xref: /titanic_41/usr/src/uts/i86pc/os/cpuid.c (revision ab9b2e153c3a9a2b1141fefa87925b1a9beb1236)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2007 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 #pragma ident	"%Z%%M%	%I%	%E% SMI"
27 
28 /*
29  * Various routines to handle identification
30  * and classification of x86 processors.
31  */
32 
33 #include <sys/types.h>
34 #include <sys/archsystm.h>
35 #include <sys/x86_archext.h>
36 #include <sys/kmem.h>
37 #include <sys/systm.h>
38 #include <sys/cmn_err.h>
39 #include <sys/sunddi.h>
40 #include <sys/sunndi.h>
41 #include <sys/cpuvar.h>
42 #include <sys/processor.h>
43 #include <sys/sysmacros.h>
44 #include <sys/pg.h>
45 #include <sys/fp.h>
46 #include <sys/controlregs.h>
47 #include <sys/auxv_386.h>
48 #include <sys/bitmap.h>
49 #include <sys/memnode.h>
50 
51 /*
52  * Pass 0 of cpuid feature analysis happens in locore. It contains special code
53  * to recognize Cyrix processors that are not cpuid-compliant, and to deal with
54  * them accordingly. For most modern processors, feature detection occurs here
55  * in pass 1.
56  *
57  * Pass 1 of cpuid feature analysis happens just at the beginning of mlsetup()
58  * for the boot CPU and does the basic analysis that the early kernel needs.
59  * x86_feature is set based on the return value of cpuid_pass1() of the boot
60  * CPU.
61  *
62  * Pass 1 includes:
63  *
64  *	o Determining vendor/model/family/stepping and setting x86_type and
65  *	  x86_vendor accordingly.
66  *	o Processing the feature flags returned by the cpuid instruction while
67  *	  applying any workarounds or tricks for the specific processor.
68  *	o Mapping the feature flags into Solaris feature bits (X86_*).
69  *	o Processing extended feature flags if supported by the processor,
70  *	  again while applying specific processor knowledge.
71  *	o Determining the CMT characteristics of the system.
72  *
73  * Pass 1 is done on non-boot CPUs during their initialization and the results
74  * are used only as a meager attempt at ensuring that all processors within the
75  * system support the same features.
76  *
77  * Pass 2 of cpuid feature analysis happens just at the beginning
78  * of startup().  It just copies in and corrects the remainder
79  * of the cpuid data we depend on: standard cpuid functions that we didn't
80  * need for pass1 feature analysis, and extended cpuid functions beyond the
81  * simple feature processing done in pass1.
82  *
83  * Pass 3 of cpuid analysis is invoked after basic kernel services; in
84  * particular kernel memory allocation has been made available. It creates a
85  * readable brand string based on the data collected in the first two passes.
86  *
87  * Pass 4 of cpuid analysis is invoked after post_startup() when all
88  * the support infrastructure for various hardware features has been
89  * initialized. It determines which processor features will be reported
90  * to userland via the aux vector.
91  *
92  * All passes are executed on all CPUs, but only the boot CPU determines what
93  * features the kernel will use.
94  *
95  * Much of the worst junk in this file is for the support of processors
96  * that didn't really implement the cpuid instruction properly.
97  *
98  * NOTE: The accessor functions (cpuid_get*) are aware of, and ASSERT upon,
99  * the pass numbers.  Accordingly, changes to the pass code may require changes
100  * to the accessor code.
101  */
102 
103 uint_t x86_feature = 0;
104 uint_t x86_vendor = X86_VENDOR_IntelClone;
105 uint_t x86_type = X86_TYPE_OTHER;
106 
107 uint_t pentiumpro_bug4046376;
108 uint_t pentiumpro_bug4064495;
109 
110 uint_t enable486;
111 
112 /*
113  * This set of strings are for processors rumored to support the cpuid
114  * instruction, and is used by locore.s to figure out how to set x86_vendor
115  */
116 const char CyrixInstead[] = "CyrixInstead";
117 
118 /*
119  * monitor/mwait info.
120  *
121  * size_actual and buf_actual are the real address and size allocated to get
122  * proper mwait_buf alignement.  buf_actual and size_actual should be passed
123  * to kmem_free().  Currently kmem_alloc() and mwait happen to both use
124  * processor cache-line alignment, but this is not guarantied in the furture.
125  */
126 struct mwait_info {
127 	size_t		mon_min;	/* min size to avoid missed wakeups */
128 	size_t		mon_max;	/* size to avoid false wakeups */
129 	size_t		size_actual;	/* size actually allocated */
130 	void		*buf_actual;	/* memory actually allocated */
131 	uint32_t	support;	/* processor support of monitor/mwait */
132 };
133 
134 /*
135  * These constants determine how many of the elements of the
136  * cpuid we cache in the cpuid_info data structure; the
137  * remaining elements are accessible via the cpuid instruction.
138  */
139 
140 #define	NMAX_CPI_STD	6		/* eax = 0 .. 5 */
141 #define	NMAX_CPI_EXTD	9		/* eax = 0x80000000 .. 0x80000008 */
142 
143 struct cpuid_info {
144 	uint_t cpi_pass;		/* last pass completed */
145 	/*
146 	 * standard function information
147 	 */
148 	uint_t cpi_maxeax;		/* fn 0: %eax */
149 	char cpi_vendorstr[13];		/* fn 0: %ebx:%ecx:%edx */
150 	uint_t cpi_vendor;		/* enum of cpi_vendorstr */
151 
152 	uint_t cpi_family;		/* fn 1: extended family */
153 	uint_t cpi_model;		/* fn 1: extended model */
154 	uint_t cpi_step;		/* fn 1: stepping */
155 	chipid_t cpi_chipid;		/* fn 1: %ebx: chip # on ht cpus */
156 	uint_t cpi_brandid;		/* fn 1: %ebx: brand ID */
157 	int cpi_clogid;			/* fn 1: %ebx: thread # */
158 	uint_t cpi_ncpu_per_chip;	/* fn 1: %ebx: logical cpu count */
159 	uint8_t cpi_cacheinfo[16];	/* fn 2: intel-style cache desc */
160 	uint_t cpi_ncache;		/* fn 2: number of elements */
161 	uint_t cpi_ncpu_shr_last_cache;	/* fn 4: %eax: ncpus sharing cache */
162 	id_t cpi_last_lvl_cacheid;	/* fn 4: %eax: derived cache id */
163 	uint_t cpi_std_4_size;		/* fn 4: number of fn 4 elements */
164 	struct cpuid_regs **cpi_std_4;	/* fn 4: %ecx == 0 .. fn4_size */
165 	struct cpuid_regs cpi_std[NMAX_CPI_STD];	/* 0 .. 5 */
166 	/*
167 	 * extended function information
168 	 */
169 	uint_t cpi_xmaxeax;		/* fn 0x80000000: %eax */
170 	char cpi_brandstr[49];		/* fn 0x8000000[234] */
171 	uint8_t cpi_pabits;		/* fn 0x80000006: %eax */
172 	uint8_t cpi_vabits;		/* fn 0x80000006: %eax */
173 	struct cpuid_regs cpi_extd[NMAX_CPI_EXTD]; /* 0x8000000[0-8] */
174 	id_t cpi_coreid;
175 	uint_t cpi_ncore_per_chip;	/* AMD: fn 0x80000008: %ecx[7-0] */
176 					/* Intel: fn 4: %eax[31-26] */
177 	/*
178 	 * supported feature information
179 	 */
180 	uint32_t cpi_support[5];
181 #define	STD_EDX_FEATURES	0
182 #define	AMD_EDX_FEATURES	1
183 #define	TM_EDX_FEATURES		2
184 #define	STD_ECX_FEATURES	3
185 #define	AMD_ECX_FEATURES	4
186 	/*
187 	 * Synthesized information, where known.
188 	 */
189 	uint32_t cpi_chiprev;		/* See X86_CHIPREV_* in x86_archext.h */
190 	const char *cpi_chiprevstr;	/* May be NULL if chiprev unknown */
191 	uint32_t cpi_socket;		/* Chip package/socket type */
192 
193 	struct mwait_info cpi_mwait;	/* fn 5: monitor/mwait info */
194 };
195 
196 
197 static struct cpuid_info cpuid_info0;
198 
199 /*
200  * These bit fields are defined by the Intel Application Note AP-485
201  * "Intel Processor Identification and the CPUID Instruction"
202  */
203 #define	CPI_FAMILY_XTD(cpi)	BITX((cpi)->cpi_std[1].cp_eax, 27, 20)
204 #define	CPI_MODEL_XTD(cpi)	BITX((cpi)->cpi_std[1].cp_eax, 19, 16)
205 #define	CPI_TYPE(cpi)		BITX((cpi)->cpi_std[1].cp_eax, 13, 12)
206 #define	CPI_FAMILY(cpi)		BITX((cpi)->cpi_std[1].cp_eax, 11, 8)
207 #define	CPI_STEP(cpi)		BITX((cpi)->cpi_std[1].cp_eax, 3, 0)
208 #define	CPI_MODEL(cpi)		BITX((cpi)->cpi_std[1].cp_eax, 7, 4)
209 
210 #define	CPI_FEATURES_EDX(cpi)		((cpi)->cpi_std[1].cp_edx)
211 #define	CPI_FEATURES_ECX(cpi)		((cpi)->cpi_std[1].cp_ecx)
212 #define	CPI_FEATURES_XTD_EDX(cpi)	((cpi)->cpi_extd[1].cp_edx)
213 #define	CPI_FEATURES_XTD_ECX(cpi)	((cpi)->cpi_extd[1].cp_ecx)
214 
215 #define	CPI_BRANDID(cpi)	BITX((cpi)->cpi_std[1].cp_ebx, 7, 0)
216 #define	CPI_CHUNKS(cpi)		BITX((cpi)->cpi_std[1].cp_ebx, 15, 7)
217 #define	CPI_CPU_COUNT(cpi)	BITX((cpi)->cpi_std[1].cp_ebx, 23, 16)
218 #define	CPI_APIC_ID(cpi)	BITX((cpi)->cpi_std[1].cp_ebx, 31, 24)
219 
220 #define	CPI_MAXEAX_MAX		0x100		/* sanity control */
221 #define	CPI_XMAXEAX_MAX		0x80000100
222 #define	CPI_FN4_ECX_MAX		0x20		/* sanity: max fn 4 levels */
223 
224 /*
225  * Function 4 (Deterministic Cache Parameters) macros
226  * Defined by Intel Application Note AP-485
227  */
228 #define	CPI_NUM_CORES(regs)		BITX((regs)->cp_eax, 31, 26)
229 #define	CPI_NTHR_SHR_CACHE(regs)	BITX((regs)->cp_eax, 25, 14)
230 #define	CPI_FULL_ASSOC_CACHE(regs)	BITX((regs)->cp_eax, 9, 9)
231 #define	CPI_SELF_INIT_CACHE(regs)	BITX((regs)->cp_eax, 8, 8)
232 #define	CPI_CACHE_LVL(regs)		BITX((regs)->cp_eax, 7, 5)
233 #define	CPI_CACHE_TYPE(regs)		BITX((regs)->cp_eax, 4, 0)
234 
235 #define	CPI_CACHE_WAYS(regs)		BITX((regs)->cp_ebx, 31, 22)
236 #define	CPI_CACHE_PARTS(regs)		BITX((regs)->cp_ebx, 21, 12)
237 #define	CPI_CACHE_COH_LN_SZ(regs)	BITX((regs)->cp_ebx, 11, 0)
238 
239 #define	CPI_CACHE_SETS(regs)		BITX((regs)->cp_ecx, 31, 0)
240 
241 #define	CPI_PREFCH_STRIDE(regs)		BITX((regs)->cp_edx, 9, 0)
242 
243 
244 /*
245  * A couple of shorthand macros to identify "later" P6-family chips
246  * like the Pentium M and Core.  First, the "older" P6-based stuff
247  * (loosely defined as "pre-Pentium-4"):
248  * P6, PII, Mobile PII, PII Xeon, PIII, Mobile PIII, PIII Xeon
249  */
250 
251 #define	IS_LEGACY_P6(cpi) (			\
252 	cpi->cpi_family == 6 && 		\
253 		(cpi->cpi_model == 1 ||		\
254 		cpi->cpi_model == 3 ||		\
255 		cpi->cpi_model == 5 ||		\
256 		cpi->cpi_model == 6 ||		\
257 		cpi->cpi_model == 7 ||		\
258 		cpi->cpi_model == 8 ||		\
259 		cpi->cpi_model == 0xA ||	\
260 		cpi->cpi_model == 0xB)		\
261 )
262 
263 /* A "new F6" is everything with family 6 that's not the above */
264 #define	IS_NEW_F6(cpi) ((cpi->cpi_family == 6) && !IS_LEGACY_P6(cpi))
265 
266 /* Extended family/model support */
267 #define	IS_EXTENDED_MODEL_INTEL(cpi) (cpi->cpi_family == 0x6 || \
268 	cpi->cpi_family >= 0xf)
269 
270 /*
271  * AMD family 0xf socket types.
272  * First index is 0 for revs B thru E, 1 for F and G.
273  * Second index by (model & 0x3)
274  */
275 static uint32_t amd_skts[2][4] = {
276 	{
277 		X86_SOCKET_754,		/* 0b00 */
278 		X86_SOCKET_940,		/* 0b01 */
279 		X86_SOCKET_754,		/* 0b10 */
280 		X86_SOCKET_939		/* 0b11 */
281 	},
282 	{
283 		X86_SOCKET_S1g1,	/* 0b00 */
284 		X86_SOCKET_F1207,	/* 0b01 */
285 		X86_SOCKET_UNKNOWN,	/* 0b10 */
286 		X86_SOCKET_AM2		/* 0b11 */
287 	}
288 };
289 
290 /*
291  * Table for mapping AMD Family 0xf model/stepping combination to
292  * chip "revision" and socket type.  Only rm_family 0xf is used at the
293  * moment, but AMD family 0x10 will extend the exsiting revision names
294  * so will likely also use this table.
295  *
296  * The first member of this array that matches a given family, extended model
297  * plus model range, and stepping range will be considered a match.
298  */
299 static const struct amd_rev_mapent {
300 	uint_t rm_family;
301 	uint_t rm_modello;
302 	uint_t rm_modelhi;
303 	uint_t rm_steplo;
304 	uint_t rm_stephi;
305 	uint32_t rm_chiprev;
306 	const char *rm_chiprevstr;
307 	int rm_sktidx;
308 } amd_revmap[] = {
309 	/*
310 	 * Rev B includes model 0x4 stepping 0 and model 0x5 stepping 0 and 1.
311 	 */
312 	{ 0xf, 0x04, 0x04, 0x0, 0x0, X86_CHIPREV_AMD_F_REV_B, "B", 0 },
313 	{ 0xf, 0x05, 0x05, 0x0, 0x1, X86_CHIPREV_AMD_F_REV_B, "B", 0 },
314 	/*
315 	 * Rev C0 includes model 0x4 stepping 8 and model 0x5 stepping 8
316 	 */
317 	{ 0xf, 0x04, 0x05, 0x8, 0x8, X86_CHIPREV_AMD_F_REV_C0, "C0", 0 },
318 	/*
319 	 * Rev CG is the rest of extended model 0x0 - i.e., everything
320 	 * but the rev B and C0 combinations covered above.
321 	 */
322 	{ 0xf, 0x00, 0x0f, 0x0, 0xf, X86_CHIPREV_AMD_F_REV_CG, "CG", 0 },
323 	/*
324 	 * Rev D has extended model 0x1.
325 	 */
326 	{ 0xf, 0x10, 0x1f, 0x0, 0xf, X86_CHIPREV_AMD_F_REV_D, "D", 0 },
327 	/*
328 	 * Rev E has extended model 0x2.
329 	 * Extended model 0x3 is unused but available to grow into.
330 	 */
331 	{ 0xf, 0x20, 0x3f, 0x0, 0xf, X86_CHIPREV_AMD_F_REV_E, "E", 0 },
332 	/*
333 	 * Rev F has extended models 0x4 and 0x5.
334 	 */
335 	{ 0xf, 0x40, 0x5f, 0x0, 0xf, X86_CHIPREV_AMD_F_REV_F, "F", 1 },
336 	/*
337 	 * Rev G has extended model 0x6.
338 	 */
339 	{ 0xf, 0x60, 0x6f, 0x0, 0xf, X86_CHIPREV_AMD_F_REV_G, "G", 1 },
340 };
341 
342 /*
343  * Info for monitor/mwait idle loop.
344  *
345  * See cpuid section of "Intel 64 and IA-32 Architectures Software Developer's
346  * Manual Volume 2A: Instruction Set Reference, A-M" #25366-022US, November
347  * 2006.
348  * See MONITOR/MWAIT section of "AMD64 Architecture Programmer's Manual
349  * Documentation Updates" #33633, Rev 2.05, December 2006.
350  */
351 #define	MWAIT_SUPPORT		(0x00000001)	/* mwait supported */
352 #define	MWAIT_EXTENSIONS	(0x00000002)	/* extenstion supported */
353 #define	MWAIT_ECX_INT_ENABLE	(0x00000004)	/* ecx 1 extension supported */
354 #define	MWAIT_SUPPORTED(cpi)	((cpi)->cpi_std[1].cp_ecx & CPUID_INTC_ECX_MON)
355 #define	MWAIT_INT_ENABLE(cpi)	((cpi)->cpi_std[5].cp_ecx & 0x2)
356 #define	MWAIT_EXTENSION(cpi)	((cpi)->cpi_std[5].cp_ecx & 0x1)
357 #define	MWAIT_SIZE_MIN(cpi)	BITX((cpi)->cpi_std[5].cp_eax, 15, 0)
358 #define	MWAIT_SIZE_MAX(cpi)	BITX((cpi)->cpi_std[5].cp_ebx, 15, 0)
359 /*
360  * Number of sub-cstates for a given c-state.
361  */
362 #define	MWAIT_NUM_SUBC_STATES(cpi, c_state)			\
363 	BITX((cpi)->cpi_std[5].cp_edx, c_state + 3, c_state)
364 
365 static void intel_cpuid_4_cache_info(void *, struct cpuid_info *);
366 
367 static void
368 synth_amd_info(struct cpuid_info *cpi)
369 {
370 	const struct amd_rev_mapent *rmp;
371 	uint_t family, model, step;
372 	int i;
373 
374 	/*
375 	 * Currently only AMD family 0xf uses these fields.
