1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2006 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 #pragma ident "%Z%%M% %I% %E% SMI" 27 28 /* 29 * x86 root nexus driver 30 */ 31 32 #include <sys/sysmacros.h> 33 #include <sys/conf.h> 34 #include <sys/autoconf.h> 35 #include <sys/sysmacros.h> 36 #include <sys/debug.h> 37 #include <sys/psw.h> 38 #include <sys/ddidmareq.h> 39 #include <sys/promif.h> 40 #include <sys/devops.h> 41 #include <sys/kmem.h> 42 #include <sys/cmn_err.h> 43 #include <vm/seg.h> 44 #include <vm/seg_kmem.h> 45 #include <vm/seg_dev.h> 46 #include <sys/vmem.h> 47 #include <sys/mman.h> 48 #include <vm/hat.h> 49 #include <vm/as.h> 50 #include <vm/page.h> 51 #include <sys/avintr.h> 52 #include <sys/errno.h> 53 #include <sys/modctl.h> 54 #include <sys/ddi_impldefs.h> 55 #include <sys/sunddi.h> 56 #include <sys/sunndi.h> 57 #include <sys/mach_intr.h> 58 #include <sys/psm.h> 59 #include <sys/ontrap.h> 60 #include <sys/atomic.h> 61 #include <sys/sdt.h> 62 #include <sys/rootnex.h> 63 #include <vm/hat_i86.h> 64 #include <sys/ddifm.h> 65 66 /* 67 * enable/disable extra checking of function parameters. Useful for debugging 68 * drivers. 69 */ 70 #ifdef DEBUG 71 int rootnex_alloc_check_parms = 1; 72 int rootnex_bind_check_parms = 1; 73 int rootnex_bind_check_inuse = 1; 74 int rootnex_unbind_verify_buffer = 0; 75 int rootnex_sync_check_parms = 1; 76 #else 77 int rootnex_alloc_check_parms = 0; 78 int rootnex_bind_check_parms = 0; 79 int rootnex_bind_check_inuse = 0; 80 int rootnex_unbind_verify_buffer = 0; 81 int rootnex_sync_check_parms = 0; 82 #endif 83 84 /* Master Abort and Target Abort panic flag */ 85 int rootnex_fm_ma_ta_panic_flag = 0; 86 87 /* Semi-temporary patchables to phase in bug fixes, test drivers, etc. */ 88 int rootnex_bind_fail = 1; 89 int rootnex_bind_warn = 1; 90 uint8_t *rootnex_warn_list; 91 /* bitmasks for rootnex_warn_list. Up to 8 different warnings with uint8_t */ 92 #define ROOTNEX_BIND_WARNING (0x1 << 0) 93 94 /* 95 * revert back to old broken behavior of always sync'ing entire copy buffer. 96 * This is useful if be have a buggy driver which doesn't correctly pass in 97 * the offset and size into ddi_dma_sync(). 98 */ 99 int rootnex_sync_ignore_params = 0; 100 101 /* 102 * maximum size that we will allow for a copy buffer. Can be patched on the 103 * fly 104 */ 105 size_t rootnex_max_copybuf_size = 0x100000; 106 107 /* 108 * For the 64-bit kernel, pre-alloc enough cookies for a 256K buffer plus 1 109 * page for alignment. For the 32-bit kernel, pre-alloc enough cookies for a 110 * 64K buffer plus 1 page for alignment (we have less kernel space in a 32-bit 111 * kernel). Allocate enough windows to handle a 256K buffer w/ at least 65 112 * sgllen DMA engine, and enough copybuf buffer state pages to handle 2 pages 113 * (< 8K). We will still need to allocate the copy buffer during bind though 114 * (if we need one). These can only be modified in /etc/system before rootnex 115 * attach. 116 */ 117 #if defined(__amd64) 118 int rootnex_prealloc_cookies = 65; 119 int rootnex_prealloc_windows = 4; 120 int rootnex_prealloc_copybuf = 2; 121 #else 122 int rootnex_prealloc_cookies = 33; 123 int rootnex_prealloc_windows = 4; 124 int rootnex_prealloc_copybuf = 2; 125 #endif 126 127 /* driver global state */ 128 static rootnex_state_t *rootnex_state; 129 130 /* shortcut to rootnex counters */ 131 static uint64_t *rootnex_cnt; 132 133 /* 134 * XXX - does x86 even need these or are they left over from the SPARC days? 135 */ 136 /* statically defined integer/boolean properties for the root node */ 137 static rootnex_intprop_t rootnex_intprp[] = { 138 { "PAGESIZE", PAGESIZE }, 139 { "MMU_PAGESIZE", MMU_PAGESIZE }, 140 { "MMU_PAGEOFFSET", MMU_PAGEOFFSET }, 141 { DDI_RELATIVE_ADDRESSING, 1 }, 142 }; 143 #define NROOT_INTPROPS (sizeof (rootnex_intprp) / sizeof (rootnex_intprop_t)) 144 145 146 static struct cb_ops rootnex_cb_ops = { 147 nodev, /* open */ 148 nodev, /* close */ 149 nodev, /* strategy */ 150 nodev, /* print */ 151 nodev, /* dump */ 152 nodev, /* read */ 153 nodev, /* write */ 154 nodev, /* ioctl */ 155 nodev, /* devmap */ 156 nodev, /* mmap */ 157 nodev, /* segmap */ 158 nochpoll, /* chpoll */ 159 ddi_prop_op, /* cb_prop_op */ 160 NULL, /* struct streamtab */ 161 D_NEW | D_MP | D_HOTPLUG, /* compatibility flags */ 162 CB_REV, /* Rev */ 163 nodev, /* cb_aread */ 164 nodev /* cb_awrite */ 165 }; 166 167 static int rootnex_map(dev_info_t *dip, dev_info_t *rdip, ddi_map_req_t *mp, 168 off_t offset, off_t len, caddr_t *vaddrp); 169 static int rootnex_map_fault(dev_info_t *dip, dev_info_t *rdip, 170 struct hat *hat, struct seg *seg, caddr_t addr, 171 struct devpage *dp, pfn_t pfn, uint_t prot, uint_t lock); 172 static int rootnex_dma_map(dev_info_t *dip, dev_info_t *rdip, 173 struct ddi_dma_req *dmareq, ddi_dma_handle_t *handlep); 174 static int rootnex_dma_allochdl(dev_info_t *dip, dev_info_t *rdip, 175 ddi_dma_attr_t *attr, int (*waitfp)(caddr_t), caddr_t arg, 176 ddi_dma_handle_t *handlep); 177 static int rootnex_dma_freehdl(dev_info_t *dip, dev_info_t *rdip, 178 ddi_dma_handle_t handle); 179 static int rootnex_dma_bindhdl(dev_info_t *dip, dev_info_t *rdip, 180 ddi_dma_handle_t handle, struct ddi_dma_req *dmareq, 181 ddi_dma_cookie_t *cookiep, uint_t *ccountp); 182 static int rootnex_dma_unbindhdl(dev_info_t *dip, dev_info_t *rdip, 183 ddi_dma_handle_t handle); 184 static int rootnex_dma_sync(dev_info_t *dip, dev_info_t *rdip, 185 ddi_dma_handle_t handle, off_t off, size_t len, uint_t cache_flags); 186 static int rootnex_dma_win(dev_info_t *dip, dev_info_t *rdip, 187 ddi_dma_handle_t handle, uint_t win, off_t *offp, size_t *lenp, 188 ddi_dma_cookie_t *cookiep, uint_t *ccountp); 189 static int rootnex_dma_mctl(dev_info_t *dip, dev_info_t *rdip, 190 ddi_dma_handle_t handle, enum ddi_dma_ctlops request, 191 off_t *offp, size_t *lenp, caddr_t *objp, uint_t cache_flags); 192 static int rootnex_ctlops(dev_info_t *dip, dev_info_t *rdip, 193 ddi_ctl_enum_t ctlop, void *arg, void *result); 194 static int rootnex_fm_init(dev_info_t *dip, dev_info_t *tdip, int tcap, 195 ddi_iblock_cookie_t *ibc); 196 static int rootnex_intr_ops(dev_info_t *pdip, dev_info_t *rdip, 197 ddi_intr_op_t intr_op, ddi_intr_handle_impl_t *hdlp, void *result); 198 199 200 static struct bus_ops rootnex_bus_ops = { 201 BUSO_REV, 202 rootnex_map, 203 NULL, 204 NULL, 205 NULL, 206 rootnex_map_fault, 207 rootnex_dma_map, 208 rootnex_dma_allochdl, 209 rootnex_dma_freehdl, 210 rootnex_dma_bindhdl, 211 rootnex_dma_unbindhdl, 212 rootnex_dma_sync, 213 rootnex_dma_win, 214 rootnex_dma_mctl, 215 rootnex_ctlops, 216 ddi_bus_prop_op, 217 i_ddi_rootnex_get_eventcookie, 218 i_ddi_rootnex_add_eventcall, 219 i_ddi_rootnex_remove_eventcall, 220 i_ddi_rootnex_post_event, 221 0, /* bus_intr_ctl */ 222 0, /* bus_config */ 223 0, /* bus_unconfig */ 224 rootnex_fm_init, /* bus_fm_init */ 225 NULL, /* bus_fm_fini */ 226 NULL, /* bus_fm_access_enter */ 227 NULL, /* bus_fm_access_exit */ 228 NULL, /* bus_powr */ 229 rootnex_intr_ops /* bus_intr_op */ 230 }; 231 232 static int rootnex_attach(dev_info_t *dip, ddi_attach_cmd_t cmd); 233 static int rootnex_detach(dev_info_t *dip, ddi_detach_cmd_t cmd); 234 235 static struct dev_ops rootnex_ops = { 236 DEVO_REV, 237 0, 238 ddi_no_info, 239 nulldev, 240 nulldev, 241 rootnex_attach, 242 rootnex_detach, 243 nulldev, 244 &rootnex_cb_ops, 245 &rootnex_bus_ops 246 }; 247 248 static struct modldrv rootnex_modldrv = { 249 &mod_driverops, 250 "i86pc root nexus %I%", 251 &rootnex_ops 252 }; 253 254 static struct modlinkage rootnex_modlinkage = { 255 MODREV_1, 256 (void *)&rootnex_modldrv, 257 NULL 258 }; 259 260 261 /* 262 * extern hacks 263 */ 264 extern struct seg_ops segdev_ops; 265 extern int ignore_hardware_nodes; /* force flag from ddi_impl.c */ 266 #ifdef DDI_MAP_DEBUG 267 extern int ddi_map_debug_flag; 268 #define ddi_map_debug if (ddi_map_debug_flag) prom_printf 269 #endif 270 #define ptob64(x) (((uint64_t)(x)) << MMU_PAGESHIFT) 271 extern void i86_pp_map(page_t *pp, caddr_t kaddr); 272 extern void i86_va_map(caddr_t vaddr, struct as *asp, caddr_t kaddr); 273 extern int (*psm_intr_ops)(dev_info_t *, ddi_intr_handle_impl_t *, 274 psm_intr_op_t, int *); 275 extern int impl_ddi_sunbus_initchild(dev_info_t *dip); 276 extern void impl_ddi_sunbus_removechild(dev_info_t *dip); 277 /* 278 * Use device arena to use for device control register mappings. 279 * Various kernel memory walkers (debugger, dtrace) need to know 280 * to avoid this address range to prevent undesired device activity. 281 */ 282 extern void *device_arena_alloc(size_t size, int vm_flag); 283 extern void device_arena_free(void * vaddr, size_t size); 284 285 286 /* 287 * Internal functions 288 */ 289 static int rootnex_dma_init(); 290 static void rootnex_add_props(dev_info_t *); 291 static int rootnex_ctl_reportdev(dev_info_t *dip); 292 static struct intrspec *rootnex_get_ispec(dev_info_t *rdip, int inum); 293 static int rootnex_map_regspec(ddi_map_req_t *mp, caddr_t *vaddrp); 294 static int rootnex_unmap_regspec(ddi_map_req_t *mp, caddr_t *vaddrp); 295 static int rootnex_map_handle(ddi_map_req_t *mp); 296 static void rootnex_clean_dmahdl(ddi_dma_impl_t *hp); 297 static int rootnex_valid_alloc_parms(ddi_dma_attr_t *attr, uint_t maxsegsize); 298 static int rootnex_valid_bind_parms(ddi_dma_req_t *dmareq, 299 ddi_dma_attr_t *attr); 300 static void rootnex_get_sgl(ddi_dma_obj_t *dmar_object, ddi_dma_cookie_t *sgl, 301 rootnex_sglinfo_t *sglinfo); 302 static int rootnex_bind_slowpath(ddi_dma_impl_t *hp, struct ddi_dma_req *dmareq, 303 rootnex_dma_t *dma, ddi_dma_attr_t *attr, int kmflag); 304 static int rootnex_setup_copybuf(ddi_dma_impl_t *hp, struct ddi_dma_req *dmareq, 305 rootnex_dma_t *dma, ddi_dma_attr_t *attr); 306 static void rootnex_teardown_copybuf(rootnex_dma_t *dma); 307 static int rootnex_setup_windows(ddi_dma_impl_t *hp, rootnex_dma_t *dma, 308 ddi_dma_attr_t *attr, int kmflag); 309 static void rootnex_teardown_windows(rootnex_dma_t *dma); 310 static void rootnex_init_win(ddi_dma_impl_t *hp, rootnex_dma_t *dma, 311 rootnex_window_t *window, ddi_dma_cookie_t *cookie, off_t cur_offset); 312 static void rootnex_setup_cookie(ddi_dma_obj_t *dmar_object, 313 rootnex_dma_t *dma, ddi_dma_cookie_t *cookie, off_t cur_offset, 314 size_t *copybuf_used, page_t **cur_pp); 315 static int rootnex_sgllen_window_boundary(ddi_dma_impl_t *hp, 316 rootnex_dma_t *dma, rootnex_window_t **windowp, ddi_dma_cookie_t *cookie, 317 ddi_dma_attr_t *attr, off_t cur_offset); 318 static int rootnex_copybuf_window_boundary(ddi_dma_impl_t *hp, 319 rootnex_dma_t *dma, rootnex_window_t **windowp, 320 ddi_dma_cookie_t *cookie, off_t cur_offset, size_t *copybuf_used); 321 static int rootnex_maxxfer_window_boundary(ddi_dma_impl_t *hp, 322 rootnex_dma_t *dma, rootnex_window_t **windowp, ddi_dma_cookie_t *cookie); 323 static int rootnex_valid_sync_parms(ddi_dma_impl_t *hp, rootnex_window_t *win, 324 off_t offset, size_t size, uint_t cache_flags); 325 static int rootnex_verify_buffer(rootnex_dma_t *dma); 326 static int rootnex_dma_check(dev_info_t *dip, const void *handle, 327 const void *comp_addr, const void *not_used); 328 329 /* 330 * _init() 331 * 332 */ 333 int 334 _init(void) 335 { 336 337 rootnex_state = NULL; 338 return (mod_install(&rootnex_modlinkage)); 339 } 340 341 342 /* 343 * _info() 344 * 345 */ 346 int 347 _info(struct modinfo *modinfop) 348 { 349 return (mod_info(&rootnex_modlinkage, modinfop)); 350 } 351 352 353 /* 354 * _fini() 355 * 356 */ 357 int 358 _fini(void) 359 { 360 return (EBUSY); 361 } 362 363 364 /* 365 * rootnex_attach() 366 * 367 */ 368 static int 369 rootnex_attach(dev_info_t *dip, ddi_attach_cmd_t cmd) 370 { 371 int fmcap; 372 int e; 373 374 375 switch (cmd) { 376 case DDI_ATTACH: 377 break; 378 case DDI_RESUME: 379 return (DDI_SUCCESS); 380 default: 381 return (DDI_FAILURE); 382 } 383 384 /* 385 * We should only have one instance of rootnex. Save it away since we 386 * don't have an easy way to get it back later. 387 */ 388 ASSERT(rootnex_state == NULL); 389 rootnex_state = kmem_zalloc(sizeof (rootnex_state_t), KM_SLEEP); 390 391 rootnex_state->r_dip = dip; 392 rootnex_state->r_err_ibc = (ddi_iblock_cookie_t)ipltospl(15); 393 rootnex_state->r_reserved_msg_printed = B_FALSE; 394 rootnex_cnt = &rootnex_state->r_counters[0]; 395 396 /* 397 * Set minimum fm capability level for i86pc platforms and then 398 * initialize error handling. Since we're the rootnex, we don't 399 * care what's returned in the fmcap field. 400 */ 401 ddi_system_fmcap = DDI_FM_EREPORT_CAPABLE | DDI_FM_ERRCB_CAPABLE | 402 DDI_FM_ACCCHK_CAPABLE | DDI_FM_DMACHK_CAPABLE; 403 fmcap = ddi_system_fmcap; 404 ddi_fm_init(dip, &fmcap, &rootnex_state->r_err_ibc); 405 406 /* initialize DMA related state */ 407 e = rootnex_dma_init(); 408 if (e != DDI_SUCCESS) { 409 kmem_free(rootnex_state, sizeof (rootnex_state_t)); 410 return (DDI_FAILURE); 411 } 412 413 /* Add static root node properties */ 414 rootnex_add_props(dip); 415 416 /* since we can't call ddi_report_dev() */ 417 cmn_err(CE_CONT, "?root nexus = %s\n", ddi_get_name(dip)); 418 419 /* Initialize rootnex event handle */ 420 i_ddi_rootnex_init_events(dip); 421 422 return (DDI_SUCCESS); 423 } 424 425 426 /* 427 * rootnex_detach() 428 * 429 */ 430 /*ARGSUSED*/ 431 static int 432 rootnex_detach(dev_info_t *dip, ddi_detach_cmd_t cmd) 433 { 434 switch (cmd) { 435 case DDI_SUSPEND: 436 break; 437 default: 438 return (DDI_FAILURE); 439 } 440 441 return (DDI_SUCCESS); 442 } 443 444 445 /* 446 * rootnex_dma_init() 447 * 448 */ 449 /*ARGSUSED*/ 450 static int 451 rootnex_dma_init() 452 { 453 size_t bufsize; 454 455 456 /* 457 * size of our cookie/window/copybuf state needed in dma bind that we 458 * pre-alloc in dma_alloc_handle 459 */ 460 rootnex_state->r_prealloc_cookies = rootnex_prealloc_cookies; 461 rootnex_state->r_prealloc_size = 462 (rootnex_state->r_prealloc_cookies * sizeof (ddi_dma_cookie_t)) + 463 (rootnex_prealloc_windows * sizeof (rootnex_window_t)) + 464 (rootnex_prealloc_copybuf * sizeof (rootnex_pgmap_t)); 465 466 /* 467 * setup DDI DMA handle kmem cache, align each handle on 64 bytes, 468 * allocate 16 extra bytes for struct pointer alignment 469 * (p->dmai_private & dma->dp_prealloc_buffer) 470 */ 471 bufsize = sizeof (ddi_dma_impl_t) + sizeof (rootnex_dma_t) + 472 rootnex_state->r_prealloc_size + 0x10; 473 rootnex_state->r_dmahdl_cache = kmem_cache_create("rootnex_dmahdl", 474 bufsize, 64, NULL, NULL, NULL, NULL, NULL, 0); 475 if (rootnex_state->r_dmahdl_cache == NULL) { 476 return (DDI_FAILURE); 477 } 478 479 /* 480 * allocate array to track which major numbers we have printed warnings 481 * for. 482 */ 483 rootnex_warn_list = kmem_zalloc(devcnt * sizeof (*rootnex_warn_list), 484 KM_SLEEP); 485 486 return (DDI_SUCCESS); 487 } 488 489 490 /* 491 * rootnex_add_props() 492 * 493 */ 494 static void 495 rootnex_add_props(dev_info_t *dip) 496 { 497 rootnex_intprop_t *rpp; 498 int i; 499 500 /* Add static integer/boolean properties to the root node */ 501 rpp = rootnex_intprp; 502 for (i = 0; i < NROOT_INTPROPS; i++) { 503 (void) e_ddi_prop_update_int(DDI_DEV_T_NONE, dip, 504 rpp[i].prop_name, rpp[i].prop_value); 505 } 506 } 507 508 509 510 /* 511 * ************************* 512 * ctlops related routines 513 * ************************* 514 */ 515 516 /* 517 * rootnex_ctlops() 518 * 519 */ 520 /*ARGSUSED*/ 521 static int 522 rootnex_ctlops(dev_info_t *dip, dev_info_t *rdip, ddi_ctl_enum_t ctlop, 523 void *arg, void *result) 524 { 525 int n, *ptr; 526 struct ddi_parent_private_data *pdp; 527 528 switch (ctlop) { 529 case DDI_CTLOPS_DMAPMAPC: 530 /* 531 * Return 'partial' to indicate that dma mapping 532 * has to be done in the main MMU. 533 */ 534 return (DDI_DMA_PARTIAL); 535 536 case DDI_CTLOPS_BTOP: 537 /* 538 * Convert byte count input to physical page units. 