1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2008 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 27 /* 28 * PSMI 1.1 extensions are supported only in 2.6 and later versions. 29 * PSMI 1.2 extensions are supported only in 2.7 and later versions. 30 * PSMI 1.3 and 1.4 extensions are supported in Solaris 10. 31 * PSMI 1.5 extensions are supported in Solaris Nevada. 32 * PSMI 1.6 extensions are supported in Solaris Nevada. 33 */ 34 #define PSMI_1_6 35 36 #include <sys/processor.h> 37 #include <sys/time.h> 38 #include <sys/psm.h> 39 #include <sys/smp_impldefs.h> 40 #include <sys/cram.h> 41 #include <sys/acpi/acpi.h> 42 #include <sys/acpica.h> 43 #include <sys/psm_common.h> 44 #include <sys/apic.h> 45 #include <sys/pit.h> 46 #include <sys/ddi.h> 47 #include <sys/sunddi.h> 48 #include <sys/ddi_impldefs.h> 49 #include <sys/pci.h> 50 #include <sys/promif.h> 51 #include <sys/x86_archext.h> 52 #include <sys/cpc_impl.h> 53 #include <sys/uadmin.h> 54 #include <sys/panic.h> 55 #include <sys/debug.h> 56 #include <sys/archsystm.h> 57 #include <sys/trap.h> 58 #include <sys/machsystm.h> 59 #include <sys/sysmacros.h> 60 #include <sys/cpuvar.h> 61 #include <sys/rm_platter.h> 62 #include <sys/privregs.h> 63 #include <sys/note.h> 64 #include <sys/pci_intr_lib.h> 65 #include <sys/spl.h> 66 #include <sys/clock.h> 67 #include <sys/dditypes.h> 68 #include <sys/sunddi.h> 69 #include <sys/x_call.h> 70 71 /* 72 * Local Function Prototypes 73 */ 74 static void apic_init_intr(); 75 static void apic_nmi_intr(caddr_t arg, struct regs *rp); 76 77 /* 78 * standard MP entries 79 */ 80 static int apic_probe(); 81 static int apic_clkinit(); 82 static int apic_getclkirq(int ipl); 83 static uint_t apic_calibrate(volatile uint32_t *addr, 84 uint16_t *pit_ticks_adj); 85 static hrtime_t apic_gettime(); 86 static hrtime_t apic_gethrtime(); 87 static void apic_init(); 88 static void apic_picinit(void); 89 static int apic_cpu_start(processorid_t, caddr_t); 90 static int apic_post_cpu_start(void); 91 static void apic_send_ipi(int cpun, int ipl); 92 static void apic_set_idlecpu(processorid_t cpun); 93 static void apic_unset_idlecpu(processorid_t cpun); 94 static int apic_intr_enter(int ipl, int *vect); 95 static void apic_setspl(int ipl); 96 static void x2apic_setspl(int ipl); 97 static int apic_addspl(int ipl, int vector, int min_ipl, int max_ipl); 98 static int apic_delspl(int ipl, int vector, int min_ipl, int max_ipl); 99 static void apic_shutdown(int cmd, int fcn); 100 static void apic_preshutdown(int cmd, int fcn); 101 static int apic_disable_intr(processorid_t cpun); 102 static void apic_enable_intr(processorid_t cpun); 103 static processorid_t apic_get_next_processorid(processorid_t cpun); 104 static int apic_get_ipivect(int ipl, int type); 105 static void apic_timer_reprogram(hrtime_t time); 106 static void apic_timer_enable(void); 107 static void apic_timer_disable(void); 108 static void apic_post_cyclic_setup(void *arg); 109 110 static int apic_oneshot = 0; 111 int apic_oneshot_enable = 1; /* to allow disabling one-shot capability */ 