376 	 */
377 	if (cpi->cpi_family != 0xf)
378 		return;
379 
380 	family = cpi->cpi_family;
381 	model = cpi->cpi_model;
382 	step = cpi->cpi_step;
383 
384 	for (i = 0, rmp = amd_revmap; i < sizeof (amd_revmap) / sizeof (*rmp);
385 	    i++, rmp++) {
386 		if (family == rmp->rm_family &&
387 		    model >= rmp->rm_modello && model <= rmp->rm_modelhi &&
388 		    step >= rmp->rm_steplo && step <= rmp->rm_stephi) {
389 			cpi->cpi_chiprev = rmp->rm_chiprev;
390 			cpi->cpi_chiprevstr = rmp->rm_chiprevstr;
391 			cpi->cpi_socket = amd_skts[rmp->rm_sktidx][model & 0x3];
392 			return;
393 		}
394 	}
395 }
396 
397 static void
398 synth_info(struct cpuid_info *cpi)
399 {
400 	cpi->cpi_chiprev = X86_CHIPREV_UNKNOWN;
401 	cpi->cpi_chiprevstr = "Unknown";
402 	cpi->cpi_socket = X86_SOCKET_UNKNOWN;
403 
404 	switch (cpi->cpi_vendor) {
405 	case X86_VENDOR_AMD:
406 		synth_amd_info(cpi);
407 		break;
408 
409 	default:
410 		break;
411 
412 	}
413 }
414 
415 /*
416  * Apply up various platform-dependent restrictions where the
417  * underlying platform restrictions mean the CPU can be marked
418  * as less capable than its cpuid instruction would imply.
419  */
420 
421 #define	platform_cpuid_mangle(vendor, eax, cp)	/* nothing */
422 
423 /*
424  *  Some undocumented ways of patching the results of the cpuid
425  *  instruction to permit running Solaris 10 on future cpus that
426  *  we don't currently support.  Could be set to non-zero values
427  *  via settings in eeprom.
428  */
429 
430 uint32_t cpuid_feature_ecx_include;
431 uint32_t cpuid_feature_ecx_exclude;
432 uint32_t cpuid_feature_edx_include;
433 uint32_t cpuid_feature_edx_exclude;
434 
435 void
436 cpuid_alloc_space(cpu_t *cpu)
437 {
438 	/*
439 	 * By convention, cpu0 is the boot cpu, which is set up
440 	 * before memory allocation is available.  All other cpus get
441 	 * their cpuid_info struct allocated here.
442 	 */
443 	ASSERT(cpu->cpu_id != 0);
444 	cpu->cpu_m.mcpu_cpi =
445 	    kmem_zalloc(sizeof (*cpu->cpu_m.mcpu_cpi), KM_SLEEP);
446 }
447 
448 void
449 cpuid_free_space(cpu_t *cpu)
450 {
451 	struct cpuid_info *cpi = cpu->cpu_m.mcpu_cpi;
452 	int i;
453 
454 	ASSERT(cpu->cpu_id != 0);
455 
456 	/*
457 	 * Free up any function 4 related dynamic storage
458 	 */
459 	for (i = 1; i < cpi->cpi_std_4_size; i++)
460 		kmem_free(cpi->cpi_std_4[i], sizeof (struct cpuid_regs));
461 	if (cpi->cpi_std_4_size > 0)
462 		kmem_free(cpi->cpi_std_4,
463 		    cpi->cpi_std_4_size * sizeof (struct cpuid_regs *));
464 
465 	kmem_free(cpu->cpu_m.mcpu_cpi, sizeof (*cpu->cpu_m.mcpu_cpi));
466 }
467 
468 uint_t
469 cpuid_pass1(cpu_t *cpu)
470 {
471 	uint32_t mask_ecx, mask_edx;
472 	uint_t feature = X86_CPUID;
473 	struct cpuid_info *cpi;
474 	struct cpuid_regs *cp;
475 	int xcpuid;
476 	extern int idle_cpu_prefer_mwait;
477 
478 
479 	/*
480 	 * Space statically allocated for cpu0, ensure pointer is set
481 	 */
482 	if (cpu->cpu_id == 0)
483 		cpu->cpu_m.mcpu_cpi = &cpuid_info0;
484 	cpi = cpu->cpu_m.mcpu_cpi;
485 	ASSERT(cpi != NULL);
486 	cp = &cpi->cpi_std[0];
487 	cp->cp_eax = 0;
488 	cpi->cpi_maxeax = __cpuid_insn(cp);
489 	{
490 		uint32_t *iptr = (uint32_t *)cpi->cpi_vendorstr;
491 		*iptr++ = cp->cp_ebx;
492 		*iptr++ = cp->cp_edx;
493 		*iptr++ = cp->cp_ecx;
494 		*(char *)&cpi->cpi_vendorstr[12] = '\0';
495 	}
496 
497 	/*
498 	 * Map the vendor string to a type code
499 	 */
500 	if (strcmp(cpi->cpi_vendorstr, "GenuineIntel") == 0)
501 		cpi->cpi_vendor = X86_VENDOR_Intel;
502 	else if (strcmp(cpi->cpi_vendorstr, "AuthenticAMD") == 0)
503 		cpi->cpi_vendor = X86_VENDOR_AMD;
504 	else if (strcmp(cpi->cpi_vendorstr, "GenuineTMx86") == 0)
505 		cpi->cpi_vendor = X86_VENDOR_TM;
506 	else if (strcmp(cpi->cpi_vendorstr, CyrixInstead) == 0)
507 		/*
508 		 * CyrixInstead is a variable used by the Cyrix detection code
509 		 * in locore.
510 		 */
511 		cpi->cpi_vendor = X86_VENDOR_Cyrix;
512 	else if (strcmp(cpi->cpi_vendorstr, "UMC UMC UMC ") == 0)
513 		cpi->cpi_vendor = X86_VENDOR_UMC;
514 	else if (strcmp(cpi->cpi_vendorstr, "NexGenDriven") == 0)
515 		cpi->cpi_vendor = X86_VENDOR_NexGen;
516 	else if (strcmp(cpi->cpi_vendorstr, "CentaurHauls") == 0)
517 		cpi->cpi_vendor = X86_VENDOR_Centaur;
518 	else if (strcmp(cpi->cpi_vendorstr, "RiseRiseRise") == 0)
519 		cpi->cpi_vendor = X86_VENDOR_Rise;
520 	else if (strcmp(cpi->cpi_vendorstr, "SiS SiS SiS ") == 0)
521 		cpi->cpi_vendor = X86_VENDOR_SiS;
522 	else if (strcmp(cpi->cpi_vendorstr, "Geode by NSC") == 0)
523 		cpi->cpi_vendor = X86_VENDOR_NSC;
524 	else
525 		cpi->cpi_vendor = X86_VENDOR_IntelClone;
526 
527 	x86_vendor = cpi->cpi_vendor; /* for compatibility */
528 
529 	/*
530 	 * Limit the range in case of weird hardware
531 	 */
532 	if (cpi->cpi_maxeax > CPI_MAXEAX_MAX)
533 		cpi->cpi_maxeax = CPI_MAXEAX_MAX;
534 	if (cpi->cpi_maxeax < 1)
535 		goto pass1_done;
536 
537 	cp = &cpi->cpi_std[1];
538 	cp->cp_eax = 1;
539 	(void) __cpuid_insn(cp);
540 
541 	/*
542 	 * Extract identifying constants for easy access.
543 	 */
544 	cpi->cpi_model = CPI_MODEL(cpi);
545 	cpi->cpi_family = CPI_FAMILY(cpi);
546 
547 	if (cpi->cpi_family == 0xf)
548 		cpi->cpi_family += CPI_FAMILY_XTD(cpi);
549 
550 	/*
551 	 * Beware: AMD uses "extended model" iff base *FAMILY* == 0xf.
552 	 * Intel, and presumably everyone else, uses model == 0xf, as
553 	 * one would expect (max value means possible overflow).  Sigh.
554 	 */
555 
556 	switch (cpi->cpi_vendor) {
557 	case X86_VENDOR_Intel:
558 		if (IS_EXTENDED_MODEL_INTEL(cpi))
559 			cpi->cpi_model += CPI_MODEL_XTD(cpi) << 4;
560 		break;
561 	case X86_VENDOR_AMD:
562 		if (CPI_FAMILY(cpi) == 0xf)
563 			cpi->cpi_model += CPI_MODEL_XTD(cpi) << 4;
564 		break;
565 	default:
566 		if (cpi->cpi_model == 0xf)
567 			cpi->cpi_model += CPI_MODEL_XTD(cpi) << 4;
568 		break;
569 	}
570 
571 	cpi->cpi_step = CPI_STEP(cpi);
572 	cpi->cpi_brandid = CPI_BRANDID(cpi);
573 
574 	/*
575 	 * *default* assumptions:
576 	 * - believe %edx feature word
577 	 * - ignore %ecx feature word
578 	 * - 32-bit virtual and physical addressing
579 	 */
580 	mask_edx = 0xffffffff;
581 	mask_ecx = 0;
582 
583 	cpi->cpi_pabits = cpi->cpi_vabits = 32;
584 
585 	switch (cpi->cpi_vendor) {
586 	case X86_VENDOR_Intel:
587 		if (cpi->cpi_family == 5)
588 			x86_type = X86_TYPE_P5;
589 		else if (IS_LEGACY_P6(cpi)) {
590 			x86_type = X86_TYPE_P6;
591 			pentiumpro_bug4046376 = 1;
592 			pentiumpro_bug4064495 = 1;
593 			/*
594 			 * Clear the SEP bit when it was set erroneously
595 			 */
596 			if (cpi->cpi_model < 3 && cpi->cpi_step < 3)
597 				cp->cp_edx &= ~CPUID_INTC_EDX_SEP;
598 		} else if (IS_NEW_F6(cpi) || cpi->cpi_family == 0xf) {
599 			x86_type = X86_TYPE_P4;
600 			/*
601 			 * We don't currently depend on any of the %ecx
602 			 * features until Prescott, so we'll only check
603 			 * this from P4 onwards.  We might want to revisit
604 			 * that idea later.
605 			 */
606 			mask_ecx = 0xffffffff;
607 		} else if (cpi->cpi_family > 0xf)
608 			mask_ecx = 0xffffffff;
609 		/*
610 		 * We don't support MONITOR/MWAIT if leaf 5 is not available
611 		 * to obtain the monitor linesize.
612 		 */
613 		if (cpi->cpi_maxeax < 5)
614 			mask_ecx &= ~CPUID_INTC_ECX_MON;
615 		break;
616 	case X86_VENDOR_IntelClone:
617 	default:
618 		break;
619 	case X86_VENDOR_AMD:
620 #if defined(OPTERON_ERRATUM_108)
621 		if (cpi->cpi_family == 0xf && cpi->cpi_model == 0xe) {
622 			cp->cp_eax = (0xf0f & cp->cp_eax) | 0xc0;
623 			cpi->cpi_model = 0xc;
624 		} else
625 #endif
626 		if (cpi->cpi_family == 5) {
627 			/*
628 			 * AMD K5 and K6
629 			 *
630 			 * These CPUs have an incomplete implementation
631 			 * of MCA/MCE which we mask away.
632 			 */
633 			mask_edx &= ~(CPUID_INTC_EDX_MCE | CPUID_INTC_EDX_MCA);
634 
635 			/*
636 			 * Model 0 uses the wrong (APIC) bit
637 			 * to indicate PGE.  Fix it here.
638 			 */
639 			if (cpi->cpi_model == 0) {
640 				if (cp->cp_edx & 0x200) {
641 					cp->cp_edx &= ~0x200;
642 					cp->cp_edx |= CPUID_INTC_EDX_PGE;
643 				}
644 			}
645 
646 			/*
647 			 * Early models had problems w/ MMX; disable.
648 			 */
649 			if (cpi->cpi_model < 6)
650 				mask_edx &= ~CPUID_INTC_EDX_MMX;
651 		}
652 
653 		/*
654 		 * For newer families, SSE3 and CX16, at least, are valid;
655 		 * enable all
656 		 */
657 		if (cpi->cpi_family >= 0xf)
658 			mask_ecx = 0xffffffff;
659 		/*
660 		 * We don't support MONITOR/MWAIT if leaf 5 is not available
661 		 * to obtain the monitor linesize.
662 		 */
663 		if (cpi->cpi_maxeax < 5)
664 			mask_ecx &= ~CPUID_INTC_ECX_MON;
665 
666 		/*
667 		 * Do not use MONITOR/MWAIT to halt in the idle loop on any AMD
668 		 * processors.  AMD does not intend MWAIT to be used in the cpu
669 		 * idle loop on current and future processors.  10h and future
670 		 * AMD processors use more power in MWAIT than HLT.
671 		 * Pre-family-10h Opterons do not have the MWAIT instruction.
672 		 */
673 		idle_cpu_prefer_mwait = 0;
674 
675 		break;
676 	case X86_VENDOR_TM:
677 		/*
678 		 * workaround the NT workaround in CMS 4.1
679 		 */
680 		if (cpi->cpi_family == 5 && cpi->cpi_model == 4 &&
681 		    (cpi->cpi_step == 2 || cpi->cpi_step == 3))
682 			cp->cp_edx |= CPUID_INTC_EDX_CX8;
683 		break;
684 	case X86_VENDOR_Centaur:
685 		/*
686 		 * workaround the NT workarounds again
687 		 */
688 		if (cpi->cpi_family == 6)
689 			cp->cp_edx |= CPUID_INTC_EDX_CX8;
690 		break;
691 	case X86_VENDOR_Cyrix:
692 		/*
693 		 * We rely heavily on the probing in locore
694 		 * to actually figure out what parts, if any,
695 		 * of the Cyrix cpuid instruction to believe.
696 		 */
697 		switch (x86_type) {
698 		case X86_TYPE_CYRIX_486:
699 			mask_edx = 0;
700 			break;
701 		case X86_TYPE_CYRIX_6x86:
702 			mask_edx = 0;
703 			break;
704 		case X86_TYPE_CYRIX_6x86L:
705 			mask_edx =
706 			    CPUID_INTC_EDX_DE |
707 			    CPUID_INTC_EDX_CX8;
708 			break;
709 		case X86_TYPE_CYRIX_6x86MX:
710 			mask_edx =
711 			    CPUID_INTC_EDX_DE |
712 			    CPUID_INTC_EDX_MSR |
713 			    CPUID_INTC_EDX_CX8 |
714 			    CPUID_INTC_EDX_PGE |
715 			    CPUID_INTC_EDX_CMOV |
716 			    CPUID_INTC_EDX_MMX;
717 			break;
718 		case X86_TYPE_CYRIX_GXm:
719 			mask_edx =
720 			    CPUID_INTC_EDX_MSR |
721 			    CPUID_INTC_EDX_CX8 |
722 			    CPUID_INTC_EDX_CMOV |
723 			    CPUID_INTC_EDX_MMX;
724 			break;
725 		case X86_TYPE_CYRIX_MediaGX:
726 			break;
727 		case X86_TYPE_CYRIX_MII:
728 		case X86_TYPE_VIA_CYRIX_III:
729 			mask_edx =
730 			    CPUID_INTC_EDX_DE |
731 			    CPUID_INTC_EDX_TSC |
732 			    CPUID_INTC_EDX_MSR |
733 			    CPUID_INTC_EDX_CX8 |
734 			    CPUID_INTC_EDX_PGE |
735 			    CPUID_INTC_EDX_CMOV |
736 			    CPUID_INTC_EDX_MMX;
737 			break;
738 		default:
739 			break;
740 		}
741 		break;
742 	}
743 
744 	/*
745 	 * Now we've figured out the masks that determine
746 	 * which bits we choose to believe, apply the masks
747 	 * to the feature words, then map the kernel's view
748 	 * of these feature words into its feature word.
749 	 */
750 	cp->cp_edx &= mask_edx;
751 	cp->cp_ecx &= mask_ecx;
752 
753 	/*
754 	 * apply any platform restrictions (we don't call this
755 	 * immediately after __cpuid_insn here, because we need the
756 	 * workarounds applied above first)
757 	 */
758 	platform_cpuid_mangle(cpi->cpi_vendor, 1, cp);
759 
760 	/*
761 	 * fold in overrides from the "eeprom" mechanism
762 	 */
763 	cp->cp_edx |= cpuid_feature_edx_include;
764 	cp->cp_edx &= ~cpuid_feature_edx_exclude;
765 
766 	cp->cp_ecx |= cpuid_feature_ecx_include;
767 	cp->cp_ecx &= ~cpuid_feature_ecx_exclude;
768 
769 	if (cp->cp_edx & CPUID_INTC_EDX_PSE)
770 		feature |= X86_LARGEPAGE;
771 	if (cp->cp_edx & CPUID_INTC_EDX_TSC)
772 		feature |= X86_TSC;
773 	if (cp->cp_edx & CPUID_INTC_EDX_MSR)
774 		feature |= X86_MSR;
775 	if (cp->cp_edx & CPUID_INTC_EDX_MTRR)
776 		feature |= X86_MTRR;
777 	if (cp->cp_edx & CPUID_INTC_EDX_PGE)
778 		feature |= X86_PGE;
779 	if (cp->cp_edx & CPUID_INTC_EDX_CMOV)
780 		feature |= X86_CMOV;
781 	if (cp->cp_edx & CPUID_INTC_EDX_MMX)
782 		feature |= X86_MMX;
783 	if ((cp->cp_edx & CPUID_INTC_EDX_MCE) != 0 &&
784 	    (cp->cp_edx & CPUID_INTC_EDX_MCA) != 0)
785 		feature |= X86_MCA;
786 	if (cp->cp_edx & CPUID_INTC_EDX_PAE)
787 		feature |= X86_PAE;
788 	if (cp->cp_edx & CPUID_INTC_EDX_CX8)
789 		feature |= X86_CX8;
790 	if (cp->cp_ecx & CPUID_INTC_ECX_CX16)
791 		feature |= X86_CX16;
792 	if (cp->cp_edx & CPUID_INTC_EDX_PAT)
793 		feature |= X86_PAT;
794 	if (cp->cp_edx & CPUID_INTC_EDX_SEP)
795 		feature |= X86_SEP;
796 	if (cp->cp_edx & CPUID_INTC_EDX_FXSR) {
797 		/*
798 		 * In our implementation, fxsave/fxrstor
799 		 * are prerequisites before we'll even
800 		 * try and do SSE things.
