xref: /titanic_41/usr/src/uts/i86pc/os/cpuid.c (revision a62774df315360f02521d6470eab7d5080137dad)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 /*
26  * Copyright (c) 2009, Intel Corporation.
27  * All rights reserved.
28  */
29 
30 /*
31  * Various routines to handle identification
32  * and classification of x86 processors.
33  */
34 
35 #include <sys/types.h>
36 #include <sys/archsystm.h>
37 #include <sys/x86_archext.h>
38 #include <sys/kmem.h>
39 #include <sys/systm.h>
40 #include <sys/cmn_err.h>
41 #include <sys/sunddi.h>
42 #include <sys/sunndi.h>
43 #include <sys/cpuvar.h>
44 #include <sys/processor.h>
45 #include <sys/sysmacros.h>
46 #include <sys/pg.h>
47 #include <sys/fp.h>
48 #include <sys/controlregs.h>
49 #include <sys/auxv_386.h>
50 #include <sys/bitmap.h>
51 #include <sys/memnode.h>
52 
53 #ifdef __xpv
54 #include <sys/hypervisor.h>
55 #else
56 #include <sys/ontrap.h>
57 #endif
58 
59 /*
60  * Pass 0 of cpuid feature analysis happens in locore. It contains special code
61  * to recognize Cyrix processors that are not cpuid-compliant, and to deal with
62  * them accordingly. For most modern processors, feature detection occurs here
63  * in pass 1.
64  *
65  * Pass 1 of cpuid feature analysis happens just at the beginning of mlsetup()
66  * for the boot CPU and does the basic analysis that the early kernel needs.
67  * x86_feature is set based on the return value of cpuid_pass1() of the boot
68  * CPU.
69  *
70  * Pass 1 includes:
71  *
72  *	o Determining vendor/model/family/stepping and setting x86_type and
73  *	  x86_vendor accordingly.
74  *	o Processing the feature flags returned by the cpuid instruction while
75  *	  applying any workarounds or tricks for the specific processor.
76  *	o Mapping the feature flags into Solaris feature bits (X86_*).
77  *	o Processing extended feature flags if supported by the processor,
78  *	  again while applying specific processor knowledge.
79  *	o Determining the CMT characteristics of the system.
80  *
81  * Pass 1 is done on non-boot CPUs during their initialization and the results
82  * are used only as a meager attempt at ensuring that all processors within the
83  * system support the same features.
84  *
85  * Pass 2 of cpuid feature analysis happens just at the beginning
86  * of startup().  It just copies in and corrects the remainder
87  * of the cpuid data we depend on: standard cpuid functions that we didn't
88  * need for pass1 feature analysis, and extended cpuid functions beyond the
89  * simple feature processing done in pass1.
90  *
91  * Pass 3 of cpuid analysis is invoked after basic kernel services; in
92  * particular kernel memory allocation has been made available. It creates a
93  * readable brand string based on the data collected in the first two passes.
94  *
95  * Pass 4 of cpuid analysis is invoked after post_startup() when all
96  * the support infrastructure for various hardware features has been
97  * initialized. It determines which processor features will be reported
98  * to userland via the aux vector.
99  *
100  * All passes are executed on all CPUs, but only the boot CPU determines what
101  * features the kernel will use.
102  *
103  * Much of the worst junk in this file is for the support of processors
104  * that didn't really implement the cpuid instruction properly.
105  *
106  * NOTE: The accessor functions (cpuid_get*) are aware of, and ASSERT upon,
107  * the pass numbers.  Accordingly, changes to the pass code may require changes
108  * to the accessor code.
109  */
110 
111 uint_t x86_feature = 0;
112 uint_t x86_vendor = X86_VENDOR_IntelClone;
113 uint_t x86_type = X86_TYPE_OTHER;
114 uint_t x86_clflush_size = 0;
115 
116 uint_t pentiumpro_bug4046376;
117 uint_t pentiumpro_bug4064495;
118 
119 uint_t enable486;
120 /*
121  * This is set to platform type Solaris is running on.
122  */
123 static int platform_type = -1;
124 
125 #if !defined(__xpv)
126 /*
127  * Variable to patch if hypervisor platform detection needs to be
128  * disabled (e.g. platform_type will always be HW_NATIVE if this is 0).
129  */
130 int enable_platform_detection = 1;
131 #endif
132 
133 /*
134  * monitor/mwait info.
135  *
136  * size_actual and buf_actual are the real address and size allocated to get
137  * proper mwait_buf alignement.  buf_actual and size_actual should be passed
138  * to kmem_free().  Currently kmem_alloc() and mwait happen to both use
139  * processor cache-line alignment, but this is not guarantied in the furture.
140  */
141 struct mwait_info {
142 	size_t		mon_min;	/* min size to avoid missed wakeups */
143 	size_t		mon_max;	/* size to avoid false wakeups */
144 	size_t		size_actual;	/* size actually allocated */
145 	void		*buf_actual;	/* memory actually allocated */
146 	uint32_t	support;	/* processor support of monitor/mwait */
147 };
148 
149 /*
150  * These constants determine how many of the elements of the
151  * cpuid we cache in the cpuid_info data structure; the
152  * remaining elements are accessible via the cpuid instruction.
153  */
154 
155 #define	NMAX_CPI_STD	6		/* eax = 0 .. 5 */
156 #define	NMAX_CPI_EXTD	9		/* eax = 0x80000000 .. 0x80000008 */
157 
158 struct cpuid_info {
159 	uint_t cpi_pass;		/* last pass completed */
160 	/*
161 	 * standard function information
162 	 */
163 	uint_t cpi_maxeax;		/* fn 0: %eax */
164 	char cpi_vendorstr[13];		/* fn 0: %ebx:%ecx:%edx */
165 	uint_t cpi_vendor;		/* enum of cpi_vendorstr */
166 
167 	uint_t cpi_family;		/* fn 1: extended family */
168 	uint_t cpi_model;		/* fn 1: extended model */
169 	uint_t cpi_step;		/* fn 1: stepping */
170 	chipid_t cpi_chipid;		/* fn 1: %ebx: chip # on ht cpus */
171 	uint_t cpi_brandid;		/* fn 1: %ebx: brand ID */
172 	int cpi_clogid;			/* fn 1: %ebx: thread # */
173 	uint_t cpi_ncpu_per_chip;	/* fn 1: %ebx: logical cpu count */
174 	uint8_t cpi_cacheinfo[16];	/* fn 2: intel-style cache desc */
175 	uint_t cpi_ncache;		/* fn 2: number of elements */
176 	uint_t cpi_ncpu_shr_last_cache;	/* fn 4: %eax: ncpus sharing cache */
177 	id_t cpi_last_lvl_cacheid;	/* fn 4: %eax: derived cache id */
178 	uint_t cpi_std_4_size;		/* fn 4: number of fn 4 elements */
179 	struct cpuid_regs **cpi_std_4;	/* fn 4: %ecx == 0 .. fn4_size */
180 	struct cpuid_regs cpi_std[NMAX_CPI_STD];	/* 0 .. 5 */
181 	/*
182 	 * extended function information
183 	 */
184 	uint_t cpi_xmaxeax;		/* fn 0x80000000: %eax */
185 	char cpi_brandstr[49];		/* fn 0x8000000[234] */
186 	uint8_t cpi_pabits;		/* fn 0x80000006: %eax */
187 	uint8_t cpi_vabits;		/* fn 0x80000006: %eax */
188 	struct cpuid_regs cpi_extd[NMAX_CPI_EXTD]; /* 0x8000000[0-8] */
189 	id_t cpi_coreid;		/* same coreid => strands share core */
190 	int cpi_pkgcoreid;		/* core number within single package */
191 	uint_t cpi_ncore_per_chip;	/* AMD: fn 0x80000008: %ecx[7-0] */
192 					/* Intel: fn 4: %eax[31-26] */
193 	/*
194 	 * supported feature information
195 	 */
196 	uint32_t cpi_support[5];
197 #define	STD_EDX_FEATURES	0
198 #define	AMD_EDX_FEATURES	1
199 #define	TM_EDX_FEATURES		2
200 #define	STD_ECX_FEATURES	3
201 #define	AMD_ECX_FEATURES	4
202 	/*
203 	 * Synthesized information, where known.
204 	 */
205 	uint32_t cpi_chiprev;		/* See X86_CHIPREV_* in x86_archext.h */
206 	const char *cpi_chiprevstr;	/* May be NULL if chiprev unknown */
207 	uint32_t cpi_socket;		/* Chip package/socket type */
208 
209 	struct mwait_info cpi_mwait;	/* fn 5: monitor/mwait info */
210 	uint32_t cpi_apicid;
211 };
212 
213 
214 static struct cpuid_info cpuid_info0;
215 
216 /*
217  * These bit fields are defined by the Intel Application Note AP-485
218  * "Intel Processor Identification and the CPUID Instruction"
219  */
220 #define	CPI_FAMILY_XTD(cpi)	BITX((cpi)->cpi_std[1].cp_eax, 27, 20)
221 #define	CPI_MODEL_XTD(cpi)	BITX((cpi)->cpi_std[1].cp_eax, 19, 16)
222 #define	CPI_TYPE(cpi)		BITX((cpi)->cpi_std[1].cp_eax, 13, 12)
223 #define	CPI_FAMILY(cpi)		BITX((cpi)->cpi_std[1].cp_eax, 11, 8)
224 #define	CPI_STEP(cpi)		BITX((cpi)->cpi_std[1].cp_eax, 3, 0)
225 #define	CPI_MODEL(cpi)		BITX((cpi)->cpi_std[1].cp_eax, 7, 4)
226 
227 #define	CPI_FEATURES_EDX(cpi)		((cpi)->cpi_std[1].cp_edx)
228 #define	CPI_FEATURES_ECX(cpi)		((cpi)->cpi_std[1].cp_ecx)
229 #define	CPI_FEATURES_XTD_EDX(cpi)	((cpi)->cpi_extd[1].cp_edx)
230 #define	CPI_FEATURES_XTD_ECX(cpi)	((cpi)->cpi_extd[1].cp_ecx)
231 
232 #define	CPI_BRANDID(cpi)	BITX((cpi)->cpi_std[1].cp_ebx, 7, 0)
233 #define	CPI_CHUNKS(cpi)		BITX((cpi)->cpi_std[1].cp_ebx, 15, 7)
234 #define	CPI_CPU_COUNT(cpi)	BITX((cpi)->cpi_std[1].cp_ebx, 23, 16)
235 #define	CPI_APIC_ID(cpi)	BITX((cpi)->cpi_std[1].cp_ebx, 31, 24)
236 
237 #define	CPI_MAXEAX_MAX		0x100		/* sanity control */
238 #define	CPI_XMAXEAX_MAX		0x80000100
239 #define	CPI_FN4_ECX_MAX		0x20		/* sanity: max fn 4 levels */
240 #define	CPI_FNB_ECX_MAX		0x20		/* sanity: max fn B levels */
241 
242 /*
243  * Function 4 (Deterministic Cache Parameters) macros
244  * Defined by Intel Application Note AP-485
245  */
246 #define	CPI_NUM_CORES(regs)		BITX((regs)->cp_eax, 31, 26)
247 #define	CPI_NTHR_SHR_CACHE(regs)	BITX((regs)->cp_eax, 25, 14)
248 #define	CPI_FULL_ASSOC_CACHE(regs)	BITX((regs)->cp_eax, 9, 9)
249 #define	CPI_SELF_INIT_CACHE(regs)	BITX((regs)->cp_eax, 8, 8)
250 #define	CPI_CACHE_LVL(regs)		BITX((regs)->cp_eax, 7, 5)
251 #define	CPI_CACHE_TYPE(regs)		BITX((regs)->cp_eax, 4, 0)
252 #define	CPI_CPU_LEVEL_TYPE(regs)	BITX((regs)->cp_ecx, 15, 8)
253 
254 #define	CPI_CACHE_WAYS(regs)		BITX((regs)->cp_ebx, 31, 22)
255 #define	CPI_CACHE_PARTS(regs)		BITX((regs)->cp_ebx, 21, 12)
256 #define	CPI_CACHE_COH_LN_SZ(regs)	BITX((regs)->cp_ebx, 11, 0)
257 
258 #define	CPI_CACHE_SETS(regs)		BITX((regs)->cp_ecx, 31, 0)
259 
260 #define	CPI_PREFCH_STRIDE(regs)		BITX((regs)->cp_edx, 9, 0)
261 
262 
263 /*
264  * A couple of shorthand macros to identify "later" P6-family chips
265  * like the Pentium M and Core.  First, the "older" P6-based stuff
266  * (loosely defined as "pre-Pentium-4"):
267  * P6, PII, Mobile PII, PII Xeon, PIII, Mobile PIII, PIII Xeon
268  */
269 
270 #define	IS_LEGACY_P6(cpi) (			\
271 	cpi->cpi_family == 6 && 		\
272 		(cpi->cpi_model == 1 ||		\
273 		cpi->cpi_model == 3 ||		\
274 		cpi->cpi_model == 5 ||		\
275 		cpi->cpi_model == 6 ||		\
276 		cpi->cpi_model == 7 ||		\
277 		cpi->cpi_model == 8 ||		\
278 		cpi->cpi_model == 0xA ||	\
279 		cpi->cpi_model == 0xB)		\
280 )
281 
282 /* A "new F6" is everything with family 6 that's not the above */
283 #define	IS_NEW_F6(cpi) ((cpi->cpi_family == 6) && !IS_LEGACY_P6(cpi))
284 
285 /* Extended family/model support */
286 #define	IS_EXTENDED_MODEL_INTEL(cpi) (cpi->cpi_family == 0x6 || \
287 	cpi->cpi_family >= 0xf)
288 
289 /*
290  * Info for monitor/mwait idle loop.
291  *
292  * See cpuid section of "Intel 64 and IA-32 Architectures Software Developer's
293  * Manual Volume 2A: Instruction Set Reference, A-M" #25366-022US, November
294  * 2006.
295  * See MONITOR/MWAIT section of "AMD64 Architecture Programmer's Manual
296  * Documentation Updates" #33633, Rev 2.05, December 2006.
297  */
298 #define	MWAIT_SUPPORT		(0x00000001)	/* mwait supported */
299 #define	MWAIT_EXTENSIONS	(0x00000002)	/* extenstion supported */
300 #define	MWAIT_ECX_INT_ENABLE	(0x00000004)	/* ecx 1 extension supported */
301 #define	MWAIT_SUPPORTED(cpi)	((cpi)->cpi_std[1].cp_ecx & CPUID_INTC_ECX_MON)
302 #define	MWAIT_INT_ENABLE(cpi)	((cpi)->cpi_std[5].cp_ecx & 0x2)
303 #define	MWAIT_EXTENSION(cpi)	((cpi)->cpi_std[5].cp_ecx & 0x1)
304 #define	MWAIT_SIZE_MIN(cpi)	BITX((cpi)->cpi_std[5].cp_eax, 15, 0)
305 #define	MWAIT_SIZE_MAX(cpi)	BITX((cpi)->cpi_std[5].cp_ebx, 15, 0)
306 /*
307  * Number of sub-cstates for a given c-state.
308  */
309 #define	MWAIT_NUM_SUBC_STATES(cpi, c_state)			\
310 	BITX((cpi)->cpi_std[5].cp_edx, c_state + 3, c_state)
311 
312 /*
313  * Functions we consune from cpuid_subr.c;  don't publish these in a header
314  * file to try and keep people using the expected cpuid_* interfaces.
315  */
316 extern uint32_t _cpuid_skt(uint_t, uint_t, uint_t, uint_t);
317 extern const char *_cpuid_sktstr(uint_t, uint_t, uint_t, uint_t);
318 extern uint32_t _cpuid_chiprev(uint_t, uint_t, uint_t, uint_t);
319 extern const char *_cpuid_chiprevstr(uint_t, uint_t, uint_t, uint_t);
320 extern uint_t _cpuid_vendorstr_to_vendorcode(char *);
321 
322 /*
323  * Apply up various platform-dependent restrictions where the
324  * underlying platform restrictions mean the CPU can be marked
325  * as less capable than its cpuid instruction would imply.
326  */
327 #if defined(__xpv)
328 static void
329 platform_cpuid_mangle(uint_t vendor, uint32_t eax, struct cpuid_regs *cp)
330 {
331 	switch (eax) {
332 	case 1: {
333 		uint32_t mcamask = DOMAIN_IS_INITDOMAIN(xen_info) ?
334 		    0 : CPUID_INTC_EDX_MCA;
335 		cp->cp_edx &=
336 		    ~(mcamask |
337 		    CPUID_INTC_EDX_PSE |
338 		    CPUID_INTC_EDX_VME | CPUID_INTC_EDX_DE |
339 		    CPUID_INTC_EDX_SEP | CPUID_INTC_EDX_MTRR |
340 		    CPUID_INTC_EDX_PGE | CPUID_INTC_EDX_PAT |
341 		    CPUID_AMD_EDX_SYSC | CPUID_INTC_EDX_SEP |
342 		    CPUID_INTC_EDX_PSE36 | CPUID_INTC_EDX_HTT);
343 		break;
344 	}
345 
346 	case 0x80000001:
347 		cp->cp_edx &=
348 		    ~(CPUID_AMD_EDX_PSE |
349 		    CPUID_INTC_EDX_VME | CPUID_INTC_EDX_DE |
350 		    CPUID_AMD_EDX_MTRR | CPUID_AMD_EDX_PGE |
351 		    CPUID_AMD_EDX_PAT | CPUID_AMD_EDX_PSE36 |
352 		    CPUID_AMD_EDX_SYSC | CPUID_INTC_EDX_SEP |
353 		    CPUID_AMD_EDX_TSCP);
354 		cp->cp_ecx &= ~CPUID_AMD_ECX_CMP_LGCY;
355 		break;
356 	default:
357 		break;
358 	}
359 
360 	switch (vendor) {
361 	case X86_VENDOR_Intel:
362 		switch (eax) {
363 		case 4:
364 			/*
365 			 * Zero out the (ncores-per-chip - 1) field
366 			 */
367 			cp->cp_eax &= 0x03fffffff;
368 			break;
369 		default:
370 			break;
371 		}
372 		break;
373 	case X86_VENDOR_AMD:
374 		switch (eax) {
375 
376 		case 0x80000001:
377 			cp->cp_ecx &= ~CPUID_AMD_ECX_CR8D;
378 			break;
379 
380 		case 0x80000008:
381 			/*
382 			 * Zero out the (ncores-per-chip - 1) field
383 			 */
384 			cp->cp_ecx &= 0xffffff00;
385 			break;
386 		default:
387 			break;
388 		}
389 		break;
390 	default:
391 		break;
392 	}
393 }
394 #else
395 #define	platform_cpuid_mangle(vendor, eax, cp)	/* nothing */
396 #endif
397 
398 /*
399  *  Some undocumented ways of patching the results of the cpuid
400  *  instruction to permit running Solaris 10 on future cpus that
401  *  we don't currently support.  Could be set to non-zero values
402  *  via settings in eeprom.
403  */
404 
405 uint32_t cpuid_feature_ecx_include;
406 uint32_t cpuid_feature_ecx_exclude;
407 uint32_t cpuid_feature_edx_include;
408 uint32_t cpuid_feature_edx_exclude;
409 
410 void
411 cpuid_alloc_space(cpu_t *cpu)
412 {
413 	/*
414 	 * By convention, cpu0 is the boot cpu, which is set up
415 	 * before memory allocation is available.  All other cpus get
416 	 * their cpuid_info struct allocated here.
417 	 */
418 	ASSERT(cpu->cpu_id != 0);
419 	cpu->cpu_m.mcpu_cpi =
420 	    kmem_zalloc(sizeof (*cpu->cpu_m.mcpu_cpi), KM_SLEEP);
421 }
422 
423 void
424 cpuid_free_space(cpu_t *cpu)
425 {
426 	struct cpuid_info *cpi = cpu->cpu_m.mcpu_cpi;
427 	int i;
428 
429 	ASSERT(cpu->cpu_id != 0);
430 
431 	/*
432 	 * Free up any function 4 related dynamic storage
433 	 */
434 	for (i = 1; i < cpi->cpi_std_4_size; i++)
435 		kmem_free(cpi->cpi_std_4[i], sizeof (struct cpuid_regs));
436 	if (cpi->cpi_std_4_size > 0)
437 		kmem_free(cpi->cpi_std_4,
438 		    cpi->cpi_std_4_size * sizeof (struct cpuid_regs *));
439 
440 	kmem_free(cpu->cpu_m.mcpu_cpi, sizeof (*cpu->cpu_m.mcpu_cpi));
441 }
442 
443 #if !defined(__xpv)
444 
445 static void
446 determine_platform()
447 {
448 	struct cpuid_regs cp;
449 	char *xen_str;
450 	uint32_t xen_signature[4];
451 
452 	platform_type = HW_NATIVE;
453 
454 	if (!enable_platform_detection)
455 		return;
456 
457 	/*
458 	 * In a fully virtualized domain, Xen's pseudo-cpuid function
459 	 * 0x40000000 returns a string representing the Xen signature in
460 	 * %ebx, %ecx, and %edx.  %eax contains the maximum supported cpuid
461 	 * function.
