1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2007 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 #pragma ident "%Z%%M% %I% %E% SMI" 27 28 /* 29 * apic_introp.c: 30 * Has code for Advanced DDI interrupt framework support. 31 */ 32 33 #include <sys/cpuvar.h> 34 #include <sys/psm.h> 35 #include <sys/archsystm.h> 36 #include <sys/apic.h> 37 #include <sys/sunddi.h> 38 #include <sys/ddi_impldefs.h> 39 #include <sys/mach_intr.h> 40 #include <sys/sysmacros.h> 41 #include <sys/trap.h> 42 #include <sys/pci.h> 43 #include <sys/pci_intr_lib.h> 44 45 extern struct av_head autovect[]; 46 47 /* 48 * Local Function Prototypes 49 */ 50 int apic_pci_msi_enable_vector(dev_info_t *, int, int, 51 int, int, int); 52 apic_irq_t *apic_find_irq(dev_info_t *, struct intrspec *, int); 53 static int apic_get_pending(apic_irq_t *, int); 54 static void apic_clear_mask(apic_irq_t *); 55 static void apic_set_mask(apic_irq_t *); 56 57 /* 58 * MSI support flag: 59 * reflects whether MSI is supported at APIC level 60 * it can also be patched through /etc/system 61 * 62 * 0 = default value - don't know and need to call apic_check_msi_support() 63 * to find out then set it accordingly 64 * 1 = supported 65 * -1 = not supported 66 */ 67 int apic_support_msi = 0; 68 69 /* Multiple vector support for MSI */ 70 int apic_multi_msi_enable = 1; 71 int apic_multi_msi_max = 2; 72 73 /* 74 * apic_pci_msi_enable_vector: 75 * Set the address/data fields in the MSI/X capability structure 76 * XXX: MSI-X support 77 */ 78 /* ARGSUSED */ 79 int 80 apic_pci_msi_enable_vector(dev_info_t *dip, int type, int inum, int vector, 81 int count, int target_apic_id) 82 { 83 uint64_t msi_addr, msi_data; 84 ushort_t msi_ctrl; 85 int cap_ptr = i_ddi_get_msi_msix_cap_ptr(dip); 86 ddi_acc_handle_t handle = i_ddi_get_pci_config_handle(dip); 87 88 DDI_INTR_IMPLDBG((CE_CONT, "apic_pci_msi_enable_vector: dip=0x%p\n" 89 "\tdriver = %s, inum=0x%x vector=0x%x apicid=0x%x\n", (void *)dip, 90 ddi_driver_name(dip), inum, vector, target_apic_id)); 91 92 if (handle == NULL || cap_ptr == 0) 93 return (PSM_FAILURE); 94 95 /* MSI Address */ 96 msi_addr = (MSI_ADDR_HDR | (target_apic_id << MSI_ADDR_DEST_SHIFT)); 97 msi_addr |= ((MSI_ADDR_RH_FIXED << MSI_ADDR_RH_SHIFT) | 98 (MSI_ADDR_DM_PHYSICAL << MSI_ADDR_DM_SHIFT)); 99 100 /* MSI Data: MSI is edge triggered according to spec */ 101 msi_data = ((MSI_DATA_TM_EDGE << MSI_DATA_TM_SHIFT) | vector); 102 103 DDI_INTR_IMPLDBG((CE_CONT, "apic_pci_msi_enable_vector: addr=0x%lx " 104 "data=0x%lx\n", (long)msi_addr, (long)msi_data)); 105 106 if (type == DDI_INTR_TYPE_MSI) { 107 msi_ctrl = pci_config_get16(handle, cap_ptr + PCI_MSI_CTRL); 108 109 /* Set the bits to inform how many MSIs are enabled */ 110 msi_ctrl |= ((highbit(count) -1) << PCI_MSI_MME_SHIFT); 111 pci_config_put16(handle, cap_ptr + PCI_MSI_CTRL, msi_ctrl); 112 113 pci_config_put32(handle, 114 cap_ptr + PCI_MSI_ADDR_OFFSET, msi_addr); 115 116 if (msi_ctrl & PCI_MSI_64BIT_MASK) { 117 pci_config_put32(handle, 118 cap_ptr + PCI_MSI_ADDR_OFFSET + 4, msi_addr >> 32); 119 pci_config_put16(handle, 120 cap_ptr + PCI_MSI_64BIT_DATA, msi_data); 121 } else { 122 pci_config_put16(handle, 123 cap_ptr + PCI_MSI_32BIT_DATA, msi_data); 124 } 125 126 } else if (type == DDI_INTR_TYPE_MSIX) { 127 uintptr_t off; 128 ddi_intr_msix_t *msix_p = i_ddi_get_msix(dip); 129 130 /* Offset into the "inum"th entry in the MSI-X table */ 131 off = (uintptr_t)msix_p->msix_tbl_addr + 132 (inum * PCI_MSIX_VECTOR_SIZE); 133 134 ddi_put32(msix_p->msix_tbl_hdl, 135 (uint32_t *)(off + PCI_MSIX_DATA_OFFSET), msi_data); 136 ddi_put64(msix_p->msix_tbl_hdl, 137 (uint64_t *)(off + PCI_MSIX_LOWER_ADDR_OFFSET), msi_addr); 138 } 139 140 return (PSM_SUCCESS); 141 } 142 143 144 /* 145 * This function returns the no. of vectors available for the pri. 146 * dip is not used at this moment. If we really don't need that, 147 * it will be removed. 