801 		 */
802 		if (cp->cp_edx & CPUID_INTC_EDX_SSE)
803 			feature |= X86_SSE;
804 		if (cp->cp_edx & CPUID_INTC_EDX_SSE2)
805 			feature |= X86_SSE2;
806 		if (cp->cp_ecx & CPUID_INTC_ECX_SSE3)
807 			feature |= X86_SSE3;
808 	}
809 	if (cp->cp_edx & CPUID_INTC_EDX_DE)
810 		feature |= X86_DE;
811 	if (cp->cp_ecx & CPUID_INTC_ECX_MON) {
812 		cpi->cpi_mwait.support |= MWAIT_SUPPORT;
813 		feature |= X86_MWAIT;
814 	}
815 
816 	if (feature & X86_PAE)
817 		cpi->cpi_pabits = 36;
818 
819 	/*
820 	 * Hyperthreading configuration is slightly tricky on Intel
821 	 * and pure clones, and even trickier on AMD.
822 	 *
823 	 * (AMD chose to set the HTT bit on their CMP processors,
824 	 * even though they're not actually hyperthreaded.  Thus it
825 	 * takes a bit more work to figure out what's really going
826 	 * on ... see the handling of the CMP_LGCY bit below)
827 	 */
828 	if (cp->cp_edx & CPUID_INTC_EDX_HTT) {
829 		cpi->cpi_ncpu_per_chip = CPI_CPU_COUNT(cpi);
830 		if (cpi->cpi_ncpu_per_chip > 1)
831 			feature |= X86_HTT;
832 	} else {
833 		cpi->cpi_ncpu_per_chip = 1;
834 	}
835 
836 	/*
837 	 * Work on the "extended" feature information, doing
838 	 * some basic initialization for cpuid_pass2()
839 	 */
840 	xcpuid = 0;
841 	switch (cpi->cpi_vendor) {
842 	case X86_VENDOR_Intel:
843 		if (IS_NEW_F6(cpi) || cpi->cpi_family >= 0xf)
844 			xcpuid++;
845 		break;
846 	case X86_VENDOR_AMD:
847 		if (cpi->cpi_family > 5 ||
848 		    (cpi->cpi_family == 5 && cpi->cpi_model >= 1))
849 			xcpuid++;
850 		break;
851 	case X86_VENDOR_Cyrix:
852 		/*
853 		 * Only these Cyrix CPUs are -known- to support
854 		 * extended cpuid operations.
855 		 */
856 		if (x86_type == X86_TYPE_VIA_CYRIX_III ||
857 		    x86_type == X86_TYPE_CYRIX_GXm)
858 			xcpuid++;
859 		break;
860 	case X86_VENDOR_Centaur:
861 	case X86_VENDOR_TM:
862 	default:
863 		xcpuid++;
864 		break;
865 	}
866 
867 	if (xcpuid) {
868 		cp = &cpi->cpi_extd[0];
869 		cp->cp_eax = 0x80000000;
870 		cpi->cpi_xmaxeax = __cpuid_insn(cp);
871 	}
872 
873 	if (cpi->cpi_xmaxeax & 0x80000000) {
874 
875 		if (cpi->cpi_xmaxeax > CPI_XMAXEAX_MAX)
876 			cpi->cpi_xmaxeax = CPI_XMAXEAX_MAX;
877 
878 		switch (cpi->cpi_vendor) {
879 		case X86_VENDOR_Intel:
880 		case X86_VENDOR_AMD:
881 			if (cpi->cpi_xmaxeax < 0x80000001)
882 				break;
883 			cp = &cpi->cpi_extd[1];
884 			cp->cp_eax = 0x80000001;
885 			(void) __cpuid_insn(cp);
886 
887 			if (cpi->cpi_vendor == X86_VENDOR_AMD &&
888 			    cpi->cpi_family == 5 &&
889 			    cpi->cpi_model == 6 &&
890 			    cpi->cpi_step == 6) {
891 				/*
892 				 * K6 model 6 uses bit 10 to indicate SYSC
893 				 * Later models use bit 11. Fix it here.
894 				 */
895 				if (cp->cp_edx & 0x400) {
896 					cp->cp_edx &= ~0x400;
897 					cp->cp_edx |= CPUID_AMD_EDX_SYSC;
898 				}
899 			}
900 
901 			platform_cpuid_mangle(cpi->cpi_vendor, 0x80000001, cp);
902 
903 			/*
904 			 * Compute the additions to the kernel's feature word.
905 			 */
906 			if (cp->cp_edx & CPUID_AMD_EDX_NX)
907 				feature |= X86_NX;
908 
909 			if ((cpi->cpi_vendor == X86_VENDOR_AMD) &&
910 			    (cpi->cpi_std[1].cp_edx & CPUID_INTC_EDX_FXSR) &&
911 			    (cp->cp_ecx & CPUID_AMD_ECX_SSE4A))
912 				feature |= X86_SSE4A;
913 
914 			/*
915 			 * If both the HTT and CMP_LGCY bits are set,
916 			 * then we're not actually HyperThreaded.  Read
917 			 * "AMD CPUID Specification" for more details.
918 			 */
919 			if (cpi->cpi_vendor == X86_VENDOR_AMD &&
920 			    (feature & X86_HTT) &&
921 			    (cp->cp_ecx & CPUID_AMD_ECX_CMP_LGCY)) {
922 				feature &= ~X86_HTT;
923 				feature |= X86_CMP;
924 			}
925 #if defined(__amd64)
926 			/*
927 			 * It's really tricky to support syscall/sysret in
928 			 * the i386 kernel; we rely on sysenter/sysexit
929 			 * instead.  In the amd64 kernel, things are -way-
930 			 * better.
931 			 */
932 			if (cp->cp_edx & CPUID_AMD_EDX_SYSC)
933 				feature |= X86_ASYSC;
934 
935 			/*
936 			 * While we're thinking about system calls, note
937 			 * that AMD processors don't support sysenter
938 			 * in long mode at all, so don't try to program them.
939 			 */
940 			if (x86_vendor == X86_VENDOR_AMD)
941 				feature &= ~X86_SEP;
942 #endif
943 			if (cp->cp_edx & CPUID_AMD_EDX_TSCP)
944 				feature |= X86_TSCP;
945 			break;
946 		default:
947 			break;
948 		}
949 
950 		/*
951 		 * Get CPUID data about processor cores and hyperthreads.
952 		 */
953 		switch (cpi->cpi_vendor) {
954 		case X86_VENDOR_Intel:
955 			if (cpi->cpi_maxeax >= 4) {
956 				cp = &cpi->cpi_std[4];
957 				cp->cp_eax = 4;
958 				cp->cp_ecx = 0;
959 				(void) __cpuid_insn(cp);
960 				platform_cpuid_mangle(cpi->cpi_vendor, 4, cp);
961 			}
962 			/*FALLTHROUGH*/
963 		case X86_VENDOR_AMD:
964 			if (cpi->cpi_xmaxeax < 0x80000008)
965 				break;
966 			cp = &cpi->cpi_extd[8];
967 			cp->cp_eax = 0x80000008;
968 			(void) __cpuid_insn(cp);
969 			platform_cpuid_mangle(cpi->cpi_vendor, 0x80000008, cp);
970 
971 			/*
972 			 * Virtual and physical address limits from
973 			 * cpuid override previously guessed values.
974 			 */
975 			cpi->cpi_pabits = BITX(cp->cp_eax, 7, 0);
976 			cpi->cpi_vabits = BITX(cp->cp_eax, 15, 8);
977 			break;
978 		default:
979 			break;
980 		}
981 
982 		/*
983 		 * Derive the number of cores per chip
984 		 */
985 		switch (cpi->cpi_vendor) {
986 		case X86_VENDOR_Intel:
987 			if (cpi->cpi_maxeax < 4) {
988 				cpi->cpi_ncore_per_chip = 1;
989 				break;
990 			} else {
991 				cpi->cpi_ncore_per_chip =
992 				    BITX((cpi)->cpi_std[4].cp_eax, 31, 26) + 1;
993 			}
994 			break;
995 		case X86_VENDOR_AMD:
996 			if (cpi->cpi_xmaxeax < 0x80000008) {
997 				cpi->cpi_ncore_per_chip = 1;
998 				break;
999 			} else {
1000 				cpi->cpi_ncore_per_chip =
1001 				    BITX((cpi)->cpi_extd[8].cp_ecx, 7, 0) + 1;
1002 			}
1003 			break;
1004 		default:
1005 			cpi->cpi_ncore_per_chip = 1;
1006 			break;
1007 		}
1008 	}
1009 
1010 	/*
1011 	 * If more than one core, then this processor is CMP.
1012 	 */
1013 	if (cpi->cpi_ncore_per_chip > 1)
1014 		feature |= X86_CMP;
1015 
1016 	/*
1017 	 * If the number of cores is the same as the number
1018 	 * of CPUs, then we cannot have HyperThreading.
1019 	 */
1020 	if (cpi->cpi_ncpu_per_chip == cpi->cpi_ncore_per_chip)
1021 		feature &= ~X86_HTT;
1022 
1023 	if ((feature & (X86_HTT | X86_CMP)) == 0) {
1024 		/*
1025 		 * Single-core single-threaded processors.
1026 		 */
1027 		cpi->cpi_chipid = -1;
1028 		cpi->cpi_clogid = 0;
1029 		cpi->cpi_coreid = cpu->cpu_id;
1030 	} else if (cpi->cpi_ncpu_per_chip > 1) {
1031 		uint_t i;
1032 		uint_t chipid_shift = 0;
1033 		uint_t coreid_shift = 0;
1034 		uint_t apic_id = CPI_APIC_ID(cpi);
1035 
1036 		for (i = 1; i < cpi->cpi_ncpu_per_chip; i <<= 1)
1037 			chipid_shift++;
1038 		cpi->cpi_chipid = apic_id >> chipid_shift;
1039 		cpi->cpi_clogid = apic_id & ((1 << chipid_shift) - 1);
1040 
1041 		if (cpi->cpi_vendor == X86_VENDOR_Intel) {
1042 			if (feature & X86_CMP) {
1043 				/*
1044 				 * Multi-core (and possibly multi-threaded)
1045 				 * processors.
1046 				 */
1047 				uint_t ncpu_per_core;
1048 				if (cpi->cpi_ncore_per_chip == 1)
1049 					ncpu_per_core = cpi->cpi_ncpu_per_chip;
1050 				else if (cpi->cpi_ncore_per_chip > 1)
1051 					ncpu_per_core = cpi->cpi_ncpu_per_chip /
1052 					    cpi->cpi_ncore_per_chip;
1053 				/*
1054 				 * 8bit APIC IDs on dual core Pentiums
1055 				 * look like this:
1056 				 *
1057 				 * +-----------------------+------+------+
1058 				 * | Physical Package ID   |  MC  |  HT  |
1059 				 * +-----------------------+------+------+
1060 				 * <------- chipid -------->
1061 				 * <------- coreid --------------->
1062 				 *			   <--- clogid -->
1063 				 *
1064 				 * Where the number of bits necessary to
1065 				 * represent MC and HT fields together equals
1066 				 * to the minimum number of bits necessary to
1067 				 * store the value of cpi->cpi_ncpu_per_chip.
1068 				 * Of those bits, the MC part uses the number
1069 				 * of bits necessary to store the value of
1070 				 * cpi->cpi_ncore_per_chip.
1071 				 */
1072 				for (i = 1; i < ncpu_per_core; i <<= 1)
1073 					coreid_shift++;
1074 				cpi->cpi_coreid = apic_id >> coreid_shift;
1075 			} else if (feature & X86_HTT) {
1076 				/*
1077 				 * Single-core multi-threaded processors.
1078 				 */
1079 				cpi->cpi_coreid = cpi->cpi_chipid;
1080 			}
1081 		} else if (cpi->cpi_vendor == X86_VENDOR_AMD) {
1082 			/*
1083 			 * AMD currently only has dual-core processors with
1084 			 * single-threaded cores.  If they ever release
1085 			 * multi-threaded processors, then this code
1086 			 * will have to be updated.
1087 			 */
1088 			cpi->cpi_coreid = cpu->cpu_id;
1089 		} else {
1090 			/*
1091 			 * All other processors are currently
1092 			 * assumed to have single cores.
1093 			 */
1094 			cpi->cpi_coreid = cpi->cpi_chipid;
1095 		}
1096 	}
1097 
1098 	/*
1099 	 * Synthesize chip "revision" and socket type
1100 	 */
1101 	synth_info(cpi);
1102 
1103 pass1_done:
1104 	cpi->cpi_pass = 1;
1105 	return (feature);
1106 }
1107 
1108 /*
1109  * Make copies of the cpuid table entries we depend on, in
1110  * part for ease of parsing now, in part so that we have only
1111  * one place to correct any of it, in part for ease of
1112  * later export to userland, and in part so we can look at
1113  * this stuff in a crash dump.
1114  */
1115 
1116 /*ARGSUSED*/
1117 void
1118 cpuid_pass2(cpu_t *cpu)
1119 {
1120 	uint_t n, nmax;
1121 	int i;
1122 	struct cpuid_regs *cp;
1123 	uint8_t *dp;
1124 	uint32_t *iptr;
1125 	struct cpuid_info *cpi = cpu->cpu_m.mcpu_cpi;
1126 
1127 	ASSERT(cpi->cpi_pass == 1);
1128 
1129 	if (cpi->cpi_maxeax < 1)
1130 		goto pass2_done;
1131 
1132 	if ((nmax = cpi->cpi_maxeax + 1) > NMAX_CPI_STD)
1133 		nmax = NMAX_CPI_STD;
1134 	/*
1135 	 * (We already handled n == 0 and n == 1 in pass 1)
1136 	 */
1137 	for (n = 2, cp = &cpi->cpi_std[2]; n < nmax; n++, cp++) {
1138 		cp->cp_eax = n;
1139 
1140 		/*
1141 		 * CPUID function 4 expects %ecx to be initialized
1142 		 * with an index which indicates which cache to return
1143 		 * information about. The OS is expected to call function 4
1144 		 * with %ecx set to 0, 1, 2, ... until it returns with
1145 		 * EAX[4:0] set to 0, which indicates there are no more
1146 		 * caches.
1147 		 *
1148 		 * Here, populate cpi_std[4] with the information returned by
1149 		 * function 4 when %ecx == 0, and do the rest in cpuid_pass3()
1150 		 * when dynamic memory allocation becomes available.
1151 		 *
1152 		 * Note: we need to explicitly initialize %ecx here, since
1153 		 * function 4 may have been previously invoked.
1154 		 */
1155 		if (n == 4)
1156 			cp->cp_ecx = 0;
1157 
1158 		(void) __cpuid_insn(cp);
1159 		platform_cpuid_mangle(cpi->cpi_vendor, n, cp);
1160 		switch (n) {
1161 		case 2:
1162 			/*
1163 			 * "the lower 8 bits of the %eax register
1164 			 * contain a value that identifies the number
1165 			 * of times the cpuid [instruction] has to be
1166 			 * executed to obtain a complete image of the
1167 			 * processor's caching systems."
1168 			 *
1169 			 * How *do* they make this stuff up?
1170 			 */
1171 			cpi->cpi_ncache = sizeof (*cp) *
1172 			    BITX(cp->cp_eax, 7, 0);
1173 			if (cpi->cpi_ncache == 0)
1174 				break;
1175 			cpi->cpi_ncache--;	/* skip count byte */
1176 
1177 			/*
1178 			 * Well, for now, rather than attempt to implement
1179 			 * this slightly dubious algorithm, we just look
1180 			 * at the first 15 ..
1181 			 */
1182 			if (cpi->cpi_ncache > (sizeof (*cp) - 1))
1183 				cpi->cpi_ncache = sizeof (*cp) - 1;
1184 
1185 			dp = cpi->cpi_cacheinfo;
1186 			if (BITX(cp->cp_eax, 31, 31) == 0) {
1187 				uint8_t *p = (void *)&cp->cp_eax;
1188 				for (i = 1; i < 3; i++)
1189 					if (p[i] != 0)
1190 						*dp++ = p[i];
1191 			}
1192 			if (BITX(cp->cp_ebx, 31, 31) == 0) {
1193 				uint8_t *p = (void *)&cp->cp_ebx;
1194 				for (i = 0; i < 4; i++)
1195 					if (p[i] != 0)
1196 						*dp++ = p[i];
1197 			}
1198 			if (BITX(cp->cp_ecx, 31, 31) == 0) {
1199 				uint8_t *p = (void *)&cp->cp_ecx;
1200 				for (i = 0; i < 4; i++)
1201 					if (p[i] != 0)
1202 						*dp++ = p[i];
1203 			}
1204 			if (BITX(cp->cp_edx, 31, 31) == 0) {
1205 				uint8_t *p = (void *)&cp->cp_edx;
1206 				for (i = 0; i < 4; i++)
1207 					if (p[i] != 0)
1208 						*dp++ = p[i];
1209 			}
1210 			break;
1211 
1212 		case 3:	/* Processor serial number, if PSN supported */
1213 			break;
1214 
1215 		case 4:	/* Deterministic cache parameters */
1216 			break;
1217 
1218 		case 5:	/* Monitor/Mwait parameters */
1219 		{
1220 			size_t mwait_size;
1221 
1222 			/*
1223 			 * check cpi_mwait.support which was set in cpuid_pass1
1224 			 */
1225 			if (!(cpi->cpi_mwait.support & MWAIT_SUPPORT))
1226 				break;
1227 
1228 			/*
1229 			 * Protect ourself from insane mwait line size.
1230 			 * Workaround for incomplete hardware emulator(s).
1231 			 */
1232 			mwait_size = (size_t)MWAIT_SIZE_MAX(cpi);
1233 			if (mwait_size < sizeof (uint32_t) ||
1234 			    !ISP2(mwait_size)) {
1235 #if DEBUG
1236 				cmn_err(CE_NOTE, "Cannot handle cpu %d mwait "
1237 				    "size %ld",
1238 				    cpu->cpu_id, (long)mwait_size);
1239 #endif
1240 				break;
1241 			}
1242 
1243 			cpi->cpi_mwait.mon_min = (size_t)MWAIT_SIZE_MIN(cpi);
1244 			cpi->cpi_mwait.mon_max = mwait_size;
1245 			if (MWAIT_EXTENSION(cpi)) {
1246 				cpi->cpi_mwait.support |= MWAIT_EXTENSIONS;
1247 				if (MWAIT_INT_ENABLE(cpi))
1248 					cpi->cpi_mwait.support |=
1249 					    MWAIT_ECX_INT_ENABLE;
1250 			}
1251 			break;
1252 		}
1253 		default:
1254 			break;
1255 		}
1256 	}
1257 
1258 	if ((cpi->cpi_xmaxeax & 0x80000000) == 0)
1259 		goto pass2_done;
1260 
1261 	if ((nmax = cpi->cpi_xmaxeax - 0x80000000 + 1) > NMAX_CPI_EXTD)
1262 		nmax = NMAX_CPI_EXTD;
1263 	/*
1264 	 * Copy the extended properties, fixing them as we go.
