1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2010 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 27 /* 28 * PC specific DDI implementation 29 */ 30 #include <sys/types.h> 31 #include <sys/autoconf.h> 32 #include <sys/avintr.h> 33 #include <sys/bootconf.h> 34 #include <sys/conf.h> 35 #include <sys/cpuvar.h> 36 #include <sys/ddi_impldefs.h> 37 #include <sys/ddi_subrdefs.h> 38 #include <sys/ethernet.h> 39 #include <sys/fp.h> 40 #include <sys/instance.h> 41 #include <sys/kmem.h> 42 #include <sys/machsystm.h> 43 #include <sys/modctl.h> 44 #include <sys/promif.h> 45 #include <sys/prom_plat.h> 46 #include <sys/sunndi.h> 47 #include <sys/ndi_impldefs.h> 48 #include <sys/ddi_impldefs.h> 49 #include <sys/sysmacros.h> 50 #include <sys/systeminfo.h> 51 #include <sys/utsname.h> 52 #include <sys/atomic.h> 53 #include <sys/spl.h> 54 #include <sys/archsystm.h> 55 #include <vm/seg_kmem.h> 56 #include <sys/ontrap.h> 57 #include <sys/fm/protocol.h> 58 #include <sys/ramdisk.h> 59 #include <sys/sunndi.h> 60 #include <sys/vmem.h> 61 #include <sys/pci_impl.h> 62 #if defined(__xpv) 63 #include <sys/hypervisor.h> 64 #endif 65 #include <sys/mach_intr.h> 66 #include <vm/hat_i86.h> 67 #include <sys/x86_archext.h> 68 69 /* 70 * DDI Boot Configuration 71 */ 72 73 /* 74 * Platform drivers on this platform 75 */ 76 char *platform_module_list[] = { 77 "acpippm", 78 "ppm", 79 (char *)0 80 }; 81 82 /* pci bus resource maps */ 83 struct pci_bus_resource *pci_bus_res; 84 85 size_t dma_max_copybuf_size = 0x101000; /* 1M + 4K */ 86 87 uint64_t ramdisk_start, ramdisk_end; 88 89 int pseudo_isa = 0; 90 91 /* 92 * Forward declarations 93 */ 94 static int getlongprop_buf(); 95 static void get_boot_properties(void); 96 static void impl_bus_initialprobe(void); 97 static void impl_bus_reprobe(void); 98 99 static int poke_mem(peekpoke_ctlops_t *in_args); 100 static int peek_mem(peekpoke_ctlops_t *in_args); 101 102 static int kmem_override_cache_attrs(caddr_t, size_t, uint_t); 103 104 #define CTGENTRIES 15 105 106 static struct ctgas { 107 struct ctgas *ctg_next; 108 int ctg_index; 109 void *ctg_addr[CTGENTRIES]; 110 size_t ctg_size[CTGENTRIES]; 111 } ctglist; 112 113 static kmutex_t ctgmutex; 114 #define CTGLOCK() mutex_enter(&ctgmutex) 115 #define CTGUNLOCK() mutex_exit(&ctgmutex) 116 117 /* 118 * Minimum pfn value of page_t's put on the free list. This is to simplify 119 * support of ddi dma memory requests which specify small, non-zero addr_lo 120 * values. 121 * 122 * The default value of 2, which corresponds to the only known non-zero addr_lo 123 * value used, means a single page will be sacrificed (pfn typically starts 124 * at 1). ddiphysmin can be set to 0 to disable. It cannot be set above 0x100 125 * otherwise mp startup panics. 126 */ 127 pfn_t ddiphysmin = 2; 128 129 static void 130 check_driver_disable(void) 131 { 132 int proplen = 128; 133 char *prop_name; 134 char *drv_name, *propval; 135 major_t major; 136 137 prop_name = kmem_alloc(proplen, KM_SLEEP); 138 for (major = 0; major < devcnt; major++) { 139 drv_name = ddi_major_to_name(major); 140 if (drv_name == NULL) 141 continue; 142 (void) snprintf(prop_name, proplen, "disable-%s", drv_name); 143 if (ddi_prop_lookup_string(DDI_DEV_T_ANY, ddi_root_node(), 144 DDI_PROP_DONTPASS, prop_name, &propval) == DDI_SUCCESS) { 145 if (strcmp(propval, "true") == 0) { 146 devnamesp[major].dn_flags |= DN_DRIVER_REMOVED; 147 cmn_err(CE_NOTE, "driver %s disabled", 148 drv_name); 149 } 150 ddi_prop_free(propval); 151 } 152 } 153 kmem_free(prop_name, proplen); 154 } 155 156 157 /* 158 * Configure the hardware on the system. 159 * Called before the rootfs is mounted 160 */ 161 void 162 configure(void) 163 { 164 extern void i_ddi_init_root(); 165 166 #if defined(__i386) 167 extern int fpu_pentium_fdivbug; 168 #endif /* __i386 */ 169 extern int fpu_ignored; 170 171 /* 172 * Determine if an FPU is attached 173 */ 174 175 fpu_probe(); 176 177 #if defined(__i386) 178 if (fpu_pentium_fdivbug) { 179 printf("\ 180 FP hardware exhibits Pentium floating point divide problem\n"); 181 } 182 #endif /* __i386 */ 183 184 if (fpu_ignored) { 185 printf("FP hardware will not be used\n"); 186 } else if (!fpu_exists) { 187 printf("No FPU in configuration\n"); 188 } 189 190 /* 191 * Initialize devices on the machine. 192 * Uses configuration tree built by the PROMs to determine what 193 * is present, and builds a tree of prototype dev_info nodes 194 * corresponding to the hardware which identified itself. 195 */ 196 197 /* 198 * Initialize root node. 199 */ 200 i_ddi_init_root(); 201 202 /* reprogram devices not set up by firmware (BIOS) */ 203 impl_bus_reprobe(); 204 205 /* 206 * attach the isa nexus to get ACPI resource usage 207 * isa is "kind of" a pseudo node 208 */ 209 #if defined(__xpv) 210 if (DOMAIN_IS_INITDOMAIN(xen_info)) { 211 if (pseudo_isa) 212 (void) i_ddi_attach_pseudo_node("isa"); 213 else 214 (void) i_ddi_attach_hw_nodes("isa"); 215 } 216 #else 217 if (pseudo_isa) 218 (void) i_ddi_attach_pseudo_node("isa"); 219 else 220 (void) i_ddi_attach_hw_nodes("isa"); 221 #endif 222 } 223 224 /* 225 * The "status" property indicates the operational status of a device. 226 * If this property is present, the value is a string indicating the 227 * status of the device as follows: 228 * 229 * "okay" operational. 230 * "disabled" not operational, but might become operational. 231 * "fail" not operational because a fault has been detected, 232 * and it is unlikely that the device will become 233 * operational without repair. no additional details 234 * are available. 235 * "fail-xxx" not operational because a fault has been detected, 236 * and it is unlikely that the device will become 237 * operational without repair. "xxx" is additional 238 * human-readable information about the particular 239 * fault condition that was detected. 240 * 241 * The absence of this property means that the operational status is 242 * unknown or okay. 243 * 244 * This routine checks the status property of the specified device node 245 * and returns 0 if the operational status indicates failure, and 1 otherwise. 246 * 247 * The property may exist on plug-in cards the existed before IEEE 1275-1994. 248 * And, in that case, the property may not even be a string. So we carefully 249 * check for the value "fail", in the beginning of the string, noting 250 * the property length. 251 */ 252 int 253 status_okay(int id, char *buf, int buflen) 254 { 255 char status_buf[OBP_MAXPROPNAME]; 256 char *bufp = buf; 257 int len = buflen; 258 int proplen; 259 static const char *status = "status"; 260 static const char *fail = "fail"; 261 int fail_len = (int)strlen(fail); 262 263 /* 264 * Get the proplen ... if it's smaller than "fail", 265 * or doesn't exist ... then we don't care, since 266 * the value can't begin with the char string "fail". 267 * 268 * NB: proplen, if it's a string, includes the NULL in the 269 * the size of the property, and fail_len does not. 270 */ 271 proplen = prom_getproplen((pnode_t)id, (caddr_t)status); 272 if (proplen <= fail_len) /* nonexistant or uninteresting len */ 273 return (1); 274 275 /* 276 * if a buffer was provided, use it 277 */ 278 if ((buf == (char *)NULL) || (buflen <= 0)) { 279 bufp = status_buf; 280 len = sizeof (status_buf); 281 } 282 *bufp = (char)0; 283 284 /* 285 * Get the property into the buffer, to the extent of the buffer, 286 * and in case the buffer is smaller than the property size, 287 * NULL terminate the buffer. (This handles the case where 288 * a buffer was passed in and the caller wants to print the 289 * value, but the buffer was too small). 290 */ 291 (void) prom_bounded_getprop((pnode_t)id, (caddr_t)status, 292 (caddr_t)bufp, len); 293 *(bufp + len - 1) = (char)0; 294 295 /* 296 * If the value begins with the char string "fail", 297 * then it means the node is failed. We don't care 298 * about any other values. We assume the node is ok 299 * although it might be 'disabled'. 300 */ 301 if (strncmp(bufp, fail, fail_len) == 0) 302 return (0); 303 304 return (1); 305 } 306 307 /* 308 * Check the status of the device node passed as an argument. 309 * 310 * if ((status is OKAY) || (status is DISABLED)) 311 * return DDI_SUCCESS 312 * else 313 * print a warning and return DDI_FAILURE 314 */ 315 /*ARGSUSED1*/ 316 int 317 check_status(int id, char *name, dev_info_t *parent) 318 { 319 char status_buf[64]; 320 char devtype_buf[OBP_MAXPROPNAME]; 321 int retval = DDI_FAILURE; 322 323 /* 324 * is the status okay? 325 */ 326 if (status_okay(id, status_buf, sizeof (status_buf))) 327 return (DDI_SUCCESS); 328 329 /* 330 * a status property indicating bad memory will be associated 331 * with a node which has a "device_type" property with a value of 332 * "memory-controller". in this situation, return DDI_SUCCESS 333 */ 334 if (getlongprop_buf(id, OBP_DEVICETYPE, devtype_buf, 335 sizeof (devtype_buf)) > 0) { 336 if (strcmp(devtype_buf, "memory-controller") == 0) 337 retval = DDI_SUCCESS; 338 } 339 340 /* 341 * print the status property information 342 */ 343 cmn_err(CE_WARN, "status '%s' for '%s'", status_buf, name); 344 return (retval); 345 } 346 347 /*ARGSUSED*/ 348 uint_t 349 softlevel1(caddr_t arg1, caddr_t arg2) 350 { 351 softint(); 352 return (1); 353 } 354 355 /* 356 * Allow for implementation specific correction of PROM property values. 357 */ 358 359 /*ARGSUSED*/ 360 void 361 impl_fix_props(dev_info_t *dip, dev_info_t *ch_dip, char *name, int len, 362 caddr_t buffer) 363 { 364 /* 365 * There are no adjustments needed in this implementation. 366 */ 367 } 368 369 static int 370 getlongprop_buf(int id, char *name, char *buf, int maxlen) 371 { 372 int size; 373 374 size = prom_getproplen((pnode_t)id, name); 375 if (size <= 0 || (size > maxlen - 1)) 376 return (-1); 377 378 if (-1 == prom_getprop((pnode_t)id, name, buf)) 379 return (-1); 380 381 if (strcmp("name", name) == 0) { 382 if (buf[size - 1] != '\0') { 383 buf[size] = '\0'; 384 size += 1; 385 } 386 } 387 388 return (size); 389 } 390 391 static int 392 get_prop_int_array(dev_info_t *di, char *pname, int **pval, uint_t *plen) 393 { 394 int ret; 395 396 if ((ret = ddi_prop_lookup_int_array(DDI_DEV_T_ANY, di, 397 DDI_PROP_DONTPASS, pname, pval, plen)) 398 == DDI_PROP_SUCCESS) { 399 *plen = (*plen) * (sizeof (int)); 400 } 401 return (ret); 402 } 403 404 405 /* 406 * Node Configuration 407 */ 408 409 struct prop_ispec { 410 uint_t pri, vec; 411 }; 412 413 /* 414 * For the x86, we're prepared to claim that the interrupt string 415 * is in the form of a list of <ipl,vec> specifications. 