112 113 /* Now the ones for Dynamic Interrupt distribution */ 114 int apic_enable_dynamic_migration = 0; 115 116 117 /* 118 * These variables are frequently accessed in apic_intr_enter(), 119 * apic_intr_exit and apic_setspl, so group them together 120 */ 121 volatile uint32_t *apicadr = NULL; /* virtual addr of local APIC */ 122 int apic_setspl_delay = 1; /* apic_setspl - delay enable */ 123 int apic_clkvect; 124 125 /* vector at which error interrupts come in */ 126 int apic_errvect; 127 int apic_enable_error_intr = 1; 128 int apic_error_display_delay = 100; 129 130 /* vector at which performance counter overflow interrupts come in */ 131 int apic_cpcovf_vect; 132 int apic_enable_cpcovf_intr = 1; 133 134 /* vector at which CMCI interrupts come in */ 135 int apic_cmci_vect; 136 extern int cmi_enable_cmci; 137 extern void cmi_cmci_trap(void); 138 139 static kmutex_t cmci_cpu_setup_lock; /* protects cmci_cpu_setup_registered */ 140 static int cmci_cpu_setup_registered; 141 142 /* 143 * The following vector assignments influence the value of ipltopri and 144 * vectortoipl. Note that vectors 0 - 0x1f are not used. We can program 145 * idle to 0 and IPL 0 to 0xf to differentiate idle in case 146 * we care to do so in future. Note some IPLs which are rarely used 147 * will share the vector ranges and heavily used IPLs (5 and 6) have 148 * a wide range. 149 * 150 * This array is used to initialize apic_ipls[] (in apic_init()). 151 * 152 * IPL Vector range. as passed to intr_enter 153 * 0 none. 154 * 1,2,3 0x20-0x2f 0x0-0xf 155 * 4 0x30-0x3f 0x10-0x1f 156 * 5 0x40-0x5f 0x20-0x3f 157 * 6 0x60-0x7f 0x40-0x5f 158 * 7,8,9 0x80-0x8f 0x60-0x6f 159 * 10 0x90-0x9f 0x70-0x7f 160 * 11 0xa0-0xaf 0x80-0x8f 161 * ... ... 162 * 15 0xe0-0xef 0xc0-0xcf 163 * 15 0xf0-0xff 0xd0-0xdf 164 */ 165 uchar_t apic_vectortoipl[APIC_AVAIL_VECTOR / APIC_VECTOR_PER_IPL] = { 166 3, 4, 5, 5, 6, 6, 9, 10, 11, 12, 13, 14, 15, 15 167 }; 168 /* 169 * The ipl of an ISR at vector X is apic_vectortoipl[X>>4] 170 * NOTE that this is vector as passed into intr_enter which is 171 * programmed vector - 0x20 (APIC_BASE_VECT) 172 */ 173 174 uchar_t apic_ipltopri[MAXIPL + 1]; /* unix ipl to apic pri */ 175 /* The taskpri to be programmed into apic to mask given ipl */ 176 177 #if defined(__amd64) 178 uchar_t apic_cr8pri[MAXIPL + 1]; /* unix ipl to cr8 pri */ 179 #endif 180 181 /* 182 * Correlation of the hardware vector to the IPL in use, initialized 183 * from apic_vectortoipl[] in apic_init(). The final IPLs may not correlate 184 * to the IPLs in apic_vectortoipl on some systems that share interrupt lines 185 * connected to errata-stricken IOAPICs 186 */ 187 uchar_t apic_ipls[APIC_AVAIL_VECTOR]; 188 189 /* 190 * Patchable global variables. 191 */ 192 int apic_forceload = 0; 193 194 int apic_coarse_hrtime = 1; /* 0 - use accurate slow gethrtime() */ 195 /* 1 - use gettime() for performance */ 196 int apic_flat_model = 0; /* 0 - clustered. 