539 * (byte counts that are not a page-size multiple 540 * are rounded down) 541 */ 542 *(ulong_t *)result = btop(*(ulong_t *)arg); 543 return (DDI_SUCCESS); 544 545 case DDI_CTLOPS_PTOB: 546 /* 547 * Convert size in physical pages to bytes 548 */ 549 *(ulong_t *)result = ptob(*(ulong_t *)arg); 550 return (DDI_SUCCESS); 551 552 case DDI_CTLOPS_BTOPR: 553 /* 554 * Convert byte count input to physical page units 555 * (byte counts that are not a page-size multiple 556 * are rounded up) 557 */ 558 *(ulong_t *)result = btopr(*(ulong_t *)arg); 559 return (DDI_SUCCESS); 560 561 case DDI_CTLOPS_INITCHILD: 562 return (impl_ddi_sunbus_initchild(arg)); 563 564 case DDI_CTLOPS_UNINITCHILD: 565 impl_ddi_sunbus_removechild(arg); 566 return (DDI_SUCCESS); 567 568 case DDI_CTLOPS_REPORTDEV: 569 return (rootnex_ctl_reportdev(rdip)); 570 571 case DDI_CTLOPS_IOMIN: 572 /* 573 * Nothing to do here but reflect back.. 574 */ 575 return (DDI_SUCCESS); 576 577 case DDI_CTLOPS_REGSIZE: 578 case DDI_CTLOPS_NREGS: 579 break; 580 581 case DDI_CTLOPS_SIDDEV: 582 if (ndi_dev_is_prom_node(rdip)) 583 return (DDI_SUCCESS); 584 if (ndi_dev_is_persistent_node(rdip)) 585 return (DDI_SUCCESS); 586 return (DDI_FAILURE); 587 588 case DDI_CTLOPS_POWER: 589 return ((*pm_platform_power)((power_req_t *)arg)); 590 591 case DDI_CTLOPS_RESERVED0: /* Was DDI_CTLOPS_NINTRS, obsolete */ 592 case DDI_CTLOPS_RESERVED1: /* Was DDI_CTLOPS_POKE_INIT, obsolete */ 593 case DDI_CTLOPS_RESERVED2: /* Was DDI_CTLOPS_POKE_FLUSH, obsolete */ 594 case DDI_CTLOPS_RESERVED3: /* Was DDI_CTLOPS_POKE_FINI, obsolete */ 595 case DDI_CTLOPS_RESERVED4: /* Was DDI_CTLOPS_INTR_HILEVEL, obsolete */ 596 case DDI_CTLOPS_RESERVED5: /* Was DDI_CTLOPS_XLATE_INTRS, obsolete */ 597 if (!rootnex_state->r_reserved_msg_printed) { 598 rootnex_state->r_reserved_msg_printed = B_TRUE; 599 cmn_err(CE_WARN, "Failing ddi_ctlops call(s) for " 600 "1 or more reserved/obsolete operations."); 601 } 602 return (DDI_FAILURE); 603 604 default: 605 return (DDI_FAILURE); 606 } 607 /* 608 * The rest are for "hardware" properties 609 */ 610 if ((pdp = ddi_get_parent_data(rdip)) == NULL) 611 return (DDI_FAILURE); 612 613 if (ctlop == DDI_CTLOPS_NREGS) { 614 ptr = (int *)result; 615 *ptr = pdp->par_nreg; 616 } else { 617 off_t *size = (off_t *)result; 618 619 ptr = (int *)arg; 620 n = *ptr; 621 if (n >= pdp->par_nreg) { 622 return (DDI_FAILURE); 623 } 624 *size = (off_t)pdp->par_reg[n].regspec_size; 625 } 626 return (DDI_SUCCESS); 627 } 628 629 630 /* 631 * rootnex_ctl_reportdev() 632 * 633 */ 634 static int 635 rootnex_ctl_reportdev(dev_info_t *dev) 636 { 637 int i, n, len, f_len = 0; 638 char *buf; 639 640 buf = kmem_alloc(REPORTDEV_BUFSIZE, KM_SLEEP); 641 f_len += snprintf(buf, REPORTDEV_BUFSIZE, 642 "%s%d at root", ddi_driver_name(dev), ddi_get_instance(dev)); 643 len = strlen(buf); 644 645 for (i = 0; i < sparc_pd_getnreg(dev); i++) { 646 647 struct regspec *rp = sparc_pd_getreg(dev, i); 648 649 if (i == 0) 650 f_len += snprintf(buf + len, REPORTDEV_BUFSIZE - len, 651 ": "); 652 else 653 f_len += snprintf(buf + len, REPORTDEV_BUFSIZE - len, 654 " and "); 655 len = strlen(buf); 656 657 switch (rp->regspec_bustype) { 658 659 case BTEISA: 660 f_len += snprintf(buf + len, REPORTDEV_BUFSIZE - len, 661 "%s 0x%x", DEVI_EISA_NEXNAME, rp->regspec_addr); 662 break; 663 664 case BTISA: 665 f_len += snprintf(buf + len, REPORTDEV_BUFSIZE - len, 666 "%s 0x%x", DEVI_ISA_NEXNAME, rp->regspec_addr); 667 break; 668 669 default: 670 f_len += snprintf(buf + len, REPORTDEV_BUFSIZE - len, 671 "space %x offset %x", 672 rp->regspec_bustype, rp->regspec_addr); 673 break; 674 } 675 len = strlen(buf); 676 } 677 for (i = 0, n = sparc_pd_getnintr(dev); i < n; i++) { 678 int pri; 679 680 if (i != 0) { 681 f_len += snprintf(buf + len, REPORTDEV_BUFSIZE - len, 682 ","); 683 len = strlen(buf); 684 } 685 pri = INT_IPL(sparc_pd_getintr(dev, i)->intrspec_pri); 686 f_len += snprintf(buf + len, REPORTDEV_BUFSIZE - len, 687 " sparc ipl %d", pri); 688 len = strlen(buf); 689 } 690 #ifdef DEBUG 691 if (f_len + 1 >= REPORTDEV_BUFSIZE) { 692 cmn_err(CE_NOTE, "next message is truncated: " 693 "printed length 1024, real length %d", f_len); 694 } 695 #endif /* DEBUG */ 696 cmn_err(CE_CONT, "?%s\n", buf); 697 kmem_free(buf, REPORTDEV_BUFSIZE); 698 return (DDI_SUCCESS); 699 } 700 701 702 /* 703 * ****************** 704 * map related code 705 * ****************** 706 */ 707 708 /* 709 * rootnex_map() 710 * 711 */ 712 static int 713 rootnex_map(dev_info_t *dip, dev_info_t *rdip, ddi_map_req_t *mp, off_t offset, 714 off_t len, caddr_t *vaddrp) 715 { 716 struct regspec *rp, tmp_reg; 717 ddi_map_req_t mr = *mp; /* Get private copy of request */ 718 int error; 719 720 mp = &mr; 721 722 switch (mp->map_op) { 723 case DDI_MO_MAP_LOCKED: 724 case DDI_MO_UNMAP: 725 case DDI_MO_MAP_HANDLE: 726 break; 727 default: 728 #ifdef DDI_MAP_DEBUG 729 cmn_err(CE_WARN, "rootnex_map: unimplemented map op %d.", 730 mp->map_op); 731 #endif /* DDI_MAP_DEBUG */ 732 return (DDI_ME_UNIMPLEMENTED); 733 } 734 735 if (mp->map_flags & DDI_MF_USER_MAPPING) { 736 #ifdef DDI_MAP_DEBUG 737 cmn_err(CE_WARN, "rootnex_map: unimplemented map type: user."); 738 #endif /* DDI_MAP_DEBUG */ 739 return (DDI_ME_UNIMPLEMENTED); 740 } 741 742 /* 743 * First, if given an rnumber, convert it to a regspec... 744 * (Presumably, this is on behalf of a child of the root node?) 745 */ 746 747 if (mp->map_type == DDI_MT_RNUMBER) { 748 749 int rnumber = mp->map_obj.rnumber; 750 #ifdef DDI_MAP_DEBUG 751 static char *out_of_range = 752 "rootnex_map: Out of range rnumber <%d>, device <%s>"; 753 #endif /* DDI_MAP_DEBUG */ 754 755 rp = i_ddi_rnumber_to_regspec(rdip, rnumber); 756 if (rp == NULL) { 757 #ifdef DDI_MAP_DEBUG 758 cmn_err(CE_WARN, out_of_range, rnumber, 759 ddi_get_name(rdip)); 760 #endif /* DDI_MAP_DEBUG */ 761 return (DDI_ME_RNUMBER_RANGE); 762 } 763 764 /* 765 * Convert the given ddi_map_req_t from rnumber to regspec... 766 */ 767 768 mp->map_type = DDI_MT_REGSPEC; 769 mp->map_obj.rp = rp; 770 } 771 772 /* 773 * Adjust offset and length correspnding to called values... 774 * XXX: A non-zero length means override the one in the regspec 775 * XXX: (regardless of what's in the parent's range?) 776 */ 777 778 tmp_reg = *(mp->map_obj.rp); /* Preserve underlying data */ 779 rp = mp->map_obj.rp = &tmp_reg; /* Use tmp_reg in request */ 780 781 #ifdef DDI_MAP_DEBUG 782 cmn_err(CE_CONT, 783 "rootnex: <%s,%s> <0x%x, 0x%x, 0x%d>" 784 " offset %d len %d handle 0x%x\n", 785 ddi_get_name(dip), ddi_get_name(rdip), 786 rp->regspec_bustype, rp->regspec_addr, rp->regspec_size, 787 offset, len, mp->map_handlep); 788 #endif /* DDI_MAP_DEBUG */ 789 790 /* 791 * I/O or memory mapping: 792 * 793 * <bustype=0, addr=x, len=x>: memory 794 * <bustype=1, addr=x, len=x>: i/o 795 * <bustype>1, addr=0, len=x>: x86-compatibility i/o 796 */ 797 798 if (rp->regspec_bustype > 1 && rp->regspec_addr != 0) { 799 cmn_err(CE_WARN, "<%s,%s> invalid register spec" 800 " <0x%x, 0x%x, 0x%x>", ddi_get_name(dip), 801 ddi_get_name(rdip), rp->regspec_bustype, 802 rp->regspec_addr, rp->regspec_size); 803 return (DDI_ME_INVAL); 804 } 805 806 if (rp->regspec_bustype > 1 && rp->regspec_addr == 0) { 807 /* 808 * compatibility i/o mapping 809 */ 810 rp->regspec_bustype += (uint_t)offset; 811 } else { 812 /* 813 * Normal memory or i/o mapping 814 */ 815 rp->regspec_addr += (uint_t)offset; 816 } 817 818 if (len != 0) 819 rp->regspec_size = (uint_t)len; 820 821 #ifdef DDI_MAP_DEBUG 822 cmn_err(CE_CONT, 823 " <%s,%s> <0x%x, 0x%x, 0x%d>" 824 " offset %d len %d handle 0x%x\n", 825 ddi_get_name(dip), ddi_get_name(rdip), 826 rp->regspec_bustype, rp->regspec_addr, rp->regspec_size, 827 offset, len, mp->map_handlep); 828 #endif /* DDI_MAP_DEBUG */ 829 830 /* 831 * Apply any parent ranges at this level, if applicable. 832 * (This is where nexus specific regspec translation takes place. 833 * Use of this function is implicit agreement that translation is 834 * provided via ddi_apply_range.) 835 */ 836 837 #ifdef DDI_MAP_DEBUG 838 ddi_map_debug("applying range of parent <%s> to child <%s>...\n", 839 ddi_get_name(dip), ddi_get_name(rdip)); 840 #endif /* DDI_MAP_DEBUG */ 841 842 if ((error = i_ddi_apply_range(dip, rdip, mp->map_obj.rp)) != 0) 843 return (error); 844 845 switch (mp->map_op) { 846 case DDI_MO_MAP_LOCKED: 847 848 /* 849 * Set up the locked down kernel mapping to the regspec... 850 */ 851 852 return (rootnex_map_regspec(mp, vaddrp)); 853 854 case DDI_MO_UNMAP: 855 856 /* 857 * Release mapping... 858 */ 859 860 return (rootnex_unmap_regspec(mp, vaddrp)); 861 862 case DDI_MO_MAP_HANDLE: 863 864 return (rootnex_map_handle(mp)); 865 866 default: 867 return (DDI_ME_UNIMPLEMENTED); 868 } 869 } 870 871 872 /* 873 * rootnex_map_fault() 874 * 875 * fault in mappings for requestors 876 */ 877 /*ARGSUSED*/ 878 static int 879 rootnex_map_fault(dev_info_t *dip, dev_info_t *rdip, struct hat *hat, 880 struct seg *seg, caddr_t addr, struct devpage *dp, pfn_t pfn, uint_t prot, 881 uint_t lock) 882 { 883 884 #ifdef DDI_MAP_DEBUG 885 ddi_map_debug("rootnex_map_fault: address <%x> pfn <%x>", addr, pfn); 886 ddi_map_debug(" Seg <%s>\n", 887 seg->s_ops == &segdev_ops ? "segdev" : 888 seg == &kvseg ? "segkmem" : "NONE!"); 889 #endif /* DDI_MAP_DEBUG */ 890 891 /* 892 * This is all terribly broken, but it is a start 893 * 894 * XXX Note that this test means that segdev_ops 895 * must be exported from seg_dev.c. 896 * XXX What about devices with their own segment drivers? 897 */ 898 if (seg->s_ops == &segdev_ops) { 899 struct segdev_data *sdp = 900 (struct segdev_data *)seg->s_data; 901 902 if (hat == NULL) { 903 /* 904 * This is one plausible interpretation of 905 * a null hat i.e. use the first hat on the 906 * address space hat list which by convention is 907 * the hat of the system MMU. At alternative 908 * would be to panic .. this might well be better .. 909 */ 910 ASSERT(AS_READ_HELD(seg->s_as, &seg->s_as->a_lock)); 911 hat = seg->s_as->a_hat; 912 cmn_err(CE_NOTE, "rootnex_map_fault: nil hat"); 913 } 914 hat_devload(hat, addr, MMU_PAGESIZE, pfn, prot | sdp->hat_attr, 915 (lock ? HAT_LOAD_LOCK : HAT_LOAD)); 916 } else if (seg == &kvseg && dp == NULL) { 917 hat_devload(kas.a_hat, addr, MMU_PAGESIZE, pfn, prot, 918 HAT_LOAD_LOCK); 919 } else 920 return (DDI_FAILURE); 921 return (DDI_SUCCESS); 922 } 923 924 925 /* 926 * rootnex_map_regspec() 927 * we don't support mapping of I/O cards above 4Gb 928 */ 929 static int 930 rootnex_map_regspec(ddi_map_req_t *mp, caddr_t *vaddrp) 931 { 932 ulong_t base; 933 void *cvaddr; 934 uint_t npages, pgoffset; 935 struct regspec *rp; 936 ddi_acc_hdl_t *hp; 937 ddi_acc_impl_t *ap; 938 uint_t hat_acc_flags; 939 940 rp = mp->map_obj.rp; 941 hp = mp->map_handlep; 942 943 #ifdef DDI_MAP_DEBUG 944 ddi_map_debug( 945 "rootnex_map_regspec: <0x%x 0x%x 0x%x> handle 0x%x\n", 946 rp->regspec_bustype, rp->regspec_addr, 947 rp->regspec_size, mp->map_handlep); 948 #endif /* DDI_MAP_DEBUG */ 949 950 /* 951 * I/O or memory mapping 952 * 953 * <bustype=0, addr=x, len=x>: memory 954 * <bustype=1, addr=x, len=x>: i/o 955 * <bustype>1, addr=0, len=x>: x86-compatibility i/o 956 */ 957 958 if (rp->regspec_bustype > 1 && rp->regspec_addr != 0) { 959 cmn_err(CE_WARN, "rootnex: invalid register spec" 960 " <0x%x, 0x%x, 0x%x>", rp->regspec_bustype, 961 rp->regspec_addr, rp->regspec_size); 962 return (DDI_FAILURE); 963 } 964 965 if (rp->regspec_bustype != 0) { 966 /* 967 * I/O space - needs a handle. 968 */ 969 if (hp == NULL) { 970 return (DDI_FAILURE); 971 } 972 ap = (ddi_acc_impl_t *)hp->ah_platform_private; 973 ap->ahi_acc_attr |= DDI_ACCATTR_IO_SPACE; 974 impl_acc_hdl_init(hp); 975 976 if (mp->map_flags & DDI_MF_DEVICE_MAPPING) { 977 #ifdef DDI_MAP_DEBUG 978 ddi_map_debug("rootnex_map_regspec: mmap() \ 979 to I/O space is not supported.\n"); 980 #endif /* DDI_MAP_DEBUG */ 981 return (DDI_ME_INVAL); 982 } else { 983 /* 984 * 1275-compliant vs. compatibility i/o mapping 985 */ 986 *vaddrp = 987 (rp->regspec_bustype > 1 && rp->regspec_addr == 0) ? 988 ((caddr_t)(uintptr_t)rp->regspec_bustype) : 989 ((caddr_t)(uintptr_t)rp->regspec_addr); 990 991 hp->ah_pfn = mmu_btop((ulong_t)rp->regspec_addr & 992 (~MMU_PAGEOFFSET)); 993 hp->ah_pnum = mmu_btopr(rp->regspec_size + 994 (ulong_t)rp->regspec_addr & MMU_PAGEOFFSET); 995 } 996 997 #ifdef DDI_MAP_DEBUG 998 ddi_map_debug( 999 "rootnex_map_regspec: \"Mapping\" %d bytes I/O space at 0x%x\n", 1000 rp->regspec_size, *vaddrp); 1001 #endif /* DDI_MAP_DEBUG */ 1002 return (DDI_SUCCESS); 1003 } 1004 1005 /* 1006 * Memory space 1007 */ 1008 1009 if (hp != NULL) { 1010 /* 1011 * hat layer ignores 1012 * hp->ah_acc.devacc_attr_endian_flags. 1013 */ 1014 switch (hp->ah_acc.devacc_attr_dataorder) { 1015 case DDI_STRICTORDER_ACC: 1016 hat_acc_flags = HAT_STRICTORDER; 1017 break; 1018 case DDI_UNORDERED_OK_ACC: 1019 hat_acc_flags = HAT_UNORDERED_OK; 1020 break; 1021 case DDI_MERGING_OK_ACC: 1022 hat_acc_flags = HAT_MERGING_OK; 1023 break; 1024 case DDI_LOADCACHING_OK_ACC: 1025 hat_acc_flags = HAT_LOADCACHING_OK; 1026 break; 1027 case DDI_STORECACHING_OK_ACC: 1028 hat_acc_flags = HAT_STORECACHING_OK; 1029 break; 1030 } 1031 ap = (ddi_acc_impl_t *)hp->ah_platform_private; 1032 ap->ahi_acc_attr |= DDI_ACCATTR_CPU_VADDR; 1033 impl_acc_hdl_init(hp); 1034 hp->ah_hat_flags = hat_acc_flags; 1035 } else { 1036 hat_acc_flags = HAT_STRICTORDER; 1037 } 1038 1039 base = (ulong_t)rp->regspec_addr & (~MMU_PAGEOFFSET); /* base addr */ 1040 pgoffset = (ulong_t)rp->regspec_addr & MMU_PAGEOFFSET; /* offset */ 1041 1042 if (rp->regspec_size == 0) { 1043 #ifdef DDI_MAP_DEBUG 1044 ddi_map_debug("rootnex_map_regspec: zero regspec_size\n"); 1045 #endif /* DDI_MAP_DEBUG */ 1046 return (DDI_ME_INVAL); 1047 } 1048 1049 if (mp->map_flags & DDI_MF_DEVICE_MAPPING) { 1050 *vaddrp = (caddr_t)mmu_btop(base); 1051 } else { 1052 npages = mmu_btopr(rp->regspec_size + pgoffset); 1053 1054 #ifdef DDI_MAP_DEBUG 1055 ddi_map_debug("rootnex_map_regspec: Mapping %d pages \ 1056 physical %x ", 1057 npages, base); 1058 #endif /* DDI_MAP_DEBUG */ 1059 1060 cvaddr = device_arena_alloc(ptob(npages), VM_NOSLEEP); 1061 if (cvaddr == NULL) 1062 return (DDI_ME_NORESOURCES); 1063 1064 /* 1065 * Now map in the pages we've allocated... 1066 */ 1067 hat_devload(kas.a_hat, cvaddr, mmu_ptob(npages), mmu_btop(base), 1068 mp->map_prot | hat_acc_flags, HAT_LOAD_LOCK); 1069 *vaddrp = (caddr_t)cvaddr + pgoffset; 1070 1071 /* save away pfn and npages for FMA */ 1072 hp = mp->map_handlep; 1073 if (hp) { 1074 hp->ah_pfn = mmu_btop(base); 1075 hp->ah_pnum = npages; 1076 } 1077 } 1078 1079 #ifdef DDI_MAP_DEBUG 1080 ddi_map_debug("at virtual 0x%x\n", *vaddrp); 1081 #endif /* DDI_MAP_DEBUG */ 1082 return (DDI_SUCCESS); 1083 } 1084 1085 1086 /* 1087 * rootnex_unmap_regspec() 1088 * 1089 */ 1090 static int 1091 rootnex_unmap_regspec(ddi_map_req_t *mp, caddr_t *vaddrp) 1092 { 1093 caddr_t addr = (caddr_t)*vaddrp; 1094 uint_t npages, pgoffset; 1095 struct regspec *rp; 1096 1097 if (mp->map_flags & DDI_MF_DEVICE_MAPPING) 1098 return (0); 1099 1100 rp = mp->map_obj.rp; 1101 1102 if (rp->regspec_size == 0) { 1103 #ifdef DDI_MAP_DEBUG 1104 ddi_map_debug("rootnex_unmap_regspec: zero regspec_size\n"); 1105 #endif /* DDI_MAP_DEBUG */ 1106 return (DDI_ME_INVAL); 1107 } 1108 1109 /* 1110 * I/O or memory mapping: 1111 * 1112 * <bustype=0, addr=x, len=x>: memory 1113 * <bustype=1, addr=x, len=x>: i/o 1114 * <bustype>1, addr=0, len=x>: x86-compatibility i/o 1115 */ 1116 if (rp->regspec_bustype != 0) { 1117 /* 1118 * This is I/O space, which requires no particular 1119 * processing on unmap since it isn't mapped in the 1120 * first place. 1121 */ 1122 return (DDI_SUCCESS); 1123 } 1124 1125 /* 1126 * Memory space 1127 */ 1128 pgoffset = (uintptr_t)addr & MMU_PAGEOFFSET; 1129 npages = mmu_btopr(rp->regspec_size + pgoffset); 1130 hat_unload(kas.a_hat, addr - pgoffset, ptob(npages), HAT_UNLOAD_UNLOCK); 1131 device_arena_free(addr - pgoffset, ptob(npages)); 1132 1133 /* 1134 * Destroy the pointer - the mapping has logically gone 1135 */ 1136 *vaddrp = NULL; 1137 1138 return (DDI_SUCCESS); 1139 } 1140 1141 1142 /* 1143 * rootnex_map_handle() 1144 * 1145 */ 1146 static int 1147 rootnex_map_handle(ddi_map_req_t *mp) 1148 { 1149 ddi_acc_hdl_t *hp; 1150 ulong_t base; 1151 uint_t pgoffset; 1152 struct regspec *rp; 1153 1154 rp = mp->map_obj.rp; 1155 1156 #ifdef DDI_MAP_DEBUG 1157 ddi_map_debug( 1158 "rootnex_map_handle: <0x%x 0x%x 0x%x> handle 0x%x\n", 1159 rp->regspec_bustype, rp->regspec_addr, 1160 rp->regspec_size, mp->map_handlep); 1161 #endif /* DDI_MAP_DEBUG */ 1162 1163 /* 1164 * I/O or memory mapping: 1165 * 1166 * <bustype=0, addr=x, len=x>: memory 1167 * <bustype=1, addr=x, len=x>: i/o 1168 * <bustype>1, addr=0, len=x>: x86-compatibility i/o 1169 */ 1170 if (rp->regspec_bustype != 0) { 1171 /* 1172 * This refers to I/O space, and we don't support "mapping" 1173 * I/O space to a user. 1174 */ 1175 return (DDI_FAILURE); 1176 } 1177 1178 /* 1179 * Set up the hat_flags for the mapping. 