462 	 */
463 	cp.cp_eax = 0x40000000;
464 	(void) __cpuid_insn(&cp);
465 	xen_signature[0] = cp.cp_ebx;
466 	xen_signature[1] = cp.cp_ecx;
467 	xen_signature[2] = cp.cp_edx;
468 	xen_signature[3] = 0;
469 	xen_str = (char *)xen_signature;
470 	if (strcmp("XenVMMXenVMM", xen_str) == 0 && cp.cp_eax <= 0x40000002) {
471 		platform_type = HW_XEN_HVM;
472 	} else if (vmware_platform()) { /* running under vmware hypervisor? */
473 		platform_type = HW_VMWARE;
474 	}
475 }
476 
477 int
478 get_hwenv(void)
479 {
480 	if (platform_type == -1)
481 		determine_platform();
482 
483 	return (platform_type);
484 }
485 
486 int
487 is_controldom(void)
488 {
489 	return (0);
490 }
491 
492 #else
493 
494 int
495 get_hwenv(void)
496 {
497 	return (HW_XEN_PV);
498 }
499 
500 int
501 is_controldom(void)
502 {
503 	return (DOMAIN_IS_INITDOMAIN(xen_info));
504 }
505 
506 #endif	/* __xpv */
507 
508 uint_t
509 cpuid_pass1(cpu_t *cpu)
510 {
511 	uint32_t mask_ecx, mask_edx;
512 	uint_t feature = X86_CPUID;
513 	struct cpuid_info *cpi;
514 	struct cpuid_regs *cp;
515 	int xcpuid;
516 #if !defined(__xpv)
517 	extern int idle_cpu_prefer_mwait;
518 #endif
519 
520 
521 #if !defined(__xpv)
522 	determine_platform();
523 #endif
524 	/*
525 	 * Space statically allocated for cpu0, ensure pointer is set
526 	 */
527 	if (cpu->cpu_id == 0)
528 		cpu->cpu_m.mcpu_cpi = &cpuid_info0;
529 	cpi = cpu->cpu_m.mcpu_cpi;
530 	ASSERT(cpi != NULL);
531 	cp = &cpi->cpi_std[0];
532 	cp->cp_eax = 0;
533 	cpi->cpi_maxeax = __cpuid_insn(cp);
534 	{
535 		uint32_t *iptr = (uint32_t *)cpi->cpi_vendorstr;
536 		*iptr++ = cp->cp_ebx;
537 		*iptr++ = cp->cp_edx;
538 		*iptr++ = cp->cp_ecx;
539 		*(char *)&cpi->cpi_vendorstr[12] = '\0';
540 	}
541 
542 	cpi->cpi_vendor = _cpuid_vendorstr_to_vendorcode(cpi->cpi_vendorstr);
543 	x86_vendor = cpi->cpi_vendor; /* for compatibility */
544 
545 	/*
546 	 * Limit the range in case of weird hardware
547 	 */
548 	if (cpi->cpi_maxeax > CPI_MAXEAX_MAX)
549 		cpi->cpi_maxeax = CPI_MAXEAX_MAX;
550 	if (cpi->cpi_maxeax < 1)
551 		goto pass1_done;
552 
553 	cp = &cpi->cpi_std[1];
554 	cp->cp_eax = 1;
555 	(void) __cpuid_insn(cp);
556 
557 	/*
558 	 * Extract identifying constants for easy access.
559 	 */
560 	cpi->cpi_model = CPI_MODEL(cpi);
561 	cpi->cpi_family = CPI_FAMILY(cpi);
562 
563 	if (cpi->cpi_family == 0xf)
564 		cpi->cpi_family += CPI_FAMILY_XTD(cpi);
565 
566 	/*
567 	 * Beware: AMD uses "extended model" iff base *FAMILY* == 0xf.
568 	 * Intel, and presumably everyone else, uses model == 0xf, as
569 	 * one would expect (max value means possible overflow).  Sigh.
570 	 */
571 
572 	switch (cpi->cpi_vendor) {
573 	case X86_VENDOR_Intel:
574 		if (IS_EXTENDED_MODEL_INTEL(cpi))
575 			cpi->cpi_model += CPI_MODEL_XTD(cpi) << 4;
576 		break;
577 	case X86_VENDOR_AMD:
578 		if (CPI_FAMILY(cpi) == 0xf)
579 			cpi->cpi_model += CPI_MODEL_XTD(cpi) << 4;
580 		break;
581 	default:
582 		if (cpi->cpi_model == 0xf)
583 			cpi->cpi_model += CPI_MODEL_XTD(cpi) << 4;
584 		break;
585 	}
586 
587 	cpi->cpi_step = CPI_STEP(cpi);
588 	cpi->cpi_brandid = CPI_BRANDID(cpi);
589 
590 	/*
591 	 * *default* assumptions:
592 	 * - believe %edx feature word
593 	 * - ignore %ecx feature word
594 	 * - 32-bit virtual and physical addressing
595 	 */
596 	mask_edx = 0xffffffff;
597 	mask_ecx = 0;
598 
599 	cpi->cpi_pabits = cpi->cpi_vabits = 32;
600 
601 	switch (cpi->cpi_vendor) {
602 	case X86_VENDOR_Intel:
603 		if (cpi->cpi_family == 5)
604 			x86_type = X86_TYPE_P5;
605 		else if (IS_LEGACY_P6(cpi)) {
606 			x86_type = X86_TYPE_P6;
607 			pentiumpro_bug4046376 = 1;
608 			pentiumpro_bug4064495 = 1;
609 			/*
610 			 * Clear the SEP bit when it was set erroneously
611 			 */
612 			if (cpi->cpi_model < 3 && cpi->cpi_step < 3)
613 				cp->cp_edx &= ~CPUID_INTC_EDX_SEP;
614 		} else if (IS_NEW_F6(cpi) || cpi->cpi_family == 0xf) {
615 			x86_type = X86_TYPE_P4;
616 			/*
617 			 * We don't currently depend on any of the %ecx
618 			 * features until Prescott, so we'll only check
619 			 * this from P4 onwards.  We might want to revisit
620 			 * that idea later.
621 			 */
622 			mask_ecx = 0xffffffff;
623 		} else if (cpi->cpi_family > 0xf)
624 			mask_ecx = 0xffffffff;
625 		/*
626 		 * We don't support MONITOR/MWAIT if leaf 5 is not available
627 		 * to obtain the monitor linesize.
628 		 */
629 		if (cpi->cpi_maxeax < 5)
630 			mask_ecx &= ~CPUID_INTC_ECX_MON;
631 		break;
632 	case X86_VENDOR_IntelClone:
633 	default:
634 		break;
635 	case X86_VENDOR_AMD:
636 #if defined(OPTERON_ERRATUM_108)
637 		if (cpi->cpi_family == 0xf && cpi->cpi_model == 0xe) {
638 			cp->cp_eax = (0xf0f & cp->cp_eax) | 0xc0;
639 			cpi->cpi_model = 0xc;
640 		} else
641 #endif
642 		if (cpi->cpi_family == 5) {
643 			/*
644 			 * AMD K5 and K6
645 			 *
646 			 * These CPUs have an incomplete implementation
647 			 * of MCA/MCE which we mask away.
648 			 */
649 			mask_edx &= ~(CPUID_INTC_EDX_MCE | CPUID_INTC_EDX_MCA);
650 
651 			/*
652 			 * Model 0 uses the wrong (APIC) bit
653 			 * to indicate PGE.  Fix it here.
654 			 */
655 			if (cpi->cpi_model == 0) {
656 				if (cp->cp_edx & 0x200) {
657 					cp->cp_edx &= ~0x200;
658 					cp->cp_edx |= CPUID_INTC_EDX_PGE;
659 				}
660 			}
661 
662 			/*
663 			 * Early models had problems w/ MMX; disable.
664 			 */
665 			if (cpi->cpi_model < 6)
666 				mask_edx &= ~CPUID_INTC_EDX_MMX;
667 		}
668 
669 		/*
670 		 * For newer families, SSE3 and CX16, at least, are valid;
671 		 * enable all
672 		 */
673 		if (cpi->cpi_family >= 0xf)
674 			mask_ecx = 0xffffffff;
675 		/*
676 		 * We don't support MONITOR/MWAIT if leaf 5 is not available
677 		 * to obtain the monitor linesize.
678 		 */
679 		if (cpi->cpi_maxeax < 5)
680 			mask_ecx &= ~CPUID_INTC_ECX_MON;
681 
682 #if !defined(__xpv)
683 		/*
684 		 * Do not use MONITOR/MWAIT to halt in the idle loop on any AMD
685 		 * processors.  AMD does not intend MWAIT to be used in the cpu
686 		 * idle loop on current and future processors.  10h and future
687 		 * AMD processors use more power in MWAIT than HLT.
688 		 * Pre-family-10h Opterons do not have the MWAIT instruction.
689 		 */
690 		idle_cpu_prefer_mwait = 0;
691 #endif
692 
693 		break;
694 	case X86_VENDOR_TM:
695 		/*
696 		 * workaround the NT workaround in CMS 4.1
697 		 */
698 		if (cpi->cpi_family == 5 && cpi->cpi_model == 4 &&
699 		    (cpi->cpi_step == 2 || cpi->cpi_step == 3))
700 			cp->cp_edx |= CPUID_INTC_EDX_CX8;
701 		break;
702 	case X86_VENDOR_Centaur:
703 		/*
704 		 * workaround the NT workarounds again
705 		 */
706 		if (cpi->cpi_family == 6)
707 			cp->cp_edx |= CPUID_INTC_EDX_CX8;
708 		break;
709 	case X86_VENDOR_Cyrix:
710 		/*
711 		 * We rely heavily on the probing in locore
712 		 * to actually figure out what parts, if any,
713 		 * of the Cyrix cpuid instruction to believe.
714 		 */
715 		switch (x86_type) {
716 		case X86_TYPE_CYRIX_486:
717 			mask_edx = 0;
718 			break;
719 		case X86_TYPE_CYRIX_6x86:
720 			mask_edx = 0;
721 			break;
722 		case X86_TYPE_CYRIX_6x86L:
723 			mask_edx =
724 			    CPUID_INTC_EDX_DE |
725 			    CPUID_INTC_EDX_CX8;
726 			break;
727 		case X86_TYPE_CYRIX_6x86MX:
728 			mask_edx =
729 			    CPUID_INTC_EDX_DE |
730 			    CPUID_INTC_EDX_MSR |
731 			    CPUID_INTC_EDX_CX8 |
732 			    CPUID_INTC_EDX_PGE |
733 			    CPUID_INTC_EDX_CMOV |
734 			    CPUID_INTC_EDX_MMX;
735 			break;
736 		case X86_TYPE_CYRIX_GXm:
737 			mask_edx =
738 			    CPUID_INTC_EDX_MSR |
739 			    CPUID_INTC_EDX_CX8 |
740 			    CPUID_INTC_EDX_CMOV |
741 			    CPUID_INTC_EDX_MMX;
742 			break;
743 		case X86_TYPE_CYRIX_MediaGX:
744 			break;
745 		case X86_TYPE_CYRIX_MII:
746 		case X86_TYPE_VIA_CYRIX_III:
747 			mask_edx =
748 			    CPUID_INTC_EDX_DE |
749 			    CPUID_INTC_EDX_TSC |
750 			    CPUID_INTC_EDX_MSR |
751 			    CPUID_INTC_EDX_CX8 |
752 			    CPUID_INTC_EDX_PGE |
753 			    CPUID_INTC_EDX_CMOV |
754 			    CPUID_INTC_EDX_MMX;
755 			break;
756 		default:
757 			break;
758 		}
759 		break;
760 	}
761 
762 #if defined(__xpv)
763 	/*
764 	 * Do not support MONITOR/MWAIT under a hypervisor
765 	 */
766 	mask_ecx &= ~CPUID_INTC_ECX_MON;
767 #endif	/* __xpv */
768 
769 	/*
770 	 * Now we've figured out the masks that determine
771 	 * which bits we choose to believe, apply the masks
772 	 * to the feature words, then map the kernel's view
773 	 * of these feature words into its feature word.
774 	 */
775 	cp->cp_edx &= mask_edx;
776 	cp->cp_ecx &= mask_ecx;
777 
778 	/*
779 	 * apply any platform restrictions (we don't call this
780 	 * immediately after __cpuid_insn here, because we need the
781 	 * workarounds applied above first)
782 	 */
783 	platform_cpuid_mangle(cpi->cpi_vendor, 1, cp);
784 
785 	/*
786 	 * fold in overrides from the "eeprom" mechanism
787 	 */
788 	cp->cp_edx |= cpuid_feature_edx_include;
789 	cp->cp_edx &= ~cpuid_feature_edx_exclude;
790 
791 	cp->cp_ecx |= cpuid_feature_ecx_include;
792 	cp->cp_ecx &= ~cpuid_feature_ecx_exclude;
793 
794 	if (cp->cp_edx & CPUID_INTC_EDX_PSE)
795 		feature |= X86_LARGEPAGE;
796 	if (cp->cp_edx & CPUID_INTC_EDX_TSC)
797 		feature |= X86_TSC;
798 	if (cp->cp_edx & CPUID_INTC_EDX_MSR)
799 		feature |= X86_MSR;
800 	if (cp->cp_edx & CPUID_INTC_EDX_MTRR)
801 		feature |= X86_MTRR;
802 	if (cp->cp_edx & CPUID_INTC_EDX_PGE)
803 		feature |= X86_PGE;
804 	if (cp->cp_edx & CPUID_INTC_EDX_CMOV)
805 		feature |= X86_CMOV;
806 	if (cp->cp_edx & CPUID_INTC_EDX_MMX)
807 		feature |= X86_MMX;
808 	if ((cp->cp_edx & CPUID_INTC_EDX_MCE) != 0 &&
809 	    (cp->cp_edx & CPUID_INTC_EDX_MCA) != 0)
810 		feature |= X86_MCA;
811 	if (cp->cp_edx & CPUID_INTC_EDX_PAE)
812 		feature |= X86_PAE;
813 	if (cp->cp_edx & CPUID_INTC_EDX_CX8)
814 		feature |= X86_CX8;
815 	if (cp->cp_ecx & CPUID_INTC_ECX_CX16)
816 		feature |= X86_CX16;
817 	if (cp->cp_edx & CPUID_INTC_EDX_PAT)
818 		feature |= X86_PAT;
819 	if (cp->cp_edx & CPUID_INTC_EDX_SEP)
820 		feature |= X86_SEP;
821 	if (cp->cp_edx & CPUID_INTC_EDX_FXSR) {
822 		/*
823 		 * In our implementation, fxsave/fxrstor
824 		 * are prerequisites before we'll even
825 		 * try and do SSE things.
826 		 */
827 		if (cp->cp_edx & CPUID_INTC_EDX_SSE)
828 			feature |= X86_SSE;
829 		if (cp->cp_edx & CPUID_INTC_EDX_SSE2)
830 			feature |= X86_SSE2;
831 		if (cp->cp_ecx & CPUID_INTC_ECX_SSE3)
832 			feature |= X86_SSE3;
833 		if (cpi->cpi_vendor == X86_VENDOR_Intel) {
834 			if (cp->cp_ecx & CPUID_INTC_ECX_SSSE3)
835 				feature |= X86_SSSE3;
836 			if (cp->cp_ecx & CPUID_INTC_ECX_SSE4_1)
837 				feature |= X86_SSE4_1;
838 			if (cp->cp_ecx & CPUID_INTC_ECX_SSE4_2)
839 				feature |= X86_SSE4_2;
840 			if (cp->cp_ecx & CPUID_INTC_ECX_AES)
841 				feature |= X86_AES;
842 		}
843 	}
844 	if (cp->cp_edx & CPUID_INTC_EDX_DE)
845 		feature |= X86_DE;
846 #if !defined(__xpv)
847 	if (cp->cp_ecx & CPUID_INTC_ECX_MON) {
848 
849 		/*
850 		 * We require the CLFLUSH instruction for erratum workaround
851 		 * to use MONITOR/MWAIT.
852 		 */
853 		if (cp->cp_edx & CPUID_INTC_EDX_CLFSH) {
854 			cpi->cpi_mwait.support |= MWAIT_SUPPORT;
855 			feature |= X86_MWAIT;
856 		} else {
857 			extern int idle_cpu_assert_cflush_monitor;
858 
859 			/*
860 			 * All processors we are aware of which have
861 			 * MONITOR/MWAIT also have CLFLUSH.
862 			 */
863 			if (idle_cpu_assert_cflush_monitor) {
864 				ASSERT((cp->cp_ecx & CPUID_INTC_ECX_MON) &&
865 				    (cp->cp_edx & CPUID_INTC_EDX_CLFSH));
866 			}
867 		}
868 	}
869 #endif	/* __xpv */
870 
871 	/*
872 	 * Only need it first time, rest of the cpus would follow suite.
873 	 * we only capture this for the bootcpu.
874 	 */
875 	if (cp->cp_edx & CPUID_INTC_EDX_CLFSH) {
876 		feature |= X86_CLFSH;
877 		x86_clflush_size = (BITX(cp->cp_ebx, 15, 8) * 8);
878 	}
879 
880 	if (feature & X86_PAE)
881 		cpi->cpi_pabits = 36;
882 
883 	/*
884 	 * Hyperthreading configuration is slightly tricky on Intel
885 	 * and pure clones, and even trickier on AMD.
886 	 *
887 	 * (AMD chose to set the HTT bit on their CMP processors,
888 	 * even though they're not actually hyperthreaded.  Thus it
889 	 * takes a bit more work to figure out what's really going
890 	 * on ... see the handling of the CMP_LGCY bit below)
891 	 */
892 	if (cp->cp_edx & CPUID_INTC_EDX_HTT) {
893 		cpi->cpi_ncpu_per_chip = CPI_CPU_COUNT(cpi);
894 		if (cpi->cpi_ncpu_per_chip > 1)
895 			feature |= X86_HTT;
896 	} else {
897 		cpi->cpi_ncpu_per_chip = 1;
898 	}
899 
900 	/*
901 	 * Work on the "extended" feature information, doing
902 	 * some basic initialization for cpuid_pass2()
903 	 */
904 	xcpuid = 0;
905 	switch (cpi->cpi_vendor) {
906 	case X86_VENDOR_Intel:
907 		if (IS_NEW_F6(cpi) || cpi->cpi_family >= 0xf)
908 			xcpuid++;
909 		break;
910 	case X86_VENDOR_AMD:
911 		if (cpi->cpi_family > 5 ||
912 		    (cpi->cpi_family == 5 && cpi->cpi_model >= 1))
913 			xcpuid++;
914 		break;
915 	case X86_VENDOR_Cyrix:
916 		/*
917 		 * Only these Cyrix CPUs are -known- to support
918 		 * extended cpuid operations.
919 		 */
920 		if (x86_type == X86_TYPE_VIA_CYRIX_III ||
921 		    x86_type == X86_TYPE_CYRIX_GXm)
922 			xcpuid++;
923 		break;
924 	case X86_VENDOR_Centaur:
925 	case X86_VENDOR_TM:
926 	default:
927 		xcpuid++;
928 		break;
929 	}
930 
931 	if (xcpuid) {
932 		cp = &cpi->cpi_extd[0];
933 		cp->cp_eax = 0x80000000;
934 		cpi->cpi_xmaxeax = __cpuid_insn(cp);
935 	}
936 
937 	if (cpi->cpi_xmaxeax & 0x80000000) {
938 
939 		if (cpi->cpi_xmaxeax > CPI_XMAXEAX_MAX)
940 			cpi->cpi_xmaxeax = CPI_XMAXEAX_MAX;
941 
942 		switch (cpi->cpi_vendor) {
943 		case X86_VENDOR_Intel:
944 		case X86_VENDOR_AMD:
945 			if (cpi->cpi_xmaxeax < 0x80000001)
946 				break;
947 			cp = &cpi->cpi_extd[1];
948 			cp->cp_eax = 0x80000001;
949 			(void) __cpuid_insn(cp);
950 
951 			if (cpi->cpi_vendor == X86_VENDOR_AMD &&
952 			    cpi->cpi_family == 5 &&
953 			    cpi->cpi_model == 6 &&
954 			    cpi->cpi_step == 6) {
955 				/*
956 				 * K6 model 6 uses bit 10 to indicate SYSC
957 				 * Later models use bit 11. Fix it here.
958 				 */
959 				if (cp->cp_edx & 0x400) {
960 					cp->cp_edx &= ~0x400;
961 					cp->cp_edx |= CPUID_AMD_EDX_SYSC;
962 				}
963 			}
964 
965 			platform_cpuid_mangle(cpi->cpi_vendor, 0x80000001, cp);
966 
967 			/*
968 			 * Compute the additions to the kernel's feature word.
969 			 */
970 			if (cp->cp_edx & CPUID_AMD_EDX_NX)
971 				feature |= X86_NX;
972 
973 			/*
974 			 * Regardless whether or not we boot 64-bit,
975 			 * we should have a way to identify whether
976 			 * the CPU is capable of running 64-bit.
977 			 */
978 			if (cp->cp_edx & CPUID_AMD_EDX_LM)
979 				feature |= X86_64;
980 
981 #if defined(__amd64)
982 			/* 1 GB large page - enable only for 64 bit kernel */
983 			if (cp->cp_edx & CPUID_AMD_EDX_1GPG)
984 				feature |= X86_1GPG;
985 #endif
986 
987 			if ((cpi->cpi_vendor == X86_VENDOR_AMD) &&
988 			    (cpi->cpi_std[1].cp_edx & CPUID_INTC_EDX_FXSR) &&
989 			    (cp->cp_ecx & CPUID_AMD_ECX_SSE4A))
990 				feature |= X86_SSE4A;
991 
992 			/*
993 			 * If both the HTT and CMP_LGCY bits are set,
994 			 * then we're not actually HyperThreaded.  Read
995 			 * "AMD CPUID Specification" for more details.
