1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2007 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 #pragma ident "%Z%%M% %I% %E% SMI" 27 28 /* 29 * Various routines to handle identification 30 * and classification of x86 processors. 31 */ 32 33 #include <sys/types.h> 34 #include <sys/archsystm.h> 35 #include <sys/x86_archext.h> 36 #include <sys/kmem.h> 37 #include <sys/systm.h> 38 #include <sys/cmn_err.h> 39 #include <sys/sunddi.h> 40 #include <sys/sunndi.h> 41 #include <sys/cpuvar.h> 42 #include <sys/processor.h> 43 #include <sys/pg.h> 44 #include <sys/fp.h> 45 #include <sys/controlregs.h> 46 #include <sys/auxv_386.h> 47 #include <sys/bitmap.h> 48 #include <sys/memnode.h> 49 50 /* 51 * Pass 0 of cpuid feature analysis happens in locore. It contains special code 52 * to recognize Cyrix processors that are not cpuid-compliant, and to deal with 53 * them accordingly. For most modern processors, feature detection occurs here 54 * in pass 1. 55 * 56 * Pass 1 of cpuid feature analysis happens just at the beginning of mlsetup() 57 * for the boot CPU and does the basic analysis that the early kernel needs. 58 * x86_feature is set based on the return value of cpuid_pass1() of the boot 59 * CPU. 60 * 61 * Pass 1 includes: 62 * 63 * o Determining vendor/model/family/stepping and setting x86_type and 64 * x86_vendor accordingly. 65 * o Processing the feature flags returned by the cpuid instruction while 66 * applying any workarounds or tricks for the specific processor. 67 * o Mapping the feature flags into Solaris feature bits (X86_*). 68 * o Processing extended feature flags if supported by the processor, 69 * again while applying specific processor knowledge. 70 * o Determining the CMT characteristics of the system. 71 * 72 * Pass 1 is done on non-boot CPUs during their initialization and the results 73 * are used only as a meager attempt at ensuring that all processors within the 74 * system support the same features. 75 * 76 * Pass 2 of cpuid feature analysis happens just at the beginning 77 * of startup(). It just copies in and corrects the remainder 78 * of the cpuid data we depend on: standard cpuid functions that we didn't 79 * need for pass1 feature analysis, and extended cpuid functions beyond the 80 * simple feature processing done in pass1. 81 * 82 * Pass 3 of cpuid analysis is invoked after basic kernel services; in 83 * particular kernel memory allocation has been made available. It creates a 84 * readable brand string based on the data collected in the first two passes. 85 * 86 * Pass 4 of cpuid analysis is invoked after post_startup() when all 87 * the support infrastructure for various hardware features has been 88 * initialized. It determines which processor features will be reported 89 * to userland via the aux vector. 90 * 91 * All passes are executed on all CPUs, but only the boot CPU determines what 92 * features the kernel will use. 93 * 94 * Much of the worst junk in this file is for the support of processors 95 * that didn't really implement the cpuid instruction properly. 96 * 97 * NOTE: The accessor functions (cpuid_get*) are aware of, and ASSERT upon, 98 * the pass numbers. Accordingly, changes to the pass code may require changes 99 * to the accessor code. 100 */ 101 102 uint_t x86_feature = 0; 103 uint_t x86_vendor = X86_VENDOR_IntelClone; 104 uint_t x86_type = X86_TYPE_OTHER; 105 106 uint_t pentiumpro_bug4046376; 107 uint_t pentiumpro_bug4064495; 108 109 uint_t enable486; 110 111 /* 112 * This set of strings are for processors rumored to support the cpuid 113 * instruction, and is used by locore.s to figure out how to set x86_vendor 114 */ 115 const char CyrixInstead[] = "CyrixInstead"; 116 117 /* 118 * These constants determine how many of the elements of the 119 * cpuid we cache in the cpuid_info data structure; the 120 * remaining elements are accessible via the cpuid instruction. 121 */ 122 123 #define NMAX_CPI_STD 6 /* eax = 0 .. 5 */ 124 #define NMAX_CPI_EXTD 9 /* eax = 0x80000000 .. 0x80000008 */ 125 126 struct cpuid_info { 127 uint_t cpi_pass; /* last pass completed */ 128 /* 129 * standard function information 130 */ 131 uint_t cpi_maxeax; /* fn 0: %eax */ 132 char cpi_vendorstr[13]; /* fn 0: %ebx:%ecx:%edx */ 133 uint_t cpi_vendor; /* enum of cpi_vendorstr */ 134 135 uint_t cpi_family; /* fn 1: extended family */ 136 uint_t cpi_model; /* fn 1: extended model */ 137 uint_t cpi_step; /* fn 1: stepping */ 138 chipid_t cpi_chipid; /* fn 1: %ebx: chip # on ht cpus */ 139 uint_t cpi_brandid; /* fn 1: %ebx: brand ID */ 140 int cpi_clogid; /* fn 1: %ebx: thread # */ 141 uint_t cpi_ncpu_per_chip; /* fn 1: %ebx: logical cpu count */ 142 uint8_t cpi_cacheinfo[16]; /* fn 2: intel-style cache desc */ 143 uint_t cpi_ncache; /* fn 2: number of elements */ 144 struct cpuid_regs cpi_std[NMAX_CPI_STD]; /* 0 .. 5 */ 145 /* 146 * extended function information 147 */ 148 uint_t cpi_xmaxeax; /* fn 0x80000000: %eax */ 149 char cpi_brandstr[49]; /* fn 0x8000000[234] */ 150 uint8_t cpi_pabits; /* fn 0x80000006: %eax */ 151 uint8_t cpi_vabits; /* fn 0x80000006: %eax */ 152 struct cpuid_regs cpi_extd[NMAX_CPI_EXTD]; /* 0x8000000[0-8] */ 153 id_t cpi_coreid; 154 uint_t cpi_ncore_per_chip; /* AMD: fn 0x80000008: %ecx[7-0] */ 155 /* Intel: fn 4: %eax[31-26] */ 156 /* 157 * supported feature information 158 */ 159 uint32_t cpi_support[5]; 160 #define STD_EDX_FEATURES 0 161 #define AMD_EDX_FEATURES 1 162 #define TM_EDX_FEATURES 2 163 #define STD_ECX_FEATURES 3 164 #define AMD_ECX_FEATURES 4 165 /* 166 * Synthesized information, where known. 167 */ 168 uint32_t cpi_chiprev; /* See X86_CHIPREV_* in x86_archext.h */ 169 const char *cpi_chiprevstr; /* May be NULL if chiprev unknown */ 170 uint32_t cpi_socket; /* Chip package/socket type */ 171 }; 172 173 174 static struct cpuid_info cpuid_info0; 175 176 /* 177 * These bit fields are defined by the Intel Application Note AP-485 178 * "Intel Processor Identification and the CPUID Instruction" 179 */ 180 #define CPI_FAMILY_XTD(cpi) BITX((cpi)->cpi_std[1].cp_eax, 27, 20) 181 #define CPI_MODEL_XTD(cpi) BITX((cpi)->cpi_std[1].cp_eax, 19, 16) 182 #define CPI_TYPE(cpi) BITX((cpi)->cpi_std[1].cp_eax, 13, 12) 183 #define CPI_FAMILY(cpi) BITX((cpi)->cpi_std[1].cp_eax, 11, 8) 184 #define CPI_STEP(cpi) BITX((cpi)->cpi_std[1].cp_eax, 3, 0) 185 #define CPI_MODEL(cpi) BITX((cpi)->cpi_std[1].cp_eax, 7, 4) 186 187 #define CPI_FEATURES_EDX(cpi) ((cpi)->cpi_std[1].cp_edx) 188 #define CPI_FEATURES_ECX(cpi) ((cpi)->cpi_std[1].cp_ecx) 189 #define CPI_FEATURES_XTD_EDX(cpi) ((cpi)->cpi_extd[1].cp_edx) 190 #define CPI_FEATURES_XTD_ECX(cpi) ((cpi)->cpi_extd[1].cp_ecx) 191 192 #define CPI_BRANDID(cpi) BITX((cpi)->cpi_std[1].cp_ebx, 7, 0) 193 #define CPI_CHUNKS(cpi) BITX((cpi)->cpi_std[1].cp_ebx, 15, 7) 194 #define CPI_CPU_COUNT(cpi) BITX((cpi)->cpi_std[1].cp_ebx, 23, 16) 195 #define CPI_APIC_ID(cpi) BITX((cpi)->cpi_std[1].cp_ebx, 31, 24) 196 197 #define CPI_MAXEAX_MAX 0x100 /* sanity control */ 198 #define CPI_XMAXEAX_MAX 0x80000100 199 200 /* 201 * A couple of shorthand macros to identify "later" P6-family chips 202 * like the Pentium M and Core. First, the "older" P6-based stuff 203 * (loosely defined as "pre-Pentium-4"): 204 * P6, PII, Mobile PII, PII Xeon, PIII, Mobile PIII, PIII Xeon 205 */ 206 207 #define IS_LEGACY_P6(cpi) ( \ 208 cpi->cpi_family == 6 && \ 209 (cpi->cpi_model == 1 || \ 210 cpi->cpi_model == 3 || \ 211 cpi->cpi_model == 5 || \ 212 cpi->cpi_model == 6 || \ 213 cpi->cpi_model == 7 || \ 214 cpi->cpi_model == 8 || \ 215 cpi->cpi_model == 0xA || \ 216 cpi->cpi_model == 0xB) \ 217 ) 218 219 /* A "new F6" is everything with family 6 that's not the above */ 220 #define IS_NEW_F6(cpi) ((cpi->cpi_family == 6) && !IS_LEGACY_P6(cpi)) 221 222 /* 223 * AMD family 0xf socket types. 224 * First index is 0 for revs B thru E, 1 for F and G. 225 * Second index by (model & 0x3) 226 */ 227 static uint32_t amd_skts[2][4] = { 228 { 229 X86_SOCKET_754, /* 0b00 */ 230 X86_SOCKET_940, /* 0b01 */ 231 X86_SOCKET_754, /* 0b10 */ 232 X86_SOCKET_939 /* 0b11 */ 233 }, 234 { 235 X86_SOCKET_S1g1, /* 0b00 */ 236 X86_SOCKET_F1207, /* 0b01 */ 237 X86_SOCKET_UNKNOWN, /* 0b10 */ 238 X86_SOCKET_AM2 /* 0b11 */ 239 } 240 }; 241 242 /* 243 * Table for mapping AMD Family 0xf model/stepping combination to 244 * chip "revision" and socket type. Only rm_family 0xf is used at the 245 * moment, but AMD family 0x10 will extend the exsiting revision names 246 * so will likely also use this table. 247 * 248 * The first member of this array that matches a given family, extended model 249 * plus model range, and stepping range will be considered a match. 250 */ 251 static const struct amd_rev_mapent { 252 uint_t rm_family; 253 uint_t rm_modello; 254 uint_t rm_modelhi; 255 uint_t rm_steplo; 256 uint_t rm_stephi; 257 uint32_t rm_chiprev; 258 const char *rm_chiprevstr; 259 int rm_sktidx; 260 } amd_revmap[] = { 261 /* 262 * Rev B includes model 0x4 stepping 0 and model 0x5 stepping 0 and 1. 263 */ 264 { 0xf, 0x04, 0x04, 0x0, 0x0, X86_CHIPREV_AMD_F_REV_B, "B", 0 }, 265 { 0xf, 0x05, 0x05, 0x0, 0x1, X86_CHIPREV_AMD_F_REV_B, "B", 0 }, 266 /* 267 * Rev C0 includes model 0x4 stepping 8 and model 0x5 stepping 8 268 */ 269 { 0xf, 0x04, 0x05, 0x8, 0x8, X86_CHIPREV_AMD_F_REV_C0, "C0", 0 }, 270 /* 271 * Rev CG is the rest of extended model 0x0 - i.e., everything 272 * but the rev B and C0 combinations covered above. 273 */ 274 { 0xf, 0x00, 0x0f, 0x0, 0xf, X86_CHIPREV_AMD_F_REV_CG, "CG", 0 }, 275 /* 276 * Rev D has extended model 0x1. 277 */ 278 { 0xf, 0x10, 0x1f, 0x0, 0xf, X86_CHIPREV_AMD_F_REV_D, "D", 0 }, 279 /* 280 * Rev E has extended model 0x2. 281 * Extended model 0x3 is unused but available to grow into. 282 */ 283 { 0xf, 0x20, 0x3f, 0x0, 0xf, X86_CHIPREV_AMD_F_REV_E, "E", 0 }, 284 /* 285 * Rev F has extended models 0x4 and 0x5. 286 */ 287 { 0xf, 0x40, 0x5f, 0x0, 0xf, X86_CHIPREV_AMD_F_REV_F, "F", 1 }, 288 /* 289 * Rev G has extended model 0x6. 290 */ 291 { 0xf, 0x60, 0x6f, 0x0, 0xf, X86_CHIPREV_AMD_F_REV_G, "G", 1 }, 292 }; 293 294 static void 295 synth_amd_info(struct cpuid_info *cpi) 296 { 297 const struct amd_rev_mapent *rmp; 298 uint_t family, model, step; 299 int i; 300 301 /* 302 * Currently only AMD family 0xf uses these fields. 