1180 */ 1181 hp = mp->map_handlep; 1182 1183 switch (hp->ah_acc.devacc_attr_endian_flags) { 1184 case DDI_NEVERSWAP_ACC: 1185 hp->ah_hat_flags = HAT_NEVERSWAP | HAT_STRICTORDER; 1186 break; 1187 case DDI_STRUCTURE_LE_ACC: 1188 hp->ah_hat_flags = HAT_STRUCTURE_LE; 1189 break; 1190 case DDI_STRUCTURE_BE_ACC: 1191 return (DDI_FAILURE); 1192 default: 1193 return (DDI_REGS_ACC_CONFLICT); 1194 } 1195 1196 switch (hp->ah_acc.devacc_attr_dataorder) { 1197 case DDI_STRICTORDER_ACC: 1198 break; 1199 case DDI_UNORDERED_OK_ACC: 1200 hp->ah_hat_flags |= HAT_UNORDERED_OK; 1201 break; 1202 case DDI_MERGING_OK_ACC: 1203 hp->ah_hat_flags |= HAT_MERGING_OK; 1204 break; 1205 case DDI_LOADCACHING_OK_ACC: 1206 hp->ah_hat_flags |= HAT_LOADCACHING_OK; 1207 break; 1208 case DDI_STORECACHING_OK_ACC: 1209 hp->ah_hat_flags |= HAT_STORECACHING_OK; 1210 break; 1211 default: 1212 return (DDI_FAILURE); 1213 } 1214 1215 base = (ulong_t)rp->regspec_addr & (~MMU_PAGEOFFSET); /* base addr */ 1216 pgoffset = (ulong_t)rp->regspec_addr & MMU_PAGEOFFSET; /* offset */ 1217 1218 if (rp->regspec_size == 0) 1219 return (DDI_ME_INVAL); 1220 1221 hp->ah_pfn = mmu_btop(base); 1222 hp->ah_pnum = mmu_btopr(rp->regspec_size + pgoffset); 1223 1224 return (DDI_SUCCESS); 1225 } 1226 1227 1228 1229 /* 1230 * ************************ 1231 * interrupt related code 1232 * ************************ 1233 */ 1234 1235 /* 1236 * rootnex_intr_ops() 1237 * bus_intr_op() function for interrupt support 1238 */ 1239 /* ARGSUSED */ 1240 static int 1241 rootnex_intr_ops(dev_info_t *pdip, dev_info_t *rdip, ddi_intr_op_t intr_op, 1242 ddi_intr_handle_impl_t *hdlp, void *result) 1243 { 1244 struct intrspec *ispec; 1245 struct ddi_parent_private_data *pdp; 1246 1247 DDI_INTR_NEXDBG((CE_CONT, 1248 "rootnex_intr_ops: pdip = %p, rdip = %p, intr_op = %x, hdlp = %p\n", 1249 (void *)pdip, (void *)rdip, intr_op, (void *)hdlp)); 1250 1251 /* Process the interrupt operation */ 1252 switch (intr_op) { 1253 case DDI_INTROP_GETCAP: 1254 /* First check with pcplusmp */ 1255 if (psm_intr_ops == NULL) 1256 return (DDI_FAILURE); 1257 1258 if ((*psm_intr_ops)(rdip, hdlp, PSM_INTR_OP_GET_CAP, result)) { 1259 *(int *)result = 0; 1260 return (DDI_FAILURE); 1261 } 1262 break; 1263 case DDI_INTROP_SETCAP: 1264 if (psm_intr_ops == NULL) 1265 return (DDI_FAILURE); 1266 1267 if ((*psm_intr_ops)(rdip, hdlp, PSM_INTR_OP_SET_CAP, result)) 1268 return (DDI_FAILURE); 1269 break; 1270 case DDI_INTROP_ALLOC: 1271 if ((ispec = rootnex_get_ispec(rdip, hdlp->ih_inum)) == NULL) 1272 return (DDI_FAILURE); 1273 hdlp->ih_pri = ispec->intrspec_pri; 1274 *(int *)result = hdlp->ih_scratch1; 1275 break; 1276 case DDI_INTROP_FREE: 1277 pdp = ddi_get_parent_data(rdip); 1278 /* 1279 * Special case for 'pcic' driver' only. 1280 * If an intrspec was created for it, clean it up here 1281 * See detailed comments on this in the function 1282 * rootnex_get_ispec(). 1283 */ 1284 if (pdp->par_intr && strcmp(ddi_get_name(rdip), "pcic") == 0) { 1285 kmem_free(pdp->par_intr, sizeof (struct intrspec) * 1286 pdp->par_nintr); 1287 /* 1288 * Set it to zero; so that 1289 * DDI framework doesn't free it again 1290 */ 1291 pdp->par_intr = NULL; 1292 pdp->par_nintr = 0; 1293 } 1294 break; 1295 case DDI_INTROP_GETPRI: 1296 if ((ispec = rootnex_get_ispec(rdip, hdlp->ih_inum)) == NULL) 1297 return (DDI_FAILURE); 1298 *(int *)result = ispec->intrspec_pri; 1299 break; 1300 case DDI_INTROP_SETPRI: 1301 /* Validate the interrupt priority passed to us */ 1302 if (*(int *)result > LOCK_LEVEL) 1303 return (DDI_FAILURE); 1304 1305 /* Ensure that PSM is all initialized and ispec is ok */ 1306 if ((psm_intr_ops == NULL) || 1307 ((ispec = rootnex_get_ispec(rdip, hdlp->ih_inum)) == NULL)) 1308 return (DDI_FAILURE); 1309 1310 /* Change the priority */ 1311 if ((*psm_intr_ops)(rdip, hdlp, PSM_INTR_OP_SET_PRI, result) == 1312 PSM_FAILURE) 1313 return (DDI_FAILURE); 1314 1315 /* update the ispec with the new priority */ 1316 ispec->intrspec_pri = *(int *)result; 1317 break; 1318 case DDI_INTROP_ADDISR: 1319 if ((ispec = rootnex_get_ispec(rdip, hdlp->ih_inum)) == NULL) 1320 return (DDI_FAILURE); 1321 ispec->intrspec_func = hdlp->ih_cb_func; 1322 break; 1323 case DDI_INTROP_REMISR: 1324 if ((ispec = rootnex_get_ispec(rdip, hdlp->ih_inum)) == NULL) 1325 return (DDI_FAILURE); 1326 ispec->intrspec_func = (uint_t (*)()) 0; 1327 break; 1328 case DDI_INTROP_ENABLE: 1329 if ((ispec = rootnex_get_ispec(rdip, hdlp->ih_inum)) == NULL) 1330 return (DDI_FAILURE); 1331 1332 /* Call psmi to translate irq with the dip */ 1333 if (psm_intr_ops == NULL) 1334 return (DDI_FAILURE); 1335 1336 ((ihdl_plat_t *)hdlp->ih_private)->ip_ispecp = ispec; 1337 (void) (*psm_intr_ops)(rdip, hdlp, PSM_INTR_OP_XLATE_VECTOR, 1338 (int *)&hdlp->ih_vector); 1339 1340 /* Add the interrupt handler */ 1341 if (!add_avintr((void *)hdlp, ispec->intrspec_pri, 1342 hdlp->ih_cb_func, DEVI(rdip)->devi_name, hdlp->ih_vector, 1343 hdlp->ih_cb_arg1, hdlp->ih_cb_arg2, NULL, rdip)) 1344 return (DDI_FAILURE); 1345 break; 1346 case DDI_INTROP_DISABLE: 1347 if ((ispec = rootnex_get_ispec(rdip, hdlp->ih_inum)) == NULL) 1348 return (DDI_FAILURE); 1349 1350 /* Call psm_ops() to translate irq with the dip */ 1351 if (psm_intr_ops == NULL) 1352 return (DDI_FAILURE); 1353 1354 ((ihdl_plat_t *)hdlp->ih_private)->ip_ispecp = ispec; 1355 (void) (*psm_intr_ops)(rdip, hdlp, 1356 PSM_INTR_OP_XLATE_VECTOR, (int *)&hdlp->ih_vector); 1357 1358 /* Remove the interrupt handler */ 1359 rem_avintr((void *)hdlp, ispec->intrspec_pri, 1360 hdlp->ih_cb_func, hdlp->ih_vector); 1361 break; 1362 case DDI_INTROP_SETMASK: 1363 if (psm_intr_ops == NULL) 1364 return (DDI_FAILURE); 1365 1366 if ((*psm_intr_ops)(rdip, hdlp, PSM_INTR_OP_SET_MASK, NULL)) 1367 return (DDI_FAILURE); 1368 break; 1369 case DDI_INTROP_CLRMASK: 1370 if (psm_intr_ops == NULL) 1371 return (DDI_FAILURE); 1372 1373 if ((*psm_intr_ops)(rdip, hdlp, PSM_INTR_OP_CLEAR_MASK, NULL)) 1374 return (DDI_FAILURE); 1375 break; 1376 case DDI_INTROP_GETPENDING: 1377 if (psm_intr_ops == NULL) 1378 return (DDI_FAILURE); 1379 1380 if ((*psm_intr_ops)(rdip, hdlp, PSM_INTR_OP_GET_PENDING, 1381 result)) { 1382 *(int *)result = 0; 1383 return (DDI_FAILURE); 1384 } 1385 break; 1386 case DDI_INTROP_NAVAIL: 1387 case DDI_INTROP_NINTRS: 1388 *(int *)result = i_ddi_get_intx_nintrs(rdip); 1389 if (*(int *)result == 0) { 1390 /* 1391 * Special case for 'pcic' driver' only. This driver 1392 * driver is a child of 'isa' and 'rootnex' drivers. 1393 * 1394 * See detailed comments on this in the function 1395 * rootnex_get_ispec(). 1396 * 1397 * Children of 'pcic' send 'NINITR' request all the 1398 * way to rootnex driver. But, the 'pdp->par_nintr' 1399 * field may not initialized. So, we fake it here 1400 * to return 1 (a la what PCMCIA nexus does). 1401 */ 1402 if (strcmp(ddi_get_name(rdip), "pcic") == 0) 1403 *(int *)result = 1; 1404 else 1405 return (DDI_FAILURE); 1406 } 1407 break; 1408 case DDI_INTROP_SUPPORTED_TYPES: 1409 *(int *)result = DDI_INTR_TYPE_FIXED; /* Always ... */ 1410 break; 1411 default: 1412 return (DDI_FAILURE); 1413 } 1414 1415 return (DDI_SUCCESS); 1416 } 1417 1418 1419 /* 1420 * rootnex_get_ispec() 1421 * convert an interrupt number to an interrupt specification. 1422 * The interrupt number determines which interrupt spec will be 1423 * returned if more than one exists. 1424 * 1425 * Look into the parent private data area of the 'rdip' to find out 1426 * the interrupt specification. First check to make sure there is 1427 * one that matchs "inumber" and then return a pointer to it. 1428 * 1429 * Return NULL if one could not be found. 1430 * 1431 * NOTE: This is needed for rootnex_intr_ops() 1432 */ 1433 static struct intrspec * 1434 rootnex_get_ispec(dev_info_t *rdip, int inum) 1435 { 1436 struct ddi_parent_private_data *pdp = ddi_get_parent_data(rdip); 1437 1438 /* 1439 * Special case handling for drivers that provide their own 1440 * intrspec structures instead of relying on the DDI framework. 1441 * 1442 * A broken hardware driver in ON could potentially provide its 1443 * own intrspec structure, instead of relying on the hardware. 1444 * If these drivers are children of 'rootnex' then we need to 1445 * continue to provide backward compatibility to them here. 1446 * 1447 * Following check is a special case for 'pcic' driver which 1448 * was found to have broken hardwre andby provides its own intrspec. 1449 * 1450 * Verbatim comments from this driver are shown here: 1451 * "Don't use the ddi_add_intr since we don't have a 1452 * default intrspec in all cases." 1453 * 1454 * Since an 'ispec' may not be always created for it, 1455 * check for that and create one if so. 1456 * 1457 * NOTE: Currently 'pcic' is the only driver found to do this. 1458 */ 1459 if (!pdp->par_intr && strcmp(ddi_get_name(rdip), "pcic") == 0) { 1460 pdp->par_nintr = 1; 1461 pdp->par_intr = kmem_zalloc(sizeof (struct intrspec) * 1462 pdp->par_nintr, KM_SLEEP); 1463 } 1464 1465 /* Validate the interrupt number */ 1466 if (inum >= pdp->par_nintr) 1467 return (NULL); 1468 1469 /* Get the interrupt structure pointer and return that */ 1470 return ((struct intrspec *)&pdp->par_intr[inum]); 1471 } 1472 1473 1474 /* 1475 * ****************** 1476 * dma related code 1477 * ****************** 1478 */ 1479 1480 /* 1481 * rootnex_dma_allochdl() 1482 * called from ddi_dma_alloc_handle(). 1483 */ 1484 /*ARGSUSED*/ 1485 static int 1486 rootnex_dma_allochdl(dev_info_t *dip, dev_info_t *rdip, ddi_dma_attr_t *attr, 1487 int (*waitfp)(caddr_t), caddr_t arg, ddi_dma_handle_t *handlep) 1488 { 1489 uint64_t maxsegmentsize_ll; 1490 uint_t maxsegmentsize; 1491 ddi_dma_impl_t *hp; 1492 rootnex_dma_t *dma; 1493 uint64_t count_max; 1494 uint64_t seg; 1495 int kmflag; 1496 int e; 1497 1498 1499 /* convert our sleep flags */ 1500 if (waitfp == DDI_DMA_SLEEP) { 1501 kmflag = KM_SLEEP; 1502 } else { 1503 kmflag = KM_NOSLEEP; 1504 } 1505 1506 /* 1507 * We try to do only one memory allocation here. We'll do a little 1508 * pointer manipulation later. If the bind ends up taking more than 1509 * our prealloc's space, we'll have to allocate more memory in the 1510 * bind operation. Not great, but much better than before and the 1511 * best we can do with the current bind interfaces. 1512 */ 1513 hp = kmem_cache_alloc(rootnex_state->r_dmahdl_cache, kmflag); 1514 if (hp == NULL) { 1515 if (waitfp != DDI_DMA_DONTWAIT) { 1516 ddi_set_callback(waitfp, arg, 1517 &rootnex_state->r_dvma_call_list_id); 1518 } 1519 return (DDI_DMA_NORESOURCES); 1520 } 1521 1522 /* Do our pointer manipulation now, align the structures */ 1523 hp->dmai_private = (void *)(((uintptr_t)hp + 1524 (uintptr_t)sizeof (ddi_dma_impl_t) + 0x7) & ~0x7); 1525 dma = (rootnex_dma_t *)hp->dmai_private; 1526 dma->dp_prealloc_buffer = (uchar_t *)(((uintptr_t)dma + 1527 sizeof (rootnex_dma_t) + 0x7) & ~0x7); 1528 1529 /* setup the handle */ 1530 rootnex_clean_dmahdl(hp); 1531 dma->dp_dip = rdip; 1532 dma->dp_sglinfo.si_min_addr = attr->dma_attr_addr_lo; 1533 dma->dp_sglinfo.si_max_addr = attr->dma_attr_addr_hi; 1534 hp->dmai_minxfer = attr->dma_attr_minxfer; 1535 hp->dmai_burstsizes = attr->dma_attr_burstsizes; 1536 hp->dmai_rdip = rdip; 1537 hp->dmai_attr = *attr; 1538 1539 /* we don't need to worry about the SPL since we do a tryenter */ 1540 mutex_init(&dma->dp_mutex, NULL, MUTEX_DRIVER, NULL); 1541 1542 /* 1543 * Figure out our maximum segment size. If the segment size is greater 1544 * than 4G, we will limit it to (4G - 1) since the max size of a dma 1545 * object (ddi_dma_obj_t.dmao_size) is 32 bits. dma_attr_seg and 1546 * dma_attr_count_max are size-1 type values. 1547 * 1548 * Maximum segment size is the largest physically contiguous chunk of 1549 * memory that we can return from a bind (i.e. the maximum size of a 1550 * single cookie). 1551 */ 1552 1553 /* handle the rollover cases */ 1554 seg = attr->dma_attr_seg + 1; 1555 if (seg < attr->dma_attr_seg) { 1556 seg = attr->dma_attr_seg; 1557 } 1558 count_max = attr->dma_attr_count_max + 1; 1559 if (count_max < attr->dma_attr_count_max) { 1560 count_max = attr->dma_attr_count_max; 1561 } 1562 1563 /* 1564 * granularity may or may not be a power of two. If it isn't, we can't 1565 * use a simple mask. 1566 */ 1567 if (attr->dma_attr_granular & (attr->dma_attr_granular - 1)) { 1568 dma->dp_granularity_power_2 = B_FALSE; 1569 } else { 1570 dma->dp_granularity_power_2 = B_TRUE; 1571 } 1572 1573 /* 1574 * maxxfer should be a whole multiple of granularity. If we're going to 1575 * break up a window because we're greater than maxxfer, we might as 1576 * well make sure it's maxxfer is a whole multiple so we don't have to 1577 * worry about triming the window later on for this case. 1578 */ 1579 if (attr->dma_attr_granular > 1) { 1580 if (dma->dp_granularity_power_2) { 1581 dma->dp_maxxfer = attr->dma_attr_maxxfer - 1582 (attr->dma_attr_maxxfer & 1583 (attr->dma_attr_granular - 1)); 1584 } else { 1585 dma->dp_maxxfer = attr->dma_attr_maxxfer - 1586 (attr->dma_attr_maxxfer % attr->dma_attr_granular); 1587 } 1588 } else { 1589 dma->dp_maxxfer = attr->dma_attr_maxxfer; 1590 } 1591 1592 maxsegmentsize_ll = MIN(seg, dma->dp_maxxfer); 1593 maxsegmentsize_ll = MIN(maxsegmentsize_ll, count_max); 1594 if (maxsegmentsize_ll == 0 || (maxsegmentsize_ll > 0xFFFFFFFF)) { 1595 maxsegmentsize = 0xFFFFFFFF; 1596 } else { 1597 maxsegmentsize = maxsegmentsize_ll; 1598 } 1599 dma->dp_sglinfo.si_max_cookie_size = maxsegmentsize; 1600 dma->dp_sglinfo.si_segmask = attr->dma_attr_seg; 1601 1602 /* check the ddi_dma_attr arg to make sure it makes a little sense */ 1603 if (rootnex_alloc_check_parms) { 1604 e = rootnex_valid_alloc_parms(attr, maxsegmentsize); 1605 if (e != DDI_SUCCESS) { 1606 ROOTNEX_PROF_INC(&rootnex_cnt[ROOTNEX_CNT_ALLOC_FAIL]); 1607 (void) rootnex_dma_freehdl(dip, rdip, 1608 (ddi_dma_handle_t)hp); 1609 return (e); 1610 } 1611 } 1612 1613 *handlep = (ddi_dma_handle_t)hp; 1614 1615 ROOTNEX_PROF_INC(&rootnex_cnt[ROOTNEX_CNT_ACTIVE_HDLS]); 1616 DTRACE_PROBE1(rootnex__alloc__handle, uint64_t, 1617 rootnex_cnt[ROOTNEX_CNT_ACTIVE_HDLS]); 1618 1619 return (DDI_SUCCESS); 1620 } 1621 1622 1623 /* 1624 * rootnex_dma_freehdl() 1625 * called from ddi_dma_free_handle(). 1626 */ 1627 /*ARGSUSED*/ 1628 static int 1629 rootnex_dma_freehdl(dev_info_t *dip, dev_info_t *rdip, ddi_dma_handle_t handle) 1630 { 1631 ddi_dma_impl_t *hp; 1632 rootnex_dma_t *dma; 1633 1634 1635 hp = (ddi_dma_impl_t *)handle; 1636 dma = (rootnex_dma_t *)hp->dmai_private; 1637 1638 /* unbind should have been called first */ 1639 ASSERT(!dma->dp_inuse); 1640 1641 mutex_destroy(&dma->dp_mutex); 1642 kmem_cache_free(rootnex_state->r_dmahdl_cache, hp); 1643 1644 ROOTNEX_PROF_DEC(&rootnex_cnt[ROOTNEX_CNT_ACTIVE_HDLS]); 1645 DTRACE_PROBE1(rootnex__free__handle, uint64_t, 1646 rootnex_cnt[ROOTNEX_CNT_ACTIVE_HDLS]); 1647 1648 if (rootnex_state->r_dvma_call_list_id) 1649 ddi_run_callback(&rootnex_state->r_dvma_call_list_id); 1650 1651 return (DDI_SUCCESS); 1652 } 1653 1654 1655 /* 1656 * rootnex_dma_bindhdl() 1657 * called from ddi_dma_addr_bind_handle() and ddi_dma_buf_bind_handle(). 1658 */ 1659 /*ARGSUSED*/ 1660 static int 1661 rootnex_dma_bindhdl(dev_info_t *dip, dev_info_t *rdip, ddi_dma_handle_t handle, 1662 struct ddi_dma_req *dmareq, ddi_dma_cookie_t *cookiep, uint_t *ccountp) 1663 { 1664 rootnex_sglinfo_t *sinfo; 1665 ddi_dma_attr_t *attr; 1666 ddi_dma_impl_t *hp; 1667 rootnex_dma_t *dma; 1668 int kmflag; 1669 int e; 1670 1671 1672 hp = (ddi_dma_impl_t *)handle; 1673 dma = (rootnex_dma_t *)hp->dmai_private; 1674 sinfo = &dma->dp_sglinfo; 1675 attr = &hp->dmai_attr; 1676 1677 hp->dmai_rflags = dmareq->dmar_flags & DMP_DDIFLAGS; 1678 1679 /* 1680 * This is useful for debugging a driver. Not as useful in a production 1681 * system. The only time this will fail is if you have a driver bug. 1682 */ 1683 if (rootnex_bind_check_inuse) { 1684 /* 1685 * No one else should ever have this lock unless someone else 1686 * is trying to use this handle. So contention on the lock 1687 * is the same as inuse being set. 1688 */ 1689 e = mutex_tryenter(&dma->dp_mutex); 1690 if (e == 0) { 1691 ROOTNEX_PROF_INC(&rootnex_cnt[ROOTNEX_CNT_BIND_FAIL]); 1692 return (DDI_DMA_INUSE); 1693 } 1694 if (dma->dp_inuse) { 1695 mutex_exit(&dma->dp_mutex); 1696 ROOTNEX_PROF_INC(&rootnex_cnt[ROOTNEX_CNT_BIND_FAIL]); 1697 return (DDI_DMA_INUSE); 1698 } 1699 dma->dp_inuse = B_TRUE; 1700 mutex_exit(&dma->dp_mutex); 1701 } 1702 1703 /* check the ddi_dma_attr arg to make sure it makes a little sense */ 1704 if (rootnex_bind_check_parms) { 1705 e = rootnex_valid_bind_parms(dmareq, attr); 1706 if (e != DDI_SUCCESS) { 1707 ROOTNEX_PROF_INC(&rootnex_cnt[ROOTNEX_CNT_BIND_FAIL]); 1708 rootnex_clean_dmahdl(hp); 1709 return (e); 1710 } 1711 } 1712 1713 /* save away the original bind info */ 1714 dma->dp_dma = dmareq->dmar_object; 1715 1716 /* 1717 * Figure out a rough estimate of what maximum number of pages this 1718 * buffer could use (a high estimate of course). 1719 */ 1720 sinfo->si_max_pages = mmu_btopr(dma->dp_dma.dmao_size) + 1; 1721 1722 /* 1723 * We'll use the pre-allocated cookies for any bind that will *always* 1724 * fit (more important to be consistent, we don't want to create 1725 * additional degenerate cases). 1726 */ 1727 if (sinfo->si_max_pages <= rootnex_state->r_prealloc_cookies) { 1728 dma->dp_cookies = (ddi_dma_cookie_t *)dma->dp_prealloc_buffer; 1729 dma->dp_need_to_free_cookie = B_FALSE; 1730 DTRACE_PROBE2(rootnex__bind__prealloc, dev_info_t *, rdip, 1731 uint_t, sinfo->si_max_pages); 1732 1733 /* 1734 * For anything larger than that, we'll go ahead and allocate the 1735 * maximum number of pages we expect to see. Hopefuly, we won't be 1736 * seeing this path in the fast path for high performance devices very 1737 * frequently. 