1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2010 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 /* 27 * apic_introp.c: 28 * Has code for Advanced DDI interrupt framework support. 29 */ 30 31 #include <sys/cpuvar.h> 32 #include <sys/psm.h> 33 #include <sys/archsystm.h> 34 #include <sys/apic.h> 35 #include <sys/sunddi.h> 36 #include <sys/ddi_impldefs.h> 37 #include <sys/mach_intr.h> 38 #include <sys/sysmacros.h> 39 #include <sys/trap.h> 40 #include <sys/pci.h> 41 #include <sys/pci_intr_lib.h> 42 43 extern struct av_head autovect[]; 44 45 /* 46 * Local Function Prototypes 47 */ 48 apic_irq_t *apic_find_irq(dev_info_t *, struct intrspec *, int); 49 50 /* 51 * MSI support flag: 52 * reflects whether MSI is supported at APIC level 53 * it can also be patched through /etc/system 54 * 55 * 0 = default value - don't know and need to call apic_check_msi_support() 56 * to find out then set it accordingly 57 * 1 = supported 58 * -1 = not supported 59 */ 60 int apic_support_msi = 0; 61 62 /* Multiple vector support for MSI */ 63 int apic_multi_msi_enable = 1; 64 65 /* Multiple vector support for MSI-X */ 66 int apic_msix_enable = 1; 67 68 /* 69 * apic_pci_msi_enable_vector: 70 * Set the address/data fields in the MSI/X capability structure 71 * XXX: MSI-X support 72 */ 73 /* ARGSUSED */ 74 void 75 apic_pci_msi_enable_vector(apic_irq_t *irq_ptr, int type, int inum, int vector, 76 int count, int target_apic_id) 77 { 78 uint64_t msi_addr, msi_data; 79 ushort_t msi_ctrl; 80 dev_info_t *dip = irq_ptr->airq_dip; 81 int cap_ptr = i_ddi_get_msi_msix_cap_ptr(dip); 82 ddi_acc_handle_t handle = i_ddi_get_pci_config_handle(dip); 83 #if !defined(__xpv) 84 msi_regs_t msi_regs; 85 #endif /* ! __xpv */ 86 87 DDI_INTR_IMPLDBG((CE_CONT, "apic_pci_msi_enable_vector: dip=0x%p\n" 88 "\tdriver = %s, inum=0x%x vector=0x%x apicid=0x%x\n", (void *)dip, 89 ddi_driver_name(dip), inum, vector, target_apic_id)); 90 91 ASSERT((handle != NULL) && (cap_ptr != 0)); 92 93 #if !defined(__xpv) 94 msi_regs.mr_data = vector; 95 msi_regs.mr_addr = target_apic_id; 96 97 apic_vt_ops->apic_intrmap_alloc_entry(irq_ptr); 98 apic_vt_ops->apic_intrmap_map_entry(irq_ptr, (void *)&msi_regs); 99 apic_vt_ops->apic_intrmap_record_msi(irq_ptr, &msi_regs); 100 101 /* MSI Address */ 102 msi_addr = msi_regs.mr_addr; 103 104 /* MSI Data: MSI is edge triggered according to spec */ 105 msi_data = msi_regs.mr_data; 106 #else 107 /* MSI Address */ 108 msi_addr = (MSI_ADDR_HDR | 109 (target_apic_id << MSI_ADDR_DEST_SHIFT)); 110 msi_addr |= ((MSI_ADDR_RH_FIXED << MSI_ADDR_RH_SHIFT) | 111 (MSI_ADDR_DM_PHYSICAL << MSI_ADDR_DM_SHIFT)); 112 113 /* MSI Data: MSI is edge triggered according to spec */ 114 msi_data = ((MSI_DATA_TM_EDGE << MSI_DATA_TM_SHIFT) | vector); 115 #endif /* ! __xpv */ 116 117 DDI_INTR_IMPLDBG((CE_CONT, "apic_pci_msi_enable_vector: addr=0x%lx " 118 "data=0x%lx\n", (long)msi_addr, (long)msi_data)); 119 120 if (type == DDI_INTR_TYPE_MSI) { 121 msi_ctrl = pci_config_get16(handle, cap_ptr + PCI_MSI_CTRL); 122 123 /* Set the bits to inform how many MSIs are enabled */ 124 msi_ctrl |= ((highbit(count) -1) << PCI_MSI_MME_SHIFT); 125 pci_config_put16(handle, cap_ptr + PCI_MSI_CTRL, msi_ctrl); 126 127 #if !defined(__xpv) 128 /* 129 * Only set vector if not on hypervisor 130 */ 131 pci_config_put32(handle, 132 cap_ptr + PCI_MSI_ADDR_OFFSET, msi_addr); 133 134 if (msi_ctrl & PCI_MSI_64BIT_MASK) { 135 pci_config_put32(handle, 136 cap_ptr + PCI_MSI_ADDR_OFFSET + 4, msi_addr >> 32); 137 pci_config_put16(handle, 138 cap_ptr + PCI_MSI_64BIT_DATA, msi_data); 139 } else { 140 pci_config_put16(handle, 141 cap_ptr + PCI_MSI_32BIT_DATA, msi_data); 142 } 143 144 } else if (type == DDI_INTR_TYPE_MSIX) { 145 uintptr_t off; 146 ddi_intr_msix_t *msix_p = i_ddi_get_msix(dip); 147 148 ASSERT(msix_p != NULL); 149 150 /* Offset into the "inum"th entry in the MSI-X table */ 151 off = (uintptr_t)msix_p->msix_tbl_addr + 152 (inum * PCI_MSIX_VECTOR_SIZE); 153 154 ddi_put32(msix_p->msix_tbl_hdl, 155 (uint32_t *)(off + PCI_MSIX_DATA_OFFSET), msi_data); 156 ddi_put64(msix_p->msix_tbl_hdl, 157 (uint64_t *)(off + PCI_MSIX_LOWER_ADDR_OFFSET), msi_addr); 158 #endif /* ! __xpv */ 159 } 160 } 161 162 163 #if !defined(__xpv) 164 165 /* 166 * This function returns the no. of vectors available for the pri. 167 * dip is not used at this moment. If we really don't need that, 168 * it will be removed. 