1265 	 * (We already handled n == 0 and n == 1 in pass 1)
1266 	 */
1267 	iptr = (void *)cpi->cpi_brandstr;
1268 	for (n = 2, cp = &cpi->cpi_extd[2]; n < nmax; cp++, n++) {
1269 		cp->cp_eax = 0x80000000 + n;
1270 		(void) __cpuid_insn(cp);
1271 		platform_cpuid_mangle(cpi->cpi_vendor, 0x80000000 + n, cp);
1272 		switch (n) {
1273 		case 2:
1274 		case 3:
1275 		case 4:
1276 			/*
1277 			 * Extract the brand string
1278 			 */
1279 			*iptr++ = cp->cp_eax;
1280 			*iptr++ = cp->cp_ebx;
1281 			*iptr++ = cp->cp_ecx;
1282 			*iptr++ = cp->cp_edx;
1283 			break;
1284 		case 5:
1285 			switch (cpi->cpi_vendor) {
1286 			case X86_VENDOR_AMD:
1287 				/*
1288 				 * The Athlon and Duron were the first
1289 				 * parts to report the sizes of the
1290 				 * TLB for large pages. Before then,
1291 				 * we don't trust the data.
1292 				 */
1293 				if (cpi->cpi_family < 6 ||
1294 				    (cpi->cpi_family == 6 &&
1295 				    cpi->cpi_model < 1))
1296 					cp->cp_eax = 0;
1297 				break;
1298 			default:
1299 				break;
1300 			}
1301 			break;
1302 		case 6:
1303 			switch (cpi->cpi_vendor) {
1304 			case X86_VENDOR_AMD:
1305 				/*
1306 				 * The Athlon and Duron were the first
1307 				 * AMD parts with L2 TLB's.
1308 				 * Before then, don't trust the data.
1309 				 */
1310 				if (cpi->cpi_family < 6 ||
1311 				    cpi->cpi_family == 6 &&
1312 				    cpi->cpi_model < 1)
1313 					cp->cp_eax = cp->cp_ebx = 0;
1314 				/*
1315 				 * AMD Duron rev A0 reports L2
1316 				 * cache size incorrectly as 1K
1317 				 * when it is really 64K
1318 				 */
1319 				if (cpi->cpi_family == 6 &&
1320 				    cpi->cpi_model == 3 &&
1321 				    cpi->cpi_step == 0) {
1322 					cp->cp_ecx &= 0xffff;
1323 					cp->cp_ecx |= 0x400000;
1324 				}
1325 				break;
1326 			case X86_VENDOR_Cyrix:	/* VIA C3 */
1327 				/*
1328 				 * VIA C3 processors are a bit messed
1329 				 * up w.r.t. encoding cache sizes in %ecx
1330 				 */
1331 				if (cpi->cpi_family != 6)
1332 					break;
1333 				/*
1334 				 * model 7 and 8 were incorrectly encoded
1335 				 *
1336 				 * xxx is model 8 really broken?
1337 				 */
1338 				if (cpi->cpi_model == 7 ||
1339 				    cpi->cpi_model == 8)
1340 					cp->cp_ecx =
1341 					    BITX(cp->cp_ecx, 31, 24) << 16 |
1342 					    BITX(cp->cp_ecx, 23, 16) << 12 |
1343 					    BITX(cp->cp_ecx, 15, 8) << 8 |
1344 					    BITX(cp->cp_ecx, 7, 0);
1345 				/*
1346 				 * model 9 stepping 1 has wrong associativity
1347 				 */
1348 				if (cpi->cpi_model == 9 && cpi->cpi_step == 1)
1349 					cp->cp_ecx |= 8 << 12;
1350 				break;
1351 			case X86_VENDOR_Intel:
1352 				/*
1353 				 * Extended L2 Cache features function.
1354 				 * First appeared on Prescott.
1355 				 */
1356 			default:
1357 				break;
1358 			}
1359 			break;
1360 		default:
1361 			break;
1362 		}
1363 	}
1364 
1365 pass2_done:
1366 	cpi->cpi_pass = 2;
1367 }
1368 
1369 static const char *
1370 intel_cpubrand(const struct cpuid_info *cpi)
1371 {
1372 	int i;
1373 
1374 	if ((x86_feature & X86_CPUID) == 0 ||
1375 	    cpi->cpi_maxeax < 1 || cpi->cpi_family < 5)
1376 		return ("i486");
1377 
1378 	switch (cpi->cpi_family) {
1379 	case 5:
1380 		return ("Intel Pentium(r)");
1381 	case 6:
1382 		switch (cpi->cpi_model) {
1383 			uint_t celeron, xeon;
1384 			const struct cpuid_regs *cp;
1385 		case 0:
1386 		case 1:
1387 		case 2:
1388 			return ("Intel Pentium(r) Pro");
1389 		case 3:
1390 		case 4:
1391 			return ("Intel Pentium(r) II");
1392 		case 6:
1393 			return ("Intel Celeron(r)");
1394 		case 5:
1395 		case 7:
1396 			celeron = xeon = 0;
1397 			cp = &cpi->cpi_std[2];	/* cache info */
1398 
1399 			for (i = 1; i < 3; i++) {
1400 				uint_t tmp;
1401 
1402 				tmp = (cp->cp_eax >> (8 * i)) & 0xff;
1403 				if (tmp == 0x40)
1404 					celeron++;
1405 				if (tmp >= 0x44 && tmp <= 0x45)
1406 					xeon++;
1407 			}
1408 
1409 			for (i = 0; i < 2; i++) {
1410 				uint_t tmp;
1411 
1412 				tmp = (cp->cp_ebx >> (8 * i)) & 0xff;
1413 				if (tmp == 0x40)
1414 					celeron++;
1415 				else if (tmp >= 0x44 && tmp <= 0x45)
1416 					xeon++;
1417 			}
1418 
1419 			for (i = 0; i < 4; i++) {
1420 				uint_t tmp;
1421 
1422 				tmp = (cp->cp_ecx >> (8 * i)) & 0xff;
1423 				if (tmp == 0x40)
1424 					celeron++;
1425 				else if (tmp >= 0x44 && tmp <= 0x45)
1426 					xeon++;
1427 			}
1428 
1429 			for (i = 0; i < 4; i++) {
1430 				uint_t tmp;
1431 
1432 				tmp = (cp->cp_edx >> (8 * i)) & 0xff;
1433 				if (tmp == 0x40)
1434 					celeron++;
1435 				else if (tmp >= 0x44 && tmp <= 0x45)
1436 					xeon++;
1437 			}
1438 
1439 			if (celeron)
1440 				return ("Intel Celeron(r)");
1441 			if (xeon)
1442 				return (cpi->cpi_model == 5 ?
1443 				    "Intel Pentium(r) II Xeon(tm)" :
1444 				    "Intel Pentium(r) III Xeon(tm)");
1445 			return (cpi->cpi_model == 5 ?
1446 			    "Intel Pentium(r) II or Pentium(r) II Xeon(tm)" :
1447 			    "Intel Pentium(r) III or Pentium(r) III Xeon(tm)");
1448 		default:
1449 			break;
1450 		}
1451 	default:
1452 		break;
1453 	}
1454 
1455 	/* BrandID is present if the field is nonzero */
1456 	if (cpi->cpi_brandid != 0) {
1457 		static const struct {
1458 			uint_t bt_bid;
1459 			const char *bt_str;
1460 		} brand_tbl[] = {
1461 			{ 0x1,	"Intel(r) Celeron(r)" },
1462 			{ 0x2,	"Intel(r) Pentium(r) III" },
1463 			{ 0x3,	"Intel(r) Pentium(r) III Xeon(tm)" },
1464 			{ 0x4,	"Intel(r) Pentium(r) III" },
1465 			{ 0x6,	"Mobile Intel(r) Pentium(r) III" },
1466 			{ 0x7,	"Mobile Intel(r) Celeron(r)" },
1467 			{ 0x8,	"Intel(r) Pentium(r) 4" },
1468 			{ 0x9,	"Intel(r) Pentium(r) 4" },
1469 			{ 0xa,	"Intel(r) Celeron(r)" },
1470 			{ 0xb,	"Intel(r) Xeon(tm)" },
1471 			{ 0xc,	"Intel(r) Xeon(tm) MP" },
1472 			{ 0xe,	"Mobile Intel(r) Pentium(r) 4" },
1473 			{ 0xf,	"Mobile Intel(r) Celeron(r)" },
1474 			{ 0x11, "Mobile Genuine Intel(r)" },
1475 			{ 0x12, "Intel(r) Celeron(r) M" },
1476 			{ 0x13, "Mobile Intel(r) Celeron(r)" },
1477 			{ 0x14, "Intel(r) Celeron(r)" },
1478 			{ 0x15, "Mobile Genuine Intel(r)" },
1479 			{ 0x16,	"Intel(r) Pentium(r) M" },
1480 			{ 0x17, "Mobile Intel(r) Celeron(r)" }
1481 		};
1482 		uint_t btblmax = sizeof (brand_tbl) / sizeof (brand_tbl[0]);
1483 		uint_t sgn;
1484 
1485 		sgn = (cpi->cpi_family << 8) |
1486 		    (cpi->cpi_model << 4) | cpi->cpi_step;
1487 
1488 		for (i = 0; i < btblmax; i++)
1489 			if (brand_tbl[i].bt_bid == cpi->cpi_brandid)
1490 				break;
1491 		if (i < btblmax) {
1492 			if (sgn == 0x6b1 && cpi->cpi_brandid == 3)
1493 				return ("Intel(r) Celeron(r)");
1494 			if (sgn < 0xf13 && cpi->cpi_brandid == 0xb)
1495 				return ("Intel(r) Xeon(tm) MP");
1496 			if (sgn < 0xf13 && cpi->cpi_brandid == 0xe)
1497 				return ("Intel(r) Xeon(tm)");
1498 			return (brand_tbl[i].bt_str);
1499 		}
1500 	}
1501 
1502 	return (NULL);
1503 }
1504 
1505 static const char *
1506 amd_cpubrand(const struct cpuid_info *cpi)
1507 {
1508 	if ((x86_feature & X86_CPUID) == 0 ||
1509 	    cpi->cpi_maxeax < 1 || cpi->cpi_family < 5)
1510 		return ("i486 compatible");
1511 
1512 	switch (cpi->cpi_family) {
1513 	case 5:
1514 		switch (cpi->cpi_model) {
1515 		case 0:
1516 		case 1:
1517 		case 2:
1518 		case 3:
1519 		case 4:
1520 		case 5:
1521 			return ("AMD-K5(r)");
1522 		case 6:
1523 		case 7:
1524 			return ("AMD-K6(r)");
1525 		case 8:
1526 			return ("AMD-K6(r)-2");
1527 		case 9:
1528 			return ("AMD-K6(r)-III");
1529 		default:
1530 			return ("AMD (family 5)");
1531 		}
1532 	case 6:
1533 		switch (cpi->cpi_model) {
1534 		case 1:
1535 			return ("AMD-K7(tm)");
1536 		case 0:
1537 		case 2:
1538 		case 4:
1539 			return ("AMD Athlon(tm)");
1540 		case 3:
1541 		case 7:
1542 			return ("AMD Duron(tm)");
1543 		case 6:
1544 		case 8:
1545 		case 10:
1546 			/*
1547 			 * Use the L2 cache size to distinguish
1548 			 */
1549 			return ((cpi->cpi_extd[6].cp_ecx >> 16) >= 256 ?
1550 			    "AMD Athlon(tm)" : "AMD Duron(tm)");
1551 		default:
1552 			return ("AMD (family 6)");
1553 		}
1554 	default:
1555 		break;
1556 	}
1557 
1558 	if (cpi->cpi_family == 0xf && cpi->cpi_model == 5 &&
1559 	    cpi->cpi_brandid != 0) {
1560 		switch (BITX(cpi->cpi_brandid, 7, 5)) {
1561 		case 3:
1562 			return ("AMD Opteron(tm) UP 1xx");
1563 		case 4:
1564 			return ("AMD Opteron(tm) DP 2xx");
1565 		case 5:
1566 			return ("AMD Opteron(tm) MP 8xx");
1567 		default:
1568 			return ("AMD Opteron(tm)");
1569 		}
1570 	}
1571 
1572 	return (NULL);
1573 }
1574 
1575 static const char *
1576 cyrix_cpubrand(struct cpuid_info *cpi, uint_t type)
1577 {
1578 	if ((x86_feature & X86_CPUID) == 0 ||
1579 	    cpi->cpi_maxeax < 1 || cpi->cpi_family < 5 ||
1580 	    type == X86_TYPE_CYRIX_486)
1581 		return ("i486 compatible");
1582 
1583 	switch (type) {
1584 	case X86_TYPE_CYRIX_6x86:
1585 		return ("Cyrix 6x86");
1586 	case X86_TYPE_CYRIX_6x86L:
1587 		return ("Cyrix 6x86L");
1588 	case X86_TYPE_CYRIX_6x86MX:
1589 		return ("Cyrix 6x86MX");
1590 	case X86_TYPE_CYRIX_GXm:
1591 		return ("Cyrix GXm");
1592 	case X86_TYPE_CYRIX_MediaGX:
1593 		return ("Cyrix MediaGX");
1594 	case X86_TYPE_CYRIX_MII:
1595 		return ("Cyrix M2");
1596 	case X86_TYPE_VIA_CYRIX_III:
1597 		return ("VIA Cyrix M3");
1598 	default:
1599 		/*
1600 		 * Have another wild guess ..
1601 		 */
1602 		if (cpi->cpi_family == 4 && cpi->cpi_model == 9)
1603 			return ("Cyrix 5x86");
1604 		else if (cpi->cpi_family == 5) {
1605 			switch (cpi->cpi_model) {
1606 			case 2:
1607 				return ("Cyrix 6x86");	/* Cyrix M1 */
1608 			case 4:
1609 				return ("Cyrix MediaGX");
1610 			default:
1611 				break;
1612 			}
1613 		} else if (cpi->cpi_family == 6) {
1614 			switch (cpi->cpi_model) {
1615 			case 0:
1616 				return ("Cyrix 6x86MX"); /* Cyrix M2? */
1617 			case 5:
1618 			case 6:
1619 			case 7:
1620 			case 8:
1621 			case 9:
1622 				return ("VIA C3");
1623 			default:
1624 				break;
1625 			}
1626 		}
1627 		break;
1628 	}
1629 	return (NULL);
1630 }
1631 
1632 /*
1633  * This only gets called in the case that the CPU extended
1634  * feature brand string (0x80000002, 0x80000003, 0x80000004)
1635  * aren't available, or contain null bytes for some reason.
1636  */
1637 static void
1638 fabricate_brandstr(struct cpuid_info *cpi)
1639 {
1640 	const char *brand = NULL;
1641 
1642 	switch (cpi->cpi_vendor) {
1643 	case X86_VENDOR_Intel:
1644 		brand = intel_cpubrand(cpi);
1645 		break;
1646 	case X86_VENDOR_AMD:
1647 		brand = amd_cpubrand(cpi);
1648 		break;
1649 	case X86_VENDOR_Cyrix:
1650 		brand = cyrix_cpubrand(cpi, x86_type);
1651 		break;
1652 	case X86_VENDOR_NexGen:
1653 		if (cpi->cpi_family == 5 && cpi->cpi_model == 0)
1654 			brand = "NexGen Nx586";
1655 		break;
1656 	case X86_VENDOR_Centaur:
1657 		if (cpi->cpi_family == 5)
1658 			switch (cpi->cpi_model) {
1659 			case 4:
1660 				brand = "Centaur C6";
1661 				break;
1662 			case 8:
1663 				brand = "Centaur C2";
1664 				break;
1665 			case 9:
1666 				brand = "Centaur C3";
1667 				break;
1668 			default:
1669 				break;
1670 			}
1671 		break;
1672 	case X86_VENDOR_Rise:
1673 		if (cpi->cpi_family == 5 &&
1674 		    (cpi->cpi_model == 0 || cpi->cpi_model == 2))
1675 			brand = "Rise mP6";
1676 		break;
1677 	case X86_VENDOR_SiS:
1678 		if (cpi->cpi_family == 5 && cpi->cpi_model == 0)
1679 			brand = "SiS 55x";
1680 		break;
1681 	case X86_VENDOR_TM:
1682 		if (cpi->cpi_family == 5 && cpi->cpi_model == 4)
1683 			brand = "Transmeta Crusoe TM3x00 or TM5x00";
1684 		break;
1685 	case X86_VENDOR_NSC:
1686 	case X86_VENDOR_UMC:
1687 	default:
1688 		break;
1689 	}
1690 	if (brand) {
1691 		(void) strcpy((char *)cpi->cpi_brandstr, brand);
1692 		return;
1693 	}
1694 
1695 	/*
1696 	 * If all else fails ...
1697 	 */
1698 	(void) snprintf(cpi->cpi_brandstr, sizeof (cpi->cpi_brandstr),
1699 	    "%s %d.%d.%d", cpi->cpi_vendorstr, cpi->cpi_family,
1700 	    cpi->cpi_model, cpi->cpi_step);
1701 }
1702 
1703 /*
1704  * This routine is called just after kernel memory allocation
1705  * becomes available on cpu0, and as part of mp_startup() on
1706  * the other cpus.
1707  *
1708  * Fixup the brand string, and collect any information from cpuid
1709  * that requires dynamicically allocated storage to represent.
1710  */
1711 /*ARGSUSED*/
1712 void
1713 cpuid_pass3(cpu_t *cpu)
1714 {
1715 	int	i, max, shft, level, size;
1716 	struct cpuid_regs regs;
1717 	struct cpuid_regs *cp;
1718 	struct cpuid_info *cpi = cpu->cpu_m.mcpu_cpi;
1719 
1720 	ASSERT(cpi->cpi_pass == 2);
1721 
1722 	/*
1723 	 * Function 4: Deterministic cache parameters
1724 	 *
1725 	 * Take this opportunity to detect the number of threads
1726 	 * sharing the last level cache, and construct a corresponding
1727 	 * cache id. The respective cpuid_info members are initialized
1728 	 * to the default case of "no last level cache sharing".
1729 	 */
1730 	cpi->cpi_ncpu_shr_last_cache = 1;
1731 	cpi->cpi_last_lvl_cacheid = cpu->cpu_id;
1732 
1733 	if (cpi->cpi_maxeax >= 4 && cpi->cpi_vendor == X86_VENDOR_Intel) {
1734 
1735 		/*
1736 		 * Find the # of elements (size) returned by fn 4, and along
1737 		 * the way detect last level cache sharing details.