416 */ 417 418 #define VEC_MIN 1 419 #define VEC_MAX 255 420 421 static int 422 impl_xlate_intrs(dev_info_t *child, int *in, 423 struct ddi_parent_private_data *pdptr) 424 { 425 size_t size; 426 int n; 427 struct intrspec *new; 428 caddr_t got_prop; 429 int *inpri; 430 int got_len; 431 extern int ignore_hardware_nodes; /* force flag from ddi_impl.c */ 432 433 static char bad_intr_fmt[] = 434 "bad interrupt spec from %s%d - ipl %d, irq %d\n"; 435 436 /* 437 * determine if the driver is expecting the new style "interrupts" 438 * property which just contains the IRQ, or the old style which 439 * contains pairs of <IPL,IRQ>. if it is the new style, we always 440 * assign IPL 5 unless an "interrupt-priorities" property exists. 441 * in that case, the "interrupt-priorities" property contains the 442 * IPL values that match, one for one, the IRQ values in the 443 * "interrupts" property. 444 */ 445 inpri = NULL; 446 if ((ddi_getprop(DDI_DEV_T_ANY, child, DDI_PROP_DONTPASS, 447 "ignore-hardware-nodes", -1) != -1) || ignore_hardware_nodes) { 448 /* the old style "interrupts" property... */ 449 450 /* 451 * The list consists of <ipl,vec> elements 452 */ 453 if ((n = (*in++ >> 1)) < 1) 454 return (DDI_FAILURE); 455 456 pdptr->par_nintr = n; 457 size = n * sizeof (struct intrspec); 458 new = pdptr->par_intr = kmem_zalloc(size, KM_SLEEP); 459 460 while (n--) { 461 int level = *in++; 462 int vec = *in++; 463 464 if (level < 1 || level > MAXIPL || 465 vec < VEC_MIN || vec > VEC_MAX) { 466 cmn_err(CE_CONT, bad_intr_fmt, 467 DEVI(child)->devi_name, 468 DEVI(child)->devi_instance, level, vec); 469 goto broken; 470 } 471 new->intrspec_pri = level; 472 if (vec != 2) 473 new->intrspec_vec = vec; 474 else 475 /* 476 * irq 2 on the PC bus is tied to irq 9 477 * on ISA, EISA and MicroChannel 478 */ 479 new->intrspec_vec = 9; 480 new++; 481 } 482 483 return (DDI_SUCCESS); 484 } else { 485 /* the new style "interrupts" property... */ 486 487 /* 488 * The list consists of <vec> elements 489 */ 490 if ((n = (*in++)) < 1) 491 return (DDI_FAILURE); 492 493 pdptr->par_nintr = n; 494 size = n * sizeof (struct intrspec); 495 new = pdptr->par_intr = kmem_zalloc(size, KM_SLEEP); 496 497 /* XXX check for "interrupt-priorities" property... */ 498 if (ddi_getlongprop(DDI_DEV_T_ANY, child, DDI_PROP_DONTPASS, 499 "interrupt-priorities", (caddr_t)&got_prop, &got_len) 500 == DDI_PROP_SUCCESS) { 501 if (n != (got_len / sizeof (int))) { 502 cmn_err(CE_CONT, 503 "bad interrupt-priorities length" 504 " from %s%d: expected %d, got %d\n", 505 DEVI(child)->devi_name, 506 DEVI(child)->devi_instance, n, 507 (int)(got_len / sizeof (int))); 508 goto broken; 509 } 510 inpri = (int *)got_prop; 511 } 512 513 while (n--) { 514 int level; 515 int vec = *in++; 516 517 if (inpri == NULL) 518 level = 5; 519 else 520 level = *inpri++; 521 522 if (level < 1 || level > MAXIPL || 523 vec < VEC_MIN || vec > VEC_MAX) { 524 cmn_err(CE_CONT, bad_intr_fmt, 525 DEVI(child)->devi_name, 526 DEVI(child)->devi_instance, level, vec); 527 goto broken; 528 } 529 new->intrspec_pri = level; 530 if (vec != 2) 531 new->intrspec_vec = vec; 532 else 533 /* 534 * irq 2 on the PC bus is tied to irq 9 535 * on ISA, EISA and MicroChannel 536 */ 537 new->intrspec_vec = 9; 538 new++; 539 } 540 541 if (inpri != NULL) 542 kmem_free(got_prop, got_len); 543 return (DDI_SUCCESS); 544 } 545 546 broken: 547 kmem_free(pdptr->par_intr, size); 548 pdptr->par_intr = NULL; 549 pdptr->par_nintr = 0; 550 if (inpri != NULL) 551 kmem_free(got_prop, got_len); 552 553 return (DDI_FAILURE); 554 } 555 556 /* 557 * Create a ddi_parent_private_data structure from the ddi properties of 558 * the dev_info node. 559 * 560 * The "reg" and either an "intr" or "interrupts" properties are required 561 * if the driver wishes to create mappings or field interrupts on behalf 562 * of the device. 563 * 564 * The "reg" property is assumed to be a list of at least one triple 565 * 566 * <bustype, address, size>*1 567 * 568 * The "intr" property is assumed to be a list of at least one duple 569 * 570 * <SPARC ipl, vector#>*1 571 * 572 * The "interrupts" property is assumed to be a list of at least one 573 * n-tuples that describes the interrupt capabilities of the bus the device 574 * is connected to. For SBus, this looks like 575 * 576 * <SBus-level>*1 577 * 578 * (This property obsoletes the 'intr' property). 579 * 580 * The "ranges" property is optional. 581 */ 582 void 583 make_ddi_ppd(dev_info_t *child, struct ddi_parent_private_data **ppd) 584 { 585 struct ddi_parent_private_data *pdptr; 586 int n; 587 int *reg_prop, *rng_prop, *intr_prop, *irupts_prop; 588 uint_t reg_len, rng_len, intr_len, irupts_len; 589 590 *ppd = pdptr = kmem_zalloc(sizeof (*pdptr), KM_SLEEP); 591 592 /* 593 * Handle the 'reg' property. 594 */ 595 if ((get_prop_int_array(child, "reg", ®_prop, ®_len) == 596 DDI_PROP_SUCCESS) && (reg_len != 0)) { 597 pdptr->par_nreg = reg_len / (int)sizeof (struct regspec); 598 pdptr->par_reg = (struct regspec *)reg_prop; 599 } 600 601 /* 602 * See if I have a range (adding one where needed - this 603 * means to add one for sbus node in sun4c, when romvec > 0, 604 * if no range is already defined in the PROM node. 605 * (Currently no sun4c PROMS define range properties, 606 * but they should and may in the future.) For the SBus 607 * node, the range is defined by the SBus reg property. 608 */ 609 if (get_prop_int_array(child, "ranges", &rng_prop, &rng_len) 610 == DDI_PROP_SUCCESS) { 611 pdptr->par_nrng = rng_len / (int)(sizeof (struct rangespec)); 612 pdptr->par_rng = (struct rangespec *)rng_prop; 613 } 614 615 /* 616 * Handle the 'intr' and 'interrupts' properties 617 */ 618 619 /* 620 * For backwards compatibility 621 * we first look for the 'intr' property for the device. 622 */ 623 if (get_prop_int_array(child, "intr", &intr_prop, &intr_len) 624 != DDI_PROP_SUCCESS) { 625 intr_len = 0; 626 } 627 628 /* 629 * If we're to support bus adapters and future platforms cleanly, 630 * we need to support the generalized 'interrupts' property. 631 */ 632 if (get_prop_int_array(child, "interrupts", &irupts_prop, 633 &irupts_len) != DDI_PROP_SUCCESS) { 634 irupts_len = 0; 635 } else if (intr_len != 0) { 636 /* 637 * If both 'intr' and 'interrupts' are defined, 638 * then 'interrupts' wins and we toss the 'intr' away. 639 */ 640 ddi_prop_free((void *)intr_prop); 641 intr_len = 0; 642 } 643 644 if (intr_len != 0) { 645 646 /* 647 * Translate the 'intr' property into an array 648 * an array of struct intrspec's. There's not really 649 * very much to do here except copy what's out there. 650 */ 651 652 struct intrspec *new; 653 struct prop_ispec *l; 654 655 n = pdptr->par_nintr = intr_len / sizeof (struct prop_ispec); 656 l = (struct prop_ispec *)intr_prop; 657 pdptr->par_intr = 658 new = kmem_zalloc(n * sizeof (struct intrspec), KM_SLEEP); 659 while (n--) { 660 new->intrspec_pri = l->pri; 661 new->intrspec_vec = l->vec; 662 new++; 663 l++; 664 } 665 ddi_prop_free((void *)intr_prop); 666 667 } else if ((n = irupts_len) != 0) { 668 size_t size; 669 int *out; 670 671 /* 672 * Translate the 'interrupts' property into an array 673 * of intrspecs for the rest of the DDI framework to 674 * toy with. Only our ancestors really know how to 675 * do this, so ask 'em. We massage the 'interrupts' 676 * property so that it is pre-pended by a count of 677 * the number of integers in the argument. 678 */ 679 size = sizeof (int) + n; 680 out = kmem_alloc(size, KM_SLEEP); 681 *out = n / sizeof (int); 682 bcopy(irupts_prop, out + 1, (size_t)n); 683 ddi_prop_free((void *)irupts_prop); 684 if (impl_xlate_intrs(child, out, pdptr) != DDI_SUCCESS) { 685 cmn_err(CE_CONT, 686 "Unable to translate 'interrupts' for %s%d\n", 687 DEVI(child)->devi_binding_name, 688 DEVI(child)->devi_instance); 689 } 690 kmem_free(out, size); 691 } 692 } 693 694 /* 695 * Name a child 696 */ 697 static int 698 impl_sunbus_name_child(dev_info_t *child, char *name, int namelen) 699 { 700 /* 701 * Fill in parent-private data and this function returns to us 702 * an indication if it used "registers" to fill in the data. 703 */ 704 if (ddi_get_parent_data(child) == NULL) { 705 struct ddi_parent_private_data *pdptr; 706 make_ddi_ppd(child, &pdptr); 707 ddi_set_parent_data(child, pdptr); 708 } 709 710 name[0] = '\0'; 711 if (sparc_pd_getnreg(child) > 0) { 712 (void) snprintf(name, namelen, "%x,%x", 713 (uint_t)sparc_pd_getreg(child, 0)->regspec_bustype, 714 (uint_t)sparc_pd_getreg(child, 0)->regspec_addr); 715 } 716 717 return (DDI_SUCCESS); 718 } 719 720 /* 721 * Called from the bus_ctl op of sunbus (sbus, obio, etc) nexus drivers 722 * to implement the DDI_CTLOPS_INITCHILD operation. That is, it names 723 * the children of sun busses based on the reg spec. 724 * 725 * Handles the following properties (in make_ddi_ppd): 726 * Property value 727 * Name type 728 * reg register spec 729 * intr old-form interrupt spec 730 * interrupts new (bus-oriented) interrupt spec 731 * ranges range spec 732 */ 733 int 734 impl_ddi_sunbus_initchild(dev_info_t *child) 735 { 736 char name[MAXNAMELEN]; 737 void impl_ddi_sunbus_removechild(dev_info_t *); 738 739 /* 740 * Name the child, also makes parent private data 741 */ 742 (void) impl_sunbus_name_child(child, name, MAXNAMELEN); 743 ddi_set_name_addr(child, name); 744 745 /* 746 * Attempt to merge a .conf node; if successful, remove the 747 * .conf node. 748 */ 749 if ((ndi_dev_is_persistent_node(child) == 0) && 750 (ndi_merge_node(child, impl_sunbus_name_child) == DDI_SUCCESS)) { 751 /* 752 * Return failure to remove node 753 */ 754 impl_ddi_sunbus_removechild(child); 755 return (DDI_FAILURE); 756 } 757 return (DDI_SUCCESS); 758 } 759 760 void 761 impl_free_ddi_ppd(dev_info_t *dip) 762 { 763 struct ddi_parent_private_data *pdptr; 764 size_t n; 765 766 if ((pdptr = ddi_get_parent_data(dip)) == NULL) 767 return; 768 769 if ((n = (size_t)pdptr->par_nintr) != 0) 770 /* 771 * Note that kmem_free is used here (instead of 772 * ddi_prop_free) because the contents of the 773 * property were placed into a separate buffer and 774 * mucked with a bit before being stored in par_intr. 775 * The actual return value from the prop lookup 776 * was freed with ddi_prop_free previously. 