996 			 */
997 			if (cpi->cpi_vendor == X86_VENDOR_AMD &&
998 			    (feature & X86_HTT) &&
999 			    (cp->cp_ecx & CPUID_AMD_ECX_CMP_LGCY)) {
1000 				feature &= ~X86_HTT;
1001 				feature |= X86_CMP;
1002 			}
1003 #if defined(__amd64)
1004 			/*
1005 			 * It's really tricky to support syscall/sysret in
1006 			 * the i386 kernel; we rely on sysenter/sysexit
1007 			 * instead.  In the amd64 kernel, things are -way-
1008 			 * better.
1009 			 */
1010 			if (cp->cp_edx & CPUID_AMD_EDX_SYSC)
1011 				feature |= X86_ASYSC;
1012 
1013 			/*
1014 			 * While we're thinking about system calls, note
1015 			 * that AMD processors don't support sysenter
1016 			 * in long mode at all, so don't try to program them.
1017 			 */
1018 			if (x86_vendor == X86_VENDOR_AMD)
1019 				feature &= ~X86_SEP;
1020 #endif
1021 			if (cp->cp_edx & CPUID_AMD_EDX_TSCP)
1022 				feature |= X86_TSCP;
1023 			break;
1024 		default:
1025 			break;
1026 		}
1027 
1028 		/*
1029 		 * Get CPUID data about processor cores and hyperthreads.
1030 		 */
1031 		switch (cpi->cpi_vendor) {
1032 		case X86_VENDOR_Intel:
1033 			if (cpi->cpi_maxeax >= 4) {
1034 				cp = &cpi->cpi_std[4];
1035 				cp->cp_eax = 4;
1036 				cp->cp_ecx = 0;
1037 				(void) __cpuid_insn(cp);
1038 				platform_cpuid_mangle(cpi->cpi_vendor, 4, cp);
1039 			}
1040 			/*FALLTHROUGH*/
1041 		case X86_VENDOR_AMD:
1042 			if (cpi->cpi_xmaxeax < 0x80000008)
1043 				break;
1044 			cp = &cpi->cpi_extd[8];
1045 			cp->cp_eax = 0x80000008;
1046 			(void) __cpuid_insn(cp);
1047 			platform_cpuid_mangle(cpi->cpi_vendor, 0x80000008, cp);
1048 
1049 			/*
1050 			 * Virtual and physical address limits from
1051 			 * cpuid override previously guessed values.
1052 			 */
1053 			cpi->cpi_pabits = BITX(cp->cp_eax, 7, 0);
1054 			cpi->cpi_vabits = BITX(cp->cp_eax, 15, 8);
1055 			break;
1056 		default:
1057 			break;
1058 		}
1059 
1060 		/*
1061 		 * Derive the number of cores per chip
1062 		 */
1063 		switch (cpi->cpi_vendor) {
1064 		case X86_VENDOR_Intel:
1065 			if (cpi->cpi_maxeax < 4) {
1066 				cpi->cpi_ncore_per_chip = 1;
1067 				break;
1068 			} else {
1069 				cpi->cpi_ncore_per_chip =
1070 				    BITX((cpi)->cpi_std[4].cp_eax, 31, 26) + 1;
1071 			}
1072 			break;
1073 		case X86_VENDOR_AMD:
1074 			if (cpi->cpi_xmaxeax < 0x80000008) {
1075 				cpi->cpi_ncore_per_chip = 1;
1076 				break;
1077 			} else {
1078 				/*
1079 				 * On family 0xf cpuid fn 2 ECX[7:0] "NC" is
1080 				 * 1 less than the number of physical cores on
1081 				 * the chip.  In family 0x10 this value can
1082 				 * be affected by "downcoring" - it reflects
1083 				 * 1 less than the number of cores actually
1084 				 * enabled on this node.
1085 				 */
1086 				cpi->cpi_ncore_per_chip =
1087 				    BITX((cpi)->cpi_extd[8].cp_ecx, 7, 0) + 1;
1088 			}
1089 			break;
1090 		default:
1091 			cpi->cpi_ncore_per_chip = 1;
1092 			break;
1093 		}
1094 
1095 		/*
1096 		 * Get CPUID data about TSC Invariance in Deep C-State.
1097 		 */
1098 		switch (cpi->cpi_vendor) {
1099 		case X86_VENDOR_Intel:
1100 			if (cpi->cpi_maxeax >= 7) {
1101 				cp = &cpi->cpi_extd[7];
1102 				cp->cp_eax = 0x80000007;
1103 				cp->cp_ecx = 0;
1104 				(void) __cpuid_insn(cp);
1105 			}
1106 			break;
1107 		default:
1108 			break;
1109 		}
1110 	} else {
1111 		cpi->cpi_ncore_per_chip = 1;
1112 	}
1113 
1114 	/*
1115 	 * If more than one core, then this processor is CMP.
1116 	 */
1117 	if (cpi->cpi_ncore_per_chip > 1)
1118 		feature |= X86_CMP;
1119 
1120 	/*
1121 	 * If the number of cores is the same as the number
1122 	 * of CPUs, then we cannot have HyperThreading.
1123 	 */
1124 	if (cpi->cpi_ncpu_per_chip == cpi->cpi_ncore_per_chip)
1125 		feature &= ~X86_HTT;
1126 
1127 	if ((feature & (X86_HTT | X86_CMP)) == 0) {
1128 		/*
1129 		 * Single-core single-threaded processors.
1130 		 */
1131 		cpi->cpi_chipid = -1;
1132 		cpi->cpi_clogid = 0;
1133 		cpi->cpi_coreid = cpu->cpu_id;
1134 		cpi->cpi_pkgcoreid = 0;
1135 	} else if (cpi->cpi_ncpu_per_chip > 1) {
1136 		uint_t i;
1137 		uint_t chipid_shift = 0;
1138 		uint_t coreid_shift = 0;
1139 		uint_t apic_id = CPI_APIC_ID(cpi);
1140 
1141 		for (i = 1; i < cpi->cpi_ncpu_per_chip; i <<= 1)
1142 			chipid_shift++;
1143 		cpi->cpi_chipid = apic_id >> chipid_shift;
1144 		cpi->cpi_clogid = apic_id & ((1 << chipid_shift) - 1);
1145 
1146 		if (cpi->cpi_vendor == X86_VENDOR_Intel) {
1147 			if (feature & X86_CMP) {
1148 				/*
1149 				 * Multi-core (and possibly multi-threaded)
1150 				 * processors.
1151 				 */
1152 				uint_t ncpu_per_core;
1153 				if (cpi->cpi_ncore_per_chip == 1)
1154 					ncpu_per_core = cpi->cpi_ncpu_per_chip;
1155 				else if (cpi->cpi_ncore_per_chip > 1)
1156 					ncpu_per_core = cpi->cpi_ncpu_per_chip /
1157 					    cpi->cpi_ncore_per_chip;
1158 				/*
1159 				 * 8bit APIC IDs on dual core Pentiums
1160 				 * look like this:
1161 				 *
1162 				 * +-----------------------+------+------+
1163 				 * | Physical Package ID   |  MC  |  HT  |
1164 				 * +-----------------------+------+------+
1165 				 * <------- chipid -------->
1166 				 * <------- coreid --------------->
1167 				 *			   <--- clogid -->
1168 				 *			   <------>
1169 				 *			   pkgcoreid
1170 				 *
1171 				 * Where the number of bits necessary to
1172 				 * represent MC and HT fields together equals
1173 				 * to the minimum number of bits necessary to
1174 				 * store the value of cpi->cpi_ncpu_per_chip.
1175 				 * Of those bits, the MC part uses the number
1176 				 * of bits necessary to store the value of
1177 				 * cpi->cpi_ncore_per_chip.
1178 				 */
1179 				for (i = 1; i < ncpu_per_core; i <<= 1)
1180 					coreid_shift++;
1181 				cpi->cpi_coreid = apic_id >> coreid_shift;
1182 				cpi->cpi_pkgcoreid = cpi->cpi_clogid >>
1183 				    coreid_shift;
1184 			} else if (feature & X86_HTT) {
1185 				/*
1186 				 * Single-core multi-threaded processors.
1187 				 */
1188 				cpi->cpi_coreid = cpi->cpi_chipid;
1189 				cpi->cpi_pkgcoreid = 0;
1190 			}
1191 		} else if (cpi->cpi_vendor == X86_VENDOR_AMD) {
1192 			/*
1193 			 * AMD CMP chips currently have a single thread per
1194 			 * core, with 2 cores on family 0xf and 2, 3 or 4
1195 			 * cores on family 0x10.
1196 			 *
1197 			 * Since no two cpus share a core we must assign a
1198 			 * distinct coreid per cpu, and we do this by using
1199 			 * the cpu_id.  This scheme does not, however,
1200 			 * guarantee that sibling cores of a chip will have
1201 			 * sequential coreids starting at a multiple of the
1202 			 * number of cores per chip - that is usually the
1203 			 * case, but if the ACPI MADT table is presented
1204 			 * in a different order then we need to perform a
1205 			 * few more gymnastics for the pkgcoreid.
1206 			 *
1207 			 * In family 0xf CMPs there are 2 cores on all nodes
1208 			 * present - no mixing of single and dual core parts.
1209 			 *
1210 			 * In family 0x10 CMPs cpuid fn 2 ECX[15:12]
1211 			 * "ApicIdCoreIdSize[3:0]" tells us how
1212 			 * many least-significant bits in the ApicId
1213 			 * are used to represent the core number
1214 			 * within the node.  Cores are always
1215 			 * numbered sequentially from 0 regardless
1216 			 * of how many or which are disabled, and
1217 			 * there seems to be no way to discover the
1218 			 * real core id when some are disabled.
1219 			 */
1220 			cpi->cpi_coreid = cpu->cpu_id;
1221 
1222 			if (cpi->cpi_family == 0x10 &&
1223 			    cpi->cpi_xmaxeax >= 0x80000008) {
1224 				int coreidsz =
1225 				    BITX((cpi)->cpi_extd[8].cp_ecx, 15, 12);
1226 
1227 				cpi->cpi_pkgcoreid =
1228 				    apic_id & ((1 << coreidsz) - 1);
1229 			} else {
1230 				cpi->cpi_pkgcoreid = cpi->cpi_clogid;
1231 			}
1232 		} else {
1233 			/*
1234 			 * All other processors are currently
1235 			 * assumed to have single cores.
1236 			 */
1237 			cpi->cpi_coreid = cpi->cpi_chipid;
1238 			cpi->cpi_pkgcoreid = 0;
1239 		}
1240 	}
1241 
1242 	cpi->cpi_apicid = CPI_APIC_ID(cpi);
1243 
1244 	/*
1245 	 * Synthesize chip "revision" and socket type
1246 	 */
1247 	cpi->cpi_chiprev = _cpuid_chiprev(cpi->cpi_vendor, cpi->cpi_family,
1248 	    cpi->cpi_model, cpi->cpi_step);
1249 	cpi->cpi_chiprevstr = _cpuid_chiprevstr(cpi->cpi_vendor,
1250 	    cpi->cpi_family, cpi->cpi_model, cpi->cpi_step);
1251 	cpi->cpi_socket = _cpuid_skt(cpi->cpi_vendor, cpi->cpi_family,
1252 	    cpi->cpi_model, cpi->cpi_step);
1253 
1254 pass1_done:
1255 	cpi->cpi_pass = 1;
1256 	return (feature);
1257 }
1258 
1259 /*
1260  * Make copies of the cpuid table entries we depend on, in
1261  * part for ease of parsing now, in part so that we have only
1262  * one place to correct any of it, in part for ease of
1263  * later export to userland, and in part so we can look at
1264  * this stuff in a crash dump.
1265  */
1266 
1267 /*ARGSUSED*/
1268 void
1269 cpuid_pass2(cpu_t *cpu)
1270 {
1271 	uint_t n, nmax;
1272 	int i;
1273 	struct cpuid_regs *cp;
1274 	uint8_t *dp;
1275 	uint32_t *iptr;
1276 	struct cpuid_info *cpi = cpu->cpu_m.mcpu_cpi;
1277 
1278 	ASSERT(cpi->cpi_pass == 1);
1279 
1280 	if (cpi->cpi_maxeax < 1)
1281 		goto pass2_done;
1282 
1283 	if ((nmax = cpi->cpi_maxeax + 1) > NMAX_CPI_STD)
1284 		nmax = NMAX_CPI_STD;
1285 	/*
1286 	 * (We already handled n == 0 and n == 1 in pass 1)
1287 	 */
1288 	for (n = 2, cp = &cpi->cpi_std[2]; n < nmax; n++, cp++) {
1289 		cp->cp_eax = n;
1290 
1291 		/*
1292 		 * CPUID function 4 expects %ecx to be initialized
1293 		 * with an index which indicates which cache to return
1294 		 * information about. The OS is expected to call function 4
1295 		 * with %ecx set to 0, 1, 2, ... until it returns with
1296 		 * EAX[4:0] set to 0, which indicates there are no more
1297 		 * caches.
1298 		 *
1299 		 * Here, populate cpi_std[4] with the information returned by
1300 		 * function 4 when %ecx == 0, and do the rest in cpuid_pass3()
1301 		 * when dynamic memory allocation becomes available.
1302 		 *
1303 		 * Note: we need to explicitly initialize %ecx here, since
1304 		 * function 4 may have been previously invoked.
1305 		 */
1306 		if (n == 4)
1307 			cp->cp_ecx = 0;
1308 
1309 		(void) __cpuid_insn(cp);
1310 		platform_cpuid_mangle(cpi->cpi_vendor, n, cp);
1311 		switch (n) {
1312 		case 2:
1313 			/*
1314 			 * "the lower 8 bits of the %eax register
1315 			 * contain a value that identifies the number
1316 			 * of times the cpuid [instruction] has to be
1317 			 * executed to obtain a complete image of the
1318 			 * processor's caching systems."
1319 			 *
1320 			 * How *do* they make this stuff up?
1321 			 */
1322 			cpi->cpi_ncache = sizeof (*cp) *
1323 			    BITX(cp->cp_eax, 7, 0);
1324 			if (cpi->cpi_ncache == 0)
1325 				break;
1326 			cpi->cpi_ncache--;	/* skip count byte */
1327 
1328 			/*
1329 			 * Well, for now, rather than attempt to implement
1330 			 * this slightly dubious algorithm, we just look
1331 			 * at the first 15 ..
1332 			 */
1333 			if (cpi->cpi_ncache > (sizeof (*cp) - 1))
1334 				cpi->cpi_ncache = sizeof (*cp) - 1;
1335 
1336 			dp = cpi->cpi_cacheinfo;
1337 			if (BITX(cp->cp_eax, 31, 31) == 0) {
1338 				uint8_t *p = (void *)&cp->cp_eax;
1339 				for (i = 1; i < 4; i++)
1340 					if (p[i] != 0)
1341 						*dp++ = p[i];
1342 			}
1343 			if (BITX(cp->cp_ebx, 31, 31) == 0) {
1344 				uint8_t *p = (void *)&cp->cp_ebx;
1345 				for (i = 0; i < 4; i++)
1346 					if (p[i] != 0)
1347 						*dp++ = p[i];
1348 			}
1349 			if (BITX(cp->cp_ecx, 31, 31) == 0) {
1350 				uint8_t *p = (void *)&cp->cp_ecx;
1351 				for (i = 0; i < 4; i++)
1352 					if (p[i] != 0)
1353 						*dp++ = p[i];
1354 			}
1355 			if (BITX(cp->cp_edx, 31, 31) == 0) {
1356 				uint8_t *p = (void *)&cp->cp_edx;
1357 				for (i = 0; i < 4; i++)
1358 					if (p[i] != 0)
1359 						*dp++ = p[i];
1360 			}
1361 			break;
1362 
1363 		case 3:	/* Processor serial number, if PSN supported */
1364 			break;
1365 
1366 		case 4:	/* Deterministic cache parameters */
1367 			break;
1368 
1369 		case 5:	/* Monitor/Mwait parameters */
1370 		{
1371 			size_t mwait_size;
1372 
1373 			/*
1374 			 * check cpi_mwait.support which was set in cpuid_pass1
1375 			 */
1376 			if (!(cpi->cpi_mwait.support & MWAIT_SUPPORT))
1377 				break;
1378 
1379 			/*
1380 			 * Protect ourself from insane mwait line size.
1381 			 * Workaround for incomplete hardware emulator(s).
1382 			 */
1383 			mwait_size = (size_t)MWAIT_SIZE_MAX(cpi);
1384 			if (mwait_size < sizeof (uint32_t) ||
1385 			    !ISP2(mwait_size)) {
1386 #if DEBUG
1387 				cmn_err(CE_NOTE, "Cannot handle cpu %d mwait "
1388 				    "size %ld", cpu->cpu_id, (long)mwait_size);
1389 #endif
1390 				break;
1391 			}
1392 
1393 			cpi->cpi_mwait.mon_min = (size_t)MWAIT_SIZE_MIN(cpi);
1394 			cpi->cpi_mwait.mon_max = mwait_size;
1395 			if (MWAIT_EXTENSION(cpi)) {
1396 				cpi->cpi_mwait.support |= MWAIT_EXTENSIONS;
1397 				if (MWAIT_INT_ENABLE(cpi))
1398 					cpi->cpi_mwait.support |=
1399 					    MWAIT_ECX_INT_ENABLE;
1400 			}
1401 			break;
1402 		}
1403 		default:
1404 			break;
1405 		}
1406 	}
1407 
1408 	if (cpi->cpi_maxeax >= 0xB && cpi->cpi_vendor == X86_VENDOR_Intel) {
1409 		struct cpuid_regs regs;
1410 
1411 		cp = &regs;
1412 		cp->cp_eax = 0xB;
1413 		cp->cp_edx = cp->cp_ebx = cp->cp_ecx = 0;
1414 
1415 		(void) __cpuid_insn(cp);
1416 
1417 		/*
1418 		 * Check CPUID.EAX=0BH, ECX=0H:EBX is non-zero, which
1419 		 * indicates that the extended topology enumeration leaf is
1420 		 * available.
1421 		 */
1422 		if (cp->cp_ebx) {
1423 			uint32_t x2apic_id;
1424 			uint_t coreid_shift = 0;
1425 			uint_t ncpu_per_core = 1;
1426 			uint_t chipid_shift = 0;
1427 			uint_t ncpu_per_chip = 1;
1428 			uint_t i;
1429 			uint_t level;
1430 
1431 			for (i = 0; i < CPI_FNB_ECX_MAX; i++) {
1432 				cp->cp_eax = 0xB;
1433 				cp->cp_ecx = i;
1434 
1435 				(void) __cpuid_insn(cp);
1436 				level = CPI_CPU_LEVEL_TYPE(cp);
1437 
1438 				if (level == 1) {
1439 					x2apic_id = cp->cp_edx;
1440 					coreid_shift = BITX(cp->cp_eax, 4, 0);
1441 					ncpu_per_core = BITX(cp->cp_ebx, 15, 0);
1442 				} else if (level == 2) {
1443 					x2apic_id = cp->cp_edx;
1444 					chipid_shift = BITX(cp->cp_eax, 4, 0);
1445 					ncpu_per_chip = BITX(cp->cp_ebx, 15, 0);
1446 				}
1447 			}
1448 
1449 			cpi->cpi_apicid = x2apic_id;
1450 			cpi->cpi_ncpu_per_chip = ncpu_per_chip;
1451 			cpi->cpi_ncore_per_chip = ncpu_per_chip /
1452 			    ncpu_per_core;
1453 			cpi->cpi_chipid = x2apic_id >> chipid_shift;
1454 			cpi->cpi_clogid = x2apic_id & ((1 << chipid_shift) - 1);
1455 			cpi->cpi_coreid = x2apic_id >> coreid_shift;
1456 			cpi->cpi_pkgcoreid = cpi->cpi_clogid >> coreid_shift;
1457 		}
1458 
1459 		/* Make cp NULL so that we don't stumble on others */
1460 		cp = NULL;
1461 	}
1462 
1463 	if ((cpi->cpi_xmaxeax & 0x80000000) == 0)
1464 		goto pass2_done;
1465 
1466 	if ((nmax = cpi->cpi_xmaxeax - 0x80000000 + 1) > NMAX_CPI_EXTD)
1467 		nmax = NMAX_CPI_EXTD;
1468 	/*
1469 	 * Copy the extended properties, fixing them as we go.
1470 	 * (We already handled n == 0 and n == 1 in pass 1)
1471 	 */
1472 	iptr = (void *)cpi->cpi_brandstr;
1473 	for (n = 2, cp = &cpi->cpi_extd[2]; n < nmax; cp++, n++) {
1474 		cp->cp_eax = 0x80000000 + n;
1475 		(void) __cpuid_insn(cp);
1476 		platform_cpuid_mangle(cpi->cpi_vendor, 0x80000000 + n, cp);
1477 		switch (n) {
1478 		case 2:
1479 		case 3:
1480 		case 4:
1481 			/*
1482 			 * Extract the brand string
1483 			 */
1484 			*iptr++ = cp->cp_eax;
1485 			*iptr++ = cp->cp_ebx;
1486 			*iptr++ = cp->cp_ecx;
1487 			*iptr++ = cp->cp_edx;
1488 			break;
1489 		case 5:
1490 			switch (cpi->cpi_vendor) {
1491 			case X86_VENDOR_AMD:
1492 				/*
1493 				 * The Athlon and Duron were the first
1494 				 * parts to report the sizes of the
1495 				 * TLB for large pages. Before then,
1496 				 * we don't trust the data.
