 */ 2312 int 2313 peekpoke_mem(ddi_ctl_enum_t cmd, peekpoke_ctlops_t *in_args) 2314 { 2315 return (cmd == DDI_CTLOPS_PEEK ? peek_mem(in_args) : poke_mem(in_args)); 2316 } 2317 2318 /* 2319 * we've just done a cautious put/get. Check if it was successful by 2320 * calling pci_ereport_post() on all puts and for any gets that return -1 2321 */ 2322 static int 2323 pci_peekpoke_check_fma(dev_info_t *dip, void *arg, ddi_ctl_enum_t ctlop) 2324 { 2325 int rval = DDI_SUCCESS; 2326 peekpoke_ctlops_t *in_args = (peekpoke_ctlops_t *)arg; 2327 ddi_fm_error_t de; 2328 ddi_acc_impl_t *hp = (ddi_acc_impl_t *)in_args->handle; 2329 ddi_acc_hdl_t *hdlp = (ddi_acc_hdl_t *)in_args->handle; 2330 int check_err = 0; 2331 int repcount = in_args->repcount; 2332 2333 if (ctlop == DDI_CTLOPS_POKE && 2334 hdlp->ah_acc.devacc_attr_access != DDI_CAUTIOUS_ACC) 2335 return (DDI_SUCCESS); 2336 2337 if (ctlop == DDI_CTLOPS_PEEK && 2338 hdlp->ah_acc.devacc_attr_access != DDI_CAUTIOUS_ACC) { 2339 for (; repcount; repcount--) { 2340 switch (in_args->size) { 2341 case sizeof (uint8_t): 2342 if (*(uint8_t *)in_args->host_addr == 0xff) 2343 check_err = 1; 2344 break; 2345 case sizeof (uint16_t): 2346 if (*(uint16_t *)in_args->host_addr == 0xffff) 2347 check_err = 1; 2348 break; 2349 case sizeof (uint32_t): 2350 if (*(uint32_t *)in_args->host_addr == 2351 0xffffffff) 2352 check_err = 1; 2353 break; 2354 case sizeof (uint64_t): 2355 if (*(uint64_t *)in_args->host_addr == 2356 0xffffffffffffffff) 2357 check_err = 1; 2358 break; 2359 } 2360 } 2361 if (check_err == 0) 2362 return (DDI_SUCCESS); 2363 } 2364 /* 2365 * for a cautious put or get or a non-cautious get that returned -1 call 2366 * io framework to see if there really was an error 2367 */ 2368 bzero(&de, sizeof (ddi_fm_error_t)); 2369 de.fme_version = DDI_FME_VERSION; 2370 de.fme_ena = fm_ena_generate(0, FM_ENA_FMT1); 2371 if (hdlp->ah_acc.devacc_attr_access == DDI_CAUTIOUS_ACC) { 2372 de.fme_flag = DDI_FM_ERR_EXPECTED; 2373 de.fme_acc_handle = in_args->handle; 2374 } else if (hdlp->ah_acc.devacc_attr_access == DDI_DEFAULT_ACC) { 2375 /* 2376 * We only get here with DDI_DEFAULT_ACC for config space gets. 2377 * Non-hardened drivers may be probing the hardware and 2378 * expecting -1 returned. So need to treat errors on 2379 * DDI_DEFAULT_ACC as DDI_FM_ERR_EXPECTED. 2380 */ 2381 de.fme_flag = DDI_FM_ERR_EXPECTED; 2382 de.fme_acc_handle = in_args->handle; 2383 } else { 2384 /* 2385 * Hardened driver doing protected accesses shouldn't 2386 * get errors unless there's a hardware problem. Treat 2387 * as nonfatal if there's an error, but set UNEXPECTED 2388 * so we raise ereports on any errors and potentially 2389 * fault the device 2390 */ 2391 de.fme_flag = DDI_FM_ERR_UNEXPECTED; 2392 } 2393 pci_ereport_post(dip, &de, NULL); 2394 if (hdlp->ah_acc.devacc_attr_access != DDI_DEFAULT_ACC && 2395 