303 */ 304 if (cpi->cpi_family != 0xf) 305 return; 306 307 family = cpi->cpi_family; 308 model = cpi->cpi_model; 309 step = cpi->cpi_step; 310 311 for (i = 0, rmp = amd_revmap; i < sizeof (amd_revmap) / sizeof (*rmp); 312 i++, rmp++) { 313 if (family == rmp->rm_family && 314 model >= rmp->rm_modello && model <= rmp->rm_modelhi && 315 step >= rmp->rm_steplo && step <= rmp->rm_stephi) { 316 cpi->cpi_chiprev = rmp->rm_chiprev; 317 cpi->cpi_chiprevstr = rmp->rm_chiprevstr; 318 cpi->cpi_socket = amd_skts[rmp->rm_sktidx][model & 0x3]; 319 return; 320 } 321 } 322 } 323 324 static void 325 synth_info(struct cpuid_info *cpi) 326 { 327 cpi->cpi_chiprev = X86_CHIPREV_UNKNOWN; 328 cpi->cpi_chiprevstr = "Unknown"; 329 cpi->cpi_socket = X86_SOCKET_UNKNOWN; 330 331 switch (cpi->cpi_vendor) { 332 case X86_VENDOR_AMD: 333 synth_amd_info(cpi); 334 break; 335 336 default: 337 break; 338 339 } 340 } 341 342 /* 343 * Apply up various platform-dependent restrictions where the 344 * underlying platform restrictions mean the CPU can be marked 345 * as less capable than its cpuid instruction would imply. 346 */ 347 348 #define platform_cpuid_mangle(vendor, eax, cp) /* nothing */ 349 350 /* 351 * Some undocumented ways of patching the results of the cpuid 352 * instruction to permit running Solaris 10 on future cpus that 353 * we don't currently support. Could be set to non-zero values 354 * via settings in eeprom. 355 */ 356 357 uint32_t cpuid_feature_ecx_include; 358 uint32_t cpuid_feature_ecx_exclude; 359 uint32_t cpuid_feature_edx_include; 360 uint32_t cpuid_feature_edx_exclude; 361 362 void 363 cpuid_alloc_space(cpu_t *cpu) 364 { 365 /* 366 * By convention, cpu0 is the boot cpu, which is set up 367 * before memory allocation is available. All other cpus get 368 * their cpuid_info struct allocated here. 369 */ 370 ASSERT(cpu->cpu_id != 0); 371 cpu->cpu_m.mcpu_cpi = 372 kmem_zalloc(sizeof (*cpu->cpu_m.mcpu_cpi), KM_SLEEP); 373 } 374 375 void 376 cpuid_free_space(cpu_t *cpu) 377 { 378 ASSERT(cpu->cpu_id != 0); 379 kmem_free(cpu->cpu_m.mcpu_cpi, sizeof (*cpu->cpu_m.mcpu_cpi)); 380 } 381 382 uint_t 383 cpuid_pass1(cpu_t *cpu) 384 { 385 uint32_t mask_ecx, mask_edx; 386 uint_t feature = X86_CPUID; 387 struct cpuid_info *cpi; 388 struct cpuid_regs *cp; 389 int xcpuid; 390 391 392 /* 393 * Space statically allocated for cpu0, ensure pointer is set 394 */ 395 if (cpu->cpu_id == 0) 396 cpu->cpu_m.mcpu_cpi = &cpuid_info0; 397 cpi = cpu->cpu_m.mcpu_cpi; 398 ASSERT(cpi != NULL); 399 cp = &cpi->cpi_std[0]; 400 cp->cp_eax = 0; 401 cpi->cpi_maxeax = __cpuid_insn(cp); 402 { 403 uint32_t *iptr = (uint32_t *)cpi->cpi_vendorstr; 404 *iptr++ = cp->cp_ebx; 405 *iptr++ = cp->cp_edx; 406 *iptr++ = cp->cp_ecx; 407 *(char *)&cpi->cpi_vendorstr[12] = '\0'; 408 } 409 410 /* 411 * Map the vendor string to a type code 412 */ 413 if (strcmp(cpi->cpi_vendorstr, "GenuineIntel") == 0) 414 cpi->cpi_vendor = X86_VENDOR_Intel; 415 else if (strcmp(cpi->cpi_vendorstr, "AuthenticAMD") == 0) 416 cpi->cpi_vendor = X86_VENDOR_AMD; 417 else if (strcmp(cpi->cpi_vendorstr, "GenuineTMx86") == 0) 418 cpi->cpi_vendor = X86_VENDOR_TM; 419 else if (strcmp(cpi->cpi_vendorstr, CyrixInstead) == 0) 420 /* 421 * CyrixInstead is a variable used by the Cyrix detection code 422 * in locore. 423 */ 424 cpi->cpi_vendor = X86_VENDOR_Cyrix; 425 else if (strcmp(cpi->cpi_vendorstr, "UMC UMC UMC ") == 0) 426 cpi->cpi_vendor = X86_VENDOR_UMC; 427 else if (strcmp(cpi->cpi_vendorstr, "NexGenDriven") == 0) 428 cpi->cpi_vendor = X86_VENDOR_NexGen; 429 else if (strcmp(cpi->cpi_vendorstr, "CentaurHauls") == 0) 430 cpi->cpi_vendor = X86_VENDOR_Centaur; 431 else if (strcmp(cpi->cpi_vendorstr, "RiseRiseRise") == 0) 432 cpi->cpi_vendor = X86_VENDOR_Rise; 433 else if (strcmp(cpi->cpi_vendorstr, "SiS SiS SiS ") == 0) 434 cpi->cpi_vendor = X86_VENDOR_SiS; 435 else if (strcmp(cpi->cpi_vendorstr, "Geode by NSC") == 0) 436 cpi->cpi_vendor = X86_VENDOR_NSC; 437 else 438 cpi->cpi_vendor = X86_VENDOR_IntelClone; 439 440 x86_vendor = cpi->cpi_vendor; /* for compatibility */ 441 442 /* 443 * Limit the range in case of weird hardware 444 */ 445 if (cpi->cpi_maxeax > CPI_MAXEAX_MAX) 446 cpi->cpi_maxeax = CPI_MAXEAX_MAX; 447 if (cpi->cpi_maxeax < 1) 448 goto pass1_done; 449 450 cp = &cpi->cpi_std[1]; 451 cp->cp_eax = 1; 452 (void) __cpuid_insn(cp); 453 454 /* 455 * Extract identifying constants for easy access. 456 */ 457 cpi->cpi_model = CPI_MODEL(cpi); 458 cpi->cpi_family = CPI_FAMILY(cpi); 459 460 if (cpi->cpi_family == 0xf) 461 cpi->cpi_family += CPI_FAMILY_XTD(cpi); 462 463 /* 464 * Beware: AMD uses "extended model" iff *FAMILY* == 0xf. 465 * Intel, and presumably everyone else, uses model == 0xf, as 466 * one would expect (max value means possible overflow). Sigh. 467 */ 468 469 switch (cpi->cpi_vendor) { 470 case X86_VENDOR_AMD: 471 if (cpi->cpi_family == 0xf) 472 cpi->cpi_model += CPI_MODEL_XTD(cpi) << 4; 473 break; 474 default: 475 if (cpi->cpi_model == 0xf) 476 cpi->cpi_model += CPI_MODEL_XTD(cpi) << 4; 477 break; 478 } 479 480 cpi->cpi_step = CPI_STEP(cpi); 481 cpi->cpi_brandid = CPI_BRANDID(cpi); 482 483 /* 484 * *default* assumptions: 485 * - believe %edx feature word 486 * - ignore %ecx feature word 487 * - 32-bit virtual and physical addressing 488 */ 489 mask_edx = 0xffffffff; 490 mask_ecx = 0; 491 492 cpi->cpi_pabits = cpi->cpi_vabits = 32; 493 494 switch (cpi->cpi_vendor) { 495 case X86_VENDOR_Intel: 496 if (cpi->cpi_family == 5) 497 x86_type = X86_TYPE_P5; 498 else if (IS_LEGACY_P6(cpi)) { 499 x86_type = X86_TYPE_P6; 500 pentiumpro_bug4046376 = 1; 501 pentiumpro_bug4064495 = 1; 502 /* 503 * Clear the SEP bit when it was set erroneously 504 */ 505 if (cpi->cpi_model < 3 && cpi->cpi_step < 3) 506 cp->cp_edx &= ~CPUID_INTC_EDX_SEP; 507 } else if (IS_NEW_F6(cpi) || cpi->cpi_family == 0xf) { 508 x86_type = X86_TYPE_P4; 509 /* 510 * We don't currently depend on any of the %ecx 511 * features until Prescott, so we'll only check 512 * this from P4 onwards. We might want to revisit 513 * that idea later. 514 */ 515 mask_ecx = 0xffffffff; 516 } else if (cpi->cpi_family > 0xf) 517 mask_ecx = 0xffffffff; 518 break; 519 case X86_VENDOR_IntelClone: 520 default: 521 break; 522 case X86_VENDOR_AMD: 523 #if defined(OPTERON_ERRATUM_108) 524 if (cpi->cpi_family == 0xf && cpi->cpi_model == 0xe) { 525 cp->cp_eax = (0xf0f & cp->cp_eax) | 0xc0; 526 cpi->cpi_model = 0xc; 527 } else 528 #endif 529 if (cpi->cpi_family == 5) { 530 /* 531 * AMD K5 and K6 532 * 533 * These CPUs have an incomplete implementation 534 * of MCA/MCE which we mask away. 535 */ 536 mask_edx &= ~(CPUID_INTC_EDX_MCE | CPUID_INTC_EDX_MCA); 537 538 /* 539 * Model 0 uses the wrong (APIC) bit 540 * to indicate PGE. Fix it here. 541 */ 542 if (cpi->cpi_model == 0) { 543 if (cp->cp_edx & 0x200) { 544 cp->cp_edx &= ~0x200; 545 cp->cp_edx |= CPUID_INTC_EDX_PGE; 546 } 547 } 548 549 /* 550 * Early models had problems w/ MMX; disable. 551 */ 552 if (cpi->cpi_model < 6) 553 mask_edx &= ~CPUID_INTC_EDX_MMX; 554 } 555 556 /* 557 * For newer families, SSE3 and CX16, at least, are valid; 558 * enable all 559 */ 560 if (cpi->cpi_family >= 0xf) 561 mask_ecx = 0xffffffff; 562 break; 563 case X86_VENDOR_TM: 564 /* 565 * workaround the NT workaround in CMS 4.1 566 */ 567 if (cpi->cpi_family == 5 && cpi->cpi_model == 4 && 568 (cpi->cpi_step == 2 || cpi->cpi_step == 3)) 569 cp->cp_edx |= CPUID_INTC_EDX_CX8; 570 break; 571 case X86_VENDOR_Centaur: 572 /* 573 * workaround the NT workarounds again 574 */ 575 if (cpi->cpi_family == 6) 576 cp->cp_edx |= CPUID_INTC_EDX_CX8; 577 break; 578 case X86_VENDOR_Cyrix: 579 /* 580 * We rely heavily on the probing in locore 581 * to actually figure out what parts, if any, 582 * of the Cyrix cpuid instruction to believe. 583 */ 584 switch (x86_type) { 585 case X86_TYPE_CYRIX_486: 586 mask_edx = 0; 587 break; 588 case X86_TYPE_CYRIX_6x86: 589 mask_edx = 0; 590 break; 591 case X86_TYPE_CYRIX_6x86L: 592 mask_edx = 593 CPUID_INTC_EDX_DE | 594 CPUID_INTC_EDX_CX8; 595 break; 596 case X86_TYPE_CYRIX_6x86MX: 597 mask_edx = 598 CPUID_INTC_EDX_DE | 599 CPUID_INTC_EDX_MSR | 600 CPUID_INTC_EDX_CX8 | 601 CPUID_INTC_EDX_PGE | 602 CPUID_INTC_EDX_CMOV | 603 CPUID_INTC_EDX_MMX; 604 break; 605 case X86_TYPE_CYRIX_GXm: 606 mask_edx = 607 CPUID_INTC_EDX_MSR | 608 CPUID_INTC_EDX_CX8 | 609 CPUID_INTC_EDX_CMOV | 610 CPUID_INTC_EDX_MMX; 611 break; 612 case X86_TYPE_CYRIX_MediaGX: 613 break; 614 case X86_TYPE_CYRIX_MII: 615 case X86_TYPE_VIA_CYRIX_III: 616 mask_edx = 617 CPUID_INTC_EDX_DE | 618 CPUID_INTC_EDX_TSC | 619 CPUID_INTC_EDX_MSR | 620 CPUID_INTC_EDX_CX8 | 621 CPUID_INTC_EDX_PGE | 622 CPUID_INTC_EDX_CMOV | 623 CPUID_INTC_EDX_MMX; 624 break; 625 default: 626 break; 627 } 628 break; 629 } 630 631 /* 632 * Now we've figured out the masks that determine 633 * which bits we choose to believe, apply the masks 634 * to the feature words, then map the kernel's view 635 * of these feature words into its feature word. 636 */ 637 cp->cp_edx &= mask_edx; 638 cp->cp_ecx &= mask_ecx; 639 640 /* 641 * apply any platform restrictions (we don't call this 642 * immediately after __cpuid_insn here, because we need the 643 * workarounds applied above first) 644 */ 645 platform_cpuid_mangle(cpi->cpi_vendor, 1, cp); 646 647 /* 648 * fold in overrides from the "eeprom" mechanism 649 */ 650 cp->cp_edx |= cpuid_feature_edx_include; 651 cp->cp_edx &= ~cpuid_feature_edx_exclude; 652 653 cp->cp_ecx |= cpuid_feature_ecx_include; 654 cp->cp_ecx &= ~cpuid_feature_ecx_exclude; 655 656 if (cp->cp_edx & CPUID_INTC_EDX_PSE) 657 feature |= X86_LARGEPAGE; 658 if (cp->cp_edx & CPUID_INTC_EDX_TSC) 659 feature |= X86_TSC; 660 if (cp->cp_edx & CPUID_INTC_EDX_MSR) 661 feature |= X86_MSR; 662 if (cp->cp_edx & CPUID_INTC_EDX_MTRR) 663 feature |= X86_MTRR; 664 if (cp->cp_edx & CPUID_INTC_EDX_PGE) 665 feature |= X86_PGE; 666 if (cp->cp_edx & CPUID_INTC_EDX_CMOV) 667 feature |= X86_CMOV; 668 if (cp->cp_edx & CPUID_INTC_EDX_MMX) 669 feature |= X86_MMX; 670 if ((cp->cp_edx & CPUID_INTC_EDX_MCE) != 0 && 671 (cp->cp_edx & CPUID_INTC_EDX_MCA) != 0) 672 feature |= X86_MCA; 673 if (cp->cp_edx & CPUID_INTC_EDX_PAE) 674 feature |= X86_PAE; 675 if (cp->cp_edx & CPUID_INTC_EDX_CX8) 676 feature |= X86_CX8; 677 if (cp->cp_ecx & CPUID_INTC_ECX_CX16) 678 feature |= X86_CX16; 679 if (cp->cp_edx & CPUID_INTC_EDX_PAT) 680 feature |= X86_PAT; 681 if (cp->cp_edx & CPUID_INTC_EDX_SEP) 682 feature |= X86_SEP; 683 if (cp->cp_edx & CPUID_INTC_EDX_FXSR) { 684 /* 685 * In our implementation, fxsave/fxrstor 686 * are prerequisites before we'll even 687 * try and do SSE things. 