1 - flat */ 197 int apic_enable_hwsoftint = 0; /* 0 - disable, 1 - enable */ 198 int apic_enable_bind_log = 1; /* 1 - display interrupt binding log */ 199 int apic_panic_on_nmi = 0; 200 int apic_panic_on_apic_error = 0; 201 202 int apic_verbose = 0; 203 204 /* minimum number of timer ticks to program to */ 205 int apic_min_timer_ticks = 1; 206 /* 207 * Local static data 208 */ 209 static struct psm_ops apic_ops = { 210 apic_probe, 211 212 apic_init, 213 apic_picinit, 214 apic_intr_enter, 215 apic_intr_exit, 216 apic_setspl, 217 apic_addspl, 218 apic_delspl, 219 apic_disable_intr, 220 apic_enable_intr, 221 (int (*)(int))NULL, /* psm_softlvl_to_irq */ 222 (void (*)(int))NULL, /* psm_set_softintr */ 223 224 apic_set_idlecpu, 225 apic_unset_idlecpu, 226 227 apic_clkinit, 228 apic_getclkirq, 229 (void (*)(void))NULL, /* psm_hrtimeinit */ 230 apic_gethrtime, 231 232 apic_get_next_processorid, 233 apic_cpu_start, 234 apic_post_cpu_start, 235 apic_shutdown, 236 apic_get_ipivect, 237 apic_send_ipi, 238 239 (int (*)(dev_info_t *, int))NULL, /* psm_translate_irq */ 240 (void (*)(int, char *))NULL, /* psm_notify_error */ 241 (void (*)(int))NULL, /* psm_notify_func */ 242 apic_timer_reprogram, 243 apic_timer_enable, 244 apic_timer_disable, 245 apic_post_cyclic_setup, 246 apic_preshutdown, 247 apic_intr_ops, /* Advanced DDI Interrupt framework */ 248 apic_state, /* save, restore apic state for S3 */ 249 }; 250 251 252 static struct psm_info apic_psm_info = { 253 PSM_INFO_VER01_6, /* version */ 254 PSM_OWN_EXCLUSIVE, /* ownership */ 255 (struct psm_ops *)&apic_ops, /* operation */ 256 APIC_PCPLUSMP_NAME, /* machine name */ 257 "pcplusmp v1.4 compatible", 258 }; 259 260 static void *apic_hdlp; 261 262 #ifdef DEBUG 263 int apic_debug = 0; 264 int apic_restrict_vector = 0; 265 266 int apic_debug_msgbuf[APIC_DEBUG_MSGBUFSIZE]; 267 int apic_debug_msgbufindex = 0; 268 269 #endif /* DEBUG */ 270 271 apic_cpus_info_t *apic_cpus; 272 273 cpuset_t apic_cpumask; 274 uint_t apic_picinit_called; 275 276 /* Flag to indicate that we need to shut down all processors */ 277 static uint_t apic_shutdown_processors; 278 279 uint_t apic_nsec_per_intr = 0; 280 281 /* 282 * apic_let_idle_redistribute can have the following values: 283 * 0 - If clock decremented it from 1 to 0, clock has to call redistribute. 284 * apic_redistribute_lock prevents multiple idle cpus from redistributing 285 */ 286 int apic_num_idle_redistributions = 0; 287 static int apic_let_idle_redistribute = 0; 288 static uint_t apic_nticks = 0; 289 static uint_t apic_skipped_redistribute = 0; 290 291 /* to gather intr data and redistribute */ 292 static void apic_redistribute_compute(void); 293 294 static uint_t last_count_read = 0; 295 static lock_t apic_gethrtime_lock; 296 volatile int apic_hrtime_stamp = 0; 297 volatile hrtime_t apic_nsec_since_boot = 0; 298 static uint_t apic_hertz_count; 299 300 uint64_t apic_ticks_per_SFnsecs; /* # of ticks in SF nsecs */ 301 302 static hrtime_t apic_nsec_max; 303 304 static hrtime_t apic_last_hrtime = 0; 305 int apic_hrtime_error = 0; 306 int apic_remote_hrterr = 0; 307 int apic_num_nmis = 0; 308 int apic_apic_error = 0; 309 int apic_num_apic_errors = 0; 310 int