1738 		 */
1739 		bzero(&regs, sizeof (regs));
1740 		cp = &regs;
1741 		for (i = 0, max = 0; i < CPI_FN4_ECX_MAX; i++) {
1742 			cp->cp_eax = 4;
1743 			cp->cp_ecx = i;
1744 
1745 			(void) __cpuid_insn(cp);
1746 
1747 			if (CPI_CACHE_TYPE(cp) == 0)
1748 				break;
1749 			level = CPI_CACHE_LVL(cp);
1750 			if (level > max) {
1751 				max = level;
1752 				cpi->cpi_ncpu_shr_last_cache =
1753 				    CPI_NTHR_SHR_CACHE(cp) + 1;
1754 			}
1755 		}
1756 		cpi->cpi_std_4_size = size = i;
1757 
1758 		/*
1759 		 * Allocate the cpi_std_4 array. The first element
1760 		 * references the regs for fn 4, %ecx == 0, which
1761 		 * cpuid_pass2() stashed in cpi->cpi_std[4].
1762 		 */
1763 		if (size > 0) {
1764 			cpi->cpi_std_4 =
1765 			    kmem_alloc(size * sizeof (cp), KM_SLEEP);
1766 			cpi->cpi_std_4[0] = &cpi->cpi_std[4];
1767 
1768 			/*
1769 			 * Allocate storage to hold the additional regs
1770 			 * for function 4, %ecx == 1 .. cpi_std_4_size.
1771 			 *
1772 			 * The regs for fn 4, %ecx == 0 has already
1773 			 * been allocated as indicated above.
1774 			 */
1775 			for (i = 1; i < size; i++) {
1776 				cp = cpi->cpi_std_4[i] =
1777 				    kmem_zalloc(sizeof (regs), KM_SLEEP);
1778 				cp->cp_eax = 4;
1779 				cp->cp_ecx = i;
1780 
1781 				(void) __cpuid_insn(cp);
1782 			}
1783 		}
1784 		/*
1785 		 * Determine the number of bits needed to represent
1786 		 * the number of CPUs sharing the last level cache.
1787 		 *
1788 		 * Shift off that number of bits from the APIC id to
1789 		 * derive the cache id.
1790 		 */
1791 		shft = 0;
1792 		for (i = 1; i < cpi->cpi_ncpu_shr_last_cache; i <<= 1)
1793 			shft++;
1794 		cpi->cpi_last_lvl_cacheid = CPI_APIC_ID(cpi) >> shft;
1795 	}
1796 
1797 	/*
1798 	 * Now fixup the brand string
1799 	 */
1800 	if ((cpi->cpi_xmaxeax & 0x80000000) == 0) {
1801 		fabricate_brandstr(cpi);
1802 	} else {
1803 
1804 		/*
1805 		 * If we successfully extracted a brand string from the cpuid
1806 		 * instruction, clean it up by removing leading spaces and
1807 		 * similar junk.
1808 		 */
1809 		if (cpi->cpi_brandstr[0]) {
1810 			size_t maxlen = sizeof (cpi->cpi_brandstr);
1811 			char *src, *dst;
1812 
1813 			dst = src = (char *)cpi->cpi_brandstr;
1814 			src[maxlen - 1] = '\0';
1815 			/*
1816 			 * strip leading spaces
1817 			 */
1818 			while (*src == ' ')
1819 				src++;
1820 			/*
1821 			 * Remove any 'Genuine' or "Authentic" prefixes
1822 			 */
1823 			if (strncmp(src, "Genuine ", 8) == 0)
1824 				src += 8;
1825 			if (strncmp(src, "Authentic ", 10) == 0)
1826 				src += 10;
1827 
1828 			/*
1829 			 * Now do an in-place copy.
1830 			 * Map (R) to (r) and (TM) to (tm).
1831 			 * The era of teletypes is long gone, and there's
1832 			 * -really- no need to shout.
1833 			 */
1834 			while (*src != '\0') {
1835 				if (src[0] == '(') {
1836 					if (strncmp(src + 1, "R)", 2) == 0) {
1837 						(void) strncpy(dst, "(r)", 3);
1838 						src += 3;
1839 						dst += 3;
1840 						continue;
1841 					}
1842 					if (strncmp(src + 1, "TM)", 3) == 0) {
1843 						(void) strncpy(dst, "(tm)", 4);
1844 						src += 4;
1845 						dst += 4;
1846 						continue;
1847 					}
1848 				}
1849 				*dst++ = *src++;
1850 			}
1851 			*dst = '\0';
1852 
1853 			/*
1854 			 * Finally, remove any trailing spaces
1855 			 */
1856 			while (--dst > cpi->cpi_brandstr)
1857 				if (*dst == ' ')
1858 					*dst = '\0';
1859 				else
1860 					break;
1861 		} else
1862 			fabricate_brandstr(cpi);
1863 	}
1864 	cpi->cpi_pass = 3;
1865 }
1866 
1867 /*
1868  * This routine is called out of bind_hwcap() much later in the life
1869  * of the kernel (post_startup()).  The job of this routine is to resolve
1870  * the hardware feature support and kernel support for those features into
1871  * what we're actually going to tell applications via the aux vector.
1872  */
1873 uint_t
1874 cpuid_pass4(cpu_t *cpu)
1875 {
1876 	struct cpuid_info *cpi;
1877 	uint_t hwcap_flags = 0;
1878 
1879 	if (cpu == NULL)
1880 		cpu = CPU;
1881 	cpi = cpu->cpu_m.mcpu_cpi;
1882 
1883 	ASSERT(cpi->cpi_pass == 3);
1884 
1885 	if (cpi->cpi_maxeax >= 1) {
1886 		uint32_t *edx = &cpi->cpi_support[STD_EDX_FEATURES];
1887 		uint32_t *ecx = &cpi->cpi_support[STD_ECX_FEATURES];
1888 
1889 		*edx = CPI_FEATURES_EDX(cpi);
1890 		*ecx = CPI_FEATURES_ECX(cpi);
1891 
1892 		/*
1893 		 * [these require explicit kernel support]
1894 		 */
1895 		if ((x86_feature & X86_SEP) == 0)
1896 			*edx &= ~CPUID_INTC_EDX_SEP;
1897 
1898 		if ((x86_feature & X86_SSE) == 0)
1899 			*edx &= ~(CPUID_INTC_EDX_FXSR|CPUID_INTC_EDX_SSE);
1900 		if ((x86_feature & X86_SSE2) == 0)
1901 			*edx &= ~CPUID_INTC_EDX_SSE2;
1902 
1903 		if ((x86_feature & X86_HTT) == 0)
1904 			*edx &= ~CPUID_INTC_EDX_HTT;
1905 
1906 		if ((x86_feature & X86_SSE3) == 0)
1907 			*ecx &= ~CPUID_INTC_ECX_SSE3;
1908 
1909 		/*
1910 		 * [no explicit support required beyond x87 fp context]
1911 		 */
1912 		if (!fpu_exists)
1913 			*edx &= ~(CPUID_INTC_EDX_FPU | CPUID_INTC_EDX_MMX);
1914 
1915 		/*
1916 		 * Now map the supported feature vector to things that we
1917 		 * think userland will care about.
1918 		 */
1919 		if (*edx & CPUID_INTC_EDX_SEP)
1920 			hwcap_flags |= AV_386_SEP;
1921 		if (*edx & CPUID_INTC_EDX_SSE)
1922 			hwcap_flags |= AV_386_FXSR | AV_386_SSE;
1923 		if (*edx & CPUID_INTC_EDX_SSE2)
1924 			hwcap_flags |= AV_386_SSE2;
1925 		if (*ecx & CPUID_INTC_ECX_SSE3)
1926 			hwcap_flags |= AV_386_SSE3;
1927 		if (*ecx & CPUID_INTC_ECX_POPCNT)
1928 			hwcap_flags |= AV_386_POPCNT;
1929 		if (*edx & CPUID_INTC_EDX_FPU)
1930 			hwcap_flags |= AV_386_FPU;
1931 		if (*edx & CPUID_INTC_EDX_MMX)
1932 			hwcap_flags |= AV_386_MMX;
1933 
1934 		if (*edx & CPUID_INTC_EDX_TSC)
1935 			hwcap_flags |= AV_386_TSC;
1936 		if (*edx & CPUID_INTC_EDX_CX8)
1937 			hwcap_flags |= AV_386_CX8;
1938 		if (*edx & CPUID_INTC_EDX_CMOV)
1939 			hwcap_flags |= AV_386_CMOV;
1940 		if (*ecx & CPUID_INTC_ECX_MON)
1941 			hwcap_flags |= AV_386_MON;
1942 		if (*ecx & CPUID_INTC_ECX_CX16)
1943 			hwcap_flags |= AV_386_CX16;
1944 	}
1945 
1946 	if (x86_feature & X86_HTT)
1947 		hwcap_flags |= AV_386_PAUSE;
1948 
1949 	if (cpi->cpi_xmaxeax < 0x80000001)
1950 		goto pass4_done;
1951 
1952 	switch (cpi->cpi_vendor) {
1953 		struct cpuid_regs cp;
1954 		uint32_t *edx, *ecx;
1955 
1956 	case X86_VENDOR_Intel:
1957 		/*
1958 		 * Seems like Intel duplicated what we necessary
1959 		 * here to make the initial crop of 64-bit OS's work.
1960 		 * Hopefully, those are the only "extended" bits
1961 		 * they'll add.
1962 		 */
1963 		/*FALLTHROUGH*/
1964 
1965 	case X86_VENDOR_AMD:
1966 		edx = &cpi->cpi_support[AMD_EDX_FEATURES];
1967 		ecx = &cpi->cpi_support[AMD_ECX_FEATURES];
1968 
1969 		*edx = CPI_FEATURES_XTD_EDX(cpi);
1970 		*ecx = CPI_FEATURES_XTD_ECX(cpi);
1971 
1972 		/*
1973 		 * [these features require explicit kernel support]
1974 		 */
1975 		switch (cpi->cpi_vendor) {
1976 		case X86_VENDOR_Intel:
1977 			break;
1978 
1979 		case X86_VENDOR_AMD:
1980 			if ((x86_feature & X86_TSCP) == 0)
1981 				*edx &= ~CPUID_AMD_EDX_TSCP;
1982 			if ((x86_feature & X86_SSE4A) == 0)
1983 				*ecx &= ~CPUID_AMD_ECX_SSE4A;
1984 			break;
1985 
1986 		default:
1987 			break;
1988 		}
1989 
1990 		/*
1991 		 * [no explicit support required beyond
1992 		 * x87 fp context and exception handlers]
1993 		 */
1994 		if (!fpu_exists)
1995 			*edx &= ~(CPUID_AMD_EDX_MMXamd |
1996 			    CPUID_AMD_EDX_3DNow | CPUID_AMD_EDX_3DNowx);
1997 
1998 		if ((x86_feature & X86_NX) == 0)
1999 			*edx &= ~CPUID_AMD_EDX_NX;
2000 #if !defined(__amd64)
2001 		*edx &= ~CPUID_AMD_EDX_LM;
2002 #endif
2003 		/*
2004 		 * Now map the supported feature vector to
2005 		 * things that we think userland will care about.
2006 		 */
2007 #if defined(__amd64)
2008 		if (*edx & CPUID_AMD_EDX_SYSC)
2009 			hwcap_flags |= AV_386_AMD_SYSC;
2010 #endif
2011 		if (*edx & CPUID_AMD_EDX_MMXamd)
2012 			hwcap_flags |= AV_386_AMD_MMX;
2013 		if (*edx & CPUID_AMD_EDX_3DNow)
2014 			hwcap_flags |= AV_386_AMD_3DNow;
2015 		if (*edx & CPUID_AMD_EDX_3DNowx)
2016 			hwcap_flags |= AV_386_AMD_3DNowx;
2017 
2018 		switch (cpi->cpi_vendor) {
2019 		case X86_VENDOR_AMD:
2020 			if (*edx & CPUID_AMD_EDX_TSCP)
2021 				hwcap_flags |= AV_386_TSCP;
2022 			if (*ecx & CPUID_AMD_ECX_AHF64)
2023 				hwcap_flags |= AV_386_AHF;
2024 			if (*ecx & CPUID_AMD_ECX_SSE4A)
2025 				hwcap_flags |= AV_386_AMD_SSE4A;
2026 			if (*ecx & CPUID_AMD_ECX_LZCNT)
2027 				hwcap_flags |= AV_386_AMD_LZCNT;
2028 			break;
2029 
2030 		case X86_VENDOR_Intel:
2031 			/*
2032 			 * Aarrgh.
2033 			 * Intel uses a different bit in the same word.
2034 			 */
2035 			if (*ecx & CPUID_INTC_ECX_AHF64)
2036 				hwcap_flags |= AV_386_AHF;
2037 			break;
2038 
2039 		default:
2040 			break;
2041 		}
2042 		break;
2043 
2044 	case X86_VENDOR_TM:
2045 		cp.cp_eax = 0x80860001;
2046 		(void) __cpuid_insn(&cp);
2047 		cpi->cpi_support[TM_EDX_FEATURES] = cp.cp_edx;
2048 		break;
2049 
2050 	default:
2051 		break;
2052 	}
2053 
2054 pass4_done:
2055 	cpi->cpi_pass = 4;
2056 	return (hwcap_flags);
2057 }
2058 
2059 
2060 /*
2061  * Simulate the cpuid instruction using the data we previously
2062  * captured about this CPU.  We try our best to return the truth
2063  * about the hardware, independently of kernel support.
2064  */
2065 uint32_t
2066 cpuid_insn(cpu_t *cpu, struct cpuid_regs *cp)
2067 {
2068 	struct cpuid_info *cpi;
2069 	struct cpuid_regs *xcp;
2070 
2071 	if (cpu == NULL)
2072 		cpu = CPU;
2073 	cpi = cpu->cpu_m.mcpu_cpi;
2074 
2075 	ASSERT(cpuid_checkpass(cpu, 3));
2076 
2077 	/*
2078 	 * CPUID data is cached in two separate places: cpi_std for standard
2079 	 * CPUID functions, and cpi_extd for extended CPUID functions.
2080 	 */
2081 	if (cp->cp_eax <= cpi->cpi_maxeax && cp->cp_eax < NMAX_CPI_STD)
2082 		xcp = &cpi->cpi_std[cp->cp_eax];
2083 	else if (cp->cp_eax >= 0x80000000 && cp->cp_eax <= cpi->cpi_xmaxeax &&
2084 	    cp->cp_eax < 0x80000000 + NMAX_CPI_EXTD)
2085 		xcp = &cpi->cpi_extd[cp->cp_eax - 0x80000000];
2086 	else
2087 		/*
2088 		 * The caller is asking for data from an input parameter which
2089 		 * the kernel has not cached.  In this case we go fetch from
2090 		 * the hardware and return the data directly to the user.
2091 		 */
2092 		return (__cpuid_insn(cp));
2093 
2094 	cp->cp_eax = xcp->cp_eax;
2095 	cp->cp_ebx = xcp->cp_ebx;
2096 	cp->cp_ecx = xcp->cp_ecx;
2097 	cp->cp_edx = xcp->cp_edx;
2098 	return (cp->cp_eax);
2099 }
2100 
2101 int
2102 cpuid_checkpass(cpu_t *cpu, int pass)
2103 {
2104 	return (cpu != NULL && cpu->cpu_m.mcpu_cpi != NULL &&
2105 	    cpu->cpu_m.mcpu_cpi->cpi_pass >= pass);
2106 }
2107 
2108 int
2109 cpuid_getbrandstr(cpu_t *cpu, char *s, size_t n)
2110 {
2111 	ASSERT(cpuid_checkpass(cpu, 3));
2112 
2113 	return (snprintf(s, n, "%s", cpu->cpu_m.mcpu_cpi->cpi_brandstr));
2114 }
2115 
2116 int
2117 cpuid_is_cmt(cpu_t *cpu)
2118 {
2119 	if (cpu == NULL)
2120 		cpu = CPU;
2121 
2122 	ASSERT(cpuid_checkpass(cpu, 1));
2123 
2124 	return (cpu->cpu_m.mcpu_cpi->cpi_chipid >= 0);
2125 }
2126 
2127 /*
2128  * AMD and Intel both implement the 64-bit variant of the syscall
2129  * instruction (syscallq), so if there's -any- support for syscall,
2130  * cpuid currently says "yes, we support this".
2131  *
2132  * However, Intel decided to -not- implement the 32-bit variant of the
2133  * syscall instruction, so we provide a predicate to allow our caller
2134  * to test that subtlety here.
