1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2009 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 /* 27 * apic_introp.c: 28 * Has code for Advanced DDI interrupt framework support. 29 */ 30 31 #include <sys/cpuvar.h> 32 #include <sys/psm.h> 33 #include <sys/archsystm.h> 34 #include <sys/apic.h> 35 #include <sys/sunddi.h> 36 #include <sys/ddi_impldefs.h> 37 #include <sys/mach_intr.h> 38 #include <sys/sysmacros.h> 39 #include <sys/trap.h> 40 #include <sys/pci.h> 41 #include <sys/pci_intr_lib.h> 42 43 extern struct av_head autovect[]; 44 45 /* 46 * Local Function Prototypes 47 */ 48 apic_irq_t *apic_find_irq(dev_info_t *, struct intrspec *, int); 49 50 /* 51 * MSI support flag: 52 * reflects whether MSI is supported at APIC level 53 * it can also be patched through /etc/system 54 * 55 * 0 = default value - don't know and need to call apic_check_msi_support() 56 * to find out then set it accordingly 57 * 1 = supported 58 * -1 = not supported 59 */ 60 int apic_support_msi = 0; 61 62 /* Multiple vector support for MSI */ 63 #if !defined(__xpv) 64 int apic_multi_msi_enable = 1; 65 #else 66 /* 67 * Xen hypervisor does not seem to properly support multi-MSI 68 */ 69 int apic_multi_msi_enable = 0; 70 #endif /* __xpv */ 71 72 /* Multiple vector support for MSI-X */ 73 int apic_msix_enable = 1; 74 75 /* 76 * apic_pci_msi_enable_vector: 77 * Set the address/data fields in the MSI/X capability structure 78 * XXX: MSI-X support 79 */ 80 /* ARGSUSED */ 81 void 82 apic_pci_msi_enable_vector(apic_irq_t *irq_ptr, int type, int inum, int vector, 83 int count, int target_apic_id) 84 { 85 uint64_t msi_addr, msi_data; 86 ushort_t msi_ctrl; 87 dev_info_t *dip = irq_ptr->airq_dip; 88 int cap_ptr = i_ddi_get_msi_msix_cap_ptr(dip); 89 ddi_acc_handle_t handle = i_ddi_get_pci_config_handle(dip); 90 #if !defined(__xpv) 91 msi_regs_t msi_regs; 92 #endif /* ! __xpv */ 93 94 DDI_INTR_IMPLDBG((CE_CONT, "apic_pci_msi_enable_vector: dip=0x%p\n" 95 "\tdriver = %s, inum=0x%x vector=0x%x apicid=0x%x\n", (void *)dip, 96 ddi_driver_name(dip), inum, vector, target_apic_id)); 97 98 ASSERT((handle != NULL) && (cap_ptr != 0)); 99 100 #if !defined(__xpv) 101 msi_regs.mr_data = vector; 102 msi_regs.mr_addr = target_apic_id; 103 104 apic_vt_ops->apic_intrr_alloc_entry(irq_ptr); 105 apic_vt_ops->apic_intrr_map_entry(irq_ptr, (void *)&msi_regs); 106 apic_vt_ops->apic_intrr_record_msi(irq_ptr, &msi_regs); 107 108 /* MSI Address */ 109 msi_addr = msi_regs.mr_addr; 110 111 /* MSI Data: MSI is edge triggered according to spec */ 112 msi_data = msi_regs.mr_data; 113 #else 114 /* MSI Address */ 115 msi_addr = (MSI_ADDR_HDR | 116 (target_apic_id << MSI_ADDR_DEST_SHIFT)); 117 msi_addr |= ((MSI_ADDR_RH_FIXED << MSI_ADDR_RH_SHIFT) | 118 (MSI_ADDR_DM_PHYSICAL << MSI_ADDR_DM_SHIFT)); 119 120 /* MSI Data: MSI is edge triggered according to spec */ 121 msi_data = ((MSI_DATA_TM_EDGE << MSI_DATA_TM_SHIFT) | vector); 122 #endif /* ! __xpv */ 123 124 DDI_INTR_IMPLDBG((CE_CONT, "apic_pci_msi_enable_vector: addr=0x%lx " 125 "data=0x%lx\n", (long)msi_addr, (long)msi_data)); 126 127 if (type == DDI_INTR_TYPE_MSI) { 128 msi_ctrl = pci_config_get16(handle, cap_ptr + PCI_MSI_CTRL); 129 130 /* Set the bits to inform how many MSIs are enabled */ 131 msi_ctrl |= ((highbit(count) -1) << PCI_MSI_MME_SHIFT); 132 pci_config_put16(handle, cap_ptr + PCI_MSI_CTRL, msi_ctrl); 133 134 #if !defined(__xpv) 135 /* 136 * Only set vector if not on hypervisor 137 */ 138 pci_config_put32(handle, 139 cap_ptr + PCI_MSI_ADDR_OFFSET, msi_addr); 140 141 if (msi_ctrl & PCI_MSI_64BIT_MASK) { 142 pci_config_put32(handle, 143 cap_ptr + PCI_MSI_ADDR_OFFSET + 4, msi_addr >> 32); 144 pci_config_put16(handle, 145 cap_ptr + PCI_MSI_64BIT_DATA, msi_data); 146 } else { 147 pci_config_put16(handle, 148 cap_ptr + PCI_MSI_32BIT_DATA, msi_data); 149 } 150 151 } else if (type == DDI_INTR_TYPE_MSIX) { 152 uintptr_t off; 153 ddi_intr_msix_t *msix_p = i_ddi_get_msix(dip); 154 155 /* Offset into the "inum"th entry in the MSI-X table */ 156 off = (uintptr_t)msix_p->msix_tbl_addr + 157 (inum * PCI_MSIX_VECTOR_SIZE); 158 159 ddi_put32(msix_p->msix_tbl_hdl, 160 (uint32_t *)(off + PCI_MSIX_DATA_OFFSET), msi_data); 161 ddi_put64(msix_p->msix_tbl_hdl, 162 (uint64_t *)(off + PCI_MSIX_LOWER_ADDR_OFFSET), msi_addr); 163 #endif /* ! __xpv */ 164 } 165 } 166 167 168 #if !defined(__xpv) 169 170 /* 171 * This function returns the no. of vectors available for the pri. 172 * dip is not used at this moment. If we really don't need that, 173 * it will be removed. 