688 */ 689 if (cp->cp_edx & CPUID_INTC_EDX_SSE) 690 feature |= X86_SSE; 691 if (cp->cp_edx & CPUID_INTC_EDX_SSE2) 692 feature |= X86_SSE2; 693 if (cp->cp_ecx & CPUID_INTC_ECX_SSE3) 694 feature |= X86_SSE3; 695 } 696 if (cp->cp_edx & CPUID_INTC_EDX_DE) 697 feature |= X86_DE; 698 699 if (feature & X86_PAE) 700 cpi->cpi_pabits = 36; 701 702 /* 703 * Hyperthreading configuration is slightly tricky on Intel 704 * and pure clones, and even trickier on AMD. 705 * 706 * (AMD chose to set the HTT bit on their CMP processors, 707 * even though they're not actually hyperthreaded. Thus it 708 * takes a bit more work to figure out what's really going 709 * on ... see the handling of the CMP_LGCY bit below) 710 */ 711 if (cp->cp_edx & CPUID_INTC_EDX_HTT) { 712 cpi->cpi_ncpu_per_chip = CPI_CPU_COUNT(cpi); 713 if (cpi->cpi_ncpu_per_chip > 1) 714 feature |= X86_HTT; 715 } else { 716 cpi->cpi_ncpu_per_chip = 1; 717 } 718 719 /* 720 * Work on the "extended" feature information, doing 721 * some basic initialization for cpuid_pass2() 722 */ 723 xcpuid = 0; 724 switch (cpi->cpi_vendor) { 725 case X86_VENDOR_Intel: 726 if (IS_NEW_F6(cpi) || cpi->cpi_family >= 0xf) 727 xcpuid++; 728 break; 729 case X86_VENDOR_AMD: 730 if (cpi->cpi_family > 5 || 731 (cpi->cpi_family == 5 && cpi->cpi_model >= 1)) 732 xcpuid++; 733 break; 734 case X86_VENDOR_Cyrix: 735 /* 736 * Only these Cyrix CPUs are -known- to support 737 * extended cpuid operations. 738 */ 739 if (x86_type == X86_TYPE_VIA_CYRIX_III || 740 x86_type == X86_TYPE_CYRIX_GXm) 741 xcpuid++; 742 break; 743 case X86_VENDOR_Centaur: 744 case X86_VENDOR_TM: 745 default: 746 xcpuid++; 747 break; 748 } 749 750 if (xcpuid) { 751 cp = &cpi->cpi_extd[0]; 752 cp->cp_eax = 0x80000000; 753 cpi->cpi_xmaxeax = __cpuid_insn(cp); 754 } 755 756 if (cpi->cpi_xmaxeax & 0x80000000) { 757 758 if (cpi->cpi_xmaxeax > CPI_XMAXEAX_MAX) 759 cpi->cpi_xmaxeax = CPI_XMAXEAX_MAX; 760 761 switch (cpi->cpi_vendor) { 762 case X86_VENDOR_Intel: 763 case X86_VENDOR_AMD: 764 if (cpi->cpi_xmaxeax < 0x80000001) 765 break; 766 cp = &cpi->cpi_extd[1]; 767 cp->cp_eax = 0x80000001; 768 (void) __cpuid_insn(cp); 769 770 if (cpi->cpi_vendor == X86_VENDOR_AMD && 771 cpi->cpi_family == 5 && 772 cpi->cpi_model == 6 && 773 cpi->cpi_step == 6) { 774 /* 775 * K6 model 6 uses bit 10 to indicate SYSC 776 * Later models use bit 11. Fix it here. 777 */ 778 if (cp->cp_edx & 0x400) { 779 cp->cp_edx &= ~0x400; 780 cp->cp_edx |= CPUID_AMD_EDX_SYSC; 781 } 782 } 783 784 platform_cpuid_mangle(cpi->cpi_vendor, 0x80000001, cp); 785 786 /* 787 * Compute the additions to the kernel's feature word. 788 */ 789 if (cp->cp_edx & CPUID_AMD_EDX_NX) 790 feature |= X86_NX; 791 792 /* 793 * If both the HTT and CMP_LGCY bits are set, 794 * then we're not actually HyperThreaded. Read 795 * "AMD CPUID Specification" for more details. 796 */ 797 if (cpi->cpi_vendor == X86_VENDOR_AMD && 798 (feature & X86_HTT) && 799 (cp->cp_ecx & CPUID_AMD_ECX_CMP_LGCY)) { 800 feature &= ~X86_HTT; 801 feature |= X86_CMP; 802 } 803 #if defined(__amd64) 804 /* 805 * It's really tricky to support syscall/sysret in 806 * the i386 kernel; we rely on sysenter/sysexit 807 * instead. In the amd64 kernel, things are -way- 808 * better. 809 */ 810 if (cp->cp_edx & CPUID_AMD_EDX_SYSC) 811 feature |= X86_ASYSC; 812 813 /* 814 * While we're thinking about system calls, note 815 * that AMD processors don't support sysenter 816 * in long mode at all, so don't try to program them. 817 */ 818 if (x86_vendor == X86_VENDOR_AMD) 819 feature &= ~X86_SEP; 820 #endif 821 if (cp->cp_edx & CPUID_AMD_EDX_TSCP) 822 feature |= X86_TSCP; 823 break; 824 default: 825 break; 826 } 827 828 /* 829 * Get CPUID data about processor cores and hyperthreads. 830 */ 831 switch (cpi->cpi_vendor) { 832 case X86_VENDOR_Intel: 833 if (cpi->cpi_maxeax >= 4) { 834 cp = &cpi->cpi_std[4]; 835 cp->cp_eax = 4; 836 cp->cp_ecx = 0; 837 (void) __cpuid_insn(cp); 838 platform_cpuid_mangle(cpi->cpi_vendor, 4, cp); 839 } 840 /*FALLTHROUGH*/ 841 case X86_VENDOR_AMD: 842 if (cpi->cpi_xmaxeax < 0x80000008) 843 break; 844 cp = &cpi->cpi_extd[8]; 845 cp->cp_eax = 0x80000008; 846 (void) __cpuid_insn(cp); 847 platform_cpuid_mangle(cpi->cpi_vendor, 0x80000008, cp); 848 849 /* 850 * Virtual and physical address limits from 851 * cpuid override previously guessed values. 852 */ 853 cpi->cpi_pabits = BITX(cp->cp_eax, 7, 0); 854 cpi->cpi_vabits = BITX(cp->cp_eax, 15, 8); 855 break; 856 default: 857 break; 858 } 859 860 switch (cpi->cpi_vendor) { 861 case X86_VENDOR_Intel: 862 if (cpi->cpi_maxeax < 4) { 863 cpi->cpi_ncore_per_chip = 1; 864 break; 865 } else { 866 cpi->cpi_ncore_per_chip = 867 BITX((cpi)->cpi_std[4].cp_eax, 31, 26) + 1; 868 } 869 break; 870 case X86_VENDOR_AMD: 871 if (cpi->cpi_xmaxeax < 0x80000008) { 872 cpi->cpi_ncore_per_chip = 1; 873 break; 874 } else { 875 cpi->cpi_ncore_per_chip = 876 BITX((cpi)->cpi_extd[8].cp_ecx, 7, 0) + 1; 877 } 878 break; 879 default: 880 cpi->cpi_ncore_per_chip = 1; 881 break; 882 } 883 } 884 885 /* 886 * If more than one core, then this processor is CMP. 887 */ 888 if (cpi->cpi_ncore_per_chip > 1) 889 feature |= X86_CMP; 890 891 /* 892 * If the number of cores is the same as the number 893 * of CPUs, then we cannot have HyperThreading. 894 */ 895 if (cpi->cpi_ncpu_per_chip == cpi->cpi_ncore_per_chip) 896 feature &= ~X86_HTT; 897 898 if ((feature & (X86_HTT | X86_CMP)) == 0) { 899 /* 900 * Single-core single-threaded processors. 901 */ 902 cpi->cpi_chipid = -1; 903 cpi->cpi_clogid = 0; 904 cpi->cpi_coreid = cpu->cpu_id; 905 } else if (cpi->cpi_ncpu_per_chip > 1) { 906 uint_t i; 907 uint_t chipid_shift = 0; 908 uint_t coreid_shift = 0; 909 uint_t apic_id = CPI_APIC_ID(cpi); 910 911 for (i = 1; i < cpi->cpi_ncpu_per_chip; i <<= 1) 912 chipid_shift++; 913 cpi->cpi_chipid = apic_id >> chipid_shift; 914 cpi->cpi_clogid = apic_id & ((1 << chipid_shift) - 1); 915 916 if (cpi->cpi_vendor == X86_VENDOR_Intel) { 917 if (feature & X86_CMP) { 918 /* 919 * Multi-core (and possibly multi-threaded) 920 * processors. 921 */ 922 uint_t ncpu_per_core; 923 if (cpi->cpi_ncore_per_chip == 1) 924 ncpu_per_core = cpi->cpi_ncpu_per_chip; 925 else if (cpi->cpi_ncore_per_chip > 1) 926 ncpu_per_core = cpi->cpi_ncpu_per_chip / 927 cpi->cpi_ncore_per_chip; 928 /* 929 * 8bit APIC IDs on dual core Pentiums 930 * look like this: 931 * 932 * +-----------------------+------+------+ 933 * | Physical Package ID | MC | HT | 934 * +-----------------------+------+------+ 935 * <------- chipid --------> 936 * <------- coreid ---------------> 937 * <--- clogid --> 938 * 939 * Where the number of bits necessary to 940 * represent MC and HT fields together equals 941 * to the minimum number of bits necessary to 942 * store the value of cpi->cpi_ncpu_per_chip. 943 * Of those bits, the MC part uses the number 944 * of bits necessary to store the value of 945 * cpi->cpi_ncore_per_chip. 946 */ 947 for (i = 1; i < ncpu_per_core; i <<= 1) 948 coreid_shift++; 949 cpi->cpi_coreid = apic_id >> coreid_shift; 950 } else if (feature & X86_HTT) { 951 /* 952 * Single-core multi-threaded processors. 953 */ 954 cpi->cpi_coreid = cpi->cpi_chipid; 955 } 956 } else if (cpi->cpi_vendor == X86_VENDOR_AMD) { 957 /* 958 * AMD currently only has dual-core processors with 959 * single-threaded cores. If they ever release 960 * multi-threaded processors, then this code 961 * will have to be updated. 962 */ 963 cpi->cpi_coreid = cpu->cpu_id; 964 } else { 965 /* 966 * All other processors are currently 967 * assumed to have single cores. 968 */ 969 cpi->cpi_coreid = cpi->cpi_chipid; 970 } 971 } 972 973 /* 974 * Synthesize chip "revision" and socket type 975 */ 976 synth_info(cpi); 977 978 pass1_done: 979 cpi->cpi_pass = 1; 980 return (feature); 981 } 982 983 /* 984 * Make copies of the cpuid table entries we depend on, in 985 * part for ease of parsing now, in part so that we have only 986 * one place to correct any of it, in part for ease of 987 * later export to userland, and in part so we can look at 988 * this stuff in a crash dump. 989 */ 990 991 /*ARGSUSED*/ 992 void 993 cpuid_pass2(cpu_t *cpu) 994 { 995 uint_t n, nmax; 996 int i; 997 struct cpuid_regs *cp; 998 uint8_t *dp; 999 uint32_t *iptr; 1000 struct cpuid_info *cpi = cpu->cpu_m.mcpu_cpi; 1001 1002 ASSERT(cpi->cpi_pass == 1); 1003 1004 if (cpi->cpi_maxeax < 1) 1005 goto pass2_done; 1006 1007 if ((nmax = cpi->cpi_maxeax + 1) > NMAX_CPI_STD) 1008 nmax = NMAX_CPI_STD; 1009 /* 1010 * (We already handled n == 0 and n == 1 in pass 1) 1011 */ 1012 for (n = 2, cp = &cpi->cpi_std[2]; n < nmax; n++, cp++) { 1013 cp->cp_eax = n; 1014 (void) __cpuid_insn(cp); 1015 platform_cpuid_mangle(cpi->cpi_vendor, n, cp); 1016 switch (n) { 1017 case 2: 1018 /* 1019 * "the lower 8 bits of the %eax register 1020 * contain a value that identifies the number 1021 * of times the cpuid [instruction] has to be 1022 * executed to obtain a complete image of the 1023 * processor's caching systems." 1024 * 1025 * How *do* they make this stuff up? 1026 */ 1027 cpi->cpi_ncache = sizeof (*cp) * 1028 BITX(cp->cp_eax, 7, 0); 1029 if (cpi->cpi_ncache == 0) 1030 break; 1031 cpi->cpi_ncache--; /* skip count byte */ 1032 1033 /* 1034 * Well, for now, rather than attempt to implement 1035 * this slightly dubious algorithm, we just look 1036 * at the first 15 .. 1037 */ 1038 if (cpi->cpi_ncache > (sizeof (*cp) - 1)) 1039 cpi->cpi_ncache = sizeof (*cp) - 1; 1040 1041 dp = cpi->cpi_cacheinfo; 1042 if (BITX(cp->cp_eax, 31, 31) == 0) { 1043 uint8_t *p = (void *)&cp->cp_eax; 1044 for (i = 1; i < 3; i++) 1045 if (p[i] != 0) 1046 *dp++ = p[i]; 1047 } 1048 if (BITX(cp->cp_ebx, 31, 31) == 0) { 1049 uint8_t *p = (void *)&cp->cp_ebx; 1050 for (i = 0; i < 4; i++) 1051 if (p[i] != 0) 1052 *dp++ = p[i]; 1053 } 1054 if (BITX(cp->cp_ecx, 31, 31) == 0) { 1055 uint8_t *p = (void *)&cp->cp_ecx; 1056 for (i = 0; i < 4; i++) 1057 if (p[i] != 0) 1058 *dp++ = p[i]; 1059 } 1060 if (BITX(cp->cp_edx, 31, 31) == 0) { 1061 uint8_t *p = (void *)&cp->cp_edx; 1062 for (i = 0; i < 4; i++) 1063 if (p[i] != 0) 1064 *dp++ = p[i]; 1065 } 1066 break; 1067 case 3: /* Processor serial number, if PSN supported */ 1068 case 4: /* Deterministic cache parameters */ 1069 case 5: /* Monitor/Mwait parameters */ 1070 default: 1071 break; 1072 } 1073 } 1074 1075 if ((cpi->cpi_xmaxeax & 0x80000000) == 0) 1076 goto pass2_done; 1077 1078 if ((nmax = cpi->cpi_xmaxeax - 0x80000000 + 1) > NMAX_CPI_EXTD) 1079 nmax = NMAX_CPI_EXTD; 1080 /* 1081 * Copy the extended properties, fixing them as we go. 1082 * (We already handled n == 0 and n == 1 in pass 1) 1083 */ 1084 iptr = (void *)cpi->cpi_brandstr; 1085 for (n = 2, cp = &cpi->cpi_extd[2]; n < nmax; cp++, n++) { 1086 cp->cp_eax = 0x80000000 + n; 1087 (void) __cpuid_insn(cp); 1088 platform_cpuid_mangle(cpi->cpi_vendor, 0x80000000 + n, cp); 1089 switch (n) { 1090 case 2: 1091 case 3: 1092 case 4: 1093 /* 1094 * Extract the brand string 1095 */ 1096 *iptr++ = cp->cp_eax; 1097 *iptr++ = cp->cp_ebx; 1098 *iptr++ = cp->cp_ecx; 1099 *iptr++ = cp->cp_edx; 1100 break; 1101 case 5: 1102 switch (cpi->cpi_vendor) { 1103 case X86_VENDOR_AMD: 1104 /* 1105 * The Athlon and Duron were the first 1106 * parts to report the sizes of the 1107 * TLB for large pages. Before then, 1108 * we don't trust the data. 1109 */ 1110 if (cpi->cpi_family < 6 || 1111 (cpi->cpi_family == 6 && 1112 cpi->cpi_model < 1)) 1113 cp->cp_eax = 0; 1114 break; 1115 default: 1116 break; 1117 } 1118 break; 1119 case 6: 1120 switch (cpi->cpi_vendor) { 1121 case X86_VENDOR_AMD: 1122 /* 1123 * The Athlon and Duron were the first 1124 * AMD parts with L2 TLB's. 1125 * Before then, don't trust the data. 1126 */ 1127 if (cpi->cpi_family < 6 || 1128 cpi->cpi_family == 6 && 1129 cpi->cpi_model < 1) 1130 cp->cp_eax = cp->cp_ebx = 0; 1131 /* 1132 * AMD Duron rev A0 reports L2 1133 * cache size incorrectly as 1K 1134 * when it is really 64K 1135 */ 1136 if (cpi->cpi_family == 6 && 1137 cpi->cpi_model == 3 && 1138 cpi->cpi_step == 0) { 1139 cp->cp_ecx &= 0xffff; 1140 cp->cp_ecx |= 0x400000; 1141 } 1142 break; 1143 case X86_VENDOR_Cyrix: /* VIA C3 */ 1144 /* 1145 * VIA C3 processors are a bit messed 1146 * up w.r.t. encoding cache sizes in %ecx 1147 */ 1148 if (cpi->cpi_family != 6) 1149 break; 1150 /* 1151 * model 7 and 8 were incorrectly encoded 1152 * 1153 * xxx is model 8 really broken? 