148 */ 149 /*ARGSUSED*/ 150 int 151 apic_navail_vector(dev_info_t *dip, int pri) 152 { 153 int lowest, highest, i, navail, count; 154 155 DDI_INTR_IMPLDBG((CE_CONT, "apic_navail_vector: dip: %p, pri: %x\n", 156 (void *)dip, pri)); 157 158 highest = apic_ipltopri[pri] + APIC_VECTOR_MASK; 159 lowest = apic_ipltopri[pri - 1] + APIC_VECTOR_PER_IPL; 160 navail = count = 0; 161 162 /* It has to be contiguous */ 163 for (i = lowest; i < highest; i++) { 164 count = 0; 165 while ((apic_vector_to_irq[i] == APIC_RESV_IRQ) && 166 (i < highest)) { 167 if (APIC_CHECK_RESERVE_VECTORS(i)) 168 break; 169 count++; 170 i++; 171 } 172 if (count > navail) 173 navail = count; 174 } 175 return (navail); 176 } 177 178 /* 179 * Finds "count" contiguous MSI vectors starting at the proper alignment 180 * at "pri". 181 * Caller needs to make sure that count has to be power of 2 and should not 182 * be < 1. 183 */ 184 uchar_t 185 apic_find_multi_vectors(int pri, int count) 186 { 187 int lowest, highest, i, navail, start, msibits; 188 189 DDI_INTR_IMPLDBG((CE_CONT, "apic_find_mult: pri: %x, count: %x\n", 190 pri, count)); 191 192 highest = apic_ipltopri[pri] + APIC_VECTOR_MASK; 193 lowest = apic_ipltopri[pri - 1] + APIC_VECTOR_PER_IPL; 194 navail = 0; 195 196 /* 197 * msibits is the no. of lower order message data bits for the 198 * allocated MSI vectors and is used to calculate the aligned 199 * starting vector 200 */ 201 msibits = count - 1; 202 203 /* It has to be contiguous */ 204 for (i = lowest; i < highest; i++) { 205 navail = 0; 206 207 /* 208 * starting vector has to be aligned accordingly for 209 * multiple MSIs 210 */ 211 if (msibits) 212 i = (i + msibits) & ~msibits; 213 start = i; 214 while ((apic_vector_to_irq[i] == APIC_RESV_IRQ) && 215 (i < highest)) { 216 if (APIC_CHECK_RESERVE_VECTORS(i)) 217 break; 218 navail++; 219 if (navail >= count) 220 return (start); 221 i++; 222 } 223 } 224 return (0); 225 } 226 227 228 /* 229 * It finds the apic_irq_t associates with the dip, ispec and type. 230 */ 231 apic_irq_t * 232 apic_find_irq(dev_info_t *dip, struct intrspec *ispec, int type) 233 { 234 apic_irq_t *irqp; 235 int i; 236 237 DDI_INTR_IMPLDBG((CE_CONT, "apic_find_irq: dip=0x%p vec=0x%x " 238 "ipl=0x%x type=0x%x\n", (void *)dip, ispec->intrspec_vec, 239 ispec->intrspec_pri, type)); 240 241 for (i = apic_min_device_irq; i <= apic_max_device_irq; i++) { 242 if ((irqp = apic_irq_table[i]) == NULL) 243 continue; 244 if ((irqp->airq_dip == dip) && 245 (irqp->airq_origirq == ispec->intrspec_vec) && 246 (irqp->airq_ipl == ispec->intrspec_pri)) { 247 if (DDI_INTR_IS_MSI_OR_MSIX(type)) { 248 if (APIC_IS_MSI_OR_MSIX_INDEX(irqp-> 249 airq_mps_intr_index)) 250 return (irqp); 251 } else 252 return (irqp); 253 } 254 } 255 DDI_INTR_IMPLDBG((CE_CONT, "apic_find_irq: return NULL\n")); 256 return (NULL); 257 } 258 259 260 /* 261 * This function will return the pending bit of the irqp. 262 * It either comes from the IRR register of the APIC or the RDT 263 * entry of the I/O APIC. 264 * For the IRR to work, it needs to be to its binding CPU 265 */ 266 static int 267 apic_get_pending(apic_irq_t *irqp, int type) 268 { 269 int bit, index, irr, pending; 270 int intin_no; 271 int apic_ix; 272 273 DDI_INTR_IMPLDBG((CE_CONT, "apic_get_pending: irqp: %p, cpuid: %x " 274 "type: %x\n", (void *)irqp, irqp->airq_cpu & ~IRQ_USER_BOUND, 275 type)); 276 277 /* need to get on the bound cpu */ 278 mutex_enter(&cpu_lock); 279 affinity_set(irqp->airq_cpu & ~IRQ_USER_BOUND); 280 281 index = irqp->airq_vector / 32; 282 bit = irqp->airq_vector % 32; 283 irr = apicadr[APIC_IRR_REG + index]; 284 285 affinity_clear(); 286 mutex_exit(&cpu_lock); 287 288 pending = (irr & (1 << bit)) ? 