169 */ 170 /*ARGSUSED*/ 171 int 172 apic_navail_vector(dev_info_t *dip, int pri) 173 { 174 int lowest, highest, i, navail, count; 175 176 DDI_INTR_IMPLDBG((CE_CONT, "apic_navail_vector: dip: %p, pri: %x\n", 177 (void *)dip, pri)); 178 179 highest = apic_ipltopri[pri] + APIC_VECTOR_MASK; 180 lowest = apic_ipltopri[pri - 1] + APIC_VECTOR_PER_IPL; 181 navail = count = 0; 182 183 if (highest < lowest) /* Both ipl and ipl - 1 map to same pri */ 184 lowest -= APIC_VECTOR_PER_IPL; 185 186 /* It has to be contiguous */ 187 for (i = lowest; i <= highest; i++) { 188 count = 0; 189 while ((apic_vector_to_irq[i] == APIC_RESV_IRQ) && 190 (i <= highest)) { 191 if (APIC_CHECK_RESERVE_VECTORS(i)) 192 break; 193 count++; 194 i++; 195 } 196 if (count > navail) 197 navail = count; 198 } 199 return (navail); 200 } 201 202 #endif /* ! __xpv */ 203 204 /* 205 * Finds "count" contiguous MSI vectors starting at the proper alignment 206 * at "pri". 207 * Caller needs to make sure that count has to be power of 2 and should not 208 * be < 1. 209 */ 210 uchar_t 211 apic_find_multi_vectors(int pri, int count) 212 { 213 int lowest, highest, i, navail, start, msibits; 214 215 DDI_INTR_IMPLDBG((CE_CONT, "apic_find_mult: pri: %x, count: %x\n", 216 pri, count)); 217 218 highest = apic_ipltopri[pri] + APIC_VECTOR_MASK; 219 lowest = apic_ipltopri[pri - 1] + APIC_VECTOR_PER_IPL; 220 navail = 0; 221 222 if (highest < lowest) /* Both ipl and ipl - 1 map to same pri */ 223 lowest -= APIC_VECTOR_PER_IPL; 224 225 /* 226 * msibits is the no. of lower order message data bits for the 227 * allocated MSI vectors and is used to calculate the aligned 228 * starting vector 229 */ 230 msibits = count - 1; 231 232 /* It has to be contiguous */ 233 for (i = lowest; i <= highest; i++) { 234 navail = 0; 235 236 /* 237 * starting vector has to be aligned accordingly for 238 * multiple MSIs 239 */ 240 if (msibits) 241 i = (i + msibits) & ~msibits; 242 start = i; 243 while ((apic_vector_to_irq[i] == APIC_RESV_IRQ) && 244 (i <= highest)) { 245 if (APIC_CHECK_RESERVE_VECTORS(i)) 246 break; 247 navail++; 248 if (navail >= count) 249 return (start); 250 i++; 251 } 252 } 253 return (0); 254 } 255 256 257 /* 258 * It finds the apic_irq_t associates with the dip, ispec and type. 259 */ 260 apic_irq_t * 261 apic_find_irq(dev_info_t *dip, struct intrspec *ispec, int type) 262 { 263 apic_irq_t *irqp; 264 int i; 265 266 DDI_INTR_IMPLDBG((CE_CONT, "apic_find_irq: dip=0x%p vec=0x%x " 267 "ipl=0x%x type=0x%x\n", (void *)dip, ispec->intrspec_vec, 268 ispec->intrspec_pri, type)); 269 270 for (i = apic_min_device_irq; i <= apic_max_device_irq; i++) { 271 for (irqp = apic_irq_table[i]; irqp; irqp = irqp->airq_next) { 272 if ((irqp->airq_dip == dip) && 273 (irqp->airq_origirq == ispec->intrspec_vec) && 274 (irqp->airq_ipl == ispec->intrspec_pri)) { 275 if (type == DDI_INTR_TYPE_MSI) { 276 if (irqp->airq_mps_intr_index == 277 MSI_INDEX) 278 return (irqp); 279 } else if (type == DDI_INTR_TYPE_MSIX) { 280 if (irqp->airq_mps_intr_index == 281 MSIX_INDEX) 282 return (irqp); 283 } else 284 return (irqp); 285 } 286 } 287 } 288 DDI_INTR_IMPLDBG((CE_CONT, "apic_find_irq: return NULL\n")); 289 return (NULL); 290 } 291 292 293 #if !defined(__xpv) 294 295 /* 296 * This function will return the pending bit of the irqp. 297 * It either comes from the IRR register of the APIC or the RDT 298 * entry of the I/O APIC. 299 * For the IRR to work, it needs to be to its binding CPU 300 */ 301 static int 302 apic_get_pending(apic_irq_t *irqp, int type) 303 { 304 int bit, index, irr, pending; 305 int intin_no; 306 int apic_ix; 307 308 DDI_INTR_IMPLDBG((CE_CONT, "apic_get_pending: irqp: %p, cpuid: %x " 309 "type: %x\n", (void *)irqp, irqp->airq_cpu & ~IRQ_USER_BOUND, 310 type)); 311 312 /* need to get on the bound cpu */ 313 mutex_enter(&cpu_lock); 314 affinity_set(irqp->airq_cpu & ~IRQ_USER_BOUND); 315 316 index = irqp->airq_vector / 32; 317 bit = irqp->airq_vector % 32; 318 irr = apic_reg_ops->apic_read(APIC_IRR_REG + index); 319 320 affinity_clear(); 321 mutex_exit(&cpu_lock); 322 323 pending = (irr & (1 << bit)) ? 