174 */ 175 /*ARGSUSED*/ 176 int 177 apic_navail_vector(dev_info_t *dip, int pri) 178 { 179 int lowest, highest, i, navail, count; 180 181 DDI_INTR_IMPLDBG((CE_CONT, "apic_navail_vector: dip: %p, pri: %x\n", 182 (void *)dip, pri)); 183 184 highest = apic_ipltopri[pri] + APIC_VECTOR_MASK; 185 lowest = apic_ipltopri[pri - 1] + APIC_VECTOR_PER_IPL; 186 navail = count = 0; 187 188 if (highest < lowest) /* Both ipl and ipl - 1 map to same pri */ 189 lowest -= APIC_VECTOR_PER_IPL; 190 191 /* It has to be contiguous */ 192 for (i = lowest; i < highest; i++) { 193 count = 0; 194 while ((apic_vector_to_irq[i] == APIC_RESV_IRQ) && 195 (i < highest)) { 196 if (APIC_CHECK_RESERVE_VECTORS(i)) 197 break; 198 count++; 199 i++; 200 } 201 if (count > navail) 202 navail = count; 203 } 204 return (navail); 205 } 206 207 #endif /* ! __xpv */ 208 209 /* 210 * Finds "count" contiguous MSI vectors starting at the proper alignment 211 * at "pri". 212 * Caller needs to make sure that count has to be power of 2 and should not 213 * be < 1. 214 */ 215 uchar_t 216 apic_find_multi_vectors(int pri, int count) 217 { 218 int lowest, highest, i, navail, start, msibits; 219 220 DDI_INTR_IMPLDBG((CE_CONT, "apic_find_mult: pri: %x, count: %x\n", 221 pri, count)); 222 223 highest = apic_ipltopri[pri] + APIC_VECTOR_MASK; 224 lowest = apic_ipltopri[pri - 1] + APIC_VECTOR_PER_IPL; 225 navail = 0; 226 227 if (highest < lowest) /* Both ipl and ipl - 1 map to same pri */ 228 lowest -= APIC_VECTOR_PER_IPL; 229 230 /* 231 * msibits is the no. of lower order message data bits for the 232 * allocated MSI vectors and is used to calculate the aligned 233 * starting vector 234 */ 235 msibits = count - 1; 236 237 /* It has to be contiguous */ 238 for (i = lowest; i < highest; i++) { 239 navail = 0; 240 241 /* 242 * starting vector has to be aligned accordingly for 243 * multiple MSIs 244 */ 245 if (msibits) 246 i = (i + msibits) & ~msibits; 247 start = i; 248 while ((apic_vector_to_irq[i] == APIC_RESV_IRQ) && 249 (i < highest)) { 250 if (APIC_CHECK_RESERVE_VECTORS(i)) 251 break; 252 navail++; 253 if (navail >= count) 254 return (start); 255 i++; 256 } 257 } 258 return (0); 259 } 260 261 262 /* 263 * It finds the apic_irq_t associates with the dip, ispec and type. 264 */ 265 apic_irq_t * 266 apic_find_irq(dev_info_t *dip, struct intrspec *ispec, int type) 267 { 268 apic_irq_t *irqp; 269 int i; 270 271 DDI_INTR_IMPLDBG((CE_CONT, "apic_find_irq: dip=0x%p vec=0x%x " 272 "ipl=0x%x type=0x%x\n", (void *)dip, ispec->intrspec_vec, 273 ispec->intrspec_pri, type)); 274 275 for (i = apic_min_device_irq; i <= apic_max_device_irq; i++) { 276 if ((irqp = apic_irq_table[i]) == NULL) 277 continue; 278 if ((irqp->airq_dip == dip) && 279 (irqp->airq_origirq == ispec->intrspec_vec) && 280 (irqp->airq_ipl == ispec->intrspec_pri)) { 281 if (type == DDI_INTR_TYPE_MSI) { 282 if (irqp->airq_mps_intr_index == MSI_INDEX) 283 return (irqp); 284 } else if (type == DDI_INTR_TYPE_MSIX) { 285 if (irqp->airq_mps_intr_index == MSIX_INDEX) 286 return (irqp); 287 } else 288 return (irqp); 289 } 290 } 291 DDI_INTR_IMPLDBG((CE_CONT, "apic_find_irq: return NULL\n")); 292 return (NULL); 293 } 294 295 296 #if !defined(__xpv) 297 298 /* 299 * This function will return the pending bit of the irqp. 300 * It either comes from the IRR register of the APIC or the RDT 301 * entry of the I/O APIC. 302 * For the IRR to work, it needs to be to its binding CPU 303 */ 304 static int 305 apic_get_pending(apic_irq_t *irqp, int type) 306 { 307 int bit, index, irr, pending; 308 int intin_no; 309 int apic_ix; 310 311 DDI_INTR_IMPLDBG((CE_CONT, "apic_get_pending: irqp: %p, cpuid: %x " 312 "type: %x\n", (void *)irqp, irqp->airq_cpu & ~IRQ_USER_BOUND, 313 type)); 314 315 /* need to get on the bound cpu */ 316 mutex_enter(&cpu_lock); 317 affinity_set(irqp->airq_cpu & ~IRQ_USER_BOUND); 318 319 index = irqp->airq_vector / 32; 320 bit = irqp->airq_vector % 32; 321 irr = apic_reg_ops->apic_read(APIC_IRR_REG + index); 322 323 affinity_clear(); 324 mutex_exit(&cpu_lock); 325 326 pending = (irr & (1 << bit)) ? 