1 : 0; 289 if (!pending && (type == DDI_INTR_TYPE_FIXED)) { 290 /* check I/O APIC for fixed interrupt */ 291 intin_no = irqp->airq_intin_no; 292 apic_ix = irqp->airq_ioapicindex; 293 pending = (READ_IOAPIC_RDT_ENTRY_LOW_DWORD(apic_ix, intin_no) & 294 AV_PENDING) ? 1 : 0; 295 } 296 return (pending); 297 } 298 299 300 /* 301 * This function will clear the mask for the interrupt on the I/O APIC 302 */ 303 static void 304 apic_clear_mask(apic_irq_t *irqp) 305 { 306 int intin_no; 307 ulong_t iflag; 308 int32_t rdt_entry; 309 int apic_ix; 310 311 DDI_INTR_IMPLDBG((CE_CONT, "apic_clear_mask: irqp: %p\n", 312 (void *)irqp)); 313 314 intin_no = irqp->airq_intin_no; 315 apic_ix = irqp->airq_ioapicindex; 316 317 iflag = intr_clear(); 318 lock_set(&apic_ioapic_lock); 319 320 rdt_entry = READ_IOAPIC_RDT_ENTRY_LOW_DWORD(apic_ix, intin_no); 321 322 /* clear mask */ 323 WRITE_IOAPIC_RDT_ENTRY_LOW_DWORD(apic_ix, intin_no, 324 ((~AV_MASK) & rdt_entry)); 325 326 lock_clear(&apic_ioapic_lock); 327 intr_restore(iflag); 328 } 329 330 331 /* 332 * This function will mask the interrupt on the I/O APIC 333 */ 334 static void 335 apic_set_mask(apic_irq_t *irqp) 336 { 337 int intin_no; 338 int apic_ix; 339 ulong_t iflag; 340 int32_t rdt_entry; 341 342 DDI_INTR_IMPLDBG((CE_CONT, "apic_set_mask: irqp: %p\n", (void *)irqp)); 343 344 intin_no = irqp->airq_intin_no; 345 apic_ix = irqp->airq_ioapicindex; 346 347 iflag = intr_clear(); 348 349 lock_set(&apic_ioapic_lock); 350 351 rdt_entry = READ_IOAPIC_RDT_ENTRY_LOW_DWORD(apic_ix, intin_no); 352 353 /* mask it */ 354 WRITE_IOAPIC_RDT_ENTRY_LOW_DWORD(apic_ix, intin_no, 355 (AV_MASK | rdt_entry)); 356 357 lock_clear(&apic_ioapic_lock); 358 intr_restore(iflag); 359 } 360 361 362 void 363 apic_free_vectors(dev_info_t *dip, int inum, int count, int pri, int type) 364 { 365 int i; 366 apic_irq_t *irqptr; 367 struct intrspec ispec; 368 369 DDI_INTR_IMPLDBG((CE_CONT, "apic_free_vectors: dip: %p inum: %x " 370 "count: %x pri: %x type: %x\n", 371 (void *)dip, inum, count, pri, type)); 372 373 /* for MSI/X only */ 374 if (!DDI_INTR_IS_MSI_OR_MSIX(type)) 375 return; 376 377 for (i = 0; i < count; i++) { 378 DDI_INTR_IMPLDBG((CE_CONT, "apic_free_vectors: inum=0x%x " 379 "pri=0x%x count=0x%x\n", inum, pri, count)); 380 ispec.intrspec_vec = inum + i; 381 ispec.intrspec_pri = pri; 382 if ((irqptr = apic_find_irq(dip, &ispec, type)) == NULL) { 383 DDI_INTR_IMPLDBG((CE_CONT, "apic_free_vectors: " 384 "dip=0x%p inum=0x%x pri=0x%x apic_find_irq() " 385 "failed\n", (void *)dip, inum, pri)); 386 continue; 387 } 388 irqptr->airq_mps_intr_index = FREE_INDEX; 389 apic_vector_to_irq[irqptr->airq_vector] = APIC_RESV_IRQ; 390 } 391 } 392 393 394 /* 395 * check whether the system supports MSI 396 * 397 * If PCI-E capability is found, then this must be a PCI-E system. 398 * Since MSI is required for PCI-E system, it returns PSM_SUCCESS 399 * to indicate this system supports MSI. 400 */ 401 int 402 apic_check_msi_support() 403 { 404 dev_info_t *cdip; 405 char dev_type[16]; 406 int dev_len; 407 408 DDI_INTR_IMPLDBG((CE_CONT, "apic_check_msi_support:\n")); 409 410 /* 411 * check whether the first level children of root_node have 412 * PCI-E capability 413 */ 414 for (cdip = ddi_get_child(ddi_root_node()); cdip != NULL; 415 cdip = ddi_get_next_sibling(cdip)) { 416 417 DDI_INTR_IMPLDBG((CE_CONT, "apic_check_msi_support: cdip: 0x%p," 418 " driver: %s, binding: %s, nodename: %s\n", (void *)cdip, 419 ddi_driver_name(cdip), ddi_binding_name(cdip), 