1 : 0; 324 if (!pending && (type == DDI_INTR_TYPE_FIXED)) { 325 /* check I/O APIC for fixed interrupt */ 326 intin_no = irqp->airq_intin_no; 327 apic_ix = irqp->airq_ioapicindex; 328 pending = (READ_IOAPIC_RDT_ENTRY_LOW_DWORD(apic_ix, intin_no) & 329 AV_PENDING) ? 1 : 0; 330 } 331 return (pending); 332 } 333 334 335 /* 336 * This function will clear the mask for the interrupt on the I/O APIC 337 */ 338 static void 339 apic_clear_mask(apic_irq_t *irqp) 340 { 341 int intin_no; 342 ulong_t iflag; 343 int32_t rdt_entry; 344 int apic_ix; 345 346 DDI_INTR_IMPLDBG((CE_CONT, "apic_clear_mask: irqp: %p\n", 347 (void *)irqp)); 348 349 intin_no = irqp->airq_intin_no; 350 apic_ix = irqp->airq_ioapicindex; 351 352 iflag = intr_clear(); 353 lock_set(&apic_ioapic_lock); 354 355 rdt_entry = READ_IOAPIC_RDT_ENTRY_LOW_DWORD(apic_ix, intin_no); 356 357 /* clear mask */ 358 WRITE_IOAPIC_RDT_ENTRY_LOW_DWORD(apic_ix, intin_no, 359 ((~AV_MASK) & rdt_entry)); 360 361 lock_clear(&apic_ioapic_lock); 362 intr_restore(iflag); 363 } 364 365 366 /* 367 * This function will mask the interrupt on the I/O APIC 368 */ 369 static void 370 apic_set_mask(apic_irq_t *irqp) 371 { 372 int intin_no; 373 int apic_ix; 374 ulong_t iflag; 375 int32_t rdt_entry; 376 377 DDI_INTR_IMPLDBG((CE_CONT, "apic_set_mask: irqp: %p\n", (void *)irqp)); 378 379 intin_no = irqp->airq_intin_no; 380 apic_ix = irqp->airq_ioapicindex; 381 382 iflag = intr_clear(); 383 384 lock_set(&apic_ioapic_lock); 385 386 rdt_entry = READ_IOAPIC_RDT_ENTRY_LOW_DWORD(apic_ix, intin_no); 387 388 /* mask it */ 389 WRITE_IOAPIC_RDT_ENTRY_LOW_DWORD(apic_ix, intin_no, 390 (AV_MASK | rdt_entry)); 391 392 lock_clear(&apic_ioapic_lock); 393 intr_restore(iflag); 394 } 395 396 397 void 398 apic_free_vectors(dev_info_t *dip, int inum, int count, int pri, int type) 399 { 400 int i; 401 apic_irq_t *irqptr; 402 struct intrspec ispec; 403 404 DDI_INTR_IMPLDBG((CE_CONT, "apic_free_vectors: dip: %p inum: %x " 405 "count: %x pri: %x type: %x\n", 406 (void *)dip, inum, count, pri, type)); 407 408 /* for MSI/X only */ 409 if (!DDI_INTR_IS_MSI_OR_MSIX(type)) 410 return; 411 412 for (i = 0; i < count; i++) { 413 DDI_INTR_IMPLDBG((CE_CONT, "apic_free_vectors: inum=0x%x " 414 "pri=0x%x count=0x%x\n", inum, pri, count)); 415 ispec.intrspec_vec = inum + i; 416 ispec.intrspec_pri = pri; 417 if ((irqptr = apic_find_irq(dip, &ispec, type)) == NULL) { 418 DDI_INTR_IMPLDBG((CE_CONT, "apic_free_vectors: " 419 "dip=0x%p inum=0x%x pri=0x%x apic_find_irq() " 420 "failed\n", (void *)dip, inum, pri)); 421 continue; 422 } 423 irqptr->airq_mps_intr_index = FREE_INDEX; 424 apic_vector_to_irq[irqptr->airq_vector] = APIC_RESV_IRQ; 425 } 426 } 427 428 #endif /* ! __xpv */ 429 430 /* 431 * check whether the system supports MSI 432 * 433 * If PCI-E capability is found, then this must be a PCI-E system. 434 * Since MSI is required for PCI-E system, it returns PSM_SUCCESS 435 * to indicate this system supports MSI. 436 */ 437 int 438 apic_check_msi_support() 439 { 440 dev_info_t *cdip; 441 char dev_type[16]; 442 int dev_len; 443 444 DDI_INTR_IMPLDBG((CE_CONT, "apic_check_msi_support:\n")); 445 446 /* 447 * check whether the first level children of root_node have 448 * PCI-E capability 449 */ 450 for (cdip = ddi_get_child(ddi_root_node()); cdip != NULL; 451 cdip = ddi_get_next_sibling(cdip)) { 452 453 DDI_INTR_IMPLDBG((CE_CONT, "apic_check_msi_support: cdip: 0x%p," 454 " driver: %s, binding: %s, nodename: %s\n", (void *)cdip, 455 ddi_driver_name(cdip), ddi_binding_name(cdip), 456 ddi_node_name(cdip))); 