1154 */ 1155 if (cpi->cpi_model == 7 || 1156 cpi->cpi_model == 8) 1157 cp->cp_ecx = 1158 BITX(cp->cp_ecx, 31, 24) << 16 | 1159 BITX(cp->cp_ecx, 23, 16) << 12 | 1160 BITX(cp->cp_ecx, 15, 8) << 8 | 1161 BITX(cp->cp_ecx, 7, 0); 1162 /* 1163 * model 9 stepping 1 has wrong associativity 1164 */ 1165 if (cpi->cpi_model == 9 && cpi->cpi_step == 1) 1166 cp->cp_ecx |= 8 << 12; 1167 break; 1168 case X86_VENDOR_Intel: 1169 /* 1170 * Extended L2 Cache features function. 1171 * First appeared on Prescott. 1172 */ 1173 default: 1174 break; 1175 } 1176 break; 1177 default: 1178 break; 1179 } 1180 } 1181 1182 pass2_done: 1183 cpi->cpi_pass = 2; 1184 } 1185 1186 static const char * 1187 intel_cpubrand(const struct cpuid_info *cpi) 1188 { 1189 int i; 1190 1191 if ((x86_feature & X86_CPUID) == 0 || 1192 cpi->cpi_maxeax < 1 || cpi->cpi_family < 5) 1193 return ("i486"); 1194 1195 switch (cpi->cpi_family) { 1196 case 5: 1197 return ("Intel Pentium(r)"); 1198 case 6: 1199 switch (cpi->cpi_model) { 1200 uint_t celeron, xeon; 1201 const struct cpuid_regs *cp; 1202 case 0: 1203 case 1: 1204 case 2: 1205 return ("Intel Pentium(r) Pro"); 1206 case 3: 1207 case 4: 1208 return ("Intel Pentium(r) II"); 1209 case 6: 1210 return ("Intel Celeron(r)"); 1211 case 5: 1212 case 7: 1213 celeron = xeon = 0; 1214 cp = &cpi->cpi_std[2]; /* cache info */ 1215 1216 for (i = 1; i < 3; i++) { 1217 uint_t tmp; 1218 1219 tmp = (cp->cp_eax >> (8 * i)) & 0xff; 1220 if (tmp == 0x40) 1221 celeron++; 1222 if (tmp >= 0x44 && tmp <= 0x45) 1223 xeon++; 1224 } 1225 1226 for (i = 0; i < 2; i++) { 1227 uint_t tmp; 1228 1229 tmp = (cp->cp_ebx >> (8 * i)) & 0xff; 1230 if (tmp == 0x40) 1231 celeron++; 1232 else if (tmp >= 0x44 && tmp <= 0x45) 1233 xeon++; 1234 } 1235 1236 for (i = 0; i < 4; i++) { 1237 uint_t tmp; 1238 1239 tmp = (cp->cp_ecx >> (8 * i)) & 0xff; 1240 if (tmp == 0x40) 1241 celeron++; 1242 else if (tmp >= 0x44 && tmp <= 0x45) 1243 xeon++; 1244 } 1245 1246 for (i = 0; i < 4; i++) { 1247 uint_t tmp; 1248 1249 tmp = (cp->cp_edx >> (8 * i)) & 0xff; 1250 if (tmp == 0x40) 1251 celeron++; 1252 else if (tmp >= 0x44 && tmp <= 0x45) 1253 xeon++; 1254 } 1255 1256 if (celeron) 1257 return ("Intel Celeron(r)"); 1258 if (xeon) 1259 return (cpi->cpi_model == 5 ? 1260 "Intel Pentium(r) II Xeon(tm)" : 1261 "Intel Pentium(r) III Xeon(tm)"); 1262 return (cpi->cpi_model == 5 ? 1263 "Intel Pentium(r) II or Pentium(r) II Xeon(tm)" : 1264 "Intel Pentium(r) III or Pentium(r) III Xeon(tm)"); 1265 default: 1266 break; 1267 } 1268 default: 1269 break; 1270 } 1271 1272 /* BrandID is present if the field is nonzero */ 1273 if (cpi->cpi_brandid != 0) { 1274 static const struct { 1275 uint_t bt_bid; 1276 const char *bt_str; 1277 } brand_tbl[] = { 1278 { 0x1, "Intel(r) Celeron(r)" }, 1279 { 0x2, "Intel(r) Pentium(r) III" }, 1280 { 0x3, "Intel(r) Pentium(r) III Xeon(tm)" }, 1281 { 0x4, "Intel(r) Pentium(r) III" }, 1282 { 0x6, "Mobile Intel(r) Pentium(r) III" }, 1283 { 0x7, "Mobile Intel(r) Celeron(r)" }, 1284 { 0x8, "Intel(r) Pentium(r) 4" }, 1285 { 0x9, "Intel(r) Pentium(r) 4" }, 1286 { 0xa, "Intel(r) Celeron(r)" }, 1287 { 0xb, "Intel(r) Xeon(tm)" }, 1288 { 0xc, "Intel(r) Xeon(tm) MP" }, 1289 { 0xe, "Mobile Intel(r) Pentium(r) 4" }, 1290 { 0xf, "Mobile Intel(r) Celeron(r)" }, 1291 { 0x11, "Mobile Genuine Intel(r)" }, 1292 { 0x12, "Intel(r) Celeron(r) M" }, 1293 { 0x13, "Mobile Intel(r) Celeron(r)" }, 1294 { 0x14, "Intel(r) Celeron(r)" }, 1295 { 0x15, "Mobile Genuine Intel(r)" }, 1296 { 0x16, "Intel(r) Pentium(r) M" }, 1297 { 0x17, "Mobile Intel(r) Celeron(r)" } 1298 }; 1299 uint_t btblmax = sizeof (brand_tbl) / sizeof (brand_tbl[0]); 1300 uint_t sgn; 1301 1302 sgn = (cpi->cpi_family << 8) | 1303 (cpi->cpi_model << 4) | cpi->cpi_step; 1304 1305 for (i = 0; i < btblmax; i++) 1306 if (brand_tbl[i].bt_bid == cpi->cpi_brandid) 1307 break; 1308 if (i < btblmax) { 1309 if (sgn == 0x6b1 && cpi->cpi_brandid == 3) 1310 return ("Intel(r) Celeron(r)"); 1311 if (sgn < 0xf13 && cpi->cpi_brandid == 0xb) 1312 return ("Intel(r) Xeon(tm) MP"); 1313 if (sgn < 0xf13 && cpi->cpi_brandid == 0xe) 1314 return ("Intel(r) Xeon(tm)"); 1315 return (brand_tbl[i].bt_str); 1316 } 1317 } 1318 1319 return (NULL); 1320 } 1321 1322 static const char * 1323 amd_cpubrand(const struct cpuid_info *cpi) 1324 { 1325 if ((x86_feature & X86_CPUID) == 0 || 1326 cpi->cpi_maxeax < 1 || cpi->cpi_family < 5) 1327 return ("i486 compatible"); 1328 1329 switch (cpi->cpi_family) { 1330 case 5: 1331 switch (cpi->cpi_model) { 1332 case 0: 1333 case 1: 1334 case 2: 1335 case 3: 1336 case 4: 1337 case 5: 1338 return ("AMD-K5(r)"); 1339 case 6: 1340 case 7: 1341 return ("AMD-K6(r)"); 1342 case 8: 1343 return ("AMD-K6(r)-2"); 1344 case 9: 1345 return ("AMD-K6(r)-III"); 1346 default: 1347 return ("AMD (family 5)"); 1348 } 1349 case 6: 1350 switch (cpi->cpi_model) { 1351 case 1: 1352 return ("AMD-K7(tm)"); 1353 case 0: 1354 case 2: 1355 case 4: 1356 return ("AMD Athlon(tm)"); 1357 case 3: 1358 case 7: 1359 return ("AMD Duron(tm)"); 1360 case 6: 1361 case 8: 1362 case 10: 1363 /* 1364 * Use the L2 cache size to distinguish 1365 */ 1366 return ((cpi->cpi_extd[6].cp_ecx >> 16) >= 256 ? 1367 "AMD Athlon(tm)" : "AMD Duron(tm)"); 1368 default: 1369 return ("AMD (family 6)"); 1370 } 1371 default: 1372 break; 1373 } 1374 1375 if (cpi->cpi_family == 0xf && cpi->cpi_model == 5 && 1376 cpi->cpi_brandid != 0) { 1377 switch (BITX(cpi->cpi_brandid, 7, 5)) { 1378 case 3: 1379 return ("AMD Opteron(tm) UP 1xx"); 1380 case 4: 1381 return ("AMD Opteron(tm) DP 2xx"); 1382 case 5: 1383 return ("AMD Opteron(tm) MP 8xx"); 1384 default: 1385 return ("AMD Opteron(tm)"); 1386 } 1387 } 1388 1389 return (NULL); 1390 } 1391 1392 static const char * 1393 cyrix_cpubrand(struct cpuid_info *cpi, uint_t type) 1394 { 1395 if ((x86_feature & X86_CPUID) == 0 || 1396 cpi->cpi_maxeax < 1 || cpi->cpi_family < 5 || 1397 type == X86_TYPE_CYRIX_486) 1398 return ("i486 compatible"); 1399 1400 switch (type) { 1401 case X86_TYPE_CYRIX_6x86: 1402 return ("Cyrix 6x86"); 1403 case X86_TYPE_CYRIX_6x86L: 1404 return ("Cyrix 6x86L"); 1405 case X86_TYPE_CYRIX_6x86MX: 1406 return ("Cyrix 6x86MX"); 1407 case X86_TYPE_CYRIX_GXm: 1408 return ("Cyrix GXm"); 1409 case X86_TYPE_CYRIX_MediaGX: 1410 return ("Cyrix MediaGX"); 1411 case X86_TYPE_CYRIX_MII: 1412 return ("Cyrix M2"); 1413 case X86_TYPE_VIA_CYRIX_III: 1414 return ("VIA Cyrix M3"); 1415 default: 1416 /* 1417 * Have another wild guess .. 1418 */ 1419 if (cpi->cpi_family == 4 && cpi->cpi_model == 9) 1420 return ("Cyrix 5x86"); 1421 else if (cpi->cpi_family == 5) { 1422 switch (cpi->cpi_model) { 1423 case 2: 1424 return ("Cyrix 6x86"); /* Cyrix M1 */ 1425 case 4: 1426 return ("Cyrix MediaGX"); 1427 default: 1428 break; 1429 } 1430 } else if (cpi->cpi_family == 6) { 1431 switch (cpi->cpi_model) { 1432 case 0: 1433 return ("Cyrix 6x86MX"); /* Cyrix M2? */ 1434 case 5: 1435 case 6: 1436 case 7: 1437 case 8: 1438 case 9: 1439 return ("VIA C3"); 1440 default: 1441 break; 1442 } 1443 } 1444 break; 1445 } 1446 return (NULL); 1447 } 1448 1449 /* 1450 * This only gets called in the case that the CPU extended 1451 * feature brand string (0x80000002, 0x80000003, 0x80000004) 1452 * aren't available, or contain null bytes for some reason. 1453 */ 1454 static void 1455 fabricate_brandstr(struct cpuid_info *cpi) 1456 { 1457 const char *brand = NULL; 1458 1459 switch (cpi->cpi_vendor) { 1460 case X86_VENDOR_Intel: 1461 brand = intel_cpubrand(cpi); 1462 break; 1463 case X86_VENDOR_AMD: 1464 brand = amd_cpubrand(cpi); 1465 break; 1466 case X86_VENDOR_Cyrix: 1467 brand = cyrix_cpubrand(cpi, x86_type); 1468 break; 1469 case X86_VENDOR_NexGen: 1470 if (cpi->cpi_family == 5 && cpi->cpi_model == 0) 1471 brand = "NexGen Nx586"; 1472 break; 1473 case X86_VENDOR_Centaur: 1474 if (cpi->cpi_family == 5) 1475 switch (cpi->cpi_model) { 1476 case 4: 1477 brand = "Centaur C6"; 1478 break; 1479 case 8: 1480 brand = "Centaur C2"; 1481 break; 1482 case 9: 1483 brand = "Centaur C3"; 1484 break; 1485 default: 1486 break; 1487 } 1488 break; 1489 case X86_VENDOR_Rise: 1490 if (cpi->cpi_family == 5 && 1491 (cpi->cpi_model == 0 || cpi->cpi_model == 2)) 1492 brand = "Rise mP6"; 1493 break; 1494 case X86_VENDOR_SiS: 1495 if (cpi->cpi_family == 5 && cpi->cpi_model == 0) 1496 brand = "SiS 55x"; 1497 break; 1498 case X86_VENDOR_TM: 1499 if (cpi->cpi_family == 5 && cpi->cpi_model == 4) 1500 brand = "Transmeta Crusoe TM3x00 or TM5x00"; 1501 break; 1502 case X86_VENDOR_NSC: 1503 case X86_VENDOR_UMC: 1504 default: 1505 break; 1506 } 1507 if (brand) { 1508 (void) strcpy((char *)cpi->cpi_brandstr, brand); 1509 return; 1510 } 1511 1512 /* 1513 * If all else fails ... 1514 */ 1515 (void) snprintf(cpi->cpi_brandstr, sizeof (cpi->cpi_brandstr), 1516 "%s %d.%d.%d", cpi->cpi_vendorstr, cpi->cpi_family, 1517 cpi->cpi_model, cpi->cpi_step); 1518 } 1519 1520 /* 1521 * This routine is called just after kernel memory allocation 1522 * becomes available on cpu0, and as part of mp_startup() on 1523 * the other cpus. 1524 * 1525 * Fixup the brand string. 