777 */ 778 kmem_free(pdptr->par_intr, n * sizeof (struct intrspec)); 779 780 if ((n = (size_t)pdptr->par_nrng) != 0) 781 ddi_prop_free((void *)pdptr->par_rng); 782 783 if ((n = pdptr->par_nreg) != 0) 784 ddi_prop_free((void *)pdptr->par_reg); 785 786 kmem_free(pdptr, sizeof (*pdptr)); 787 ddi_set_parent_data(dip, NULL); 788 } 789 790 void 791 impl_ddi_sunbus_removechild(dev_info_t *dip) 792 { 793 impl_free_ddi_ppd(dip); 794 ddi_set_name_addr(dip, NULL); 795 /* 796 * Strip the node to properly convert it back to prototype form 797 */ 798 impl_rem_dev_props(dip); 799 } 800 801 /* 802 * DDI Interrupt 803 */ 804 805 /* 806 * turn this on to force isa, eisa, and mca device to ignore the new 807 * hardware nodes in the device tree (normally turned on only for 808 * drivers that need it by setting the property "ignore-hardware-nodes" 809 * in their driver.conf file). 810 * 811 * 7/31/96 -- Turned off globally. Leaving variable in for the moment 812 * as safety valve. 813 */ 814 int ignore_hardware_nodes = 0; 815 816 /* 817 * Local data 818 */ 819 static struct impl_bus_promops *impl_busp; 820 821 822 /* 823 * New DDI interrupt framework 824 */ 825 826 /* 827 * i_ddi_intr_ops: 828 * 829 * This is the interrupt operator function wrapper for the bus function 830 * bus_intr_op. 831 */ 832 int 833 i_ddi_intr_ops(dev_info_t *dip, dev_info_t *rdip, ddi_intr_op_t op, 834 ddi_intr_handle_impl_t *hdlp, void * result) 835 { 836 dev_info_t *pdip = (dev_info_t *)DEVI(dip)->devi_parent; 837 int ret = DDI_FAILURE; 838 839 /* request parent to process this interrupt op */ 840 if (NEXUS_HAS_INTR_OP(pdip)) 841 ret = (*(DEVI(pdip)->devi_ops->devo_bus_ops->bus_intr_op))( 842 pdip, rdip, op, hdlp, result); 843 else 844 cmn_err(CE_WARN, "Failed to process interrupt " 845 "for %s%d due to down-rev nexus driver %s%d", 846 ddi_get_name(rdip), ddi_get_instance(rdip), 847 ddi_get_name(pdip), ddi_get_instance(pdip)); 848 return (ret); 849 } 850 851 /* 852 * i_ddi_add_softint - allocate and add a soft interrupt to the system 853 */ 854 int 855 i_ddi_add_softint(ddi_softint_hdl_impl_t *hdlp) 856 { 857 int ret; 858 859 /* add soft interrupt handler */ 860 ret = add_avsoftintr((void *)hdlp, hdlp->ih_pri, hdlp->ih_cb_func, 861 DEVI(hdlp->ih_dip)->devi_name, hdlp->ih_cb_arg1, hdlp->ih_cb_arg2); 862 return (ret ? DDI_SUCCESS : DDI_FAILURE); 863 } 864 865 866 void 867 i_ddi_remove_softint(ddi_softint_hdl_impl_t *hdlp) 868 { 869 (void) rem_avsoftintr((void *)hdlp, hdlp->ih_pri, hdlp->ih_cb_func); 870 } 871 872 873 extern void (*setsoftint)(int, struct av_softinfo *); 874 extern boolean_t av_check_softint_pending(struct av_softinfo *, boolean_t); 875 876 int 877 i_ddi_trigger_softint(ddi_softint_hdl_impl_t *hdlp, void *arg2) 878 { 879 if (av_check_softint_pending(hdlp->ih_pending, B_FALSE)) 880 return (DDI_EPENDING); 881 882 update_avsoftintr_args((void *)hdlp, hdlp->ih_pri, arg2); 883 884 (*setsoftint)(hdlp->ih_pri, hdlp->ih_pending); 885 return (DDI_SUCCESS); 886 } 887 888 /* 889 * i_ddi_set_softint_pri: 890 * 891 * The way this works is that it first tries to add a softint vector 892 * at the new priority in hdlp. If that succeeds; then it removes the 893 * existing softint vector at the old priority. 894 */ 895 int 896 i_ddi_set_softint_pri(ddi_softint_hdl_impl_t *hdlp, uint_t old_pri) 897 { 898 int ret; 899 900 /* 901 * If a softint is pending at the old priority then fail the request. 902 */ 903 if (av_check_softint_pending(hdlp->ih_pending, B_TRUE)) 904 return (DDI_FAILURE); 905 906 ret = av_softint_movepri((void *)hdlp, old_pri); 907 return (ret ? DDI_SUCCESS : DDI_FAILURE); 908 } 909 910 void 911 i_ddi_alloc_intr_phdl(ddi_intr_handle_impl_t *hdlp) 912 { 913 hdlp->ih_private = (void *)kmem_zalloc(sizeof (ihdl_plat_t), KM_SLEEP); 914 } 915 916 void 917 i_ddi_free_intr_phdl(ddi_intr_handle_impl_t *hdlp) 918 { 919 kmem_free(hdlp->ih_private, sizeof (ihdl_plat_t)); 920 hdlp->ih_private = NULL; 921 } 922 923 int 924 i_ddi_get_intx_nintrs(dev_info_t *dip) 925 { 926 struct ddi_parent_private_data *pdp; 927 928 if ((pdp = ddi_get_parent_data(dip)) == NULL) 929 return (0); 930 931 return (pdp->par_nintr); 932 } 933 934 /* 935 * DDI Memory/DMA 936 */ 937 938 /* 939 * Support for allocating DMAable memory to implement 940 * ddi_dma_mem_alloc(9F) interface. 941 */ 942 943 #define KA_ALIGN_SHIFT 7 944 #define KA_ALIGN (1 << KA_ALIGN_SHIFT) 945 #define KA_NCACHE (PAGESHIFT + 1 - KA_ALIGN_SHIFT) 946 947 /* 948 * Dummy DMA attribute template for kmem_io[].kmem_io_attr. We only 949 * care about addr_lo, addr_hi, and align. addr_hi will be dynamically set. 950 */ 951 952 static ddi_dma_attr_t kmem_io_attr = { 953 DMA_ATTR_V0, 954 0x0000000000000000ULL, /* dma_attr_addr_lo */ 955 0x0000000000000000ULL, /* dma_attr_addr_hi */ 956 0x00ffffff, 957 0x1000, /* dma_attr_align */ 958 1, 1, 0xffffffffULL, 0xffffffffULL, 0x1, 1, 0 959 }; 960 961 /* kmem io memory ranges and indices */ 962 enum { 963 IO_4P, IO_64G, IO_4G, IO_2G, IO_1G, IO_512M, 964 IO_256M, IO_128M, IO_64M, IO_32M, IO_16M, MAX_MEM_RANGES 965 }; 966 967 static struct { 968 vmem_t *kmem_io_arena; 969 kmem_cache_t *kmem_io_cache[KA_NCACHE]; 970 ddi_dma_attr_t kmem_io_attr; 971 } kmem_io[MAX_MEM_RANGES]; 972 973 static int kmem_io_idx; /* index of first populated kmem_io[] */ 974 975 static page_t * 976 page_create_io_wrapper(void *addr, size_t len, int vmflag, void *arg) 977 { 978 extern page_t *page_create_io(vnode_t *, u_offset_t, uint_t, 979 uint_t, struct as *, caddr_t, ddi_dma_attr_t *); 980 981 return (page_create_io(&kvp, (u_offset_t)(uintptr_t)addr, len, 982 PG_EXCL | ((vmflag & VM_NOSLEEP) ? 0 : PG_WAIT), &kas, addr, arg)); 983 } 984 985 #ifdef __xpv 986 static void 987 segkmem_free_io(vmem_t *vmp, void * ptr, size_t size) 988 { 989 extern void page_destroy_io(page_t *); 990 segkmem_xfree(vmp, ptr, size, page_destroy_io); 991 } 992 #endif 993 994 static void * 995 segkmem_alloc_io_4P(vmem_t *vmp, size_t size, int vmflag) 996 { 997 return (segkmem_xalloc(vmp, NULL, size, vmflag, 0, 998 page_create_io_wrapper, &kmem_io[IO_4P].kmem_io_attr)); 999 } 1000 1001 static void * 1002 segkmem_alloc_io_64G(vmem_t *vmp, size_t size, int vmflag) 1003 { 1004 return (segkmem_xalloc(vmp, NULL, size, vmflag, 0, 1005 page_create_io_wrapper, &kmem_io[IO_64G].kmem_io_attr)); 1006 } 1007 1008 static void * 1009 segkmem_alloc_io_4G(vmem_t *vmp, size_t size, int vmflag) 1010 { 1011 return (segkmem_xalloc(vmp, NULL, size, vmflag, 0, 1012 page_create_io_wrapper, &kmem_io[IO_4G].kmem_io_attr)); 1013 } 1014 1015 static void * 1016 segkmem_alloc_io_2G(vmem_t *vmp, size_t size, int vmflag) 1017 { 1018 return (segkmem_xalloc(vmp, NULL, size, vmflag, 0, 1019 page_create_io_wrapper, &kmem_io[IO_2G].kmem_io_attr)); 1020 } 1021 1022 static void * 1023 segkmem_alloc_io_1G(vmem_t *vmp, size_t size, int vmflag) 1024 { 1025 return (segkmem_xalloc(vmp, NULL, size, vmflag, 0, 1026 page_create_io_wrapper, &kmem_io[IO_1G].kmem_io_attr)); 1027 } 1028 1029 static void * 1030 segkmem_alloc_io_512M(vmem_t *vmp, size_t size, int vmflag) 1031 { 1032 return (segkmem_xalloc(vmp, NULL, size, vmflag, 0, 1033 page_create_io_wrapper, &kmem_io[IO_512M].kmem_io_attr)); 1034 } 1035 1036 static void * 1037 segkmem_alloc_io_256M(vmem_t *vmp, size_t size, int vmflag) 1038 { 1039 return (segkmem_xalloc(vmp, NULL, size, vmflag, 0, 1040 page_create_io_wrapper, &kmem_io[IO_256M].kmem_io_attr)); 1041 } 1042 1043 static void * 1044 segkmem_alloc_io_128M(vmem_t *vmp, size_t size, int vmflag) 1045 { 1046 return (segkmem_xalloc(vmp, NULL, size, vmflag, 0, 1047 page_create_io_wrapper, &kmem_io[IO_128M].kmem_io_attr)); 1048 } 1049 1050 static void * 1051 segkmem_alloc_io_64M(vmem_t *vmp, size_t size, int vmflag) 1052 { 1053 return (segkmem_xalloc(vmp, NULL, size, vmflag, 0, 1054 page_create_io_wrapper, &kmem_io[IO_64M].kmem_io_attr)); 1055 } 1056 1057 static void * 1058 segkmem_alloc_io_32M(vmem_t *vmp, size_t size, int vmflag) 1059 { 1060 return (segkmem_xalloc(vmp, NULL, size, vmflag, 0, 1061 page_create_io_wrapper, &kmem_io[IO_32M].kmem_io_attr)); 1062 } 1063 1064 static void * 1065 segkmem_alloc_io_16M(vmem_t *vmp, size_t size, int vmflag) 1066 { 1067 return (segkmem_xalloc(vmp, NULL, size, vmflag, 0, 1068 page_create_io_wrapper, &kmem_io[IO_16M].kmem_io_attr)); 1069 } 1070 1071 struct { 1072 uint64_t io_limit; 1073 char *io_name; 1074 void *(*io_alloc)(vmem_t *, size_t, int); 1075 int io_initial; /* kmem_io_init during startup */ 1076 } io_arena_params[MAX_MEM_RANGES] = { 1077 {0x000fffffffffffffULL, "kmem_io_4P", segkmem_alloc_io_4P, 1}, 1078 {0x0000000fffffffffULL, "kmem_io_64G", segkmem_alloc_io_64G, 0}, 1079 {0x00000000ffffffffULL, "kmem_io_4G", segkmem_alloc_io_4G, 1}, 1080 {0x000000007fffffffULL, "kmem_io_2G", segkmem_alloc_io_2G, 1}, 1081 {0x000000003fffffffULL, "kmem_io_1G", segkmem_alloc_io_1G, 0}, 1082 {0x000000001fffffffULL, "kmem_io_512M", segkmem_alloc_io_512M, 0}, 1083 {0x000000000fffffffULL, "kmem_io_256M", segkmem_alloc_io_256M, 0}, 1084 {0x0000000007ffffffULL, "kmem_io_128M", segkmem_alloc_io_128M, 0}, 1085 {0x0000000003ffffffULL, "kmem_io_64M", segkmem_alloc_io_64M, 0}, 1086 {0x0000000001ffffffULL, "kmem_io_32M", segkmem_alloc_io_32M, 0}, 1087 {0x0000000000ffffffULL, "kmem_io_16M", segkmem_alloc_io_16M, 1} 1088 }; 1089 1090 void 1091 kmem_io_init(int a) 1092 { 1093 int c; 1094 char name[40]; 1095 1096 kmem_io[a].kmem_io_arena = vmem_create(io_arena_params[a].io_name, 1097 NULL, 0, PAGESIZE, io_arena_params[a].io_alloc, 1098 #ifdef __xpv 1099 segkmem_free_io, 1100 #else 1101 segkmem_free, 1102 #endif 1103 heap_arena, 0, VM_SLEEP); 1104 1105 for (c = 0; c < KA_NCACHE; c++) { 1106 size_t size = KA_ALIGN << c; 1107 (void) sprintf(name, "%s_%lu", 1108 io_arena_params[a].io_name, size); 1109 kmem_io[a].kmem_io_cache[c] = kmem_cache_create(name, 1110 size, size, NULL, NULL, NULL, NULL, 1111 kmem_io[a].kmem_io_arena, 0); 1112 } 1113 } 1114 1115 /* 1116 * Return the index of the highest memory range for addr. 1117 */ 1118 static int 1119 kmem_io_index(uint64_t addr) 1120 { 1121 int n; 1122 1123 for (n = kmem_io_idx; n < MAX_MEM_RANGES; n++) { 1124 if (kmem_io[n].kmem_io_attr.dma_attr_addr_hi <= addr) { 1125 if (kmem_io[n].kmem_io_arena == NULL) 1126 kmem_io_init(n); 1127 return (n); 1128 } 1129 } 1130 panic("kmem_io_index: invalid addr - must be at least 16m"); 1131 1132 /*NOTREACHED*/ 1133 } 1134 1135 /* 1136 * Return the index of the next kmem_io populated memory range 1137 * after curindex. 