1738 * 1739 * a ddi bind interface that allowed the driver to provide storage to 1740 * the bind interface would speed this case up. 1741 */ 1742 } else { 1743 /* convert the sleep flags */ 1744 if (dmareq->dmar_fp == DDI_DMA_SLEEP) { 1745 kmflag = KM_SLEEP; 1746 } else { 1747 kmflag = KM_NOSLEEP; 1748 } 1749 1750 /* 1751 * Save away how much memory we allocated. If we're doing a 1752 * nosleep, the alloc could fail... 1753 */ 1754 dma->dp_cookie_size = sinfo->si_max_pages * 1755 sizeof (ddi_dma_cookie_t); 1756 dma->dp_cookies = kmem_alloc(dma->dp_cookie_size, kmflag); 1757 if (dma->dp_cookies == NULL) { 1758 ROOTNEX_PROF_INC(&rootnex_cnt[ROOTNEX_CNT_BIND_FAIL]); 1759 rootnex_clean_dmahdl(hp); 1760 return (DDI_DMA_NORESOURCES); 1761 } 1762 dma->dp_need_to_free_cookie = B_TRUE; 1763 DTRACE_PROBE2(rootnex__bind__alloc, dev_info_t *, rdip, uint_t, 1764 sinfo->si_max_pages); 1765 } 1766 hp->dmai_cookie = dma->dp_cookies; 1767 1768 /* 1769 * Get the real sgl. rootnex_get_sgl will fill in cookie array while 1770 * looking at the contraints in the dma structure. It will then put some 1771 * additional state about the sgl in the dma struct (i.e. is the sgl 1772 * clean, or do we need to do some munging; how many pages need to be 1773 * copied, etc.) 1774 */ 1775 rootnex_get_sgl(&dmareq->dmar_object, dma->dp_cookies, 1776 &dma->dp_sglinfo); 1777 ASSERT(sinfo->si_sgl_size <= sinfo->si_max_pages); 1778 1779 /* if we don't need a copy buffer, we don't need to sync */ 1780 if (sinfo->si_copybuf_req == 0) { 1781 hp->dmai_rflags |= DMP_NOSYNC; 1782 } 1783 1784 /* 1785 * If the driver supports FMA, insert the handle in the FMA DMA handle 1786 * cache. 1787 */ 1788 if (attr->dma_attr_flags & DDI_DMA_FLAGERR) { 1789 hp->dmai_error.err_cf = rootnex_dma_check; 1790 (void) ndi_fmc_insert(rdip, DMA_HANDLE, hp, NULL); 1791 } 1792 1793 /* 1794 * if we don't need the copybuf and we don't need to do a partial, we 1795 * hit the fast path. All the high performance devices should be trying 1796 * to hit this path. To hit this path, a device should be able to reach 1797 * all of memory, shouldn't try to bind more than it can transfer, and 1798 * the buffer shouldn't require more cookies than the driver/device can 1799 * handle [sgllen]). 1800 */ 1801 if ((sinfo->si_copybuf_req == 0) && 1802 (sinfo->si_sgl_size <= attr->dma_attr_sgllen) && 1803 (dma->dp_dma.dmao_size < dma->dp_maxxfer)) { 1804 /* 1805 * copy out the first cookie and ccountp, set the cookie 1806 * pointer to the second cookie. The first cookie is passed 1807 * back on the stack. Additional cookies are accessed via 1808 * ddi_dma_nextcookie() 1809 */ 1810 *cookiep = dma->dp_cookies[0]; 1811 *ccountp = sinfo->si_sgl_size; 1812 hp->dmai_cookie++; 1813 hp->dmai_rflags &= ~DDI_DMA_PARTIAL; 1814 hp->dmai_nwin = 1; 1815 ROOTNEX_PROF_INC(&rootnex_cnt[ROOTNEX_CNT_ACTIVE_BINDS]); 1816 DTRACE_PROBE3(rootnex__bind__fast, dev_info_t *, rdip, uint64_t, 1817 rootnex_cnt[ROOTNEX_CNT_ACTIVE_BINDS], uint_t, 1818 dma->dp_dma.dmao_size); 1819 return (DDI_DMA_MAPPED); 1820 } 1821 1822 /* 1823 * go to the slow path, we may need to alloc more memory, create 1824 * multiple windows, and munge up a sgl to make the device happy. 1825 */ 1826 e = rootnex_bind_slowpath(hp, dmareq, dma, attr, kmflag); 1827 if ((e != DDI_DMA_MAPPED) && (e != DDI_DMA_PARTIAL_MAP)) { 1828 if (dma->dp_need_to_free_cookie) { 1829 kmem_free(dma->dp_cookies, dma->dp_cookie_size); 1830 } 1831 ROOTNEX_PROF_INC(&rootnex_cnt[ROOTNEX_CNT_BIND_FAIL]); 1832 rootnex_clean_dmahdl(hp); /* must be after free cookie */ 1833 return (e); 1834 } 1835 1836 /* if the first window uses the copy buffer, sync it for the device */ 1837 if ((dma->dp_window[dma->dp_current_win].wd_dosync) && 1838 (hp->dmai_rflags & DDI_DMA_WRITE)) { 1839 (void) rootnex_dma_sync(dip, rdip, handle, 0, 0, 1840 DDI_DMA_SYNC_FORDEV); 1841 } 1842 1843 /* 1844 * copy out the first cookie and ccountp, set the cookie pointer to the 1845 * second cookie. Make sure the partial flag is set/cleared correctly. 1846 * If we have a partial map (i.e. multiple windows), the number of 1847 * cookies we return is the number of cookies in the first window. 1848 */ 1849 if (e == DDI_DMA_MAPPED) { 1850 hp->dmai_rflags &= ~DDI_DMA_PARTIAL; 1851 *ccountp = sinfo->si_sgl_size; 1852 } else { 1853 hp->dmai_rflags |= DDI_DMA_PARTIAL; 1854 *ccountp = dma->dp_window[dma->dp_current_win].wd_cookie_cnt; 1855 ASSERT(hp->dmai_nwin <= dma->dp_max_win); 1856 } 1857 *cookiep = dma->dp_cookies[0]; 1858 hp->dmai_cookie++; 1859 1860 ROOTNEX_PROF_INC(&rootnex_cnt[ROOTNEX_CNT_ACTIVE_BINDS]); 1861 DTRACE_PROBE3(rootnex__bind__slow, dev_info_t *, rdip, uint64_t, 1862 rootnex_cnt[ROOTNEX_CNT_ACTIVE_BINDS], uint_t, 1863 dma->dp_dma.dmao_size); 1864 return (e); 1865 } 1866 1867 1868 /* 1869 * rootnex_dma_unbindhdl() 1870 * called from ddi_dma_unbind_handle() 1871 */ 1872 /*ARGSUSED*/ 1873 static int 1874 rootnex_dma_unbindhdl(dev_info_t *dip, dev_info_t *rdip, 1875 ddi_dma_handle_t handle) 1876 { 1877 ddi_dma_impl_t *hp; 1878 rootnex_dma_t *dma; 1879 int e; 1880 1881 1882 hp = (ddi_dma_impl_t *)handle; 1883 dma = (rootnex_dma_t *)hp->dmai_private; 1884 1885 /* make sure the buffer wasn't free'd before calling unbind */ 1886 if (rootnex_unbind_verify_buffer) { 1887 e = rootnex_verify_buffer(dma); 1888 if (e != DDI_SUCCESS) { 1889 ASSERT(0); 1890 return (DDI_FAILURE); 1891 } 1892 } 1893 1894 /* sync the current window before unbinding the buffer */ 1895 if (dma->dp_window && dma->dp_window[dma->dp_current_win].wd_dosync && 1896 (hp->dmai_rflags & DDI_DMA_READ)) { 1897 (void) rootnex_dma_sync(dip, rdip, handle, 0, 0, 1898 DDI_DMA_SYNC_FORCPU); 1899 } 1900 1901 /* 1902 * If the driver supports FMA, remove the handle in the FMA DMA handle 1903 * cache. 1904 */ 1905 if (hp->dmai_attr.dma_attr_flags & DDI_DMA_FLAGERR) { 1906 if ((DEVI(rdip)->devi_fmhdl != NULL) && 1907 (DDI_FM_DMA_ERR_CAP(DEVI(rdip)->devi_fmhdl->fh_cap))) { 1908 (void) ndi_fmc_remove(rdip, DMA_HANDLE, hp); 1909 } 1910 } 1911 1912 /* 1913 * cleanup and copy buffer or window state. if we didn't use the copy 1914 * buffer or windows, there won't be much to do :-) 1915 */ 1916 rootnex_teardown_copybuf(dma); 1917 rootnex_teardown_windows(dma); 1918 1919 /* 1920 * If we had to allocate space to for the worse case sgl (it didn't 1921 * fit into our pre-allocate buffer), free that up now 1922 */ 1923 if (dma->dp_need_to_free_cookie) { 1924 kmem_free(dma->dp_cookies, dma->dp_cookie_size); 1925 } 1926 1927 /* 1928 * clean up the handle so it's ready for the next bind (i.e. if the 1929 * handle is reused). 1930 */ 1931 rootnex_clean_dmahdl(hp); 1932 1933 if (rootnex_state->r_dvma_call_list_id) 1934 ddi_run_callback(&rootnex_state->r_dvma_call_list_id); 1935 1936 ROOTNEX_PROF_DEC(&rootnex_cnt[ROOTNEX_CNT_ACTIVE_BINDS]); 1937 DTRACE_PROBE1(rootnex__unbind, uint64_t, 1938 rootnex_cnt[ROOTNEX_CNT_ACTIVE_BINDS]); 1939 1940 return (DDI_SUCCESS); 1941 } 1942 1943 1944 /* 1945 * rootnex_verify_buffer() 1946 * verify buffer wasn't free'd 1947 */ 1948 static int 1949 rootnex_verify_buffer(rootnex_dma_t *dma) 1950 { 1951 page_t **pplist; 1952 caddr_t vaddr; 1953 uint_t pcnt; 1954 uint_t poff; 1955 page_t *pp; 1956 char b; 1957 int i; 1958 1959 /* Figure out how many pages this buffer occupies */ 1960 if (dma->dp_dma.dmao_type == DMA_OTYP_PAGES) { 1961 poff = dma->dp_dma.dmao_obj.pp_obj.pp_offset & MMU_PAGEOFFSET; 1962 } else { 1963 vaddr = dma->dp_dma.dmao_obj.virt_obj.v_addr; 1964 poff = (uintptr_t)vaddr & MMU_PAGEOFFSET; 1965 } 1966 pcnt = mmu_btopr(dma->dp_dma.dmao_size + poff); 1967 1968 switch (dma->dp_dma.dmao_type) { 1969 case DMA_OTYP_PAGES: 1970 /* 1971 * for a linked list of pp's walk through them to make sure 1972 * they're locked and not free. 1973 */ 1974 pp = dma->dp_dma.dmao_obj.pp_obj.pp_pp; 1975 for (i = 0; i < pcnt; i++) { 1976 if (PP_ISFREE(pp) || !PAGE_LOCKED(pp)) { 1977 return (DDI_FAILURE); 1978 } 1979 pp = pp->p_next; 1980 } 1981 break; 1982 1983 case DMA_OTYP_VADDR: 1984 case DMA_OTYP_BUFVADDR: 1985 pplist = dma->dp_dma.dmao_obj.virt_obj.v_priv; 1986 /* 1987 * for an array of pp's walk through them to make sure they're 1988 * not free. It's possible that they may not be locked. 1989 */ 1990 if (pplist) { 1991 for (i = 0; i < pcnt; i++) { 1992 if (PP_ISFREE(pplist[i])) { 1993 return (DDI_FAILURE); 1994 } 1995 } 1996 1997 /* For a virtual address, try to peek at each page */ 1998 } else { 1999 if (dma->dp_sglinfo.si_asp == &kas) { 2000 for (i = 0; i < pcnt; i++) { 2001 if (ddi_peek8(NULL, vaddr, &b) == 2002 DDI_FAILURE) 2003 return (DDI_FAILURE); 2004 vaddr += MMU_PAGESIZE; 2005 } 2006 } 2007 } 2008 break; 2009 2010 default: 2011 ASSERT(0); 2012 break; 2013 } 2014 2015 return (DDI_SUCCESS); 2016 } 2017 2018 2019 /* 2020 * rootnex_clean_dmahdl() 2021 * Clean the dma handle. This should be called on a handle alloc and an 2022 * unbind handle. Set the handle state to the default settings. 2023 */ 2024 static void 2025 rootnex_clean_dmahdl(ddi_dma_impl_t *hp) 2026 { 2027 rootnex_dma_t *dma; 2028 2029 2030 dma = (rootnex_dma_t *)hp->dmai_private; 2031 2032 hp->dmai_nwin = 0; 2033 dma->dp_current_cookie = 0; 2034 dma->dp_copybuf_size = 0; 2035 dma->dp_window = NULL; 2036 dma->dp_cbaddr = NULL; 2037 dma->dp_inuse = B_FALSE; 2038 dma->dp_need_to_free_cookie = B_FALSE; 2039 dma->dp_need_to_free_window = B_FALSE; 2040 dma->dp_partial_required = B_FALSE; 2041 dma->dp_trim_required = B_FALSE; 2042 dma->dp_sglinfo.si_copybuf_req = 0; 2043 #if !defined(__amd64) 2044 dma->dp_cb_remaping = B_FALSE; 2045 dma->dp_kva = NULL; 2046 #endif 2047 2048 /* FMA related initialization */ 2049 hp->dmai_fault = 0; 2050 hp->dmai_fault_check = NULL; 2051 hp->dmai_fault_notify = NULL; 2052 hp->dmai_error.err_ena = 0; 2053 hp->dmai_error.err_status = DDI_FM_OK; 2054 hp->dmai_error.err_expected = DDI_FM_ERR_UNEXPECTED; 2055 hp->dmai_error.err_ontrap = NULL; 2056 hp->dmai_error.err_fep = NULL; 2057 hp->dmai_error.err_cf = NULL; 2058 } 2059 2060 2061 /* 2062 * rootnex_valid_alloc_parms() 2063 * Called in ddi_dma_alloc_handle path to validate its parameters. 2064 */ 2065 static int 2066 rootnex_valid_alloc_parms(ddi_dma_attr_t *attr, uint_t maxsegmentsize) 2067 { 2068 if ((attr->dma_attr_seg < MMU_PAGEOFFSET) || 2069 (attr->dma_attr_count_max < MMU_PAGEOFFSET) || 2070 (attr->dma_attr_granular > MMU_PAGESIZE) || 2071 (attr->dma_attr_maxxfer < MMU_PAGESIZE)) { 2072 return (DDI_DMA_BADATTR); 2073 } 2074 2075 if (attr->dma_attr_addr_hi <= attr->dma_attr_addr_lo) { 2076 return (DDI_DMA_BADATTR); 2077 } 2078 2079 if ((attr->dma_attr_seg & MMU_PAGEOFFSET) != MMU_PAGEOFFSET || 2080 MMU_PAGESIZE & (attr->dma_attr_granular - 1) || 2081 attr->dma_attr_sgllen <= 0) { 2082 return (DDI_DMA_BADATTR); 2083 } 2084 2085 /* We should be able to DMA into every byte offset in a page */ 2086 if (maxsegmentsize < MMU_PAGESIZE) { 2087 return (DDI_DMA_BADATTR); 2088 } 2089 2090 return (DDI_SUCCESS); 2091 } 2092 2093 2094 /* 2095 * rootnex_valid_bind_parms() 2096 * Called in ddi_dma_*_bind_handle path to validate its parameters. 2097 */ 2098 /* ARGSUSED */ 2099 static int 2100 rootnex_valid_bind_parms(ddi_dma_req_t *dmareq, ddi_dma_attr_t *attr) 2101 { 2102 #if !defined(__amd64) 2103 /* 2104 * we only support up to a 2G-1 transfer size on 32-bit kernels so 2105 * we can track the offset for the obsoleted interfaces. 2106 */ 2107 if (dmareq->dmar_object.dmao_size > 0x7FFFFFFF) { 2108 return (DDI_DMA_TOOBIG); 2109 } 2110 #endif 2111 2112 return (DDI_SUCCESS); 2113 } 2114 2115 2116 /* 2117 * rootnex_get_sgl() 2118 * Called in bind fastpath to get the sgl. Most of this will be replaced 2119 * with a call to the vm layer when vm2.0 comes around... 2120 */ 2121 static void 2122 rootnex_get_sgl(ddi_dma_obj_t *dmar_object, ddi_dma_cookie_t *sgl, 2123 rootnex_sglinfo_t *sglinfo) 2124 { 2125 ddi_dma_atyp_t buftype; 2126 uint64_t last_page; 2127 uint64_t offset; 2128 uint64_t addrhi; 2129 uint64_t addrlo; 2130 uint64_t maxseg; 2131 page_t **pplist; 2132 uint64_t paddr; 2133 uint32_t psize; 2134 uint32_t size; 2135 caddr_t vaddr; 2136 uint_t pcnt; 2137 page_t *pp; 2138 uint_t cnt; 2139 2140 2141 /* shortcuts */ 2142 pplist = dmar_object->dmao_obj.virt_obj.v_priv; 2143 vaddr = dmar_object->dmao_obj.virt_obj.v_addr; 2144 maxseg = sglinfo->si_max_cookie_size; 2145 buftype = dmar_object->dmao_type; 2146 addrhi = sglinfo->si_max_addr; 2147 addrlo = sglinfo->si_min_addr; 2148 size = dmar_object->dmao_size; 2149 2150 pcnt = 0; 2151 cnt = 0; 2152 2153 /* 2154 * if we were passed down a linked list of pages, i.e. pointer to 2155 * page_t, use this to get our physical address and buf offset. 2156 */ 2157 if (buftype == DMA_OTYP_PAGES) { 2158 pp = dmar_object->dmao_obj.pp_obj.pp_pp; 2159 ASSERT(!PP_ISFREE(pp) && PAGE_LOCKED(pp)); 2160 offset = dmar_object->dmao_obj.pp_obj.pp_offset & 2161 MMU_PAGEOFFSET; 2162 paddr = ptob64(pp->p_pagenum) + offset; 2163 psize = MIN(size, (MMU_PAGESIZE - offset)); 2164 pp = pp->p_next; 2165 sglinfo->si_asp = NULL; 2166 2167 /* 2168 * We weren't passed down a linked list of pages, but if we were passed 2169 * down an array of pages, use this to get our physical address and buf 2170 * offset. 2171 */ 2172 } else if (pplist != NULL) { 2173 ASSERT((buftype == DMA_OTYP_VADDR) || 2174 (buftype == DMA_OTYP_BUFVADDR)); 2175 2176 offset = (uintptr_t)vaddr & MMU_PAGEOFFSET; 2177 sglinfo->si_asp = dmar_object->dmao_obj.virt_obj.v_as; 2178 if (sglinfo->si_asp == NULL) { 2179 sglinfo->si_asp = &kas; 2180 } 2181 2182 ASSERT(!PP_ISFREE(pplist[pcnt])); 2183 paddr = ptob64(pplist[pcnt]->p_pagenum); 2184 paddr += offset; 2185 psize = MIN(size, (MMU_PAGESIZE - offset)); 2186 pcnt++; 2187 2188 /* 2189 * All we have is a virtual address, we'll need to call into the VM 2190 * to get the physical address. 2191 */ 2192 } else { 2193 ASSERT((buftype == DMA_OTYP_VADDR) || 2194 (buftype == DMA_OTYP_BUFVADDR)); 2195 2196 offset = (uintptr_t)vaddr & MMU_PAGEOFFSET; 2197 sglinfo->si_asp = dmar_object->dmao_obj.virt_obj.v_as; 2198 if (sglinfo->si_asp == NULL) { 2199 sglinfo->si_asp = &kas; 2200 } 2201 2202 paddr = ptob64(hat_getpfnum(sglinfo->si_asp->a_hat, vaddr)); 2203 paddr += offset; 2204 psize = MIN(size, (MMU_PAGESIZE - offset)); 2205 vaddr += psize; 2206 } 2207 2208 /* 2209 * Setup the first cookie with the physical address of the page and the 2210 * size of the page (which takes into account the initial offset into 2211 * the page. 2212 */ 2213 sgl[cnt].dmac_laddress = paddr; 2214 sgl[cnt].dmac_size = psize; 2215 sgl[cnt].dmac_type = 0; 2216 2217 /* 2218 * Save away the buffer offset into the page. We'll need this later in 2219 * the copy buffer code to help figure out the page index within the 2220 * buffer and the offset into the current page. 2221 */ 2222 sglinfo->si_buf_offset = offset; 2223 2224 /* 2225 * If the DMA engine can't reach the physical address, increase how 2226 * much copy buffer we need. We always increase by pagesize so we don't 2227 * have to worry about converting offsets. Set a flag in the cookies 2228 * dmac_type to indicate that it uses the copy buffer. If this isn't the 2229 * last cookie, go to the next cookie (since we separate each page which 2230 * uses the copy buffer in case the copy buffer is not physically 2231 * contiguous. 2232 */ 2233 if ((paddr < addrlo) || ((paddr + psize) > addrhi)) { 2234 sglinfo->si_copybuf_req += MMU_PAGESIZE; 2235 sgl[cnt].dmac_type = ROOTNEX_USES_COPYBUF; 2236 if ((cnt + 1) < sglinfo->si_max_pages) { 2237 cnt++; 2238 sgl[cnt].dmac_laddress = 0; 2239 sgl[cnt].dmac_size = 0; 2240 sgl[cnt].dmac_type = 0; 2241 } 2242 } 2243 2244 /* 2245 * save this page's physical address so we can figure out if the next 2246 * page is physically contiguous. Keep decrementing size until we are 2247 * done with the buffer. 2248 */ 2249 last_page = paddr & MMU_PAGEMASK; 2250 size -= psize; 2251 2252 while (size > 0) { 2253 /* Get the size for this page (i.e. partial or full page) */ 2254 psize = MIN(size, MMU_PAGESIZE); 2255 2256 if (buftype == DMA_OTYP_PAGES) { 2257 /* get the paddr from the page_t */ 2258 ASSERT(!PP_ISFREE(pp) && PAGE_LOCKED(pp)); 2259 paddr = ptob64(pp->p_pagenum); 2260 pp = pp->p_next; 2261 } else if (pplist != NULL) { 2262 /* index into the array of page_t's to get the paddr */ 2263 ASSERT(!PP_ISFREE(pplist[pcnt])); 2264 paddr = ptob64(pplist[pcnt]->p_pagenum); 2265 pcnt++; 2266 } else { 2267 /* call into the VM to get the paddr */ 2268 paddr = ptob64(hat_getpfnum(sglinfo->si_asp->a_hat, 2269 vaddr)); 2270 vaddr += psize; 2271 } 2272 2273 /* check to see if this page needs the copy buffer */ 2274 if ((paddr < addrlo) || ((paddr + psize) > addrhi)) { 2275 sglinfo->si_copybuf_req += MMU_PAGESIZE; 2276 2277 /* 2278 * if there is something in the current cookie, go to 2279 * the next one. We only want one page in a cookie which 2280 * uses the copybuf since the copybuf doesn't have to 2281 * be physically contiguous. 