420 ddi_node_name(cdip))); 421 dev_len = sizeof (dev_type); 422 if (ddi_getlongprop_buf(DDI_DEV_T_ANY, cdip, DDI_PROP_DONTPASS, 423 "device_type", (caddr_t)dev_type, &dev_len) 424 != DDI_PROP_SUCCESS) 425 continue; 426 if (strcmp(dev_type, "pciex") == 0) 427 return (PSM_SUCCESS); 428 } 429 430 /* MSI is not supported on this system */ 431 DDI_INTR_IMPLDBG((CE_CONT, "apic_check_msi_support: no 'pciex' " 432 "device_type found\n")); 433 return (PSM_FAILURE); 434 } 435 436 /* 437 * apic_pci_msi_unconfigure: 438 * 439 * This and next two interfaces are copied from pci_intr_lib.c 440 * Do ensure that these two files stay in sync. 441 * These needed to be copied over here to avoid a deadlock situation on 442 * certain mp systems that use MSI interrupts. 443 * 444 * IMPORTANT regards next three interfaces: 445 * i) are called only for MSI/X interrupts. 446 * ii) called with interrupts disabled, and must not block 447 */ 448 int 449 apic_pci_msi_unconfigure(dev_info_t *rdip, int type, int inum) 450 { 451 ushort_t msi_ctrl; 452 int cap_ptr = i_ddi_get_msi_msix_cap_ptr(rdip); 453 ddi_acc_handle_t handle = i_ddi_get_pci_config_handle(rdip); 454 455 if (handle == NULL || cap_ptr == 0) 456 return (PSM_FAILURE); 457 458 if (type == DDI_INTR_TYPE_MSI) { 459 msi_ctrl = pci_config_get16(handle, cap_ptr + PCI_MSI_CTRL); 460 msi_ctrl &= (~PCI_MSI_MME_MASK); 461 pci_config_put16(handle, cap_ptr + PCI_MSI_CTRL, msi_ctrl); 462 pci_config_put32(handle, cap_ptr + PCI_MSI_ADDR_OFFSET, 0); 463 464 if (msi_ctrl & PCI_MSI_64BIT_MASK) { 465 pci_config_put16(handle, 466 cap_ptr + PCI_MSI_64BIT_DATA, 0); 467 pci_config_put32(handle, 468 cap_ptr + PCI_MSI_ADDR_OFFSET + 4, 0); 469 } else { 470 pci_config_put16(handle, 471 cap_ptr + PCI_MSI_32BIT_DATA, 0); 472 } 473 474 } else if (type == DDI_INTR_TYPE_MSIX) { 475 uintptr_t off; 476 ddi_intr_msix_t *msix_p = i_ddi_get_msix(rdip); 477 478 /* Offset into the "inum"th entry in the MSI-X table */ 479 off = (uintptr_t)msix_p->msix_tbl_addr + 480 (inum * PCI_MSIX_VECTOR_SIZE); 481 482 /* Reset the "data" and "addr" bits */ 483 ddi_put32(msix_p->msix_tbl_hdl, 484 (uint32_t *)(off + PCI_MSIX_DATA_OFFSET), 0); 485 ddi_put64(msix_p->msix_tbl_hdl, (uint64_t *)off, 0); 486 } 487 488 return (PSM_SUCCESS); 489 } 490 491 492 /* 493 * apic_pci_msi_enable_mode: 494 */ 495 int 496 apic_pci_msi_enable_mode(dev_info_t *rdip, int type, int inum) 497 { 498 ushort_t msi_ctrl; 499 int cap_ptr = i_ddi_get_msi_msix_cap_ptr(rdip); 500 ddi_acc_handle_t handle = i_ddi_get_pci_config_handle(rdip); 501 502 if (handle == NULL || cap_ptr == 0) 503 return (PSM_FAILURE); 504 505 if (type == DDI_INTR_TYPE_MSI) { 506 msi_ctrl = pci_config_get16(handle, cap_ptr + PCI_MSI_CTRL); 507 if ((msi_ctrl & PCI_MSI_ENABLE_BIT)) 508 return (PSM_SUCCESS); 509 510 msi_ctrl |= PCI_MSI_ENABLE_BIT; 511 pci_config_put16(handle, cap_ptr + PCI_MSI_CTRL, msi_ctrl); 512 513 } else if (type == DDI_INTR_TYPE_MSIX) { 514 uintptr_t off; 515 ddi_intr_msix_t *msix_p; 516 517 msi_ctrl = pci_config_get16(handle, cap_ptr + PCI_MSIX_CTRL); 518 519 if (msi_ctrl & PCI_MSIX_ENABLE_BIT) 520 return (PSM_SUCCESS); 521 522 msi_ctrl |= PCI_MSIX_ENABLE_BIT; 523 pci_config_put16(handle, cap_ptr + PCI_MSIX_CTRL, msi_ctrl); 524 525 msix_p = i_ddi_get_msix(rdip); 526 527 /* Offset into "inum"th entry in the MSI-X table & clear mask */ 528 off = (uintptr_t)msix_p->msix_tbl_addr + (inum * 529 PCI_MSIX_VECTOR_SIZE) + PCI_MSIX_VECTOR_CTRL_OFFSET; 530 ddi_put32(msix_p->msix_tbl_hdl, (uint32_t *)off, 0); 531 } 532 533 return (PSM_SUCCESS); 534 } 535 536 /* 537 * apic_pci_msi_disable_mode: 538 */ 539 int 540 apic_pci_msi_disable_mode(dev_info_t *rdip, int type, int inum) 541 { 542 ushort_t msi_ctrl; 543 int cap_ptr = i_ddi_get_msi_msix_cap_ptr(rdip); 544 ddi_acc_handle_t handle = i_ddi_get_pci_config_handle(rdip); 545 546 if (handle == NULL || cap_ptr == 0) 547 return (PSM_FAILURE); 548 549 if (type == DDI_INTR_TYPE_MSI) { 550 msi_ctrl = pci_config_get16(handle, cap_ptr + PCI_MSI_CTRL); 551 if (!