457 dev_len = sizeof (dev_type); 458 if (ddi_getlongprop_buf(DDI_DEV_T_ANY, cdip, DDI_PROP_DONTPASS, 459 "device_type", (caddr_t)dev_type, &dev_len) 460 != DDI_PROP_SUCCESS) 461 continue; 462 if (strcmp(dev_type, "pciex") == 0) 463 return (PSM_SUCCESS); 464 } 465 466 /* MSI is not supported on this system */ 467 DDI_INTR_IMPLDBG((CE_CONT, "apic_check_msi_support: no 'pciex' " 468 "device_type found\n")); 469 return (PSM_FAILURE); 470 } 471 472 #if !defined(__xpv) 473 474 /* 475 * apic_pci_msi_unconfigure: 476 * 477 * This and next two interfaces are copied from pci_intr_lib.c 478 * Do ensure that these two files stay in sync. 479 * These needed to be copied over here to avoid a deadlock situation on 480 * certain mp systems that use MSI interrupts. 481 * 482 * IMPORTANT regards next three interfaces: 483 * i) are called only for MSI/X interrupts. 484 * ii) called with interrupts disabled, and must not block 485 */ 486 void 487 apic_pci_msi_unconfigure(dev_info_t *rdip, int type, int inum) 488 { 489 ushort_t msi_ctrl; 490 int cap_ptr = i_ddi_get_msi_msix_cap_ptr(rdip); 491 ddi_acc_handle_t handle = i_ddi_get_pci_config_handle(rdip); 492 493 ASSERT((handle != NULL) && (cap_ptr != 0)); 494 495 if (type == DDI_INTR_TYPE_MSI) { 496 msi_ctrl = pci_config_get16(handle, cap_ptr + PCI_MSI_CTRL); 497 msi_ctrl &= (~PCI_MSI_MME_MASK); 498 pci_config_put16(handle, cap_ptr + PCI_MSI_CTRL, msi_ctrl); 499 pci_config_put32(handle, cap_ptr + PCI_MSI_ADDR_OFFSET, 0); 500 501 if (msi_ctrl & PCI_MSI_64BIT_MASK) { 502 pci_config_put16(handle, 503 cap_ptr + PCI_MSI_64BIT_DATA, 0); 504 pci_config_put32(handle, 505 cap_ptr + PCI_MSI_ADDR_OFFSET + 4, 0); 506 } else { 507 pci_config_put16(handle, 508 cap_ptr + PCI_MSI_32BIT_DATA, 0); 509 } 510 511 } else if (type == DDI_INTR_TYPE_MSIX) { 512 uintptr_t off; 513 uint32_t mask; 514 ddi_intr_msix_t *msix_p = i_ddi_get_msix(rdip); 515 516 ASSERT(msix_p != NULL); 517 518 /* Offset into "inum"th entry in the MSI-X table & mask it */ 519 off = (uintptr_t)msix_p->msix_tbl_addr + (inum * 520 PCI_MSIX_VECTOR_SIZE) + PCI_MSIX_VECTOR_CTRL_OFFSET; 521 522 mask = ddi_get32(msix_p->msix_tbl_hdl, (uint32_t *)off); 523 524 ddi_put32(msix_p->msix_tbl_hdl, (uint32_t *)off, (mask | 1)); 525 526 /* Offset into the "inum"th entry in the MSI-X table */ 527 off = (uintptr_t)msix_p->msix_tbl_addr + 528 (inum * PCI_MSIX_VECTOR_SIZE); 529 530 /* Reset the "data" and "addr" bits */ 531 ddi_put32(msix_p->msix_tbl_hdl, 532 (uint32_t *)(off + PCI_MSIX_DATA_OFFSET), 0); 533 ddi_put64(msix_p->msix_tbl_hdl, (uint64_t *)off, 0); 534 } 535 } 536 537 #endif /* __xpv */ 538 539 /* 540 * apic_pci_msi_enable_mode: 541 */ 542 void 543 apic_pci_msi_enable_mode(dev_info_t *rdip, int type, int inum) 544 { 545 ushort_t msi_ctrl; 546 int cap_ptr = i_ddi_get_msi_msix_cap_ptr(rdip); 547 ddi_acc_handle_t handle = i_ddi_get_pci_config_handle(rdip); 548 549 ASSERT((handle != NULL) && (cap_ptr != 0)); 550 551 if (type == DDI_INTR_TYPE_MSI) { 552 msi_ctrl = pci_config_get16(handle, cap_ptr + PCI_MSI_CTRL); 553 if ((msi_ctrl & PCI_MSI_ENABLE_BIT)) 554 return; 555 556 msi_ctrl |= PCI_MSI_ENABLE_BIT; 557 pci_config_put16(handle, cap_ptr + PCI_MSI_CTRL, msi_ctrl); 558 559 } else if (type == DDI_INTR_TYPE_MSIX) { 560 uintptr_t off; 561 uint32_t mask; 562 ddi_intr_msix_t *msix_p; 563 564 msix_p = i_ddi_get_msix(rdip); 565 566 ASSERT(msix_p != NULL); 567 568 /* Offset into "inum"th entry in the MSI-X table & clear mask */ 569 off = (uintptr_t)msix_p->msix_tbl_addr + (inum * 570 PCI_MSIX_VECTOR_SIZE) + PCI_MSIX_VECTOR_CTRL_OFFSET; 571 572 mask = ddi_get32(msix_p->msix_tbl_hdl, (uint32_t *)off); 573 574 ddi_put32(msix_p->msix_tbl_hdl, (uint32_t *)off, (mask & ~1)); 575 576 msi_ctrl = pci_config_get16(handle, cap_ptr + PCI_MSIX_CTRL); 577 578 if (!