1138 */ 1139 static int 1140 kmem_io_index_next(int curindex) 1141 { 1142 int n; 1143 1144 for (n = curindex + 1; n < MAX_MEM_RANGES; n++) { 1145 if (kmem_io[n].kmem_io_arena) 1146 return (n); 1147 } 1148 return (-1); 1149 } 1150 1151 /* 1152 * allow kmem to be mapped in with different PTE cache attribute settings. 1153 * Used by i_ddi_mem_alloc() 1154 */ 1155 int 1156 kmem_override_cache_attrs(caddr_t kva, size_t size, uint_t order) 1157 { 1158 uint_t hat_flags; 1159 caddr_t kva_end; 1160 uint_t hat_attr; 1161 pfn_t pfn; 1162 1163 if (hat_getattr(kas.a_hat, kva, &hat_attr) == -1) { 1164 return (-1); 1165 } 1166 1167 hat_attr &= ~HAT_ORDER_MASK; 1168 hat_attr |= order | HAT_NOSYNC; 1169 hat_flags = HAT_LOAD_LOCK; 1170 1171 kva_end = (caddr_t)(((uintptr_t)kva + size + PAGEOFFSET) & 1172 (uintptr_t)PAGEMASK); 1173 kva = (caddr_t)((uintptr_t)kva & (uintptr_t)PAGEMASK); 1174 1175 while (kva < kva_end) { 1176 pfn = hat_getpfnum(kas.a_hat, kva); 1177 hat_unload(kas.a_hat, kva, PAGESIZE, HAT_UNLOAD_UNLOCK); 1178 hat_devload(kas.a_hat, kva, PAGESIZE, pfn, hat_attr, hat_flags); 1179 kva += MMU_PAGESIZE; 1180 } 1181 1182 return (0); 1183 } 1184 1185 void 1186 ka_init(void) 1187 { 1188 int a; 1189 paddr_t maxphysaddr; 1190 #if !defined(__xpv) 1191 extern pfn_t physmax; 1192 1193 maxphysaddr = mmu_ptob((paddr_t)physmax) + MMU_PAGEOFFSET; 1194 #else 1195 maxphysaddr = mmu_ptob((paddr_t)HYPERVISOR_memory_op( 1196 XENMEM_maximum_ram_page, NULL)) + MMU_PAGEOFFSET; 1197 #endif 1198 1199 ASSERT(maxphysaddr <= io_arena_params[0].io_limit); 1200 1201 for (a = 0; a < MAX_MEM_RANGES; a++) { 1202 if (maxphysaddr >= io_arena_params[a + 1].io_limit) { 1203 if (maxphysaddr > io_arena_params[a + 1].io_limit) 1204 io_arena_params[a].io_limit = maxphysaddr; 1205 else 1206 a++; 1207 break; 1208 } 1209 } 1210 kmem_io_idx = a; 1211 1212 for (; a < MAX_MEM_RANGES; a++) { 1213 kmem_io[a].kmem_io_attr = kmem_io_attr; 1214 kmem_io[a].kmem_io_attr.dma_attr_addr_hi = 1215 io_arena_params[a].io_limit; 1216 /* 1217 * initialize kmem_io[] arena/cache corresponding to 1218 * maxphysaddr and to the "common" io memory ranges that 1219 * have io_initial set to a non-zero value. 1220 */ 1221 if (io_arena_params[a].io_initial || a == kmem_io_idx) 1222 kmem_io_init(a); 1223 } 1224 } 1225 1226 /* 1227 * put contig address/size 1228 */ 1229 static void * 1230 putctgas(void *addr, size_t size) 1231 { 1232 struct ctgas *ctgp = &ctglist; 1233 int i; 1234 1235 CTGLOCK(); 1236 do { 1237 if ((i = ctgp->ctg_index) < CTGENTRIES) { 1238 ctgp->ctg_addr[i] = addr; 1239 ctgp->ctg_size[i] = size; 1240 ctgp->ctg_index++; 1241 break; 1242 } 1243 if (!ctgp->ctg_next) 1244 ctgp->ctg_next = kmem_zalloc(sizeof (struct ctgas), 1245 KM_NOSLEEP); 1246 ctgp = ctgp->ctg_next; 1247 } while (ctgp); 1248 1249 CTGUNLOCK(); 1250 return (ctgp); 1251 } 1252 1253 /* 1254 * get contig size by addr 1255 */ 1256 static size_t 1257 getctgsz(void *addr) 1258 { 1259 struct ctgas *ctgp = &ctglist; 1260 int i, j; 1261 size_t sz; 1262 1263 ASSERT(addr); 1264 CTGLOCK(); 1265 1266 while (ctgp) { 1267 for (i = 0; i < ctgp->ctg_index; i++) { 1268 if (addr != ctgp->ctg_addr[i]) 1269 continue; 1270 1271 sz = ctgp->ctg_size[i]; 1272 j = --ctgp->ctg_index; 1273 if (i != j) { 1274 ctgp->ctg_size[i] = ctgp->ctg_size[j]; 1275 ctgp->ctg_addr[i] = ctgp->ctg_addr[j]; 1276 } 1277 CTGUNLOCK(); 1278 return (sz); 1279 } 1280 ctgp = ctgp->ctg_next; 1281 } 1282 1283 CTGUNLOCK(); 1284 return (0); 1285 } 1286 1287 /* 1288 * contig_alloc: 1289 * 1290 * allocates contiguous memory to satisfy the 'size' and dma attributes 1291 * specified in 'attr'. 1292 * 1293 * Not all of memory need to be physically contiguous if the 1294 * scatter-gather list length is greater than 1. 1295 */ 1296 1297 /*ARGSUSED*/ 1298 void * 1299 contig_alloc(size_t size, ddi_dma_attr_t *attr, uintptr_t align, int cansleep) 1300 { 1301 pgcnt_t pgcnt = btopr(size); 1302 size_t asize = pgcnt * PAGESIZE; 1303 page_t *ppl; 1304 int pflag; 1305 void *addr; 1306 1307 extern page_t *page_create_io(vnode_t *, u_offset_t, uint_t, 1308 uint_t, struct as *, caddr_t, ddi_dma_attr_t *); 1309 1310 /* segkmem_xalloc */ 1311 1312 if (align <= PAGESIZE) 1313 addr = vmem_alloc(heap_arena, asize, 1314 (cansleep) ? VM_SLEEP : VM_NOSLEEP); 1315 else 1316 addr = vmem_xalloc(heap_arena, asize, align, 0, 0, NULL, NULL, 1317 (cansleep) ? VM_SLEEP : VM_NOSLEEP); 1318 if (addr) { 1319 ASSERT(!((uintptr_t)addr & (align - 1))); 1320 1321 if (page_resv(pgcnt, (cansleep) ? KM_SLEEP : KM_NOSLEEP) == 0) { 1322 vmem_free(heap_arena, addr, asize); 1323 return (NULL); 1324 } 1325 pflag = PG_EXCL; 1326 1327 if (cansleep) 1328 pflag |= PG_WAIT; 1329 1330 /* 4k req gets from freelists rather than pfn search */ 1331 if (pgcnt > 1 || align > PAGESIZE) 1332 pflag |= PG_PHYSCONTIG; 1333 1334 ppl = page_create_io(&kvp, (u_offset_t)(uintptr_t)addr, 1335 asize, pflag, &kas, (caddr_t)addr, attr); 1336 1337 if (!ppl) { 1338 vmem_free(heap_arena, addr, asize); 1339 page_unresv(pgcnt); 1340 return (NULL); 1341 } 1342 1343 while (ppl != NULL) { 1344 page_t *pp = ppl; 1345 page_sub(&ppl, pp); 1346 ASSERT(page_iolock_assert(pp)); 1347 page_io_unlock(pp); 1348 page_downgrade(pp); 1349 hat_memload(kas.a_hat, (caddr_t)(uintptr_t)pp->p_offset, 1350 pp, (PROT_ALL & ~PROT_USER) | 1351 HAT_NOSYNC, HAT_LOAD_LOCK); 1352 } 1353 } 1354 return (addr); 1355 } 1356 1357 void 1358 contig_free(void *addr, size_t size) 1359 { 1360 pgcnt_t pgcnt = btopr(size); 1361 size_t asize = pgcnt * PAGESIZE; 1362 caddr_t a, ea; 1363 page_t *pp; 1364 1365 hat_unload(kas.a_hat, addr, asize, HAT_UNLOAD_UNLOCK); 1366 1367 for (a = addr, ea = a + asize; a < ea; a += PAGESIZE) { 1368 pp = page_find(&kvp, (u_offset_t)(uintptr_t)a); 1369 if (!pp) 1370 panic("contig_free: contig pp not found"); 1371 1372 if (!page_tryupgrade(pp)) { 1373 page_unlock(pp); 1374 pp = page_lookup(&kvp, 1375 (u_offset_t)(uintptr_t)a, SE_EXCL); 1376 if (pp == NULL) 1377 panic("contig_free: page freed"); 1378 } 1379 page_destroy(pp, 0); 1380 } 1381 1382 page_unresv(pgcnt); 1383 vmem_free(heap_arena, addr, asize); 1384 } 1385 1386 /* 1387 * Allocate from the system, aligned on a specific boundary. 1388 * The alignment, if non-zero, must be a power of 2. 1389 */ 1390 static void * 1391 kalloca(size_t size, size_t align, int cansleep, int physcontig, 1392 ddi_dma_attr_t *attr) 1393 { 1394 size_t *addr, *raddr, rsize; 1395 size_t hdrsize = 4 * sizeof (size_t); /* must be power of 2 */ 1396 int a, i, c; 1397 vmem_t *vmp; 1398 kmem_cache_t *cp = NULL; 1399 1400 if (attr->dma_attr_addr_lo > mmu_ptob((uint64_t)ddiphysmin)) 1401 return (NULL); 1402 1403 align = MAX(align, hdrsize); 1404 ASSERT((align & (align - 1)) == 0); 1405 1406 /* 1407 * All of our allocators guarantee 16-byte alignment, so we don't 1408 * need to reserve additional space for the header. 1409 * To simplify picking the correct kmem_io_cache, we round up to 1410 * a multiple of KA_ALIGN. 1411 */ 1412 rsize = P2ROUNDUP_TYPED(size + align, KA_ALIGN, size_t); 1413 1414 if (physcontig && rsize > PAGESIZE) { 1415 if (addr = contig_alloc(size, attr, align, cansleep)) { 1416 if (!putctgas(addr, size)) 1417 contig_free(addr, size); 1418 else 1419 return (addr); 1420 } 1421 return (NULL); 1422 } 1423 1424 a = kmem_io_index(attr->dma_attr_addr_hi); 1425 1426 if (rsize > PAGESIZE) { 1427 vmp = kmem_io[a].kmem_io_arena; 1428 raddr = vmem_alloc(vmp, rsize, 1429 (cansleep) ? VM_SLEEP : VM_NOSLEEP); 1430 } else { 1431 c = highbit((rsize >> KA_ALIGN_SHIFT) - 1); 1432 cp = kmem_io[a].kmem_io_cache[c]; 1433 raddr = kmem_cache_alloc(cp, (cansleep) ? KM_SLEEP : 1434 KM_NOSLEEP); 1435 } 1436 1437 if (raddr == NULL) { 1438 int na; 1439 1440 ASSERT(cansleep == 0); 1441 if (rsize > PAGESIZE) 1442 return (NULL); 1443 /* 1444 * System does not have memory in the requested range. 1445 * Try smaller kmem io ranges and larger cache sizes 1446 * to see if there might be memory available in 1447 * these other caches. 1448 */ 1449 1450 for (na = kmem_io_index_next(a); na >= 0; 1451 na = kmem_io_index_next(na)) { 1452 ASSERT(kmem_io[na].kmem_io_arena); 1453 cp = kmem_io[na].kmem_io_cache[c]; 1454 raddr = kmem_cache_alloc(cp, KM_NOSLEEP); 1455 if (raddr) 1456 goto kallocdone; 1457 } 1458 /* now try the larger kmem io cache sizes */ 1459 for (na = a; na >= 0; na = kmem_io_index_next(na)) { 1460 for (i = c + 1; i < KA_NCACHE; i++) { 1461 cp = kmem_io[na].kmem_io_cache[i]; 1462 raddr = kmem_cache_alloc(cp, KM_NOSLEEP); 1463 if (raddr) 1464 goto kallocdone; 1465 } 1466 } 1467 return (NULL); 1468 } 1469 1470 kallocdone: 1471 ASSERT(!P2BOUNDARY((uintptr_t)raddr, rsize, PAGESIZE) || 1472 rsize > PAGESIZE); 1473 1474 addr = (size_t *)P2ROUNDUP((uintptr_t)raddr + hdrsize, align); 1475 ASSERT((uintptr_t)addr + size - (uintptr_t)raddr <= rsize); 1476 1477 addr[-4] = (size_t)cp; 1478 addr[-3] = (size_t)vmp; 1479 addr[-2] = (size_t)raddr; 1480 addr[-1] = rsize; 1481 1482 return (addr); 1483 } 1484 1485 static void 1486 kfreea(void *addr) 1487 { 1488 size_t size; 1489 1490 if (!((uintptr_t)addr & PAGEOFFSET) && (size = getctgsz(addr))) { 1491 contig_free(addr, size); 1492 } else { 1493 size_t *saddr = addr; 1494 if (saddr[-4] == 0) 1495 vmem_free((vmem_t *)saddr[-3], (void *)saddr[-2], 1496 saddr[-1]); 1497 else 1498 kmem_cache_free((kmem_cache_t *)saddr[-4], 1499 (void *)saddr[-2]); 1500 } 1501 } 1502 1503 /*ARGSUSED*/ 1504 void 1505 i_ddi_devacc_to_hatacc(ddi_device_acc_attr_t *devaccp, uint_t *hataccp) 1506 { 1507 } 1508 1509 /* 1510 * Check if the specified cache attribute is supported on the platform. 1511 * This function must be called before i_ddi_cacheattr_to_hatacc(). 1512 */ 1513 boolean_t 1514 i_ddi_check_cache_attr(uint_t flags) 1515 { 1516 /* 1517 * The cache attributes are mutually exclusive. Any combination of 1518 * the attributes leads to a failure. 