(msi_ctrl & PCI_MSI_ENABLE_BIT)) 552 return (PSM_SUCCESS); 553 554 msi_ctrl &= ~PCI_MSI_ENABLE_BIT; /* MSI disable */ 555 pci_config_put16(handle, cap_ptr + PCI_MSI_CTRL, msi_ctrl); 556 557 } else if (type == DDI_INTR_TYPE_MSIX) { 558 uintptr_t off; 559 ddi_intr_msix_t *msix_p; 560 561 msi_ctrl = pci_config_get16(handle, cap_ptr + PCI_MSIX_CTRL); 562 563 if (!(msi_ctrl & PCI_MSIX_ENABLE_BIT)) 564 return (PSM_SUCCESS); 565 566 msix_p = i_ddi_get_msix(rdip); 567 568 /* Offset into "inum"th entry in the MSI-X table & mask it */ 569 off = (uintptr_t)msix_p->msix_tbl_addr + (inum * 570 PCI_MSIX_VECTOR_SIZE) + PCI_MSIX_VECTOR_CTRL_OFFSET; 571 ddi_put32(msix_p->msix_tbl_hdl, (uint32_t *)off, 0x1); 572 } 573 574 return (PSM_SUCCESS); 575 } 576 577 578 static int 579 apic_set_cpu(uint32_t vector, int cpu, int *result) 580 { 581 apic_irq_t *irqp; 582 int iflag; 583 int ret; 584 585 DDI_INTR_IMPLDBG((CE_CONT, "APIC_SET_CPU\n")); 586 587 /* Convert the vector to the irq using vector_to_irq table. */ 588 mutex_enter(&airq_mutex); 589 irqp = apic_irq_table[apic_vector_to_irq[vector]]; 590 mutex_exit(&airq_mutex); 591 592 if (irqp == NULL) { 593 *result = ENXIO; 594 return (PSM_FAILURE); 595 } 596 597 /* Fail if this is an MSI intr and is part of a group. */ 598 if ((irqp->airq_mps_intr_index == MSI_INDEX) && 599 (irqp->airq_intin_no > 1)) { 600 *result = ENXIO; 601 return (PSM_FAILURE); 602 } 603 604 iflag = intr_clear(); 605 lock_set(&apic_ioapic_lock); 606 607 ret = apic_rebind_all(irqp, cpu); 608 609 lock_clear(&apic_ioapic_lock); 610 intr_restore(iflag); 611 612 if (ret) { 613 *result = EIO; 614 return (PSM_FAILURE); 615 } 616 *result = 0; 617 return (PSM_SUCCESS); 618 } 619 620 static int 621 apic_grp_set_cpu(uint32_t vector, int new_cpu, int *result) 622 { 623 dev_info_t *orig_dip; 624 uchar_t orig_cpu; 625 int iflag; 626 apic_irq_t *irqps[PCI_MSI_MAX_INTRS]; 627 int i; 628 int cap_ptr; 629 int msi_mask_off; 630 ushort_t msi_ctrl; 631 uint32_t msi_pvm; 632 ddi_acc_handle_t handle; 633 int num_vectors = 0; 634 635 DDI_INTR_IMPLDBG((CE_CONT, "APIC_GRP_SET_CPU\n")); 636 637 /* 638 * Take mutex to insure that table doesn't change out from underneath 639 * us while we're playing with it. 640 */ 641 mutex_enter(&airq_mutex); 642 irqps[0] = apic_irq_table[apic_vector_to_irq[vector]]; 643 orig_cpu = irqps[0]->airq_temp_cpu; 644 orig_dip = irqps[0]->airq_dip; 645 num_vectors = irqps[0]->airq_intin_no; 646 647 /* A "group" of 1 */ 648 if (num_vectors == 1) { 649 mutex_exit(&airq_mutex); 650 return (apic_set_cpu(vector, new_cpu, result)); 651 } 652 653 *result = ENXIO; 654 655 if (irqps[0]->airq_mps_intr_index != MSI_INDEX) { 656 mutex_exit(&airq_mutex); 657 DDI_INTR_IMPLDBG((CE_CONT, "set_grp: intr not MSI\n")); 658 goto set_grp_intr_done; 659 } 660 if ((num_vectors < 1) || ((num_vectors - 1) & vector)) { 661 mutex_exit(&airq_mutex); 662 DDI_INTR_IMPLDBG((CE_CONT, 663 "set_grp: base vec not part of a grp or not aligned: " 664 "vec:0x%x, num_vec:0x%x\n", vector, num_vectors)); 665 goto set_grp_intr_done; 666 } 667 DDI_INTR_IMPLDBG((CE_CONT, "set_grp: num intrs in grp: %d\n", 668 num_vectors)); 669 670 ASSERT((num_vectors + vector) < APIC_MAX_VECTOR); 671 672 *result = EIO; 673 674 /* 675 * All IRQ entries in the table for the given device will be not 676 * shared. Since they are not shared, the dip in the table will 677 * be true to the device of interest. 