apic_num_cksum_errors = 0; 311 312 int apic_error = 0; 313 static int apic_cmos_ssb_set = 0; 314 315 /* use to make sure only one cpu handles the nmi */ 316 static lock_t apic_nmi_lock; 317 /* use to make sure only one cpu handles the error interrupt */ 318 static lock_t apic_error_lock; 319 320 static struct { 321 uchar_t cntl; 322 uchar_t data; 323 } aspen_bmc[] = { 324 { CC_SMS_WR_START, 0x18 }, /* NetFn/LUN */ 325 { CC_SMS_WR_NEXT, 0x24 }, /* Cmd SET_WATCHDOG_TIMER */ 326 { CC_SMS_WR_NEXT, 0x84 }, /* DataByte 1: SMS/OS no log */ 327 { CC_SMS_WR_NEXT, 0x2 }, /* DataByte 2: Power Down */ 328 { CC_SMS_WR_NEXT, 0x0 }, /* DataByte 3: no pre-timeout */ 329 { CC_SMS_WR_NEXT, 0x0 }, /* DataByte 4: timer expir. */ 330 { CC_SMS_WR_NEXT, 0xa }, /* DataByte 5: init countdown */ 331 { CC_SMS_WR_END, 0x0 }, /* DataByte 6: init countdown */ 332 333 { CC_SMS_WR_START, 0x18 }, /* NetFn/LUN */ 334 { CC_SMS_WR_END, 0x22 } /* Cmd RESET_WATCHDOG_TIMER */ 335 }; 336 337 static struct { 338 int port; 339 uchar_t data; 340 } sitka_bmc[] = { 341 { SMS_COMMAND_REGISTER, SMS_WRITE_START }, 342 { SMS_DATA_REGISTER, 0x18 }, /* NetFn/LUN */ 343 { SMS_DATA_REGISTER, 0x24 }, /* Cmd SET_WATCHDOG_TIMER */ 344 { SMS_DATA_REGISTER, 0x84 }, /* DataByte 1: SMS/OS no log */ 345 { SMS_DATA_REGISTER, 0x2 }, /* DataByte 2: Power Down */ 346 { SMS_DATA_REGISTER, 0x0 }, /* DataByte 3: no pre-timeout */ 347 { SMS_DATA_REGISTER, 0x0 }, /* DataByte 4: timer expir. */ 348 { SMS_DATA_REGISTER, 0xa }, /* DataByte 5: init countdown */ 349 { SMS_COMMAND_REGISTER, SMS_WRITE_END }, 350 { SMS_DATA_REGISTER, 0x0 }, /* DataByte 6: init countdown */ 351 352 { SMS_COMMAND_REGISTER, SMS_WRITE_START }, 353 { SMS_DATA_REGISTER, 0x18 }, /* NetFn/LUN */ 354 { SMS_COMMAND_REGISTER, SMS_WRITE_END }, 355 { SMS_DATA_REGISTER, 0x22 } /* Cmd RESET_WATCHDOG_TIMER */ 356 }; 357 358 /* Patchable global variables. */ 359 int apic_kmdb_on_nmi = 0; /* 0 - no, 1 - yes enter kmdb */ 360 uint32_t apic_divide_reg_init = 0; /* 0 - divide by 2 */ 361 362 /* 363 * This is the loadable module wrapper 364 */ 365 366 int 367 _init(void) 368 { 369 if (apic_coarse_hrtime) 370 apic_ops.psm_gethrtime = &apic_gettime; 371 return (psm_mod_init(&apic_hdlp, &apic_psm_info)); 372 } 373 374 int 375 _fini(void) 376 { 377 return (psm_mod_fini(&apic_hdlp, &apic_psm_info)); 378 } 379 380 int 381 _info(struct modinfo *modinfop) 382 { 383 return (psm_mod_info(&apic_hdlp, &apic_psm_info, modinfop)); 384 } 385 386 387 static int 388 apic_probe() 389 { 390 return (apic_probe_common(apic_psm_info.p_mach_idstring)); 391 } 392 393 void 394 apic_init() 395 { 396 int i; 397 int j = 1; 398 399 apic_ipltopri[0] = APIC_VECTOR_PER_IPL; /* leave 0 for idle */ 400 for (i = 0; i < (APIC_AVAIL_VECTOR / APIC_VECTOR_PER_IPL); i++) { 401 if ((i < ((APIC_AVAIL_VECTOR / APIC_VECTOR_PER_IPL) - 1)) && 402 (apic_vectortoipl[i + 1] == apic_vectortoipl[i])) 403 /* get to highest vector at the same ipl */ 404 continue; 405 for (; j <= apic_vectortoipl[i]; j++) { 406 apic_ipltopri[j] = (i << APIC_IPL_SHIFT) + 407 APIC_BASE_VECT; 408 } 409 } 410 