1519 */ 1520 uint_t cache_attr = IOMEM_CACHE_ATTR(flags); 1521 if ((cache_attr != 0) && ((cache_attr & (cache_attr - 1)) != 0)) 1522 return (B_FALSE); 1523 1524 /* All cache attributes are supported on X86/X64 */ 1525 if (cache_attr & (IOMEM_DATA_UNCACHED | IOMEM_DATA_CACHED | 1526 IOMEM_DATA_UC_WR_COMBINE)) 1527 return (B_TRUE); 1528 1529 /* undefined attributes */ 1530 return (B_FALSE); 1531 } 1532 1533 /* set HAT cache attributes from the cache attributes */ 1534 void 1535 i_ddi_cacheattr_to_hatacc(uint_t flags, uint_t *hataccp) 1536 { 1537 uint_t cache_attr = IOMEM_CACHE_ATTR(flags); 1538 static char *fname = "i_ddi_cacheattr_to_hatacc"; 1539 1540 /* 1541 * If write-combining is not supported, then it falls back 1542 * to uncacheable. 1543 */ 1544 if (cache_attr == IOMEM_DATA_UC_WR_COMBINE && !(x86_feature & X86_PAT)) 1545 cache_attr = IOMEM_DATA_UNCACHED; 1546 1547 /* 1548 * set HAT attrs according to the cache attrs. 1549 */ 1550 switch (cache_attr) { 1551 case IOMEM_DATA_UNCACHED: 1552 *hataccp &= ~HAT_ORDER_MASK; 1553 *hataccp |= (HAT_STRICTORDER | HAT_PLAT_NOCACHE); 1554 break; 1555 case IOMEM_DATA_UC_WR_COMBINE: 1556 *hataccp &= ~HAT_ORDER_MASK; 1557 *hataccp |= (HAT_MERGING_OK | HAT_PLAT_NOCACHE); 1558 break; 1559 case IOMEM_DATA_CACHED: 1560 *hataccp &= ~HAT_ORDER_MASK; 1561 *hataccp |= HAT_UNORDERED_OK; 1562 break; 1563 /* 1564 * This case must not occur because the cache attribute is scrutinized 1565 * before this function is called. 1566 */ 1567 default: 1568 /* 1569 * set cacheable to hat attrs. 1570 */ 1571 *hataccp &= ~HAT_ORDER_MASK; 1572 *hataccp |= HAT_UNORDERED_OK; 1573 cmn_err(CE_WARN, "%s: cache_attr=0x%x is ignored.", 1574 fname, cache_attr); 1575 } 1576 } 1577 1578 /* 1579 * This should actually be called i_ddi_dma_mem_alloc. There should 1580 * also be an i_ddi_pio_mem_alloc. i_ddi_dma_mem_alloc should call 1581 * through the device tree with the DDI_CTLOPS_DMA_ALIGN ctl ops to 1582 * get alignment requirements for DMA memory. i_ddi_pio_mem_alloc 1583 * should use DDI_CTLOPS_PIO_ALIGN. Since we only have i_ddi_mem_alloc 1584 * so far which is used for both, DMA and PIO, we have to use the DMA 1585 * ctl ops to make everybody happy. 1586 */ 1587 /*ARGSUSED*/ 1588 int 1589 i_ddi_mem_alloc(dev_info_t *dip, ddi_dma_attr_t *attr, 1590 size_t length, int cansleep, int flags, 1591 ddi_device_acc_attr_t *accattrp, caddr_t *kaddrp, 1592 size_t *real_length, ddi_acc_hdl_t *ap) 1593 { 1594 caddr_t a; 1595 int iomin; 1596 ddi_acc_impl_t *iap; 1597 int physcontig = 0; 1598 pgcnt_t npages; 1599 pgcnt_t minctg; 1600 uint_t order; 1601 int e; 1602 1603 /* 1604 * Check legality of arguments 1605 */ 1606 if (length == 0 || kaddrp == NULL || attr == NULL) { 1607 return (DDI_FAILURE); 1608 } 1609 1610 if (attr->dma_attr_minxfer == 0 || attr->dma_attr_align == 0 || 1611 (attr->dma_attr_align & (attr->dma_attr_align - 1)) || 1612 (attr->dma_attr_minxfer & (attr->dma_attr_minxfer - 1))) { 1613 return (DDI_FAILURE); 1614 } 1615 1616 /* 1617 * figure out most restrictive alignment requirement 1618 */ 1619 iomin = attr->dma_attr_minxfer; 1620 iomin = maxbit(iomin, attr->dma_attr_align); 1621 if (iomin == 0) 1622 return (DDI_FAILURE); 1623 1624 ASSERT((iomin & (iomin - 1)) == 0); 1625 1626 /* 1627 * if we allocate memory with IOMEM_DATA_UNCACHED or 1628 * IOMEM_DATA_UC_WR_COMBINE, make sure we allocate a page aligned 1629 * memory that ends on a page boundry. 1630 * Don't want to have to different cache mappings to the same 1631 * physical page. 1632 */ 1633 if (OVERRIDE_CACHE_ATTR(flags)) { 1634 iomin = (iomin + MMU_PAGEOFFSET) & MMU_PAGEMASK; 1635 length = (length + MMU_PAGEOFFSET) & (size_t)MMU_PAGEMASK; 1636 } 1637 1638 /* 1639 * Determine if we need to satisfy the request for physically 1640 * contiguous memory or alignments larger than pagesize. 1641 */ 1642 npages = btopr(length + attr->dma_attr_align); 1643 minctg = howmany(npages, attr->dma_attr_sgllen); 1644 1645 if (minctg > 1) { 1646 uint64_t pfnseg = attr->dma_attr_seg >> PAGESHIFT; 1647 /* 1648 * verify that the minimum contig requirement for the 1649 * actual length does not cross segment boundary. 1650 */ 1651 length = P2ROUNDUP_TYPED(length, attr->dma_attr_minxfer, 1652 size_t); 1653 npages = btopr(length); 1654 minctg = howmany(npages, attr->dma_attr_sgllen); 1655 if (minctg > pfnseg + 1) 1656 return (DDI_FAILURE); 1657 physcontig = 1; 1658 } else { 1659 length = P2ROUNDUP_TYPED(length, iomin, size_t); 1660 } 1661 1662 /* 1663 * Allocate the requested amount from the system. 1664 */ 1665 a = kalloca(length, iomin, cansleep, physcontig, attr); 1666 1667 if ((*kaddrp = a) == NULL) 1668 return (DDI_FAILURE); 1669 1670 /* 1671 * if we to modify the cache attributes, go back and muck with the 1672 * mappings. 1673 */ 1674 if (OVERRIDE_CACHE_ATTR(flags)) { 1675 order = 0; 1676 i_ddi_cacheattr_to_hatacc(flags, &order); 1677 e = kmem_override_cache_attrs(a, length, order); 1678 if (e != 0) { 1679 kfreea(a); 1680 return (DDI_FAILURE); 1681 } 1682 } 1683 1684 if (real_length) { 1685 *real_length = length; 1686 } 1687 if (ap) { 1688 /* 1689 * initialize access handle 1690 */ 1691 iap = (ddi_acc_impl_t *)ap->ah_platform_private; 1692 iap->ahi_acc_attr |= DDI_ACCATTR_CPU_VADDR; 1693 impl_acc_hdl_init(ap); 1694 } 1695 1696 return (DDI_SUCCESS); 1697 } 1698 1699 /* 1700 * covert old DMA limits structure to DMA attribute structure 1701 * and continue 1702 */ 1703 int 1704 i_ddi_mem_alloc_lim(dev_info_t *dip, ddi_dma_lim_t *limits, 1705 size_t length, int cansleep, int streaming, 1706 ddi_device_acc_attr_t *accattrp, caddr_t *kaddrp, 1707 uint_t *real_length, ddi_acc_hdl_t *ap) 1708 { 1709 ddi_dma_attr_t dma_attr, *attrp; 1710 size_t rlen; 1711 int ret; 1712 1713 if (limits == NULL) { 1714 return (DDI_FAILURE); 1715 } 1716 1717 /* 1718 * set up DMA attribute structure to pass to i_ddi_mem_alloc() 1719 */ 1720 attrp = &dma_attr; 1721 attrp->dma_attr_version = DMA_ATTR_V0; 1722 attrp->dma_attr_addr_lo = (uint64_t)limits->dlim_addr_lo; 1723 attrp->dma_attr_addr_hi = (uint64_t)limits->dlim_addr_hi; 1724 attrp->dma_attr_count_max = (uint64_t)limits->dlim_ctreg_max; 1725 attrp->dma_attr_align = 1; 1726 attrp->dma_attr_burstsizes = (uint_t)limits->dlim_burstsizes; 1727 attrp->dma_attr_minxfer = (uint32_t)limits->dlim_minxfer; 1728 attrp->dma_attr_maxxfer = (uint64_t)limits->dlim_reqsize; 1729 attrp->dma_attr_seg = (uint64_t)limits->dlim_adreg_max; 1730 attrp->dma_attr_sgllen = limits->dlim_sgllen; 1731 attrp->dma_attr_granular = (uint32_t)limits->dlim_granular; 1732 attrp->dma_attr_flags = 0; 1733 1734 ret = i_ddi_mem_alloc(dip, attrp, length, cansleep, streaming, 1735 accattrp, kaddrp, &rlen, ap); 1736 if (ret == DDI_SUCCESS) { 1737 if (real_length) 1738 *real_length = (uint_t)rlen; 1739 } 1740 return (ret); 1741 } 1742 1743 /* ARGSUSED */ 1744 void 1745 i_ddi_mem_free(caddr_t kaddr, ddi_acc_hdl_t *ap) 1746 { 1747 if (ap != NULL) { 1748 /* 1749 * if we modified the cache attributes on alloc, go back and 1750 * fix them since this memory could be returned to the 1751 * general pool. 1752 */ 1753 if (OVERRIDE_CACHE_ATTR(ap->ah_xfermodes)) { 1754 uint_t order = 0; 1755 int e; 1756 i_ddi_cacheattr_to_hatacc(IOMEM_DATA_CACHED, &order); 1757 e = kmem_override_cache_attrs(kaddr, ap->ah_len, order); 1758 if (e != 0) { 1759 cmn_err(CE_WARN, "i_ddi_mem_free() failed to " 1760 "override cache attrs, memory leaked\n"); 1761 return; 1762 } 1763 } 1764 } 1765 kfreea(kaddr); 1766 } 1767 1768 /* 1769 * Access Barriers 1770 * 1771 */ 1772 /*ARGSUSED*/ 1773 int 1774 i_ddi_ontrap(ddi_acc_handle_t hp) 1775 { 1776 return (DDI_FAILURE); 1777 } 1778 1779 /*ARGSUSED*/ 1780 void 1781 i_ddi_notrap(ddi_acc_handle_t hp) 1782 { 1783 } 1784 1785 1786 /* 1787 * Misc Functions 1788 */ 1789 1790 /* 1791 * Implementation instance override functions 1792 * 1793 * No override on i86pc 1794 */ 1795 /*ARGSUSED*/ 1796 uint_t 1797 impl_assign_instance(dev_info_t *dip) 1798 { 1799 return ((uint_t)-1); 1800 } 1801 1802 /*ARGSUSED*/ 1803 int 1804 impl_keep_instance(dev_info_t *dip) 1805 { 1806 1807 #if defined(__xpv) 1808 /* 1809 * Do not persist instance numbers assigned to devices in dom0 1810 */ 1811 dev_info_t *pdip; 1812 if (DOMAIN_IS_INITDOMAIN(xen_info)) { 1813 if (((pdip = ddi_get_parent(dip)) != NULL) && 1814 (strcmp(ddi_get_name(pdip), "xpvd") == 0)) 1815 return (DDI_SUCCESS); 1816 } 1817 #endif 1818 return (DDI_FAILURE); 1819 } 1820 1821 /*ARGSUSED*/ 1822 int 1823 impl_free_instance(dev_info_t *dip) 1824 { 1825 return (DDI_FAILURE); 1826 } 1827 1828 /*ARGSUSED*/ 1829 int 1830 impl_check_cpu(dev_info_t *devi) 1831 { 1832 return (DDI_SUCCESS); 1833 } 1834 1835 /* 1836 * Referenced in common/cpr_driver.c: Power off machine. 1837 * Don't know how to power off i86pc. 1838 */ 1839 void 1840 arch_power_down() 1841 {} 1842 1843 /* 1844 * Copy name to property_name, since name 1845 * is in the low address range below kernelbase. 1846 */ 1847 static void 1848 copy_boot_str(const char *boot_str, char *kern_str, int len) 1849 { 1850 int i = 0; 1851 1852 while (i < len - 1 && boot_str[i] != '\0') { 1853 kern_str[i] = boot_str[i]; 1854 i++; 1855 } 1856 1857 kern_str[i] = 0; /* null terminate */ 1858 if (boot_str[i] != '\0') 1859 cmn_err(CE_WARN, 1860 "boot property string is truncated to %s", kern_str); 1861 } 1862 1863 static void 1864 get_boot_properties(void) 1865 { 1866 extern char hw_provider[]; 1867 dev_info_t *devi; 1868 char *name; 1869 int length; 1870 char property_name[50], property_val[50]; 1871 void *bop_staging_area; 1872 1873 bop_staging_area = kmem_zalloc(MMU_PAGESIZE, KM_NOSLEEP); 1874 1875 /* 1876 * Import "root" properties from the boot. 1877 * 1878 * We do this by invoking BOP_NEXTPROP until the list 1879 * is completely copied in. 1880 */ 1881 1882 devi = ddi_root_node(); 1883 for (name = BOP_NEXTPROP(bootops, ""); /* get first */ 1884 name; /* NULL => DONE */ 1885 name = BOP_NEXTPROP(bootops, name)) { /* get next */ 1886 1887 /* copy string to memory above kernelbase */ 1888 copy_boot_str(name, property_name, 50); 1889 1890 /* 1891 * Skip vga properties. They will be picked up later 1892 * by get_vga_properties. 