678 */ 679 for (i = 1; i < num_vectors; i++) { 680 irqps[i] = apic_irq_table[apic_vector_to_irq[vector + i]]; 681 if (irqps[i] == NULL) { 682 mutex_exit(&airq_mutex); 683 goto set_grp_intr_done; 684 } 685 #ifdef DEBUG 686 /* Sanity check: CPU and dip is the same for all entries. */ 687 if ((irqps[i]->airq_dip != orig_dip) || 688 (irqps[i]->airq_temp_cpu != orig_cpu)) { 689 mutex_exit(&airq_mutex); 690 DDI_INTR_IMPLDBG((CE_CONT, 691 "set_grp: cpu or dip for vec 0x%x difft than for " 692 "vec 0x%x\n", vector, vector + i)); 693 DDI_INTR_IMPLDBG((CE_CONT, 694 " cpu: %d vs %d, dip: 0x%p vs 0x%p\n", orig_cpu, 695 irqps[i]->airq_temp_cpu, (void *)orig_dip, 696 (void *)irqps[i]->airq_dip)); 697 goto set_grp_intr_done; 698 } 699 #endif /* DEBUG */ 700 } 701 mutex_exit(&airq_mutex); 702 703 cap_ptr = i_ddi_get_msi_msix_cap_ptr(orig_dip); 704 handle = i_ddi_get_pci_config_handle(orig_dip); 705 msi_ctrl = pci_config_get16(handle, cap_ptr + PCI_MSI_CTRL); 706 707 /* MSI Per vector masking is supported. */ 708 if (msi_ctrl & PCI_MSI_PVM_MASK) { 709 if (msi_ctrl & PCI_MSI_64BIT_MASK) 710 msi_mask_off = cap_ptr + PCI_MSI_64BIT_MASKBITS; 711 else 712 msi_mask_off = cap_ptr + PCI_MSI_32BIT_MASK; 713 msi_pvm = pci_config_get32(handle, msi_mask_off); 714 pci_config_put32(handle, msi_mask_off, (uint32_t)-1); 715 DDI_INTR_IMPLDBG((CE_CONT, 716 "set_grp: pvm supported. Mask set to 0x%x\n", 717 pci_config_get32(handle, msi_mask_off))); 718 } 719 720 iflag = intr_clear(); 721 lock_set(&apic_ioapic_lock); 722 723 /* 724 * Do the first rebind and check for errors. Apic_rebind_all returns 725 * an error if the CPU is not accepting interrupts. If the first one 726 * succeeds they all will. 727 */ 728 if (apic_rebind_all(irqps[0], new_cpu)) 729 (void) apic_rebind_all(irqps[0], orig_cpu); 730 else { 731 for (i = 1; i < num_vectors; i++) 732 (void) apic_rebind_all(irqps[i], new_cpu); 733 *result = 0; /* SUCCESS */ 734 } 735 736 lock_clear(&apic_ioapic_lock); 737 intr_restore(iflag); 738 739 /* Reenable vectors if per vector masking is supported. */ 740 if (msi_ctrl & PCI_MSI_PVM_MASK) { 741 pci_config_put32(handle, msi_mask_off, msi_pvm); 742 DDI_INTR_IMPLDBG((CE_CONT, 743 "set_grp: pvm supported. Mask restored to 0x%x\n", 744 pci_config_get32(handle, msi_mask_off))); 745 } 746 747 set_grp_intr_done: 748 if (*result != 0) 749 return (PSM_FAILURE); 750 751 return (PSM_SUCCESS); 752 } 753 754 static int 755 apic_get_vector_intr_info(int vecirq, apic_get_intr_t *intr_params_p) 756 { 757 struct autovec *av_dev; 758 uchar_t irqno; 759 int i; 760 apic_irq_t *irq_p; 761 762 /* Sanity check the vector/irq argument. */ 763 ASSERT((vecirq >= 0) || (vecirq <= APIC_MAX_VECTOR)); 764 765 mutex_enter(&airq_mutex); 766 767 /* 768 * Convert the vecirq arg to an irq using vector_to_irq table 769 * if the arg is a vector. Pass thru if already an irq. 770 */ 771 if ((intr_params_p->avgi_req_flags & PSMGI_INTRBY_FLAGS) == 772 PSMGI_INTRBY_VEC) 773 irqno = apic_vector_to_irq[vecirq]; 774 else 775 irqno = vecirq; 776 777 irq_p = apic_irq_table[irqno]; 778 779 if ((irq_p == NULL) || 780 (irq_p->airq_temp_cpu == IRQ_UNBOUND) || 781 (irq_p->airq_temp_cpu == IRQ_UNINIT)) { 782 mutex_exit(&airq_mutex); 783 return (PSM_FAILURE); 784 } 785 786 if (intr_params_p->avgi_req_flags & PSMGI_REQ_CPUID) { 787 788 /* Get the (temp) cpu from apic_irq table, indexed by irq. */ 789 intr_params_p->avgi_cpu_id = irq_p->airq_temp_cpu; 790 791 /* Return user bound info for intrd. */ 792 if (intr_params_p->avgi_cpu_id & IRQ_USER_BOUND) { 793 intr_params_p->avgi_cpu_id &= ~IRQ_USER_BOUND; 794 intr_params_p->avgi_cpu_id |= PSMGI_CPU_USER_BOUND; 795 } 796 } 797 798 if (intr_params_p->avgi_req_flags & PSMGI_REQ_VECTOR) 799 intr_params_p->avgi_vector = irq_p->airq_vector; 800 801 if (intr_params_p->avgi_req_flags & 802 (PSMGI_REQ_NUM_DEVS | PSMGI_REQ_GET_DEVS)) 803 /* Get number of devices from apic_irq table shared field. */ 804 intr_params_p->avgi_num_devs = irq_p->airq_share; 805 806 if (intr_params_p->avgi_req_flags & PSMGI_REQ_GET_DEVS) { 807 808 intr_params_p->avgi_req_flags |= PSMGI_REQ_NUM_DEVS; 809 810 /* Some devices have NULL dip. Don't count these. */ 811 if (intr_params_p->avgi_num_devs > 0) { 812 for (i = 0, av_dev = autovect[irqno].avh_link; 813 av_dev; av_dev = av_dev->av_link) 814 if (av_dev->av_vector && av_dev->av_dip) 815 i++; 816 intr_params_p->avgi_num_devs = 817 MIN(intr_params_p->avgi_num_devs, i); 818 } 819 820 /* There are no viable dips to return. */ 821 if (intr_params_p->avgi_num_devs == 0) 822 intr_params_p->avgi_dip_list = NULL; 823 824 else { /* Return list of dips */ 825 826 /* Allocate space in array for that number of devs. */ 827 intr_params_p->avgi_dip_list = kmem_zalloc( 828 intr_params_p->avgi_num_devs * 829 sizeof (dev_info_t *), 830 KM_SLEEP); 831 832 /* 833 * Loop through the device list of the autovec table 834 * filling in the dip array. 835 * 836 * Note that the autovect table may have some special 837 * entries which contain NULL dips. These will be 838 * ignored. 839 */ 840 for (i = 0, av_dev = autovect[irqno].avh_link; 841 av_dev; av_dev = av_dev->av_link) 842 if (av_dev->av_vector && av_dev->av_dip) 843 intr_params_p->avgi_dip_list[i++] = 844 av_dev->av_dip; 845 } 846 } 847 848 mutex_exit(&airq_mutex); 849 850 return (PSM_SUCCESS); 851 } 852 853 854 /* 855 * This function provides external interface to the nexus for all 856 * functionalities related to the new DDI interrupt framework. 857 * 858 * Input: 859 * dip - pointer to the dev_info structure of the requested device 860 * hdlp - pointer to the internal interrupt handle structure for the 861 * requested interrupt 862 * intr_op - opcode for this call 863 * result - pointer to the integer that will hold the result to be 864 * passed back if return value is PSM_SUCCESS 865 * 866 * Output: 867 * return value is either PSM_SUCCESS or PSM_FAILURE 868 */ 869 int 870 apic_intr_ops(dev_info_t *dip, ddi_intr_handle_impl_t *hdlp, 871 psm_intr_op_t intr_op, int *result) 872 { 873 int cap; 874 int count_vec; 875 int old_priority; 876 int new_priority; 877 int new_cpu; 878 apic_irq_t *irqp; 879 struct intrspec *ispec, intr_spec; 880 881 DDI_INTR_IMPLDBG((CE_CONT, "apic_intr_ops: dip: %p hdlp: %p " 882 "intr_op: %x\n", (void *)dip, (void *)hdlp, intr_op)); 883 884 ispec = &intr_spec; 885 ispec->intrspec_pri = hdlp->ih_pri; 886 ispec->intrspec_vec = hdlp->ih_inum; 887 ispec->intrspec_func = hdlp->ih_cb_func; 888 889 switch (intr_op) { 890 case PSM_INTR_OP_CHECK_MSI: 891 /* 892 * Check MSI/X is supported or not at APIC level and 893 * masked off the MSI/X bits in hdlp->ih_type if not 894 * supported before return. If MSI/X is supported, 895 * leave the ih_type unchanged and return. 896 * 897 * hdlp->ih_type passed in from the nexus has all the 898 * interrupt types supported by the device. 