1497 				 */
1498 				if (cpi->cpi_family < 6 ||
1499 				    (cpi->cpi_family == 6 &&
1500 				    cpi->cpi_model < 1))
1501 					cp->cp_eax = 0;
1502 				break;
1503 			default:
1504 				break;
1505 			}
1506 			break;
1507 		case 6:
1508 			switch (cpi->cpi_vendor) {
1509 			case X86_VENDOR_AMD:
1510 				/*
1511 				 * The Athlon and Duron were the first
1512 				 * AMD parts with L2 TLB's.
1513 				 * Before then, don't trust the data.
1514 				 */
1515 				if (cpi->cpi_family < 6 ||
1516 				    cpi->cpi_family == 6 &&
1517 				    cpi->cpi_model < 1)
1518 					cp->cp_eax = cp->cp_ebx = 0;
1519 				/*
1520 				 * AMD Duron rev A0 reports L2
1521 				 * cache size incorrectly as 1K
1522 				 * when it is really 64K
1523 				 */
1524 				if (cpi->cpi_family == 6 &&
1525 				    cpi->cpi_model == 3 &&
1526 				    cpi->cpi_step == 0) {
1527 					cp->cp_ecx &= 0xffff;
1528 					cp->cp_ecx |= 0x400000;
1529 				}
1530 				break;
1531 			case X86_VENDOR_Cyrix:	/* VIA C3 */
1532 				/*
1533 				 * VIA C3 processors are a bit messed
1534 				 * up w.r.t. encoding cache sizes in %ecx
1535 				 */
1536 				if (cpi->cpi_family != 6)
1537 					break;
1538 				/*
1539 				 * model 7 and 8 were incorrectly encoded
1540 				 *
1541 				 * xxx is model 8 really broken?
1542 				 */
1543 				if (cpi->cpi_model == 7 ||
1544 				    cpi->cpi_model == 8)
1545 					cp->cp_ecx =
1546 					    BITX(cp->cp_ecx, 31, 24) << 16 |
1547 					    BITX(cp->cp_ecx, 23, 16) << 12 |
1548 					    BITX(cp->cp_ecx, 15, 8) << 8 |
1549 					    BITX(cp->cp_ecx, 7, 0);
1550 				/*
1551 				 * model 9 stepping 1 has wrong associativity
1552 				 */
1553 				if (cpi->cpi_model == 9 && cpi->cpi_step == 1)
1554 					cp->cp_ecx |= 8 << 12;
1555 				break;
1556 			case X86_VENDOR_Intel:
1557 				/*
1558 				 * Extended L2 Cache features function.
1559 				 * First appeared on Prescott.
1560 				 */
1561 			default:
1562 				break;
1563 			}
1564 			break;
1565 		default:
1566 			break;
1567 		}
1568 	}
1569 
1570 pass2_done:
1571 	cpi->cpi_pass = 2;
1572 }
1573 
1574 static const char *
1575 intel_cpubrand(const struct cpuid_info *cpi)
1576 {
1577 	int i;
1578 
1579 	if ((x86_feature & X86_CPUID) == 0 ||
1580 	    cpi->cpi_maxeax < 1 || cpi->cpi_family < 5)
1581 		return ("i486");
1582 
1583 	switch (cpi->cpi_family) {
1584 	case 5:
1585 		return ("Intel Pentium(r)");
1586 	case 6:
1587 		switch (cpi->cpi_model) {
1588 			uint_t celeron, xeon;
1589 			const struct cpuid_regs *cp;
1590 		case 0:
1591 		case 1:
1592 		case 2:
1593 			return ("Intel Pentium(r) Pro");
1594 		case 3:
1595 		case 4:
1596 			return ("Intel Pentium(r) II");
1597 		case 6:
1598 			return ("Intel Celeron(r)");
1599 		case 5:
1600 		case 7:
1601 			celeron = xeon = 0;
1602 			cp = &cpi->cpi_std[2];	/* cache info */
1603 
1604 			for (i = 1; i < 4; i++) {
1605 				uint_t tmp;
1606 
1607 				tmp = (cp->cp_eax >> (8 * i)) & 0xff;
1608 				if (tmp == 0x40)
1609 					celeron++;
1610 				if (tmp >= 0x44 && tmp <= 0x45)
1611 					xeon++;
1612 			}
1613 
1614 			for (i = 0; i < 2; i++) {
1615 				uint_t tmp;
1616 
1617 				tmp = (cp->cp_ebx >> (8 * i)) & 0xff;
1618 				if (tmp == 0x40)
1619 					celeron++;
1620 				else if (tmp >= 0x44 && tmp <= 0x45)
1621 					xeon++;
1622 			}
1623 
1624 			for (i = 0; i < 4; i++) {
1625 				uint_t tmp;
1626 
1627 				tmp = (cp->cp_ecx >> (8 * i)) & 0xff;
1628 				if (tmp == 0x40)
1629 					celeron++;
1630 				else if (tmp >= 0x44 && tmp <= 0x45)
1631 					xeon++;
1632 			}
1633 
1634 			for (i = 0; i < 4; i++) {
1635 				uint_t tmp;
1636 
1637 				tmp = (cp->cp_edx >> (8 * i)) & 0xff;
1638 				if (tmp == 0x40)
1639 					celeron++;
1640 				else if (tmp >= 0x44 && tmp <= 0x45)
1641 					xeon++;
1642 			}
1643 
1644 			if (celeron)
1645 				return ("Intel Celeron(r)");
1646 			if (xeon)
1647 				return (cpi->cpi_model == 5 ?
1648 				    "Intel Pentium(r) II Xeon(tm)" :
1649 				    "Intel Pentium(r) III Xeon(tm)");
1650 			return (cpi->cpi_model == 5 ?
1651 			    "Intel Pentium(r) II or Pentium(r) II Xeon(tm)" :
1652 			    "Intel Pentium(r) III or Pentium(r) III Xeon(tm)");
1653 		default:
1654 			break;
1655 		}
1656 	default:
1657 		break;
1658 	}
1659 
1660 	/* BrandID is present if the field is nonzero */
1661 	if (cpi->cpi_brandid != 0) {
1662 		static const struct {
1663 			uint_t bt_bid;
1664 			const char *bt_str;
1665 		} brand_tbl[] = {
1666 			{ 0x1,	"Intel(r) Celeron(r)" },
1667 			{ 0x2,	"Intel(r) Pentium(r) III" },
1668 			{ 0x3,	"Intel(r) Pentium(r) III Xeon(tm)" },
1669 			{ 0x4,	"Intel(r) Pentium(r) III" },
1670 			{ 0x6,	"Mobile Intel(r) Pentium(r) III" },
1671 			{ 0x7,	"Mobile Intel(r) Celeron(r)" },
1672 			{ 0x8,	"Intel(r) Pentium(r) 4" },
1673 			{ 0x9,	"Intel(r) Pentium(r) 4" },
1674 			{ 0xa,	"Intel(r) Celeron(r)" },
1675 			{ 0xb,	"Intel(r) Xeon(tm)" },
1676 			{ 0xc,	"Intel(r) Xeon(tm) MP" },
1677 			{ 0xe,	"Mobile Intel(r) Pentium(r) 4" },
1678 			{ 0xf,	"Mobile Intel(r) Celeron(r)" },
1679 			{ 0x11, "Mobile Genuine Intel(r)" },
1680 			{ 0x12, "Intel(r) Celeron(r) M" },
1681 			{ 0x13, "Mobile Intel(r) Celeron(r)" },
1682 			{ 0x14, "Intel(r) Celeron(r)" },
1683 			{ 0x15, "Mobile Genuine Intel(r)" },
1684 			{ 0x16,	"Intel(r) Pentium(r) M" },
1685 			{ 0x17, "Mobile Intel(r) Celeron(r)" }
1686 		};
1687 		uint_t btblmax = sizeof (brand_tbl) / sizeof (brand_tbl[0]);
1688 		uint_t sgn;
1689 
1690 		sgn = (cpi->cpi_family << 8) |
1691 		    (cpi->cpi_model << 4) | cpi->cpi_step;
1692 
1693 		for (i = 0; i < btblmax; i++)
1694 			if (brand_tbl[i].bt_bid == cpi->cpi_brandid)
1695 				break;
1696 		if (i < btblmax) {
1697 			if (sgn == 0x6b1 && cpi->cpi_brandid == 3)
1698 				return ("Intel(r) Celeron(r)");
1699 			if (sgn < 0xf13 && cpi->cpi_brandid == 0xb)
1700 				return ("Intel(r) Xeon(tm) MP");
1701 			if (sgn < 0xf13 && cpi->cpi_brandid == 0xe)
1702 				return ("Intel(r) Xeon(tm)");
1703 			return (brand_tbl[i].bt_str);
1704 		}
1705 	}
1706 
1707 	return (NULL);
1708 }
1709 
1710 static const char *
1711 amd_cpubrand(const struct cpuid_info *cpi)
1712 {
1713 	if ((x86_feature & X86_CPUID) == 0 ||
1714 	    cpi->cpi_maxeax < 1 || cpi->cpi_family < 5)
1715 		return ("i486 compatible");
1716 
1717 	switch (cpi->cpi_family) {
1718 	case 5:
1719 		switch (cpi->cpi_model) {
1720 		case 0:
1721 		case 1:
1722 		case 2:
1723 		case 3:
1724 		case 4:
1725 		case 5:
1726 			return ("AMD-K5(r)");
1727 		case 6:
1728 		case 7:
1729 			return ("AMD-K6(r)");
1730 		case 8:
1731 			return ("AMD-K6(r)-2");
1732 		case 9:
1733 			return ("AMD-K6(r)-III");
1734 		default:
1735 			return ("AMD (family 5)");
1736 		}
1737 	case 6:
1738 		switch (cpi->cpi_model) {
1739 		case 1:
1740 			return ("AMD-K7(tm)");
1741 		case 0:
1742 		case 2:
1743 		case 4:
1744 			return ("AMD Athlon(tm)");
1745 		case 3:
1746 		case 7:
1747 			return ("AMD Duron(tm)");
1748 		case 6:
1749 		case 8:
1750 		case 10:
1751 			/*
1752 			 * Use the L2 cache size to distinguish
1753 			 */
1754 			return ((cpi->cpi_extd[6].cp_ecx >> 16) >= 256 ?
1755 			    "AMD Athlon(tm)" : "AMD Duron(tm)");
1756 		default:
1757 			return ("AMD (family 6)");
1758 		}
1759 	default:
1760 		break;
1761 	}
1762 
1763 	if (cpi->cpi_family == 0xf && cpi->cpi_model == 5 &&
1764 	    cpi->cpi_brandid != 0) {
1765 		switch (BITX(cpi->cpi_brandid, 7, 5)) {
1766 		case 3:
1767 			return ("AMD Opteron(tm) UP 1xx");
1768 		case 4:
1769 			return ("AMD Opteron(tm) DP 2xx");
1770 		case 5:
1771 			return ("AMD Opteron(tm) MP 8xx");
1772 		default:
1773 			return ("AMD Opteron(tm)");
1774 		}
1775 	}
1776 
1777 	return (NULL);
1778 }
1779 
1780 static const char *
1781 cyrix_cpubrand(struct cpuid_info *cpi, uint_t type)
1782 {
1783 	if ((x86_feature & X86_CPUID) == 0 ||
1784 	    cpi->cpi_maxeax < 1 || cpi->cpi_family < 5 ||
1785 	    type == X86_TYPE_CYRIX_486)
1786 		return ("i486 compatible");
1787 
1788 	switch (type) {
1789 	case X86_TYPE_CYRIX_6x86:
1790 		return ("Cyrix 6x86");
1791 	case X86_TYPE_CYRIX_6x86L:
1792 		return ("Cyrix 6x86L");
1793 	case X86_TYPE_CYRIX_6x86MX:
1794 		return ("Cyrix 6x86MX");
1795 	case X86_TYPE_CYRIX_GXm:
1796 		return ("Cyrix GXm");
1797 	case X86_TYPE_CYRIX_MediaGX:
1798 		return ("Cyrix MediaGX");
1799 	case X86_TYPE_CYRIX_MII:
1800 		return ("Cyrix M2");
1801 	case X86_TYPE_VIA_CYRIX_III:
1802 		return ("VIA Cyrix M3");
1803 	default:
1804 		/*
1805 		 * Have another wild guess ..
1806 		 */
1807 		if (cpi->cpi_family == 4 && cpi->cpi_model == 9)
1808 			return ("Cyrix 5x86");
1809 		else if (cpi->cpi_family == 5) {
1810 			switch (cpi->cpi_model) {
1811 			case 2:
1812 				return ("Cyrix 6x86");	/* Cyrix M1 */
1813 			case 4:
1814 				return ("Cyrix MediaGX");
1815 			default:
1816 				break;
1817 			}
1818 		} else if (cpi->cpi_family == 6) {
1819 			switch (cpi->cpi_model) {
1820 			case 0:
1821 				return ("Cyrix 6x86MX"); /* Cyrix M2? */
1822 			case 5:
1823 			case 6:
1824 			case 7:
1825 			case 8:
1826 			case 9:
1827 				return ("VIA C3");
1828 			default:
1829 				break;
1830 			}
1831 		}
1832 		break;
1833 	}
1834 	return (NULL);
1835 }
1836 
1837 /*
1838  * This only gets called in the case that the CPU extended
1839  * feature brand string (0x80000002, 0x80000003, 0x80000004)
1840  * aren't available, or contain null bytes for some reason.
1841  */
1842 static void
1843 fabricate_brandstr(struct cpuid_info *cpi)
1844 {
1845 	const char *brand = NULL;
1846 
1847 	switch (cpi->cpi_vendor) {
1848 	case X86_VENDOR_Intel:
1849 		brand = intel_cpubrand(cpi);
1850 		break;
1851 	case X86_VENDOR_AMD:
1852 		brand = amd_cpubrand(cpi);
1853 		break;
1854 	case X86_VENDOR_Cyrix:
1855 		brand = cyrix_cpubrand(cpi, x86_type);
1856 		break;
1857 	case X86_VENDOR_NexGen:
1858 		if (cpi->cpi_family == 5 && cpi->cpi_model == 0)
1859 			brand = "NexGen Nx586";
1860 		break;
1861 	case X86_VENDOR_Centaur:
1862 		if (cpi->cpi_family == 5)
1863 			switch (cpi->cpi_model) {
1864 			case 4:
1865 				brand = "Centaur C6";
1866 				break;
1867 			case 8:
1868 				brand = "Centaur C2";
1869 				break;
1870 			case 9:
1871 				brand = "Centaur C3";
1872 				break;
1873 			default:
1874 				break;
1875 			}
1876 		break;
1877 	case X86_VENDOR_Rise:
1878 		if (cpi->cpi_family == 5 &&
1879 		    (cpi->cpi_model == 0 || cpi->cpi_model == 2))
1880 			brand = "Rise mP6";
1881 		break;
1882 	case X86_VENDOR_SiS:
1883 		if (cpi->cpi_family == 5 && cpi->cpi_model == 0)
1884 			brand = "SiS 55x";
1885 		break;
1886 	case X86_VENDOR_TM:
1887 		if (cpi->cpi_family == 5 && cpi->cpi_model == 4)
1888 			brand = "Transmeta Crusoe TM3x00 or TM5x00";
1889 		break;
1890 	case X86_VENDOR_NSC:
1891 	case X86_VENDOR_UMC:
1892 	default:
1893 		break;
1894 	}
1895 	if (brand) {
1896 		(void) strcpy((char *)cpi->cpi_brandstr, brand);
1897 		return;
1898 	}
1899 
1900 	/*
1901 	 * If all else fails ...
1902 	 */
1903 	(void) snprintf(cpi->cpi_brandstr, sizeof (cpi->cpi_brandstr),
1904 	    "%s %d.%d.%d", cpi->cpi_vendorstr, cpi->cpi_family,
1905 	    cpi->cpi_model, cpi->cpi_step);
1906 }
1907 
1908 /*
1909  * This routine is called just after kernel memory allocation
1910  * becomes available on cpu0, and as part of mp_startup() on
1911  * the other cpus.
1912  *
1913  * Fixup the brand string, and collect any information from cpuid
1914  * that requires dynamicically allocated storage to represent.
1915  */
1916 /*ARGSUSED*/
1917 void
1918 cpuid_pass3(cpu_t *cpu)
1919 {
1920 	int	i, max, shft, level, size;
1921 	struct cpuid_regs regs;
1922 	struct cpuid_regs *cp;
1923 	struct cpuid_info *cpi = cpu->cpu_m.mcpu_cpi;
1924 
1925 	ASSERT(cpi->cpi_pass == 2);
1926 
1927 	/*
1928 	 * Function 4: Deterministic cache parameters
1929 	 *
1930 	 * Take this opportunity to detect the number of threads
1931 	 * sharing the last level cache, and construct a corresponding
1932 	 * cache id. The respective cpuid_info members are initialized
1933 	 * to the default case of "no last level cache sharing".
1934 	 */
1935 	cpi->cpi_ncpu_shr_last_cache = 1;
1936 	cpi->cpi_last_lvl_cacheid = cpu->cpu_id;
1937 
1938 	if (cpi->cpi_maxeax >= 4 && cpi->cpi_vendor == X86_VENDOR_Intel) {
1939 
1940 		/*
1941 		 * Find the # of elements (size) returned by fn 4, and along
1942 		 * the way detect last level cache sharing details.
1943 		 */
1944 		bzero(&regs, sizeof (regs));
1945 		cp = &regs;
1946 		for (i = 0, max = 0; i < CPI_FN4_ECX_MAX; i++) {
1947 			cp->cp_eax = 4;
1948 			cp->cp_ecx = i;
1949 
1950 			(void) __cpuid_insn(cp);
1951 
1952 			if (CPI_CACHE_TYPE(cp) == 0)
1953 				break;
1954 			level = CPI_CACHE_LVL(cp);
1955 			if (level > max) {
1956 				max = level;
1957 				cpi->cpi_ncpu_shr_last_cache =
1958 				    CPI_NTHR_SHR_CACHE(cp) + 1;
1959 			}
1960 		}
1961 		cpi->cpi_std_4_size = size = i;
1962 
1963 		/*
1964 		 * Allocate the cpi_std_4 array. The first element
1965 		 * references the regs for fn 4, %ecx == 0, which
1966 		 * cpuid_pass2() stashed in cpi->cpi_std[4].
1967 		 */
1968 		if (size > 0) {
1969 			cpi->cpi_std_4 =
1970 			    kmem_alloc(size * sizeof (cp), KM_SLEEP);
1971 			cpi->cpi_std_4[0] = &cpi->cpi_std[4];
1972 
1973 			/*
1974 			 * Allocate storage to hold the additional regs
1975 			 * for function 4, %ecx == 1 .. cpi_std_4_size.
1976 			 *
1977 			 * The regs for fn 4, %ecx == 0 has already
1978 			 * been allocated as indicated above.
1979 			 */
1980 			for (i = 1; i < size; i++) {
1981 				cp = cpi->cpi_std_4[i] =
1982 				    kmem_zalloc(sizeof (regs), KM_SLEEP);
1983 				cp->cp_eax = 4;
1984 				cp->cp_ecx = i;
1985 
1986 				(void) __cpuid_insn(cp);
1987 			}
1988 		}
1989 		/*
1990 		 * Determine the number of bits needed to represent
1991 		 * the number of CPUs sharing the last level cache.
1992 		 *
1993 		 * Shift off that number of bits from the APIC id to
1994 		 * derive the cache id.
1995 		 */
1996 		shft = 0;
1997 		for (i = 1; i < cpi->cpi_ncpu_shr_last_cache; i <<= 1)
1998 			shft++;
1999 		cpi->cpi_last_lvl_cacheid = cpi->cpi_apicid >> shft;
2000 	}
2001 
2002 	/*
2003 	 * Now fixup the brand string
2004 	 */
2005 	if ((cpi->cpi_xmaxeax & 0x80000000) == 0) {
2006 		fabricate_brandstr(cpi);
2007 	} else {
2008 
2009 		/*
2010 		 * If we successfully extracted a brand string from the cpuid
2011 		 * instruction, clean it up by removing leading spaces and
2012 		 * similar junk.
2013 		 */
2014 		if (cpi->cpi_brandstr[0]) {
2015 			size_t maxlen = sizeof (cpi->cpi_brandstr);
2016 			char *src, *dst;
2017 
2018 			dst = src = (char *)cpi->cpi_brandstr;
2019 			src[maxlen - 1] = '\0';
2020 			/*
2021 			 * strip leading spaces
2022 			 */
2023 			while (*src == ' ')
2024 				src++;
2025 			/*
2026 			 * Remove any 'Genuine' or "Authentic" prefixes
2027 			 */
2028 			if (strncmp(src, "Genuine ", 8) == 0)
2029 				src += 8;
2030 			if (strncmp(src, "Authentic ", 10) == 0)
2031 				src += 10;
2032 
2033 			/*
2034 			 * Now do an in-place copy.
2035 			 * Map (R) to (r) and (TM) to (tm).
2036 			 * The era of teletypes is long gone, and there's
2037 			 * -really- no need to shout.