2282 */ 2283 if (sgl[cnt].dmac_size != 0) { 2284 cnt++; 2285 } 2286 sgl[cnt].dmac_laddress = paddr; 2287 sgl[cnt].dmac_size = psize; 2288 #if defined(__amd64) 2289 sgl[cnt].dmac_type = ROOTNEX_USES_COPYBUF; 2290 #else 2291 /* 2292 * save the buf offset for 32-bit kernel. used in the 2293 * obsoleted interfaces. 2294 */ 2295 sgl[cnt].dmac_type = ROOTNEX_USES_COPYBUF | 2296 (dmar_object->dmao_size - size); 2297 #endif 2298 /* if this isn't the last cookie, go to the next one */ 2299 if ((cnt + 1) < sglinfo->si_max_pages) { 2300 cnt++; 2301 sgl[cnt].dmac_laddress = 0; 2302 sgl[cnt].dmac_size = 0; 2303 sgl[cnt].dmac_type = 0; 2304 } 2305 2306 /* 2307 * this page didn't need the copy buffer, if it's not physically 2308 * contiguous, or it would put us over a segment boundary, or it 2309 * puts us over the max cookie size, or the current sgl doesn't 2310 * have anything in it. 2311 */ 2312 } else if (((last_page + MMU_PAGESIZE) != paddr) || 2313 !(paddr & sglinfo->si_segmask) || 2314 ((sgl[cnt].dmac_size + psize) > maxseg) || 2315 (sgl[cnt].dmac_size == 0)) { 2316 /* 2317 * if we're not already in a new cookie, go to the next 2318 * cookie. 2319 */ 2320 if (sgl[cnt].dmac_size != 0) { 2321 cnt++; 2322 } 2323 2324 /* save the cookie information */ 2325 sgl[cnt].dmac_laddress = paddr; 2326 sgl[cnt].dmac_size = psize; 2327 #if defined(__amd64) 2328 sgl[cnt].dmac_type = 0; 2329 #else 2330 /* 2331 * save the buf offset for 32-bit kernel. used in the 2332 * obsoleted interfaces. 2333 */ 2334 sgl[cnt].dmac_type = dmar_object->dmao_size - size; 2335 #endif 2336 2337 /* 2338 * this page didn't need the copy buffer, it is physically 2339 * contiguous with the last page, and it's <= the max cookie 2340 * size. 2341 */ 2342 } else { 2343 sgl[cnt].dmac_size += psize; 2344 2345 /* 2346 * if this exactly == the maximum cookie size, and 2347 * it isn't the last cookie, go to the next cookie. 2348 */ 2349 if (((sgl[cnt].dmac_size + psize) == maxseg) && 2350 ((cnt + 1) < sglinfo->si_max_pages)) { 2351 cnt++; 2352 sgl[cnt].dmac_laddress = 0; 2353 sgl[cnt].dmac_size = 0; 2354 sgl[cnt].dmac_type = 0; 2355 } 2356 } 2357 2358 /* 2359 * save this page's physical address so we can figure out if the 2360 * next page is physically contiguous. Keep decrementing size 2361 * until we are done with the buffer. 2362 */ 2363 last_page = paddr; 2364 size -= psize; 2365 } 2366 2367 /* we're done, save away how many cookies the sgl has */ 2368 if (sgl[cnt].dmac_size == 0) { 2369 ASSERT(cnt < sglinfo->si_max_pages); 2370 sglinfo->si_sgl_size = cnt; 2371 } else { 2372 sglinfo->si_sgl_size = cnt + 1; 2373 } 2374 } 2375 2376 2377 /* 2378 * rootnex_bind_slowpath() 2379 * Call in the bind path if the calling driver can't use the sgl without 2380 * modifying it. We either need to use the copy buffer and/or we will end up 2381 * with a partial bind. 2382 */ 2383 static int 2384 rootnex_bind_slowpath(ddi_dma_impl_t *hp, struct ddi_dma_req *dmareq, 2385 rootnex_dma_t *dma, ddi_dma_attr_t *attr, int kmflag) 2386 { 2387 rootnex_sglinfo_t *sinfo; 2388 rootnex_window_t *window; 2389 ddi_dma_cookie_t *cookie; 2390 size_t copybuf_used; 2391 size_t dmac_size; 2392 boolean_t partial; 2393 off_t cur_offset; 2394 page_t *cur_pp; 2395 major_t mnum; 2396 int e; 2397 int i; 2398 2399 2400 sinfo = &dma->dp_sglinfo; 2401 copybuf_used = 0; 2402 partial = B_FALSE; 2403 2404 /* 2405 * If we're using the copybuf, set the copybuf state in dma struct. 2406 * Needs to be first since it sets the copy buffer size. 2407 */ 2408 if (sinfo->si_copybuf_req != 0) { 2409 e = rootnex_setup_copybuf(hp, dmareq, dma, attr); 2410 if (e != DDI_SUCCESS) { 2411 return (e); 2412 } 2413 } else { 2414 dma->dp_copybuf_size = 0; 2415 } 2416 2417 /* 2418 * Figure out if we need to do a partial mapping. If so, figure out 2419 * if we need to trim the buffers when we munge the sgl. 2420 */ 2421 if ((dma->dp_copybuf_size < sinfo->si_copybuf_req) || 2422 (dma->dp_dma.dmao_size > dma->dp_maxxfer) || 2423 (attr->dma_attr_sgllen < sinfo->si_sgl_size)) { 2424 dma->dp_partial_required = B_TRUE; 2425 if (attr->dma_attr_granular != 1) { 2426 dma->dp_trim_required = B_TRUE; 2427 } 2428 } else { 2429 dma->dp_partial_required = B_FALSE; 2430 dma->dp_trim_required = B_FALSE; 2431 } 2432 2433 /* If we need to do a partial bind, make sure the driver supports it */ 2434 if (dma->dp_partial_required && 2435 !(dmareq->dmar_flags & DDI_DMA_PARTIAL)) { 2436 2437 mnum = ddi_driver_major(dma->dp_dip); 2438 /* 2439 * patchable which allows us to print one warning per major 2440 * number. 2441 */ 2442 if ((rootnex_bind_warn) && 2443 ((rootnex_warn_list[mnum] & ROOTNEX_BIND_WARNING) == 0)) { 2444 rootnex_warn_list[mnum] |= ROOTNEX_BIND_WARNING; 2445 cmn_err(CE_WARN, "!%s: coding error detected, the " 2446 "driver is using ddi_dma_attr(9S) incorrectly. " 2447 "There is a small risk of data corruption in " 2448 "particular with large I/Os. The driver should be " 2449 "replaced with a corrected version for proper " 2450 "system operation. To disable this warning, add " 2451 "'set rootnex:rootnex_bind_warn=0' to " 2452 "/etc/system(4).", ddi_driver_name(dma->dp_dip)); 2453 } 2454 return (DDI_DMA_TOOBIG); 2455 } 2456 2457 /* 2458 * we might need multiple windows, setup state to handle them. In this 2459 * code path, we will have at least one window. 2460 */ 2461 e = rootnex_setup_windows(hp, dma, attr, kmflag); 2462 if (e != DDI_SUCCESS) { 2463 rootnex_teardown_copybuf(dma); 2464 return (e); 2465 } 2466 2467 window = &dma->dp_window[0]; 2468 cookie = &dma->dp_cookies[0]; 2469 cur_offset = 0; 2470 rootnex_init_win(hp, dma, window, cookie, cur_offset); 2471 if (dmareq->dmar_object.dmao_type == DMA_OTYP_PAGES) { 2472 cur_pp = dmareq->dmar_object.dmao_obj.pp_obj.pp_pp; 2473 } 2474 2475 /* loop though all the cookies we got back from get_sgl() */ 2476 for (i = 0; i < sinfo->si_sgl_size; i++) { 2477 /* 2478 * If we're using the copy buffer, check this cookie and setup 2479 * its associated copy buffer state. If this cookie uses the 2480 * copy buffer, make sure we sync this window during dma_sync. 2481 */ 2482 if (dma->dp_copybuf_size > 0) { 2483 rootnex_setup_cookie(&dmareq->dmar_object, dma, cookie, 2484 cur_offset, ©buf_used, &cur_pp); 2485 if (cookie->dmac_type & ROOTNEX_USES_COPYBUF) { 2486 window->wd_dosync = B_TRUE; 2487 } 2488 } 2489 2490 /* 2491 * save away the cookie size, since it could be modified in 2492 * the windowing code. 2493 */ 2494 dmac_size = cookie->dmac_size; 2495 2496 /* if we went over max copybuf size */ 2497 if (dma->dp_copybuf_size && 2498 (copybuf_used > dma->dp_copybuf_size)) { 2499 partial = B_TRUE; 2500 e = rootnex_copybuf_window_boundary(hp, dma, &window, 2501 cookie, cur_offset, ©buf_used); 2502 if (e != DDI_SUCCESS) { 2503 rootnex_teardown_copybuf(dma); 2504 rootnex_teardown_windows(dma); 2505 return (e); 2506 } 2507 2508 /* 2509 * if the coookie uses the copy buffer, make sure the 2510 * new window we just moved to is set to sync. 2511 */ 2512 if (cookie->dmac_type & ROOTNEX_USES_COPYBUF) { 2513 window->wd_dosync = B_TRUE; 2514 } 2515 DTRACE_PROBE1(rootnex__copybuf__window, dev_info_t *, 2516 dma->dp_dip); 2517 2518 /* if the cookie cnt == max sgllen, move to the next window */ 2519 } else if (window->wd_cookie_cnt >= attr->dma_attr_sgllen) { 2520 partial = B_TRUE; 2521 ASSERT(window->wd_cookie_cnt == attr->dma_attr_sgllen); 2522 e = rootnex_sgllen_window_boundary(hp, dma, &window, 2523 cookie, attr, cur_offset); 2524 if (e != DDI_SUCCESS) { 2525 rootnex_teardown_copybuf(dma); 2526 rootnex_teardown_windows(dma); 2527 return (e); 2528 } 2529 2530 /* 2531 * if the coookie uses the copy buffer, make sure the 2532 * new window we just moved to is set to sync. 2533 */ 2534 if (cookie->dmac_type & ROOTNEX_USES_COPYBUF) { 2535 window->wd_dosync = B_TRUE; 2536 } 2537 DTRACE_PROBE1(rootnex__sgllen__window, dev_info_t *, 2538 dma->dp_dip); 2539 2540 /* else if we will be over maxxfer */ 2541 } else if ((window->wd_size + dmac_size) > 2542 dma->dp_maxxfer) { 2543 partial = B_TRUE; 2544 e = rootnex_maxxfer_window_boundary(hp, dma, &window, 2545 cookie); 2546 if (e != DDI_SUCCESS) { 2547 rootnex_teardown_copybuf(dma); 2548 rootnex_teardown_windows(dma); 2549 return (e); 2550 } 2551 2552 /* 2553 * if the coookie uses the copy buffer, make sure the 2554 * new window we just moved to is set to sync. 2555 */ 2556 if (cookie->dmac_type & ROOTNEX_USES_COPYBUF) { 2557 window->wd_dosync = B_TRUE; 2558 } 2559 DTRACE_PROBE1(rootnex__maxxfer__window, dev_info_t *, 2560 dma->dp_dip); 2561 2562 /* else this cookie fits in the current window */ 2563 } else { 2564 window->wd_cookie_cnt++; 2565 window->wd_size += dmac_size; 2566 } 2567 2568 /* track our offset into the buffer, go to the next cookie */ 2569 ASSERT(dmac_size <= dma->dp_dma.dmao_size); 2570 ASSERT(cookie->dmac_size <= dmac_size); 2571 cur_offset += dmac_size; 2572 cookie++; 2573 } 2574 2575 /* if we ended up with a zero sized window in the end, clean it up */ 2576 if (window->wd_size == 0) { 2577 hp->dmai_nwin--; 2578 window--; 2579 } 2580 2581 ASSERT(window->wd_trim.tr_trim_last == B_FALSE); 2582 2583 if (!partial) { 2584 return (DDI_DMA_MAPPED); 2585 } 2586 2587 ASSERT(dma->dp_partial_required); 2588 return (DDI_DMA_PARTIAL_MAP); 2589 } 2590 2591 2592 /* 2593 * rootnex_setup_copybuf() 2594 * Called in bind slowpath. Figures out if we're going to use the copy 2595 * buffer, and if we do, sets up the basic state to handle it. 2596 */ 2597 static int 2598 rootnex_setup_copybuf(ddi_dma_impl_t *hp, struct ddi_dma_req *dmareq, 2599 rootnex_dma_t *dma, ddi_dma_attr_t *attr) 2600 { 2601 rootnex_sglinfo_t *sinfo; 2602 ddi_dma_attr_t lattr; 2603 size_t max_copybuf; 2604 int cansleep; 2605 int e; 2606 #if !defined(__amd64) 2607 int vmflag; 2608 #endif 2609 2610 2611 sinfo = &dma->dp_sglinfo; 2612 2613 /* 2614 * read this first so it's consistent through the routine so we can 2615 * patch it on the fly. 2616 */ 2617 max_copybuf = rootnex_max_copybuf_size & MMU_PAGEMASK; 2618 2619 /* We need to call into the rootnex on ddi_dma_sync() */ 2620 hp->dmai_rflags &= ~DMP_NOSYNC; 2621 2622 /* make sure the copybuf size <= the max size */ 2623 dma->dp_copybuf_size = MIN(sinfo->si_copybuf_req, max_copybuf); 2624 ASSERT((dma->dp_copybuf_size & MMU_PAGEOFFSET) == 0); 2625 2626 #if !defined(__amd64) 2627 /* 2628 * if we don't have kva space to copy to/from, allocate the KVA space 2629 * now. We only do this for the 32-bit kernel. We use seg kpm space for 2630 * the 64-bit kernel. 2631 */ 2632 if ((dmareq->dmar_object.dmao_type == DMA_OTYP_PAGES) || 2633 (dmareq->dmar_object.dmao_obj.virt_obj.v_as != NULL)) { 2634 2635 /* convert the sleep flags */ 2636 if (dmareq->dmar_fp == DDI_DMA_SLEEP) { 2637 vmflag = VM_SLEEP; 2638 } else { 2639 vmflag = VM_NOSLEEP; 2640 } 2641 2642 /* allocate Kernel VA space that we can bcopy to/from */ 2643 dma->dp_kva = vmem_alloc(heap_arena, dma->dp_copybuf_size, 2644 vmflag); 2645 if (dma->dp_kva == NULL) { 2646 return (DDI_DMA_NORESOURCES); 2647 } 2648 } 2649 #endif 2650 2651 /* convert the sleep flags */ 2652 if (dmareq->dmar_fp == DDI_DMA_SLEEP) { 2653 cansleep = 1; 2654 } else { 2655 cansleep = 0; 2656 } 2657 2658 /* 2659 * Allocated the actual copy buffer. This needs to fit within the DMA 2660 * engines limits, so we can't use kmem_alloc... 2661 */ 2662 lattr = *attr; 2663 lattr.dma_attr_align = MMU_PAGESIZE; 2664 e = i_ddi_mem_alloc(dma->dp_dip, &lattr, dma->dp_copybuf_size, cansleep, 2665 0, NULL, &dma->dp_cbaddr, &dma->dp_cbsize, NULL); 2666 if (e != DDI_SUCCESS) { 2667 #if !defined(__amd64) 2668 if (dma->dp_kva != NULL) { 2669 vmem_free(heap_arena, dma->dp_kva, 2670 dma->dp_copybuf_size); 2671 } 2672 #endif 2673 return (DDI_DMA_NORESOURCES); 2674 } 2675 2676 DTRACE_PROBE2(rootnex__alloc__copybuf, dev_info_t *, dma->dp_dip, 2677 size_t, dma->dp_copybuf_size); 2678 2679 return (DDI_SUCCESS); 2680 } 2681 2682 2683 /* 2684 * rootnex_setup_windows() 2685 * Called in bind slowpath to setup the window state. We always have windows 2686 * in the slowpath. Even if the window count = 1. 2687 */ 2688 static int 2689 rootnex_setup_windows(ddi_dma_impl_t *hp, rootnex_dma_t *dma, 2690 ddi_dma_attr_t *attr, int kmflag) 2691 { 2692 rootnex_window_t *windowp; 2693 rootnex_sglinfo_t *sinfo; 2694 size_t copy_state_size; 2695 size_t win_state_size; 2696 size_t state_available; 2697 size_t space_needed; 2698 uint_t copybuf_win; 2699 uint_t maxxfer_win; 2700 size_t space_used; 2701 uint_t sglwin; 2702 2703 2704 sinfo = &dma->dp_sglinfo; 2705 2706 dma->dp_current_win = 0; 2707 hp->dmai_nwin = 0; 2708 2709 /* If we don't need to do a partial, we only have one window */ 2710 if (!dma->dp_partial_required) { 2711 dma->dp_max_win = 1; 2712 2713 /* 2714 * we need multiple windows, need to figure out the worse case number 2715 * of windows. 2716 */ 2717 } else { 2718 /* 2719 * if we need windows because we need more copy buffer that 2720 * we allow, the worse case number of windows we could need 2721 * here would be (copybuf space required / copybuf space that 2722 * we have) plus one for remainder, and plus 2 to handle the 2723 * extra pages on the trim for the first and last pages of the 2724 * buffer (a page is the minimum window size so under the right 2725 * attr settings, you could have a window for each page). 2726 * The last page will only be hit here if the size is not a 2727 * multiple of the granularity (which theoretically shouldn't 2728 * be the case but never has been enforced, so we could have 2729 * broken things without it). 2730 */ 2731 if (sinfo->si_copybuf_req > dma->dp_copybuf_size) { 2732 ASSERT(dma->dp_copybuf_size > 0); 2733 copybuf_win = (sinfo->si_copybuf_req / 2734 dma->dp_copybuf_size) + 1 + 2; 2735 } else { 2736 copybuf_win = 0; 2737 } 2738 2739 /* 2740 * if we need windows because we have more cookies than the H/W 2741 * can handle, the number of windows we would need here would 2742 * be (cookie count / cookies count H/W supports) plus one for 2743 * remainder, and plus 2 to handle the extra pages on the trim 2744 * (see above comment about trim) 2745 */ 2746 if (attr->dma_attr_sgllen < sinfo->si_sgl_size) { 2747 sglwin = ((sinfo->si_sgl_size / attr->dma_attr_sgllen) 2748 + 1) + 2; 2749 } else { 2750 sglwin = 0; 2751 } 2752 2753 /* 2754 * if we need windows because we're binding more memory than the 2755 * H/W can transfer at once, the number of windows we would need 2756 * here would be (xfer count / max xfer H/W supports) plus one 2757 * for remainder, and plus 2 to handle the extra pages on the 2758 * trim (see above comment about trim) 2759 */ 2760 if (dma->dp_dma.dmao_size > dma->dp_maxxfer) { 2761 maxxfer_win = (dma->dp_dma.dmao_size / 2762 dma->dp_maxxfer) + 1 + 2; 2763 } else { 2764 maxxfer_win = 0; 2765 } 2766 dma->dp_max_win = copybuf_win + sglwin + maxxfer_win; 2767 ASSERT(dma->dp_max_win > 0); 2768 } 2769 win_state_size = dma->dp_max_win * sizeof (rootnex_window_t); 2770 2771 /* 2772 * Get space for window and potential copy buffer state. Before we 2773 * go and allocate memory, see if we can get away with using what's 2774 * left in the pre-allocted state or the dynamically allocated sgl. 2775 */ 2776 space_used = (uintptr_t)(sinfo->si_sgl_size * 2777 sizeof (ddi_dma_cookie_t)); 2778 2779 /* if we dynamically allocated space for the cookies */ 2780 if (dma->dp_need_to_free_cookie) { 2781 /* if we have more space in the pre-allocted buffer, use it */ 2782 ASSERT(space_used <= dma->dp_cookie_size); 2783 if ((dma->dp_cookie_size - space_used) <= 2784 rootnex_state->r_prealloc_size) { 2785 state_available = rootnex_state->r_prealloc_size; 2786 windowp = (rootnex_window_t *)dma->dp_prealloc_buffer; 2787 2788 /* 2789 * else, we have more free space in the dynamically allocated 2790 * buffer, i.e. the buffer wasn't worse case fragmented so we 2791 * didn't need a lot of cookies. 2792 */ 2793 } else { 2794 state_available = dma->dp_cookie_size - space_used; 2795 windowp = (rootnex_window_t *) 2796 &dma->dp_cookies[sinfo->si_sgl_size]; 2797 } 2798 2799 /* we used the pre-alloced buffer */ 2800 } else { 2801 ASSERT(space_used <= rootnex_state->r_prealloc_size); 2802 state_available = rootnex_state->r_prealloc_size - space_used; 2803 windowp = (rootnex_window_t *) 2804 &dma->dp_cookies[sinfo->si_sgl_size]; 2805 } 2806 2807 /* 2808 * figure out how much state we need to track the copy buffer. Add an 2809 * addition 8 bytes for pointer alignemnt later. 2810 */ 2811 if (dma->dp_copybuf_size > 0) { 2812 copy_state_size = sinfo->si_max_pages * 2813 sizeof (rootnex_pgmap_t); 2814 } else { 2815 copy_state_size = 0; 2816 } 2817 /* add an additional 8 bytes for pointer alignment */ 2818 space_needed = win_state_size + copy_state_size + 0x8; 2819 2820 /* if we have enough space already, use it */ 2821 if (state_available >= space_needed) { 2822 dma->dp_window = windowp; 2823 dma->dp_need_to_free_window = B_FALSE; 2824 2825 /* not enough space, need to allocate more. */ 2826 } else { 2827 dma->dp_window = kmem_alloc(space_needed, kmflag); 2828 if (dma->dp_window == NULL) { 2829 return (DDI_DMA_NORESOURCES); 2830 } 2831 dma->dp_need_to_free_window = B_TRUE; 2832 dma->dp_window_size = space_needed; 2833 DTRACE_PROBE2(rootnex__bind__sp__alloc, dev_info_t *, 2834 dma->dp_dip, size_t, space_needed); 2835 } 2836 2837 /* 2838 * we allocate copy buffer state and window state at the same time. 2839 * setup our copy buffer state pointers. Make sure it's aligned. 