899 */ 900 if (apic_support_msi == 0) { 901 /* 902 * if apic_support_msi is not set, call 903 * apic_check_msi_support() to check whether msi 904 * is supported first 905 */ 906 if (apic_check_msi_support() == PSM_SUCCESS) 907 apic_support_msi = 1; 908 else 909 apic_support_msi = -1; 910 } 911 if (apic_support_msi == 1) 912 *result = hdlp->ih_type; 913 else 914 *result = hdlp->ih_type & ~(DDI_INTR_TYPE_MSI | 915 DDI_INTR_TYPE_MSIX); 916 break; 917 case PSM_INTR_OP_ALLOC_VECTORS: 918 *result = apic_alloc_vectors(dip, hdlp->ih_inum, 919 hdlp->ih_scratch1, hdlp->ih_pri, hdlp->ih_type, 920 (int)(uintptr_t)hdlp->ih_scratch2); 921 break; 922 case PSM_INTR_OP_FREE_VECTORS: 923 apic_free_vectors(dip, hdlp->ih_inum, hdlp->ih_scratch1, 924 hdlp->ih_pri, hdlp->ih_type); 925 break; 926 case PSM_INTR_OP_NAVAIL_VECTORS: 927 *result = apic_navail_vector(dip, hdlp->ih_pri); 928 break; 929 case PSM_INTR_OP_XLATE_VECTOR: 930 ispec = ((ihdl_plat_t *)hdlp->ih_private)->ip_ispecp; 931 *result = apic_introp_xlate(dip, ispec, hdlp->ih_type); 932 break; 933 case PSM_INTR_OP_GET_PENDING: 934 if ((irqp = apic_find_irq(dip, ispec, hdlp->ih_type)) == NULL) 935 return (PSM_FAILURE); 936 *result = apic_get_pending(irqp, hdlp->ih_type); 937 break; 938 case PSM_INTR_OP_CLEAR_MASK: 939 if (hdlp->ih_type != DDI_INTR_TYPE_FIXED) 940 return (PSM_FAILURE); 941 irqp = apic_find_irq(dip, ispec, hdlp->ih_type); 942 if (irqp == NULL) 943 return (PSM_FAILURE); 944 apic_clear_mask(irqp); 945 break; 946 case PSM_INTR_OP_SET_MASK: 947 if (hdlp->ih_type != DDI_INTR_TYPE_FIXED) 948 return (PSM_FAILURE); 949 if ((irqp = apic_find_irq(dip, ispec, hdlp->ih_type)) == NULL) 950 return (PSM_FAILURE); 951 apic_set_mask(irqp); 952 break; 953 case PSM_INTR_OP_GET_CAP: 954 cap = DDI_INTR_FLAG_PENDING; 955 if (hdlp->ih_type == DDI_INTR_TYPE_FIXED) 956 cap |= DDI_INTR_FLAG_MASKABLE; 957 *result = cap; 958 break; 959 case PSM_INTR_OP_GET_SHARED: 960 if (hdlp->ih_type != DDI_INTR_TYPE_FIXED) 961 return (PSM_FAILURE); 962 if ((irqp = apic_find_irq(dip, ispec, hdlp->ih_type)) == NULL) 963 return (PSM_FAILURE); 964 *result = irqp->airq_share ? 1: 0; 965 break; 966 case PSM_INTR_OP_SET_PRI: 967 old_priority = hdlp->ih_pri; /* save old value */ 968 new_priority = *(int *)result; /* try the new value */ 969 970 /* First, check if "hdlp->ih_scratch1" vectors exist? */ 971 if (apic_navail_vector(dip, new_priority) < hdlp->ih_scratch1) 972 return (PSM_FAILURE); 973 974 /* Now allocate the vectors */ 975 count_vec = apic_alloc_vectors(dip, hdlp->ih_inum, 976 hdlp->ih_scratch1, new_priority, hdlp->ih_type, 977 DDI_INTR_ALLOC_STRICT); 978 979 /* Did we get new vectors? */ 980 if (!count_vec) 981 return (PSM_FAILURE); 982 983 /* Finally, free the previously allocated vectors */ 984 apic_free_vectors(dip, hdlp->ih_inum, count_vec, 985 old_priority, hdlp->ih_type); 986 hdlp->ih_pri = new_priority; /* set the new value */ 987 break; 988 case PSM_INTR_OP_SET_CPU: 989 case PSM_INTR_OP_GRP_SET_CPU: 990 /* 991 * The interrupt handle given here has been allocated 992 * specifically for this command, and ih_private carries 993 * a CPU value. 994 */ 995 new_cpu = (int)(intptr_t)hdlp->ih_private; 996 if (!apic_cpu_in_range(new_cpu)) { 997 DDI_INTR_IMPLDBG((CE_CONT, 998 "[grp_]set_cpu: cpu out of range: %d\n", new_cpu)); 999 *result = EINVAL; 1000 return (PSM_FAILURE); 1001 } 1002 if (intr_op == PSM_INTR_OP_SET_CPU) { 1003 if (apic_set_cpu(hdlp->ih_vector, new_cpu, result) != 1004 PSM_SUCCESS) 1005 return (PSM_FAILURE); 1006 } else { 1007 if (apic_grp_set_cpu(hdlp->ih_vector, new_cpu, 1008 result) != PSM_SUCCESS) 1009 return (PSM_FAILURE); 1010 } 1011 break; 1012 case PSM_INTR_OP_GET_INTR: 1013 /* 1014 * The interrupt handle given here has been allocated 1015 * specifically for this command, and ih_private carries 1016 * a pointer to a apic_get_intr_t. 1017 */ 1018 if (apic_get_vector_intr_info( 1019 hdlp->ih_vector, hdlp->ih_private) != PSM_SUCCESS) 1020 return (PSM_FAILURE); 1021 break; 1022 case PSM_INTR_OP_APIC_TYPE: 1023 hdlp->ih_private = apic_get_apic_type(); 1024 hdlp->ih_ver = apic_get_apic_version(); 1025 break; 1026 case PSM_INTR_OP_SET_CAP: 1027 default: 1028 return (PSM_FAILURE); 1029 } 1030 return (PSM_SUCCESS); 1031 } 1032