2038 			 */
2039 			while (*src != '\0') {
2040 				if (src[0] == '(') {
2041 					if (strncmp(src + 1, "R)", 2) == 0) {
2042 						(void) strncpy(dst, "(r)", 3);
2043 						src += 3;
2044 						dst += 3;
2045 						continue;
2046 					}
2047 					if (strncmp(src + 1, "TM)", 3) == 0) {
2048 						(void) strncpy(dst, "(tm)", 4);
2049 						src += 4;
2050 						dst += 4;
2051 						continue;
2052 					}
2053 				}
2054 				*dst++ = *src++;
2055 			}
2056 			*dst = '\0';
2057 
2058 			/*
2059 			 * Finally, remove any trailing spaces
2060 			 */
2061 			while (--dst > cpi->cpi_brandstr)
2062 				if (*dst == ' ')
2063 					*dst = '\0';
2064 				else
2065 					break;
2066 		} else
2067 			fabricate_brandstr(cpi);
2068 	}
2069 	cpi->cpi_pass = 3;
2070 }
2071 
2072 /*
2073  * This routine is called out of bind_hwcap() much later in the life
2074  * of the kernel (post_startup()).  The job of this routine is to resolve
2075  * the hardware feature support and kernel support for those features into
2076  * what we're actually going to tell applications via the aux vector.
2077  */
2078 uint_t
2079 cpuid_pass4(cpu_t *cpu)
2080 {
2081 	struct cpuid_info *cpi;
2082 	uint_t hwcap_flags = 0;
2083 
2084 	if (cpu == NULL)
2085 		cpu = CPU;
2086 	cpi = cpu->cpu_m.mcpu_cpi;
2087 
2088 	ASSERT(cpi->cpi_pass == 3);
2089 
2090 	if (cpi->cpi_maxeax >= 1) {
2091 		uint32_t *edx = &cpi->cpi_support[STD_EDX_FEATURES];
2092 		uint32_t *ecx = &cpi->cpi_support[STD_ECX_FEATURES];
2093 
2094 		*edx = CPI_FEATURES_EDX(cpi);
2095 		*ecx = CPI_FEATURES_ECX(cpi);
2096 
2097 		/*
2098 		 * [these require explicit kernel support]
2099 		 */
2100 		if ((x86_feature & X86_SEP) == 0)
2101 			*edx &= ~CPUID_INTC_EDX_SEP;
2102 
2103 		if ((x86_feature & X86_SSE) == 0)
2104 			*edx &= ~(CPUID_INTC_EDX_FXSR|CPUID_INTC_EDX_SSE);
2105 		if ((x86_feature & X86_SSE2) == 0)
2106 			*edx &= ~CPUID_INTC_EDX_SSE2;
2107 
2108 		if ((x86_feature & X86_HTT) == 0)
2109 			*edx &= ~CPUID_INTC_EDX_HTT;
2110 
2111 		if ((x86_feature & X86_SSE3) == 0)
2112 			*ecx &= ~CPUID_INTC_ECX_SSE3;
2113 
2114 		if (cpi->cpi_vendor == X86_VENDOR_Intel) {
2115 			if ((x86_feature & X86_SSSE3) == 0)
2116 				*ecx &= ~CPUID_INTC_ECX_SSSE3;
2117 			if ((x86_feature & X86_SSE4_1) == 0)
2118 				*ecx &= ~CPUID_INTC_ECX_SSE4_1;
2119 			if ((x86_feature & X86_SSE4_2) == 0)
2120 				*ecx &= ~CPUID_INTC_ECX_SSE4_2;
2121 			if ((x86_feature & X86_AES) == 0)
2122 				*ecx &= ~CPUID_INTC_ECX_AES;
2123 		}
2124 
2125 		/*
2126 		 * [no explicit support required beyond x87 fp context]
2127 		 */
2128 		if (!fpu_exists)
2129 			*edx &= ~(CPUID_INTC_EDX_FPU | CPUID_INTC_EDX_MMX);
2130 
2131 		/*
2132 		 * Now map the supported feature vector to things that we
2133 		 * think userland will care about.
2134 		 */
2135 		if (*edx & CPUID_INTC_EDX_SEP)
2136 			hwcap_flags |= AV_386_SEP;
2137 		if (*edx & CPUID_INTC_EDX_SSE)
2138 			hwcap_flags |= AV_386_FXSR | AV_386_SSE;
2139 		if (*edx & CPUID_INTC_EDX_SSE2)
2140 			hwcap_flags |= AV_386_SSE2;
2141 		if (*ecx & CPUID_INTC_ECX_SSE3)
2142 			hwcap_flags |= AV_386_SSE3;
2143 		if (cpi->cpi_vendor == X86_VENDOR_Intel) {
2144 			if (*ecx & CPUID_INTC_ECX_SSSE3)
2145 				hwcap_flags |= AV_386_SSSE3;
2146 			if (*ecx & CPUID_INTC_ECX_SSE4_1)
2147 				hwcap_flags |= AV_386_SSE4_1;
2148 			if (*ecx & CPUID_INTC_ECX_SSE4_2)
2149 				hwcap_flags |= AV_386_SSE4_2;
2150 			if (*ecx & CPUID_INTC_ECX_MOVBE)
2151 				hwcap_flags |= AV_386_MOVBE;
2152 			if (*ecx & CPUID_INTC_ECX_AES)
2153 				hwcap_flags |= AV_386_AES;
2154 			if (*ecx & CPUID_INTC_ECX_PCLMULQDQ)
2155 				hwcap_flags |= AV_386_PCLMULQDQ;
2156 		}
2157 		if (*ecx & CPUID_INTC_ECX_POPCNT)
2158 			hwcap_flags |= AV_386_POPCNT;
2159 		if (*edx & CPUID_INTC_EDX_FPU)
2160 			hwcap_flags |= AV_386_FPU;
2161 		if (*edx & CPUID_INTC_EDX_MMX)
2162 			hwcap_flags |= AV_386_MMX;
2163 
2164 		if (*edx & CPUID_INTC_EDX_TSC)
2165 			hwcap_flags |= AV_386_TSC;
2166 		if (*edx & CPUID_INTC_EDX_CX8)
2167 			hwcap_flags |= AV_386_CX8;
2168 		if (*edx & CPUID_INTC_EDX_CMOV)
2169 			hwcap_flags |= AV_386_CMOV;
2170 		if (*ecx & CPUID_INTC_ECX_MON)
2171 			hwcap_flags |= AV_386_MON;
2172 		if (*ecx & CPUID_INTC_ECX_CX16)
2173 			hwcap_flags |= AV_386_CX16;
2174 	}
2175 
2176 	if (x86_feature & X86_HTT)
2177 		hwcap_flags |= AV_386_PAUSE;
2178 
2179 	if (cpi->cpi_xmaxeax < 0x80000001)
2180 		goto pass4_done;
2181 
2182 	switch (cpi->cpi_vendor) {
2183 		struct cpuid_regs cp;
2184 		uint32_t *edx, *ecx;
2185 
2186 	case X86_VENDOR_Intel:
2187 		/*
2188 		 * Seems like Intel duplicated what we necessary
2189 		 * here to make the initial crop of 64-bit OS's work.
2190 		 * Hopefully, those are the only "extended" bits
2191 		 * they'll add.
2192 		 */
2193 		/*FALLTHROUGH*/
2194 
2195 	case X86_VENDOR_AMD:
2196 		edx = &cpi->cpi_support[AMD_EDX_FEATURES];
2197 		ecx = &cpi->cpi_support[AMD_ECX_FEATURES];
2198 
2199 		*edx = CPI_FEATURES_XTD_EDX(cpi);
2200 		*ecx = CPI_FEATURES_XTD_ECX(cpi);
2201 
2202 		/*
2203 		 * [these features require explicit kernel support]
2204 		 */
2205 		switch (cpi->cpi_vendor) {
2206 		case X86_VENDOR_Intel:
2207 			if ((x86_feature & X86_TSCP) == 0)
2208 				*edx &= ~CPUID_AMD_EDX_TSCP;
2209 			break;
2210 
2211 		case X86_VENDOR_AMD:
2212 			if ((x86_feature & X86_TSCP) == 0)
2213 				*edx &= ~CPUID_AMD_EDX_TSCP;
2214 			if ((x86_feature & X86_SSE4A) == 0)
2215 				*ecx &= ~CPUID_AMD_ECX_SSE4A;
2216 			break;
2217 
2218 		default:
2219 			break;
2220 		}
2221 
2222 		/*
2223 		 * [no explicit support required beyond
2224 		 * x87 fp context and exception handlers]
2225 		 */
2226 		if (!fpu_exists)
2227 			*edx &= ~(CPUID_AMD_EDX_MMXamd |
2228 			    CPUID_AMD_EDX_3DNow | CPUID_AMD_EDX_3DNowx);
2229 
2230 		if ((x86_feature & X86_NX) == 0)
2231 			*edx &= ~CPUID_AMD_EDX_NX;
2232 #if !defined(__amd64)
2233 		*edx &= ~CPUID_AMD_EDX_LM;
2234 #endif
2235 		/*
2236 		 * Now map the supported feature vector to
2237 		 * things that we think userland will care about.
2238 		 */
2239 #if defined(__amd64)
2240 		if (*edx & CPUID_AMD_EDX_SYSC)
2241 			hwcap_flags |= AV_386_AMD_SYSC;
2242 #endif
2243 		if (*edx & CPUID_AMD_EDX_MMXamd)
2244 			hwcap_flags |= AV_386_AMD_MMX;
2245 		if (*edx & CPUID_AMD_EDX_3DNow)
2246 			hwcap_flags |= AV_386_AMD_3DNow;
2247 		if (*edx & CPUID_AMD_EDX_3DNowx)
2248 			hwcap_flags |= AV_386_AMD_3DNowx;
2249 
2250 		switch (cpi->cpi_vendor) {
2251 		case X86_VENDOR_AMD:
2252 			if (*edx & CPUID_AMD_EDX_TSCP)
2253 				hwcap_flags |= AV_386_TSCP;
2254 			if (*ecx & CPUID_AMD_ECX_AHF64)
2255 				hwcap_flags |= AV_386_AHF;
2256 			if (*ecx & CPUID_AMD_ECX_SSE4A)
2257 				hwcap_flags |= AV_386_AMD_SSE4A;
2258 			if (*ecx & CPUID_AMD_ECX_LZCNT)
2259 				hwcap_flags |= AV_386_AMD_LZCNT;
2260 			break;
2261 
2262 		case X86_VENDOR_Intel:
2263 			if (*edx & CPUID_AMD_EDX_TSCP)
2264 				hwcap_flags |= AV_386_TSCP;
2265 			/*
2266 			 * Aarrgh.
2267 			 * Intel uses a different bit in the same word.
2268 			 */
2269 			if (*ecx & CPUID_INTC_ECX_AHF64)
2270 				hwcap_flags |= AV_386_AHF;
2271 			break;
2272 
2273 		default:
2274 			break;
2275 		}
2276 		break;
2277 
2278 	case X86_VENDOR_TM:
2279 		cp.cp_eax = 0x80860001;
2280 		(void) __cpuid_insn(&cp);
2281 		cpi->cpi_support[TM_EDX_FEATURES] = cp.cp_edx;
2282 		break;
2283 
2284 	default:
2285 		break;
2286 	}
2287 
2288 pass4_done:
2289 	cpi->cpi_pass = 4;
2290 	return (hwcap_flags);
2291 }
2292 
2293 
2294 /*
2295  * Simulate the cpuid instruction using the data we previously
2296  * captured about this CPU.  We try our best to return the truth
2297  * about the hardware, independently of kernel support.
2298  */
2299 uint32_t
2300 cpuid_insn(cpu_t *cpu, struct cpuid_regs *cp)
2301 {
2302 	struct cpuid_info *cpi;
2303 	struct cpuid_regs *xcp;
2304 
2305 	if (cpu == NULL)
2306 		cpu = CPU;
2307 	cpi = cpu->cpu_m.mcpu_cpi;
2308 
2309 	ASSERT(cpuid_checkpass(cpu, 3));
2310 
2311 	/*
2312 	 * CPUID data is cached in two separate places: cpi_std for standard
2313 	 * CPUID functions, and cpi_extd for extended CPUID functions.
2314 	 */
2315 	if (cp->cp_eax <= cpi->cpi_maxeax && cp->cp_eax < NMAX_CPI_STD)
2316 		xcp = &cpi->cpi_std[cp->cp_eax];
2317 	else if (cp->cp_eax >= 0x80000000 && cp->cp_eax <= cpi->cpi_xmaxeax &&
2318 	    cp->cp_eax < 0x80000000 + NMAX_CPI_EXTD)
2319 		xcp = &cpi->cpi_extd[cp->cp_eax - 0x80000000];
2320 	else
2321 		/*
2322 		 * The caller is asking for data from an input parameter which
2323 		 * the kernel has not cached.  In this case we go fetch from
2324 		 * the hardware and return the data directly to the user.
2325 		 */
2326 		return (__cpuid_insn(cp));
2327 
2328 	cp->cp_eax = xcp->cp_eax;
2329 	cp->cp_ebx = xcp->cp_ebx;
2330 	cp->cp_ecx = xcp->cp_ecx;
2331 	cp->cp_edx = xcp->cp_edx;
2332 	return (cp->cp_eax);
2333 }
2334 
2335 int
2336 cpuid_checkpass(cpu_t *cpu, int pass)
2337 {
2338 	return (cpu != NULL && cpu->cpu_m.mcpu_cpi != NULL &&
2339 	    cpu->cpu_m.mcpu_cpi->cpi_pass >= pass);
2340 }
2341 
2342 int
2343 cpuid_getbrandstr(cpu_t *cpu, char *s, size_t n)
2344 {
2345 	ASSERT(cpuid_checkpass(cpu, 3));
2346 
2347 	return (snprintf(s, n, "%s", cpu->cpu_m.mcpu_cpi->cpi_brandstr));
2348 }
2349 
2350 int
2351 cpuid_is_cmt(cpu_t *cpu)
2352 {
2353 	if (cpu == NULL)
2354 		cpu = CPU;
2355 
2356 	ASSERT(cpuid_checkpass(cpu, 1));
2357 
2358 	return (cpu->cpu_m.mcpu_cpi->cpi_chipid >= 0);
2359 }
2360 
2361 /*
2362  * AMD and Intel both implement the 64-bit variant of the syscall
2363  * instruction (syscallq), so if there's -any- support for syscall,
2364  * cpuid currently says "yes, we support this".
2365  *
2366  * However, Intel decided to -not- implement the 32-bit variant of the
2367  * syscall instruction, so we provide a predicate to allow our caller
2368  * to test that subtlety here.
2369  *
2370  * XXPV	Currently, 32-bit syscall instructions don't work via the hypervisor,
2371  *	even in the case where the hardware would in fact support it.
2372  */
2373 /*ARGSUSED*/
2374 int
2375 cpuid_syscall32_insn(cpu_t *cpu)
2376 {
2377 	ASSERT(cpuid_checkpass((cpu == NULL ? CPU : cpu), 1));
2378 
2379 #if !defined(__xpv)
2380 	if (cpu == NULL)
2381 		cpu = CPU;
2382 
2383 	/*CSTYLED*/
2384 	{
2385 		struct cpuid_info *cpi = cpu->cpu_m.mcpu_cpi;
2386 
2387 		if (cpi->cpi_vendor == X86_VENDOR_AMD &&
2388 		    cpi->cpi_xmaxeax >= 0x80000001 &&
2389 		    (CPI_FEATURES_XTD_EDX(cpi) & CPUID_AMD_EDX_SYSC))
2390 			return (1);
2391 	}
2392 #endif
2393 	return (0);
2394 }
2395 
2396 int
2397 cpuid_getidstr(cpu_t *cpu, char *s, size_t n)
2398 {
2399 	struct cpuid_info *cpi = cpu->cpu_m.mcpu_cpi;
2400 
2401 	static const char fmt[] =
2402 	    "x86 (%s %X family %d model %d step %d clock %d MHz)";
2403 	static const char fmt_ht[] =
2404 	    "x86 (chipid 0x%x %s %X family %d model %d step %d clock %d MHz)";
2405 
2406 	ASSERT(cpuid_checkpass(cpu, 1));
2407 
2408 	if (cpuid_is_cmt(cpu))
2409 		return (snprintf(s, n, fmt_ht, cpi->cpi_chipid,
2410 		    cpi->cpi_vendorstr, cpi->cpi_std[1].cp_eax,
2411 		    cpi->cpi_family, cpi->cpi_model,
2412 		    cpi->cpi_step, cpu->cpu_type_info.pi_clock));
2413 	return (snprintf(s, n, fmt,
2414 	    cpi->cpi_vendorstr, cpi->cpi_std[1].cp_eax,
2415 	    cpi->cpi_family, cpi->cpi_model,
2416 	    cpi->cpi_step, cpu->cpu_type_info.pi_clock));
2417 }
2418 
2419 const char *
2420 cpuid_getvendorstr(cpu_t *cpu)
2421 {
2422 	ASSERT(cpuid_checkpass(cpu, 1));
2423 	return ((const char *)cpu->cpu_m.mcpu_cpi->cpi_vendorstr);
2424 }
2425 
2426 uint_t
2427 cpuid_getvendor(cpu_t *cpu)
2428 {
2429 	ASSERT(cpuid_checkpass(cpu, 1));
2430 	return (cpu->cpu_m.mcpu_cpi->cpi_vendor);
2431 }
2432 
2433 uint_t
2434 cpuid_getfamily(cpu_t *cpu)
2435 {
2436 	ASSERT(cpuid_checkpass(cpu, 1));
2437 	return (cpu->cpu_m.mcpu_cpi->cpi_family);
2438 }
2439 
2440 uint_t
2441 cpuid_getmodel(cpu_t *cpu)
2442 {
2443 	ASSERT(cpuid_checkpass(cpu, 1));
2444 	return (cpu->cpu_m.mcpu_cpi->cpi_model);
2445 }
2446 
2447 uint_t
2448 cpuid_get_ncpu_per_chip(cpu_t *cpu)
2449 {
2450 	ASSERT(cpuid_checkpass(cpu, 1));
2451 	return (cpu->cpu_m.mcpu_cpi->cpi_ncpu_per_chip);
2452 }
2453 
2454 uint_t
2455 cpuid_get_ncore_per_chip(cpu_t *cpu)
2456 {
2457 	ASSERT(cpuid_checkpass(cpu, 1));
2458 	return (cpu->cpu_m.mcpu_cpi->cpi_ncore_per_chip);
2459 }
2460 
2461 uint_t
2462 cpuid_get_ncpu_sharing_last_cache(cpu_t *cpu)
2463 {
2464 	ASSERT(cpuid_checkpass(cpu, 2));
2465 	return (cpu->cpu_m.mcpu_cpi->cpi_ncpu_shr_last_cache);
2466 }
2467 
2468 id_t
2469 cpuid_get_last_lvl_cacheid(cpu_t *cpu)
2470 {
2471 	ASSERT(cpuid_checkpass(cpu, 2));
2472 	return (cpu->cpu_m.mcpu_cpi->cpi_last_lvl_cacheid);
2473 }
2474 
2475 uint_t
2476 cpuid_getstep(cpu_t *cpu)
2477 {
2478 	ASSERT(cpuid_checkpass(cpu, 1));
2479 	return (cpu->cpu_m.mcpu_cpi->cpi_step);
2480 }
2481 
2482 uint_t
2483 cpuid_getsig(struct cpu *cpu)
2484 {
2485 	ASSERT(cpuid_checkpass(cpu, 1));
2486 	return (cpu->cpu_m.mcpu_cpi->cpi_std[1].cp_eax);
2487 }
2488 
2489 uint32_t
2490 cpuid_getchiprev(struct cpu *cpu)
2491 {
2492 	ASSERT(cpuid_checkpass(cpu, 1));
2493 	return (cpu->cpu_m.mcpu_cpi->cpi_chiprev);
2494 }
2495 
2496 const char *
2497 cpuid_getchiprevstr(struct cpu *cpu)
2498 {
2499 	ASSERT(cpuid_checkpass(cpu, 1));
2500 	return (cpu->cpu_m.mcpu_cpi->cpi_chiprevstr);
2501 }
2502 
2503 uint32_t
2504 cpuid_getsockettype(struct cpu *cpu)
2505 {
2506 	ASSERT(cpuid_checkpass(cpu, 1));
2507 	return (cpu->cpu_m.mcpu_cpi->cpi_socket);
2508 }
2509 
2510 const char *
2511 cpuid_getsocketstr(cpu_t *cpu)
2512 {
2513 	static const char *socketstr = NULL;
2514 	struct cpuid_info *cpi;
2515 
2516 	ASSERT(cpuid_checkpass(cpu, 1));
2517 	cpi = cpu->cpu_m.mcpu_cpi;
2518 
2519 	/* Assume that socket types are the same across the system */
2520 	if (socketstr == NULL)
2521 		socketstr = _cpuid_sktstr(cpi->cpi_vendor, cpi->cpi_family,
2522 		    cpi->cpi_model, cpi->cpi_step);
2523 
2524 
2525 	return (socketstr);
2526 }
2527 
2528 int
2529 cpuid_get_chipid(cpu_t *cpu)
2530 {
2531 	ASSERT(cpuid_checkpass(cpu, 1));
2532 
2533 	if (cpuid_is_cmt(cpu))
2534 		return (cpu->cpu_m.mcpu_cpi->cpi_chipid);
2535 	return (cpu->cpu_id);
2536 }
2537 
2538 id_t
2539 cpuid_get_coreid(cpu_t *cpu)
2540 {
2541 	ASSERT(cpuid_checkpass(cpu, 1));
2542 	return (cpu->cpu_m.mcpu_cpi->cpi_coreid);
2543 }
2544 
2545 int
2546 cpuid_get_pkgcoreid(cpu_t *cpu)
2547 {
2548 	ASSERT(cpuid_checkpass(cpu, 1));
2549 	return (cpu->cpu_m.mcpu_cpi->cpi_pkgcoreid);
2550 }
2551 
2552 int
2553 cpuid_get_clogid(cpu_t *cpu)
2554 {
2555 	ASSERT(cpuid_checkpass(cpu, 1));
2556 	return (cpu->cpu_m.mcpu_cpi->cpi_clogid);
2557 }
2558 
2559 /*ARGSUSED*/
2560 int
2561 cpuid_have_cr8access(cpu_t *cpu)
2562 {
2563 #if defined(__amd64)
2564 	return (1);
2565 #else
2566 	struct cpuid_info *cpi;
2567 
2568 	ASSERT(cpu != NULL);
2569 	cpi = cpu->cpu_m.mcpu_cpi;
2570 	if (cpi->cpi_vendor == X86_VENDOR_AMD && cpi->cpi_maxeax >= 1 &&
2571 	    (CPI_FEATURES_XTD_ECX(cpi) & CPUID_AMD_ECX_CR8D) != 0)
2572 		return (1);
2573 	return (0);
2574 #endif
2575 }
2576 
2577 uint32_t
2578 cpuid_get_apicid(cpu_t *cpu)
2579 {
2580 	ASSERT(cpuid_checkpass(cpu, 1));
2581 	if (cpu->cpu_m.mcpu_cpi->cpi_maxeax < 1) {
2582 		return (UINT32_MAX);
2583 	} else {
2584 		return (cpu->cpu_m.mcpu_cpi->cpi_apicid);
2585 	}
2586 }
2587 
2588 void
2589 cpuid_get_addrsize(cpu_t *cpu, uint_t *pabits, uint_t *vabits)
2590 {
2591 	struct cpuid_info *cpi;
2592 
2593 	if (cpu == NULL)
2594 		cpu = CPU;
2595 	cpi = cpu->cpu_m.mcpu_cpi;
2596 
2597 	ASSERT(cpuid_checkpass(cpu, 1));
2598 
2599 	if (pabits)
2600 		*pabits = cpi->cpi_pabits;
2601 	if (vabits)
2602 		*vabits = cpi->cpi_vabits;
2603 }
2604 
2605 /*
2606  * Returns the number of data TLB entries for a corresponding
2607  * pagesize.  If it can't be computed, or isn't known, the
2608  * routine returns zero.  If you ask about an architecturally
2609  * impossible pagesize, the routine will panic (so that the
2610  * hat implementor knows that things are inconsistent.)