2840 */ 2841 if (dma->dp_copybuf_size > 0) { 2842 dma->dp_pgmap = (rootnex_pgmap_t *)(((uintptr_t) 2843 &dma->dp_window[dma->dp_max_win] + 0x7) & ~0x7); 2844 2845 #if !defined(__amd64) 2846 /* 2847 * make sure all pm_mapped, pm_vaddr, and pm_pp are set to 2848 * false/NULL. Should be quicker to bzero vs loop and set. 2849 */ 2850 bzero(dma->dp_pgmap, copy_state_size); 2851 #endif 2852 } else { 2853 dma->dp_pgmap = NULL; 2854 } 2855 2856 return (DDI_SUCCESS); 2857 } 2858 2859 2860 /* 2861 * rootnex_teardown_copybuf() 2862 * cleans up after rootnex_setup_copybuf() 2863 */ 2864 static void 2865 rootnex_teardown_copybuf(rootnex_dma_t *dma) 2866 { 2867 #if !defined(__amd64) 2868 int i; 2869 2870 /* 2871 * if we allocated kernel heap VMEM space, go through all the pages and 2872 * map out any of the ones that we're mapped into the kernel heap VMEM 2873 * arena. Then free the VMEM space. 2874 */ 2875 if (dma->dp_kva != NULL) { 2876 for (i = 0; i < dma->dp_sglinfo.si_max_pages; i++) { 2877 if (dma->dp_pgmap[i].pm_mapped) { 2878 hat_unload(kas.a_hat, dma->dp_pgmap[i].pm_kaddr, 2879 MMU_PAGESIZE, HAT_UNLOAD); 2880 dma->dp_pgmap[i].pm_mapped = B_FALSE; 2881 } 2882 } 2883 2884 vmem_free(heap_arena, dma->dp_kva, dma->dp_copybuf_size); 2885 } 2886 2887 #endif 2888 2889 /* if we allocated a copy buffer, free it */ 2890 if (dma->dp_cbaddr != NULL) { 2891 i_ddi_mem_free(dma->dp_cbaddr, NULL); 2892 } 2893 } 2894 2895 2896 /* 2897 * rootnex_teardown_windows() 2898 * cleans up after rootnex_setup_windows() 2899 */ 2900 static void 2901 rootnex_teardown_windows(rootnex_dma_t *dma) 2902 { 2903 /* 2904 * if we had to allocate window state on the last bind (because we 2905 * didn't have enough pre-allocated space in the handle), free it. 2906 */ 2907 if (dma->dp_need_to_free_window) { 2908 kmem_free(dma->dp_window, dma->dp_window_size); 2909 } 2910 } 2911 2912 2913 /* 2914 * rootnex_init_win() 2915 * Called in bind slow path during creation of a new window. Initializes 2916 * window state to default values. 2917 */ 2918 /*ARGSUSED*/ 2919 static void 2920 rootnex_init_win(ddi_dma_impl_t *hp, rootnex_dma_t *dma, 2921 rootnex_window_t *window, ddi_dma_cookie_t *cookie, off_t cur_offset) 2922 { 2923 hp->dmai_nwin++; 2924 window->wd_dosync = B_FALSE; 2925 window->wd_offset = cur_offset; 2926 window->wd_size = 0; 2927 window->wd_first_cookie = cookie; 2928 window->wd_cookie_cnt = 0; 2929 window->wd_trim.tr_trim_first = B_FALSE; 2930 window->wd_trim.tr_trim_last = B_FALSE; 2931 window->wd_trim.tr_first_copybuf_win = B_FALSE; 2932 window->wd_trim.tr_last_copybuf_win = B_FALSE; 2933 #if !defined(__amd64) 2934 window->wd_remap_copybuf = dma->dp_cb_remaping; 2935 #endif 2936 } 2937 2938 2939 /* 2940 * rootnex_setup_cookie() 2941 * Called in the bind slow path when the sgl uses the copy buffer. If any of 2942 * the sgl uses the copy buffer, we need to go through each cookie, figure 2943 * out if it uses the copy buffer, and if it does, save away everything we'll 2944 * need during sync. 2945 */ 2946 static void 2947 rootnex_setup_cookie(ddi_dma_obj_t *dmar_object, rootnex_dma_t *dma, 2948 ddi_dma_cookie_t *cookie, off_t cur_offset, size_t *copybuf_used, 2949 page_t **cur_pp) 2950 { 2951 boolean_t copybuf_sz_power_2; 2952 rootnex_sglinfo_t *sinfo; 2953 uint_t pidx; 2954 uint_t pcnt; 2955 off_t poff; 2956 #if defined(__amd64) 2957 pfn_t pfn; 2958 #else 2959 page_t **pplist; 2960 #endif 2961 2962 sinfo = &dma->dp_sglinfo; 2963 2964 /* 2965 * Calculate the page index relative to the start of the buffer. The 2966 * index to the current page for our buffer is the offset into the 2967 * first page of the buffer plus our current offset into the buffer 2968 * itself, shifted of course... 2969 */ 2970 pidx = (sinfo->si_buf_offset + cur_offset) >> MMU_PAGESHIFT; 2971 ASSERT(pidx < sinfo->si_max_pages); 2972 2973 /* if this cookie uses the copy buffer */ 2974 if (cookie->dmac_type & ROOTNEX_USES_COPYBUF) { 2975 /* 2976 * NOTE: we know that since this cookie uses the copy buffer, it 2977 * is <= MMU_PAGESIZE. 2978 */ 2979 2980 /* 2981 * get the offset into the page. For the 64-bit kernel, get the 2982 * pfn which we'll use with seg kpm. 2983 */ 2984 poff = cookie->_dmu._dmac_ll & MMU_PAGEOFFSET; 2985 #if defined(__amd64) 2986 pfn = cookie->_dmu._dmac_ll >> MMU_PAGESHIFT; 2987 #endif 2988 2989 /* figure out if the copybuf size is a power of 2 */ 2990 if (dma->dp_copybuf_size & (dma->dp_copybuf_size - 1)) { 2991 copybuf_sz_power_2 = B_FALSE; 2992 } else { 2993 copybuf_sz_power_2 = B_TRUE; 2994 } 2995 2996 /* This page uses the copy buffer */ 2997 dma->dp_pgmap[pidx].pm_uses_copybuf = B_TRUE; 2998 2999 /* 3000 * save the copy buffer KVA that we'll use with this page. 3001 * if we still fit within the copybuf, it's a simple add. 3002 * otherwise, we need to wrap over using & or % accordingly. 3003 */ 3004 if ((*copybuf_used + MMU_PAGESIZE) <= dma->dp_copybuf_size) { 3005 dma->dp_pgmap[pidx].pm_cbaddr = dma->dp_cbaddr + 3006 *copybuf_used; 3007 } else { 3008 if (copybuf_sz_power_2) { 3009 dma->dp_pgmap[pidx].pm_cbaddr = (caddr_t)( 3010 (uintptr_t)dma->dp_cbaddr + 3011 (*copybuf_used & 3012 (dma->dp_copybuf_size - 1))); 3013 } else { 3014 dma->dp_pgmap[pidx].pm_cbaddr = (caddr_t)( 3015 (uintptr_t)dma->dp_cbaddr + 3016 (*copybuf_used % dma->dp_copybuf_size)); 3017 } 3018 } 3019 3020 /* 3021 * over write the cookie physical address with the address of 3022 * the physical address of the copy buffer page that we will 3023 * use. 3024 */ 3025 cookie->_dmu._dmac_ll = ptob64(hat_getpfnum(kas.a_hat, 3026 dma->dp_pgmap[pidx].pm_cbaddr)) + poff; 3027 3028 /* if we have a kernel VA, it's easy, just save that address */ 3029 if ((dmar_object->dmao_type != DMA_OTYP_PAGES) && 3030 (sinfo->si_asp == &kas)) { 3031 /* 3032 * save away the page aligned virtual address of the 3033 * driver buffer. Offsets are handled in the sync code. 3034 */ 3035 dma->dp_pgmap[pidx].pm_kaddr = (caddr_t)(((uintptr_t) 3036 dmar_object->dmao_obj.virt_obj.v_addr + cur_offset) 3037 & MMU_PAGEMASK); 3038 #if !defined(__amd64) 3039 /* 3040 * we didn't need to, and will never need to map this 3041 * page. 3042 */ 3043 dma->dp_pgmap[pidx].pm_mapped = B_FALSE; 3044 #endif 3045 3046 /* we don't have a kernel VA. We need one for the bcopy. */ 3047 } else { 3048 #if defined(__amd64) 3049 /* 3050 * for the 64-bit kernel, it's easy. We use seg kpm to 3051 * get a Kernel VA for the corresponding pfn. 3052 */ 3053 dma->dp_pgmap[pidx].pm_kaddr = hat_kpm_pfn2va(pfn); 3054 #else 3055 /* 3056 * for the 32-bit kernel, this is a pain. First we'll 3057 * save away the page_t or user VA for this page. This 3058 * is needed in rootnex_dma_win() when we switch to a 3059 * new window which requires us to re-map the copy 3060 * buffer. 3061 */ 3062 pplist = dmar_object->dmao_obj.virt_obj.v_priv; 3063 if (dmar_object->dmao_type == DMA_OTYP_PAGES) { 3064 dma->dp_pgmap[pidx].pm_pp = *cur_pp; 3065 dma->dp_pgmap[pidx].pm_vaddr = NULL; 3066 } else if (pplist != NULL) { 3067 dma->dp_pgmap[pidx].pm_pp = pplist[pidx]; 3068 dma->dp_pgmap[pidx].pm_vaddr = NULL; 3069 } else { 3070 dma->dp_pgmap[pidx].pm_pp = NULL; 3071 dma->dp_pgmap[pidx].pm_vaddr = (caddr_t) 3072 (((uintptr_t) 3073 dmar_object->dmao_obj.virt_obj.v_addr + 3074 cur_offset) & MMU_PAGEMASK); 3075 } 3076 3077 /* 3078 * save away the page aligned virtual address which was 3079 * allocated from the kernel heap arena (taking into 3080 * account if we need more copy buffer than we alloced 3081 * and use multiple windows to handle this, i.e. &,%). 3082 * NOTE: there isn't and physical memory backing up this 3083 * virtual address space currently. 3084 */ 3085 if ((*copybuf_used + MMU_PAGESIZE) <= 3086 dma->dp_copybuf_size) { 3087 dma->dp_pgmap[pidx].pm_kaddr = (caddr_t) 3088 (((uintptr_t)dma->dp_kva + *copybuf_used) & 3089 MMU_PAGEMASK); 3090 } else { 3091 if (copybuf_sz_power_2) { 3092 dma->dp_pgmap[pidx].pm_kaddr = (caddr_t) 3093 (((uintptr_t)dma->dp_kva + 3094 (*copybuf_used & 3095 (dma->dp_copybuf_size - 1))) & 3096 MMU_PAGEMASK); 3097 } else { 3098 dma->dp_pgmap[pidx].pm_kaddr = (caddr_t) 3099 (((uintptr_t)dma->dp_kva + 3100 (*copybuf_used % 3101 dma->dp_copybuf_size)) & 3102 MMU_PAGEMASK); 3103 } 3104 } 3105 3106 /* 3107 * if we haven't used up the available copy buffer yet, 3108 * map the kva to the physical page. 3109 */ 3110 if (!dma->dp_cb_remaping && ((*copybuf_used + 3111 MMU_PAGESIZE) <= dma->dp_copybuf_size)) { 3112 dma->dp_pgmap[pidx].pm_mapped = B_TRUE; 3113 if (dma->dp_pgmap[pidx].pm_pp != NULL) { 3114 i86_pp_map(dma->dp_pgmap[pidx].pm_pp, 3115 dma->dp_pgmap[pidx].pm_kaddr); 3116 } else { 3117 i86_va_map(dma->dp_pgmap[pidx].pm_vaddr, 3118 sinfo->si_asp, 3119 dma->dp_pgmap[pidx].pm_kaddr); 3120 } 3121 3122 /* 3123 * we've used up the available copy buffer, this page 3124 * will have to be mapped during rootnex_dma_win() when 3125 * we switch to a new window which requires a re-map 3126 * the copy buffer. (32-bit kernel only) 3127 */ 3128 } else { 3129 dma->dp_pgmap[pidx].pm_mapped = B_FALSE; 3130 } 3131 #endif 3132 /* go to the next page_t */ 3133 if (dmar_object->dmao_type == DMA_OTYP_PAGES) { 3134 *cur_pp = (*cur_pp)->p_next; 3135 } 3136 } 3137 3138 /* add to the copy buffer count */ 3139 *copybuf_used += MMU_PAGESIZE; 3140 3141 /* 3142 * This cookie doesn't use the copy buffer. Walk through the pages this 3143 * cookie occupies to reflect this. 3144 */ 3145 } else { 3146 /* 3147 * figure out how many pages the cookie occupies. We need to 3148 * use the original page offset of the buffer and the cookies 3149 * offset in the buffer to do this. 3150 */ 3151 poff = (sinfo->si_buf_offset + cur_offset) & MMU_PAGEOFFSET; 3152 pcnt = mmu_btopr(cookie->dmac_size + poff); 3153 3154 while (pcnt > 0) { 3155 #if !defined(__amd64) 3156 /* 3157 * the 32-bit kernel doesn't have seg kpm, so we need 3158 * to map in the driver buffer (if it didn't come down 3159 * with a kernel VA) on the fly. Since this page doesn't 3160 * use the copy buffer, it's not, or will it ever, have 3161 * to be mapped in. 3162 */ 3163 dma->dp_pgmap[pidx].pm_mapped = B_FALSE; 3164 #endif 3165 dma->dp_pgmap[pidx].pm_uses_copybuf = B_FALSE; 3166 3167 /* 3168 * we need to update pidx and cur_pp or we'll loose 3169 * track of where we are. 3170 */ 3171 if (dmar_object->dmao_type == DMA_OTYP_PAGES) { 3172 *cur_pp = (*cur_pp)->p_next; 3173 } 3174 pidx++; 3175 pcnt--; 3176 } 3177 } 3178 } 3179 3180 3181 /* 3182 * rootnex_sgllen_window_boundary() 3183 * Called in the bind slow path when the next cookie causes us to exceed (in 3184 * this case == since we start at 0 and sgllen starts at 1) the maximum sgl 3185 * length supported by the DMA H/W. 3186 */ 3187 static int 3188 rootnex_sgllen_window_boundary(ddi_dma_impl_t *hp, rootnex_dma_t *dma, 3189 rootnex_window_t **windowp, ddi_dma_cookie_t *cookie, ddi_dma_attr_t *attr, 3190 off_t cur_offset) 3191 { 3192 off_t new_offset; 3193 size_t trim_sz; 3194 off_t coffset; 3195 3196 3197 /* 3198 * if we know we'll never have to trim, it's pretty easy. Just move to 3199 * the next window and init it. We're done. 3200 */ 3201 if (!dma->dp_trim_required) { 3202 (*windowp)++; 3203 rootnex_init_win(hp, dma, *windowp, cookie, cur_offset); 3204 (*windowp)->wd_cookie_cnt++; 3205 (*windowp)->wd_size = cookie->dmac_size; 3206 return (DDI_SUCCESS); 3207 } 3208 3209 /* figure out how much we need to trim from the window */ 3210 ASSERT(attr->dma_attr_granular != 0); 3211 if (dma->dp_granularity_power_2) { 3212 trim_sz = (*windowp)->wd_size & (attr->dma_attr_granular - 1); 3213 } else { 3214 trim_sz = (*windowp)->wd_size % attr->dma_attr_granular; 3215 } 3216 3217 /* The window's a whole multiple of granularity. We're done */ 3218 if (trim_sz == 0) { 3219 (*windowp)++; 3220 rootnex_init_win(hp, dma, *windowp, cookie, cur_offset); 3221 (*windowp)->wd_cookie_cnt++; 3222 (*windowp)->wd_size = cookie->dmac_size; 3223 return (DDI_SUCCESS); 3224 } 3225 3226 /* 3227 * The window's not a whole multiple of granularity, since we know this 3228 * is due to the sgllen, we need to go back to the last cookie and trim 3229 * that one, add the left over part of the old cookie into the new 3230 * window, and then add in the new cookie into the new window. 3231 */ 3232 3233 /* 3234 * make sure the driver isn't making us do something bad... Trimming and 3235 * sgllen == 1 don't go together. 3236 */ 3237 if (attr->dma_attr_sgllen == 1) { 3238 return (DDI_DMA_NOMAPPING); 3239 } 3240 3241 /* 3242 * first, setup the current window to account for the trim. Need to go 3243 * back to the last cookie for this. 3244 */ 3245 cookie--; 3246 (*windowp)->wd_trim.tr_trim_last = B_TRUE; 3247 (*windowp)->wd_trim.tr_last_cookie = cookie; 3248 (*windowp)->wd_trim.tr_last_paddr = cookie->_dmu._dmac_ll; 3249 ASSERT(cookie->dmac_size > trim_sz); 3250 (*windowp)->wd_trim.tr_last_size = cookie->dmac_size - trim_sz; 3251 (*windowp)->wd_size -= trim_sz; 3252 3253 /* save the buffer offsets for the next window */ 3254 coffset = cookie->dmac_size - trim_sz; 3255 new_offset = (*windowp)->wd_offset + (*windowp)->wd_size; 3256 3257 /* 3258 * set this now in case this is the first window. all other cases are 3259 * set in dma_win() 3260 */ 3261 cookie->dmac_size = (*windowp)->wd_trim.tr_last_size; 3262 3263 /* 3264 * initialize the next window using what's left over in the previous 3265 * cookie. 3266 */ 3267 (*windowp)++; 3268 rootnex_init_win(hp, dma, *windowp, cookie, new_offset); 3269 (*windowp)->wd_cookie_cnt++; 3270 (*windowp)->wd_trim.tr_trim_first = B_TRUE; 3271 (*windowp)->wd_trim.tr_first_paddr = cookie->_dmu._dmac_ll + coffset; 3272 (*windowp)->wd_trim.tr_first_size = trim_sz; 3273 if (cookie->dmac_type & ROOTNEX_USES_COPYBUF) { 3274 (*windowp)->wd_dosync = B_TRUE; 3275 } 3276 3277 /* 3278 * now go back to the current cookie and add it to the new window. set 3279 * the new window size to the what was left over from the previous 3280 * cookie and what's in the current cookie. 3281 */ 3282 cookie++; 3283 (*windowp)->wd_cookie_cnt++; 3284 (*windowp)->wd_size = trim_sz + cookie->dmac_size; 3285 3286 /* 3287 * trim plus the next cookie could put us over maxxfer (a cookie can be 3288 * a max size of maxxfer). Handle that case. 3289 */ 3290 if ((*windowp)->wd_size > dma->dp_maxxfer) { 3291 /* 3292 * maxxfer is already a whole multiple of granularity, and this 3293 * trim will be <= the previous trim (since a cookie can't be 3294 * larger than maxxfer). Make things simple here. 3295 */ 3296 trim_sz = (*windowp)->wd_size - dma->dp_maxxfer; 3297 (*windowp)->wd_trim.tr_trim_last = B_TRUE; 3298 (*windowp)->wd_trim.tr_last_cookie = cookie; 3299 (*windowp)->wd_trim.tr_last_paddr = cookie->_dmu._dmac_ll; 3300 (*windowp)->wd_trim.tr_last_size = cookie->dmac_size - trim_sz; 3301 (*windowp)->wd_size -= trim_sz; 3302 ASSERT((*windowp)->wd_size == dma->dp_maxxfer); 3303 3304 /* save the buffer offsets for the next window */ 3305 coffset = cookie->dmac_size - trim_sz; 3306 new_offset = (*windowp)->wd_offset + (*windowp)->wd_size; 3307 3308 /* setup the next window */ 3309 (*windowp)++; 3310 rootnex_init_win(hp, dma, *windowp, cookie, new_offset); 3311 (*windowp)->wd_cookie_cnt++; 3312 (*windowp)->wd_trim.tr_trim_first = B_TRUE; 3313 (*windowp)->wd_trim.tr_first_paddr = cookie->_dmu._dmac_ll + 3314 coffset; 3315 (*windowp)->wd_trim.tr_first_size = trim_sz; 3316 } 3317 3318 return (DDI_SUCCESS); 3319 } 3320 3321 3322 /* 3323 * rootnex_copybuf_window_boundary() 3324 * Called in bind slowpath when we get to a window boundary because we used 3325 * up all the copy buffer that we have. 3326 */ 3327 static int 3328 rootnex_copybuf_window_boundary(ddi_dma_impl_t *hp, rootnex_dma_t *dma, 3329 rootnex_window_t **windowp, ddi_dma_cookie_t *cookie, off_t cur_offset, 3330 size_t *copybuf_used) 3331 { 3332 rootnex_sglinfo_t *sinfo; 3333 off_t new_offset; 3334 size_t trim_sz; 3335 off_t coffset; 3336 uint_t pidx; 3337 off_t poff; 3338 3339 3340 sinfo = &dma->dp_sglinfo; 3341 3342 /* 3343 * the copy buffer should be a whole multiple of page size. We know that 3344 * this cookie is <= MMU_PAGESIZE. 3345 */ 3346 ASSERT(cookie->dmac_size <= MMU_PAGESIZE); 3347 3348 /* 3349 * from now on, all new windows in this bind need to be re-mapped during 3350 * ddi_dma_getwin() (32-bit kernel only). i.e. we ran out out copybuf 3351 * space... 