(msi_ctrl & PCI_MSIX_ENABLE_BIT)) { 579 msi_ctrl |= PCI_MSIX_ENABLE_BIT; 580 pci_config_put16(handle, cap_ptr + PCI_MSIX_CTRL, 581 msi_ctrl); 582 } 583 } 584 } 585 586 /* 587 * apic_pci_msi_disable_mode: 588 */ 589 void 590 apic_pci_msi_disable_mode(dev_info_t *rdip, int type) 591 { 592 ushort_t msi_ctrl; 593 int cap_ptr = i_ddi_get_msi_msix_cap_ptr(rdip); 594 ddi_acc_handle_t handle = i_ddi_get_pci_config_handle(rdip); 595 596 ASSERT((handle != NULL) && (cap_ptr != 0)); 597 598 if (type == DDI_INTR_TYPE_MSI) { 599 msi_ctrl = pci_config_get16(handle, cap_ptr + PCI_MSI_CTRL); 600 if (!(msi_ctrl & PCI_MSI_ENABLE_BIT)) 601 return; 602 603 msi_ctrl &= ~PCI_MSI_ENABLE_BIT; /* MSI disable */ 604 pci_config_put16(handle, cap_ptr + PCI_MSI_CTRL, msi_ctrl); 605 606 } else if (type == DDI_INTR_TYPE_MSIX) { 607 msi_ctrl = pci_config_get16(handle, cap_ptr + PCI_MSIX_CTRL); 608 if (msi_ctrl & PCI_MSIX_ENABLE_BIT) { 609 msi_ctrl &= ~PCI_MSIX_ENABLE_BIT; 610 pci_config_put16(handle, cap_ptr + PCI_MSIX_CTRL, 611 msi_ctrl); 612 } 613 } 614 } 615 616 #if !defined(__xpv) 617 618 static int 619 apic_set_cpu(int irqno, int cpu, int *result) 620 { 621 apic_irq_t *irqp; 622 ulong_t iflag; 623 int ret; 624 625 DDI_INTR_IMPLDBG((CE_CONT, "APIC_SET_CPU\n")); 626 627 mutex_enter(&airq_mutex); 628 irqp = apic_irq_table[irqno]; 629 mutex_exit(&airq_mutex); 630 631 if (irqp == NULL) { 632 *result = ENXIO; 633 return (PSM_FAILURE); 634 } 635 636 /* Fail if this is an MSI intr and is part of a group. */ 637 if ((irqp->airq_mps_intr_index == MSI_INDEX) && 638 (irqp->airq_intin_no > 1)) { 639 *result = ENXIO; 640 return (PSM_FAILURE); 641 } 642 643 iflag = intr_clear(); 644 lock_set(&apic_ioapic_lock); 645 646 ret = apic_rebind_all(irqp, cpu); 647 648 lock_clear(&apic_ioapic_lock); 649 intr_restore(iflag); 650 651 if (ret) { 652 *result = EIO; 653 return (PSM_FAILURE); 654 } 655 /* 656 * keep tracking the default interrupt cpu binding 657 */ 658 irqp->airq_cpu = cpu; 659 660 *result = 0; 661 return (PSM_SUCCESS); 662 } 663 664 static int 665 apic_grp_set_cpu(int irqno, int new_cpu, int *result) 666 { 667 dev_info_t *orig_dip; 668 uint32_t orig_cpu; 669 ulong_t iflag; 670 apic_irq_t *irqps[PCI_MSI_MAX_INTRS]; 671 int i; 672 int cap_ptr; 673 int msi_mask_off; 674 ushort_t msi_ctrl; 675 uint32_t msi_pvm; 676 ddi_acc_handle_t handle; 677 int num_vectors = 0; 678 uint32_t vector; 679 680 DDI_INTR_IMPLDBG((CE_CONT, "APIC_GRP_SET_CPU\n")); 681 682 /* 683 * Take mutex to insure that table doesn't change out from underneath 684 * us while we're playing with it. 685 */ 686 mutex_enter(&airq_mutex); 687 irqps[0] = apic_irq_table[irqno]; 688 orig_cpu = irqps[0]->airq_temp_cpu; 689 orig_dip = irqps[0]->airq_dip; 690 num_vectors = irqps[0]->airq_intin_no; 691 vector = irqps[0]->airq_vector; 692 693 /* A "group" of 1 */ 694 if (num_vectors == 1) { 695 mutex_exit(&airq_mutex); 696 return (apic_set_cpu(irqno, new_cpu, result)); 697 } 698 699 *result = ENXIO; 700 701 if (irqps[0]->airq_mps_intr_index != MSI_INDEX) { 702 mutex_exit(&airq_mutex); 703 DDI_INTR_IMPLDBG((CE_CONT, "set_grp: intr not MSI\n")); 704 goto set_grp_intr_done; 705 } 706 if ((num_vectors < 1) || ((num_vectors - 1) & vector)) { 707 mutex_exit(&airq_mutex); 708 DDI_INTR_IMPLDBG((CE_CONT, 709 "set_grp: base vec not part of a grp or not aligned: " 710 "vec:0x%x, num_vec:0x%x\n", vector, num_vectors)); 711 goto set_grp_intr_done; 712 } 713 DDI_INTR_IMPLDBG((CE_CONT, "set_grp: num intrs in grp: %d\n", 714 num_vectors)); 715 716 ASSERT((num_vectors + vector) < APIC_MAX_VECTOR); 717 718 *result = EIO; 719 720 /* 721 * All IRQ entries in the table for the given device will be not 722 * shared. Since they are not shared, the dip in the table will 723 * be true to the device of interest. 