2135  */
2136 /*ARGSUSED*/
2137 int
2138 cpuid_syscall32_insn(cpu_t *cpu)
2139 {
2140 	ASSERT(cpuid_checkpass((cpu == NULL ? CPU : cpu), 1));
2141 
2142 	if (cpu == NULL)
2143 		cpu = CPU;
2144 
2145 	/*CSTYLED*/
2146 	{
2147 		struct cpuid_info *cpi = cpu->cpu_m.mcpu_cpi;
2148 
2149 		if (cpi->cpi_vendor == X86_VENDOR_AMD &&
2150 		    cpi->cpi_xmaxeax >= 0x80000001 &&
2151 		    (CPI_FEATURES_XTD_EDX(cpi) & CPUID_AMD_EDX_SYSC))
2152 			return (1);
2153 	}
2154 	return (0);
2155 }
2156 
2157 int
2158 cpuid_getidstr(cpu_t *cpu, char *s, size_t n)
2159 {
2160 	struct cpuid_info *cpi = cpu->cpu_m.mcpu_cpi;
2161 
2162 	static const char fmt[] =
2163 	    "x86 (%s %X family %d model %d step %d clock %d MHz)";
2164 	static const char fmt_ht[] =
2165 	    "x86 (chipid 0x%x %s %X family %d model %d step %d clock %d MHz)";
2166 
2167 	ASSERT(cpuid_checkpass(cpu, 1));
2168 
2169 	if (cpuid_is_cmt(cpu))
2170 		return (snprintf(s, n, fmt_ht, cpi->cpi_chipid,
2171 		    cpi->cpi_vendorstr, cpi->cpi_std[1].cp_eax,
2172 		    cpi->cpi_family, cpi->cpi_model,
2173 		    cpi->cpi_step, cpu->cpu_type_info.pi_clock));
2174 	return (snprintf(s, n, fmt,
2175 	    cpi->cpi_vendorstr, cpi->cpi_std[1].cp_eax,
2176 	    cpi->cpi_family, cpi->cpi_model,
2177 	    cpi->cpi_step, cpu->cpu_type_info.pi_clock));
2178 }
2179 
2180 const char *
2181 cpuid_getvendorstr(cpu_t *cpu)
2182 {
2183 	ASSERT(cpuid_checkpass(cpu, 1));
2184 	return ((const char *)cpu->cpu_m.mcpu_cpi->cpi_vendorstr);
2185 }
2186 
2187 uint_t
2188 cpuid_getvendor(cpu_t *cpu)
2189 {
2190 	ASSERT(cpuid_checkpass(cpu, 1));
2191 	return (cpu->cpu_m.mcpu_cpi->cpi_vendor);
2192 }
2193 
2194 uint_t
2195 cpuid_getfamily(cpu_t *cpu)
2196 {
2197 	ASSERT(cpuid_checkpass(cpu, 1));
2198 	return (cpu->cpu_m.mcpu_cpi->cpi_family);
2199 }
2200 
2201 uint_t
2202 cpuid_getmodel(cpu_t *cpu)
2203 {
2204 	ASSERT(cpuid_checkpass(cpu, 1));
2205 	return (cpu->cpu_m.mcpu_cpi->cpi_model);
2206 }
2207 
2208 uint_t
2209 cpuid_get_ncpu_per_chip(cpu_t *cpu)
2210 {
2211 	ASSERT(cpuid_checkpass(cpu, 1));
2212 	return (cpu->cpu_m.mcpu_cpi->cpi_ncpu_per_chip);
2213 }
2214 
2215 uint_t
2216 cpuid_get_ncore_per_chip(cpu_t *cpu)
2217 {
2218 	ASSERT(cpuid_checkpass(cpu, 1));
2219 	return (cpu->cpu_m.mcpu_cpi->cpi_ncore_per_chip);
2220 }
2221 
2222 uint_t
2223 cpuid_get_ncpu_sharing_last_cache(cpu_t *cpu)
2224 {
2225 	ASSERT(cpuid_checkpass(cpu, 2));
2226 	return (cpu->cpu_m.mcpu_cpi->cpi_ncpu_shr_last_cache);
2227 }
2228 
2229 id_t
2230 cpuid_get_last_lvl_cacheid(cpu_t *cpu)
2231 {
2232 	ASSERT(cpuid_checkpass(cpu, 2));
2233 	return (cpu->cpu_m.mcpu_cpi->cpi_last_lvl_cacheid);
2234 }
2235 
2236 uint_t
2237 cpuid_getstep(cpu_t *cpu)
2238 {
2239 	ASSERT(cpuid_checkpass(cpu, 1));
2240 	return (cpu->cpu_m.mcpu_cpi->cpi_step);
2241 }
2242 
2243 uint_t
2244 cpuid_getsig(struct cpu *cpu)
2245 {
2246 	ASSERT(cpuid_checkpass(cpu, 1));
2247 	return (cpu->cpu_m.mcpu_cpi->cpi_std[1].cp_eax);
2248 }
2249 
2250 uint32_t
2251 cpuid_getchiprev(struct cpu *cpu)
2252 {
2253 	ASSERT(cpuid_checkpass(cpu, 1));
2254 	return (cpu->cpu_m.mcpu_cpi->cpi_chiprev);
2255 }
2256 
2257 const char *
2258 cpuid_getchiprevstr(struct cpu *cpu)
2259 {
2260 	ASSERT(cpuid_checkpass(cpu, 1));
2261 	return (cpu->cpu_m.mcpu_cpi->cpi_chiprevstr);
2262 }
2263 
2264 uint32_t
2265 cpuid_getsockettype(struct cpu *cpu)
2266 {
2267 	ASSERT(cpuid_checkpass(cpu, 1));
2268 	return (cpu->cpu_m.mcpu_cpi->cpi_socket);
2269 }
2270 
2271 int
2272 cpuid_get_chipid(cpu_t *cpu)
2273 {
2274 	ASSERT(cpuid_checkpass(cpu, 1));
2275 
2276 	if (cpuid_is_cmt(cpu))
2277 		return (cpu->cpu_m.mcpu_cpi->cpi_chipid);
2278 	return (cpu->cpu_id);
2279 }
2280 
2281 id_t
2282 cpuid_get_coreid(cpu_t *cpu)
2283 {
2284 	ASSERT(cpuid_checkpass(cpu, 1));
2285 	return (cpu->cpu_m.mcpu_cpi->cpi_coreid);
2286 }
2287 
2288 int
2289 cpuid_get_clogid(cpu_t *cpu)
2290 {
2291 	ASSERT(cpuid_checkpass(cpu, 1));
2292 	return (cpu->cpu_m.mcpu_cpi->cpi_clogid);
2293 }
2294 
2295 void
2296 cpuid_get_addrsize(cpu_t *cpu, uint_t *pabits, uint_t *vabits)
2297 {
2298 	struct cpuid_info *cpi;
2299 
2300 	if (cpu == NULL)
2301 		cpu = CPU;
2302 	cpi = cpu->cpu_m.mcpu_cpi;
2303 
2304 	ASSERT(cpuid_checkpass(cpu, 1));
2305 
2306 	if (pabits)
2307 		*pabits = cpi->cpi_pabits;
2308 	if (vabits)
2309 		*vabits = cpi->cpi_vabits;
2310 }
2311 
2312 /*
2313  * Returns the number of data TLB entries for a corresponding
2314  * pagesize.  If it can't be computed, or isn't known, the
2315  * routine returns zero.  If you ask about an architecturally
2316  * impossible pagesize, the routine will panic (so that the
2317  * hat implementor knows that things are inconsistent.)
2318  */
2319 uint_t
2320 cpuid_get_dtlb_nent(cpu_t *cpu, size_t pagesize)
2321 {
2322 	struct cpuid_info *cpi;
2323 	uint_t dtlb_nent = 0;
2324 
2325 	if (cpu == NULL)
2326 		cpu = CPU;
2327 	cpi = cpu->cpu_m.mcpu_cpi;
2328 
2329 	ASSERT(cpuid_checkpass(cpu, 1));
2330 
2331 	/*
2332 	 * Check the L2 TLB info
2333 	 */
2334 	if (cpi->cpi_xmaxeax >= 0x80000006) {
2335 		struct cpuid_regs *cp = &cpi->cpi_extd[6];
2336 
2337 		switch (pagesize) {
2338 
2339 		case 4 * 1024:
2340 			/*
2341 			 * All zero in the top 16 bits of the register
2342 			 * indicates a unified TLB. Size is in low 16 bits.
2343 			 */
2344 			if ((cp->cp_ebx & 0xffff0000) == 0)
2345 				dtlb_nent = cp->cp_ebx & 0x0000ffff;
2346 			else
2347 				dtlb_nent = BITX(cp->cp_ebx, 27, 16);
2348 			break;
2349 
2350 		case 2 * 1024 * 1024:
2351 			if ((cp->cp_eax & 0xffff0000) == 0)
2352 				dtlb_nent = cp->cp_eax & 0x0000ffff;
2353 			else
2354 				dtlb_nent = BITX(cp->cp_eax, 27, 16);
2355 			break;
2356 
2357 		default:
2358 			panic("unknown L2 pagesize");
2359 			/*NOTREACHED*/
2360 		}
2361 	}
2362 
2363 	if (dtlb_nent != 0)
2364 		return (dtlb_nent);
2365 
2366 	/*
2367 	 * No L2 TLB support for this size, try L1.
2368 	 */
2369 	if (cpi->cpi_xmaxeax >= 0x80000005) {
2370 		struct cpuid_regs *cp = &cpi->cpi_extd[5];
2371 
2372 		switch (pagesize) {
2373 		case 4 * 1024:
2374 			dtlb_nent = BITX(cp->cp_ebx, 23, 16);
2375 			break;
2376 		case 2 * 1024 * 1024:
2377 			dtlb_nent = BITX(cp->cp_eax, 23, 16);
2378 			break;
2379 		default:
2380 			panic("unknown L1 d-TLB pagesize");
2381 			/*NOTREACHED*/
2382 		}
2383 	}
2384 
2385 	return (dtlb_nent);
2386 }
2387 
2388 /*
2389  * Return 0 if the erratum is not present or not applicable, positive
2390  * if it is, and negative if the status of the erratum is unknown.
2391  *
2392  * See "Revision Guide for AMD Athlon(tm) 64 and AMD Opteron(tm)
2393  * Processors" #25759, Rev 3.57, August 2005
2394  */
2395 int
2396 cpuid_opteron_erratum(cpu_t *cpu, uint_t erratum)
2397 {
2398 	struct cpuid_info *cpi = cpu->cpu_m.mcpu_cpi;
2399 	uint_t eax;
2400 
2401 	/*
2402 	 * Bail out if this CPU isn't an AMD CPU, or if it's
2403 	 * a legacy (32-bit) AMD CPU.
2404 	 */
2405 	if (cpi->cpi_vendor != X86_VENDOR_AMD ||
2406 	    cpi->cpi_family == 4 || cpi->cpi_family == 5 ||
2407 	    cpi->cpi_family == 6)
2408 
2409 		return (0);
2410 
2411 	eax = cpi->cpi_std[1].cp_eax;
2412 
2413 #define	SH_B0(eax)	(eax == 0xf40 || eax == 0xf50)
2414 #define	SH_B3(eax) 	(eax == 0xf51)
2415 #define	B(eax)		(SH_B0(eax) || SH_B3(eax))
2416 
2417 #define	SH_C0(eax)	(eax == 0xf48 || eax == 0xf58)
2418 
2419 #define	SH_CG(eax)	(eax == 0xf4a || eax == 0xf5a || eax == 0xf7a)
2420 #define	DH_CG(eax)	(eax == 0xfc0 || eax == 0xfe0 || eax == 0xff0)
2421 #define	CH_CG(eax)	(eax == 0xf82 || eax == 0xfb2)
2422 #define	CG(eax)		(SH_CG(eax) || DH_CG(eax) || CH_CG(eax))
2423 
2424 #define	SH_D0(eax)	(eax == 0x10f40 || eax == 0x10f50 || eax == 0x10f70)
2425 #define	DH_D0(eax)	(eax == 0x10fc0 || eax == 0x10ff0)
2426 #define	CH_D0(eax)	(eax == 0x10f80 || eax == 0x10fb0)
2427 #define	D0(eax)		(SH_D0(eax) || DH_D0(eax) || CH_D0(eax))
2428 
2429 #define	SH_E0(eax)	(eax == 0x20f50 || eax == 0x20f40 || eax == 0x20f70)
2430 #define	JH_E1(eax)	(eax == 0x20f10)	/* JH8_E0 had 0x20f30 */
2431 #define	DH_E3(eax)	(eax == 0x20fc0 || eax == 0x20ff0)
2432 #define	SH_E4(eax)	(eax == 0x20f51 || eax == 0x20f71)
2433 #define	BH_E4(eax)	(eax == 0x20fb1)
2434 #define	SH_E5(eax)	(eax == 0x20f42)
2435 #define	DH_E6(eax)	(eax == 0x20ff2 || eax == 0x20fc2)
2436 #define	JH_E6(eax)	(eax == 0x20f12 || eax == 0x20f32)
2437 #define	EX(eax)		(SH_E0(eax) || JH_E1(eax) || DH_E3(eax) || \
2438 			    SH_E4(eax) || BH_E4(eax) || SH_E5(eax) || \
2439 			    DH_E6(eax) || JH_E6(eax))
2440 
2441 	switch (erratum) {
2442 	case 1:
2443 		return (cpi->cpi_family < 0x10);
2444 	case 51:	/* what does the asterisk mean? */
2445 		return (B(eax) || SH_C0(eax) || CG(eax));
2446 	case 52:
2447 		return (B(eax));
2448 	case 57:
2449 		return (cpi->cpi_family <= 0x10);
2450 	case 58:
2451 		return (B(eax));
2452 	case 60:
2453 		return (cpi->cpi_family <= 0x10);
2454 	case 61:
2455 	case 62:
2456 	case 63:
2457 	case 64:
2458 	case 65:
2459 	case 66:
2460 	case 68:
2461 	case 69:
2462 	case 70:
2463 	case 71:
2464 		return (B(eax));
2465 	case 72:
2466 		return (SH_B0(eax));
2467 	case 74:
2468 		return (B(eax));
2469 	case 75:
2470 		return (cpi->cpi_family < 0x10);
2471 	case 76:
2472 		return (B(eax));
2473 	case 77:
2474 		return (cpi->cpi_family <= 0x10);
2475 	case 78:
2476 		return (B(eax) || SH_C0(eax));
2477 	case 79:
2478 		return (B(eax) || SH_C0(eax) || CG(eax) || D0(eax) || EX(eax));
2479 	case 80:
2480 	case 81:
2481 	case 82:
2482 		return (B(eax));
2483 	case 83:
2484 		return (B(eax) || SH_C0(eax) || CG(eax));
2485 	case 85:
2486 		return (cpi->cpi_family < 0x10);
2487 	case 86:
2488 		return (SH_C0(eax) || CG(eax));
2489 	case 88:
2490 #if !defined(__amd64)
2491 		return (0);
2492 #else
2493 		return (B(eax) || SH_C0(eax));
2494 #endif
2495 	case 89:
2496 		return (cpi->cpi_family < 0x10);
2497 	case 90:
2498 		return (B(eax) || SH_C0(eax) || CG(eax));
2499 	case 91:
2500 	case 92:
2501 		return (B(eax) || SH_C0(eax));
2502 	case 93:
2503 		return (SH_C0(eax));
2504 	case 94:
2505 		return (B(eax) || SH_C0(eax) || CG(eax));
2506 	case 95:
2507 #if !defined(__amd64)
2508 		return (0);
2509 #else
2510 		return (B(eax) || SH_C0(eax));
2511 #endif
2512 	case 96:
2513 		return (B(eax) || SH_C0(eax) || CG(eax));
2514 	case 97:
2515 	case 98:
2516 		return (SH_C0(eax) || CG(eax));
2517 	case 99:
2518 		return (B(eax) || SH_C0(eax) || CG(eax) || D0(eax));
2519 	case 100:
2520 		return (B(eax) || SH_C0(eax));
2521 	case 101:
2522 	case 103:
2523 		return (B(eax) || SH_C0(eax) || CG(eax) || D0(eax));
2524 	case 104:
2525 		return (SH_C0(eax) || CG(eax) || D0(eax));
2526 	case 105:
2527 	case 106:
2528 	case 107:
2529 		return (B(eax) || SH_C0(eax) || CG(eax) || D0(eax));
2530 	case 108:
2531 		return (DH_CG(eax));
2532 	case 109:
2533 		return (SH_C0(eax) || CG(eax) || D0(eax));
2534 	case 110:
2535 		return (D0(eax) || EX(eax));
2536 	case 111:
2537 		return (CG(eax));
2538 	case 112:
2539 		return (B(eax) || SH_C0(eax) || CG(eax) || D0(eax) || EX(eax));
2540 	case 113:
2541 		return (eax == 0x20fc0);
2542 	case 114:
2543 		return (SH_E0(eax) || JH_E1(eax) || DH_E3(eax));
2544 	case 115:
2545 		return (SH_E0(eax) || JH_E1(eax));
2546 	case 116:
2547 		return (SH_E0(eax) || JH_E1(eax) || DH_E3(eax));
2548 	case 117:
2549 		return (B(eax) || SH_C0(eax) || CG(eax) || D0(eax));
2550 	case 118:
2551 		return (SH_E0(eax) || JH_E1(eax) || SH_E4(eax) || BH_E4(eax) ||
2552 		    JH_E6(eax));
2553 	case 121:
2554 		return (B(eax) || SH_C0(eax) || CG(eax) || D0(eax) || EX(eax));
2555 	case 122:
2556 		return (cpi->cpi_family < 0x10);
2557 	case 123:
2558 		return (JH_E1(eax) || BH_E4(eax) || JH_E6(eax));
2559 	case 131:
2560 		return (cpi->cpi_family < 0x10);
2561 	case 6336786:
2562 		/*
2563 		 * Test for AdvPowerMgmtInfo.TscPStateInvariant
2564 		 * if this is a K8 family or newer processor
2565 		 */
2566 		if (CPI_FAMILY(cpi) == 0xf) {
2567 			struct cpuid_regs regs;
2568 			regs.cp_eax = 0x80000007;
2569 			(void) __cpuid_insn(&regs);
2570 			return (!(regs.cp_edx & 0x100));
2571 		}
2572 		return (0);
2573 	case 6323525:
2574 		return (((((eax >> 12) & 0xff00) + (eax & 0xf00)) |
2575 		    (((eax >> 4) & 0xf) | ((eax >> 12) & 0xf0))) < 0xf40);
2576 
2577 	default:
2578 		return (-1);
2579 	}
2580 }
2581 
2582 static const char assoc_str[] = "associativity";
2583 static const char line_str[] = "line-size";
2584 static const char size_str[] = "size";
2585 
2586 static void
2587 add_cache_prop(dev_info_t *devi, const char *label, const char *type,
2588     uint32_t val)
2589 {
2590 	char buf[128];
2591 
2592 	/*
2593 	 * ndi_prop_update_int() is used because it is desirable for
2594 	 * DDI_PROP_HW_DEF and DDI_PROP_DONTSLEEP to be set.
2595 	 */
2596 	if (snprintf(buf, sizeof (buf), "%s-%s", label, type) < sizeof (buf))
2597 		(void) ndi_prop_update_int(DDI_DEV_T_NONE, devi, buf, val);
2598 }
2599 
2600 /*
2601  * Intel-style cache/tlb description
2602  *
2603  * Standard cpuid level 2 gives a randomly ordered
2604  * selection of tags that index into a table that describes
2605  * cache and tlb properties.