1526 */ 1527 /*ARGSUSED*/ 1528 void 1529 cpuid_pass3(cpu_t *cpu) 1530 { 1531 struct cpuid_info *cpi = cpu->cpu_m.mcpu_cpi; 1532 1533 ASSERT(cpi->cpi_pass == 2); 1534 1535 if ((cpi->cpi_xmaxeax & 0x80000000) == 0) { 1536 fabricate_brandstr(cpi); 1537 goto pass3_done; 1538 } 1539 1540 /* 1541 * If we successfully extracted a brand string from the cpuid 1542 * instruction, clean it up by removing leading spaces and 1543 * similar junk. 1544 */ 1545 if (cpi->cpi_brandstr[0]) { 1546 size_t maxlen = sizeof (cpi->cpi_brandstr); 1547 char *src, *dst; 1548 1549 dst = src = (char *)cpi->cpi_brandstr; 1550 src[maxlen - 1] = '\0'; 1551 /* 1552 * strip leading spaces 1553 */ 1554 while (*src == ' ') 1555 src++; 1556 /* 1557 * Remove any 'Genuine' or "Authentic" prefixes 1558 */ 1559 if (strncmp(src, "Genuine ", 8) == 0) 1560 src += 8; 1561 if (strncmp(src, "Authentic ", 10) == 0) 1562 src += 10; 1563 1564 /* 1565 * Now do an in-place copy. 1566 * Map (R) to (r) and (TM) to (tm). 1567 * The era of teletypes is long gone, and there's 1568 * -really- no need to shout. 1569 */ 1570 while (*src != '\0') { 1571 if (src[0] == '(') { 1572 if (strncmp(src + 1, "R)", 2) == 0) { 1573 (void) strncpy(dst, "(r)", 3); 1574 src += 3; 1575 dst += 3; 1576 continue; 1577 } 1578 if (strncmp(src + 1, "TM)", 3) == 0) { 1579 (void) strncpy(dst, "(tm)", 4); 1580 src += 4; 1581 dst += 4; 1582 continue; 1583 } 1584 } 1585 *dst++ = *src++; 1586 } 1587 *dst = '\0'; 1588 1589 /* 1590 * Finally, remove any trailing spaces 1591 */ 1592 while (--dst > cpi->cpi_brandstr) 1593 if (*dst == ' ') 1594 *dst = '\0'; 1595 else 1596 break; 1597 } else 1598 fabricate_brandstr(cpi); 1599 1600 pass3_done: 1601 cpi->cpi_pass = 3; 1602 } 1603 1604 /* 1605 * This routine is called out of bind_hwcap() much later in the life 1606 * of the kernel (post_startup()). The job of this routine is to resolve 1607 * the hardware feature support and kernel support for those features into 1608 * what we're actually going to tell applications via the aux vector. 1609 */ 1610 uint_t 1611 cpuid_pass4(cpu_t *cpu) 1612 { 1613 struct cpuid_info *cpi; 1614 uint_t hwcap_flags = 0; 1615 1616 if (cpu == NULL) 1617 cpu = CPU; 1618 cpi = cpu->cpu_m.mcpu_cpi; 1619 1620 ASSERT(cpi->cpi_pass == 3); 1621 1622 if (cpi->cpi_maxeax >= 1) { 1623 uint32_t *edx = &cpi->cpi_support[STD_EDX_FEATURES]; 1624 uint32_t *ecx = &cpi->cpi_support[STD_ECX_FEATURES]; 1625 1626 *edx = CPI_FEATURES_EDX(cpi); 1627 *ecx = CPI_FEATURES_ECX(cpi); 1628 1629 /* 1630 * [these require explicit kernel support] 1631 */ 1632 if ((x86_feature & X86_SEP) == 0) 1633 *edx &= ~CPUID_INTC_EDX_SEP; 1634 1635 if ((x86_feature & X86_SSE) == 0) 1636 *edx &= ~(CPUID_INTC_EDX_FXSR|CPUID_INTC_EDX_SSE); 1637 if ((x86_feature & X86_SSE2) == 0) 1638 *edx &= ~CPUID_INTC_EDX_SSE2; 1639 1640 if ((x86_feature & X86_HTT) == 0) 1641 *edx &= ~CPUID_INTC_EDX_HTT; 1642 1643 if ((x86_feature & X86_SSE3) == 0) 1644 *ecx &= ~CPUID_INTC_ECX_SSE3; 1645 1646 /* 1647 * [no explicit support required beyond x87 fp context] 1648 */ 1649 if (!fpu_exists) 1650 *edx &= ~(CPUID_INTC_EDX_FPU | CPUID_INTC_EDX_MMX); 1651 1652 /* 1653 * Now map the supported feature vector to things that we 1654 * think userland will care about. 1655 */ 1656 if (*edx & CPUID_INTC_EDX_SEP) 1657 hwcap_flags |= AV_386_SEP; 1658 if (*edx & CPUID_INTC_EDX_SSE) 1659 hwcap_flags |= AV_386_FXSR | AV_386_SSE; 1660 if (*edx & CPUID_INTC_EDX_SSE2) 1661 hwcap_flags |= AV_386_SSE2; 1662 if (*ecx & CPUID_INTC_ECX_SSE3) 1663 hwcap_flags |= AV_386_SSE3; 1664 1665 if (*edx & CPUID_INTC_EDX_FPU) 1666 hwcap_flags |= AV_386_FPU; 1667 if (*edx & CPUID_INTC_EDX_MMX) 1668 hwcap_flags |= AV_386_MMX; 1669 1670 if (*edx & CPUID_INTC_EDX_TSC) 1671 hwcap_flags |= AV_386_TSC; 1672 if (*edx & CPUID_INTC_EDX_CX8) 1673 hwcap_flags |= AV_386_CX8; 1674 if (*edx & CPUID_INTC_EDX_CMOV) 1675 hwcap_flags |= AV_386_CMOV; 1676 if (*ecx & CPUID_INTC_ECX_MON) 1677 hwcap_flags |= AV_386_MON; 1678 if (*ecx & CPUID_INTC_ECX_CX16) 1679 hwcap_flags |= AV_386_CX16; 1680 } 1681 1682 if (x86_feature & X86_HTT) 1683 hwcap_flags |= AV_386_PAUSE; 1684 1685 if (cpi->cpi_xmaxeax < 0x80000001) 1686 goto pass4_done; 1687 1688 switch (cpi->cpi_vendor) { 1689 struct cpuid_regs cp; 1690 uint32_t *edx, *ecx; 1691 1692 case X86_VENDOR_Intel: 1693 /* 1694 * Seems like Intel duplicated what we necessary 1695 * here to make the initial crop of 64-bit OS's work. 1696 * Hopefully, those are the only "extended" bits 1697 * they'll add. 1698 */ 1699 /*FALLTHROUGH*/ 1700 1701 case X86_VENDOR_AMD: 1702 edx = &cpi->cpi_support[AMD_EDX_FEATURES]; 1703 ecx = &cpi->cpi_support[AMD_ECX_FEATURES]; 1704 1705 *edx = CPI_FEATURES_XTD_EDX(cpi); 1706 *ecx = CPI_FEATURES_XTD_ECX(cpi); 1707 1708 /* 1709 * [these features require explicit kernel support] 1710 */ 1711 switch (cpi->cpi_vendor) { 1712 case X86_VENDOR_Intel: 1713 break; 1714 1715 case X86_VENDOR_AMD: 1716 if ((x86_feature & X86_TSCP) == 0) 1717 *edx &= ~CPUID_AMD_EDX_TSCP; 1718 break; 1719 1720 default: 1721 break; 1722 } 1723 1724 /* 1725 * [no explicit support required beyond 1726 * x87 fp context and exception handlers] 1727 */ 1728 if (!fpu_exists) 1729 *edx &= ~(CPUID_AMD_EDX_MMXamd | 1730 CPUID_AMD_EDX_3DNow | CPUID_AMD_EDX_3DNowx); 1731 1732 if ((x86_feature & X86_NX) == 0) 1733 *edx &= ~CPUID_AMD_EDX_NX; 1734 #if !defined(__amd64) 1735 *edx &= ~CPUID_AMD_EDX_LM; 1736 #endif 1737 /* 1738 * Now map the supported feature vector to 1739 * things that we think userland will care about. 1740 */ 1741 #if defined(__amd64) 1742 if (*edx & CPUID_AMD_EDX_SYSC) 1743 hwcap_flags |= AV_386_AMD_SYSC; 1744 #endif 1745 if (*edx & CPUID_AMD_EDX_MMXamd) 1746 hwcap_flags |= AV_386_AMD_MMX; 1747 if (*edx & CPUID_AMD_EDX_3DNow) 1748 hwcap_flags |= AV_386_AMD_3DNow; 1749 if (*edx & CPUID_AMD_EDX_3DNowx) 1750 hwcap_flags |= AV_386_AMD_3DNowx; 1751 1752 switch (cpi->cpi_vendor) { 1753 case X86_VENDOR_AMD: 1754 if (*edx & CPUID_AMD_EDX_TSCP) 1755 hwcap_flags |= AV_386_TSCP; 1756 if (*ecx & CPUID_AMD_ECX_AHF64) 1757 hwcap_flags |= AV_386_AHF; 1758 break; 1759 1760 case X86_VENDOR_Intel: 1761 /* 1762 * Aarrgh. 1763 * Intel uses a different bit in the same word. 1764 */ 1765 if (*ecx & CPUID_INTC_ECX_AHF64) 1766 hwcap_flags |= AV_386_AHF; 1767 break; 1768 1769 default: 1770 break; 1771 } 1772 break; 1773 1774 case X86_VENDOR_TM: 1775 cp.cp_eax = 0x80860001; 1776 (void) __cpuid_insn(&cp); 1777 cpi->cpi_support[TM_EDX_FEATURES] = cp.cp_edx; 1778 break; 1779 1780 default: 1781 break; 1782 } 1783 1784 pass4_done: 1785 cpi->cpi_pass = 4; 1786 return (hwcap_flags); 1787 } 1788 1789 1790 /* 1791 * Simulate the cpuid instruction using the data we previously 1792 * captured about this CPU. We try our best to return the truth 1793 * about the hardware, independently of kernel support. 1794 */ 1795 uint32_t 1796 cpuid_insn(cpu_t *cpu, struct cpuid_regs *cp) 1797 { 1798 struct cpuid_info *cpi; 1799 struct cpuid_regs *xcp; 1800 1801 if (cpu == NULL) 1802 cpu = CPU; 1803 cpi = cpu->cpu_m.mcpu_cpi; 1804 1805 ASSERT(cpuid_checkpass(cpu, 3)); 1806 1807 /* 1808 * CPUID data is cached in two separate places: cpi_std for standard 1809 * CPUID functions, and cpi_extd for extended CPUID functions. 1810 */ 1811 if (cp->cp_eax <= cpi->cpi_maxeax && cp->cp_eax < NMAX_CPI_STD) 1812 xcp = &cpi->cpi_std[cp->cp_eax]; 1813 else if (cp->cp_eax >= 0x80000000 && cp->cp_eax <= cpi->cpi_xmaxeax && 1814 cp->cp_eax < 0x80000000 + NMAX_CPI_EXTD) 1815 xcp = &cpi->cpi_extd[cp->cp_eax - 0x80000000]; 1816 else 1817 /* 1818 * The caller is asking for data from an input parameter which 1819 * the kernel has not cached. In this case we go fetch from 1820 * the hardware and return the data directly to the user. 1821 */ 1822 return (__cpuid_insn(cp)); 1823 1824 cp->cp_eax = xcp->cp_eax; 1825 cp->cp_ebx = xcp->cp_ebx; 1826 cp->cp_ecx = xcp->cp_ecx; 1827 cp->cp_edx = xcp->cp_edx; 1828 return (cp->cp_eax); 1829 } 1830 1831 int 1832 cpuid_checkpass(cpu_t *cpu, int pass) 1833 { 1834 return (cpu != NULL && cpu->cpu_m.mcpu_cpi != NULL && 1835 cpu->cpu_m.mcpu_cpi->cpi_pass >= pass); 1836 } 1837 1838 int 1839 cpuid_getbrandstr(cpu_t *cpu, char *s, size_t n) 1840 { 1841 ASSERT(cpuid_checkpass(cpu, 3)); 1842 1843 return (snprintf(s, n, "%s", cpu->cpu_m.mcpu_cpi->cpi_brandstr)); 1844 } 1845 1846 int 1847 cpuid_is_cmt(cpu_t *cpu) 1848 { 1849 if (cpu == NULL) 1850 cpu = CPU; 1851 1852 ASSERT(cpuid_checkpass(cpu, 1)); 1853 1854 return (cpu->cpu_m.mcpu_cpi->cpi_chipid >= 0); 1855 } 1856 1857 /* 1858 * AMD and Intel both implement the 64-bit variant of the syscall 1859 * instruction (syscallq), so if there's -any- support for syscall, 1860 * cpuid currently says "yes, we support this". 1861 * 1862 * However, Intel decided to -not- implement the 32-bit variant of the 1863 * syscall instruction, so we provide a predicate to allow our caller 1864 * to test that subtlety here. 1865 */ 1866 /*ARGSUSED*/ 1867 int 1868 cpuid_syscall32_insn(cpu_t *cpu) 1869 { 1870 ASSERT(cpuid_checkpass((cpu == NULL ? CPU : cpu), 1)); 1871 1872 if (cpu == NULL) 1873 cpu = CPU; 1874 1875 /*CSTYLED*/ 1876 { 1877 struct cpuid_info *cpi = cpu->cpu_m.mcpu_cpi; 1878 1879 if (cpi->cpi_vendor == X86_VENDOR_AMD && 1880 cpi->cpi_xmaxeax >= 0x80000001 && 1881 (CPI_FEATURES_XTD_EDX(cpi) & CPUID_AMD_EDX_SYSC)) 1882 return (1); 1883 } 1884 return (0); 1885 } 1886 1887 int 1888 cpuid_getidstr(cpu_t *cpu, char *s, size_t n) 1889 { 1890 struct cpuid_info *cpi = cpu->cpu_m.mcpu_cpi; 1891 1892 static const char fmt[] = 1893 "x86 (%s family %d model %d step %d clock %d MHz)"; 1894 static const char fmt_ht[] = 1895 "x86 (chipid 0x%x %s family %d model %d step %d clock %d MHz)"; 1896 1897 ASSERT(cpuid_checkpass(cpu, 1)); 1898 1899 if (cpuid_is_cmt(cpu)) 1900 return (snprintf(s, n, fmt_ht, cpi->cpi_chipid, 1901 cpi->cpi_vendorstr, cpi->cpi_family, cpi->cpi_model, 1902 cpi->cpi_step, cpu->cpu_type_info.pi_clock)); 1903 return (snprintf(s, n, fmt, 1904 cpi->cpi_vendorstr, cpi->cpi_family, cpi->cpi_model, 1905 cpi->cpi_step, cpu->cpu_type_info.pi_clock)); 1906 } 1907 1908 const char * 1909 cpuid_getvendorstr(cpu_t *cpu) 1910 { 1911 ASSERT(cpuid_checkpass(cpu, 1)); 1912 return ((const char *)cpu->cpu_m.mcpu_cpi->cpi_vendorstr); 1913 } 1914 1915 uint_t 1916 cpuid_getvendor(cpu_t *cpu) 1917 { 1918 ASSERT(cpuid_checkpass(cpu, 1)); 1919 return (cpu->cpu_m.mcpu_cpi->cpi_vendor); 1920 } 1921 1922 uint_t 1923 cpuid_getfamily(cpu_t *cpu) 1924 { 1925 ASSERT(cpuid_checkpass(cpu, 1)); 1926 return (cpu->cpu_m.mcpu_cpi->cpi_family); 1927 } 1928 1929 uint_t 1930 cpuid_getmodel(cpu_t *cpu) 1931 { 1932 ASSERT(cpuid_checkpass(cpu, 1)); 1933 return (cpu->cpu_m.mcpu_cpi->cpi_model); 1934 } 1935 1936 uint_t 1937 cpuid_get_ncpu_per_chip(cpu_t *cpu) 1938 { 1939 ASSERT(cpuid_checkpass(cpu, 1)); 1940 return (cpu->cpu_m.mcpu_cpi->cpi_ncpu_per_chip); 1941 } 1942 1943 uint_t 1944 cpuid_get_ncore_per_chip(cpu_t *cpu) 1945 { 1946 ASSERT(cpuid_checkpass(cpu, 1)); 1947 return (cpu->cpu_m.mcpu_cpi->cpi_ncore_per_chip); 1948 } 1949 1950 uint_t 1951 cpuid_getstep(cpu_t *cpu) 1952 { 1953 ASSERT(cpuid_checkpass(cpu, 1)); 1954 return (cpu->cpu_m.mcpu_cpi->cpi_step); 