1893 */ 1894 if (strcmp(property_name, "display-edif-block") == 0 || 1895 strcmp(property_name, "display-edif-id") == 0) { 1896 continue; 1897 } 1898 1899 length = BOP_GETPROPLEN(bootops, property_name); 1900 if (length == 0) 1901 continue; 1902 if (length > MMU_PAGESIZE) { 1903 cmn_err(CE_NOTE, 1904 "boot property %s longer than 0x%x, ignored\n", 1905 property_name, MMU_PAGESIZE); 1906 continue; 1907 } 1908 BOP_GETPROP(bootops, property_name, bop_staging_area); 1909 1910 /* 1911 * special properties: 1912 * si-machine, si-hw-provider 1913 * goes to kernel data structures. 1914 * bios-boot-device and stdout 1915 * goes to hardware property list so it may show up 1916 * in the prtconf -vp output. This is needed by 1917 * Install/Upgrade. Once we fix install upgrade, 1918 * this can be taken out. 1919 */ 1920 if (strcmp(name, "si-machine") == 0) { 1921 (void) strncpy(utsname.machine, bop_staging_area, 1922 SYS_NMLN); 1923 utsname.machine[SYS_NMLN - 1] = (char)NULL; 1924 } else if (strcmp(name, "si-hw-provider") == 0) { 1925 (void) strncpy(hw_provider, bop_staging_area, SYS_NMLN); 1926 hw_provider[SYS_NMLN - 1] = (char)NULL; 1927 } else if (strcmp(name, "bios-boot-device") == 0) { 1928 copy_boot_str(bop_staging_area, property_val, 50); 1929 (void) ndi_prop_update_string(DDI_DEV_T_NONE, devi, 1930 property_name, property_val); 1931 } else if (strcmp(name, "stdout") == 0) { 1932 (void) ndi_prop_update_int(DDI_DEV_T_NONE, devi, 1933 property_name, *((int *)bop_staging_area)); 1934 } else { 1935 /* Property type unknown, use old prop interface */ 1936 (void) e_ddi_prop_create(DDI_DEV_T_NONE, devi, 1937 DDI_PROP_CANSLEEP, property_name, bop_staging_area, 1938 length); 1939 } 1940 } 1941 1942 kmem_free(bop_staging_area, MMU_PAGESIZE); 1943 } 1944 1945 static void 1946 get_vga_properties(void) 1947 { 1948 dev_info_t *devi; 1949 major_t major; 1950 char *name; 1951 int length; 1952 char property_val[50]; 1953 void *bop_staging_area; 1954 1955 /* 1956 * XXXX Hack Allert! 1957 * There really needs to be a better way for identifying various 1958 * console framebuffers and their related issues. Till then, 1959 * check for this one as a replacement to vgatext. 1960 */ 1961 major = ddi_name_to_major("ragexl"); 1962 if (major == (major_t)-1) { 1963 major = ddi_name_to_major("vgatext"); 1964 if (major == (major_t)-1) 1965 return; 1966 } 1967 devi = devnamesp[major].dn_head; 1968 if (devi == NULL) 1969 return; 1970 1971 bop_staging_area = kmem_zalloc(MMU_PAGESIZE, KM_SLEEP); 1972 1973 /* 1974 * Import "vga" properties from the boot. 1975 */ 1976 name = "display-edif-block"; 1977 length = BOP_GETPROPLEN(bootops, name); 1978 if (length > 0 && length < MMU_PAGESIZE) { 1979 BOP_GETPROP(bootops, name, bop_staging_area); 1980 (void) ndi_prop_update_byte_array(DDI_DEV_T_NONE, 1981 devi, name, bop_staging_area, length); 1982 } 1983 1984 /* 1985 * kdmconfig is also looking for display-type and 1986 * video-adapter-type. We default to color and svga. 1987 * 1988 * Could it be "monochrome", "vga"? 1989 * Nah, you've got to come to the 21st century... 1990 * And you can set monitor type manually in kdmconfig 1991 * if you are really an old junky. 1992 */ 1993 (void) ndi_prop_update_string(DDI_DEV_T_NONE, 1994 devi, "display-type", "color"); 1995 (void) ndi_prop_update_string(DDI_DEV_T_NONE, 1996 devi, "video-adapter-type", "svga"); 1997 1998 name = "display-edif-id"; 1999 length = BOP_GETPROPLEN(bootops, name); 2000 if (length > 0 && length < MMU_PAGESIZE) { 2001 BOP_GETPROP(bootops, name, bop_staging_area); 2002 copy_boot_str(bop_staging_area, property_val, length); 2003 (void) ndi_prop_update_string(DDI_DEV_T_NONE, 2004 devi, name, property_val); 2005 } 2006 2007 kmem_free(bop_staging_area, MMU_PAGESIZE); 2008 } 2009 2010 2011 /* 2012 * This is temporary, but absolutely necessary. If we are being 2013 * booted with a device tree created by the DevConf project's bootconf 2014 * program, then we have device information nodes that reflect 2015 * reality. At this point in time in the Solaris release schedule, the 2016 * kernel drivers aren't prepared for reality. They still depend on their 2017 * own ad-hoc interpretations of the properties created when their .conf 2018 * files were interpreted. These drivers use an "ignore-hardware-nodes" 2019 * property to prevent them from using the nodes passed up from the bootconf 2020 * device tree. 2021 * 2022 * Trying to assemble root file system drivers as we are booting from 2023 * devconf will fail if the kernel driver is basing its name_addr's on the 2024 * psuedo-node device info while the bootpath passed up from bootconf is using 2025 * reality-based name_addrs. We help the boot along in this case by 2026 * looking at the pre-bootconf bootpath and determining if we would have 2027 * successfully matched if that had been the bootpath we had chosen. 2028 * 2029 * Note that we only even perform this extra check if we've booted 2030 * using bootconf's 1275 compliant bootpath, this is the boot device, and 2031 * we're trying to match the name_addr specified in the 1275 bootpath. 2032 */ 2033 2034 #define MAXCOMPONENTLEN 32 2035 2036 int 2037 x86_old_bootpath_name_addr_match(dev_info_t *cdip, char *caddr, char *naddr) 2038 { 2039 /* 2040 * There are multiple criteria to be met before we can even 2041 * consider allowing a name_addr match here. 2042 * 2043 * 1) We must have been booted such that the bootconf program 2044 * created device tree nodes and properties. This can be 2045 * determined by examining the 'bootpath' property. This 2046 * property will be a non-null string iff bootconf was 2047 * involved in the boot. 2048 * 2049 * 2) The module that we want to match must be the boot device. 2050 * 2051 * 3) The instance of the module we are thinking of letting be 2052 * our match must be ignoring hardware nodes. 2053 * 2054 * 4) The name_addr we want to match must be the name_addr 2055 * specified in the 1275 bootpath. 2056 */ 2057 static char bootdev_module[MAXCOMPONENTLEN]; 2058 static char bootdev_oldmod[MAXCOMPONENTLEN]; 2059 static char bootdev_newaddr[MAXCOMPONENTLEN]; 2060 static char bootdev_oldaddr[MAXCOMPONENTLEN]; 2061 static int quickexit; 2062 2063 char *daddr; 2064 int dlen; 2065 2066 char *lkupname; 2067 int rv = DDI_FAILURE; 2068 2069 if ((ddi_getlongprop(DDI_DEV_T_ANY, cdip, DDI_PROP_DONTPASS, 2070 "devconf-addr", (caddr_t)&daddr, &dlen) == DDI_PROP_SUCCESS) && 2071 (ddi_getprop(DDI_DEV_T_ANY, cdip, DDI_PROP_DONTPASS, 2072 "ignore-hardware-nodes", -1) != -1)) { 2073 if (strcmp(daddr, caddr) == 0) { 2074 return (DDI_SUCCESS); 2075 } 2076 } 2077 2078 if (quickexit) 2079 return (rv); 2080 2081 if (bootdev_module[0] == '\0') { 2082 char *addrp, *eoaddrp; 2083 char *busp, *modp, *atp; 2084 char *bp1275, *bp; 2085 int bp1275len, bplen; 2086 2087 bp1275 = bp = addrp = eoaddrp = busp = modp = atp = NULL; 2088 2089 if (ddi_getlongprop(DDI_DEV_T_ANY, 2090 ddi_root_node(), 0, "bootpath", 2091 (caddr_t)&bp1275, &bp1275len) != DDI_PROP_SUCCESS || 2092 bp1275len <= 1) { 2093 /* 2094 * We didn't boot from bootconf so we never need to 2095 * do any special matches. 2096 */ 2097 quickexit = 1; 2098 if (bp1275) 2099 kmem_free(bp1275, bp1275len); 2100 return (rv); 2101 } 2102 2103 if (ddi_getlongprop(DDI_DEV_T_ANY, 2104 ddi_root_node(), 0, "boot-path", 2105 (caddr_t)&bp, &bplen) != DDI_PROP_SUCCESS || bplen <= 1) { 2106 /* 2107 * No fallback position for matching. This is 2108 * certainly unexpected, but we'll handle it 2109 * just in case. 2110 */ 2111 quickexit = 1; 2112 kmem_free(bp1275, bp1275len); 2113 if (bp) 2114 kmem_free(bp, bplen); 2115 return (rv); 2116 } 2117 2118 /* 2119 * Determine boot device module and 1275 name_addr 2120 * 2121 * bootpath assumed to be of the form /bus/module@name_addr 2122 */ 2123 if (busp = strchr(bp1275, '/')) { 2124 if (modp = strchr(busp + 1, '/')) { 2125 if (atp = strchr(modp + 1, '@')) { 2126 *atp = '\0'; 2127 addrp = atp + 1; 2128 if (eoaddrp = strchr(addrp, '/')) 2129 *eoaddrp = '\0'; 2130 } 2131 } 2132 } 2133 2134 if (modp && addrp) { 2135 (void) strncpy(bootdev_module, modp + 1, 2136 MAXCOMPONENTLEN); 2137 bootdev_module[MAXCOMPONENTLEN - 1] = '\0'; 2138 2139 (void) strncpy(bootdev_newaddr, addrp, MAXCOMPONENTLEN); 2140 bootdev_newaddr[MAXCOMPONENTLEN - 1] = '\0'; 2141 } else { 2142 quickexit = 1; 2143 kmem_free(bp1275, bp1275len); 2144 kmem_free(bp, bplen); 2145 return (rv); 2146 } 2147 2148 /* 2149 * Determine fallback name_addr 2150 * 2151 * 10/3/96 - Also save fallback module name because it 2152 * might actually be different than the current module 2153 * name. E.G., ISA pnp drivers have new names. 2154 * 2155 * bootpath assumed to be of the form /bus/module@name_addr 2156 */ 2157 addrp = NULL; 2158 if (busp = strchr(bp, '/')) { 2159 if (modp = strchr(busp + 1, '/')) { 2160 if (atp = strchr(modp + 1, '@')) { 2161 *atp = '\0'; 2162 addrp = atp + 1; 2163 if (eoaddrp = strchr(addrp, '/')) 2164 *eoaddrp = '\0'; 2165 } 2166 } 2167 } 2168 2169 if (modp && addrp) { 2170 (void) strncpy(bootdev_oldmod, modp + 1, 2171 MAXCOMPONENTLEN); 2172 bootdev_module[MAXCOMPONENTLEN - 1] = '\0'; 2173 2174 (void) strncpy(bootdev_oldaddr, addrp, MAXCOMPONENTLEN); 2175 bootdev_oldaddr[MAXCOMPONENTLEN - 1] = '\0'; 2176 } 2177 2178 /* Free up the bootpath storage now that we're done with it. */ 2179 kmem_free(bp1275, bp1275len); 2180 kmem_free(bp, bplen); 2181 2182 if (bootdev_oldaddr[0] == '\0') { 2183 quickexit = 1; 2184 return (rv); 2185 } 2186 } 2187 2188 if (((lkupname = ddi_get_name(cdip)) != NULL) && 2189 (strcmp(bootdev_module, lkupname) == 0 || 2190 strcmp(bootdev_oldmod, lkupname) == 0) && 2191 ((ddi_getprop(DDI_DEV_T_ANY, cdip, DDI_PROP_DONTPASS, 2192 "ignore-hardware-nodes", -1) != -1) || 2193 ignore_hardware_nodes) && 2194 strcmp(bootdev_newaddr, caddr) == 0 && 2195 strcmp(bootdev_oldaddr, naddr) == 0) { 2196 rv = DDI_SUCCESS; 2197 } 2198 2199 return (rv); 2200 } 2201 2202 /* 2203 * Perform a copy from a memory mapped device (whose devinfo pointer is devi) 2204 * separately mapped at devaddr in the kernel to a kernel buffer at kaddr. 2205 */ 2206 /*ARGSUSED*/ 2207 int 2208 e_ddi_copyfromdev(dev_info_t *devi, 2209 off_t off, const void *devaddr, void *kaddr, size_t len) 2210 { 2211 bcopy(devaddr, kaddr, len); 2212 return (0); 2213 } 2214 2215 /* 2216 * Perform a copy to a memory mapped device (whose devinfo pointer is devi) 2217 * separately mapped at devaddr in the kernel from a kernel buffer at kaddr. 