2606  */
2607 
2608 static const char l1_icache_str[] = "l1-icache";
2609 static const char l1_dcache_str[] = "l1-dcache";
2610 static const char l2_cache_str[] = "l2-cache";
2611 static const char l3_cache_str[] = "l3-cache";
2612 static const char itlb4k_str[] = "itlb-4K";
2613 static const char dtlb4k_str[] = "dtlb-4K";
2614 static const char itlb4M_str[] = "itlb-4M";
2615 static const char dtlb4M_str[] = "dtlb-4M";
2616 static const char itlb424_str[] = "itlb-4K-2M-4M";
2617 static const char dtlb44_str[] = "dtlb-4K-4M";
2618 static const char sl1_dcache_str[] = "sectored-l1-dcache";
2619 static const char sl2_cache_str[] = "sectored-l2-cache";
2620 static const char itrace_str[] = "itrace-cache";
2621 static const char sl3_cache_str[] = "sectored-l3-cache";
2622 
2623 static const struct cachetab {
2624 	uint8_t 	ct_code;
2625 	uint8_t		ct_assoc;
2626 	uint16_t 	ct_line_size;
2627 	size_t		ct_size;
2628 	const char	*ct_label;
2629 } intel_ctab[] = {
2630 	/* maintain descending order! */
2631 	{ 0xb4, 4, 0, 256, dtlb4k_str },
2632 	{ 0xb3, 4, 0, 128, dtlb4k_str },
2633 	{ 0xb0, 4, 0, 128, itlb4k_str },
2634 	{ 0x87, 8, 64, 1024*1024, l2_cache_str},
2635 	{ 0x86, 4, 64, 512*1024, l2_cache_str},
2636 	{ 0x85, 8, 32, 2*1024*1024, l2_cache_str},
2637 	{ 0x84, 8, 32, 1024*1024, l2_cache_str},
2638 	{ 0x83, 8, 32, 512*1024, l2_cache_str},
2639 	{ 0x82, 8, 32, 256*1024, l2_cache_str},
2640 	{ 0x7f, 2, 64, 512*1024, l2_cache_str},
2641 	{ 0x7d, 8, 64, 2*1024*1024, sl2_cache_str},
2642 	{ 0x7c, 8, 64, 1024*1024, sl2_cache_str},
2643 	{ 0x7b, 8, 64, 512*1024, sl2_cache_str},
2644 	{ 0x7a, 8, 64, 256*1024, sl2_cache_str},
2645 	{ 0x79, 8, 64, 128*1024, sl2_cache_str},
2646 	{ 0x78, 8, 64, 1024*1024, l2_cache_str},
2647 	{ 0x73, 8, 0, 64*1024, itrace_str},
2648 	{ 0x72, 8, 0, 32*1024, itrace_str},
2649 	{ 0x71, 8, 0, 16*1024, itrace_str},
2650 	{ 0x70, 8, 0, 12*1024, itrace_str},
2651 	{ 0x68, 4, 64, 32*1024, sl1_dcache_str},
2652 	{ 0x67, 4, 64, 16*1024, sl1_dcache_str},
2653 	{ 0x66, 4, 64, 8*1024, sl1_dcache_str},
2654 	{ 0x60, 8, 64, 16*1024, sl1_dcache_str},
2655 	{ 0x5d, 0, 0, 256, dtlb44_str},
2656 	{ 0x5c, 0, 0, 128, dtlb44_str},
2657 	{ 0x5b, 0, 0, 64, dtlb44_str},
2658 	{ 0x52, 0, 0, 256, itlb424_str},
2659 	{ 0x51, 0, 0, 128, itlb424_str},
2660 	{ 0x50, 0, 0, 64, itlb424_str},
2661 	{ 0x4d, 16, 64, 16*1024*1024, l3_cache_str},
2662 	{ 0x4c, 12, 64, 12*1024*1024, l3_cache_str},
2663 	{ 0x4b, 16, 64, 8*1024*1024, l3_cache_str},
2664 	{ 0x4a, 12, 64, 6*1024*1024, l3_cache_str},
2665 	{ 0x49, 16, 64, 4*1024*1024, l3_cache_str},
2666 	{ 0x47, 8, 64, 8*1024*1024, l3_cache_str},
2667 	{ 0x46, 4, 64, 4*1024*1024, l3_cache_str},
2668 	{ 0x45, 4, 32, 2*1024*1024, l2_cache_str},
2669 	{ 0x44, 4, 32, 1024*1024, l2_cache_str},
2670 	{ 0x43, 4, 32, 512*1024, l2_cache_str},
2671 	{ 0x42, 4, 32, 256*1024, l2_cache_str},
2672 	{ 0x41, 4, 32, 128*1024, l2_cache_str},
2673 	{ 0x3e, 4, 64, 512*1024, sl2_cache_str},
2674 	{ 0x3d, 6, 64, 384*1024, sl2_cache_str},
2675 	{ 0x3c, 4, 64, 256*1024, sl2_cache_str},
2676 	{ 0x3b, 2, 64, 128*1024, sl2_cache_str},
2677 	{ 0x3a, 6, 64, 192*1024, sl2_cache_str},
2678 	{ 0x39, 4, 64, 128*1024, sl2_cache_str},
2679 	{ 0x30, 8, 64, 32*1024, l1_icache_str},
2680 	{ 0x2c, 8, 64, 32*1024, l1_dcache_str},
2681 	{ 0x29, 8, 64, 4096*1024, sl3_cache_str},
2682 	{ 0x25, 8, 64, 2048*1024, sl3_cache_str},
2683 	{ 0x23, 8, 64, 1024*1024, sl3_cache_str},
2684 	{ 0x22, 4, 64, 512*1024, sl3_cache_str},
2685 	{ 0x0c, 4, 32, 16*1024, l1_dcache_str},
2686 	{ 0x0b, 4, 0, 4, itlb4M_str},
2687 	{ 0x0a, 2, 32, 8*1024, l1_dcache_str},
2688 	{ 0x08, 4, 32, 16*1024, l1_icache_str},
2689 	{ 0x06, 4, 32, 8*1024, l1_icache_str},
2690 	{ 0x04, 4, 0, 8, dtlb4M_str},
2691 	{ 0x03, 4, 0, 64, dtlb4k_str},
2692 	{ 0x02, 4, 0, 2, itlb4M_str},
2693 	{ 0x01, 4, 0, 32, itlb4k_str},
2694 	{ 0 }
2695 };
2696 
2697 static const struct cachetab cyrix_ctab[] = {
2698 	{ 0x70, 4, 0, 32, "tlb-4K" },
2699 	{ 0x80, 4, 16, 16*1024, "l1-cache" },
2700 	{ 0 }
2701 };
2702 
2703 /*
2704  * Search a cache table for a matching entry
2705  */
2706 static const struct cachetab *
2707 find_cacheent(const struct cachetab *ct, uint_t code)
2708 {
2709 	if (code != 0) {
2710 		for (; ct->ct_code != 0; ct++)
2711 			if (ct->ct_code <= code)
2712 				break;
2713 		if (ct->ct_code == code)
2714 			return (ct);
2715 	}
2716 	return (NULL);
2717 }
2718 
2719 /*
2720  * Walk the cacheinfo descriptor, applying 'func' to every valid element
2721  * The walk is terminated if the walker returns non-zero.
2722  */
2723 static void
2724 intel_walk_cacheinfo(struct cpuid_info *cpi,
2725     void *arg, int (*func)(void *, const struct cachetab *))
2726 {
2727 	const struct cachetab *ct;
2728 	uint8_t *dp;
2729 	int i;
2730 
2731 	if ((dp = cpi->cpi_cacheinfo) == NULL)
2732 		return;
2733 	for (i = 0; i < cpi->cpi_ncache; i++, dp++) {
2734 		/*
2735 		 * For overloaded descriptor 0x49 we use cpuid function 4
2736 		 * if supported by the current processor, to update
2737 		 * cache information.
2738 		 */
2739 		if (*dp == 0x49 && cpi->cpi_maxeax >= 0x4) {
2740 			intel_cpuid_4_cache_info(arg, cpi);
2741 			continue;
2742 		}
2743 
2744 		if ((ct = find_cacheent(intel_ctab, *dp)) != NULL) {
2745 			if (func(arg, ct) != 0)
2746 				break;
2747 		}
2748 	}
2749 }
2750 
2751 /*
2752  * (Like the Intel one, except for Cyrix CPUs)
2753  */
2754 static void
2755 cyrix_walk_cacheinfo(struct cpuid_info *cpi,
2756     void *arg, int (*func)(void *, const struct cachetab *))
2757 {
2758 	const struct cachetab *ct;
2759 	uint8_t *dp;
2760 	int i;
2761 
2762 	if ((dp = cpi->cpi_cacheinfo) == NULL)
2763 		return;
2764 	for (i = 0; i < cpi->cpi_ncache; i++, dp++) {
2765 		/*
2766 		 * Search Cyrix-specific descriptor table first ..
2767 		 */
2768 		if ((ct = find_cacheent(cyrix_ctab, *dp)) != NULL) {
2769 			if (func(arg, ct) != 0)
2770 				break;
2771 			continue;
2772 		}
2773 		/*
2774 		 * .. else fall back to the Intel one
2775 		 */
2776 		if ((ct = find_cacheent(intel_ctab, *dp)) != NULL) {
2777 			if (func(arg, ct) != 0)
2778 				break;
2779 			continue;
2780 		}
2781 	}
2782 }
2783 
2784 /*
2785  * A cacheinfo walker that adds associativity, line-size, and size properties
2786  * to the devinfo node it is passed as an argument.
2787  */
2788 static int
2789 add_cacheent_props(void *arg, const struct cachetab *ct)
2790 {
2791 	dev_info_t *devi = arg;
2792 
2793 	add_cache_prop(devi, ct->ct_label, assoc_str, ct->ct_assoc);
2794 	if (ct->ct_line_size != 0)
2795 		add_cache_prop(devi, ct->ct_label, line_str,
2796 		    ct->ct_line_size);
2797 	add_cache_prop(devi, ct->ct_label, size_str, ct->ct_size);
2798 	return (0);
2799 }
2800 
2801 /*
2802  * Add L2 or L3 cache-information using cpuid function 4. This
2803  * function is called from intel_walk_cacheinfo() when descriptor
2804  * 0x49 is encountered.
2805  */
2806 static void
2807 intel_cpuid_4_cache_info(void *arg, struct cpuid_info *cpi)
2808 {
2809 	uint32_t level, i;
2810 
2811 	struct cachetab ct;
2812 
2813 	for (i = 0; i < cpi->cpi_std_4_size; i++) {
2814 		level = CPI_CACHE_LVL(cpi->cpi_std_4[i]);
2815 
2816 		if (level == 2 || level == 3) {
2817 			ct.ct_assoc = CPI_CACHE_WAYS(cpi->cpi_std_4[i]) + 1;
2818 			ct.ct_line_size =
2819 			    CPI_CACHE_COH_LN_SZ(cpi->cpi_std_4[i]) + 1;
2820 			ct.ct_size = ct.ct_assoc *
2821 			    (CPI_CACHE_PARTS(cpi->cpi_std_4[i]) + 1) *
2822 			    ct.ct_line_size *
2823 			    (cpi->cpi_std_4[i]->cp_ecx + 1);
2824 
2825 			if (level == 2) {
2826 				ct.ct_label = l2_cache_str;
2827 			} else if (level == 3) {
2828 				ct.ct_label = l3_cache_str;
2829 			}
2830 
2831 			(void) add_cacheent_props(arg,
2832 			    (const struct cachetab *) (&ct));
2833 		}
2834 	}
2835 }
2836 
2837 static const char fully_assoc[] = "fully-associative?";
2838 
2839 /*
2840  * AMD style cache/tlb description
2841  *
2842  * Extended functions 5 and 6 directly describe properties of
2843  * tlbs and various cache levels.
2844  */
2845 static void
2846 add_amd_assoc(dev_info_t *devi, const char *label, uint_t assoc)
2847 {
2848 	switch (assoc) {
2849 	case 0:	/* reserved; ignore */
2850 		break;
2851 	default:
2852 		add_cache_prop(devi, label, assoc_str, assoc);
2853 		break;
2854 	case 0xff:
2855 		add_cache_prop(devi, label, fully_assoc, 1);
2856 		break;
2857 	}
2858 }
2859 
2860 static void
2861 add_amd_tlb(dev_info_t *devi, const char *label, uint_t assoc, uint_t size)
2862 {
2863 	if (size == 0)
2864 		return;
2865 	add_cache_prop(devi, label, size_str, size);
2866 	add_amd_assoc(devi, label, assoc);
2867 }
2868 
2869 static void
2870 add_amd_cache(dev_info_t *devi, const char *label,
2871     uint_t size, uint_t assoc, uint_t lines_per_tag, uint_t line_size)
2872 {
2873 	if (size == 0 || line_size == 0)
2874 		return;
2875 	add_amd_assoc(devi, label, assoc);
2876 	/*
2877 	 * Most AMD parts have a sectored cache. Multiple cache lines are
2878 	 * associated with each tag. A sector consists of all cache lines
2879 	 * associated with a tag. For example, the AMD K6-III has a sector
2880 	 * size of 2 cache lines per tag.
2881 	 */
2882 	if (lines_per_tag != 0)
2883 		add_cache_prop(devi, label, "lines-per-tag", lines_per_tag);
2884 	add_cache_prop(devi, label, line_str, line_size);
2885 	add_cache_prop(devi, label, size_str, size * 1024);
2886 }
2887 
2888 static void
2889 add_amd_l2_assoc(dev_info_t *devi, const char *label, uint_t assoc)
2890 {
2891 	switch (assoc) {
2892 	case 0:	/* off */
2893 		break;
2894 	case 1:
2895 	case 2:
2896 	case 4:
2897 		add_cache_prop(devi, label, assoc_str, assoc);
2898 		break;
2899 	case 6:
2900 		add_cache_prop(devi, label, assoc_str, 8);
2901 		break;
2902 	case 8:
2903 		add_cache_prop(devi, label, assoc_str, 16);
2904 		break;
2905 	case 0xf:
2906 		add_cache_prop(devi, label, fully_assoc, 1);
2907 		break;
2908 	default: /* reserved; ignore */
2909 		break;
2910 	}
2911 }
2912 
2913 static void
2914 add_amd_l2_tlb(dev_info_t *devi, const char *label, uint_t assoc, uint_t size)
2915 {
2916 	if (size == 0 || assoc == 0)
2917 		return;
2918 	add_amd_l2_assoc(devi, label, assoc);
2919 	add_cache_prop(devi, label, size_str, size);
2920 }
2921 
2922 static void
2923 add_amd_l2_cache(dev_info_t *devi, const char *label,
2924     uint_t size, uint_t assoc, uint_t lines_per_tag, uint_t line_size)
2925 {
2926 	if (size == 0 || assoc == 0 || line_size == 0)
2927 		return;
2928 	add_amd_l2_assoc(devi, label, assoc);
2929 	if (lines_per_tag != 0)
2930 		add_cache_prop(devi, label, "lines-per-tag", lines_per_tag);
2931 	add_cache_prop(devi, label, line_str, line_size);
2932 	add_cache_prop(devi, label, size_str, size * 1024);
2933 }
2934 
2935 static void
2936 amd_cache_info(struct cpuid_info *cpi, dev_info_t *devi)
2937 {
2938 	struct cpuid_regs *cp;
2939 
2940 	if (cpi->cpi_xmaxeax < 0x80000005)
2941 		return;
2942 	cp = &cpi->cpi_extd[5];
2943 
2944 	/*
2945 	 * 4M/2M L1 TLB configuration
2946 	 *
2947 	 * We report the size for 2M pages because AMD uses two
2948 	 * TLB entries for one 4M page.
2949 	 */
2950 	add_amd_tlb(devi, "dtlb-2M",
2951 	    BITX(cp->cp_eax, 31, 24), BITX(cp->cp_eax, 23, 16));
2952 	add_amd_tlb(devi, "itlb-2M",
2953 	    BITX(cp->cp_eax, 15, 8), BITX(cp->cp_eax, 7, 0));
2954 
2955 	/*
2956 	 * 4K L1 TLB configuration
2957 	 */
2958 
2959 	switch (cpi->cpi_vendor) {
2960 		uint_t nentries;
2961 	case X86_VENDOR_TM:
2962 		if (cpi->cpi_family >= 5) {
2963 			/*
2964 			 * Crusoe processors have 256 TLB entries, but
2965 			 * cpuid data format constrains them to only
2966 			 * reporting 255 of them.
2967 			 */
2968 			if ((nentries = BITX(cp->cp_ebx, 23, 16)) == 255)
2969 				nentries = 256;
2970 			/*
2971 			 * Crusoe processors also have a unified TLB
2972 			 */
2973 			add_amd_tlb(devi, "tlb-4K", BITX(cp->cp_ebx, 31, 24),
2974 			    nentries);
2975 			break;
2976 		}
2977 		/*FALLTHROUGH*/
2978 	default:
2979 		add_amd_tlb(devi, itlb4k_str,
2980 		    BITX(cp->cp_ebx, 31, 24), BITX(cp->cp_ebx, 23, 16));
2981 		add_amd_tlb(devi, dtlb4k_str,
2982 		    BITX(cp->cp_ebx, 15, 8), BITX(cp->cp_ebx, 7, 0));
2983 		break;
2984 	}
2985 
2986 	/*
2987 	 * data L1 cache configuration
2988 	 */
2989 
2990 	add_amd_cache(devi, l1_dcache_str,
2991 	    BITX(cp->cp_ecx, 31, 24), BITX(cp->cp_ecx, 23, 16),
2992 	    BITX(cp->cp_ecx, 15, 8), BITX(cp->cp_ecx, 7, 0));
2993 
2994 	/*
2995 	 * code L1 cache configuration
2996 	 */
2997 
2998 	add_amd_cache(devi, l1_icache_str,
2999 	    BITX(cp->cp_edx, 31, 24), BITX(cp->cp_edx, 23, 16),
3000 	    BITX(cp->cp_edx, 15, 8), BITX(cp->cp_edx, 7, 0));
3001 
3002 	if (cpi->cpi_xmaxeax < 0x80000006)
3003 		return;
3004 	cp = &cpi->cpi_extd[6];
3005 
3006 	/* Check for a unified L2 TLB for large pages */
3007 
3008 	if (BITX(cp->cp_eax, 31, 16) == 0)
3009 		add_amd_l2_tlb(devi, "l2-tlb-2M",
3010 		    BITX(cp->cp_eax, 15, 12), BITX(cp->cp_eax, 11, 0));
3011 	else {
3012 		add_amd_l2_tlb(devi, "l2-dtlb-2M",
3013 		    BITX(cp->cp_eax, 31, 28), BITX(cp->cp_eax, 27, 16));
3014 		add_amd_l2_tlb(devi, "l2-itlb-2M",
3015 		    BITX(cp->cp_eax, 15, 12), BITX(cp->cp_eax, 11, 0));
3016 	}
3017 
3018 	/* Check for a unified L2 TLB for 4K pages */
3019 
3020 	if (BITX(cp->cp_ebx, 31, 16) == 0) {
3021 		add_amd_l2_tlb(devi, "l2-tlb-4K",
3022 		    BITX(cp->cp_eax, 15, 12), BITX(cp->cp_eax, 11, 0));
3023 	} else {
3024 		add_amd_l2_tlb(devi, "l2-dtlb-4K",
3025 		    BITX(cp->cp_eax, 31, 28), BITX(cp->cp_eax, 27, 16));
3026 		add_amd_l2_tlb(devi, "l2-itlb-4K",
3027 		    BITX(cp->cp_eax, 15, 12), BITX(cp->cp_eax, 11, 0));
3028 	}
3029 
3030 	add_amd_l2_cache(devi, l2_cache_str,
3031 	    BITX(cp->cp_ecx, 31, 16), BITX(cp->cp_ecx, 15, 12),
3032 	    BITX(cp->cp_ecx, 11, 8), BITX(cp->cp_ecx, 7, 0));
3033 }
3034 
3035 /*
3036  * There are two basic ways that the x86 world describes it cache
3037  * and tlb architecture - Intel's way and AMD's way.