3352 */ 3353 #if !defined(__amd64) 3354 dma->dp_cb_remaping = B_TRUE; 3355 #endif 3356 3357 /* reset copybuf used */ 3358 *copybuf_used = 0; 3359 3360 /* 3361 * if we don't have to trim (since granularity is set to 1), go to the 3362 * next window and add the current cookie to it. We know the current 3363 * cookie uses the copy buffer since we're in this code path. 3364 */ 3365 if (!dma->dp_trim_required) { 3366 (*windowp)++; 3367 rootnex_init_win(hp, dma, *windowp, cookie, cur_offset); 3368 3369 /* Add this cookie to the new window */ 3370 (*windowp)->wd_cookie_cnt++; 3371 (*windowp)->wd_size += cookie->dmac_size; 3372 *copybuf_used += MMU_PAGESIZE; 3373 return (DDI_SUCCESS); 3374 } 3375 3376 /* 3377 * *** may need to trim, figure it out. 3378 */ 3379 3380 /* figure out how much we need to trim from the window */ 3381 if (dma->dp_granularity_power_2) { 3382 trim_sz = (*windowp)->wd_size & 3383 (hp->dmai_attr.dma_attr_granular - 1); 3384 } else { 3385 trim_sz = (*windowp)->wd_size % hp->dmai_attr.dma_attr_granular; 3386 } 3387 3388 /* 3389 * if the window's a whole multiple of granularity, go to the next 3390 * window, init it, then add in the current cookie. We know the current 3391 * cookie uses the copy buffer since we're in this code path. 3392 */ 3393 if (trim_sz == 0) { 3394 (*windowp)++; 3395 rootnex_init_win(hp, dma, *windowp, cookie, cur_offset); 3396 3397 /* Add this cookie to the new window */ 3398 (*windowp)->wd_cookie_cnt++; 3399 (*windowp)->wd_size += cookie->dmac_size; 3400 *copybuf_used += MMU_PAGESIZE; 3401 return (DDI_SUCCESS); 3402 } 3403 3404 /* 3405 * *** We figured it out, we definitly need to trim 3406 */ 3407 3408 /* 3409 * make sure the driver isn't making us do something bad... 3410 * Trimming and sgllen == 1 don't go together. 3411 */ 3412 if (hp->dmai_attr.dma_attr_sgllen == 1) { 3413 return (DDI_DMA_NOMAPPING); 3414 } 3415 3416 /* 3417 * first, setup the current window to account for the trim. Need to go 3418 * back to the last cookie for this. Some of the last cookie will be in 3419 * the current window, and some of the last cookie will be in the new 3420 * window. All of the current cookie will be in the new window. 3421 */ 3422 cookie--; 3423 (*windowp)->wd_trim.tr_trim_last = B_TRUE; 3424 (*windowp)->wd_trim.tr_last_cookie = cookie; 3425 (*windowp)->wd_trim.tr_last_paddr = cookie->_dmu._dmac_ll; 3426 ASSERT(cookie->dmac_size > trim_sz); 3427 (*windowp)->wd_trim.tr_last_size = cookie->dmac_size - trim_sz; 3428 (*windowp)->wd_size -= trim_sz; 3429 3430 /* 3431 * we're trimming the last cookie (not the current cookie). So that 3432 * last cookie may have or may not have been using the copy buffer ( 3433 * we know the cookie passed in uses the copy buffer since we're in 3434 * this code path). 3435 * 3436 * If the last cookie doesn't use the copy buffer, nothing special to 3437 * do. However, if it does uses the copy buffer, it will be both the 3438 * last page in the current window and the first page in the next 3439 * window. Since we are reusing the copy buffer (and KVA space on the 3440 * 32-bit kernel), this page will use the end of the copy buffer in the 3441 * current window, and the start of the copy buffer in the next window. 3442 * Track that info... The cookie physical address was already set to 3443 * the copy buffer physical address in setup_cookie.. 3444 */ 3445 if (cookie->dmac_type & ROOTNEX_USES_COPYBUF) { 3446 pidx = (sinfo->si_buf_offset + (*windowp)->wd_offset + 3447 (*windowp)->wd_size) >> MMU_PAGESHIFT; 3448 (*windowp)->wd_trim.tr_last_copybuf_win = B_TRUE; 3449 (*windowp)->wd_trim.tr_last_pidx = pidx; 3450 (*windowp)->wd_trim.tr_last_cbaddr = 3451 dma->dp_pgmap[pidx].pm_cbaddr; 3452 #if !defined(__amd64) 3453 (*windowp)->wd_trim.tr_last_kaddr = 3454 dma->dp_pgmap[pidx].pm_kaddr; 3455 #endif 3456 } 3457 3458 /* save the buffer offsets for the next window */ 3459 coffset = cookie->dmac_size - trim_sz; 3460 new_offset = (*windowp)->wd_offset + (*windowp)->wd_size; 3461 3462 /* 3463 * set this now in case this is the first window. all other cases are 3464 * set in dma_win() 3465 */ 3466 cookie->dmac_size = (*windowp)->wd_trim.tr_last_size; 3467 3468 /* 3469 * initialize the next window using what's left over in the previous 3470 * cookie. 3471 */ 3472 (*windowp)++; 3473 rootnex_init_win(hp, dma, *windowp, cookie, new_offset); 3474 (*windowp)->wd_cookie_cnt++; 3475 (*windowp)->wd_trim.tr_trim_first = B_TRUE; 3476 (*windowp)->wd_trim.tr_first_paddr = cookie->_dmu._dmac_ll + coffset; 3477 (*windowp)->wd_trim.tr_first_size = trim_sz; 3478 3479 /* 3480 * again, we're tracking if the last cookie uses the copy buffer. 3481 * read the comment above for more info on why we need to track 3482 * additional state. 3483 * 3484 * For the first cookie in the new window, we need reset the physical 3485 * address to DMA into to the start of the copy buffer plus any 3486 * initial page offset which may be present. 3487 */ 3488 if (cookie->dmac_type & ROOTNEX_USES_COPYBUF) { 3489 (*windowp)->wd_dosync = B_TRUE; 3490 (*windowp)->wd_trim.tr_first_copybuf_win = B_TRUE; 3491 (*windowp)->wd_trim.tr_first_pidx = pidx; 3492 (*windowp)->wd_trim.tr_first_cbaddr = dma->dp_cbaddr; 3493 poff = (*windowp)->wd_trim.tr_first_paddr & MMU_PAGEOFFSET; 3494 (*windowp)->wd_trim.tr_first_paddr = ptob64(hat_getpfnum( 3495 kas.a_hat, dma->dp_cbaddr)) + poff; 3496 #if !defined(__amd64) 3497 (*windowp)->wd_trim.tr_first_kaddr = dma->dp_kva; 3498 #endif 3499 /* account for the cookie copybuf usage in the new window */ 3500 *copybuf_used += MMU_PAGESIZE; 3501 3502 /* 3503 * every piece of code has to have a hack, and here is this 3504 * ones :-) 3505 * 3506 * There is a complex interaction between setup_cookie and the 3507 * copybuf window boundary. The complexity had to be in either 3508 * the maxxfer window, or the copybuf window, and I chose the 3509 * copybuf code. 3510 * 3511 * So in this code path, we have taken the last cookie, 3512 * virtually broken it in half due to the trim, and it happens 3513 * to use the copybuf which further complicates life. At the 3514 * same time, we have already setup the current cookie, which 3515 * is now wrong. More background info: the current cookie uses 3516 * the copybuf, so it is only a page long max. So we need to 3517 * fix the current cookies copy buffer address, physical 3518 * address, and kva for the 32-bit kernel. We due this by 3519 * bumping them by page size (of course, we can't due this on 3520 * the physical address since the copy buffer may not be 3521 * physically contiguous). 3522 */ 3523 cookie++; 3524 dma->dp_pgmap[pidx + 1].pm_cbaddr += MMU_PAGESIZE; 3525 poff = cookie->_dmu._dmac_ll & MMU_PAGEOFFSET; 3526 cookie->_dmu._dmac_ll = ptob64(hat_getpfnum(kas.a_hat, 3527 dma->dp_pgmap[pidx + 1].pm_cbaddr)) + poff; 3528 #if !defined(__amd64) 3529 ASSERT(dma->dp_pgmap[pidx + 1].pm_mapped == B_FALSE); 3530 dma->dp_pgmap[pidx + 1].pm_kaddr += MMU_PAGESIZE; 3531 #endif 3532 } else { 3533 /* go back to the current cookie */ 3534 cookie++; 3535 } 3536 3537 /* 3538 * add the current cookie to the new window. set the new window size to 3539 * the what was left over from the previous cookie and what's in the 3540 * current cookie. 3541 */ 3542 (*windowp)->wd_cookie_cnt++; 3543 (*windowp)->wd_size = trim_sz + cookie->dmac_size; 3544 ASSERT((*windowp)->wd_size < dma->dp_maxxfer); 3545 3546 /* 3547 * we know that the cookie passed in always uses the copy buffer. We 3548 * wouldn't be here if it didn't. 3549 */ 3550 *copybuf_used += MMU_PAGESIZE; 3551 3552 return (DDI_SUCCESS); 3553 } 3554 3555 3556 /* 3557 * rootnex_maxxfer_window_boundary() 3558 * Called in bind slowpath when we get to a window boundary because we will 3559 * go over maxxfer. 3560 */ 3561 static int 3562 rootnex_maxxfer_window_boundary(ddi_dma_impl_t *hp, rootnex_dma_t *dma, 3563 rootnex_window_t **windowp, ddi_dma_cookie_t *cookie) 3564 { 3565 size_t dmac_size; 3566 off_t new_offset; 3567 size_t trim_sz; 3568 off_t coffset; 3569 3570 3571 /* 3572 * calculate how much we have to trim off of the current cookie to equal 3573 * maxxfer. We don't have to account for granularity here since our 3574 * maxxfer already takes that into account. 3575 */ 3576 trim_sz = ((*windowp)->wd_size + cookie->dmac_size) - dma->dp_maxxfer; 3577 ASSERT(trim_sz <= cookie->dmac_size); 3578 ASSERT(trim_sz <= dma->dp_maxxfer); 3579 3580 /* save cookie size since we need it later and we might change it */ 3581 dmac_size = cookie->dmac_size; 3582 3583 /* 3584 * if we're not trimming the entire cookie, setup the current window to 3585 * account for the trim. 3586 */ 3587 if (trim_sz < cookie->dmac_size) { 3588 (*windowp)->wd_cookie_cnt++; 3589 (*windowp)->wd_trim.tr_trim_last = B_TRUE; 3590 (*windowp)->wd_trim.tr_last_cookie = cookie; 3591 (*windowp)->wd_trim.tr_last_paddr = cookie->_dmu._dmac_ll; 3592 (*windowp)->wd_trim.tr_last_size = cookie->dmac_size - trim_sz; 3593 (*windowp)->wd_size = dma->dp_maxxfer; 3594 3595 /* 3596 * set the adjusted cookie size now in case this is the first 3597 * window. All other windows are taken care of in get win 3598 */ 3599 cookie->dmac_size = (*windowp)->wd_trim.tr_last_size; 3600 } 3601 3602 /* 3603 * coffset is the current offset within the cookie, new_offset is the 3604 * current offset with the entire buffer. 3605 */ 3606 coffset = dmac_size - trim_sz; 3607 new_offset = (*windowp)->wd_offset + (*windowp)->wd_size; 3608 3609 /* initialize the next window */ 3610 (*windowp)++; 3611 rootnex_init_win(hp, dma, *windowp, cookie, new_offset); 3612 (*windowp)->wd_cookie_cnt++; 3613 (*windowp)->wd_size = trim_sz; 3614 if (trim_sz < dmac_size) { 3615 (*windowp)->wd_trim.tr_trim_first = B_TRUE; 3616 (*windowp)->wd_trim.tr_first_paddr = cookie->_dmu._dmac_ll + 3617 coffset; 3618 (*windowp)->wd_trim.tr_first_size = trim_sz; 3619 } 3620 3621 return (DDI_SUCCESS); 3622 } 3623 3624 3625 /* 3626 * rootnex_dma_sync() 3627 * called from ddi_dma_sync() if DMP_NOSYNC is not set in hp->dmai_rflags. 3628 * We set DMP_NOSYNC if we're not using the copy buffer. If DMP_NOSYNC 3629 * is set, ddi_dma_sync() returns immediately passing back success. 3630 */ 3631 /*ARGSUSED*/ 3632 static int 3633 rootnex_dma_sync(dev_info_t *dip, dev_info_t *rdip, ddi_dma_handle_t handle, 3634 off_t off, size_t len, uint_t cache_flags) 3635 { 3636 rootnex_sglinfo_t *sinfo; 3637 rootnex_pgmap_t *cbpage; 3638 rootnex_window_t *win; 3639 ddi_dma_impl_t *hp; 3640 rootnex_dma_t *dma; 3641 caddr_t fromaddr; 3642 caddr_t toaddr; 3643 uint_t psize; 3644 off_t offset; 3645 uint_t pidx; 3646 size_t size; 3647 off_t poff; 3648 int e; 3649 3650 3651 hp = (ddi_dma_impl_t *)handle; 3652 dma = (rootnex_dma_t *)hp->dmai_private; 3653 sinfo = &dma->dp_sglinfo; 3654 3655 /* 3656 * if we don't have any windows, we don't need to sync. A copybuf 3657 * will cause us to have at least one window. 3658 */ 3659 if (dma->dp_window == NULL) { 3660 return (DDI_SUCCESS); 3661 } 3662 3663 /* This window may not need to be sync'd */ 3664 win = &dma->dp_window[dma->dp_current_win]; 3665 if (!win->wd_dosync) { 3666 return (DDI_SUCCESS); 3667 } 3668 3669 /* handle off and len special cases */ 3670 if ((off == 0) || (rootnex_sync_ignore_params)) { 3671 offset = win->wd_offset; 3672 } else { 3673 offset = off; 3674 } 3675 if ((len == 0) || (rootnex_sync_ignore_params)) { 3676 size = win->wd_size; 3677 } else { 3678 size = len; 3679 } 3680 3681 /* check the sync args to make sure they make a little sense */ 3682 if (rootnex_sync_check_parms) { 3683 e = rootnex_valid_sync_parms(hp, win, offset, size, 3684 cache_flags); 3685 if (e != DDI_SUCCESS) { 3686 ROOTNEX_PROF_INC(&rootnex_cnt[ROOTNEX_CNT_SYNC_FAIL]); 3687 return (DDI_FAILURE); 3688 } 3689 } 3690 3691 /* 3692 * special case the first page to handle the offset into the page. The 3693 * offset to the current page for our buffer is the offset into the 3694 * first page of the buffer plus our current offset into the buffer 3695 * itself, masked of course. 3696 */ 3697 poff = (sinfo->si_buf_offset + offset) & MMU_PAGEOFFSET; 3698 psize = MIN((MMU_PAGESIZE - poff), size); 3699 3700 /* go through all the pages that we want to sync */ 3701 while (size > 0) { 3702 /* 3703 * Calculate the page index relative to the start of the buffer. 3704 * The index to the current page for our buffer is the offset 3705 * into the first page of the buffer plus our current offset 3706 * into the buffer itself, shifted of course... 3707 */ 3708 pidx = (sinfo->si_buf_offset + offset) >> MMU_PAGESHIFT; 3709 ASSERT(pidx < sinfo->si_max_pages); 3710 3711 /* 3712 * if this page uses the copy buffer, we need to sync it, 3713 * otherwise, go on to the next page. 3714 */ 3715 cbpage = &dma->dp_pgmap[pidx]; 3716 ASSERT((cbpage->pm_uses_copybuf == B_TRUE) || 3717 (cbpage->pm_uses_copybuf == B_FALSE)); 3718 if (cbpage->pm_uses_copybuf) { 3719 /* cbaddr and kaddr should be page aligned */ 3720 ASSERT(((uintptr_t)cbpage->pm_cbaddr & 3721 MMU_PAGEOFFSET) == 0); 3722 ASSERT(((uintptr_t)cbpage->pm_kaddr & 3723 MMU_PAGEOFFSET) == 0); 3724 3725 /* 3726 * if we're copying for the device, we are going to 3727 * copy from the drivers buffer and to the rootnex 3728 * allocated copy buffer. 3729 */ 3730 if (cache_flags == DDI_DMA_SYNC_FORDEV) { 3731 fromaddr = cbpage->pm_kaddr + poff; 3732 toaddr = cbpage->pm_cbaddr + poff; 3733 DTRACE_PROBE2(rootnex__sync__dev, 3734 dev_info_t *, dma->dp_dip, size_t, psize); 3735 3736 /* 3737 * if we're copying for the cpu/kernel, we are going to 3738 * copy from the rootnex allocated copy buffer to the 3739 * drivers buffer. 3740 */ 3741 } else { 3742 fromaddr = cbpage->pm_cbaddr + poff; 3743 toaddr = cbpage->pm_kaddr + poff; 3744 DTRACE_PROBE2(rootnex__sync__cpu, 3745 dev_info_t *, dma->dp_dip, size_t, psize); 3746 } 3747 3748 bcopy(fromaddr, toaddr, psize); 3749 } 3750 3751 /* 3752 * decrement size until we're done, update our offset into the 3753 * buffer, and get the next page size. 3754 */ 3755 size -= psize; 3756 offset += psize; 3757 psize = MIN(MMU_PAGESIZE, size); 3758 3759 /* page offset is zero for the rest of this loop */ 3760 poff = 0; 3761 } 3762 3763 return (DDI_SUCCESS); 3764 } 3765 3766 3767 /* 3768 * rootnex_valid_sync_parms() 3769 * checks the parameters passed to sync to verify they are correct. 3770 */ 3771 static int 3772 rootnex_valid_sync_parms(ddi_dma_impl_t *hp, rootnex_window_t *win, 3773 off_t offset, size_t size, uint_t cache_flags) 3774 { 3775 off_t woffset; 3776 3777 3778 /* 3779 * the first part of the test to make sure the offset passed in is 3780 * within the window. 3781 */ 3782 if (offset < win->wd_offset) { 3783 return (DDI_FAILURE); 3784 } 3785 3786 /* 3787 * second and last part of the test to make sure the offset and length 3788 * passed in is within the window. 3789 */ 3790 woffset = offset - win->wd_offset; 3791 if ((woffset + size) > win->wd_size) { 3792 return (DDI_FAILURE); 3793 } 3794 3795 /* 3796 * if we are sync'ing for the device, the DDI_DMA_WRITE flag should 3797 * be set too. 3798 */ 3799 if ((cache_flags == DDI_DMA_SYNC_FORDEV) && 3800 (hp->dmai_rflags & DDI_DMA_WRITE)) { 3801 return (DDI_SUCCESS); 3802 } 3803 3804 /* 3805 * at this point, either DDI_DMA_SYNC_FORCPU or DDI_DMA_SYNC_FORKERNEL 3806 * should be set. Also DDI_DMA_READ should be set in the flags. 3807 */ 3808 if (((cache_flags == DDI_DMA_SYNC_FORCPU) || 3809 (cache_flags == DDI_DMA_SYNC_FORKERNEL)) && 3810 (hp->dmai_rflags & DDI_DMA_READ)) { 3811 return (DDI_SUCCESS); 3812 } 3813 3814 return (DDI_FAILURE); 3815 } 3816 3817 3818 /* 3819 * rootnex_dma_win() 3820 * called from ddi_dma_getwin() 3821 */ 3822 /*ARGSUSED*/ 3823 static int 3824 rootnex_dma_win(dev_info_t *dip, dev_info_t *rdip, ddi_dma_handle_t handle, 3825 uint_t win, off_t *offp, size_t *lenp, ddi_dma_cookie_t *cookiep, 3826 uint_t *ccountp) 3827 { 3828 rootnex_window_t *window; 3829 rootnex_trim_t *trim; 3830 ddi_dma_impl_t *hp; 3831 rootnex_dma_t *dma; 3832 #if !defined(__amd64) 3833 rootnex_sglinfo_t *sinfo; 3834 rootnex_pgmap_t *pmap; 3835 uint_t pidx; 3836 uint_t pcnt; 3837 off_t poff; 3838 int i; 3839 #endif 3840 3841 3842 hp = (ddi_dma_impl_t *)handle; 3843 dma = (rootnex_dma_t *)hp->dmai_private; 3844 #if !defined(__amd64) 3845 sinfo = &dma->dp_sglinfo; 3846 #endif 3847 3848 /* If we try and get a window which doesn't exist, return failure */ 3849 if (win >= hp->dmai_nwin) { 3850 ROOTNEX_PROF_INC(&rootnex_cnt[ROOTNEX_CNT_GETWIN_FAIL]); 3851 return (DDI_FAILURE); 3852 } 3853 3854 /* 3855 * if we don't have any windows, and they're asking for the first 3856 * window, setup the cookie pointer to the first cookie in the bind. 3857 * setup our return values, then increment the cookie since we return 3858 * the first cookie on the stack. 