for (; j < MAXIPL + 1; j++) 411 /* fill up any empty ipltopri slots */ 412 apic_ipltopri[j] = (i << APIC_IPL_SHIFT) + APIC_BASE_VECT; 413 apic_init_common(); 414 #if defined(__amd64) 415 /* 416 * Make cpu-specific interrupt info point to cr8pri vector 417 */ 418 for (i = 0; i <= MAXIPL; i++) 419 apic_cr8pri[i] = apic_ipltopri[i] >> APIC_IPL_SHIFT; 420 CPU->cpu_pri_data = apic_cr8pri; 421 #endif /* __amd64 */ 422 } 423 424 /* 425 * handler for APIC Error interrupt. Just print a warning and continue 426 */ 427 static int 428 apic_error_intr() 429 { 430 uint_t error0, error1, error; 431 uint_t i; 432 433 /* 434 * We need to write before read as per 7.4.17 of system prog manual. 435 * We do both and or the results to be safe 436 */ 437 error0 = apic_reg_ops->apic_read(APIC_ERROR_STATUS); 438 apic_reg_ops->apic_write(APIC_ERROR_STATUS, 0); 439 error1 = apic_reg_ops->apic_read(APIC_ERROR_STATUS); 440 error = error0 | error1; 441 442 /* 443 * Clear the APIC error status (do this on all cpus that enter here) 444 * (two writes are required due to the semantics of accessing the 445 * error status register.) 446 */ 447 apic_reg_ops->apic_write(APIC_ERROR_STATUS, 0); 448 apic_reg_ops->apic_write(APIC_ERROR_STATUS, 0); 449 450 /* 451 * Prevent more than 1 CPU from handling error interrupt causing 452 * double printing (interleave of characters from multiple 453 * CPU's when using prom_printf) 454 */ 455 if (lock_try(&apic_error_lock) == 0) 456 return (error ? DDI_INTR_CLAIMED : DDI_INTR_UNCLAIMED); 457 if (error) { 458 #if DEBUG 459 if (apic_debug) 460 debug_enter("pcplusmp: APIC Error interrupt received"); 461 #endif /* DEBUG */ 462 if (apic_panic_on_apic_error) 463 cmn_err(CE_PANIC, 464 "APIC Error interrupt on CPU %d. Status = %x\n", 465 psm_get_cpu_id(), error); 466 else { 467 if ((error & ~APIC_CS_ERRORS) == 0) { 468 /* cksum error only */ 469 apic_error |= APIC_ERR_APIC_ERROR; 470 apic_apic_error |= error; 471 apic_num_apic_errors++; 472 apic_num_cksum_errors++; 473 } else { 474 /* 475 * prom_printf is the best shot we have of 476 * something which is problem free from 477 * high level/NMI type of interrupts 478 */ 479 prom_printf("APIC Error interrupt on CPU %d. " 480 "Status 0 = %x, Status 1 = %x\n", 481 psm_get_cpu_id(), error0, error1); 482 apic_error |= APIC_ERR_APIC_ERROR; 483 apic_apic_error |= error; 484 apic_num_apic_errors++; 485 for (i = 0; i < apic_error_display_delay; i++) { 486 tenmicrosec(); 487 } 488 /* 489 * provide more delay next time limited to 490 * roughly 1 clock tick time 491 */ 492 if (apic_error_display_delay < 500) 493 apic_error_display_delay *= 2; 494 } 495 } 496 lock_clear(&apic_error_lock); 497 return (DDI_INTR_CLAIMED); 498 } else { 499 lock_clear(&apic_error_lock); 500 return (DDI_INTR_UNCLAIMED); 501 } 502 /* NOTREACHED */ 503 } 504 505 /* 506 * Turn off the mask bit in the performance counter Local Vector Table entry. 