de.fme_status != DDI_FM_OK) { 2396 ndi_err_t *errp = (ndi_err_t *)hp->ahi_err; 2397 rval = DDI_FAILURE; 2398 errp->err_ena = de.fme_ena; 2399 errp->err_expected = de.fme_flag; 2400 errp->err_status = DDI_FM_NONFATAL; 2401 } 2402 return (rval); 2403 } 2404 2405 /* 2406 * pci_peekpoke_check_nofma() is for when an error occurs on a register access 2407 * during pci_ereport_post(). We can't call pci_ereport_post() again or we'd 2408 * recurse, so assume all puts are OK and gets have failed if they return -1 2409 */ 2410 static int 2411 pci_peekpoke_check_nofma(void *arg, ddi_ctl_enum_t ctlop) 2412 { 2413 int rval = DDI_SUCCESS; 2414 peekpoke_ctlops_t *in_args = (peekpoke_ctlops_t *)arg; 2415 ddi_acc_impl_t *hp = (ddi_acc_impl_t *)in_args->handle; 2416 ddi_acc_hdl_t *hdlp = (ddi_acc_hdl_t *)in_args->handle; 2417 int repcount = in_args->repcount; 2418 2419 if (ctlop == DDI_CTLOPS_POKE) 2420 return (rval); 2421 2422 for (; repcount; repcount--) { 2423 switch (in_args->size) { 2424 case sizeof (uint8_t): 2425 if (*(uint8_t *)in_args->host_addr == 0xff) 2426 rval = DDI_FAILURE; 2427 break; 2428 case sizeof (uint16_t): 2429 if (*(uint16_t *)in_args->host_addr == 0xffff) 2430 rval = DDI_FAILURE; 2431 break; 2432 case sizeof (uint32_t): 2433 if (*(uint32_t *)in_args->host_addr == 0xffffffff) 2434 rval = DDI_FAILURE; 2435 break; 2436 case sizeof (uint64_t): 2437 if (*(uint64_t *)in_args->host_addr == 2438 0xffffffffffffffff) 2439 rval = DDI_FAILURE; 2440 break; 2441 } 2442 } 2443 if (hdlp->ah_acc.devacc_attr_access != DDI_DEFAULT_ACC && 2444 rval == DDI_FAILURE) { 2445 ndi_err_t *errp = (ndi_err_t *)hp->ahi_err; 2446 errp->err_ena = fm_ena_generate(0, FM_ENA_FMT1); 2447 errp->err_expected = DDI_FM_ERR_UNEXPECTED; 2448 errp->err_status = DDI_FM_NONFATAL; 2449 } 2450 return (rval); 2451 } 2452 2453 int 2454 pci_peekpoke_check(dev_info_t *dip, dev_info_t *rdip, 2455 ddi_ctl_enum_t ctlop, void *arg, void *result, 2456 int (*handler)(dev_info_t *, dev_info_t *, ddi_ctl_enum_t, void *, 2457 void *), kmutex_t *err_mutexp, kmutex_t *peek_poke_mutexp) 2458 { 2459 int rval; 2460 peekpoke_ctlops_t *in_args = (peekpoke_ctlops_t *)arg; 2461 ddi_acc_impl_t *hp = (ddi_acc_impl_t *)in_args->handle; 2462 2463 /* 2464 * this function only supports cautious accesses, not peeks/pokes 2465 * which don't have a handle 2466 */ 2467 if (hp == NULL) 2468 return (DDI_FAILURE); 2469 2470 if (hp->ahi_acc_attr & DDI_ACCATTR_CONFIG_SPACE) { 2471 if (!mutex_tryenter(err_mutexp)) { 2472 /* 2473 * As this may be a recursive call from within 2474 * pci_ereport_post() we can't wait for the mutexes. 2475 * Fortunately we know someone is already calling 2476 * pci_ereport_post() which will handle the error bits 2477 * for us, and as this is a config space access we can 2478 * just do the access and check return value for -1 2479 * using pci_peekpoke_check_nofma(). 