3859 */ 3860 if (dma->dp_window == NULL) { 3861 if (win != 0) { 3862 ROOTNEX_PROF_INC(&rootnex_cnt[ROOTNEX_CNT_GETWIN_FAIL]); 3863 return (DDI_FAILURE); 3864 } 3865 hp->dmai_cookie = dma->dp_cookies; 3866 *offp = 0; 3867 *lenp = dma->dp_dma.dmao_size; 3868 *ccountp = dma->dp_sglinfo.si_sgl_size; 3869 *cookiep = hp->dmai_cookie[0]; 3870 hp->dmai_cookie++; 3871 return (DDI_SUCCESS); 3872 } 3873 3874 /* sync the old window before moving on to the new one */ 3875 window = &dma->dp_window[dma->dp_current_win]; 3876 if ((window->wd_dosync) && (hp->dmai_rflags & DDI_DMA_READ)) { 3877 (void) rootnex_dma_sync(dip, rdip, handle, 0, 0, 3878 DDI_DMA_SYNC_FORCPU); 3879 } 3880 3881 #if !defined(__amd64) 3882 /* 3883 * before we move to the next window, if we need to re-map, unmap all 3884 * the pages in this window. 3885 */ 3886 if (dma->dp_cb_remaping) { 3887 /* 3888 * If we switch to this window again, we'll need to map in 3889 * on the fly next time. 3890 */ 3891 window->wd_remap_copybuf = B_TRUE; 3892 3893 /* 3894 * calculate the page index into the buffer where this window 3895 * starts, and the number of pages this window takes up. 3896 */ 3897 pidx = (sinfo->si_buf_offset + window->wd_offset) >> 3898 MMU_PAGESHIFT; 3899 poff = (sinfo->si_buf_offset + window->wd_offset) & 3900 MMU_PAGEOFFSET; 3901 pcnt = mmu_btopr(window->wd_size + poff); 3902 ASSERT((pidx + pcnt) <= sinfo->si_max_pages); 3903 3904 /* unmap pages which are currently mapped in this window */ 3905 for (i = 0; i < pcnt; i++) { 3906 if (dma->dp_pgmap[pidx].pm_mapped) { 3907 hat_unload(kas.a_hat, 3908 dma->dp_pgmap[pidx].pm_kaddr, MMU_PAGESIZE, 3909 HAT_UNLOAD); 3910 dma->dp_pgmap[pidx].pm_mapped = B_FALSE; 3911 } 3912 pidx++; 3913 } 3914 } 3915 #endif 3916 3917 /* 3918 * Move to the new window. 3919 * NOTE: current_win must be set for sync to work right 3920 */ 3921 dma->dp_current_win = win; 3922 window = &dma->dp_window[win]; 3923 3924 /* if needed, adjust the first and/or last cookies for trim */ 3925 trim = &window->wd_trim; 3926 if (trim->tr_trim_first) { 3927 window->wd_first_cookie->_dmu._dmac_ll = trim->tr_first_paddr; 3928 window->wd_first_cookie->dmac_size = trim->tr_first_size; 3929 #if !defined(__amd64) 3930 window->wd_first_cookie->dmac_type = 3931 (window->wd_first_cookie->dmac_type & 3932 ROOTNEX_USES_COPYBUF) + window->wd_offset; 3933 #endif 3934 if (trim->tr_first_copybuf_win) { 3935 dma->dp_pgmap[trim->tr_first_pidx].pm_cbaddr = 3936 trim->tr_first_cbaddr; 3937 #if !defined(__amd64) 3938 dma->dp_pgmap[trim->tr_first_pidx].pm_kaddr = 3939 trim->tr_first_kaddr; 3940 #endif 3941 } 3942 } 3943 if (trim->tr_trim_last) { 3944 trim->tr_last_cookie->_dmu._dmac_ll = trim->tr_last_paddr; 3945 trim->tr_last_cookie->dmac_size = trim->tr_last_size; 3946 if (trim->tr_last_copybuf_win) { 3947 dma->dp_pgmap[trim->tr_last_pidx].pm_cbaddr = 3948 trim->tr_last_cbaddr; 3949 #if !defined(__amd64) 3950 dma->dp_pgmap[trim->tr_last_pidx].pm_kaddr = 3951 trim->tr_last_kaddr; 3952 #endif 3953 } 3954 } 3955 3956 /* 3957 * setup the cookie pointer to the first cookie in the window. setup 3958 * our return values, then increment the cookie since we return the 3959 * first cookie on the stack. 3960 */ 3961 hp->dmai_cookie = window->wd_first_cookie; 3962 *offp = window->wd_offset; 3963 *lenp = window->wd_size; 3964 *ccountp = window->wd_cookie_cnt; 3965 *cookiep = hp->dmai_cookie[0]; 3966 hp->dmai_cookie++; 3967 3968 #if !defined(__amd64) 3969 /* re-map copybuf if required for this window */ 3970 if (dma->dp_cb_remaping) { 3971 /* 3972 * calculate the page index into the buffer where this 3973 * window starts. 3974 */ 3975 pidx = (sinfo->si_buf_offset + window->wd_offset) >> 3976 MMU_PAGESHIFT; 3977 ASSERT(pidx < sinfo->si_max_pages); 3978 3979 /* 3980 * the first page can get unmapped if it's shared with the 3981 * previous window. Even if the rest of this window is already 3982 * mapped in, we need to still check this one. 3983 */ 3984 pmap = &dma->dp_pgmap[pidx]; 3985 if ((pmap->pm_uses_copybuf) && (pmap->pm_mapped == B_FALSE)) { 3986 if (pmap->pm_pp != NULL) { 3987 pmap->pm_mapped = B_TRUE; 3988 i86_pp_map(pmap->pm_pp, pmap->pm_kaddr); 3989 } else if (pmap->pm_vaddr != NULL) { 3990 pmap->pm_mapped = B_TRUE; 3991 i86_va_map(pmap->pm_vaddr, sinfo->si_asp, 3992 pmap->pm_kaddr); 3993 } 3994 } 3995 pidx++; 3996 3997 /* map in the rest of the pages if required */ 3998 if (window->wd_remap_copybuf) { 3999 window->wd_remap_copybuf = B_FALSE; 4000 4001 /* figure out many pages this window takes up */ 4002 poff = (sinfo->si_buf_offset + window->wd_offset) & 4003 MMU_PAGEOFFSET; 4004 pcnt = mmu_btopr(window->wd_size + poff); 4005 ASSERT(((pidx - 1) + pcnt) <= sinfo->si_max_pages); 4006 4007 /* map pages which require it */ 4008 for (i = 1; i < pcnt; i++) { 4009 pmap = &dma->dp_pgmap[pidx]; 4010 if (pmap->pm_uses_copybuf) { 4011 ASSERT(pmap->pm_mapped == B_FALSE); 4012 if (pmap->pm_pp != NULL) { 4013 pmap->pm_mapped = B_TRUE; 4014 i86_pp_map(pmap->pm_pp, 4015 pmap->pm_kaddr); 4016 } else if (pmap->pm_vaddr != NULL) { 4017 pmap->pm_mapped = B_TRUE; 4018 i86_va_map(pmap->pm_vaddr, 4019 sinfo->si_asp, 4020 pmap->pm_kaddr); 4021 } 4022 } 4023 pidx++; 4024 } 4025 } 4026 } 4027 #endif 4028 4029 /* if the new window uses the copy buffer, sync it for the device */ 4030 if ((window->wd_dosync) && (hp->dmai_rflags & DDI_DMA_WRITE)) { 4031 (void) rootnex_dma_sync(dip, rdip, handle, 0, 0, 4032 DDI_DMA_SYNC_FORDEV); 4033 } 4034 4035 return (DDI_SUCCESS); 4036 } 4037 4038 4039 4040 /* 4041 * ************************ 4042 * obsoleted dma routines 4043 * ************************ 4044 */ 4045 4046 /* 4047 * rootnex_dma_map() 4048 * called from ddi_dma_setup() 4049 */ 4050 /* ARGSUSED */ 4051 static int 4052 rootnex_dma_map(dev_info_t *dip, dev_info_t *rdip, struct ddi_dma_req *dmareq, 4053 ddi_dma_handle_t *handlep) 4054 { 4055 #if defined(__amd64) 4056 /* 4057 * this interface is not supported in 64-bit x86 kernel. See comment in 4058 * rootnex_dma_mctl() 4059 */ 4060 return (DDI_DMA_NORESOURCES); 4061 4062 #else /* 32-bit x86 kernel */ 4063 ddi_dma_handle_t *lhandlep; 4064 ddi_dma_handle_t lhandle; 4065 ddi_dma_cookie_t cookie; 4066 ddi_dma_attr_t dma_attr; 4067 ddi_dma_lim_t *dma_lim; 4068 uint_t ccnt; 4069 int e; 4070 4071 4072 /* 4073 * if the driver is just testing to see if it's possible to do the bind, 4074 * we'll use local state. Otherwise, use the handle pointer passed in. 4075 */ 4076 if (handlep == NULL) { 4077 lhandlep = &lhandle; 4078 } else { 4079 lhandlep = handlep; 4080 } 4081 4082 /* convert the limit structure to a dma_attr one */ 4083 dma_lim = dmareq->dmar_limits; 4084 dma_attr.dma_attr_version = DMA_ATTR_V0; 4085 dma_attr.dma_attr_addr_lo = dma_lim->dlim_addr_lo; 4086 dma_attr.dma_attr_addr_hi = dma_lim->dlim_addr_hi; 4087 dma_attr.dma_attr_minxfer = dma_lim->dlim_minxfer; 4088 dma_attr.dma_attr_seg = dma_lim->dlim_adreg_max; 4089 dma_attr.dma_attr_count_max = dma_lim->dlim_ctreg_max; 4090 dma_attr.dma_attr_granular = dma_lim->dlim_granular; 4091 dma_attr.dma_attr_sgllen = dma_lim->dlim_sgllen; 4092 dma_attr.dma_attr_maxxfer = dma_lim->dlim_reqsize; 4093 dma_attr.dma_attr_burstsizes = dma_lim->dlim_burstsizes; 4094 dma_attr.dma_attr_align = MMU_PAGESIZE; 4095 dma_attr.dma_attr_flags = 0; 4096 4097 e = rootnex_dma_allochdl(dip, rdip, &dma_attr, dmareq->dmar_fp, 4098 dmareq->dmar_arg, lhandlep); 4099 if (e != DDI_SUCCESS) { 4100 return (e); 4101 } 4102 4103 e = rootnex_dma_bindhdl(dip, rdip, *lhandlep, dmareq, &cookie, &ccnt); 4104 if ((e != DDI_DMA_MAPPED) && (e != DDI_DMA_PARTIAL_MAP)) { 4105 (void) rootnex_dma_freehdl(dip, rdip, *lhandlep); 4106 return (e); 4107 } 4108 4109 /* 4110 * if the driver is just testing to see if it's possible to do the bind, 4111 * free up the local state and return the result. 4112 */ 4113 if (handlep == NULL) { 4114 (void) rootnex_dma_unbindhdl(dip, rdip, *lhandlep); 4115 (void) rootnex_dma_freehdl(dip, rdip, *lhandlep); 4116 if (e == DDI_DMA_MAPPED) { 4117 return (DDI_DMA_MAPOK); 4118 } else { 4119 return (DDI_DMA_NOMAPPING); 4120 } 4121 } 4122 4123 return (e); 4124 #endif /* defined(__amd64) */ 4125 } 4126 4127 4128 /* 4129 * rootnex_dma_mctl() 4130 * 4131 */ 4132 /* ARGSUSED */ 4133 static int 4134 rootnex_dma_mctl(dev_info_t *dip, dev_info_t *rdip, ddi_dma_handle_t handle, 4135 enum ddi_dma_ctlops request, off_t *offp, size_t *lenp, caddr_t *objpp, 4136 uint_t cache_flags) 4137 { 4138 #if defined(__amd64) 4139 /* 4140 * DDI_DMA_SMEM_ALLOC & DDI_DMA_IOPB_ALLOC we're changed to have a 4141 * common implementation in genunix, so they no longer have x86 4142 * specific functionality which called into dma_ctl. 4143 * 4144 * The rest of the obsoleted interfaces were never supported in the 4145 * 64-bit x86 kernel. For s10, the obsoleted DDI_DMA_SEGTOC interface 4146 * was not ported to the x86 64-bit kernel do to serious x86 rootnex 4147 * implementation issues. 4148 * 4149 * If you can't use DDI_DMA_SEGTOC; DDI_DMA_NEXTSEG, DDI_DMA_FREE, and 4150 * DDI_DMA_NEXTWIN are useless since you can get to the cookie, so we 4151 * reflect that now too... 4152 * 4153 * Even though we fixed the pointer problem in DDI_DMA_SEGTOC, we are 4154 * not going to put this functionality into the 64-bit x86 kernel now. 4155 * It wasn't ported to the 64-bit kernel for s10, no reason to change 4156 * that in a future release. 4157 */ 4158 return (DDI_FAILURE); 4159 4160 #else /* 32-bit x86 kernel */ 4161 ddi_dma_cookie_t lcookie; 4162 ddi_dma_cookie_t *cookie; 4163 rootnex_window_t *window; 4164 ddi_dma_impl_t *hp; 4165 rootnex_dma_t *dma; 4166 uint_t nwin; 4167 uint_t ccnt; 4168 size_t len; 4169 off_t off; 4170 int e; 4171 4172 4173 /* 4174 * DDI_DMA_SEGTOC, DDI_DMA_NEXTSEG, and DDI_DMA_NEXTWIN are a little 4175 * hacky since were optimizing for the current interfaces and so we can 4176 * cleanup the mess in genunix. Hopefully we will remove the this 4177 * obsoleted routines someday soon. 4178 */ 4179 4180 switch (request) { 4181 4182 case DDI_DMA_SEGTOC: /* ddi_dma_segtocookie() */ 4183 hp = (ddi_dma_impl_t *)handle; 4184 cookie = (ddi_dma_cookie_t *)objpp; 4185 4186 /* 4187 * convert segment to cookie. We don't distinguish between the 4188 * two :-) 4189 */ 4190 *cookie = *hp->dmai_cookie; 4191 *lenp = cookie->dmac_size; 4192 *offp = cookie->dmac_type & ~ROOTNEX_USES_COPYBUF; 4193 return (DDI_SUCCESS); 4194 4195 case DDI_DMA_NEXTSEG: /* ddi_dma_nextseg() */ 4196 hp = (ddi_dma_impl_t *)handle; 4197 dma = (rootnex_dma_t *)hp->dmai_private; 4198 4199 if ((*lenp != NULL) && ((uintptr_t)*lenp != (uintptr_t)hp)) { 4200 return (DDI_DMA_STALE); 4201 } 4202 4203 /* handle the case where we don't have any windows */ 4204 if (dma->dp_window == NULL) { 4205 /* 4206 * if seg == NULL, and we don't have any windows, 4207 * return the first cookie in the sgl. 4208 */ 4209 if (*lenp == NULL) { 4210 dma->dp_current_cookie = 0; 4211 hp->dmai_cookie = dma->dp_cookies; 4212 *objpp = (caddr_t)handle; 4213 return (DDI_SUCCESS); 4214 4215 /* if we have more cookies, go to the next cookie */ 4216 } else { 4217 if ((dma->dp_current_cookie + 1) >= 4218 dma->dp_sglinfo.si_sgl_size) { 4219 return (DDI_DMA_DONE); 4220 } 4221 dma->dp_current_cookie++; 4222 hp->dmai_cookie++; 4223 return (DDI_SUCCESS); 4224 } 4225 } 4226 4227 /* We have one or more windows */ 4228 window = &dma->dp_window[dma->dp_current_win]; 4229 4230 /* 4231 * if seg == NULL, return the first cookie in the current 4232 * window 4233 */ 4234 if (*lenp == NULL) { 4235 dma->dp_current_cookie = 0; 4236 hp->dmai_cookie = window->wd_first_cookie; 4237 4238 /* 4239 * go to the next cookie in the window then see if we done with 4240 * this window. 4241 */ 4242 } else { 4243 if ((dma->dp_current_cookie + 1) >= 4244 window->wd_cookie_cnt) { 4245 return (DDI_DMA_DONE); 4246 } 4247 dma->dp_current_cookie++; 4248 hp->dmai_cookie++; 4249 } 4250 *objpp = (caddr_t)handle; 4251 return (DDI_SUCCESS); 4252 4253 case DDI_DMA_NEXTWIN: /* ddi_dma_nextwin() */ 4254 hp = (ddi_dma_impl_t *)handle; 4255 dma = (rootnex_dma_t *)hp->dmai_private; 4256 4257 if ((*offp != NULL) && ((uintptr_t)*offp != (uintptr_t)hp)) { 4258 return (DDI_DMA_STALE); 4259 } 4260 4261 /* if win == NULL, return the first window in the bind */ 4262 if (*offp == NULL) { 4263 nwin = 0; 4264 4265 /* 4266 * else, go to the next window then see if we're done with all 4267 * the windows. 4268 */ 4269 } else { 4270 nwin = dma->dp_current_win + 1; 4271 if (nwin >= hp->dmai_nwin) { 4272 return (DDI_DMA_DONE); 4273 } 4274 } 4275 4276 /* switch to the next window */ 4277 e = rootnex_dma_win(dip, rdip, handle, nwin, &off, &len, 4278 &lcookie, &ccnt); 4279 ASSERT(e == DDI_SUCCESS); 4280 if (e != DDI_SUCCESS) { 4281 return (DDI_DMA_STALE); 4282 } 4283 4284 /* reset the cookie back to the first cookie in the window */ 4285 if (dma->dp_window != NULL) { 4286 window = &dma->dp_window[dma->dp_current_win]; 4287 hp->dmai_cookie = window->wd_first_cookie; 4288 } else { 4289 hp->dmai_cookie = dma->dp_cookies; 4290 } 4291 4292 *objpp = (caddr_t)handle; 4293 return (DDI_SUCCESS); 4294 4295 case DDI_DMA_FREE: /* ddi_dma_free() */ 4296 (void) rootnex_dma_unbindhdl(dip, rdip, handle); 4297 (void) rootnex_dma_freehdl(dip, rdip, handle); 4298 if (rootnex_state->r_dvma_call_list_id) { 4299 ddi_run_callback(&rootnex_state->r_dvma_call_list_id); 4300 } 4301 return (DDI_SUCCESS); 4302 4303 case DDI_DMA_IOPB_ALLOC: /* get contiguous DMA-able memory */ 4304 case DDI_DMA_SMEM_ALLOC: /* get contiguous DMA-able memory */ 4305 /* should never get here, handled in genunix */ 4306 ASSERT(0); 4307 return (DDI_FAILURE); 4308 4309 case DDI_DMA_KVADDR: 4310 case DDI_DMA_GETERR: 4311 case DDI_DMA_COFF: 4312 return (DDI_FAILURE); 4313 } 4314 4315 return (DDI_FAILURE); 4316 #endif /* defined(__amd64) */ 4317 } 4318 4319 4320 /* 4321 * ********* 4322 * FMA Code 4323 * ********* 4324 */ 4325 4326 /* 4327 * rootnex_fm_init() 4328 * FMA init busop 4329 */ 4330 /* ARGSUSED */ 4331 static int 4332 rootnex_fm_init(dev_info_t *dip, dev_info_t *tdip, int tcap, 4333 ddi_iblock_cookie_t *ibc) 4334 { 4335 *ibc = rootnex_state->r_err_ibc; 4336 4337 return (ddi_system_fmcap); 4338 } 4339 4340 /* 4341 * rootnex_dma_check() 4342 * Function called after a dma fault occurred to find out whether the 4343 * fault address is associated with a driver that is able to handle faults 4344 * and recover from faults. 4345 */ 4346 /* ARGSUSED */ 4347 static int 4348 rootnex_dma_check(dev_info_t *dip, const void *handle, const void *addr, 4349 const void *not_used) 4350 { 4351 rootnex_window_t *window; 4352 uint64_t start_addr; 4353 uint64_t fault_addr; 4354 ddi_dma_impl_t *hp; 4355 rootnex_dma_t *dma; 4356 uint64_t end_addr; 4357 size_t csize; 4358 int i; 4359 int j; 4360 4361 4362 /* The driver has to set DDI_DMA_FLAGERR to recover from dma faults */ 4363 hp = (ddi_dma_impl_t *)handle; 4364 ASSERT(hp); 4365 4366 dma = (rootnex_dma_t *)hp->dmai_private; 4367 4368 /* Get the address that we need to search for */ 4369 fault_addr = *(uint64_t *)addr; 4370 4371 /* 4372 * if we don't have any windows, we can just walk through all the 4373 * cookies. 4374 */ 4375 if (dma->dp_window == NULL) { 4376 /* for each cookie */ 4377 for (i = 0; i < dma->dp_sglinfo.si_sgl_size; i++) { 4378 /* 4379 * if the faulted address is within the physical address 4380 * range of the cookie, return DDI_FM_NONFATAL. 4381 */ 4382 if ((fault_addr >= dma->dp_cookies[i].dmac_laddress) && 4383 (fault_addr <= (dma->dp_cookies[i].dmac_laddress + 4384 dma->dp_cookies[i].dmac_size))) { 4385 return (DDI_FM_NONFATAL); 4386 } 4387 } 4388 4389 /* fault_addr not within this DMA handle */ 4390 return (DDI_FM_UNKNOWN); 4391 } 4392 4393 /* we have mutiple windows, walk through each window */ 4394 for (i = 0; i < hp->dmai_nwin; i++) { 4395 window = &dma->dp_window[i]; 4396 4397 /* Go through all the cookies in the window */ 4398 for (j = 0; j < window->wd_cookie_cnt; j++) { 4399 4400 start_addr = window->wd_first_cookie[j].dmac_laddress; 4401 csize = window->wd_first_cookie[j].dmac_size; 4402 4403 /* 4404 * if we are trimming the first cookie in the window, 4405 * and this is the first cookie, adjust the start 4406 * address and size of the cookie to account for the 4407 * trim. 4408 */ 4409 if (window->wd_trim.tr_trim_first && (j == 0)) { 4410 start_addr = window->wd_trim.tr_first_paddr; 4411 csize = window->wd_trim.tr_first_size; 4412 } 4413 4414 /* 4415 * if we are trimming the last cookie in the window, 4416 * and this is the last cookie, adjust the start 4417 * address and size of the cookie to account for the 4418 * trim. 4419 */ 4420 if (window->wd_trim.tr_trim_last && 4421 (j == (window->wd_cookie_cnt - 1))) { 4422 start_addr = window->wd_trim.tr_last_paddr; 4423 csize = window->wd_trim.tr_last_size; 4424 } 4425 4426 end_addr = start_addr + csize; 4427 4428 /* 4429 * if the faulted address is within the physical address 4430 * range of the cookie, return DDI_FM_NONFATAL. 4431 */ 4432 if ((fault_addr >= start_addr) && 4433 (fault_addr <= end_addr)) { 4434 return (DDI_FM_NONFATAL); 4435 } 4436 } 4437 } 4438 4439 /* fault_addr not within this DMA handle */ 4440 return (DDI_FM_UNKNOWN); 4441 } 4442