2218 */ 2219 /*ARGSUSED*/ 2220 int 2221 e_ddi_copytodev(dev_info_t *devi, 2222 off_t off, const void *kaddr, void *devaddr, size_t len) 2223 { 2224 bcopy(kaddr, devaddr, len); 2225 return (0); 2226 } 2227 2228 2229 static int 2230 poke_mem(peekpoke_ctlops_t *in_args) 2231 { 2232 int err = DDI_SUCCESS; 2233 on_trap_data_t otd; 2234 2235 /* Set up protected environment. */ 2236 if (!on_trap(&otd, OT_DATA_ACCESS)) { 2237 switch (in_args->size) { 2238 case sizeof (uint8_t): 2239 *(uint8_t *)(in_args->dev_addr) = 2240 *(uint8_t *)in_args->host_addr; 2241 break; 2242 2243 case sizeof (uint16_t): 2244 *(uint16_t *)(in_args->dev_addr) = 2245 *(uint16_t *)in_args->host_addr; 2246 break; 2247 2248 case sizeof (uint32_t): 2249 *(uint32_t *)(in_args->dev_addr) = 2250 *(uint32_t *)in_args->host_addr; 2251 break; 2252 2253 case sizeof (uint64_t): 2254 *(uint64_t *)(in_args->dev_addr) = 2255 *(uint64_t *)in_args->host_addr; 2256 break; 2257 2258 default: 2259 err = DDI_FAILURE; 2260 break; 2261 } 2262 } else 2263 err = DDI_FAILURE; 2264 2265 /* Take down protected environment. */ 2266 no_trap(); 2267 2268 return (err); 2269 } 2270 2271 2272 static int 2273 peek_mem(peekpoke_ctlops_t *in_args) 2274 { 2275 int err = DDI_SUCCESS; 2276 on_trap_data_t otd; 2277 2278 if (!on_trap(&otd, OT_DATA_ACCESS)) { 2279 switch (in_args->size) { 2280 case sizeof (uint8_t): 2281 *(uint8_t *)in_args->host_addr = 2282 *(uint8_t *)in_args->dev_addr; 2283 break; 2284 2285 case sizeof (uint16_t): 2286 *(uint16_t *)in_args->host_addr = 2287 *(uint16_t *)in_args->dev_addr; 2288 break; 2289 2290 case sizeof (uint32_t): 2291 *(uint32_t *)in_args->host_addr = 2292 *(uint32_t *)in_args->dev_addr; 2293 break; 2294 2295 case sizeof (uint64_t): 2296 *(uint64_t *)in_args->host_addr = 2297 *(uint64_t *)in_args->dev_addr; 2298 break; 2299 2300 default: 2301 err = DDI_FAILURE; 2302 break; 2303 } 2304 } else 2305 err = DDI_FAILURE; 2306 2307 no_trap(); 2308 return (err); 2309 } 2310 2311 2312 /* 2313 * This is called only to process peek/poke when the DIP is NULL. 2314 * Assume that this is for memory, as nexi take care of device safe accesses. 2315 */ 2316 int 2317 peekpoke_mem(ddi_ctl_enum_t cmd, peekpoke_ctlops_t *in_args) 2318 { 2319 return (cmd == DDI_CTLOPS_PEEK ? peek_mem(in_args) : poke_mem(in_args)); 2320 } 2321 2322 /* 2323 * we've just done a cautious put/get. Check if it was successful by 2324 * calling pci_ereport_post() on all puts and for any gets that return -1 2325 */ 2326 static int 2327 pci_peekpoke_check_fma(dev_info_t *dip, void *arg, ddi_ctl_enum_t ctlop, 2328 void (*scan)(dev_info_t *, ddi_fm_error_t *)) 2329 { 2330 int rval = DDI_SUCCESS; 2331 peekpoke_ctlops_t *in_args = (peekpoke_ctlops_t *)arg; 2332 ddi_fm_error_t de; 2333 ddi_acc_impl_t *hp = (ddi_acc_impl_t *)in_args->handle; 2334 ddi_acc_hdl_t *hdlp = (ddi_acc_hdl_t *)in_args->handle; 2335 int check_err = 0; 2336 int repcount = in_args->repcount; 2337 2338 if (ctlop == DDI_CTLOPS_POKE && 2339 hdlp->ah_acc.devacc_attr_access != DDI_CAUTIOUS_ACC) 2340 return (DDI_SUCCESS); 2341 2342 if (ctlop == DDI_CTLOPS_PEEK && 2343 hdlp->ah_acc.devacc_attr_access != DDI_CAUTIOUS_ACC) { 2344 for (; repcount; repcount--) { 2345 switch (in_args->size) { 2346 case sizeof (uint8_t): 2347 if (*(uint8_t *)in_args->host_addr == 0xff) 2348 check_err = 1; 2349 break; 2350 case sizeof (uint16_t): 2351 if (*(uint16_t *)in_args->host_addr == 0xffff) 2352 check_err = 1; 2353 break; 2354 case sizeof (uint32_t): 2355 if (*(uint32_t *)in_args->host_addr == 2356 0xffffffff) 2357 check_err = 1; 2358 break; 2359 case sizeof (uint64_t): 2360 if (*(uint64_t *)in_args->host_addr == 2361 0xffffffffffffffff) 2362 check_err = 1; 2363 break; 2364 } 2365 } 2366 if (check_err == 0) 2367 return (DDI_SUCCESS); 2368 } 2369 /* 2370 * for a cautious put or get or a non-cautious get that returned -1 call 2371 * io framework to see if there really was an error 2372 */ 2373 bzero(&de, sizeof (ddi_fm_error_t)); 2374 de.fme_version = DDI_FME_VERSION; 2375 de.fme_ena = fm_ena_generate(0, FM_ENA_FMT1); 2376 if (hdlp->ah_acc.devacc_attr_access == DDI_CAUTIOUS_ACC) { 2377 de.fme_flag = DDI_FM_ERR_EXPECTED; 2378 de.fme_acc_handle = in_args->handle; 2379 } else if (hdlp->ah_acc.devacc_attr_access == DDI_DEFAULT_ACC) { 2380 /* 2381 * We only get here with DDI_DEFAULT_ACC for config space gets. 2382 * Non-hardened drivers may be probing the hardware and 2383 * expecting -1 returned. So need to treat errors on 2384 * DDI_DEFAULT_ACC as DDI_FM_ERR_EXPECTED. 2385 */ 2386 de.fme_flag = DDI_FM_ERR_EXPECTED; 2387 de.fme_acc_handle = in_args->handle; 2388 } else { 2389 /* 2390 * Hardened driver doing protected accesses shouldn't 2391 * get errors unless there's a hardware problem. Treat 2392 * as nonfatal if there's an error, but set UNEXPECTED 2393 * so we raise ereports on any errors and potentially 2394 * fault the device 2395 */ 2396 de.fme_flag = DDI_FM_ERR_UNEXPECTED; 2397 } 2398 (void) scan(dip, &de); 2399 if (hdlp->ah_acc.devacc_attr_access != DDI_DEFAULT_ACC && 2400 de.fme_status != DDI_FM_OK) { 2401 ndi_err_t *errp = (ndi_err_t *)hp->ahi_err; 2402 rval = DDI_FAILURE; 2403 errp->err_ena = de.fme_ena; 2404 errp->err_expected = de.fme_flag; 2405 errp->err_status = DDI_FM_NONFATAL; 2406 } 2407 return (rval); 2408 } 2409 2410 /* 2411 * pci_peekpoke_check_nofma() is for when an error occurs on a register access 2412 * during pci_ereport_post(). We can't call pci_ereport_post() again or we'd 2413 * recurse, so assume all puts are OK and gets have failed if they return -1 2414 */ 2415 static int 2416 pci_peekpoke_check_nofma(void *arg, ddi_ctl_enum_t ctlop) 2417 { 2418 int rval = DDI_SUCCESS; 2419 peekpoke_ctlops_t *in_args = (peekpoke_ctlops_t *)arg; 2420 ddi_acc_impl_t *hp = (ddi_acc_impl_t *)in_args->handle; 2421 ddi_acc_hdl_t *hdlp = (ddi_acc_hdl_t *)in_args->handle; 2422 int repcount = in_args->repcount; 2423 2424 if (ctlop == DDI_CTLOPS_POKE) 2425 return (rval); 2426 2427 for (; repcount; repcount--) { 2428 switch (in_args->size) { 2429 case sizeof (uint8_t): 2430 if (*(uint8_t *)in_args->host_addr == 0xff) 2431 rval = DDI_FAILURE; 2432 break; 2433 case sizeof (uint16_t): 2434 if (*(uint16_t *)in_args->host_addr == 0xffff) 2435 rval = DDI_FAILURE; 2436 break; 2437 case sizeof (uint32_t): 2438 if (*(uint32_t *)in_args->host_addr == 0xffffffff) 2439 rval = DDI_FAILURE; 2440 break; 2441 case sizeof (uint64_t): 2442 if (*(uint64_t *)in_args->host_addr == 2443 0xffffffffffffffff) 2444 rval = DDI_FAILURE; 2445 break; 2446 } 2447 } 2448 if (hdlp->ah_acc.devacc_attr_access != DDI_DEFAULT_ACC && 2449 rval == DDI_FAILURE) { 2450 ndi_err_t *errp = (ndi_err_t *)hp->ahi_err; 2451 errp->err_ena = fm_ena_generate(0, FM_ENA_FMT1); 2452 errp->err_expected = DDI_FM_ERR_UNEXPECTED; 2453 errp->err_status = DDI_FM_NONFATAL; 2454 } 2455 return (rval); 2456 } 2457 2458 int 2459 pci_peekpoke_check(dev_info_t *dip, dev_info_t *rdip, 2460 ddi_ctl_enum_t ctlop, void *arg, void *result, 2461 int (*handler)(dev_info_t *, dev_info_t *, ddi_ctl_enum_t, void *, 2462 void *), kmutex_t *err_mutexp, kmutex_t *peek_poke_mutexp, 2463 void (*scan)(dev_info_t *, ddi_fm_error_t *)) 2464 { 2465 int rval; 2466 peekpoke_ctlops_t *in_args = (peekpoke_ctlops_t *)arg; 2467 ddi_acc_impl_t *hp = (ddi_acc_impl_t *)in_args->handle; 2468 2469 /* 2470 * this function only supports cautious accesses, not peeks/pokes 2471 * which don't have a handle 2472 */ 2473 if (hp == NULL) 2474 return (DDI_FAILURE); 2475 2476 if (hp->ahi_acc_attr & DDI_ACCATTR_CONFIG_SPACE) { 2477 if (!mutex_tryenter(err_mutexp)) { 2478 /* 2479 * As this may be a recursive call from within 2480 * pci_ereport_post() we can't wait for the mutexes. 2481 * Fortunately we know someone is already calling 2482 * pci_ereport_post() which will handle the error bits 2483 * for us, and as this is a config space access we can 2484 * just do the access and check return value for -1 2485 * using pci_peekpoke_check_nofma(). 2486 */ 2487 rval = handler(dip, rdip, ctlop, arg, result); 2488 if (rval == DDI_SUCCESS) 2489 rval = pci_peekpoke_check_nofma(arg, ctlop); 2490 return (rval); 2491 } 2492 /* 2493 * This can't be a recursive call. Drop the err_mutex and get 2494 * both mutexes in the right order. If an error hasn't already 2495 * been detected by the ontrap code, use pci_peekpoke_check_fma 2496 * which will call pci_ereport_post() to check error status. 2497 */ 2498 mutex_exit(err_mutexp); 2499 } 2500 mutex_enter(peek_poke_mutexp); 2501 rval = handler(dip, rdip, ctlop, arg, result); 2502 if (rval == DDI_SUCCESS) { 2503 mutex_enter(err_mutexp); 2504 rval = pci_peekpoke_check_fma(dip, arg, ctlop, scan); 2505 mutex_exit(err_mutexp); 2506 } 2507 mutex_exit(peek_poke_mutexp); 2508 return (rval); 2509 } 2510 2511 void 2512 impl_setup_ddi(void) 2513 { 2514 #if !defined(__xpv) 2515 extern void startup_bios_disk(void); 2516 extern int post_fastreboot; 2517 #endif 2518 dev_info_t *xdip, *isa_dip; 2519 rd_existing_t rd_mem_prop; 2520 int err; 2521 2522 ndi_devi_alloc_sleep(ddi_root_node(), "ramdisk", 2523 (pnode_t)DEVI_SID_NODEID, &xdip); 2524 2525 (void) BOP_GETPROP(bootops, 2526 "ramdisk_start", (void *)&ramdisk_start); 2527 (void) BOP_GETPROP(bootops, 2528 "ramdisk_end", (void *)&ramdisk_end); 2529 2530 #ifdef __xpv 2531 ramdisk_start -= ONE_GIG; 2532 ramdisk_end -= ONE_GIG; 2533 #endif 2534 rd_mem_prop.phys = ramdisk_start; 2535 rd_mem_prop.size = ramdisk_end - ramdisk_start + 1; 2536 2537 (void) ndi_prop_update_byte_array(DDI_DEV_T_NONE, xdip, 2538 RD_EXISTING_PROP_NAME, (uchar_t *)&rd_mem_prop, 2539 sizeof (rd_mem_prop)); 2540 err = ndi_devi_bind_driver(xdip, 0); 2541 ASSERT(err == 0); 2542 2543 /* isa node */ 2544 if (pseudo_isa) { 2545 ndi_devi_alloc_sleep(ddi_root_node(), "isa", 2546 (pnode_t)DEVI_SID_NODEID, &isa_dip); 2547 (void) ndi_prop_update_string(DDI_DEV_T_NONE, isa_dip, 2548 "device_type", "isa"); 2549 (void) ndi_prop_update_string(DDI_DEV_T_NONE, isa_dip, 2550 "bus-type", "isa"); 2551 (void) ndi_devi_bind_driver(isa_dip, 0); 2552 } 2553 2554 /* 2555 * Read in the properties from the boot. 2556 */ 2557 get_boot_properties(); 2558 2559 /* not framebuffer should be enumerated, if present */ 2560 get_vga_properties(); 2561 2562 /* 2563 * Check for administratively disabled drivers. 