2480 */ 2481 rval = handler(dip, rdip, ctlop, arg, result); 2482 if (rval == DDI_SUCCESS) 2483 rval = pci_peekpoke_check_nofma(arg, ctlop); 2484 return (rval); 2485 } 2486 /* 2487 * This can't be a recursive call. Drop the err_mutex and get 2488 * both mutexes in the right order. If an error hasn't already 2489 * been detected by the ontrap code, use pci_peekpoke_check_fma 2490 * which will call pci_ereport_post() to check error status. 2491 */ 2492 mutex_exit(err_mutexp); 2493 } 2494 mutex_enter(peek_poke_mutexp); 2495 rval = handler(dip, rdip, ctlop, arg, result); 2496 if (rval == DDI_SUCCESS) { 2497 mutex_enter(err_mutexp); 2498 rval = pci_peekpoke_check_fma(dip, arg, ctlop); 2499 mutex_exit(err_mutexp); 2500 } 2501 mutex_exit(peek_poke_mutexp); 2502 return (rval); 2503 } 2504 2505 void 2506 impl_setup_ddi(void) 2507 { 2508 dev_info_t *xdip, *isa_dip; 2509 rd_existing_t rd_mem_prop; 2510 int err; 2511 2512 ndi_devi_alloc_sleep(ddi_root_node(), "ramdisk", 2513 (pnode_t)DEVI_SID_NODEID, &xdip); 2514 2515 (void) BOP_GETPROP(bootops, 2516 "ramdisk_start", (void *)&ramdisk_start); 2517 (void) BOP_GETPROP(bootops, 2518 "ramdisk_end", (void *)&ramdisk_end); 2519 2520 #ifdef __xpv 2521 ramdisk_start -= ONE_GIG; 2522 ramdisk_end -= ONE_GIG; 2523 #endif 2524 rd_mem_prop.phys = ramdisk_start; 2525 rd_mem_prop.size = ramdisk_end - ramdisk_start + 1; 2526 2527 (void) ndi_prop_update_byte_array(DDI_DEV_T_NONE, xdip, 2528 RD_EXISTING_PROP_NAME, (uchar_t *)&rd_mem_prop, 2529 sizeof (rd_mem_prop)); 2530 err = ndi_devi_bind_driver(xdip, 0); 2531 ASSERT(err == 0); 2532 2533 /* isa node */ 2534 ndi_devi_alloc_sleep(ddi_root_node(), "isa", 2535 (pnode_t)DEVI_SID_NODEID, &isa_dip); 2536 (void) ndi_prop_update_string(DDI_DEV_T_NONE, isa_dip, 2537 "device_type", "isa"); 2538 (void) ndi_prop_update_string(DDI_DEV_T_NONE, isa_dip, 2539 "bus-type", "isa"); 2540 (void) ndi_devi_bind_driver(isa_dip, 0); 2541 2542 /* 2543 * Read in the properties from the boot. 2544 */ 2545 get_boot_properties(); 2546 2547 /* do bus dependent probes. */ 2548 impl_bus_initialprobe(); 2549 2550 /* not framebuffer should be enumerated, if present */ 2551 get_vga_properties(); 2552 } 2553 2554 dev_t 2555 getrootdev(void) 2556 { 2557 /* 2558 * Precedence given to rootdev if set in /etc/system 2559 */ 2560 if (root_is_svm) { 2561 return (ddi_pathname_to_dev_t(svm_bootpath)); 2562 } 2563 2564 /* 2565 * Usually rootfs.bo_name is initialized by the 2566 * the bootpath property from bootenv.rc, but 2567 * defaults to "/ramdisk:a" otherwise. 