1 : 0; 327 if (!pending && (type == DDI_INTR_TYPE_FIXED)) { 328 /* check I/O APIC for fixed interrupt */ 329 intin_no = irqp->airq_intin_no; 330 apic_ix = irqp->airq_ioapicindex; 331 pending = (READ_IOAPIC_RDT_ENTRY_LOW_DWORD(apic_ix, intin_no) & 332 AV_PENDING) ? 1 : 0; 333 } 334 return (pending); 335 } 336 337 338 /* 339 * This function will clear the mask for the interrupt on the I/O APIC 340 */ 341 static void 342 apic_clear_mask(apic_irq_t *irqp) 343 { 344 int intin_no; 345 ulong_t iflag; 346 int32_t rdt_entry; 347 int apic_ix; 348 349 DDI_INTR_IMPLDBG((CE_CONT, "apic_clear_mask: irqp: %p\n", 350 (void *)irqp)); 351 352 intin_no = irqp->airq_intin_no; 353 apic_ix = irqp->airq_ioapicindex; 354 355 iflag = intr_clear(); 356 lock_set(&apic_ioapic_lock); 357 358 rdt_entry = READ_IOAPIC_RDT_ENTRY_LOW_DWORD(apic_ix, intin_no); 359 360 /* clear mask */ 361 WRITE_IOAPIC_RDT_ENTRY_LOW_DWORD(apic_ix, intin_no, 362 ((~AV_MASK) & rdt_entry)); 363 364 lock_clear(&apic_ioapic_lock); 365 intr_restore(iflag); 366 } 367 368 369 /* 370 * This function will mask the interrupt on the I/O APIC 371 */ 372 static void 373 apic_set_mask(apic_irq_t *irqp) 374 { 375 int intin_no; 376 int apic_ix; 377 ulong_t iflag; 378 int32_t rdt_entry; 379 380 DDI_INTR_IMPLDBG((CE_CONT, "apic_set_mask: irqp: %p\n", (void *)irqp)); 381 382 intin_no = irqp->airq_intin_no; 383 apic_ix = irqp->airq_ioapicindex; 384 385 iflag = intr_clear(); 386 387 lock_set(&apic_ioapic_lock); 388 389 rdt_entry = READ_IOAPIC_RDT_ENTRY_LOW_DWORD(apic_ix, intin_no); 390 391 /* mask it */ 392 WRITE_IOAPIC_RDT_ENTRY_LOW_DWORD(apic_ix, intin_no, 393 (AV_MASK | rdt_entry)); 394 395 lock_clear(&apic_ioapic_lock); 396 intr_restore(iflag); 397 } 398 399 400 void 401 apic_free_vectors(dev_info_t *dip, int inum, int count, int pri, int type) 402 { 403 int i; 404 apic_irq_t *irqptr; 405 struct intrspec ispec; 406 407 DDI_INTR_IMPLDBG((CE_CONT, "apic_free_vectors: dip: %p inum: %x " 408 "count: %x pri: %x type: %x\n", 409 (void *)dip, inum, count, pri, type)); 410 411 /* for MSI/X only */ 412 if (!DDI_INTR_IS_MSI_OR_MSIX(type)) 413 return; 414 415 for (i = 0; i < count; i++) { 416 DDI_INTR_IMPLDBG((CE_CONT, "apic_free_vectors: inum=0x%x " 417 "pri=0x%x count=0x%x\n", inum, pri, count)); 418 ispec.intrspec_vec = inum + i; 419 ispec.intrspec_pri = pri; 420 if ((irqptr = apic_find_irq(dip, &ispec, type)) == NULL) { 421 DDI_INTR_IMPLDBG((CE_CONT, "apic_free_vectors: " 422 "dip=0x%p inum=0x%x pri=0x%x apic_find_irq() " 423 "failed\n", (void *)dip, inum, pri)); 424 continue; 425 } 426 irqptr->airq_mps_intr_index = FREE_INDEX; 427 apic_vector_to_irq[irqptr->airq_vector] = APIC_RESV_IRQ; 428 } 429 } 430 431 #endif /* ! __xpv */ 432 433 /* 434 * check whether the system supports MSI 435 * 436 * If PCI-E capability is found, then this must be a PCI-E system. 