724 */ 725 for (i = 1; i < num_vectors; i++) { 726 irqps[i] = apic_irq_table[apic_vector_to_irq[vector + i]]; 727 if (irqps[i] == NULL) { 728 mutex_exit(&airq_mutex); 729 goto set_grp_intr_done; 730 } 731 #ifdef DEBUG 732 /* Sanity check: CPU and dip is the same for all entries. */ 733 if ((irqps[i]->airq_dip != orig_dip) || 734 (irqps[i]->airq_temp_cpu != orig_cpu)) { 735 mutex_exit(&airq_mutex); 736 DDI_INTR_IMPLDBG((CE_CONT, 737 "set_grp: cpu or dip for vec 0x%x difft than for " 738 "vec 0x%x\n", vector, vector + i)); 739 DDI_INTR_IMPLDBG((CE_CONT, 740 " cpu: %d vs %d, dip: 0x%p vs 0x%p\n", orig_cpu, 741 irqps[i]->airq_temp_cpu, (void *)orig_dip, 742 (void *)irqps[i]->airq_dip)); 743 goto set_grp_intr_done; 744 } 745 #endif /* DEBUG */ 746 } 747 mutex_exit(&airq_mutex); 748 749 cap_ptr = i_ddi_get_msi_msix_cap_ptr(orig_dip); 750 handle = i_ddi_get_pci_config_handle(orig_dip); 751 msi_ctrl = pci_config_get16(handle, cap_ptr + PCI_MSI_CTRL); 752 753 /* MSI Per vector masking is supported. */ 754 if (msi_ctrl & PCI_MSI_PVM_MASK) { 755 if (msi_ctrl & PCI_MSI_64BIT_MASK) 756 msi_mask_off = cap_ptr + PCI_MSI_64BIT_MASKBITS; 757 else 758 msi_mask_off = cap_ptr + PCI_MSI_32BIT_MASK; 759 msi_pvm = pci_config_get32(handle, msi_mask_off); 760 pci_config_put32(handle, msi_mask_off, (uint32_t)-1); 761 DDI_INTR_IMPLDBG((CE_CONT, 762 "set_grp: pvm supported. Mask set to 0x%x\n", 763 pci_config_get32(handle, msi_mask_off))); 764 } 765 766 iflag = intr_clear(); 767 lock_set(&apic_ioapic_lock); 768 769 /* 770 * Do the first rebind and check for errors. Apic_rebind_all returns 771 * an error if the CPU is not accepting interrupts. If the first one 772 * succeeds they all will. 773 */ 774 if (apic_rebind_all(irqps[0], new_cpu)) 775 (void) apic_rebind_all(irqps[0], orig_cpu); 776 else { 777 irqps[0]->airq_cpu = new_cpu; 778 779 for (i = 1; i < num_vectors; i++) { 780 (void) apic_rebind_all(irqps[i], new_cpu); 781 irqps[i]->airq_cpu = new_cpu; 782 } 783 *result = 0; /* SUCCESS */ 784 } 785 786 lock_clear(&apic_ioapic_lock); 787 intr_restore(iflag); 788 789 /* Reenable vectors if per vector masking is supported. */ 790 if (msi_ctrl & PCI_MSI_PVM_MASK) { 791 pci_config_put32(handle, msi_mask_off, msi_pvm); 792 DDI_INTR_IMPLDBG((CE_CONT, 793 "set_grp: pvm supported. Mask restored to 0x%x\n", 794 pci_config_get32(handle, msi_mask_off))); 795 } 796 797 set_grp_intr_done: 798 if (*result != 0) 799 return (PSM_FAILURE); 800 801 return (PSM_SUCCESS); 802 } 803 804 #else /* __xpv */ 805 806 /* 807 * We let the hypervisor deal with msi configutation 808 * so just stub this out. 809 */ 810 811 /* ARGSUSED */ 812 void 813 apic_pci_msi_unconfigure(dev_info_t *rdip, int type, int inum) 814 { 815 } 816 817 #endif /* __xpv */ 818 819 int 820 apic_get_vector_intr_info(int vecirq, apic_get_intr_t *intr_params_p) 821 { 822 struct autovec *av_dev; 823 uchar_t irqno; 824 int i; 825 apic_irq_t *irq_p; 826 827 /* Sanity check the vector/irq argument. */ 828 ASSERT((vecirq >= 0) || (vecirq <= APIC_MAX_VECTOR)); 829 830 mutex_enter(&airq_mutex); 831 832 /* 833 * Convert the vecirq arg to an irq using vector_to_irq table 834 * if the arg is a vector. Pass thru if already an irq. 835 */ 836 if ((intr_params_p->avgi_req_flags & PSMGI_INTRBY_FLAGS) == 837 PSMGI_INTRBY_VEC) 838 irqno = apic_vector_to_irq[vecirq]; 839 else 840 irqno = vecirq; 841 842 irq_p = apic_irq_table[irqno]; 843 844 if ((irq_p == NULL) || 845 (irq_p->airq_temp_cpu == IRQ_UNBOUND) || 846 (irq_p->airq_temp_cpu == IRQ_UNINIT)) { 847 mutex_exit(&airq_mutex); 848 return (PSM_FAILURE); 849 } 850 851 if (intr_params_p->avgi_req_flags & PSMGI_REQ_CPUID) { 852 853 /* Get the (temp) cpu from apic_irq table, indexed by irq. */ 854 intr_params_p->avgi_cpu_id = irq_p->airq_temp_cpu; 855 856 /* Return user bound info for intrd. */ 857 if (intr_params_p->avgi_cpu_id & IRQ_USER_BOUND) { 858 intr_params_p->avgi_cpu_id &= ~IRQ_USER_BOUND; 859 intr_params_p->avgi_cpu_id |= PSMGI_CPU_USER_BOUND; 860 } 861 } 862 863 if (intr_params_p->avgi_req_flags & PSMGI_REQ_VECTOR) 864 intr_params_p->avgi_vector = irq_p->airq_vector; 865 866 if (intr_params_p->avgi_req_flags & 867 (PSMGI_REQ_NUM_DEVS | PSMGI_REQ_GET_DEVS)) 868 /* Get number of devices from apic_irq table shared field. */ 869 intr_params_p->avgi_num_devs = irq_p->airq_share; 870 871 if (intr_params_p->avgi_req_flags & PSMGI_REQ_GET_DEVS) { 872 873 intr_params_p->avgi_req_flags |= PSMGI_REQ_NUM_DEVS; 874 875 /* Some devices have