2611  */
2612 uint_t
2613 cpuid_get_dtlb_nent(cpu_t *cpu, size_t pagesize)
2614 {
2615 	struct cpuid_info *cpi;
2616 	uint_t dtlb_nent = 0;
2617 
2618 	if (cpu == NULL)
2619 		cpu = CPU;
2620 	cpi = cpu->cpu_m.mcpu_cpi;
2621 
2622 	ASSERT(cpuid_checkpass(cpu, 1));
2623 
2624 	/*
2625 	 * Check the L2 TLB info
2626 	 */
2627 	if (cpi->cpi_xmaxeax >= 0x80000006) {
2628 		struct cpuid_regs *cp = &cpi->cpi_extd[6];
2629 
2630 		switch (pagesize) {
2631 
2632 		case 4 * 1024:
2633 			/*
2634 			 * All zero in the top 16 bits of the register
2635 			 * indicates a unified TLB. Size is in low 16 bits.
2636 			 */
2637 			if ((cp->cp_ebx & 0xffff0000) == 0)
2638 				dtlb_nent = cp->cp_ebx & 0x0000ffff;
2639 			else
2640 				dtlb_nent = BITX(cp->cp_ebx, 27, 16);
2641 			break;
2642 
2643 		case 2 * 1024 * 1024:
2644 			if ((cp->cp_eax & 0xffff0000) == 0)
2645 				dtlb_nent = cp->cp_eax & 0x0000ffff;
2646 			else
2647 				dtlb_nent = BITX(cp->cp_eax, 27, 16);
2648 			break;
2649 
2650 		default:
2651 			panic("unknown L2 pagesize");
2652 			/*NOTREACHED*/
2653 		}
2654 	}
2655 
2656 	if (dtlb_nent != 0)
2657 		return (dtlb_nent);
2658 
2659 	/*
2660 	 * No L2 TLB support for this size, try L1.
2661 	 */
2662 	if (cpi->cpi_xmaxeax >= 0x80000005) {
2663 		struct cpuid_regs *cp = &cpi->cpi_extd[5];
2664 
2665 		switch (pagesize) {
2666 		case 4 * 1024:
2667 			dtlb_nent = BITX(cp->cp_ebx, 23, 16);
2668 			break;
2669 		case 2 * 1024 * 1024:
2670 			dtlb_nent = BITX(cp->cp_eax, 23, 16);
2671 			break;
2672 		default:
2673 			panic("unknown L1 d-TLB pagesize");
2674 			/*NOTREACHED*/
2675 		}
2676 	}
2677 
2678 	return (dtlb_nent);
2679 }
2680 
2681 /*
2682  * Return 0 if the erratum is not present or not applicable, positive
2683  * if it is, and negative if the status of the erratum is unknown.
2684  *
2685  * See "Revision Guide for AMD Athlon(tm) 64 and AMD Opteron(tm)
2686  * Processors" #25759, Rev 3.57, August 2005
2687  */
2688 int
2689 cpuid_opteron_erratum(cpu_t *cpu, uint_t erratum)
2690 {
2691 	struct cpuid_info *cpi = cpu->cpu_m.mcpu_cpi;
2692 	uint_t eax;
2693 
2694 	/*
2695 	 * Bail out if this CPU isn't an AMD CPU, or if it's
2696 	 * a legacy (32-bit) AMD CPU.
2697 	 */
2698 	if (cpi->cpi_vendor != X86_VENDOR_AMD ||
2699 	    cpi->cpi_family == 4 || cpi->cpi_family == 5 ||
2700 	    cpi->cpi_family == 6)
2701 
2702 		return (0);
2703 
2704 	eax = cpi->cpi_std[1].cp_eax;
2705 
2706 #define	SH_B0(eax)	(eax == 0xf40 || eax == 0xf50)
2707 #define	SH_B3(eax) 	(eax == 0xf51)
2708 #define	B(eax)		(SH_B0(eax) || SH_B3(eax))
2709 
2710 #define	SH_C0(eax)	(eax == 0xf48 || eax == 0xf58)
2711 
2712 #define	SH_CG(eax)	(eax == 0xf4a || eax == 0xf5a || eax == 0xf7a)
2713 #define	DH_CG(eax)	(eax == 0xfc0 || eax == 0xfe0 || eax == 0xff0)
2714 #define	CH_CG(eax)	(eax == 0xf82 || eax == 0xfb2)
2715 #define	CG(eax)		(SH_CG(eax) || DH_CG(eax) || CH_CG(eax))
2716 
2717 #define	SH_D0(eax)	(eax == 0x10f40 || eax == 0x10f50 || eax == 0x10f70)
2718 #define	DH_D0(eax)	(eax == 0x10fc0 || eax == 0x10ff0)
2719 #define	CH_D0(eax)	(eax == 0x10f80 || eax == 0x10fb0)
2720 #define	D0(eax)		(SH_D0(eax) || DH_D0(eax) || CH_D0(eax))
2721 
2722 #define	SH_E0(eax)	(eax == 0x20f50 || eax == 0x20f40 || eax == 0x20f70)
2723 #define	JH_E1(eax)	(eax == 0x20f10)	/* JH8_E0 had 0x20f30 */
2724 #define	DH_E3(eax)	(eax == 0x20fc0 || eax == 0x20ff0)
2725 #define	SH_E4(eax)	(eax == 0x20f51 || eax == 0x20f71)
2726 #define	BH_E4(eax)	(eax == 0x20fb1)
2727 #define	SH_E5(eax)	(eax == 0x20f42)
2728 #define	DH_E6(eax)	(eax == 0x20ff2 || eax == 0x20fc2)
2729 #define	JH_E6(eax)	(eax == 0x20f12 || eax == 0x20f32)
2730 #define	EX(eax)		(SH_E0(eax) || JH_E1(eax) || DH_E3(eax) || \
2731 			    SH_E4(eax) || BH_E4(eax) || SH_E5(eax) || \
2732 			    DH_E6(eax) || JH_E6(eax))
2733 
2734 #define	DR_AX(eax)	(eax == 0x100f00 || eax == 0x100f01 || eax == 0x100f02)
2735 #define	DR_B0(eax)	(eax == 0x100f20)
2736 #define	DR_B1(eax)	(eax == 0x100f21)
2737 #define	DR_BA(eax)	(eax == 0x100f2a)
2738 #define	DR_B2(eax)	(eax == 0x100f22)
2739 #define	DR_B3(eax)	(eax == 0x100f23)
2740 #define	RB_C0(eax)	(eax == 0x100f40)
2741 
2742 	switch (erratum) {
2743 	case 1:
2744 		return (cpi->cpi_family < 0x10);
2745 	case 51:	/* what does the asterisk mean? */
2746 		return (B(eax) || SH_C0(eax) || CG(eax));
2747 	case 52:
2748 		return (B(eax));
2749 	case 57:
2750 		return (cpi->cpi_family <= 0x11);
2751 	case 58:
2752 		return (B(eax));
2753 	case 60:
2754 		return (cpi->cpi_family <= 0x11);
2755 	case 61:
2756 	case 62:
2757 	case 63:
2758 	case 64:
2759 	case 65:
2760 	case 66:
2761 	case 68:
2762 	case 69:
2763 	case 70:
2764 	case 71:
2765 		return (B(eax));
2766 	case 72:
2767 		return (SH_B0(eax));
2768 	case 74:
2769 		return (B(eax));
2770 	case 75:
2771 		return (cpi->cpi_family < 0x10);
2772 	case 76:
2773 		return (B(eax));
2774 	case 77:
2775 		return (cpi->cpi_family <= 0x11);
2776 	case 78:
2777 		return (B(eax) || SH_C0(eax));
2778 	case 79:
2779 		return (B(eax) || SH_C0(eax) || CG(eax) || D0(eax) || EX(eax));
2780 	case 80:
2781 	case 81:
2782 	case 82:
2783 		return (B(eax));
2784 	case 83:
2785 		return (B(eax) || SH_C0(eax) || CG(eax));
2786 	case 85:
2787 		return (cpi->cpi_family < 0x10);
2788 	case 86:
2789 		return (SH_C0(eax) || CG(eax));
2790 	case 88:
2791 #if !defined(__amd64)
2792 		return (0);
2793 #else
2794 		return (B(eax) || SH_C0(eax));
2795 #endif
2796 	case 89:
2797 		return (cpi->cpi_family < 0x10);
2798 	case 90:
2799 		return (B(eax) || SH_C0(eax) || CG(eax));
2800 	case 91:
2801 	case 92:
2802 		return (B(eax) || SH_C0(eax));
2803 	case 93:
2804 		return (SH_C0(eax));
2805 	case 94:
2806 		return (B(eax) || SH_C0(eax) || CG(eax));
2807 	case 95:
2808 #if !defined(__amd64)
2809 		return (0);
2810 #else
2811 		return (B(eax) || SH_C0(eax));
2812 #endif
2813 	case 96:
2814 		return (B(eax) || SH_C0(eax) || CG(eax));
2815 	case 97:
2816 	case 98:
2817 		return (SH_C0(eax) || CG(eax));
2818 	case 99:
2819 		return (B(eax) || SH_C0(eax) || CG(eax) || D0(eax));
2820 	case 100:
2821 		return (B(eax) || SH_C0(eax));
2822 	case 101:
2823 	case 103:
2824 		return (B(eax) || SH_C0(eax) || CG(eax) || D0(eax));
2825 	case 104:
2826 		return (SH_C0(eax) || CG(eax) || D0(eax));
2827 	case 105:
2828 	case 106:
2829 	case 107:
2830 		return (B(eax) || SH_C0(eax) || CG(eax) || D0(eax));
2831 	case 108:
2832 		return (DH_CG(eax));
2833 	case 109:
2834 		return (SH_C0(eax) || CG(eax) || D0(eax));
2835 	case 110:
2836 		return (D0(eax) || EX(eax));
2837 	case 111:
2838 		return (CG(eax));
2839 	case 112:
2840 		return (B(eax) || SH_C0(eax) || CG(eax) || D0(eax) || EX(eax));
2841 	case 113:
2842 		return (eax == 0x20fc0);
2843 	case 114:
2844 		return (SH_E0(eax) || JH_E1(eax) || DH_E3(eax));
2845 	case 115:
2846 		return (SH_E0(eax) || JH_E1(eax));
2847 	case 116:
2848 		return (SH_E0(eax) || JH_E1(eax) || DH_E3(eax));
2849 	case 117:
2850 		return (B(eax) || SH_C0(eax) || CG(eax) || D0(eax));
2851 	case 118:
2852 		return (SH_E0(eax) || JH_E1(eax) || SH_E4(eax) || BH_E4(eax) ||
2853 		    JH_E6(eax));
2854 	case 121:
2855 		return (B(eax) || SH_C0(eax) || CG(eax) || D0(eax) || EX(eax));
2856 	case 122:
2857 		return (cpi->cpi_family < 0x10 || cpi->cpi_family == 0x11);
2858 	case 123:
2859 		return (JH_E1(eax) || BH_E4(eax) || JH_E6(eax));
2860 	case 131:
2861 		return (cpi->cpi_family < 0x10);
2862 	case 6336786:
2863 		/*
2864 		 * Test for AdvPowerMgmtInfo.TscPStateInvariant
2865 		 * if this is a K8 family or newer processor
2866 		 */
2867 		if (CPI_FAMILY(cpi) == 0xf) {
2868 			struct cpuid_regs regs;
2869 			regs.cp_eax = 0x80000007;
2870 			(void) __cpuid_insn(&regs);
2871 			return (!(regs.cp_edx & 0x100));
2872 		}
2873 		return (0);
2874 	case 6323525:
2875 		return (((((eax >> 12) & 0xff00) + (eax & 0xf00)) |
2876 		    (((eax >> 4) & 0xf) | ((eax >> 12) & 0xf0))) < 0xf40);
2877 
2878 	case 6671130:
2879 		/*
2880 		 * check for processors (pre-Shanghai) that do not provide
2881 		 * optimal management of 1gb ptes in its tlb.
2882 		 */
2883 		return (cpi->cpi_family == 0x10 && cpi->cpi_model < 4);
2884 
2885 	case 298:
2886 		return (DR_AX(eax) || DR_B0(eax) || DR_B1(eax) || DR_BA(eax) ||
2887 		    DR_B2(eax) || RB_C0(eax));
2888 
2889 	default:
2890 		return (-1);
2891 
2892 	}
2893 }
2894 
2895 /*
2896  * Determine if specified erratum is present via OSVW (OS Visible Workaround).
2897  * Return 1 if erratum is present, 0 if not present and -1 if indeterminate.
2898  */
2899 int
2900 osvw_opteron_erratum(cpu_t *cpu, uint_t erratum)
2901 {
2902 	struct cpuid_info	*cpi;
2903 	uint_t			osvwid;
2904 	static int		osvwfeature = -1;
2905 	uint64_t		osvwlength;
2906 
2907 
2908 	cpi = cpu->cpu_m.mcpu_cpi;
2909 
2910 	/* confirm OSVW supported */
2911 	if (osvwfeature == -1) {
2912 		osvwfeature = cpi->cpi_extd[1].cp_ecx & CPUID_AMD_ECX_OSVW;
2913 	} else {
2914 		/* assert that osvw feature setting is consistent on all cpus */
2915 		ASSERT(osvwfeature ==
2916 		    (cpi->cpi_extd[1].cp_ecx & CPUID_AMD_ECX_OSVW));
2917 	}
2918 	if (!osvwfeature)
2919 		return (-1);
2920 
2921 	osvwlength = rdmsr(MSR_AMD_OSVW_ID_LEN) & OSVW_ID_LEN_MASK;
2922 
2923 	switch (erratum) {
2924 	case 298:	/* osvwid is 0 */
2925 		osvwid = 0;
2926 		if (osvwlength <= (uint64_t)osvwid) {
2927 			/* osvwid 0 is unknown */
2928 			return (-1);
2929 		}
2930 
2931 		/*
2932 		 * Check the OSVW STATUS MSR to determine the state
2933 		 * of the erratum where:
2934 		 *   0 - fixed by HW
2935 		 *   1 - BIOS has applied the workaround when BIOS
2936 		 *   workaround is available. (Or for other errata,
2937 		 *   OS workaround is required.)
2938 		 * For a value of 1, caller will confirm that the
2939 		 * erratum 298 workaround has indeed been applied by BIOS.
2940 		 *
2941 		 * A 1 may be set in cpus that have a HW fix
2942 		 * in a mixed cpu system. Regarding erratum 298:
2943 		 *   In a multiprocessor platform, the workaround above
2944 		 *   should be applied to all processors regardless of
2945 		 *   silicon revision when an affected processor is
2946 		 *   present.
2947 		 */
2948 
2949 		return (rdmsr(MSR_AMD_OSVW_STATUS +
2950 		    (osvwid / OSVW_ID_CNT_PER_MSR)) &
2951 		    (1ULL << (osvwid % OSVW_ID_CNT_PER_MSR)));
2952 
2953 	default:
2954 		return (-1);
2955 	}
2956 }
2957 
2958 static const char assoc_str[] = "associativity";
2959 static const char line_str[] = "line-size";
2960 static const char size_str[] = "size";
2961 
2962 static void
2963 add_cache_prop(dev_info_t *devi, const char *label, const char *type,
2964     uint32_t val)
2965 {
2966 	char buf[128];
2967 
2968 	/*
2969 	 * ndi_prop_update_int() is used because it is desirable for
2970 	 * DDI_PROP_HW_DEF and DDI_PROP_DONTSLEEP to be set.
2971 	 */
2972 	if (snprintf(buf, sizeof (buf), "%s-%s", label, type) < sizeof (buf))
2973 		(void) ndi_prop_update_int(DDI_DEV_T_NONE, devi, buf, val);
2974 }
2975 
2976 /*
2977  * Intel-style cache/tlb description
2978  *
2979  * Standard cpuid level 2 gives a randomly ordered
2980  * selection of tags that index into a table that describes
2981  * cache and tlb properties.
2982  */
2983 
2984 static const char l1_icache_str[] = "l1-icache";
2985 static const char l1_dcache_str[] = "l1-dcache";
2986 static const char l2_cache_str[] = "l2-cache";
2987 static const char l3_cache_str[] = "l3-cache";
2988 static const char itlb4k_str[] = "itlb-4K";
2989 static const char dtlb4k_str[] = "dtlb-4K";
2990 static const char itlb2M_str[] = "itlb-2M";
2991 static const char itlb4M_str[] = "itlb-4M";
2992 static const char dtlb4M_str[] = "dtlb-4M";
2993 static const char dtlb24_str[] = "dtlb0-2M-4M";
2994 static const char itlb424_str[] = "itlb-4K-2M-4M";
2995 static const char itlb24_str[] = "itlb-2M-4M";
2996 static const char dtlb44_str[] = "dtlb-4K-4M";
2997 static const char sl1_dcache_str[] = "sectored-l1-dcache";
2998 static const char sl2_cache_str[] = "sectored-l2-cache";
2999 static const char itrace_str[] = "itrace-cache";
3000 static const char sl3_cache_str[] = "sectored-l3-cache";
3001 static const char sh_l2_tlb4k_str[] = "shared-l2-tlb-4k";
3002 
3003 static const struct cachetab {
3004 	uint8_t 	ct_code;
3005 	uint8_t		ct_assoc;
3006 	uint16_t 	ct_line_size;
3007 	size_t		ct_size;
3008 	const char	*ct_label;
3009 } intel_ctab[] = {
3010 	/*
3011 	 * maintain descending order!