437 * Since MSI is required for PCI-E system, it returns PSM_SUCCESS 438 * to indicate this system supports MSI. 439 */ 440 int 441 apic_check_msi_support() 442 { 443 dev_info_t *cdip; 444 char dev_type[16]; 445 int dev_len; 446 447 DDI_INTR_IMPLDBG((CE_CONT, "apic_check_msi_support:\n")); 448 449 /* 450 * check whether the first level children of root_node have 451 * PCI-E capability 452 */ 453 for (cdip = ddi_get_child(ddi_root_node()); cdip != NULL; 454 cdip = ddi_get_next_sibling(cdip)) { 455 456 DDI_INTR_IMPLDBG((CE_CONT, "apic_check_msi_support: cdip: 0x%p," 457 " driver: %s, binding: %s, nodename: %s\n", (void *)cdip, 458 ddi_driver_name(cdip), ddi_binding_name(cdip), 459 ddi_node_name(cdip))); 460 dev_len = sizeof (dev_type); 461 if (ddi_getlongprop_buf(DDI_DEV_T_ANY, cdip, DDI_PROP_DONTPASS, 462 "device_type", (caddr_t)dev_type, &dev_len) 463 != DDI_PROP_SUCCESS) 464 continue; 465 if (strcmp(dev_type, "pciex") == 0) 466 return (PSM_SUCCESS); 467 } 468 469 /* MSI is not supported on this system */ 470 DDI_INTR_IMPLDBG((CE_CONT, "apic_check_msi_support: no 'pciex' " 471 "device_type found\n")); 472 return (PSM_FAILURE); 473 } 474 475 #if !defined(__xpv) 476 477 /* 478 * apic_pci_msi_unconfigure: 479 * 480 * This and next two interfaces are copied from pci_intr_lib.c 481 * Do ensure that these two files stay in sync. 482 * These needed to be copied over here to avoid a deadlock situation on 483 * certain mp systems that use MSI interrupts. 484 * 485 * IMPORTANT regards next three interfaces: 486 * i) are called only for MSI/X interrupts. 487 * ii) called with interrupts disabled, and must not block 488 */ 489 void 490 apic_pci_msi_unconfigure(dev_info_t *rdip, int type, int inum) 491 { 492 ushort_t msi_ctrl; 493 int cap_ptr = i_ddi_get_msi_msix_cap_ptr(rdip); 494 ddi_acc_handle_t handle = i_ddi_get_pci_config_handle(rdip); 495 496 ASSERT((handle != NULL) && (cap_ptr != 0)); 497 498 if (type == DDI_INTR_TYPE_MSI) { 499 msi_ctrl = pci_config_get16(handle, cap_ptr + PCI_MSI_CTRL); 500 msi_ctrl &= (~PCI_MSI_MME_MASK); 501 pci_config_put16(handle, cap_ptr + PCI_MSI_CTRL, msi_ctrl); 502 pci_config_put32(handle, cap_ptr + PCI_MSI_ADDR_OFFSET, 0); 503 504 if (msi_ctrl & PCI_MSI_64BIT_MASK) { 505 pci_config_put16(handle, 506 cap_ptr + PCI_MSI_64BIT_DATA, 0); 507 pci_config_put32(handle, 508 cap_ptr + PCI_MSI_ADDR_OFFSET + 4, 0); 509 } else { 510 pci_config_put16(handle, 511 cap_ptr + PCI_MSI_32BIT_DATA, 0); 512 } 513 514 } else if (type == DDI_INTR_TYPE_MSIX) { 515 uintptr_t off; 516 uint32_t mask; 517 ddi_intr_msix_t *msix_p = i_ddi_get_msix(rdip); 518 519 /* Offset into "inum"th entry in the MSI-X table & mask it */ 520 off = (uintptr_t)msix_p->msix_tbl_addr + (inum * 521 PCI_MSIX_VECTOR_SIZE) + PCI_MSIX_VECTOR_CTRL_OFFSET; 522 523 mask = ddi_get32(msix_p->msix_tbl_hdl, (uint32_t *)off); 524 525 ddi_put32(msix_p->msix_tbl_hdl, (uint32_t *)off, (mask | 1)); 526 527 /* Offset into the "inum"th entry in the MSI-X table */ 528 off = (uintptr_t)msix_p->msix_tbl_addr + 529 (inum * PCI_MSIX_VECTOR_SIZE); 530 531 /* Reset the "data" and "addr" bits */ 532 ddi_put32(msix_p->msix_tbl_hdl, 533 (uint32_t *)(off + PCI_MSIX_DATA_OFFSET), 0); 534 ddi_put64(msix_p->msix_tbl_hdl, (uint64_t *)off, 0); 535 } 536 } 537 538 #endif /* __xpv */ 539 540 /* 541 * apic_pci_msi_enable_mode: 542 */ 543 void 544 apic_pci_msi_enable_mode(dev_info_t *rdip, int type, int inum) 545 { 546 ushort_t msi_ctrl; 547 int cap_ptr = i_ddi_get_msi_msix_cap_ptr(rdip); 548 ddi_acc_handle_t handle = i_ddi_get_pci_config_handle(rdip); 549 550 ASSERT((handle != NULL) && (cap_ptr != 0)); 551 552 if (type == DDI_INTR_TYPE_MSI) { 553 msi_ctrl = pci_config_get16(handle, cap_ptr + PCI_MSI_CTRL); 554 if ((msi_ctrl & PCI_MSI_ENABLE_BIT)) 555 return; 556 557 msi_ctrl |= PCI_MSI_ENABLE_BIT; 558 pci_config_put16(handle, cap_ptr + PCI_MSI_CTRL, msi_ctrl); 559 560 } else if (type == DDI_INTR_TYPE_MSIX) { 561 uintptr_t off; 562 uint32_t mask; 563 ddi_intr_msix_t *msix_p; 564 565 msix_p = i_ddi_get_msix(rdip); 566 567 /* Offset into "inum"th entry in the MSI-X table & clear mask */ 568 off = (uintptr_t)msix_p->msix_tbl_addr + (inum * 569 PCI_MSIX_VECTOR_SIZE) + PCI_MSIX_VECTOR_CTRL_OFFSET; 570 571 mask = ddi_get32(msix_p->msix_tbl_hdl, (uint32_t *)off); 572 573 ddi_put32(msix_p->msix_tbl_hdl, (uint32_t *)off, (mask & ~1)); 574 575 msi_ctrl = pci_config_get16(handle, cap_ptr + PCI_MSIX_CTRL); 576 577 if (!