1955 } 1956 1957 uint32_t 1958 cpuid_getchiprev(struct cpu *cpu) 1959 { 1960 ASSERT(cpuid_checkpass(cpu, 1)); 1961 return (cpu->cpu_m.mcpu_cpi->cpi_chiprev); 1962 } 1963 1964 const char * 1965 cpuid_getchiprevstr(struct cpu *cpu) 1966 { 1967 ASSERT(cpuid_checkpass(cpu, 1)); 1968 return (cpu->cpu_m.mcpu_cpi->cpi_chiprevstr); 1969 } 1970 1971 uint32_t 1972 cpuid_getsockettype(struct cpu *cpu) 1973 { 1974 ASSERT(cpuid_checkpass(cpu, 1)); 1975 return (cpu->cpu_m.mcpu_cpi->cpi_socket); 1976 } 1977 1978 int 1979 cpuid_get_chipid(cpu_t *cpu) 1980 { 1981 ASSERT(cpuid_checkpass(cpu, 1)); 1982 1983 if (cpuid_is_cmt(cpu)) 1984 return (cpu->cpu_m.mcpu_cpi->cpi_chipid); 1985 return (cpu->cpu_id); 1986 } 1987 1988 id_t 1989 cpuid_get_coreid(cpu_t *cpu) 1990 { 1991 ASSERT(cpuid_checkpass(cpu, 1)); 1992 return (cpu->cpu_m.mcpu_cpi->cpi_coreid); 1993 } 1994 1995 int 1996 cpuid_get_clogid(cpu_t *cpu) 1997 { 1998 ASSERT(cpuid_checkpass(cpu, 1)); 1999 return (cpu->cpu_m.mcpu_cpi->cpi_clogid); 2000 } 2001 2002 void 2003 cpuid_get_addrsize(cpu_t *cpu, uint_t *pabits, uint_t *vabits) 2004 { 2005 struct cpuid_info *cpi; 2006 2007 if (cpu == NULL) 2008 cpu = CPU; 2009 cpi = cpu->cpu_m.mcpu_cpi; 2010 2011 ASSERT(cpuid_checkpass(cpu, 1)); 2012 2013 if (pabits) 2014 *pabits = cpi->cpi_pabits; 2015 if (vabits) 2016 *vabits = cpi->cpi_vabits; 2017 } 2018 2019 /* 2020 * Returns the number of data TLB entries for a corresponding 2021 * pagesize. If it can't be computed, or isn't known, the 2022 * routine returns zero. If you ask about an architecturally 2023 * impossible pagesize, the routine will panic (so that the 2024 * hat implementor knows that things are inconsistent.) 2025 */ 2026 uint_t 2027 cpuid_get_dtlb_nent(cpu_t *cpu, size_t pagesize) 2028 { 2029 struct cpuid_info *cpi; 2030 uint_t dtlb_nent = 0; 2031 2032 if (cpu == NULL) 2033 cpu = CPU; 2034 cpi = cpu->cpu_m.mcpu_cpi; 2035 2036 ASSERT(cpuid_checkpass(cpu, 1)); 2037 2038 /* 2039 * Check the L2 TLB info 2040 */ 2041 if (cpi->cpi_xmaxeax >= 0x80000006) { 2042 struct cpuid_regs *cp = &cpi->cpi_extd[6]; 2043 2044 switch (pagesize) { 2045 2046 case 4 * 1024: 2047 /* 2048 * All zero in the top 16 bits of the register 2049 * indicates a unified TLB. Size is in low 16 bits. 2050 */ 2051 if ((cp->cp_ebx & 0xffff0000) == 0) 2052 dtlb_nent = cp->cp_ebx & 0x0000ffff; 2053 else 2054 dtlb_nent = BITX(cp->cp_ebx, 27, 16); 2055 break; 2056 2057 case 2 * 1024 * 1024: 2058 if ((cp->cp_eax & 0xffff0000) == 0) 2059 dtlb_nent = cp->cp_eax & 0x0000ffff; 2060 else 2061 dtlb_nent = BITX(cp->cp_eax, 27, 16); 2062 break; 2063 2064 default: 2065 panic("unknown L2 pagesize"); 2066 /*NOTREACHED*/ 2067 } 2068 } 2069 2070 if (dtlb_nent != 0) 2071 return (dtlb_nent); 2072 2073 /* 2074 * No L2 TLB support for this size, try L1. 2075 */ 2076 if (cpi->cpi_xmaxeax >= 0x80000005) { 2077 struct cpuid_regs *cp = &cpi->cpi_extd[5]; 2078 2079 switch (pagesize) { 2080 case 4 * 1024: 2081 dtlb_nent = BITX(cp->cp_ebx, 23, 16); 2082 break; 2083 case 2 * 1024 * 1024: 2084 dtlb_nent = BITX(cp->cp_eax, 23, 16); 2085 break; 2086 default: 2087 panic("unknown L1 d-TLB pagesize"); 2088 /*NOTREACHED*/ 2089 } 2090 } 2091 2092 return (dtlb_nent); 2093 } 2094 2095 /* 2096 * Return 0 if the erratum is not present or not applicable, positive 2097 * if it is, and negative if the status of the erratum is unknown. 2098 * 2099 * See "Revision Guide for AMD Athlon(tm) 64 and AMD Opteron(tm) 2100 * Processors" #25759, Rev 3.57, August 2005 2101 */ 2102 int 2103 cpuid_opteron_erratum(cpu_t *cpu, uint_t erratum) 2104 { 2105 struct cpuid_info *cpi = cpu->cpu_m.mcpu_cpi; 2106 uint_t eax; 2107 2108 /* 2109 * Bail out if this CPU isn't an AMD CPU, or if it's 2110 * a legacy (32-bit) AMD CPU. 2111 */ 2112 if (cpi->cpi_vendor != X86_VENDOR_AMD || 2113 CPI_FAMILY(cpi) == 4 || CPI_FAMILY(cpi) == 5 || 2114 CPI_FAMILY(cpi) == 6) 2115 2116 return (0); 2117 2118 eax = cpi->cpi_std[1].cp_eax; 2119 2120 #define SH_B0(eax) (eax == 0xf40 || eax == 0xf50) 2121 #define SH_B3(eax) (eax == 0xf51) 2122 #define B(eax) (SH_B0(eax) || SH_B3(eax)) 2123 2124 #define SH_C0(eax) (eax == 0xf48 || eax == 0xf58) 2125 2126 #define SH_CG(eax) (eax == 0xf4a || eax == 0xf5a || eax == 0xf7a) 2127 #define DH_CG(eax) (eax == 0xfc0 || eax == 0xfe0 || eax == 0xff0) 2128 #define CH_CG(eax) (eax == 0xf82 || eax == 0xfb2) 2129 #define CG(eax) (SH_CG(eax) || DH_CG(eax) || CH_CG(eax)) 2130 2131 #define SH_D0(eax) (eax == 0x10f40 || eax == 0x10f50 || eax == 0x10f70) 2132 #define DH_D0(eax) (eax == 0x10fc0 || eax == 0x10ff0) 2133 #define CH_D0(eax) (eax == 0x10f80 || eax == 0x10fb0) 2134 #define D0(eax) (SH_D0(eax) || DH_D0(eax) || CH_D0(eax)) 2135 2136 #define SH_E0(eax) (eax == 0x20f50 || eax == 0x20f40 || eax == 0x20f70) 2137 #define JH_E1(eax) (eax == 0x20f10) /* JH8_E0 had 0x20f30 */ 2138 #define DH_E3(eax) (eax == 0x20fc0 || eax == 0x20ff0) 2139 #define SH_E4(eax) (eax == 0x20f51 || eax == 0x20f71) 2140 #define BH_E4(eax) (eax == 0x20fb1) 2141 #define SH_E5(eax) (eax == 0x20f42) 2142 #define DH_E6(eax) (eax == 0x20ff2 || eax == 0x20fc2) 2143 #define JH_E6(eax) (eax == 0x20f12 || eax == 0x20f32) 2144 #define EX(eax) (SH_E0(eax) || JH_E1(eax) || DH_E3(eax) || \ 2145 SH_E4(eax) || BH_E4(eax) || SH_E5(eax) || \ 2146 DH_E6(eax) || JH_E6(eax)) 2147 2148 switch (erratum) { 2149 case 1: 2150 return (1); 2151 case 51: /* what does the asterisk mean? */ 2152 return (B(eax) || SH_C0(eax) || CG(eax)); 2153 case 52: 2154 return (B(eax)); 2155 case 57: 2156 return (1); 2157 case 58: 2158 return (B(eax)); 2159 case 60: 2160 return (1); 2161 case 61: 2162 case 62: 2163 case 63: 2164 case 64: 2165 case 65: 2166 case 66: 2167 case 68: 2168 case 69: 2169 case 70: 2170 case 71: 2171 return (B(eax)); 2172 case 72: 2173 return (SH_B0(eax)); 2174 case 74: 2175 return (B(eax)); 2176 case 75: 2177 return (1); 2178 case 76: 2179 return (B(eax)); 2180 case 77: 2181 return (1); 2182 case 78: 2183 return (B(eax) || SH_C0(eax)); 2184 case 79: 2185 return (B(eax) || SH_C0(eax) || CG(eax) || D0(eax) || EX(eax)); 2186 case 80: 2187 case 81: 2188 case 82: 2189 return (B(eax)); 2190 case 83: 2191 return (B(eax) || SH_C0(eax) || CG(eax)); 2192 case 85: 2193 return (1); 2194 case 86: 2195 return (SH_C0(eax) || CG(eax)); 2196 case 88: 2197 #if !defined(__amd64) 2198 return (0); 2199 #else 2200 return (B(eax) || SH_C0(eax)); 2201 #endif 2202 case 89: 2203 return (1); 2204 case 90: 2205 return (B(eax) || SH_C0(eax) || CG(eax)); 2206 case 91: 2207 case 92: 2208 return (B(eax) || SH_C0(eax)); 2209 case 93: 2210 return (SH_C0(eax)); 2211 case 94: 2212 return (B(eax) || SH_C0(eax) || CG(eax)); 2213 case 95: 2214 #if !defined(__amd64) 2215 return (0); 2216 #else 2217 return (B(eax) || SH_C0(eax)); 2218 #endif 2219 case 96: 2220 return (B(eax) || SH_C0(eax) || CG(eax)); 2221 case 97: 2222 case 98: 2223 return (SH_C0(eax) || CG(eax)); 2224 case 99: 2225 return (B(eax) || SH_C0(eax) || CG(eax) || D0(eax)); 2226 case 100: 2227 return (B(eax) || SH_C0(eax)); 2228 case 101: 2229 case 103: 2230 return (B(eax) || SH_C0(eax) || CG(eax) || D0(eax)); 2231 case 104: 2232 return (SH_C0(eax) || CG(eax) || D0(eax)); 2233 case 105: 2234 case 106: 2235 case 107: 2236 return (B(eax) || SH_C0(eax) || CG(eax) || D0(eax)); 2237 case 108: 2238 return (DH_CG(eax)); 2239 case 109: 2240 return (SH_C0(eax) || CG(eax) || D0(eax)); 2241 case 110: 2242 return (D0(eax) || EX(eax)); 2243 case 111: 2244 return (CG(eax)); 2245 case 112: 2246 return (B(eax) || SH_C0(eax) || CG(eax) || D0(eax) || EX(eax)); 2247 case 113: 2248 return (eax == 0x20fc0); 2249 case 114: 2250 return (SH_E0(eax) || JH_E1(eax) || DH_E3(eax)); 2251 case 115: 2252 return (SH_E0(eax) || JH_E1(eax)); 2253 case 116: 2254 return (SH_E0(eax) || JH_E1(eax) || DH_E3(eax)); 2255 case 117: 2256 return (B(eax) || SH_C0(eax) || CG(eax) || D0(eax)); 2257 case 118: 2258 return (SH_E0(eax) || JH_E1(eax) || SH_E4(eax) || BH_E4(eax) || 2259 JH_E6(eax)); 2260 case 121: 2261 return (B(eax) || SH_C0(eax) || CG(eax) || D0(eax) || EX(eax)); 2262 case 122: 2263 return (1); 2264 case 123: 2265 return (JH_E1(eax) || BH_E4(eax) || JH_E6(eax)); 2266 case 131: 2267 return (1); 2268 case 6336786: 2269 /* 2270 * Test for AdvPowerMgmtInfo.TscPStateInvariant 2271 * if this is a K8 family processor 2272 */ 2273 if (CPI_FAMILY(cpi) == 0xf) { 2274 struct cpuid_regs regs; 2275 regs.cp_eax = 0x80000007; 2276 (void) __cpuid_insn(®s); 2277 return (!(regs.cp_edx & 0x100)); 2278 } 2279 return (0); 2280 case 6323525: 2281 return (((((eax >> 12) & 0xff00) + (eax & 0xf00)) | 2282 (((eax >> 4) & 0xf) | ((eax >> 12) & 0xf0))) < 0xf40); 2283 2284 default: 2285 return (-1); 2286 } 2287 } 2288 2289 static const char assoc_str[] = "associativity"; 2290 static const char line_str[] = "line-size"; 2291 static const char size_str[] = "size"; 2292 2293 static void 2294 add_cache_prop(dev_info_t *devi, const char *label, const char *type, 2295 uint32_t val) 2296 { 2297 char buf[128]; 2298 2299 /* 2300 * ndi_prop_update_int() is used because it is desirable for 2301 * DDI_PROP_HW_DEF and DDI_PROP_DONTSLEEP to be set. 2302 */ 2303 if (snprintf(buf, sizeof (buf), "%s-%s", label, type) < sizeof (buf)) 2304 (void) ndi_prop_update_int(DDI_DEV_T_NONE, devi, buf, val); 2305 } 2306 2307 /* 2308 * Intel-style cache/tlb description 2309 * 2310 * Standard cpuid level 2 gives a randomly ordered 2311 * selection of tags that index into a table that describes 2312 * cache and tlb properties. 