3012 	 *
3013 	 * Codes ignored - Reason
3014 	 * ----------------------
3015 	 * 40H - intel_cpuid_4_cache_info() disambiguates l2/l3 cache
3016 	 * f0H/f1H - Currently we do not interpret prefetch size by design
3017 	 */
3018 	{ 0xe4, 16, 64, 8*1024*1024, l3_cache_str},
3019 	{ 0xe3, 16, 64, 4*1024*1024, l3_cache_str},
3020 	{ 0xe2, 16, 64, 2*1024*1024, l3_cache_str},
3021 	{ 0xde, 12, 64, 6*1024*1024, l3_cache_str},
3022 	{ 0xdd, 12, 64, 3*1024*1024, l3_cache_str},
3023 	{ 0xdc, 12, 64, ((1*1024*1024)+(512*1024)), l3_cache_str},
3024 	{ 0xd8, 8, 64, 4*1024*1024, l3_cache_str},
3025 	{ 0xd7, 8, 64, 2*1024*1024, l3_cache_str},
3026 	{ 0xd6, 8, 64, 1*1024*1024, l3_cache_str},
3027 	{ 0xd2, 4, 64, 2*1024*1024, l3_cache_str},
3028 	{ 0xd1, 4, 64, 1*1024*1024, l3_cache_str},
3029 	{ 0xd0, 4, 64, 512*1024, l3_cache_str},
3030 	{ 0xca, 4, 0, 512, sh_l2_tlb4k_str},
3031 	{ 0xc0, 4, 0, 8, dtlb44_str },
3032 	{ 0xba, 4, 0, 64, dtlb4k_str },
3033 	{ 0xb4, 4, 0, 256, dtlb4k_str },
3034 	{ 0xb3, 4, 0, 128, dtlb4k_str },
3035 	{ 0xb2, 4, 0, 64, itlb4k_str },
3036 	{ 0xb0, 4, 0, 128, itlb4k_str },
3037 	{ 0x87, 8, 64, 1024*1024, l2_cache_str},
3038 	{ 0x86, 4, 64, 512*1024, l2_cache_str},
3039 	{ 0x85, 8, 32, 2*1024*1024, l2_cache_str},
3040 	{ 0x84, 8, 32, 1024*1024, l2_cache_str},
3041 	{ 0x83, 8, 32, 512*1024, l2_cache_str},
3042 	{ 0x82, 8, 32, 256*1024, l2_cache_str},
3043 	{ 0x80, 8, 64, 512*1024, l2_cache_str},
3044 	{ 0x7f, 2, 64, 512*1024, l2_cache_str},
3045 	{ 0x7d, 8, 64, 2*1024*1024, sl2_cache_str},
3046 	{ 0x7c, 8, 64, 1024*1024, sl2_cache_str},
3047 	{ 0x7b, 8, 64, 512*1024, sl2_cache_str},
3048 	{ 0x7a, 8, 64, 256*1024, sl2_cache_str},
3049 	{ 0x79, 8, 64, 128*1024, sl2_cache_str},
3050 	{ 0x78, 8, 64, 1024*1024, l2_cache_str},
3051 	{ 0x73, 8, 0, 64*1024, itrace_str},
3052 	{ 0x72, 8, 0, 32*1024, itrace_str},
3053 	{ 0x71, 8, 0, 16*1024, itrace_str},
3054 	{ 0x70, 8, 0, 12*1024, itrace_str},
3055 	{ 0x68, 4, 64, 32*1024, sl1_dcache_str},
3056 	{ 0x67, 4, 64, 16*1024, sl1_dcache_str},
3057 	{ 0x66, 4, 64, 8*1024, sl1_dcache_str},
3058 	{ 0x60, 8, 64, 16*1024, sl1_dcache_str},
3059 	{ 0x5d, 0, 0, 256, dtlb44_str},
3060 	{ 0x5c, 0, 0, 128, dtlb44_str},
3061 	{ 0x5b, 0, 0, 64, dtlb44_str},
3062 	{ 0x5a, 4, 0, 32, dtlb24_str},
3063 	{ 0x59, 0, 0, 16, dtlb4k_str},
3064 	{ 0x57, 4, 0, 16, dtlb4k_str},
3065 	{ 0x56, 4, 0, 16, dtlb4M_str},
3066 	{ 0x55, 0, 0, 7, itlb24_str},
3067 	{ 0x52, 0, 0, 256, itlb424_str},
3068 	{ 0x51, 0, 0, 128, itlb424_str},
3069 	{ 0x50, 0, 0, 64, itlb424_str},
3070 	{ 0x4f, 0, 0, 32, itlb4k_str},
3071 	{ 0x4e, 24, 64, 6*1024*1024, l2_cache_str},
3072 	{ 0x4d, 16, 64, 16*1024*1024, l3_cache_str},
3073 	{ 0x4c, 12, 64, 12*1024*1024, l3_cache_str},
3074 	{ 0x4b, 16, 64, 8*1024*1024, l3_cache_str},
3075 	{ 0x4a, 12, 64, 6*1024*1024, l3_cache_str},
3076 	{ 0x49, 16, 64, 4*1024*1024, l3_cache_str},
3077 	{ 0x48, 12, 64, 3*1024*1024, l2_cache_str},
3078 	{ 0x47, 8, 64, 8*1024*1024, l3_cache_str},
3079 	{ 0x46, 4, 64, 4*1024*1024, l3_cache_str},
3080 	{ 0x45, 4, 32, 2*1024*1024, l2_cache_str},
3081 	{ 0x44, 4, 32, 1024*1024, l2_cache_str},
3082 	{ 0x43, 4, 32, 512*1024, l2_cache_str},
3083 	{ 0x42, 4, 32, 256*1024, l2_cache_str},
3084 	{ 0x41, 4, 32, 128*1024, l2_cache_str},
3085 	{ 0x3e, 4, 64, 512*1024, sl2_cache_str},
3086 	{ 0x3d, 6, 64, 384*1024, sl2_cache_str},
3087 	{ 0x3c, 4, 64, 256*1024, sl2_cache_str},
3088 	{ 0x3b, 2, 64, 128*1024, sl2_cache_str},
3089 	{ 0x3a, 6, 64, 192*1024, sl2_cache_str},
3090 	{ 0x39, 4, 64, 128*1024, sl2_cache_str},
3091 	{ 0x30, 8, 64, 32*1024, l1_icache_str},
3092 	{ 0x2c, 8, 64, 32*1024, l1_dcache_str},
3093 	{ 0x29, 8, 64, 4096*1024, sl3_cache_str},
3094 	{ 0x25, 8, 64, 2048*1024, sl3_cache_str},
3095 	{ 0x23, 8, 64, 1024*1024, sl3_cache_str},
3096 	{ 0x22, 4, 64, 512*1024, sl3_cache_str},
3097 	{ 0x0e, 6, 64, 24*1024, l1_dcache_str},
3098 	{ 0x0d, 4, 32, 16*1024, l1_dcache_str},
3099 	{ 0x0c, 4, 32, 16*1024, l1_dcache_str},
3100 	{ 0x0b, 4, 0, 4, itlb4M_str},
3101 	{ 0x0a, 2, 32, 8*1024, l1_dcache_str},
3102 	{ 0x08, 4, 32, 16*1024, l1_icache_str},
3103 	{ 0x06, 4, 32, 8*1024, l1_icache_str},
3104 	{ 0x05, 4, 0, 32, dtlb4M_str},
3105 	{ 0x04, 4, 0, 8, dtlb4M_str},
3106 	{ 0x03, 4, 0, 64, dtlb4k_str},
3107 	{ 0x02, 4, 0, 2, itlb4M_str},
3108 	{ 0x01, 4, 0, 32, itlb4k_str},
3109 	{ 0 }
3110 };
3111 
3112 static const struct cachetab cyrix_ctab[] = {
3113 	{ 0x70, 4, 0, 32, "tlb-4K" },
3114 	{ 0x80, 4, 16, 16*1024, "l1-cache" },
3115 	{ 0 }
3116 };
3117 
3118 /*
3119  * Search a cache table for a matching entry
3120  */
3121 static const struct cachetab *
3122 find_cacheent(const struct cachetab *ct, uint_t code)
3123 {
3124 	if (code != 0) {
3125 		for (; ct->ct_code != 0; ct++)
3126 			if (ct->ct_code <= code)
3127 				break;
3128 		if (ct->ct_code == code)
3129 			return (ct);
3130 	}
3131 	return (NULL);
3132 }
3133 
3134 /*
3135  * Populate cachetab entry with L2 or L3 cache-information using
3136  * cpuid function 4. This function is called from intel_walk_cacheinfo()
3137  * when descriptor 0x49 is encountered. It returns 0 if no such cache
3138  * information is found.
3139  */
3140 static int
3141 intel_cpuid_4_cache_info(struct cachetab *ct, struct cpuid_info *cpi)
3142 {
3143 	uint32_t level, i;
3144 	int ret = 0;
3145 
3146 	for (i = 0; i < cpi->cpi_std_4_size; i++) {
3147 		level = CPI_CACHE_LVL(cpi->cpi_std_4[i]);
3148 
3149 		if (level == 2 || level == 3) {
3150 			ct->ct_assoc = CPI_CACHE_WAYS(cpi->cpi_std_4[i]) + 1;
3151 			ct->ct_line_size =
3152 			    CPI_CACHE_COH_LN_SZ(cpi->cpi_std_4[i]) + 1;
3153 			ct->ct_size = ct->ct_assoc *
3154 			    (CPI_CACHE_PARTS(cpi->cpi_std_4[i]) + 1) *
3155 			    ct->ct_line_size *
3156 			    (cpi->cpi_std_4[i]->cp_ecx + 1);
3157 
3158 			if (level == 2) {
3159 				ct->ct_label = l2_cache_str;
3160 			} else if (level == 3) {
3161 				ct->ct_label = l3_cache_str;
3162 			}
3163 			ret = 1;
3164 		}
3165 	}
3166 
3167 	return (ret);
3168 }
3169 
3170 /*
3171  * Walk the cacheinfo descriptor, applying 'func' to every valid element
3172  * The walk is terminated if the walker returns non-zero.
3173  */
3174 static void
3175 intel_walk_cacheinfo(struct cpuid_info *cpi,
3176     void *arg, int (*func)(void *, const struct cachetab *))
3177 {
3178 	const struct cachetab *ct;
3179 	struct cachetab des_49_ct, des_b1_ct;
3180 	uint8_t *dp;
3181 	int i;
3182 
3183 	if ((dp = cpi->cpi_cacheinfo) == NULL)
3184 		return;
3185 	for (i = 0; i < cpi->cpi_ncache; i++, dp++) {
3186 		/*
3187 		 * For overloaded descriptor 0x49 we use cpuid function 4
3188 		 * if supported by the current processor, to create
3189 		 * cache information.
3190 		 * For overloaded descriptor 0xb1 we use X86_PAE flag
3191 		 * to disambiguate the cache information.
3192 		 */
3193 		if (*dp == 0x49 && cpi->cpi_maxeax >= 0x4 &&
3194 		    intel_cpuid_4_cache_info(&des_49_ct, cpi) == 1) {
3195 				ct = &des_49_ct;
3196 		} else if (*dp == 0xb1) {
3197 			des_b1_ct.ct_code = 0xb1;
3198 			des_b1_ct.ct_assoc = 4;
3199 			des_b1_ct.ct_line_size = 0;
3200 			if (x86_feature & X86_PAE) {
3201 				des_b1_ct.ct_size = 8;
3202 				des_b1_ct.ct_label = itlb2M_str;
3203 			} else {
3204 				des_b1_ct.ct_size = 4;
3205 				des_b1_ct.ct_label = itlb4M_str;
3206 			}
3207 			ct = &des_b1_ct;
3208 		} else {
3209 			if ((ct = find_cacheent(intel_ctab, *dp)) == NULL) {
3210 				continue;
3211 			}
3212 		}
3213 
3214 		if (func(arg, ct) != 0) {
3215 			break;
3216 		}
3217 	}
3218 }
3219 
3220 /*
3221  * (Like the Intel one, except for Cyrix CPUs)
3222  */
3223 static void
3224 cyrix_walk_cacheinfo(struct cpuid_info *cpi,
3225     void *arg, int (*func)(void *, const struct cachetab *))
3226 {
3227 	const struct cachetab *ct;
3228 	uint8_t *dp;
3229 	int i;
3230 
3231 	if ((dp = cpi->cpi_cacheinfo) == NULL)
3232 		return;
3233 	for (i = 0; i < cpi->cpi_ncache; i++, dp++) {
3234 		/*
3235 		 * Search Cyrix-specific descriptor table first ..
3236 		 */
3237 		if ((ct = find_cacheent(cyrix_ctab, *dp)) != NULL) {
3238 			if (func(arg, ct) != 0)
3239 				break;
3240 			continue;
3241 		}
3242 		/*
3243 		 * .. else fall back to the Intel one
3244 		 */
3245 		if ((ct = find_cacheent(intel_ctab, *dp)) != NULL) {
3246 			if (func(arg, ct) != 0)
3247 				break;
3248 			continue;
3249 		}
3250 	}
3251 }
3252 
3253 /*
3254  * A cacheinfo walker that adds associativity, line-size, and size properties
3255  * to the devinfo node it is passed as an argument.
3256  */
3257 static int
3258 add_cacheent_props(void *arg, const struct cachetab *ct)
3259 {
3260 	dev_info_t *devi = arg;
3261 
3262 	add_cache_prop(devi, ct->ct_label, assoc_str, ct->ct_assoc);
3263 	if (ct->ct_line_size != 0)
3264 		add_cache_prop(devi, ct->ct_label, line_str,
3265 		    ct->ct_line_size);
3266 	add_cache_prop(devi, ct->ct_label, size_str, ct->ct_size);
3267 	return (0);
3268 }
3269 
3270 
3271 static const char fully_assoc[] = "fully-associative?";
3272 
3273 /*
3274  * AMD style cache/tlb description
3275  *
3276  * Extended functions 5 and 6 directly describe properties of
3277  * tlbs and various cache levels.
3278  */
3279 static void
3280 add_amd_assoc(dev_info_t *devi, const char *label, uint_t assoc)
3281 {
3282 	switch (assoc) {
3283 	case 0:	/* reserved; ignore */
3284 		break;
3285 	default:
3286 		add_cache_prop(devi, label, assoc_str, assoc);
3287 		break;
3288 	case 0xff:
3289 		add_cache_prop(devi, label, fully_assoc, 1);
3290 		break;
3291 	}
3292 }
3293 
3294 static void
3295 add_amd_tlb(dev_info_t *devi, const char *label, uint_t assoc, uint_t size)
3296 {
3297 	if (size == 0)
3298 		return;
3299 	add_cache_prop(devi, label, size_str, size);
3300 	add_amd_assoc(devi, label, assoc);
3301 }
3302 
3303 static void
3304 add_amd_cache(dev_info_t *devi, const char *label,
3305     uint_t size, uint_t assoc, uint_t lines_per_tag, uint_t line_size)
3306 {
3307 	if (size == 0 || line_size == 0)
3308 		return;
3309 	add_amd_assoc(devi, label, assoc);
3310 	/*
3311 	 * Most AMD parts have a sectored cache. Multiple cache lines are
3312 	 * associated with each tag. A sector consists of all cache lines
3313 	 * associated with a tag. For example, the AMD K6-III has a sector
3314 	 * size of 2 cache lines per tag.
3315 	 */
3316 	if (lines_per_tag != 0)
3317 		add_cache_prop(devi, label, "lines-per-tag", lines_per_tag);
3318 	add_cache_prop(devi, label, line_str, line_size);
3319 	add_cache_prop(devi, label, size_str, size * 1024);
3320 }
3321 
3322 static void
3323 add_amd_l2_assoc(dev_info_t *devi, const char *label, uint_t assoc)
3324 {
3325 	switch (assoc) {
3326 	case 0:	/* off */
3327 		break;
3328 	case 1:
3329 	case 2:
3330 	case 4:
3331 		add_cache_prop(devi, label, assoc_str, assoc);
3332 		break;
3333 	case 6:
3334 		add_cache_prop(devi, label, assoc_str, 8);
3335 		break;
3336 	case 8:
3337 		add_cache_prop(devi, label, assoc_str, 16);
3338 		break;
3339 	case 0xf:
3340 		add_cache_prop(devi, label, fully_assoc, 1);
3341 		break;
3342 	default: /* reserved; ignore */
3343 		break;
3344 	}
3345 }
3346 
3347 static void
3348 add_amd_l2_tlb(dev_info_t *devi, const char *label, uint_t assoc, uint_t size)
3349 {
3350 	if (size == 0 || assoc == 0)
3351 		return;
3352 	add_amd_l2_assoc(devi, label, assoc);
3353 	add_cache_prop(devi, label, size_str, size);
3354 }
3355 
3356 static void
3357 add_amd_l2_cache(dev_info_t *devi, const char *label,
3358     uint_t size, uint_t assoc, uint_t lines_per_tag, uint_t line_size)
3359 {
3360 	if (size == 0 || assoc == 0 || line_size == 0)
3361 		return;
3362 	add_amd_l2_assoc(devi, label, assoc);
3363 	if (lines_per_tag != 0)
3364 		add_cache_prop(devi, label, "lines-per-tag", lines_per_tag);
3365 	add_cache_prop(devi, label, line_str, line_size);
3366 	add_cache_prop(devi, label, size_str, size * 1024);
3367 }
3368 
3369 static void
3370 amd_cache_info(struct cpuid_info *cpi, dev_info_t *devi)
3371 {
3372 	struct cpuid_regs *cp;
3373 
3374 	if (cpi->cpi_xmaxeax < 0x80000005)
3375 		return;
3376 	cp = &cpi->cpi_extd[5];
3377 
3378 	/*
3379 	 * 4M/2M L1 TLB configuration
3380 	 *
3381 	 * We report the size for 2M pages because AMD uses two
3382 	 * TLB entries for one 4M page.
3383 	 */
3384 	add_amd_tlb(devi, "dtlb-2M",
3385 	    BITX(cp->cp_eax, 31, 24), BITX(cp->cp_eax, 23, 16));
3386 	add_amd_tlb(devi, "itlb-2M",
3387 	    BITX(cp->cp_eax, 15, 8), BITX(cp->cp_eax, 7, 0));
3388 
3389 	/*
3390 	 * 4K L1 TLB configuration
3391 	 */
3392 
3393 	switch (cpi->cpi_vendor) {
3394 		uint_t nentries;
3395 	case X86_VENDOR_TM:
3396 		if (cpi->cpi_family >= 5) {
3397 			/*
3398 			 * Crusoe processors have 256 TLB entries, but
3399 			 * cpuid data format constrains them to only
3400 			 * reporting 255 of them.
3401 			 */
3402 			if ((nentries = BITX(cp->cp_ebx, 23, 16)) == 255)
3403 				nentries = 256;
3404 			/*
3405 			 * Crusoe processors also have a unified TLB
3406 			 */
3407 			add_amd_tlb(devi, "tlb-4K", BITX(cp->cp_ebx, 31, 24),
3408 			    nentries);
3409 			break;
3410 		}
3411 		/*FALLTHROUGH*/
3412 	default:
3413 		add_amd_tlb(devi, itlb4k_str,
3414 		    BITX(cp->cp_ebx, 31, 24), BITX(cp->cp_ebx, 23, 16));
3415 		add_amd_tlb(devi, dtlb4k_str,
3416 		    BITX(cp->cp_ebx, 15, 8), BITX(cp->cp_ebx, 7, 0));
3417 		break;
3418 	}
3419 
3420 	/*
3421 	 * data L1 cache configuration
3422 	 */
3423 
3424 	add_amd_cache(devi, l1_dcache_str,
3425 	    BITX(cp->cp_ecx, 31, 24), BITX(cp->cp_ecx, 23, 16),
3426 	    BITX(cp->cp_ecx, 15, 8), BITX(cp->cp_ecx, 7, 0));
3427 
3428 	/*
3429 	 * code L1 cache configuration
3430 	 */
3431 
3432 	add_amd_cache(devi, l1_icache_str,
3433 	    BITX(cp->cp_edx, 31, 24), BITX(cp->cp_edx, 23, 16),
3434 	    BITX(cp->cp_edx, 15, 8), BITX(cp->cp_edx, 7, 0));
3435 
3436 	if (cpi->cpi_xmaxeax < 0x80000006)
3437 		return;
3438 	cp = &cpi->cpi_extd[6];
3439 
3440 	/* Check for a unified L2 TLB for large pages */
3441 
3442 	if (BITX(cp->cp_eax, 31, 16) == 0)
3443 		add_amd_l2_tlb(devi, "l2-tlb-2M",
3444 		    BITX(cp->cp_eax, 15, 12), BITX(cp->cp_eax, 11, 0));
3445 	else {
3446 		add_amd_l2_tlb(devi, "l2-dtlb-2M",
3447 		    BITX(cp->cp_eax, 31, 28), BITX(cp->cp_eax, 27, 16));
3448 		add_amd_l2_tlb(devi, "l2-itlb-2M",
3449 		    BITX(cp->cp_eax, 15, 12), BITX(cp->cp_eax, 11, 0));
3450 	}
3451 
3452 	/* Check for a unified L2 TLB for 4K pages */
3453 
3454 	if (BITX(cp->cp_ebx, 31, 16) == 0) {
3455 		add_amd_l2_tlb(devi, "l2-tlb-4K",
3456 		    BITX(cp->cp_eax, 15, 12), BITX(cp->cp_eax, 11, 0));
3457 	} else {
3458 		add_amd_l2_tlb(devi, "l2-dtlb-4K",
3459 		    BITX(cp->cp_eax, 31, 28), BITX(cp->cp_eax, 27, 16));
3460 		add_amd_l2_tlb(devi, "l2-itlb-4K",
3461 		    BITX(cp->cp_eax, 15, 12), BITX(cp->cp_eax, 11, 0));
3462 	}
3463 
3464 	add_amd_l2_cache(devi, l2_cache_str,
3465 	    BITX(cp->cp_ecx, 31, 16), BITX(cp->cp_ecx, 15, 12),
3466 	    BITX(cp->cp_ecx, 11, 8), BITX(cp->cp_ecx, 7, 0));
3467 }
3468 
3469 /*
3470  * There are two basic ways that the x86 world describes it cache
3471  * and tlb architecture - Intel's way and AMD's way.
3472  *
3473  * Return which flavor of cache architecture we should use
3474  */
3475 static int
3476 x86_which_cacheinfo(struct cpuid_info *cpi)
3477 {
3478 	switch (cpi->cpi_vendor) {
3479 	case X86_VENDOR_Intel:
3480 		if (cpi->cpi_maxeax >= 2)
3481 			return (X86_VENDOR_Intel);
3482 		break;
3483 	case X86_VENDOR_AMD:
3484 		/*
3485 		 * The K5 model 1 was the first part from AMD that reported
3486 		 * cache sizes via extended cpuid functions.