2568 */ 2569 return (ddi_pathname_to_dev_t(rootfs.bo_name)); 2570 } 2571 2572 static struct bus_probe { 2573 struct bus_probe *next; 2574 void (*probe)(int); 2575 } *bus_probes; 2576 2577 void 2578 impl_bus_add_probe(void (*func)(int)) 2579 { 2580 struct bus_probe *probe; 2581 2582 probe = kmem_alloc(sizeof (*probe), KM_SLEEP); 2583 probe->next = bus_probes; 2584 probe->probe = func; 2585 bus_probes = probe; 2586 } 2587 2588 /*ARGSUSED*/ 2589 void 2590 impl_bus_delete_probe(void (*func)(int)) 2591 { 2592 struct bus_probe *prev = NULL; 2593 struct bus_probe *probe = bus_probes; 2594 2595 while (probe) { 2596 if (probe->probe == func) 2597 break; 2598 prev = probe; 2599 probe = probe->next; 2600 } 2601 2602 if (probe == NULL) 2603 return; 2604 2605 if (prev) 2606 prev->next = probe->next; 2607 else 2608 bus_probes = probe->next; 2609 2610 kmem_free(probe, sizeof (struct bus_probe)); 2611 } 2612 2613 /* 2614 * impl_bus_initialprobe 2615 * Modload the prom simulator, then let it probe to verify existence 2616 * and type of PCI support. 2617 */ 2618 static void 2619 impl_bus_initialprobe(void) 2620 { 2621 struct bus_probe *probe; 2622 2623 /* load modules to install bus probes */ 2624 #if defined(__xpv) 2625 if (DOMAIN_IS_INITDOMAIN(xen_info)) { 2626 if (modload("misc", "pci_autoconfig") < 0) { 2627 panic("failed to load misc/pci_autoconfig"); 2628 } 2629 } 2630 (void) modload("misc", "xpv_autoconfig"); 2631 #else 2632 if (modload("misc", "pci_autoconfig") < 0) { 2633 panic("failed to load misc/pci_autoconfig"); 2634 } 2635 #endif 2636 2637 probe = bus_probes; 2638 while (probe) { 2639 /* run the probe functions */ 2640 (*probe->probe)(0); 2641 probe = probe->next; 2642 } 2643 } 2644 2645 /* 2646 * impl_bus_reprobe 2647 * Reprogram devices not set up by firmware. 2648 */ 2649 static void 2650 impl_bus_reprobe(void) 2651 { 2652 struct bus_probe *probe; 2653 2654 probe = bus_probes; 2655 while (probe) { 2656 /* run the probe function */ 2657 (*probe->probe)(1); 2658 probe = probe->next; 2659 } 2660 } 2661 2662 2663 /* 2664 * The following functions ready a cautious request to go up to the nexus 2665 * driver. It is up to the nexus driver to decide how to process the request. 2666 * It may choose to call i_ddi_do_caut_get/put in this file, or do it 2667 * differently. 2668 */ 2669 2670 static void 2671 i_ddi_caut_getput_ctlops(ddi_acc_impl_t *hp, uint64_t host_addr, 2672 uint64_t dev_addr, size_t size, size_t repcount, uint_t flags, 2673 ddi_ctl_enum_t cmd) 2674 { 2675 peekpoke_ctlops_t cautacc_ctlops_arg; 2676 2677 cautacc_ctlops_arg.size = size; 2678 cautacc_ctlops_arg.dev_addr = dev_addr; 2679 cautacc_ctlops_arg.host_addr = host_addr; 2680 cautacc_ctlops_arg.handle = (ddi_acc_handle_t)hp; 2681 cautacc_ctlops_arg.repcount = repcount; 2682 cautacc_ctlops_arg.flags = flags; 2683 2684 (void) ddi_ctlops(hp->ahi_common.ah_dip, hp->ahi_common.ah_dip, cmd, 2685 &cautacc_ctlops_arg, NULL); 2686 } 2687 2688 uint8_t 2689 i_ddi_caut_get8(ddi_acc_impl_t *hp, uint8_t *addr) 2690 { 2691 uint8_t value; 2692 i_ddi_caut_getput_ctlops(hp, (uintptr_t)&value, (uintptr_t)addr, 2693 sizeof (uint8_t), 1, 0, DDI_CTLOPS_PEEK); 2694 2695 return (value); 2696 } 2697 2698 uint16_t 2699 i_ddi_caut_get16(ddi_acc_impl_t *hp, uint16_t *addr) 2700 { 2701 uint16_t value; 2702 i_ddi_caut_getput_ctlops(hp, (uintptr_t)&value, (uintptr_t)addr, 2703 sizeof (uint16_t), 1, 0, DDI_CTLOPS_PEEK); 2704 2705 return (value); 2706 } 2707 2708 uint32_t 2709 i_ddi_caut_get32(ddi_acc_impl_t *hp, uint32_t *addr) 2710 { 2711 uint32_t value; 2712 i_ddi_caut_getput_ctlops(hp, (uintptr_t)&value, (uintptr_t)addr, 2713 sizeof (uint32_t), 1, 0, DDI_CTLOPS_PEEK); 2714 2715 return (value); 2716 } 2717 2718 uint64_t 2719 i_ddi_caut_get64(ddi_acc_impl_t *hp, uint64_t *addr) 2720 { 2721 uint64_t value; 2722 i_ddi_caut_getput_ctlops(hp, (uintptr_t)&value, (uintptr_t)addr, 2723 sizeof (uint64_t), 1, 0, DDI_CTLOPS_PEEK); 2724 2725 return (value); 2726 } 2727 2728 void 2729 i_ddi_caut_put8(ddi_acc_impl_t *hp, uint8_t *addr, uint8_t value) 2730 { 2731 i_ddi_caut_getput_ctlops(hp, (uintptr_t)&value, (uintptr_t)addr, 2732 sizeof (uint8_t), 1, 0, DDI_CTLOPS_POKE); 2733 } 2734 2735 void 2736 i_ddi_caut_put16(ddi_acc_impl_t *hp, uint16_t *addr, uint16_t value) 2737 { 2738 i_ddi_caut_getput_ctlops(hp, (uintptr_t)&value, (uintptr_t)addr, 2739 sizeof (uint16_t), 1, 0, DDI_CTLOPS_POKE); 2740 } 2741 2742 void 2743 i_ddi_caut_put32(ddi_acc_impl_t *hp, uint32_t *addr, uint32_t value) 2744 { 2745 i_ddi_caut_getput_ctlops(hp, (uintptr_t)&value, (uintptr_t)addr, 2746 sizeof (uint32_t), 1, 0, DDI_CTLOPS_POKE); 2747 } 2748 2749 void 2750 i_ddi_caut_put64(ddi_acc_impl_t *hp, uint64_t *addr, uint64_t value) 2751 { 2752 i_ddi_caut_getput_ctlops(hp, (uintptr_t)&value, (uintptr_t)addr, 2753 sizeof (uint64_t), 1, 0, DDI_CTLOPS_POKE); 2754 } 2755 2756 void 2757 i_ddi_caut_rep_get8(ddi_acc_impl_t *hp, uint8_t *host_addr, uint8_t *dev_addr, 2758 size_t repcount, uint_t flags) 2759 { 2760 i_ddi_caut_getput_ctlops(hp, (uintptr_t)host_addr, (uintptr_t)dev_addr, 2761 sizeof (uint8_t), repcount, flags, DDI_CTLOPS_PEEK); 2762 } 2763 2764 void 2765 i_ddi_caut_rep_get16(ddi_acc_impl_t *hp, uint16_t *host_addr, 2766 uint16_t *dev_addr, size_t repcount, uint_t flags) 2767 { 2768 i_ddi_caut_getput_ctlops(hp, (uintptr_t)host_addr, (uintptr_t)dev_addr, 2769 sizeof (uint16_t), repcount, flags, DDI_CTLOPS_PEEK); 2770 } 2771 2772 void 2773 i_ddi_caut_rep_get32(ddi_acc_impl_t *hp, uint32_t *host_addr, 2774 uint32_t *dev_addr, size_t repcount, uint_t flags) 2775 { 2776 i_ddi_caut_getput_ctlops(hp, (uintptr_t)host_addr, (uintptr_t)dev_addr, 2777 sizeof (uint32_t), repcount, flags, DDI_CTLOPS_PEEK); 2778 } 2779 2780 void 2781 i_ddi_caut_rep_get64(ddi_acc_impl_t *hp, uint64_t *host_addr, 2782 uint64_t *dev_addr, size_t repcount, uint_t flags) 2783 { 2784 i_ddi_caut_getput_ctlops(hp, (uintptr_t)host_addr, (uintptr_t)dev_addr, 2785 sizeof (uint64_t), repcount, flags, DDI_CTLOPS_PEEK); 2786 } 2787 2788 void 2789 i_ddi_caut_rep_put8(ddi_acc_impl_t *hp, uint8_t *host_addr, uint8_t *dev_addr, 2790 size_t repcount, uint_t flags) 2791 { 2792 i_ddi_caut_getput_ctlops(hp, (uintptr_t)host_addr, (uintptr_t)dev_addr, 2793 sizeof (uint8_t), repcount, flags, DDI_CTLOPS_POKE); 2794 } 2795 2796 void 2797 i_ddi_caut_rep_put16(ddi_acc_impl_t *hp, uint16_t *host_addr, 2798 uint16_t *dev_addr, size_t repcount, uint_t flags) 2799 { 2800 i_ddi_caut_getput_ctlops(hp, (uintptr_t)host_addr, (uintptr_t)dev_addr, 2801 sizeof (uint16_t), repcount, flags, DDI_CTLOPS_POKE); 2802 } 2803 2804 void 2805 i_ddi_caut_rep_put32(ddi_acc_impl_t *hp, uint32_t *host_addr, 2806 uint32_t *dev_addr, size_t repcount, uint_t flags) 2807 { 2808 i_ddi_caut_getput_ctlops(hp, (uintptr_t)host_addr, (uintptr_t)dev_addr, 2809 sizeof (uint32_t), repcount, flags, DDI_CTLOPS_POKE); 2810 } 2811 2812 void 2813 i_ddi_caut_rep_put64(ddi_acc_impl_t *hp, uint64_t *host_addr, 2814 uint64_t *dev_addr, size_t repcount, uint_t flags) 2815 { 2816 i_ddi_caut_getput_ctlops(hp, (uintptr_t)host_addr, (uintptr_t)dev_addr, 2817 sizeof (uint64_t), repcount, flags, DDI_CTLOPS_POKE); 2818 } 2819 2820 boolean_t 2821 i_ddi_copybuf_required(ddi_dma_attr_t *attrp) 2822 { 2823 uint64_t hi_pa; 2824 2825 hi_pa = ((uint64_t)physmax + 1ull) << PAGESHIFT; 2826 if (attrp->dma_attr_addr_hi < hi_pa) { 2827 return (B_TRUE); 2828 } 2829 2830 return (B_FALSE); 2831 } 2832 2833 size_t 2834 i_ddi_copybuf_size() 2835 { 2836 return (dma_max_copybuf_size); 2837 } 2838 2839 /* 2840 * i_ddi_dma_max() 2841 * returns the maximum DMA size which can be performed in a single DMA 2842 * window taking into account the devices DMA contraints (attrp), the 2843 * maximum copy buffer size (if applicable), and the worse case buffer 2844 * fragmentation. 2845 */ 2846 /*ARGSUSED*/ 2847 uint32_t 2848 i_ddi_dma_max(dev_info_t *dip, ddi_dma_attr_t *attrp) 2849 { 2850 uint64_t maxxfer; 2851 2852 2853 /* 2854 * take the min of maxxfer and the the worse case fragementation 2855 * (e.g. every cookie <= 1 page) 2856 */ 2857 maxxfer = MIN(attrp->dma_attr_maxxfer, 2858 ((uint64_t)(attrp->dma_attr_sgllen - 1) << PAGESHIFT)); 2859 2860 /* 2861 * If the DMA engine can't reach all off memory, we also need to take 2862 * the max size of the copybuf into consideration. 2863 */ 2864 if (i_ddi_copybuf_required(attrp)) { 2865 maxxfer = MIN(i_ddi_copybuf_size(), maxxfer); 2866 } 2867 2868 /* 2869 * we only return a 32-bit value. Make sure it's not -1. Round to a 2870 * page so it won't be mistaken for an error value during debug. 2871 */ 2872 if (maxxfer >= 0xFFFFFFFF) { 2873 maxxfer = 0xFFFFF000; 2874 } 2875 2876 /* 2877 * make sure the value we return is a whole multiple of the 2878 * granlarity. 2879 */ 2880 if (attrp->dma_attr_granular > 1) { 2881 maxxfer = maxxfer - (maxxfer % attrp->dma_attr_granular); 2882 } 2883 2884 return ((uint32_t)maxxfer); 2885 } 2886