3038  *
3039  * Return which flavor of cache architecture we should use
3040  */
3041 static int
3042 x86_which_cacheinfo(struct cpuid_info *cpi)
3043 {
3044 	switch (cpi->cpi_vendor) {
3045 	case X86_VENDOR_Intel:
3046 		if (cpi->cpi_maxeax >= 2)
3047 			return (X86_VENDOR_Intel);
3048 		break;
3049 	case X86_VENDOR_AMD:
3050 		/*
3051 		 * The K5 model 1 was the first part from AMD that reported
3052 		 * cache sizes via extended cpuid functions.
3053 		 */
3054 		if (cpi->cpi_family > 5 ||
3055 		    (cpi->cpi_family == 5 && cpi->cpi_model >= 1))
3056 			return (X86_VENDOR_AMD);
3057 		break;
3058 	case X86_VENDOR_TM:
3059 		if (cpi->cpi_family >= 5)
3060 			return (X86_VENDOR_AMD);
3061 		/*FALLTHROUGH*/
3062 	default:
3063 		/*
3064 		 * If they have extended CPU data for 0x80000005
3065 		 * then we assume they have AMD-format cache
3066 		 * information.
3067 		 *
3068 		 * If not, and the vendor happens to be Cyrix,
3069 		 * then try our-Cyrix specific handler.
3070 		 *
3071 		 * If we're not Cyrix, then assume we're using Intel's
3072 		 * table-driven format instead.
3073 		 */
3074 		if (cpi->cpi_xmaxeax >= 0x80000005)
3075 			return (X86_VENDOR_AMD);
3076 		else if (cpi->cpi_vendor == X86_VENDOR_Cyrix)
3077 			return (X86_VENDOR_Cyrix);
3078 		else if (cpi->cpi_maxeax >= 2)
3079 			return (X86_VENDOR_Intel);
3080 		break;
3081 	}
3082 	return (-1);
3083 }
3084 
3085 /*
3086  * create a node for the given cpu under the prom root node.
3087  * Also, create a cpu node in the device tree.
3088  */
3089 static dev_info_t *cpu_nex_devi = NULL;
3090 static kmutex_t cpu_node_lock;
3091 
3092 /*
3093  * Called from post_startup() and mp_startup()
3094  */
3095 void
3096 add_cpunode2devtree(processorid_t cpu_id, struct cpuid_info *cpi)
3097 {
3098 	dev_info_t *cpu_devi;
3099 	int create;
3100 
3101 	mutex_enter(&cpu_node_lock);
3102 
3103 	/*
3104 	 * create a nexus node for all cpus identified as 'cpu_id' under
3105 	 * the root node.
3106 	 */
3107 	if (cpu_nex_devi == NULL) {
3108 		if (ndi_devi_alloc(ddi_root_node(), "cpus",
3109 		    (pnode_t)DEVI_SID_NODEID, &cpu_nex_devi) != NDI_SUCCESS) {
3110 			mutex_exit(&cpu_node_lock);
3111 			return;
3112 		}
3113 		(void) ndi_devi_online(cpu_nex_devi, 0);
3114 	}
3115 
3116 	/*
3117 	 * create a child node for cpu identified as 'cpu_id'
3118 	 */
3119 	cpu_devi = ddi_add_child(cpu_nex_devi, "cpu", DEVI_SID_NODEID,
3120 	    cpu_id);
3121 	if (cpu_devi == NULL) {
3122 		mutex_exit(&cpu_node_lock);
3123 		return;
3124 	}
3125 
3126 	/* device_type */
3127 
3128 	(void) ndi_prop_update_string(DDI_DEV_T_NONE, cpu_devi,
3129 	    "device_type", "cpu");
3130 
3131 	/* reg */
3132 
3133 	(void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi,
3134 	    "reg", cpu_id);
3135 
3136 	/* cpu-mhz, and clock-frequency */
3137 
3138 	if (cpu_freq > 0) {
3139 		long long mul;
3140 
3141 		(void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi,
3142 		    "cpu-mhz", cpu_freq);
3143 
3144 		if ((mul = cpu_freq * 1000000LL) <= INT_MAX)
3145 			(void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi,
3146 			    "clock-frequency", (int)mul);
3147 	}
3148 
3149 	(void) ndi_devi_online(cpu_devi, 0);
3150 
3151 	if ((x86_feature & X86_CPUID) == 0) {
3152 		mutex_exit(&cpu_node_lock);
3153 		return;
3154 	}
3155 
3156 	/* vendor-id */
3157 
3158 	(void) ndi_prop_update_string(DDI_DEV_T_NONE, cpu_devi,
3159 	    "vendor-id", cpi->cpi_vendorstr);
3160 
3161 	if (cpi->cpi_maxeax == 0) {
3162 		mutex_exit(&cpu_node_lock);
3163 		return;
3164 	}
3165 
3166 	/*
3167 	 * family, model, and step
3168 	 */
3169 	(void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi,
3170 	    "family", CPI_FAMILY(cpi));
3171 	(void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi,
3172 	    "cpu-model", CPI_MODEL(cpi));
3173 	(void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi,
3174 	    "stepping-id", CPI_STEP(cpi));
3175 
3176 	/* type */
3177 
3178 	switch (cpi->cpi_vendor) {
3179 	case X86_VENDOR_Intel:
3180 		create = 1;
3181 		break;
3182 	default:
3183 		create = 0;
3184 		break;
3185 	}
3186 	if (create)
3187 		(void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi,
3188 		    "type", CPI_TYPE(cpi));
3189 
3190 	/* ext-family */
3191 
3192 	switch (cpi->cpi_vendor) {
3193 	case X86_VENDOR_Intel:
3194 	case X86_VENDOR_AMD:
3195 		create = cpi->cpi_family >= 0xf;
3196 		break;
3197 	default:
3198 		create = 0;
3199 		break;
3200 	}
3201 	if (create)
3202 		(void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi,
3203 		    "ext-family", CPI_FAMILY_XTD(cpi));
3204 
3205 	/* ext-model */
3206 
3207 	switch (cpi->cpi_vendor) {
3208 	case X86_VENDOR_Intel:
3209 		create = CPI_MODEL(cpi) == 0xf;
3210 		break;
3211 	case X86_VENDOR_AMD:
3212 		create = CPI_FAMILY(cpi) == 0xf;
3213 		break;
3214 	default:
3215 		create = 0;
3216 		break;
3217 	}
3218 	if (create)
3219 		(void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi,
3220 		    "ext-model", CPI_MODEL_XTD(cpi));
3221 
3222 	/* generation */
3223 
3224 	switch (cpi->cpi_vendor) {
3225 	case X86_VENDOR_AMD:
3226 		/*
3227 		 * AMD K5 model 1 was the first part to support this
3228 		 */
3229 		create = cpi->cpi_xmaxeax >= 0x80000001;
3230 		break;
3231 	default:
3232 		create = 0;
3233 		break;
3234 	}
3235 	if (create)
3236 		(void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi,
3237 		    "generation", BITX((cpi)->cpi_extd[1].cp_eax, 11, 8));
3238 
3239 	/* brand-id */
3240 
3241 	switch (cpi->cpi_vendor) {
3242 	case X86_VENDOR_Intel:
3243 		/*
3244 		 * brand id first appeared on Pentium III Xeon model 8,
3245 		 * and Celeron model 8 processors and Opteron
3246 		 */
3247 		create = cpi->cpi_family > 6 ||
3248 		    (cpi->cpi_family == 6 && cpi->cpi_model >= 8);
3249 		break;
3250 	case X86_VENDOR_AMD:
3251 		create = cpi->cpi_family >= 0xf;
3252 		break;
3253 	default:
3254 		create = 0;
3255 		break;
3256 	}
3257 	if (create && cpi->cpi_brandid != 0) {
3258 		(void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi,
3259 		    "brand-id", cpi->cpi_brandid);
3260 	}
3261 
3262 	/* chunks, and apic-id */
3263 
3264 	switch (cpi->cpi_vendor) {
3265 		/*
3266 		 * first available on Pentium IV and Opteron (K8)
3267 		 */
3268 	case X86_VENDOR_Intel:
3269 		create = IS_NEW_F6(cpi) || cpi->cpi_family >= 0xf;
3270 		break;
3271 	case X86_VENDOR_AMD:
3272 		create = cpi->cpi_family >= 0xf;
3273 		break;
3274 	default:
3275 		create = 0;
3276 		break;
3277 	}
3278 	if (create) {
3279 		(void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi,
3280 		    "chunks", CPI_CHUNKS(cpi));
3281 		(void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi,
3282 		    "apic-id", CPI_APIC_ID(cpi));
3283 		if (cpi->cpi_chipid >= 0) {
3284 			(void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi,
3285 			    "chip#", cpi->cpi_chipid);
3286 			(void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi,
3287 			    "clog#", cpi->cpi_clogid);
3288 		}
3289 	}
3290 
3291 	/* cpuid-features */
3292 
3293 	(void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi,
3294 	    "cpuid-features", CPI_FEATURES_EDX(cpi));
3295 
3296 
3297 	/* cpuid-features-ecx */
3298 
3299 	switch (cpi->cpi_vendor) {
3300 	case X86_VENDOR_Intel:
3301 		create = IS_NEW_F6(cpi) || cpi->cpi_family >= 0xf;
3302 		break;
3303 	default:
3304 		create = 0;
3305 		break;
3306 	}
3307 	if (create)
3308 		(void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi,
3309 		    "cpuid-features-ecx", CPI_FEATURES_ECX(cpi));
3310 
3311 	/* ext-cpuid-features */
3312 
3313 	switch (cpi->cpi_vendor) {
3314 	case X86_VENDOR_Intel:
3315 	case X86_VENDOR_AMD:
3316 	case X86_VENDOR_Cyrix:
3317 	case X86_VENDOR_TM:
3318 	case X86_VENDOR_Centaur:
3319 		create = cpi->cpi_xmaxeax >= 0x80000001;
3320 		break;
3321 	default:
3322 		create = 0;
3323 		break;
3324 	}
3325 	if (create) {
3326 		(void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi,
3327 		    "ext-cpuid-features", CPI_FEATURES_XTD_EDX(cpi));
3328 		(void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi,
3329 		    "ext-cpuid-features-ecx", CPI_FEATURES_XTD_ECX(cpi));
3330 	}
3331 
3332 	/*
3333 	 * Brand String first appeared in Intel Pentium IV, AMD K5
3334 	 * model 1, and Cyrix GXm.  On earlier models we try and
3335 	 * simulate something similar .. so this string should always
3336 	 * same -something- about the processor, however lame.
3337 	 */
3338 	(void) ndi_prop_update_string(DDI_DEV_T_NONE, cpu_devi,
3339 	    "brand-string", cpi->cpi_brandstr);
3340 
3341 	/*
3342 	 * Finally, cache and tlb information
3343 	 */
3344 	switch (x86_which_cacheinfo(cpi)) {
3345 	case X86_VENDOR_Intel:
3346 		intel_walk_cacheinfo(cpi, cpu_devi, add_cacheent_props);
3347 		break;
3348 	case X86_VENDOR_Cyrix:
3349 		cyrix_walk_cacheinfo(cpi, cpu_devi, add_cacheent_props);
3350 		break;
3351 	case X86_VENDOR_AMD:
3352 		amd_cache_info(cpi, cpu_devi);
3353 		break;
3354 	default:
3355 		break;
3356 	}
3357 
3358 	mutex_exit(&cpu_node_lock);
3359 }
3360 
3361 struct l2info {
3362 	int *l2i_csz;
3363 	int *l2i_lsz;
3364 	int *l2i_assoc;
3365 	int l2i_ret;
3366 };
3367 
3368 /*
3369  * A cacheinfo walker that fetches the size, line-size and associativity
3370  * of the L2 cache
3371  */
3372 static int
3373 intel_l2cinfo(void *arg, const struct cachetab *ct)
3374 {
3375 	struct l2info *l2i = arg;
3376 	int *ip;
3377 
3378 	if (ct->ct_label != l2_cache_str &&
3379 	    ct->ct_label != sl2_cache_str)
3380 		return (0);	/* not an L2 -- keep walking */
3381 
3382 	if ((ip = l2i->l2i_csz) != NULL)
3383 		*ip = ct->ct_size;
3384 	if ((ip = l2i->l2i_lsz) != NULL)
3385 		*ip = ct->ct_line_size;
3386 	if ((ip = l2i->l2i_assoc) != NULL)
3387 		*ip = ct->ct_assoc;
3388 	l2i->l2i_ret = ct->ct_size;
3389 	return (1);		/* was an L2 -- terminate walk */
3390 }
3391 
3392 static void
3393 amd_l2cacheinfo(struct cpuid_info *cpi, struct l2info *l2i)
3394 {
3395 	struct cpuid_regs *cp;
3396 	uint_t size, assoc;
3397 	int *ip;
3398 
3399 	if (cpi->cpi_xmaxeax < 0x80000006)
3400 		return;
3401 	cp = &cpi->cpi_extd[6];
3402 
3403 	if ((assoc = BITX(cp->cp_ecx, 15, 12)) != 0 &&
3404 	    (size = BITX(cp->cp_ecx, 31, 16)) != 0) {
3405 		uint_t cachesz = size * 1024;
3406 
3407 
3408 		if ((ip = l2i->l2i_csz) != NULL)
3409 			*ip = cachesz;
3410 		if ((ip = l2i->l2i_lsz) != NULL)
3411 			*ip = BITX(cp->cp_ecx, 7, 0);
3412 		if ((ip = l2i->l2i_assoc) != NULL)
3413 			*ip = assoc;
3414 		l2i->l2i_ret = cachesz;
3415 	}
3416 }
3417 
3418 int
3419 getl2cacheinfo(cpu_t *cpu, int *csz, int *lsz, int *assoc)
3420 {
3421 	struct cpuid_info *cpi = cpu->cpu_m.mcpu_cpi;
3422 	struct l2info __l2info, *l2i = &__l2info;
3423 
3424 	l2i->l2i_csz = csz;
3425 	l2i->l2i_lsz = lsz;
3426 	l2i->l2i_assoc = assoc;
3427 	l2i->l2i_ret = -1;
3428 
3429 	switch (x86_which_cacheinfo(cpi)) {
3430 	case X86_VENDOR_Intel:
3431 		intel_walk_cacheinfo(cpi, l2i, intel_l2cinfo);
3432 		break;
3433 	case X86_VENDOR_Cyrix:
3434 		cyrix_walk_cacheinfo(cpi, l2i, intel_l2cinfo);
3435 		break;
3436 	case X86_VENDOR_AMD:
3437 		amd_l2cacheinfo(cpi, l2i);
3438 		break;
3439 	default:
3440 		break;
3441 	}
3442 	return (l2i->l2i_ret);
3443 }
3444 
3445 uint32_t *
3446 cpuid_mwait_alloc(cpu_t *cpu)
3447 {
3448 	uint32_t	*ret;
3449 	size_t		mwait_size;
3450 
3451 	ASSERT(cpuid_checkpass(cpu, 2));
3452 
3453 	mwait_size = cpu->cpu_m.mcpu_cpi->cpi_mwait.mon_max;
3454 	if (mwait_size == 0)
3455 		return (NULL);
3456 
3457 	/*
3458 	 * kmem_alloc() returns cache line size aligned data for mwait_size
3459 	 * allocations.  mwait_size is currently cache line sized.  Neither
3460 	 * of these implementation details are guarantied to be true in the
3461 	 * future.
3462 	 *
3463 	 * First try allocating mwait_size as kmem_alloc() currently returns
3464 	 * correctly aligned memory.  If kmem_alloc() does not return
3465 	 * mwait_size aligned memory, then use mwait_size ROUNDUP.
3466 	 *
3467 	 * Set cpi_mwait.buf_actual and cpi_mwait.size_actual in case we
3468 	 * decide to free this memory.
3469 	 */
3470 	ret = kmem_zalloc(mwait_size, KM_SLEEP);
3471 	if (ret == (uint32_t *)P2ROUNDUP((uintptr_t)ret, mwait_size)) {
3472 		cpu->cpu_m.mcpu_cpi->cpi_mwait.buf_actual = ret;
3473 		cpu->cpu_m.mcpu_cpi->cpi_mwait.size_actual = mwait_size;
3474 		*ret = MWAIT_RUNNING;
3475 		return (ret);
3476 	} else {
3477 		kmem_free(ret, mwait_size);
3478 		ret = kmem_zalloc(mwait_size * 2, KM_SLEEP);
3479 		cpu->cpu_m.mcpu_cpi->cpi_mwait.buf_actual = ret;
3480 		cpu->cpu_m.mcpu_cpi->cpi_mwait.size_actual = mwait_size * 2;
3481 		ret = (uint32_t *)P2ROUNDUP((uintptr_t)ret, mwait_size);
3482 		*ret = MWAIT_RUNNING;
3483 		return (ret);
3484 	}
3485 }
3486 
3487 void
3488 cpuid_mwait_free(cpu_t *cpu)
3489 {
3490 	ASSERT(cpuid_checkpass(cpu, 2));
3491 
3492 	if (cpu->cpu_m.mcpu_cpi->cpi_mwait.buf_actual != NULL &&
3493 	    cpu->cpu_m.mcpu_cpi->cpi_mwait.size_actual > 0) {
3494 		kmem_free(cpu->cpu_m.mcpu_cpi->cpi_mwait.buf_actual,
3495 		    cpu->cpu_m.mcpu_cpi->cpi_mwait.size_actual);
3496 	}
3497 
3498 	cpu->cpu_m.mcpu_cpi->cpi_mwait.buf_actual = NULL;
3499 	cpu->cpu_m.mcpu_cpi->cpi_mwait.size_actual = 0;
3500 }
3501