3487 		 */
3488 		if (cpi->cpi_family > 5 ||
3489 		    (cpi->cpi_family == 5 && cpi->cpi_model >= 1))
3490 			return (X86_VENDOR_AMD);
3491 		break;
3492 	case X86_VENDOR_TM:
3493 		if (cpi->cpi_family >= 5)
3494 			return (X86_VENDOR_AMD);
3495 		/*FALLTHROUGH*/
3496 	default:
3497 		/*
3498 		 * If they have extended CPU data for 0x80000005
3499 		 * then we assume they have AMD-format cache
3500 		 * information.
3501 		 *
3502 		 * If not, and the vendor happens to be Cyrix,
3503 		 * then try our-Cyrix specific handler.
3504 		 *
3505 		 * If we're not Cyrix, then assume we're using Intel's
3506 		 * table-driven format instead.
3507 		 */
3508 		if (cpi->cpi_xmaxeax >= 0x80000005)
3509 			return (X86_VENDOR_AMD);
3510 		else if (cpi->cpi_vendor == X86_VENDOR_Cyrix)
3511 			return (X86_VENDOR_Cyrix);
3512 		else if (cpi->cpi_maxeax >= 2)
3513 			return (X86_VENDOR_Intel);
3514 		break;
3515 	}
3516 	return (-1);
3517 }
3518 
3519 void
3520 cpuid_set_cpu_properties(void *dip, processorid_t cpu_id,
3521     struct cpuid_info *cpi)
3522 {
3523 	dev_info_t *cpu_devi;
3524 	int create;
3525 
3526 	cpu_devi = (dev_info_t *)dip;
3527 
3528 	/* device_type */
3529 	(void) ndi_prop_update_string(DDI_DEV_T_NONE, cpu_devi,
3530 	    "device_type", "cpu");
3531 
3532 	/* reg */
3533 	(void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi,
3534 	    "reg", cpu_id);
3535 
3536 	/* cpu-mhz, and clock-frequency */
3537 	if (cpu_freq > 0) {
3538 		long long mul;
3539 
3540 		(void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi,
3541 		    "cpu-mhz", cpu_freq);
3542 		if ((mul = cpu_freq * 1000000LL) <= INT_MAX)
3543 			(void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi,
3544 			    "clock-frequency", (int)mul);
3545 	}
3546 
3547 	if ((x86_feature & X86_CPUID) == 0) {
3548 		return;
3549 	}
3550 
3551 	/* vendor-id */
3552 	(void) ndi_prop_update_string(DDI_DEV_T_NONE, cpu_devi,
3553 	    "vendor-id", cpi->cpi_vendorstr);
3554 
3555 	if (cpi->cpi_maxeax == 0) {
3556 		return;
3557 	}
3558 
3559 	/*
3560 	 * family, model, and step
3561 	 */
3562 	(void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi,
3563 	    "family", CPI_FAMILY(cpi));
3564 	(void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi,
3565 	    "cpu-model", CPI_MODEL(cpi));
3566 	(void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi,
3567 	    "stepping-id", CPI_STEP(cpi));
3568 
3569 	/* type */
3570 	switch (cpi->cpi_vendor) {
3571 	case X86_VENDOR_Intel:
3572 		create = 1;
3573 		break;
3574 	default:
3575 		create = 0;
3576 		break;
3577 	}
3578 	if (create)
3579 		(void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi,
3580 		    "type", CPI_TYPE(cpi));
3581 
3582 	/* ext-family */
3583 	switch (cpi->cpi_vendor) {
3584 	case X86_VENDOR_Intel:
3585 	case X86_VENDOR_AMD:
3586 		create = cpi->cpi_family >= 0xf;
3587 		break;
3588 	default:
3589 		create = 0;
3590 		break;
3591 	}
3592 	if (create)
3593 		(void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi,
3594 		    "ext-family", CPI_FAMILY_XTD(cpi));
3595 
3596 	/* ext-model */
3597 	switch (cpi->cpi_vendor) {
3598 	case X86_VENDOR_Intel:
3599 		create = IS_EXTENDED_MODEL_INTEL(cpi);
3600 		break;
3601 	case X86_VENDOR_AMD:
3602 		create = CPI_FAMILY(cpi) == 0xf;
3603 		break;
3604 	default:
3605 		create = 0;
3606 		break;
3607 	}
3608 	if (create)
3609 		(void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi,
3610 		    "ext-model", CPI_MODEL_XTD(cpi));
3611 
3612 	/* generation */
3613 	switch (cpi->cpi_vendor) {
3614 	case X86_VENDOR_AMD:
3615 		/*
3616 		 * AMD K5 model 1 was the first part to support this
3617 		 */
3618 		create = cpi->cpi_xmaxeax >= 0x80000001;
3619 		break;
3620 	default:
3621 		create = 0;
3622 		break;
3623 	}
3624 	if (create)
3625 		(void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi,
3626 		    "generation", BITX((cpi)->cpi_extd[1].cp_eax, 11, 8));
3627 
3628 	/* brand-id */
3629 	switch (cpi->cpi_vendor) {
3630 	case X86_VENDOR_Intel:
3631 		/*
3632 		 * brand id first appeared on Pentium III Xeon model 8,
3633 		 * and Celeron model 8 processors and Opteron
3634 		 */
3635 		create = cpi->cpi_family > 6 ||
3636 		    (cpi->cpi_family == 6 && cpi->cpi_model >= 8);
3637 		break;
3638 	case X86_VENDOR_AMD:
3639 		create = cpi->cpi_family >= 0xf;
3640 		break;
3641 	default:
3642 		create = 0;
3643 		break;
3644 	}
3645 	if (create && cpi->cpi_brandid != 0) {
3646 		(void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi,
3647 		    "brand-id", cpi->cpi_brandid);
3648 	}
3649 
3650 	/* chunks, and apic-id */
3651 	switch (cpi->cpi_vendor) {
3652 		/*
3653 		 * first available on Pentium IV and Opteron (K8)
3654 		 */
3655 	case X86_VENDOR_Intel:
3656 		create = IS_NEW_F6(cpi) || cpi->cpi_family >= 0xf;
3657 		break;
3658 	case X86_VENDOR_AMD:
3659 		create = cpi->cpi_family >= 0xf;
3660 		break;
3661 	default:
3662 		create = 0;
3663 		break;
3664 	}
3665 	if (create) {
3666 		(void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi,
3667 		    "chunks", CPI_CHUNKS(cpi));
3668 		(void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi,
3669 		    "apic-id", cpi->cpi_apicid);
3670 		if (cpi->cpi_chipid >= 0) {
3671 			(void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi,
3672 			    "chip#", cpi->cpi_chipid);
3673 			(void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi,
3674 			    "clog#", cpi->cpi_clogid);
3675 		}
3676 	}
3677 
3678 	/* cpuid-features */
3679 	(void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi,
3680 	    "cpuid-features", CPI_FEATURES_EDX(cpi));
3681 
3682 
3683 	/* cpuid-features-ecx */
3684 	switch (cpi->cpi_vendor) {
3685 	case X86_VENDOR_Intel:
3686 		create = IS_NEW_F6(cpi) || cpi->cpi_family >= 0xf;
3687 		break;
3688 	default:
3689 		create = 0;
3690 		break;
3691 	}
3692 	if (create)
3693 		(void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi,
3694 		    "cpuid-features-ecx", CPI_FEATURES_ECX(cpi));
3695 
3696 	/* ext-cpuid-features */
3697 	switch (cpi->cpi_vendor) {
3698 	case X86_VENDOR_Intel:
3699 	case X86_VENDOR_AMD:
3700 	case X86_VENDOR_Cyrix:
3701 	case X86_VENDOR_TM:
3702 	case X86_VENDOR_Centaur:
3703 		create = cpi->cpi_xmaxeax >= 0x80000001;
3704 		break;
3705 	default:
3706 		create = 0;
3707 		break;
3708 	}
3709 	if (create) {
3710 		(void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi,
3711 		    "ext-cpuid-features", CPI_FEATURES_XTD_EDX(cpi));
3712 		(void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi,
3713 		    "ext-cpuid-features-ecx", CPI_FEATURES_XTD_ECX(cpi));
3714 	}
3715 
3716 	/*
3717 	 * Brand String first appeared in Intel Pentium IV, AMD K5
3718 	 * model 1, and Cyrix GXm.  On earlier models we try and
3719 	 * simulate something similar .. so this string should always
3720 	 * same -something- about the processor, however lame.
3721 	 */
3722 	(void) ndi_prop_update_string(DDI_DEV_T_NONE, cpu_devi,
3723 	    "brand-string", cpi->cpi_brandstr);
3724 
3725 	/*
3726 	 * Finally, cache and tlb information
3727 	 */
3728 	switch (x86_which_cacheinfo(cpi)) {
3729 	case X86_VENDOR_Intel:
3730 		intel_walk_cacheinfo(cpi, cpu_devi, add_cacheent_props);
3731 		break;
3732 	case X86_VENDOR_Cyrix:
3733 		cyrix_walk_cacheinfo(cpi, cpu_devi, add_cacheent_props);
3734 		break;
3735 	case X86_VENDOR_AMD:
3736 		amd_cache_info(cpi, cpu_devi);
3737 		break;
3738 	default:
3739 		break;
3740 	}
3741 }
3742 
3743 struct l2info {
3744 	int *l2i_csz;
3745 	int *l2i_lsz;
3746 	int *l2i_assoc;
3747 	int l2i_ret;
3748 };
3749 
3750 /*
3751  * A cacheinfo walker that fetches the size, line-size and associativity
3752  * of the L2 cache
3753  */
3754 static int
3755 intel_l2cinfo(void *arg, const struct cachetab *ct)
3756 {
3757 	struct l2info *l2i = arg;
3758 	int *ip;
3759 
3760 	if (ct->ct_label != l2_cache_str &&
3761 	    ct->ct_label != sl2_cache_str)
3762 		return (0);	/* not an L2 -- keep walking */
3763 
3764 	if ((ip = l2i->l2i_csz) != NULL)
3765 		*ip = ct->ct_size;
3766 	if ((ip = l2i->l2i_lsz) != NULL)
3767 		*ip = ct->ct_line_size;
3768 	if ((ip = l2i->l2i_assoc) != NULL)
3769 		*ip = ct->ct_assoc;
3770 	l2i->l2i_ret = ct->ct_size;
3771 	return (1);		/* was an L2 -- terminate walk */
3772 }
3773 
3774 /*
3775  * AMD L2/L3 Cache and TLB Associativity Field Definition:
3776  *
3777  *	Unlike the associativity for the L1 cache and tlb where the 8 bit
3778  *	value is the associativity, the associativity for the L2 cache and
3779  *	tlb is encoded in the following table. The 4 bit L2 value serves as
3780  *	an index into the amd_afd[] array to determine the associativity.
3781  *	-1 is undefined. 0 is fully associative.
3782  */
3783 
3784 static int amd_afd[] =
3785 	{-1, 1, 2, -1, 4, -1, 8, -1, 16, -1, 32, 48, 64, 96, 128, 0};
3786 
3787 static void
3788 amd_l2cacheinfo(struct cpuid_info *cpi, struct l2info *l2i)
3789 {
3790 	struct cpuid_regs *cp;
3791 	uint_t size, assoc;
3792 	int i;
3793 	int *ip;
3794 
3795 	if (cpi->cpi_xmaxeax < 0x80000006)
3796 		return;
3797 	cp = &cpi->cpi_extd[6];
3798 
3799 	if ((i = BITX(cp->cp_ecx, 15, 12)) != 0 &&
3800 	    (size = BITX(cp->cp_ecx, 31, 16)) != 0) {
3801 		uint_t cachesz = size * 1024;
3802 		assoc = amd_afd[i];
3803 
3804 		ASSERT(assoc != -1);
3805 
3806 		if ((ip = l2i->l2i_csz) != NULL)
3807 			*ip = cachesz;
3808 		if ((ip = l2i->l2i_lsz) != NULL)
3809 			*ip = BITX(cp->cp_ecx, 7, 0);
3810 		if ((ip = l2i->l2i_assoc) != NULL)
3811 			*ip = assoc;
3812 		l2i->l2i_ret = cachesz;
3813 	}
3814 }
3815 
3816 int
3817 getl2cacheinfo(cpu_t *cpu, int *csz, int *lsz, int *assoc)
3818 {
3819 	struct cpuid_info *cpi = cpu->cpu_m.mcpu_cpi;
3820 	struct l2info __l2info, *l2i = &__l2info;
3821 
3822 	l2i->l2i_csz = csz;
3823 	l2i->l2i_lsz = lsz;
3824 	l2i->l2i_assoc = assoc;
3825 	l2i->l2i_ret = -1;
3826 
3827 	switch (x86_which_cacheinfo(cpi)) {
3828 	case X86_VENDOR_Intel:
3829 		intel_walk_cacheinfo(cpi, l2i, intel_l2cinfo);
3830 		break;
3831 	case X86_VENDOR_Cyrix:
3832 		cyrix_walk_cacheinfo(cpi, l2i, intel_l2cinfo);
3833 		break;
3834 	case X86_VENDOR_AMD:
3835 		amd_l2cacheinfo(cpi, l2i);
3836 		break;
3837 	default:
3838 		break;
3839 	}
3840 	return (l2i->l2i_ret);
3841 }
3842 
3843 #if !defined(__xpv)
3844 
3845 uint32_t *
3846 cpuid_mwait_alloc(cpu_t *cpu)
3847 {
3848 	uint32_t	*ret;
3849 	size_t		mwait_size;
3850 
3851 	ASSERT(cpuid_checkpass(cpu, 2));
3852 
3853 	mwait_size = cpu->cpu_m.mcpu_cpi->cpi_mwait.mon_max;
3854 	if (mwait_size == 0)
3855 		return (NULL);
3856 
3857 	/*
3858 	 * kmem_alloc() returns cache line size aligned data for mwait_size
3859 	 * allocations.  mwait_size is currently cache line sized.  Neither
3860 	 * of these implementation details are guarantied to be true in the
3861 	 * future.
3862 	 *
3863 	 * First try allocating mwait_size as kmem_alloc() currently returns
3864 	 * correctly aligned memory.  If kmem_alloc() does not return
3865 	 * mwait_size aligned memory, then use mwait_size ROUNDUP.
3866 	 *
3867 	 * Set cpi_mwait.buf_actual and cpi_mwait.size_actual in case we
3868 	 * decide to free this memory.
3869 	 */
3870 	ret = kmem_zalloc(mwait_size, KM_SLEEP);
3871 	if (ret == (uint32_t *)P2ROUNDUP((uintptr_t)ret, mwait_size)) {
3872 		cpu->cpu_m.mcpu_cpi->cpi_mwait.buf_actual = ret;
3873 		cpu->cpu_m.mcpu_cpi->cpi_mwait.size_actual = mwait_size;
3874 		*ret = MWAIT_RUNNING;
3875 		return (ret);
3876 	} else {
3877 		kmem_free(ret, mwait_size);
3878 		ret = kmem_zalloc(mwait_size * 2, KM_SLEEP);
3879 		cpu->cpu_m.mcpu_cpi->cpi_mwait.buf_actual = ret;
3880 		cpu->cpu_m.mcpu_cpi->cpi_mwait.size_actual = mwait_size * 2;
3881 		ret = (uint32_t *)P2ROUNDUP((uintptr_t)ret, mwait_size);
3882 		*ret = MWAIT_RUNNING;
3883 		return (ret);
3884 	}
3885 }
3886 
3887 void
3888 cpuid_mwait_free(cpu_t *cpu)
3889 {
3890 	ASSERT(cpuid_checkpass(cpu, 2));
3891 
3892 	if (cpu->cpu_m.mcpu_cpi->cpi_mwait.buf_actual != NULL &&
3893 	    cpu->cpu_m.mcpu_cpi->cpi_mwait.size_actual > 0) {
3894 		kmem_free(cpu->cpu_m.mcpu_cpi->cpi_mwait.buf_actual,
3895 		    cpu->cpu_m.mcpu_cpi->cpi_mwait.size_actual);
3896 	}
3897 
3898 	cpu->cpu_m.mcpu_cpi->cpi_mwait.buf_actual = NULL;
3899 	cpu->cpu_m.mcpu_cpi->cpi_mwait.size_actual = 0;
3900 }
3901 
3902 void
3903 patch_tsc_read(int flag)
3904 {
3905 	size_t cnt;
3906 
3907 	switch (flag) {
3908 	case X86_NO_TSC:
3909 		cnt = &_no_rdtsc_end - &_no_rdtsc_start;
3910 		(void) memcpy((void *)tsc_read, (void *)&_no_rdtsc_start, cnt);
3911 		break;
3912 	case X86_HAVE_TSCP:
3913 		cnt = &_tscp_end - &_tscp_start;
3914 		(void) memcpy((void *)tsc_read, (void *)&_tscp_start, cnt);
3915 		break;
3916 	case X86_TSC_MFENCE:
3917 		cnt = &_tsc_mfence_end - &_tsc_mfence_start;
3918 		(void) memcpy((void *)tsc_read,
3919 		    (void *)&_tsc_mfence_start, cnt);
3920 		break;
3921 	case X86_TSC_LFENCE:
3922 		cnt = &_tsc_lfence_end - &_tsc_lfence_start;
3923 		(void) memcpy((void *)tsc_read,
3924 		    (void *)&_tsc_lfence_start, cnt);
3925 		break;
3926 	default:
3927 		break;
3928 	}
3929 }
3930 
3931 int
3932 cpuid_deep_cstates_supported(void)
3933 {
3934 	struct cpuid_info *cpi;
3935 	struct cpuid_regs regs;
3936 
3937 	ASSERT(cpuid_checkpass(CPU, 1));
3938 
3939 	cpi = CPU->cpu_m.mcpu_cpi;
3940 
3941 	if (!(x86_feature & X86_CPUID))
3942 		return (0);
3943 
3944 	switch (cpi->cpi_vendor) {
3945 	case X86_VENDOR_Intel:
3946 		if (cpi->cpi_xmaxeax < 0x80000007)
3947 			return (0);
3948 
3949 		/*
3950 		 * TSC run at a constant rate in all ACPI C-states?
3951 		 */
3952 		regs.cp_eax = 0x80000007;
3953 		(void) __cpuid_insn(&regs);
3954 		return (regs.cp_edx & CPUID_TSC_CSTATE_INVARIANCE);
3955 
3956 	default:
3957 		return (0);
3958 	}
3959 }
3960 
3961 #endif	/* !__xpv */
3962 
3963 void
3964 post_startup_cpu_fixups(void)
3965 {
3966 #ifndef __xpv
3967 	/*
3968 	 * Some AMD processors support C1E state. Entering this state will
3969 	 * cause the local APIC timer to stop, which we can't deal with at
3970 	 * this time.
3971 	 */
3972 	if (cpuid_getvendor(CPU) == X86_VENDOR_AMD) {
3973 		on_trap_data_t otd;
3974 		uint64_t reg;
3975 
3976 		if (!on_trap(&otd, OT_DATA_ACCESS)) {
3977 			reg = rdmsr(MSR_AMD_INT_PENDING_CMP_HALT);
3978 			/* Disable C1E state if it is enabled by BIOS */
3979 			if ((reg >> AMD_ACTONCMPHALT_SHIFT) &
3980 			    AMD_ACTONCMPHALT_MASK) {
3981 				reg &= ~(AMD_ACTONCMPHALT_MASK <<
3982 				    AMD_ACTONCMPHALT_SHIFT);
3983 				wrmsr(MSR_AMD_INT_PENDING_CMP_HALT, reg);
3984 			}
3985 		}
3986 		no_trap();
3987 	}
3988 #endif	/* !__xpv */
3989 }
3990 
3991 /*
3992  * Starting with the Westmere processor the local
3993  * APIC timer will continue running in all C-states,
3994  * including the deepest C-states.
3995  */
3996 int
3997 cpuid_arat_supported(void)
3998 {
3999 	struct cpuid_info *cpi;
4000 	struct cpuid_regs regs;
4001 
4002 	ASSERT(cpuid_checkpass(CPU, 1));
4003 	ASSERT(x86_feature & X86_CPUID);
4004 
4005 	cpi = CPU->cpu_m.mcpu_cpi;
4006 
4007 	switch (cpi->cpi_vendor) {
4008 	case X86_VENDOR_Intel:
4009 		/*
4010 		 * Always-running Local APIC Timer is
4011 		 * indicated by CPUID.6.EAX[2].
4012 		 */
4013 		if (cpi->cpi_maxeax >= 6) {
4014 			regs.cp_eax = 6;
4015 			(void) cpuid_insn(NULL, &regs);
4016 			return (regs.cp_eax & CPUID_CSTATE_ARAT);
4017 		} else {
4018 			return (0);
4019 		}
4020 	default:
4021 		return (0);
4022 	}
4023 }
4024 
4025 #if defined(__amd64) && !defined(__xpv)
4026 /*
4027  * Patch in versions of bcopy for high performance Intel Nhm processors
4028  * and later...
4029  */
4030 void
4031 patch_memops(uint_t vendor)
4032 {
4033 	size_t cnt, i;
4034 	caddr_t to, from;
4035 
4036 	if ((vendor == X86_VENDOR_Intel) && ((x86_feature & X86_SSE4_2) != 0)) {
4037 		cnt = &bcopy_patch_end - &bcopy_patch_start;
4038 		to = &bcopy_ck_size;
4039 		from = &bcopy_patch_start;
4040 		for (i = 0; i < cnt; i++) {
4041 			*to++ = *from++;
4042 		}
4043 	}
4044 }
4045 #endif  /* __amd64 && !__xpv */
4046