2564 */ 2565 check_driver_disable(); 2566 2567 #if !defined(__xpv) 2568 if (!post_fastreboot) 2569 startup_bios_disk(); 2570 #endif 2571 /* do bus dependent probes. */ 2572 impl_bus_initialprobe(); 2573 } 2574 2575 dev_t 2576 getrootdev(void) 2577 { 2578 /* 2579 * Precedence given to rootdev if set in /etc/system 2580 */ 2581 if (root_is_svm == B_TRUE) { 2582 return (ddi_pathname_to_dev_t(svm_bootpath)); 2583 } 2584 2585 /* 2586 * Usually rootfs.bo_name is initialized by the 2587 * the bootpath property from bootenv.rc, but 2588 * defaults to "/ramdisk:a" otherwise. 2589 */ 2590 return (ddi_pathname_to_dev_t(rootfs.bo_name)); 2591 } 2592 2593 static struct bus_probe { 2594 struct bus_probe *next; 2595 void (*probe)(int); 2596 } *bus_probes; 2597 2598 void 2599 impl_bus_add_probe(void (*func)(int)) 2600 { 2601 struct bus_probe *probe; 2602 struct bus_probe *lastprobe = NULL; 2603 2604 probe = kmem_alloc(sizeof (*probe), KM_SLEEP); 2605 probe->probe = func; 2606 probe->next = NULL; 2607 2608 if (!bus_probes) { 2609 bus_probes = probe; 2610 return; 2611 } 2612 2613 lastprobe = bus_probes; 2614 while (lastprobe->next) 2615 lastprobe = lastprobe->next; 2616 lastprobe->next = probe; 2617 } 2618 2619 /*ARGSUSED*/ 2620 void 2621 impl_bus_delete_probe(void (*func)(int)) 2622 { 2623 struct bus_probe *prev = NULL; 2624 struct bus_probe *probe = bus_probes; 2625 2626 while (probe) { 2627 if (probe->probe == func) 2628 break; 2629 prev = probe; 2630 probe = probe->next; 2631 } 2632 2633 if (probe == NULL) 2634 return; 2635 2636 if (prev) 2637 prev->next = probe->next; 2638 else 2639 bus_probes = probe->next; 2640 2641 kmem_free(probe, sizeof (struct bus_probe)); 2642 } 2643 2644 /* 2645 * impl_bus_initialprobe 2646 * Modload the prom simulator, then let it probe to verify existence 2647 * and type of PCI support. 2648 */ 2649 static void 2650 impl_bus_initialprobe(void) 2651 { 2652 struct bus_probe *probe; 2653 2654 /* load modules to install bus probes */ 2655 #if defined(__xpv) 2656 if (DOMAIN_IS_INITDOMAIN(xen_info)) { 2657 if (modload("misc", "pci_autoconfig") < 0) { 2658 panic("failed to load misc/pci_autoconfig"); 2659 } 2660 2661 if (modload("drv", "isa") < 0) 2662 panic("failed to load drv/isa"); 2663 } 2664 2665 (void) modload("misc", "xpv_autoconfig"); 2666 #else 2667 if (modload("misc", "pci_autoconfig") < 0) { 2668 panic("failed to load misc/pci_autoconfig"); 2669 } 2670 2671 (void) modload("misc", "acpidev"); 2672 2673 if (modload("drv", "isa") < 0) 2674 panic("failed to load drv/isa"); 2675 #endif 2676 2677 probe = bus_probes; 2678 while (probe) { 2679 /* run the probe functions */ 2680 (*probe->probe)(0); 2681 probe = probe->next; 2682 } 2683 } 2684 2685 /* 2686 * impl_bus_reprobe 2687 * Reprogram devices not set up by firmware. 2688 */ 2689 static void 2690 impl_bus_reprobe(void) 2691 { 2692 struct bus_probe *probe; 2693 2694 probe = bus_probes; 2695 while (probe) { 2696 /* run the probe function */ 2697 (*probe->probe)(1); 2698 probe = probe->next; 2699 } 2700 } 2701 2702 2703 /* 2704 * The following functions ready a cautious request to go up to the nexus 2705 * driver. It is up to the nexus driver to decide how to process the request. 2706 * It may choose to call i_ddi_do_caut_get/put in this file, or do it 2707 * differently. 2708 */ 2709 2710 static void 2711 i_ddi_caut_getput_ctlops(ddi_acc_impl_t *hp, uint64_t host_addr, 2712 uint64_t dev_addr, size_t size, size_t repcount, uint_t flags, 2713 ddi_ctl_enum_t cmd) 2714 { 2715 peekpoke_ctlops_t cautacc_ctlops_arg; 2716 2717 cautacc_ctlops_arg.size = size; 2718 cautacc_ctlops_arg.dev_addr = dev_addr; 2719 cautacc_ctlops_arg.host_addr = host_addr; 2720 cautacc_ctlops_arg.handle = (ddi_acc_handle_t)hp; 2721 cautacc_ctlops_arg.repcount = repcount; 2722 cautacc_ctlops_arg.flags = flags; 2723 2724 (void) ddi_ctlops(hp->ahi_common.ah_dip, hp->ahi_common.ah_dip, cmd, 2725 &cautacc_ctlops_arg, NULL); 2726 } 2727 2728 uint8_t 2729 i_ddi_caut_get8(ddi_acc_impl_t *hp, uint8_t *addr) 2730 { 2731 uint8_t value; 2732 i_ddi_caut_getput_ctlops(hp, (uintptr_t)&value, (uintptr_t)addr, 2733 sizeof (uint8_t), 1, 0, DDI_CTLOPS_PEEK); 2734 2735 return (value); 2736 } 2737 2738 uint16_t 2739 i_ddi_caut_get16(ddi_acc_impl_t *hp, uint16_t *addr) 2740 { 2741 uint16_t value; 2742 i_ddi_caut_getput_ctlops(hp, (uintptr_t)&value, (uintptr_t)addr, 2743 sizeof (uint16_t), 1, 0, DDI_CTLOPS_PEEK); 2744 2745 return (value); 2746 } 2747 2748 uint32_t 2749 i_ddi_caut_get32(ddi_acc_impl_t *hp, uint32_t *addr) 2750 { 2751 uint32_t value; 2752 i_ddi_caut_getput_ctlops(hp, (uintptr_t)&value, (uintptr_t)addr, 2753 sizeof (uint32_t), 1, 0, DDI_CTLOPS_PEEK); 2754 2755 return (value); 2756 } 2757 2758 uint64_t 2759 i_ddi_caut_get64(ddi_acc_impl_t *hp, uint64_t *addr) 2760 { 2761 uint64_t value; 2762 i_ddi_caut_getput_ctlops(hp, (uintptr_t)&value, (uintptr_t)addr, 2763 sizeof (uint64_t), 1, 0, DDI_CTLOPS_PEEK); 2764 2765 return (value); 2766 } 2767 2768 void 2769 i_ddi_caut_put8(ddi_acc_impl_t *hp, uint8_t *addr, uint8_t value) 2770 { 2771 i_ddi_caut_getput_ctlops(hp, (uintptr_t)&value, (uintptr_t)addr, 2772 sizeof (uint8_t), 1, 0, DDI_CTLOPS_POKE); 2773 } 2774 2775 void 2776 i_ddi_caut_put16(ddi_acc_impl_t *hp, uint16_t *addr, uint16_t value) 2777 { 2778 i_ddi_caut_getput_ctlops(hp, (uintptr_t)&value, (uintptr_t)addr, 2779 sizeof (uint16_t), 1, 0, DDI_CTLOPS_POKE); 2780 } 2781 2782 void 2783 i_ddi_caut_put32(ddi_acc_impl_t *hp, uint32_t *addr, uint32_t value) 2784 { 2785 i_ddi_caut_getput_ctlops(hp, (uintptr_t)&value, (uintptr_t)addr, 2786 sizeof (uint32_t), 1, 0, DDI_CTLOPS_POKE); 2787 } 2788 2789 void 2790 i_ddi_caut_put64(ddi_acc_impl_t *hp, uint64_t *addr, uint64_t value) 2791 { 2792 i_ddi_caut_getput_ctlops(hp, (uintptr_t)&value, (uintptr_t)addr, 2793 sizeof (uint64_t), 1, 0, DDI_CTLOPS_POKE); 2794 } 2795 2796 void 2797 i_ddi_caut_rep_get8(ddi_acc_impl_t *hp, uint8_t *host_addr, uint8_t *dev_addr, 2798 size_t repcount, uint_t flags) 2799 { 2800 i_ddi_caut_getput_ctlops(hp, (uintptr_t)host_addr, (uintptr_t)dev_addr, 2801 sizeof (uint8_t), repcount, flags, DDI_CTLOPS_PEEK); 2802 } 2803 2804 void 2805 i_ddi_caut_rep_get16(ddi_acc_impl_t *hp, uint16_t *host_addr, 2806 uint16_t *dev_addr, size_t repcount, uint_t flags) 2807 { 2808 i_ddi_caut_getput_ctlops(hp, (uintptr_t)host_addr, (uintptr_t)dev_addr, 2809 sizeof (uint16_t), repcount, flags, DDI_CTLOPS_PEEK); 2810 } 2811 2812 void 2813 i_ddi_caut_rep_get32(ddi_acc_impl_t *hp, uint32_t *host_addr, 2814 uint32_t *dev_addr, size_t repcount, uint_t flags) 2815 { 2816 i_ddi_caut_getput_ctlops(hp, (uintptr_t)host_addr, (uintptr_t)dev_addr, 2817 sizeof (uint32_t), repcount, flags, DDI_CTLOPS_PEEK); 2818 } 2819 2820 void 2821 i_ddi_caut_rep_get64(ddi_acc_impl_t *hp, uint64_t *host_addr, 2822 uint64_t *dev_addr, size_t repcount, uint_t flags) 2823 { 2824 i_ddi_caut_getput_ctlops(hp, (uintptr_t)host_addr, (uintptr_t)dev_addr, 2825 sizeof (uint64_t), repcount, flags, DDI_CTLOPS_PEEK); 2826 } 2827 2828 void 2829 i_ddi_caut_rep_put8(ddi_acc_impl_t *hp, uint8_t *host_addr, uint8_t *dev_addr, 2830 size_t repcount, uint_t flags) 2831 { 2832 i_ddi_caut_getput_ctlops(hp, (uintptr_t)host_addr, (uintptr_t)dev_addr, 2833 sizeof (uint8_t), repcount, flags, DDI_CTLOPS_POKE); 2834 } 2835 2836 void 2837 i_ddi_caut_rep_put16(ddi_acc_impl_t *hp, uint16_t *host_addr, 2838 uint16_t *dev_addr, size_t repcount, uint_t flags) 2839 { 2840 i_ddi_caut_getput_ctlops(hp, (uintptr_t)host_addr, (uintptr_t)dev_addr, 2841 sizeof (uint16_t), repcount, flags, DDI_CTLOPS_POKE); 2842 } 2843 2844 void 2845 i_ddi_caut_rep_put32(ddi_acc_impl_t *hp, uint32_t *host_addr, 2846 uint32_t *dev_addr, size_t repcount, uint_t flags) 2847 { 2848 i_ddi_caut_getput_ctlops(hp, (uintptr_t)host_addr, (uintptr_t)dev_addr, 2849 sizeof (uint32_t), repcount, flags, DDI_CTLOPS_POKE); 2850 } 2851 2852 void 2853 i_ddi_caut_rep_put64(ddi_acc_impl_t *hp, uint64_t *host_addr, 2854 uint64_t *dev_addr, size_t repcount, uint_t flags) 2855 { 2856 i_ddi_caut_getput_ctlops(hp, (uintptr_t)host_addr, (uintptr_t)dev_addr, 2857 sizeof (uint64_t), repcount, flags, DDI_CTLOPS_POKE); 2858 } 2859 2860 boolean_t 2861 i_ddi_copybuf_required(ddi_dma_attr_t *attrp) 2862 { 2863 uint64_t hi_pa; 2864 2865 hi_pa = ((uint64_t)physmax + 1ull) << PAGESHIFT; 2866 if (attrp->dma_attr_addr_hi < hi_pa) { 2867 return (B_TRUE); 2868 } 2869 2870 return (B_FALSE); 2871 } 2872 2873 size_t 2874 i_ddi_copybuf_size() 2875 { 2876 return (dma_max_copybuf_size); 2877 } 2878 2879 /* 2880 * i_ddi_dma_max() 2881 * returns the maximum DMA size which can be performed in a single DMA 2882 * window taking into account the devices DMA contraints (attrp), the 2883 * maximum copy buffer size (if applicable), and the worse case buffer 2884 * fragmentation. 2885 */ 2886 /*ARGSUSED*/ 2887 uint32_t 2888 i_ddi_dma_max(dev_info_t *dip, ddi_dma_attr_t *attrp) 2889 { 2890 uint64_t maxxfer; 2891 2892 2893 /* 2894 * take the min of maxxfer and the the worse case fragementation 2895 * (e.g. every cookie <= 1 page) 2896 */ 2897 maxxfer = MIN(attrp->dma_attr_maxxfer, 2898 ((uint64_t)(attrp->dma_attr_sgllen - 1) << PAGESHIFT)); 2899 2900 /* 2901 * If the DMA engine can't reach all off memory, we also need to take 2902 * the max size of the copybuf into consideration. 2903 */ 2904 if (i_ddi_copybuf_required(attrp)) { 2905 maxxfer = MIN(i_ddi_copybuf_size(), maxxfer); 2906 } 2907 2908 /* 2909 * we only return a 32-bit value. Make sure it's not -1. Round to a 2910 * page so it won't be mistaken for an error value during debug. 2911 */ 2912 if (maxxfer >= 0xFFFFFFFF) { 2913 maxxfer = 0xFFFFF000; 2914 } 2915 2916 /* 2917 * make sure the value we return is a whole multiple of the 2918 * granlarity. 2919 */ 2920 if (attrp->dma_attr_granular > 1) { 2921 maxxfer = maxxfer - (maxxfer % attrp->dma_attr_granular); 2922 } 2923 2924 return ((uint32_t)maxxfer); 2925 } 2926 2927 pfn_t 2928 i_ddi_paddr_to_pfn(paddr_t paddr) 2929 { 2930 pfn_t pfn; 2931 2932 #ifdef __xpv 2933 if (DOMAIN_IS_INITDOMAIN(xen_info)) { 2934 pfn = xen_assign_pfn(mmu_btop(paddr)); 2935 } else { 2936 pfn = mmu_btop(paddr); 2937 } 2938 #else 2939 pfn = mmu_btop(paddr); 2940 #endif 2941 2942 return (pfn); 2943 } 2944