NULL dip. Don't count these. */ 876 if (intr_params_p->avgi_num_devs > 0) { 877 for (i = 0, av_dev = autovect[irqno].avh_link; 878 av_dev; av_dev = av_dev->av_link) 879 if (av_dev->av_vector && av_dev->av_dip) 880 i++; 881 intr_params_p->avgi_num_devs = 882 MIN(intr_params_p->avgi_num_devs, i); 883 } 884 885 /* There are no viable dips to return. */ 886 if (intr_params_p->avgi_num_devs == 0) 887 intr_params_p->avgi_dip_list = NULL; 888 889 else { /* Return list of dips */ 890 891 /* Allocate space in array for that number of devs. */ 892 intr_params_p->avgi_dip_list = kmem_zalloc( 893 intr_params_p->avgi_num_devs * 894 sizeof (dev_info_t *), 895 KM_SLEEP); 896 897 /* 898 * Loop through the device list of the autovec table 899 * filling in the dip array. 900 * 901 * Note that the autovect table may have some special 902 * entries which contain NULL dips. These will be 903 * ignored. 904 */ 905 for (i = 0, av_dev = autovect[irqno].avh_link; 906 av_dev; av_dev = av_dev->av_link) 907 if (av_dev->av_vector && av_dev->av_dip) 908 intr_params_p->avgi_dip_list[i++] = 909 av_dev->av_dip; 910 } 911 } 912 913 mutex_exit(&airq_mutex); 914 915 return (PSM_SUCCESS); 916 } 917 918 919 #if !defined(__xpv) 920 921 /* 922 * This function provides external interface to the nexus for all 923 * functionalities related to the new DDI interrupt framework. 924 * 925 * Input: 926 * dip - pointer to the dev_info structure of the requested device 927 * hdlp - pointer to the internal interrupt handle structure for the 928 * requested interrupt 929 * intr_op - opcode for this call 930 * result - pointer to the integer that will hold the result to be 931 * passed back if return value is PSM_SUCCESS 932 * 933 * Output: 934 * return value is either PSM_SUCCESS or PSM_FAILURE 935 */ 936 int 937 apic_intr_ops(dev_info_t *dip, ddi_intr_handle_impl_t *hdlp, 938 psm_intr_op_t intr_op, int *result) 939 { 940 int cap; 941 int count_vec; 942 int old_priority; 943 int new_priority; 944 int new_cpu; 945 apic_irq_t *irqp; 946 struct intrspec *ispec, intr_spec; 947 948 DDI_INTR_IMPLDBG((CE_CONT, "apic_intr_ops: dip: %p hdlp: %p " 949 "intr_op: %x\n", (void *)dip, (void *)hdlp, intr_op)); 950 951 ispec = &intr_spec; 952 ispec->intrspec_pri = hdlp->ih_pri; 953 ispec->intrspec_vec = hdlp->ih_inum; 954 ispec->intrspec_func = hdlp->ih_cb_func; 955 956 switch (intr_op) { 957 case PSM_INTR_OP_CHECK_MSI: 958 /* 959 * Check MSI/X is supported or not at APIC level and 960 * masked off the MSI/X bits in hdlp->ih_type if not 961 * supported before return. If MSI/X is supported, 962 * leave the ih_type unchanged and return. 963 * 964 * hdlp->ih_type passed in from the nexus has all the 965 * interrupt types supported by the device. 966 */ 967 if (apic_support_msi == 0) { 968 /* 969 * if apic_support_msi is not set, call 970 * apic_check_msi_support() to check whether msi 971 * is supported first 972 */ 973 if (apic_check_msi_support() == PSM_SUCCESS) 974 apic_support_msi = 1; 975 else 976 apic_support_msi = -1; 977 } 978 if (apic_support_msi == 1) { 979 if (apic_msix_enable) 980 *result = hdlp->ih_type; 981 else 982 *result = hdlp->ih_type & ~DDI_INTR_TYPE_MSIX; 983 } else 984 *result = hdlp->ih_type & ~(DDI_INTR_TYPE_MSI | 985 DDI_INTR_TYPE_MSIX); 986 break; 987 case PSM_INTR_OP_ALLOC_VECTORS: 988 if (hdlp->ih_type == DDI_INTR_TYPE_MSI) 989 *result = apic_alloc_msi_vectors(dip, hdlp->ih_inum, 990 hdlp->ih_scratch1, hdlp->ih_pri, 991 (int)(uintptr_t)hdlp->ih_scratch2); 992 else 993 *result = apic_alloc_msix_vectors(dip, hdlp->ih_inum, 994 hdlp->ih_scratch1, hdlp->ih_pri, 995 (int)(uintptr_t)hdlp->ih_scratch2); 996 break; 997 case PSM_INTR_OP_FREE_VECTORS: 998 apic_free_vectors(dip, hdlp->ih_inum, hdlp->ih_scratch1, 999 hdlp->ih_pri, hdlp->ih_type); 1000 break; 1001 case PSM_INTR_OP_NAVAIL_VECTORS: 1002 *result = apic_navail_vector(dip, hdlp->ih_pri); 1003 break; 1004 case PSM_INTR_OP_XLATE_VECTOR: 1005 ispec = ((ihdl_plat_t *)hdlp->ih_private)->ip_ispecp; 1006 *result = apic_introp_xlate(dip, ispec, hdlp->ih_type); 1007 if (*result == -1) 1008 return (PSM_FAILURE); 1009 break; 1010 case PSM_INTR_OP_GET_PENDING: 1011 if ((irqp = apic_find_irq(dip, ispec, hdlp->ih_type)) == NULL) 1012 return (PSM_FAILURE); 1013 *result = apic_get_pending(irqp, hdlp->ih_type); 1014 break; 1015 case PSM_INTR_OP_CLEAR_MASK: 1016 if (hdlp->ih_type != DDI_INTR_TYPE_FIXED) 1017 return (PSM_FAILURE); 1018 irqp = apic_find_irq(dip, ispec, hdlp->ih_type); 1019 if (irqp == NULL) 1020 return (PSM_FAILURE); 1021 apic_clear_mask(irqp); 1022 break; 1023 case PSM_INTR_OP_SET_MASK: 1024 if (hdlp->ih_type != DDI_INTR_TYPE_FIXED) 1025 return (PSM_FAILURE); 1026 if ((irqp = apic_find_irq(dip, ispec, hdlp->ih_type)) == NULL) 1027 return (PSM_FAILURE); 1028 apic_set_mask(irqp); 1029 break; 1030 case PSM_INTR_OP_GET_CAP: 1031 cap = DDI_INTR_FLAG_PENDING; 1032 if (hdlp->ih_type == DDI_INTR_TYPE_FIXED) 1033 cap |= DDI_INTR_FLAG_MASKABLE; 1034 else if (hdlp->ih_type == DDI_INTR_TYPE_MSIX) 1035 cap |= DDI_INTR_FLAG_RETARGETABLE; 1036 *result = cap; 1037 break; 1038 case PSM_INTR_OP_GET_SHARED: 1039 if (hdlp->ih_type != DDI_INTR_TYPE_FIXED) 1040 return (PSM_FAILURE); 1041 ispec = ((ihdl_plat_t *)hdlp->ih_private)->ip_ispecp; 1042 if ((irqp = apic_find_irq(dip, ispec, hdlp->ih_type)) == NULL) 1043 return (PSM_FAILURE); 1044 *result = (irqp->airq_share > 1) ? 1: 0; 1045 break; 1046 case PSM_INTR_OP_SET_PRI: 1047 old_priority = hdlp->ih_pri; /* save old value */ 1048 new_priority = *(int *)result; /* try the new value */ 1049 1050 if (hdlp->ih_type == DDI_INTR_TYPE_FIXED) { 1051 return (PSM_SUCCESS); 1052 } 1053 1054 /* Now allocate the vectors */ 1055 if (hdlp->ih_type == DDI_INTR_TYPE_MSI) { 1056 /* SET_PRI does not support the case of multiple MSI */ 1057 if (i_ddi_intr_get_current_nintrs(hdlp->ih_dip) > 1) 1058 return (PSM_FAILURE); 1059 1060 count_vec = apic_alloc_msi_vectors(dip, hdlp->ih_inum, 1061 1, new_priority, 1062 DDI_INTR_ALLOC_STRICT); 1063 } else { 1064 count_vec = apic_alloc_msix_vectors(dip, hdlp->ih_inum, 1065 1, new_priority, 1066 DDI_INTR_ALLOC_STRICT); 1067 } 1068 1069 /* Did we get new vectors? */ 1070 if (!count_vec) 1071 return (PSM_FAILURE); 1072 1073 /* Finally, free the previously allocated vectors */ 1074 apic_free_vectors(dip, hdlp->ih_inum, count_vec, 1075 old_priority, hdlp->ih_type); 1076 break; 1077 case PSM_INTR_OP_SET_CPU: 1078 case PSM_INTR_OP_GRP_SET_CPU: 1079 /* 1080 * The interrupt handle given here has been allocated 1081 * specifically for this command, and ih_private carries 1082 * a CPU value. 1083 */ 1084 new_cpu = (int)(intptr_t)hdlp->ih_private; 1085 if (!apic_cpu_in_range(new_cpu)) { 1086 DDI_INTR_IMPLDBG((CE_CONT, 1087 "[grp_]set_cpu: cpu out of range: %d\n", new_cpu)); 1088 *result = EINVAL; 1089 return (PSM_FAILURE); 1090 } 1091 if (hdlp->ih_vector > APIC_MAX_VECTOR) { 1092 DDI_INTR_IMPLDBG((CE_CONT, 1093 "[grp_]set_cpu: vector out of range: %d\n", 1094 hdlp->ih_vector)); 1095 *result = EINVAL; 1096 return (PSM_FAILURE); 1097 } 1098 if (!(hdlp->ih_flags & PSMGI_INTRBY_IRQ)) 1099 hdlp->ih_vector = apic_vector_to_irq[hdlp->ih_vector]; 1100 if (intr_op == PSM_INTR_OP_SET_CPU) { 1101 if (apic_set_cpu(hdlp->ih_vector, new_cpu, result) != 1102 PSM_SUCCESS) 1103 return (PSM_FAILURE); 1104 } else { 1105 if (apic_grp_set_cpu(hdlp->ih_vector, new_cpu, 1106 result) != PSM_SUCCESS) 1107 return (PSM_FAILURE); 1108 } 1109 break; 1110 case PSM_INTR_OP_GET_INTR: 1111 /* 1112 * The interrupt handle given here has been allocated 1113 * specifically for this command, and ih_private carries 1114 * a pointer to a apic_get_intr_t. 1115 */ 1116 if (apic_get_vector_intr_info( 1117 hdlp->ih_vector, hdlp->ih_private) != PSM_SUCCESS) 1118 return (PSM_FAILURE); 1119 break; 1120 case PSM_INTR_OP_APIC_TYPE: 1121 hdlp->ih_private = apic_get_apic_type(); 1122 hdlp->ih_ver = apic_get_apic_version(); 1123 break; 1124 case PSM_INTR_OP_SET_CAP: 1125 default: 1126 return (PSM_FAILURE); 1127 } 1128 return (PSM_SUCCESS); 1129 } 1130 #endif /* !__xpv */ 1131