(msi_ctrl & PCI_MSIX_ENABLE_BIT)) { 578 msi_ctrl |= PCI_MSIX_ENABLE_BIT; 579 pci_config_put16(handle, cap_ptr + PCI_MSIX_CTRL, 580 msi_ctrl); 581 } 582 } 583 } 584 585 /* 586 * apic_pci_msi_disable_mode: 587 */ 588 void 589 apic_pci_msi_disable_mode(dev_info_t *rdip, int type) 590 { 591 ushort_t msi_ctrl; 592 int cap_ptr = i_ddi_get_msi_msix_cap_ptr(rdip); 593 ddi_acc_handle_t handle = i_ddi_get_pci_config_handle(rdip); 594 595 ASSERT((handle != NULL) && (cap_ptr != 0)); 596 597 if (type == DDI_INTR_TYPE_MSI) { 598 msi_ctrl = pci_config_get16(handle, cap_ptr + PCI_MSI_CTRL); 599 if (!(msi_ctrl & PCI_MSI_ENABLE_BIT)) 600 return; 601 602 msi_ctrl &= ~PCI_MSI_ENABLE_BIT; /* MSI disable */ 603 pci_config_put16(handle, cap_ptr + PCI_MSI_CTRL, msi_ctrl); 604 605 } else if (type == DDI_INTR_TYPE_MSIX) { 606 msi_ctrl = pci_config_get16(handle, cap_ptr + PCI_MSIX_CTRL); 607 if (msi_ctrl & PCI_MSIX_ENABLE_BIT) { 608 msi_ctrl &= ~PCI_MSIX_ENABLE_BIT; 609 pci_config_put16(handle, cap_ptr + PCI_MSIX_CTRL, 610 msi_ctrl); 611 } 612 } 613 } 614 615 #if !defined(__xpv) 616 617 static int 618 apic_set_cpu(int irqno, int cpu, int *result) 619 { 620 apic_irq_t *irqp; 621 ulong_t iflag; 622 int ret; 623 624 DDI_INTR_IMPLDBG((CE_CONT, "APIC_SET_CPU\n")); 625 626 mutex_enter(&airq_mutex); 627 irqp = apic_irq_table[irqno]; 628 mutex_exit(&airq_mutex); 629 630 if (irqp == NULL) { 631 *result = ENXIO; 632 return (PSM_FAILURE); 633 } 634 635 /* Fail if this is an MSI intr and is part of a group. */ 636 if ((irqp->airq_mps_intr_index == MSI_INDEX) && 637 (irqp->airq_intin_no > 1)) { 638 *result = ENXIO; 639 return (PSM_FAILURE); 640 } 641 642 iflag = intr_clear(); 643 lock_set(&apic_ioapic_lock); 644 645 ret = apic_rebind_all(irqp, cpu); 646 647 lock_clear(&apic_ioapic_lock); 648 intr_restore(iflag); 649 650 if (ret) { 651 *result = EIO; 652 return (PSM_FAILURE); 653 } 654 /* 655 * keep tracking the default interrupt cpu binding 656 */ 657 irqp->airq_cpu = cpu; 658 659 *result = 0; 660 return (PSM_SUCCESS); 661 } 662 663 static int 664 apic_grp_set_cpu(int irqno, int new_cpu, int *result) 665 { 666 dev_info_t *orig_dip; 667 uint32_t orig_cpu; 668 ulong_t iflag; 669 apic_irq_t *irqps[PCI_MSI_MAX_INTRS]; 670 int i; 671 int cap_ptr; 672 int msi_mask_off; 673 ushort_t msi_ctrl; 674 uint32_t msi_pvm; 675 ddi_acc_handle_t handle; 676 int num_vectors = 0; 677 uint32_t vector; 678 679 DDI_INTR_IMPLDBG((CE_CONT, "APIC_GRP_SET_CPU\n")); 680 681 /* 682 * Take mutex to insure that table doesn't change out from underneath 683 * us while we're playing with it. 684 */ 685 mutex_enter(&airq_mutex); 686 irqps[0] = apic_irq_table[irqno]; 687 orig_cpu = irqps[0]->airq_temp_cpu; 688 orig_dip = irqps[0]->airq_dip; 689 num_vectors = irqps[0]->airq_intin_no; 690 vector = irqps[0]->airq_vector; 691 692 /* A "group" of 1 */ 693 if (num_vectors == 1) { 694 mutex_exit(&airq_mutex); 695 return (apic_set_cpu(irqno, new_cpu, result)); 696 } 697 698 *result = ENXIO; 699 700 if (irqps[0]->airq_mps_intr_index != MSI_INDEX) { 701 mutex_exit(&airq_mutex); 702 DDI_INTR_IMPLDBG((CE_CONT, "set_grp: intr not MSI\n")); 703 goto set_grp_intr_done; 704 } 705 if ((num_vectors < 1) || ((num_vectors - 1) & vector)) { 706 mutex_exit(&airq_mutex); 707 DDI_INTR_IMPLDBG((CE_CONT, 708 "set_grp: base vec not part of a grp or not aligned: " 709 "vec:0x%x, num_vec:0x%x\n", vector, num_vectors)); 710 goto set_grp_intr_done; 711 } 712 DDI_INTR_IMPLDBG((CE_CONT, "set_grp: num intrs in grp: %d\n", 713 num_vectors)); 714 715 ASSERT((num_vectors + vector) < APIC_MAX_VECTOR); 716 717 *result = EIO; 718 719 /* 720 * All IRQ entries in the table for the given device will be not 721 * shared. Since they are not shared, the dip in the table will 722 * be true to the device of interest. 