2313 */ 2314 2315 static const char l1_icache_str[] = "l1-icache"; 2316 static const char l1_dcache_str[] = "l1-dcache"; 2317 static const char l2_cache_str[] = "l2-cache"; 2318 static const char l3_cache_str[] = "l3-cache"; 2319 static const char itlb4k_str[] = "itlb-4K"; 2320 static const char dtlb4k_str[] = "dtlb-4K"; 2321 static const char itlb4M_str[] = "itlb-4M"; 2322 static const char dtlb4M_str[] = "dtlb-4M"; 2323 static const char itlb424_str[] = "itlb-4K-2M-4M"; 2324 static const char dtlb44_str[] = "dtlb-4K-4M"; 2325 static const char sl1_dcache_str[] = "sectored-l1-dcache"; 2326 static const char sl2_cache_str[] = "sectored-l2-cache"; 2327 static const char itrace_str[] = "itrace-cache"; 2328 static const char sl3_cache_str[] = "sectored-l3-cache"; 2329 2330 static const struct cachetab { 2331 uint8_t ct_code; 2332 uint8_t ct_assoc; 2333 uint16_t ct_line_size; 2334 size_t ct_size; 2335 const char *ct_label; 2336 } intel_ctab[] = { 2337 /* maintain descending order! */ 2338 { 0xb4, 4, 0, 256, dtlb4k_str }, 2339 { 0xb3, 4, 0, 128, dtlb4k_str }, 2340 { 0xb0, 4, 0, 128, itlb4k_str }, 2341 { 0x87, 8, 64, 1024*1024, l2_cache_str}, 2342 { 0x86, 4, 64, 512*1024, l2_cache_str}, 2343 { 0x85, 8, 32, 2*1024*1024, l2_cache_str}, 2344 { 0x84, 8, 32, 1024*1024, l2_cache_str}, 2345 { 0x83, 8, 32, 512*1024, l2_cache_str}, 2346 { 0x82, 8, 32, 256*1024, l2_cache_str}, 2347 { 0x7f, 2, 64, 512*1024, l2_cache_str}, 2348 { 0x7d, 8, 64, 2*1024*1024, sl2_cache_str}, 2349 { 0x7c, 8, 64, 1024*1024, sl2_cache_str}, 2350 { 0x7b, 8, 64, 512*1024, sl2_cache_str}, 2351 { 0x7a, 8, 64, 256*1024, sl2_cache_str}, 2352 { 0x79, 8, 64, 128*1024, sl2_cache_str}, 2353 { 0x78, 8, 64, 1024*1024, l2_cache_str}, 2354 { 0x73, 8, 0, 64*1024, itrace_str}, 2355 { 0x72, 8, 0, 32*1024, itrace_str}, 2356 { 0x71, 8, 0, 16*1024, itrace_str}, 2357 { 0x70, 8, 0, 12*1024, itrace_str}, 2358 { 0x68, 4, 64, 32*1024, sl1_dcache_str}, 2359 { 0x67, 4, 64, 16*1024, sl1_dcache_str}, 2360 { 0x66, 4, 64, 8*1024, sl1_dcache_str}, 2361 { 0x60, 8, 64, 16*1024, sl1_dcache_str}, 2362 { 0x5d, 0, 0, 256, dtlb44_str}, 2363 { 0x5c, 0, 0, 128, dtlb44_str}, 2364 { 0x5b, 0, 0, 64, dtlb44_str}, 2365 { 0x52, 0, 0, 256, itlb424_str}, 2366 { 0x51, 0, 0, 128, itlb424_str}, 2367 { 0x50, 0, 0, 64, itlb424_str}, 2368 { 0x4d, 16, 64, 16*1024*1024, l3_cache_str}, 2369 { 0x4c, 12, 64, 12*1024*1024, l3_cache_str}, 2370 { 0x4b, 16, 64, 8*1024*1024, l3_cache_str}, 2371 { 0x4a, 12, 64, 6*1024*1024, l3_cache_str}, 2372 { 0x49, 16, 64, 4*1024*1024, l3_cache_str}, 2373 { 0x47, 8, 64, 8*1024*1024, l3_cache_str}, 2374 { 0x46, 4, 64, 4*1024*1024, l3_cache_str}, 2375 { 0x45, 4, 32, 2*1024*1024, l2_cache_str}, 2376 { 0x44, 4, 32, 1024*1024, l2_cache_str}, 2377 { 0x43, 4, 32, 512*1024, l2_cache_str}, 2378 { 0x42, 4, 32, 256*1024, l2_cache_str}, 2379 { 0x41, 4, 32, 128*1024, l2_cache_str}, 2380 { 0x3e, 4, 64, 512*1024, sl2_cache_str}, 2381 { 0x3d, 6, 64, 384*1024, sl2_cache_str}, 2382 { 0x3c, 4, 64, 256*1024, sl2_cache_str}, 2383 { 0x3b, 2, 64, 128*1024, sl2_cache_str}, 2384 { 0x3a, 6, 64, 192*1024, sl2_cache_str}, 2385 { 0x39, 4, 64, 128*1024, sl2_cache_str}, 2386 { 0x30, 8, 64, 32*1024, l1_icache_str}, 2387 { 0x2c, 8, 64, 32*1024, l1_dcache_str}, 2388 { 0x29, 8, 64, 4096*1024, sl3_cache_str}, 2389 { 0x25, 8, 64, 2048*1024, sl3_cache_str}, 2390 { 0x23, 8, 64, 1024*1024, sl3_cache_str}, 2391 { 0x22, 4, 64, 512*1024, sl3_cache_str}, 2392 { 0x0c, 4, 32, 16*1024, l1_dcache_str}, 2393 { 0x0b, 4, 0, 4, itlb4M_str}, 2394 { 0x0a, 2, 32, 8*1024, l1_dcache_str}, 2395 { 0x08, 4, 32, 16*1024, l1_icache_str}, 2396 { 0x06, 4, 32, 8*1024, l1_icache_str}, 2397 { 0x04, 4, 0, 8, dtlb4M_str}, 2398 { 0x03, 4, 0, 64, dtlb4k_str}, 2399 { 0x02, 4, 0, 2, itlb4M_str}, 2400 { 0x01, 4, 0, 32, itlb4k_str}, 2401 { 0 } 2402 }; 2403 2404 static const struct cachetab cyrix_ctab[] = { 2405 { 0x70, 4, 0, 32, "tlb-4K" }, 2406 { 0x80, 4, 16, 16*1024, "l1-cache" }, 2407 { 0 } 2408 }; 2409 2410 /* 2411 * Search a cache table for a matching entry 2412 */ 2413 static const struct cachetab * 2414 find_cacheent(const struct cachetab *ct, uint_t code) 2415 { 2416 if (code != 0) { 2417 for (; ct->ct_code != 0; ct++) 2418 if (ct->ct_code <= code) 2419 break; 2420 if (ct->ct_code == code) 2421 return (ct); 2422 } 2423 return (NULL); 2424 } 2425 2426 /* 2427 * Walk the cacheinfo descriptor, applying 'func' to every valid element 2428 * The walk is terminated if the walker returns non-zero. 2429 */ 2430 static void 2431 intel_walk_cacheinfo(struct cpuid_info *cpi, 2432 void *arg, int (*func)(void *, const struct cachetab *)) 2433 { 2434 const struct cachetab *ct; 2435 uint8_t *dp; 2436 int i; 2437 2438 if ((dp = cpi->cpi_cacheinfo) == NULL) 2439 return; 2440 for (i = 0; i < cpi->cpi_ncache; i++, dp++) 2441 if ((ct = find_cacheent(intel_ctab, *dp)) != NULL) { 2442 if (func(arg, ct) != 0) 2443 break; 2444 } 2445 } 2446 2447 /* 2448 * (Like the Intel one, except for Cyrix CPUs) 2449 */ 2450 static void 2451 cyrix_walk_cacheinfo(struct cpuid_info *cpi, 2452 void *arg, int (*func)(void *, const struct cachetab *)) 2453 { 2454 const struct cachetab *ct; 2455 uint8_t *dp; 2456 int i; 2457 2458 if ((dp = cpi->cpi_cacheinfo) == NULL) 2459 return; 2460 for (i = 0; i < cpi->cpi_ncache; i++, dp++) { 2461 /* 2462 * Search Cyrix-specific descriptor table first .. 2463 */ 2464 if ((ct = find_cacheent(cyrix_ctab, *dp)) != NULL) { 2465 if (func(arg, ct) != 0) 2466 break; 2467 continue; 2468 } 2469 /* 2470 * .. else fall back to the Intel one 2471 */ 2472 if ((ct = find_cacheent(intel_ctab, *dp)) != NULL) { 2473 if (func(arg, ct) != 0) 2474 break; 2475 continue; 2476 } 2477 } 2478 } 2479 2480 /* 2481 * A cacheinfo walker that adds associativity, line-size, and size properties 2482 * to the devinfo node it is passed as an argument. 2483 */ 2484 static int 2485 add_cacheent_props(void *arg, const struct cachetab *ct) 2486 { 2487 dev_info_t *devi = arg; 2488 2489 add_cache_prop(devi, ct->ct_label, assoc_str, ct->ct_assoc); 2490 if (ct->ct_line_size != 0) 2491 add_cache_prop(devi, ct->ct_label, line_str, 2492 ct->ct_line_size); 2493 add_cache_prop(devi, ct->ct_label, size_str, ct->ct_size); 2494 return (0); 2495 } 2496 2497 static const char fully_assoc[] = "fully-associative?"; 2498 2499 /* 2500 * AMD style cache/tlb description 2501 * 2502 * Extended functions 5 and 6 directly describe properties of 2503 * tlbs and various cache levels. 2504 */ 2505 static void 2506 add_amd_assoc(dev_info_t *devi, const char *label, uint_t assoc) 2507 { 2508 switch (assoc) { 2509 case 0: /* reserved; ignore */ 2510 break; 2511 default: 2512 add_cache_prop(devi, label, assoc_str, assoc); 2513 break; 2514 case 0xff: 2515 add_cache_prop(devi, label, fully_assoc, 1); 2516 break; 2517 } 2518 } 2519 2520 static void 2521 add_amd_tlb(dev_info_t *devi, const char *label, uint_t assoc, uint_t size) 2522 { 2523 if (size == 0) 2524 return; 2525 add_cache_prop(devi, label, size_str, size); 2526 add_amd_assoc(devi, label, assoc); 2527 } 2528 2529 static void 2530 add_amd_cache(dev_info_t *devi, const char *label, 2531 uint_t size, uint_t assoc, uint_t lines_per_tag, uint_t line_size) 2532 { 2533 if (size == 0 || line_size == 0) 2534 return; 2535 add_amd_assoc(devi, label, assoc); 2536 /* 2537 * Most AMD parts have a sectored cache. Multiple cache lines are 2538 * associated with each tag. A sector consists of all cache lines 2539 * associated with a tag. For example, the AMD K6-III has a sector 2540 * size of 2 cache lines per tag. 2541 */ 2542 if (lines_per_tag != 0) 2543 add_cache_prop(devi, label, "lines-per-tag", lines_per_tag); 2544 add_cache_prop(devi, label, line_str, line_size); 2545 add_cache_prop(devi, label, size_str, size * 1024); 2546 } 2547 2548 static void 2549 add_amd_l2_assoc(dev_info_t *devi, const char *label, uint_t assoc) 2550 { 2551 switch (assoc) { 2552 case 0: /* off */ 2553 break; 2554 case 1: 2555 case 2: 2556 case 4: 2557 add_cache_prop(devi, label, assoc_str, assoc); 2558 break; 2559 case 6: 2560 add_cache_prop(devi, label, assoc_str, 8); 2561 break; 2562 case 8: 2563 add_cache_prop(devi, label, assoc_str, 16); 2564 break; 2565 case 0xf: 2566 add_cache_prop(devi, label, fully_assoc, 1); 2567 break; 2568 default: /* reserved; ignore */ 2569 break; 2570 } 2571 } 2572 2573 static void 2574 add_amd_l2_tlb(dev_info_t *devi, const char *label, uint_t assoc, uint_t size) 2575 { 2576 if (size == 0 || assoc == 0) 2577 return; 2578 add_amd_l2_assoc(devi, label, assoc); 2579 add_cache_prop(devi, label, size_str, size); 2580 } 2581 2582 static void 2583 add_amd_l2_cache(dev_info_t *devi, const char *label, 2584 uint_t size, uint_t assoc, uint_t lines_per_tag, uint_t line_size) 2585 { 2586 if (size == 0 || assoc == 0 || line_size == 0) 2587 return; 2588 add_amd_l2_assoc(devi, label, assoc); 2589 if (lines_per_tag != 0) 2590 add_cache_prop(devi, label, "lines-per-tag", lines_per_tag); 2591 add_cache_prop(devi, label, line_str, line_size); 2592 add_cache_prop(devi, label, size_str, size * 1024); 2593 } 2594 2595 static void 2596 amd_cache_info(struct cpuid_info *cpi, dev_info_t *devi) 2597 { 2598 struct cpuid_regs *cp; 2599 2600 if (cpi->cpi_xmaxeax < 0x80000005) 2601 return; 2602 cp = &cpi->cpi_extd[5]; 2603 2604 /* 2605 * 4M/2M L1 TLB configuration 2606 * 2607 * We report the size for 2M pages because AMD uses two 2608 * TLB entries for one 4M page. 2609 */ 2610 add_amd_tlb(devi, "dtlb-2M", 2611 BITX(cp->cp_eax, 31, 24), BITX(cp->cp_eax, 23, 16)); 2612 add_amd_tlb(devi, "itlb-2M", 2613 BITX(cp->cp_eax, 15, 8), BITX(cp->cp_eax, 7, 0)); 2614 2615 /* 2616 * 4K L1 TLB configuration 2617 */ 2618 2619 switch (cpi->cpi_vendor) { 2620 uint_t nentries; 2621 case X86_VENDOR_TM: 2622 if (cpi->cpi_family >= 5) { 2623 /* 2624 * Crusoe processors have 256 TLB entries, but 2625 * cpuid data format constrains them to only 2626 * reporting 255 of them. 2627 */ 2628 if ((nentries = BITX(cp->cp_ebx, 23, 16)) == 255) 2629 nentries = 256; 2630 /* 2631 * Crusoe processors also have a unified TLB 2632 */ 2633 add_amd_tlb(devi, "tlb-4K", BITX(cp->cp_ebx, 31, 24), 2634 nentries); 2635 break; 2636 } 2637 /*FALLTHROUGH*/ 2638 default: 2639 add_amd_tlb(devi, itlb4k_str, 2640 BITX(cp->cp_ebx, 31, 24), BITX(cp->cp_ebx, 23, 16)); 2641 add_amd_tlb(devi, dtlb4k_str, 2642 BITX(cp->cp_ebx, 15, 8), BITX(cp->cp_ebx, 7, 0)); 2643 break; 2644 } 2645 2646 /* 2647 * data L1 cache configuration 2648 */ 2649 2650 add_amd_cache(devi, l1_dcache_str, 2651 BITX(cp->cp_ecx, 31, 24), BITX(cp->cp_ecx, 23, 16), 2652 BITX(cp->cp_ecx, 15, 8), BITX(cp->cp_ecx, 7, 0)); 2653 2654 /* 2655 * code L1 cache configuration 2656 */ 2657 2658 add_amd_cache(devi, l1_icache_str, 2659 BITX(cp->cp_edx, 31, 24), BITX(cp->cp_edx, 23, 16), 2660 BITX(cp->cp_edx, 15, 8), BITX(cp->cp_edx, 7, 0)); 2661 2662 if (cpi->cpi_xmaxeax < 0x80000006) 2663 return; 2664 cp = &cpi->cpi_extd[6]; 2665 2666 /* Check for a unified L2 TLB for large pages */ 2667 2668 if (BITX(cp->cp_eax, 31, 16) == 0) 2669 add_amd_l2_tlb(devi, "l2-tlb-2M", 2670 BITX(cp->cp_eax, 15, 12), BITX(cp->cp_eax, 11, 0)); 2671 else { 2672 add_amd_l2_tlb(devi, "l2-dtlb-2M", 2673 BITX(cp->cp_eax, 31, 28), BITX(cp->cp_eax, 27, 16)); 2674 add_amd_l2_tlb(devi, "l2-itlb-2M", 2675 BITX(cp->cp_eax, 15, 12), BITX(cp->cp_eax, 11, 0)); 2676 } 2677 2678 /* Check for a unified L2 TLB for 4K pages */ 2679 2680 if (BITX(cp->cp_ebx, 31, 16) == 0) { 2681 add_amd_l2_tlb(devi, "l2-tlb-4K", 2682 BITX(cp->cp_eax, 15, 12), BITX(cp->cp_eax, 11, 0)); 2683 } else { 2684 add_amd_l2_tlb(devi, "l2-dtlb-4K", 2685 BITX(cp->cp_eax, 31, 28), BITX(cp->cp_eax, 27, 16)); 2686 add_amd_l2_tlb(devi, "l2-itlb-4K", 2687 BITX(cp->cp_eax, 15, 12), BITX(cp->cp_eax, 11, 0)); 2688 } 2689 2690 add_amd_l2_cache(devi, l2_cache_str, 2691 BITX(cp->cp_ecx, 31, 16), BITX(cp->cp_ecx, 15, 12), 2692 BITX(cp->cp_ecx, 11, 8), BITX(cp->cp_ecx, 7, 0)); 2693 } 2694 2695 /* 2696 * There are two basic ways that the x86 world describes it cache 2697 * and tlb architecture - Intel's way and AMD's way. 2698 * 2699 * Return which flavor of cache architecture we should use 2700 */ 2701 static int 2702 x86_which_cacheinfo(struct cpuid_info *cpi) 2703 { 2704 switch (cpi->cpi_vendor) { 2705 case X86_VENDOR_Intel: 2706 if (cpi->cpi_maxeax >= 2) 2707 return (X86_VENDOR_Intel); 2708 break; 2709 case X86_VENDOR_AMD: 2710 /* 2711 * The K5 model 1 was the first part from AMD that reported 2712 * cache sizes via extended cpuid functions. 