723 */ 724 for (i = 1; i < num_vectors; i++) { 725 irqps[i] = apic_irq_table[apic_vector_to_irq[vector + i]]; 726 if (irqps[i] == NULL) { 727 mutex_exit(&airq_mutex); 728 goto set_grp_intr_done; 729 } 730 #ifdef DEBUG 731 /* Sanity check: CPU and dip is the same for all entries. */ 732 if ((irqps[i]->airq_dip != orig_dip) || 733 (irqps[i]->airq_temp_cpu != orig_cpu)) { 734 mutex_exit(&airq_mutex); 735 DDI_INTR_IMPLDBG((CE_CONT, 736 "set_grp: cpu or dip for vec 0x%x difft than for " 737 "vec 0x%x\n", vector, vector + i)); 738 DDI_INTR_IMPLDBG((CE_CONT, 739 " cpu: %d vs %d, dip: 0x%p vs 0x%p\n", orig_cpu, 740 irqps[i]->airq_temp_cpu, (void *)orig_dip, 741 (void *)irqps[i]->airq_dip)); 742 goto set_grp_intr_done; 743 } 744 #endif /* DEBUG */ 745 } 746 mutex_exit(&airq_mutex); 747 748 cap_ptr = i_ddi_get_msi_msix_cap_ptr(orig_dip); 749 handle = i_ddi_get_pci_config_handle(orig_dip); 750 msi_ctrl = pci_config_get16(handle, cap_ptr + PCI_MSI_CTRL); 751 752 /* MSI Per vector masking is supported. */ 753 if (msi_ctrl & PCI_MSI_PVM_MASK) { 754 if (msi_ctrl & PCI_MSI_64BIT_MASK) 755 msi_mask_off = cap_ptr + PCI_MSI_64BIT_MASKBITS; 756 else 757 msi_mask_off = cap_ptr + PCI_MSI_32BIT_MASK; 758 msi_pvm = pci_config_get32(handle, msi_mask_off); 759 pci_config_put32(handle, msi_mask_off, (uint32_t)-1); 760 DDI_INTR_IMPLDBG((CE_CONT, 761 "set_grp: pvm supported. Mask set to 0x%x\n", 762 pci_config_get32(handle, msi_mask_off))); 763 } 764 765 iflag = intr_clear(); 766 lock_set(&apic_ioapic_lock); 767 768 /* 769 * Do the first rebind and check for errors. Apic_rebind_all returns 770 * an error if the CPU is not accepting interrupts. If the first one 771 * succeeds they all will. 772 */ 773 if (apic_rebind_all(irqps[0], new_cpu)) 774 (void) apic_rebind_all(irqps[0], orig_cpu); 775 else { 776 irqps[0]->airq_cpu = new_cpu; 777 778 for (i = 1; i < num_vectors; i++) { 779 (void) apic_rebind_all(irqps[i], new_cpu); 780 irqps[i]->airq_cpu = new_cpu; 781 } 782 *result = 0; /* SUCCESS */ 783 } 784 785 lock_clear(&apic_ioapic_lock); 786 intr_restore(iflag); 787 788 /* Reenable vectors if per vector masking is supported. */ 789 if (msi_ctrl & PCI_MSI_PVM_MASK) { 790 pci_config_put32(handle, msi_mask_off, msi_pvm); 791 DDI_INTR_IMPLDBG((CE_CONT, 792 "set_grp: pvm supported. Mask restored to 0x%x\n", 793 pci_config_get32(handle, msi_mask_off))); 794 } 795 796 set_grp_intr_done: 797 if (*result != 0) 798 return (PSM_FAILURE); 799 800 return (PSM_SUCCESS); 801 } 802 803 #else /* __xpv */ 804 805 /* 806 * We let the hypervisor deal with msi configutation 807 * so just stub this out. 808 */ 809 810 /* ARGSUSED */ 811 void 812 apic_pci_msi_unconfigure(dev_info_t *rdip, int type, int inum) 813 { 814 } 815 816 #endif /* __xpv */ 817 818 int 819 apic_get_vector_intr_info(int vecirq, apic_get_intr_t *intr_params_p) 820 { 821 struct autovec *av_dev; 822 uchar_t irqno; 823 int i; 824 apic_irq_t *irq_p; 825 826 /* Sanity check the vector/irq argument. */ 827 ASSERT((vecirq >= 0) || (vecirq <= APIC_MAX_VECTOR)); 828 829 mutex_enter(&airq_mutex); 830 831 /* 832 * Convert the vecirq arg to an irq using vector_to_irq table 833 * if the arg is a vector. Pass thru if already an irq. 834 */ 835 if ((intr_params_p->avgi_req_flags & PSMGI_INTRBY_FLAGS) == 836 PSMGI_INTRBY_VEC) 837 irqno = apic_vector_to_irq[vecirq]; 838 else 839 irqno = vecirq; 840 841 irq_p = apic_irq_table[irqno]; 842 843 if ((irq_p == NULL) || 844 (irq_p->airq_temp_cpu == IRQ_UNBOUND) || 845 (irq_p->airq_temp_cpu == IRQ_UNINIT)) { 846 mutex_exit(&airq_mutex); 847 return (PSM_FAILURE); 848 } 849 850 if (intr_params_p->avgi_req_flags & PSMGI_REQ_CPUID) { 851 852 /* Get the (temp) cpu from apic_irq table, indexed by irq. */ 853 intr_params_p->avgi_cpu_id = irq_p->airq_temp_cpu; 854 855 /* Return user bound info for intrd. */ 856 if (intr_params_p->avgi_cpu_id & IRQ_USER_BOUND) { 857 intr_params_p->avgi_cpu_id &= ~IRQ_USER_BOUND; 858 intr_params_p->avgi_cpu_id |= PSMGI_CPU_USER_BOUND; 859 } 860 } 861 862 if (intr_params_p->avgi_req_flags & PSMGI_REQ_VECTOR) 863 intr_params_p->avgi_vector = irq_p->airq_vector; 864 865 if (intr_params_p->avgi_req_flags & 866 (PSMGI_REQ_NUM_DEVS | PSMGI_REQ_GET_DEVS)) 867 /* Get number of devices from apic_irq table shared field. */ 868 intr_params_p->avgi_num_devs = irq_p->airq_share; 869 870 if (intr_params_p->avgi_req_flags & PSMGI_REQ_GET_DEVS) { 871 872 intr_params_p->avgi_req_flags |= PSMGI_REQ_NUM_DEVS; 873 874 /* Some devices have NULL dip. Don't count these. */ 875 if (intr_params_p->avgi_num_devs > 0) { 876 for (i = 0, av_dev = autovect[irqno].avh_link; 877 av_dev; av_dev = av_dev->av_link) 878 if (av_dev->av_vector && av_dev->av_dip) 879 i++; 880 intr_params_p->avgi_num_devs = 881 MIN(intr_params_p->avgi_num_devs, i); 882 } 883 884 /* There are no viable dips to return. */ 885 if (intr_params_p->avgi_num_devs == 0) 886 intr_params_p->avgi_dip_list = NULL; 887 888 else { /* Return list of dips */ 889 890 /* Allocate space in array for that number of devs. */ 891 intr_params_p->avgi_dip_list = kmem_zalloc( 892 intr_params_p->avgi_num_devs * 893 sizeof (dev_info_t *), 894 KM_SLEEP); 895 896 /* 897 * Loop through the device list of the autovec table 898 * filling in the dip array. 899 * 900 * Note that the autovect table may have some special 901 * entries which contain NULL dips. These will be 902 * ignored. 903 */ 904 for (i = 0, av_dev = autovect[irqno].avh_link; 905 av_dev; av_dev = av_dev->av_link) 906 if (av_dev->av_vector && av_dev->av_dip) 907 intr_params_p->avgi_dip_list[i++] = 908 av_dev->av_dip; 909 } 910 } 911 912 mutex_exit(&airq_mutex); 913 914 return (PSM_SUCCESS); 915 } 916 917 918 #if !defined(__xpv) 919 920 /* 921 * This function provides external interface to the nexus for all 922 * functionalities related to the new DDI interrupt framework. 923 * 924 * Input: 925 * dip - pointer to the dev_info structure of the requested device 926 * hdlp - pointer to the internal interrupt handle structure for the 927 * requested interrupt 928 * intr_op - opcode for this call 929 * result - pointer to the integer that will hold the result to be 930 * passed back if return value is PSM_SUCCESS 931 * 932 * Output: 933 * return value is either PSM_SUCCESS or PSM_FAILURE 934 */ 935 int 936 apic_intr_ops(dev_info_t *dip, ddi_intr_handle_impl_t *hdlp, 937 psm_intr_op_t intr_op, int *result) 938 { 939 int cap; 940 int count_vec; 941 int old_priority; 942 int new_priority; 943 int new_cpu; 944 apic_irq_t *irqp; 945 struct intrspec *ispec, intr_spec; 946 947 DDI_INTR_IMPLDBG((CE_CONT, "apic_intr_ops: dip: %p hdlp: %p " 948 "intr_op: %x\n", (void *)dip, (void *)hdlp, intr_op)); 949 950 ispec = &intr_spec; 951 ispec->intrspec_pri = hdlp->ih_pri; 952 ispec->intrspec_vec = hdlp->ih_inum; 953 ispec->intrspec_func = hdlp->ih_cb_func; 954 955 switch (intr_op) { 956 case PSM_INTR_OP_CHECK_MSI: 957 /* 958 * Check MSI/X is supported or not at APIC level and 959 * masked off the MSI/X bits in hdlp->ih_type if not 960 * supported before return. If MSI/X is supported, 961 * leave the ih_type unchanged and return. 962 * 963 * hdlp->ih_type passed in from the nexus has all the 964 * interrupt types supported by the device. 965 */ 966 if (apic_support_msi == 0) { 967 /* 968 * if apic_support_msi is not set, call 969 * apic_check_msi_support() to check whether msi 970 * is supported first 971 */ 972 if (apic_check_msi_support() == PSM_SUCCESS) 973 apic_support_msi = 1; 974 else 975 apic_support_msi = -1; 976 } 977 if (apic_support_msi == 1) { 978 if (apic_msix_enable) 979 *result = hdlp->ih_type; 980 else 981 *result = hdlp->ih_type & ~DDI_INTR_TYPE_MSIX; 982 } else 983 *result = hdlp->ih_type & ~(DDI_INTR_TYPE_MSI | 984 DDI_INTR_TYPE_MSIX); 985 break; 986 case PSM_INTR_OP_ALLOC_VECTORS: 987 if (hdlp->ih_type == DDI_INTR_TYPE_MSI) 988 *result = apic_alloc_msi_vectors(dip, hdlp->ih_inum, 989 hdlp->ih_scratch1, hdlp->ih_pri, 990 (int)(uintptr_t)hdlp->ih_scratch2); 991 else 992 *result = apic_alloc_msix_vectors(dip, hdlp->ih_inum, 993 hdlp->ih_scratch1, hdlp->ih_pri, 994 (int)(uintptr_t)hdlp->ih_scratch2); 995 break; 996 case PSM_INTR_OP_FREE_VECTORS: 997 apic_free_vectors(dip, hdlp->ih_inum, hdlp->ih_scratch1, 998 hdlp->ih_pri, hdlp->ih_type); 999 break; 1000 case PSM_INTR_OP_NAVAIL_VECTORS: 1001 *result = apic_navail_vector(dip, hdlp->ih_pri); 1002 break; 1003 case PSM_INTR_OP_XLATE_VECTOR: 1004 ispec = ((ihdl_plat_t *)hdlp->ih_private)->ip_ispecp; 