2713 */ 2714 if (cpi->cpi_family > 5 || 2715 (cpi->cpi_family == 5 && cpi->cpi_model >= 1)) 2716 return (X86_VENDOR_AMD); 2717 break; 2718 case X86_VENDOR_TM: 2719 if (cpi->cpi_family >= 5) 2720 return (X86_VENDOR_AMD); 2721 /*FALLTHROUGH*/ 2722 default: 2723 /* 2724 * If they have extended CPU data for 0x80000005 2725 * then we assume they have AMD-format cache 2726 * information. 2727 * 2728 * If not, and the vendor happens to be Cyrix, 2729 * then try our-Cyrix specific handler. 2730 * 2731 * If we're not Cyrix, then assume we're using Intel's 2732 * table-driven format instead. 2733 */ 2734 if (cpi->cpi_xmaxeax >= 0x80000005) 2735 return (X86_VENDOR_AMD); 2736 else if (cpi->cpi_vendor == X86_VENDOR_Cyrix) 2737 return (X86_VENDOR_Cyrix); 2738 else if (cpi->cpi_maxeax >= 2) 2739 return (X86_VENDOR_Intel); 2740 break; 2741 } 2742 return (-1); 2743 } 2744 2745 /* 2746 * create a node for the given cpu under the prom root node. 2747 * Also, create a cpu node in the device tree. 2748 */ 2749 static dev_info_t *cpu_nex_devi = NULL; 2750 static kmutex_t cpu_node_lock; 2751 2752 /* 2753 * Called from post_startup() and mp_startup() 2754 */ 2755 void 2756 add_cpunode2devtree(processorid_t cpu_id, struct cpuid_info *cpi) 2757 { 2758 dev_info_t *cpu_devi; 2759 int create; 2760 2761 mutex_enter(&cpu_node_lock); 2762 2763 /* 2764 * create a nexus node for all cpus identified as 'cpu_id' under 2765 * the root node. 2766 */ 2767 if (cpu_nex_devi == NULL) { 2768 if (ndi_devi_alloc(ddi_root_node(), "cpus", 2769 (pnode_t)DEVI_SID_NODEID, &cpu_nex_devi) != NDI_SUCCESS) { 2770 mutex_exit(&cpu_node_lock); 2771 return; 2772 } 2773 (void) ndi_devi_online(cpu_nex_devi, 0); 2774 } 2775 2776 /* 2777 * create a child node for cpu identified as 'cpu_id' 2778 */ 2779 cpu_devi = ddi_add_child(cpu_nex_devi, "cpu", DEVI_SID_NODEID, 2780 cpu_id); 2781 if (cpu_devi == NULL) { 2782 mutex_exit(&cpu_node_lock); 2783 return; 2784 } 2785 2786 /* device_type */ 2787 2788 (void) ndi_prop_update_string(DDI_DEV_T_NONE, cpu_devi, 2789 "device_type", "cpu"); 2790 2791 /* reg */ 2792 2793 (void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi, 2794 "reg", cpu_id); 2795 2796 /* cpu-mhz, and clock-frequency */ 2797 2798 if (cpu_freq > 0) { 2799 long long mul; 2800 2801 (void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi, 2802 "cpu-mhz", cpu_freq); 2803 2804 if ((mul = cpu_freq * 1000000LL) <= INT_MAX) 2805 (void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi, 2806 "clock-frequency", (int)mul); 2807 } 2808 2809 (void) ndi_devi_online(cpu_devi, 0); 2810 2811 if ((x86_feature & X86_CPUID) == 0) { 2812 mutex_exit(&cpu_node_lock); 2813 return; 2814 } 2815 2816 /* vendor-id */ 2817 2818 (void) ndi_prop_update_string(DDI_DEV_T_NONE, cpu_devi, 2819 "vendor-id", cpi->cpi_vendorstr); 2820 2821 if (cpi->cpi_maxeax == 0) { 2822 mutex_exit(&cpu_node_lock); 2823 return; 2824 } 2825 2826 /* 2827 * family, model, and step 2828 */ 2829 (void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi, 2830 "family", CPI_FAMILY(cpi)); 2831 (void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi, 2832 "cpu-model", CPI_MODEL(cpi)); 2833 (void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi, 2834 "stepping-id", CPI_STEP(cpi)); 2835 2836 /* type */ 2837 2838 switch (cpi->cpi_vendor) { 2839 case X86_VENDOR_Intel: 2840 create = 1; 2841 break; 2842 default: 2843 create = 0; 2844 break; 2845 } 2846 if (create) 2847 (void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi, 2848 "type", CPI_TYPE(cpi)); 2849 2850 /* ext-family */ 2851 2852 switch (cpi->cpi_vendor) { 2853 case X86_VENDOR_Intel: 2854 case X86_VENDOR_AMD: 2855 create = cpi->cpi_family >= 0xf; 2856 break; 2857 default: 2858 create = 0; 2859 break; 2860 } 2861 if (create) 2862 (void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi, 2863 "ext-family", CPI_FAMILY_XTD(cpi)); 2864 2865 /* ext-model */ 2866 2867 switch (cpi->cpi_vendor) { 2868 case X86_VENDOR_Intel: 2869 create = CPI_MODEL(cpi) == 0xf; 2870 break; 2871 case X86_VENDOR_AMD: 2872 create = CPI_FAMILY(cpi) == 0xf; 2873 break; 2874 default: 2875 create = 0; 2876 break; 2877 } 2878 if (create) 2879 (void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi, 2880 "ext-model", CPI_MODEL_XTD(cpi)); 2881 2882 /* generation */ 2883 2884 switch (cpi->cpi_vendor) { 2885 case X86_VENDOR_AMD: 2886 /* 2887 * AMD K5 model 1 was the first part to support this 2888 */ 2889 create = cpi->cpi_xmaxeax >= 0x80000001; 2890 break; 2891 default: 2892 create = 0; 2893 break; 2894 } 2895 if (create) 2896 (void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi, 2897 "generation", BITX((cpi)->cpi_extd[1].cp_eax, 11, 8)); 2898 2899 /* brand-id */ 2900 2901 switch (cpi->cpi_vendor) { 2902 case X86_VENDOR_Intel: 2903 /* 2904 * brand id first appeared on Pentium III Xeon model 8, 2905 * and Celeron model 8 processors and Opteron 2906 */ 2907 create = cpi->cpi_family > 6 || 2908 (cpi->cpi_family == 6 && cpi->cpi_model >= 8); 2909 break; 2910 case X86_VENDOR_AMD: 2911 create = cpi->cpi_family >= 0xf; 2912 break; 2913 default: 2914 create = 0; 2915 break; 2916 } 2917 if (create && cpi->cpi_brandid != 0) { 2918 (void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi, 2919 "brand-id", cpi->cpi_brandid); 2920 } 2921 2922 /* chunks, and apic-id */ 2923 2924 switch (cpi->cpi_vendor) { 2925 /* 2926 * first available on Pentium IV and Opteron (K8) 2927 */ 2928 case X86_VENDOR_Intel: 2929 create = IS_NEW_F6(cpi) || cpi->cpi_family >= 0xf; 2930 break; 2931 case X86_VENDOR_AMD: 2932 create = cpi->cpi_family >= 0xf; 2933 break; 2934 default: 2935 create = 0; 2936 break; 2937 } 2938 if (create) { 2939 (void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi, 2940 "chunks", CPI_CHUNKS(cpi)); 2941 (void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi, 2942 "apic-id", CPI_APIC_ID(cpi)); 2943 if (cpi->cpi_chipid >= 0) { 2944 (void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi, 2945 "chip#", cpi->cpi_chipid); 2946 (void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi, 2947 "clog#", cpi->cpi_clogid); 2948 } 2949 } 2950 2951 /* cpuid-features */ 2952 2953 (void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi, 2954 "cpuid-features", CPI_FEATURES_EDX(cpi)); 2955 2956 2957 /* cpuid-features-ecx */ 2958 2959 switch (cpi->cpi_vendor) { 2960 case X86_VENDOR_Intel: 2961 create = IS_NEW_F6(cpi) || cpi->cpi_family >= 0xf; 2962 break; 2963 default: 2964 create = 0; 2965 break; 2966 } 2967 if (create) 2968 (void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi, 2969 "cpuid-features-ecx", CPI_FEATURES_ECX(cpi)); 2970 2971 /* ext-cpuid-features */ 2972 2973 switch (cpi->cpi_vendor) { 2974 case X86_VENDOR_Intel: 2975 case X86_VENDOR_AMD: 2976 case X86_VENDOR_Cyrix: 2977 case X86_VENDOR_TM: 2978 case X86_VENDOR_Centaur: 2979 create = cpi->cpi_xmaxeax >= 0x80000001; 2980 break; 2981 default: 2982 create = 0; 2983 break; 2984 } 2985 if (create) { 2986 (void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi, 2987 "ext-cpuid-features", CPI_FEATURES_XTD_EDX(cpi)); 2988 (void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi, 2989 "ext-cpuid-features-ecx", CPI_FEATURES_XTD_ECX(cpi)); 2990 } 2991 2992 /* 2993 * Brand String first appeared in Intel Pentium IV, AMD K5 2994 * model 1, and Cyrix GXm. On earlier models we try and 2995 * simulate something similar .. so this string should always 2996 * same -something- about the processor, however lame. 2997 */ 2998 (void) ndi_prop_update_string(DDI_DEV_T_NONE, cpu_devi, 2999 "brand-string", cpi->cpi_brandstr); 3000 3001 /* 3002 * Finally, cache and tlb information 3003 */ 3004 switch (x86_which_cacheinfo(cpi)) { 3005 case X86_VENDOR_Intel: 3006 intel_walk_cacheinfo(cpi, cpu_devi, add_cacheent_props); 3007 break; 3008 case X86_VENDOR_Cyrix: 3009 cyrix_walk_cacheinfo(cpi, cpu_devi, add_cacheent_props); 3010 break; 3011 case X86_VENDOR_AMD: 3012 amd_cache_info(cpi, cpu_devi); 3013 break; 3014 default: 3015 break; 3016 } 3017 3018 mutex_exit(&cpu_node_lock); 3019 } 3020 3021 struct l2info { 3022 int *l2i_csz; 3023 int *l2i_lsz; 3024 int *l2i_assoc; 3025 int l2i_ret; 3026 }; 3027 3028 /* 3029 * A cacheinfo walker that fetches the size, line-size and associativity 3030 * of the L2 cache 3031 */ 3032 static int 3033 intel_l2cinfo(void *arg, const struct cachetab *ct) 3034 { 3035 struct l2info *l2i = arg; 3036 int *ip; 3037 3038 if (ct->ct_label != l2_cache_str && 3039 ct->ct_label != sl2_cache_str) 3040 return (0); /* not an L2 -- keep walking */ 3041 3042 if ((ip = l2i->l2i_csz) != NULL) 3043 *ip = ct->ct_size; 3044 if ((ip = l2i->l2i_lsz) != NULL) 3045 *ip = ct->ct_line_size; 3046 if ((ip = l2i->l2i_assoc) != NULL) 3047 *ip = ct->ct_assoc; 3048 l2i->l2i_ret = ct->ct_size; 3049 return (1); /* was an L2 -- terminate walk */ 3050 } 3051 3052 static void 3053 amd_l2cacheinfo(struct cpuid_info *cpi, struct l2info *l2i) 3054 { 3055 struct cpuid_regs *cp; 3056 uint_t size, assoc; 3057 int *ip; 3058 3059 if (cpi->cpi_xmaxeax < 0x80000006) 3060 return; 3061 cp = &cpi->cpi_extd[6]; 3062 3063 if ((assoc = BITX(cp->cp_ecx, 15, 12)) != 0 && 3064 (size = BITX(cp->cp_ecx, 31, 16)) != 0) { 3065 uint_t cachesz = size * 1024; 3066 3067 3068 if ((ip = l2i->l2i_csz) != NULL) 3069 *ip = cachesz; 3070 if ((ip = l2i->l2i_lsz) != NULL) 3071 *ip = BITX(cp->cp_ecx, 7, 0); 3072 if ((ip = l2i->l2i_assoc) != NULL) 3073 *ip = assoc; 3074 l2i->l2i_ret = cachesz; 3075 } 3076 } 3077 3078 int 3079 getl2cacheinfo(cpu_t *cpu, int *csz, int *lsz, int *assoc) 3080 { 3081 struct cpuid_info *cpi = cpu->cpu_m.mcpu_cpi; 3082 struct l2info __l2info, *l2i = &__l2info; 3083 3084 l2i->l2i_csz = csz; 3085 l2i->l2i_lsz = lsz; 3086 l2i->l2i_assoc = assoc; 3087 l2i->l2i_ret = -1; 3088 3089 switch (x86_which_cacheinfo(cpi)) { 3090 case X86_VENDOR_Intel: 3091 intel_walk_cacheinfo(cpi, l2i, intel_l2cinfo); 3092 break; 3093 case X86_VENDOR_Cyrix: 3094 cyrix_walk_cacheinfo(cpi, l2i, intel_l2cinfo); 3095 break; 3096 case X86_VENDOR_AMD: 3097 amd_l2cacheinfo(cpi, l2i); 3098 break; 3099 default: 3100 break; 3101 } 3102 return (l2i->l2i_ret); 3103 } 3104