1005 *result = apic_introp_xlate(dip, ispec, hdlp->ih_type); 1006 break; 1007 case PSM_INTR_OP_GET_PENDING: 1008 if ((irqp = apic_find_irq(dip, ispec, hdlp->ih_type)) == NULL) 1009 return (PSM_FAILURE); 1010 *result = apic_get_pending(irqp, hdlp->ih_type); 1011 break; 1012 case PSM_INTR_OP_CLEAR_MASK: 1013 if (hdlp->ih_type != DDI_INTR_TYPE_FIXED) 1014 return (PSM_FAILURE); 1015 irqp = apic_find_irq(dip, ispec, hdlp->ih_type); 1016 if (irqp == NULL) 1017 return (PSM_FAILURE); 1018 apic_clear_mask(irqp); 1019 break; 1020 case PSM_INTR_OP_SET_MASK: 1021 if (hdlp->ih_type != DDI_INTR_TYPE_FIXED) 1022 return (PSM_FAILURE); 1023 if ((irqp = apic_find_irq(dip, ispec, hdlp->ih_type)) == NULL) 1024 return (PSM_FAILURE); 1025 apic_set_mask(irqp); 1026 break; 1027 case PSM_INTR_OP_GET_CAP: 1028 cap = DDI_INTR_FLAG_PENDING; 1029 if (hdlp->ih_type == DDI_INTR_TYPE_FIXED) 1030 cap |= DDI_INTR_FLAG_MASKABLE; 1031 else if (hdlp->ih_type == DDI_INTR_TYPE_MSIX) 1032 cap |= DDI_INTR_FLAG_RETARGETABLE; 1033 *result = cap; 1034 break; 1035 case PSM_INTR_OP_GET_SHARED: 1036 if (hdlp->ih_type != DDI_INTR_TYPE_FIXED) 1037 return (PSM_FAILURE); 1038 ispec = ((ihdl_plat_t *)hdlp->ih_private)->ip_ispecp; 1039 if ((irqp = apic_find_irq(dip, ispec, hdlp->ih_type)) == NULL) 1040 return (PSM_FAILURE); 1041 *result = (irqp->airq_share > 1) ? 1: 0; 1042 break; 1043 case PSM_INTR_OP_SET_PRI: 1044 old_priority = hdlp->ih_pri; /* save old value */ 1045 new_priority = *(int *)result; /* try the new value */ 1046 1047 if (hdlp->ih_type == DDI_INTR_TYPE_FIXED) { 1048 return (PSM_SUCCESS); 1049 } 1050 1051 /* Now allocate the vectors */ 1052 if (hdlp->ih_type == DDI_INTR_TYPE_MSI) { 1053 /* SET_PRI does not support the case of multiple MSI */ 1054 if (i_ddi_intr_get_current_nintrs(hdlp->ih_dip) > 1) 1055 return (PSM_FAILURE); 1056 1057 count_vec = apic_alloc_msi_vectors(dip, hdlp->ih_inum, 1058 1, new_priority, 1059 DDI_INTR_ALLOC_STRICT); 1060 } else { 1061 count_vec = apic_alloc_msix_vectors(dip, hdlp->ih_inum, 1062 1, new_priority, 1063 DDI_INTR_ALLOC_STRICT); 1064 } 1065 1066 /* Did we get new vectors? */ 1067 if (!count_vec) 1068 return (PSM_FAILURE); 1069 1070 /* Finally, free the previously allocated vectors */ 1071 apic_free_vectors(dip, hdlp->ih_inum, count_vec, 1072 old_priority, hdlp->ih_type); 1073 break; 1074 case PSM_INTR_OP_SET_CPU: 1075 case PSM_INTR_OP_GRP_SET_CPU: 1076 /* 1077 * The interrupt handle given here has been allocated 1078 * specifically for this command, and ih_private carries 1079 * a CPU value. 1080 */ 1081 new_cpu = (int)(intptr_t)hdlp->ih_private; 1082 if (!apic_cpu_in_range(new_cpu)) { 1083 DDI_INTR_IMPLDBG((CE_CONT, 1084 "[grp_]set_cpu: cpu out of range: %d\n", new_cpu)); 1085 *result = EINVAL; 1086 return (PSM_FAILURE); 1087 } 1088 if (hdlp->ih_vector > APIC_MAX_VECTOR) { 1089 DDI_INTR_IMPLDBG((CE_CONT, 1090 "[grp_]set_cpu: vector out of range: %d\n", 1091 hdlp->ih_vector)); 1092 *result = EINVAL; 1093 return (PSM_FAILURE); 1094 } 1095 if (!(hdlp->ih_flags & PSMGI_INTRBY_IRQ)) 1096 hdlp->ih_vector = apic_vector_to_irq[hdlp->ih_vector]; 1097 if (intr_op == PSM_INTR_OP_SET_CPU) { 1098 if (apic_set_cpu(hdlp->ih_vector, new_cpu, result) != 1099 PSM_SUCCESS) 1100 return (PSM_FAILURE); 1101 } else { 1102 if (apic_grp_set_cpu(hdlp->ih_vector, new_cpu, 1103 result) != PSM_SUCCESS) 1104 return (PSM_FAILURE); 1105 } 1106 break; 1107 case PSM_INTR_OP_GET_INTR: 1108 /* 1109 * The interrupt handle given here has been allocated 1110 * specifically for this command, and ih_private carries 1111 * a pointer to a apic_get_intr_t. 1112 */ 1113 if (apic_get_vector_intr_info( 1114 hdlp->ih_vector, hdlp->ih_private) != PSM_SUCCESS) 1115 return (PSM_FAILURE); 1116 break; 1117 case PSM_INTR_OP_APIC_TYPE: 1118 hdlp->ih_private = apic_get_apic_type(); 1119 hdlp->ih_ver = apic_get_apic_version(); 1120 break; 1121 case PSM_INTR_OP_SET_CAP: 1122 default: 1123 return (PSM_FAILURE); 1124 } 1125 return (PSM_SUCCESS); 1126 } 1127 #endif /* !__xpv */ 1128