507 */ 508 static void 509 apic_cpcovf_mask_clear(void) 510 { 511 apic_reg_ops->apic_write(APIC_PCINT_VECT, 512 (apic_reg_ops->apic_read(APIC_PCINT_VECT) & ~APIC_LVT_MASK)); 513 } 514 515 /*ARGSUSED*/ 516 static int 517 apic_cmci_enable(xc_arg_t arg1, xc_arg_t arg2, xc_arg_t arg3) 518 { 519 apic_reg_ops->apic_write(APIC_CMCI_VECT, apic_cmci_vect); 520 return (0); 521 } 522 523 /*ARGSUSED*/ 524 static int 525 apic_cmci_disable(xc_arg_t arg1, xc_arg_t arg2, xc_arg_t arg3) 526 { 527 apic_reg_ops->apic_write(APIC_CMCI_VECT, apic_cmci_vect | AV_MASK); 528 return (0); 529 } 530 531 /*ARGSUSED*/ 532 static int 533 cmci_cpu_setup(cpu_setup_t what, int cpuid, void *arg) 534 { 535 cpuset_t cpu_set; 536 537 CPUSET_ONLY(cpu_set, cpuid); 538 539 switch (what) { 540 case CPU_ON: 541 xc_call(NULL, NULL, NULL, X_CALL_HIPRI, cpu_set, 542 (xc_func_t)apic_cmci_enable); 543 break; 544 545 case CPU_OFF: 546 xc_call(NULL, NULL, NULL, X_CALL_HIPRI, cpu_set, 547 (xc_func_t)apic_cmci_disable); 548 break; 549 550 default: 551 break; 552 } 553 554 return (0); 555 } 556 557 static void 558 apic_init_intr() 559 { 560 processorid_t cpun = psm_get_cpu_id(); 561 uint_t nlvt; 562 uint32_t svr = AV_UNIT_ENABLE | APIC_SPUR_INTR; 563 564 /* 565 * On BSP we would have enabled x2apic, if supported by processor, 566 * in acpi_probe(), but on AP we do it here. 567 */ 568 if (apic_detect_x2apic()) { 569 apic_enable_x2apic(); 570 } 571 572 apic_reg_ops->apic_write_task_reg(APIC_MASK_ALL); 573 574 if (apic_mode == LOCAL_APIC) { 575 /* 576 * We are running APIC in MMIO mode. 577 */ 578 if (apic_flat_model) { 579 apic_reg_ops->apic_write(APIC_FORMAT_REG, 580 APIC_FLAT_MODEL); 581 } else { 582 apic_reg_ops->apic_write(APIC_FORMAT_REG, 583 APIC_CLUSTER_MODEL); 584 } 585 586 apic_reg_ops->apic_write(APIC_DEST_REG, 587 AV_HIGH_ORDER >> cpun); 588 } 589 590 if (apic_direct_EOI) { 591 /* 592 * Set 12th bit in Spurious Interrupt Vector 593 * Register to support level triggered interrupt 594 * directed EOI. 595 */ 596 svr |= (0x1 << APIC_SVR); 597 } 598 599 /* need to enable APIC before unmasking NMI */ 600 apic_reg_ops->apic_write(APIC_SPUR_INT_REG, svr); 601 602 /* 603 * Presence of an invalid vector with delivery mode AV_FIXED can 604 * cause an error interrupt, even if the entry is masked...so 605 * write a valid vector to LVT entries along with the mask bit 606 */ 607 608 /* All APICs have timer and LINT0/1 */ 609 apic_reg_ops->apic_write(APIC_LOCAL_TIMER, AV_MASK|APIC_RESV_IRQ); 610 apic_reg_ops->apic_write(APIC_INT_VECT0, AV_MASK|APIC_RESV_IRQ); 611 apic_reg_ops->apic_write(APIC_INT_VECT1, AV_NMI); /* enable NMI */ 612 613 /* 614 * On integrated APICs, the number of LVT entries is 615 * 'Max LVT entry' + 1; on 82489DX's (non-integrated 616 * APICs), nlvt is "3" (LINT0, LINT1, and timer) 617 */ 618 619 if (apic_cpus[cpun].aci_local_ver < APIC_INTEGRATED_VERS) { 620 nlvt = 3; 621 } else { 622 nlvt = ((apicadr[APIC_VERS_REG] >> 16) & 0xFF) + 1; 623 } 624 625 if (nlvt >= 5) { 626 /* Enable performance counter overflow interrupt */ 627 628 if ((x86_feature & X86_MSR) != X86_MSR) 629 apic_enable_cpcovf_intr = 0; 630 if (apic_enable_cpcovf_intr) { 631 if (apic_cpcovf_vect == 0) { 632 int ipl = APIC_PCINT_IPL; 633 int irq = apic_get_ipivect(ipl, -1); 634 635 ASSERT(irq != -1); 636 apic_cpcovf_vect = 637 apic_irq_table[irq]->airq_vector; 638 ASSERT(apic_cpcovf_vect); 639 (void) add_avintr(NULL, ipl, 640 (avfunc)kcpc_hw_overflow_intr, 641 "apic pcint", irq, NULL, NULL, NULL, NULL); 642 kcpc_hw_overflow_intr_installed = 1; 643 kcpc_hw_enable_cpc_intr = 644 apic_cpcovf_mask_clear; 645 } 646 apic_reg_ops->apic_write(APIC_PCINT_VECT, 647 apic_cpcovf_vect); 648 } 649 } 650 651 if (nlvt >= 6) { 652 /* Only mask TM intr if the BIOS apparently doesn't use it */ 653 654 uint32_t lvtval; 655 656 lvtval = apic_reg_ops->apic_read(APIC_THERM_VECT); 657 if (((lvtval & AV_MASK) == AV_MASK) || 658 ((lvtval & AV_DELIV_MODE) != AV_SMI)) { 659 apic_reg_ops->apic_write(APIC_THERM_VECT, 660 AV_MASK|APIC_RESV_IRQ); 661 } 662 } 663 664 /* Enable error interrupt */ 665 666 if (nlvt >= 4 && apic_enable_error_intr) { 667 if (apic_errvect == 0) { 668 int ipl = 0xf; /* get highest priority intr */ 669 int irq = apic_get_ipivect(ipl, -1); 670 671 ASSERT(irq != -1); 672 apic_errvect = apic_irq_table[irq]->airq_vector; 673 ASSERT(apic_errvect); 674 /* 675 * Not PSMI compliant, but we are going to merge 676 * with ON anyway 677 */ 678 (void) add_avintr((void *)NULL, ipl, 679 (avfunc)apic_error_intr, "apic error intr", 680 irq, NULL, NULL, NULL, NULL); 681 } 682 apic_reg_ops->apic_write(APIC_ERR_VECT, apic_errvect); 683 apic_reg_ops->apic_write(APIC_ERROR_STATUS, 0); 684 apic_reg_ops->apic_write(APIC_ERROR_STATUS, 0); 685 } 686 687 /* Enable CMCI interrupt */ 688 if (cmi_enable_cmci) { 689 690 mutex_enter(&cmci_cpu_setup_lock); 691 if (cmci_cpu_setup_registered == 0) { 692 mutex_enter(&cpu_lock); 693 register_cpu_setup_func(cmci_cpu_setup, NULL); 694 mutex_exit(&cpu_lock); 695 cmci_cpu_setup_registered = 1; 696 } 697 mutex_exit(&cmci_cpu_setup_lock); 698 699 if (apic_cmci_vect == 0) { 700 int ipl = 0x2; 701 int irq = apic_get_ipivect(ipl, -1); 702 703 ASSERT(irq != -1); 704 apic_cmci_vect = apic_irq_table[irq]->airq_vector; 705 ASSERT(apic_cmci_vect); 706 707 (void) add_avintr(NULL, ipl, 708 (avfunc)cmi_cmci_trap, 709 "apic cmci intr", irq, NULL, NULL, NULL, NULL); 710 } 711 apic_reg_ops->apic_write(APIC_CMCI_VECT, apic_cmci_vect); 712 } 713 714 } 715 716 static void 717 apic_disable_local_apic() 718 { 719 apic_reg_ops->apic_write_task_reg(APIC_MASK_ALL); 720 apic_reg_ops->apic_write(APIC_LOCAL_TIMER, AV_MASK); 721 722 /* local intr reg 0 */ 723 apic_reg_ops->apic_write(APIC_INT_VECT0, AV_MASK); 724 725 /* disable NMI */ 726 apic_reg_ops->apic_write(APIC_INT_VECT1, AV_MASK); 727 728 /* and error interrupt */ 729 apic_reg_ops->apic_write(APIC_ERR_VECT, AV_MASK); 730 731 /* and perf counter intr */ 732 apic_reg_ops->apic_write(APIC_PCINT_VECT, AV_MASK); 733 734 apic_reg_ops->apic_write(APIC_SPUR_INT_REG, APIC_SPUR_INTR); 735 } 736 737 static void 738 apic_picinit(void) 739 { 740 int i, j; 741 uint_t isr; 742 uint32_t ver; 743 744 /* 745 * On UniSys Model 6520, the BIOS leaves vector 0x20 isr 746 * bit on without clearing it with EOI. Since softint 747 * uses vector 0x20 to interrupt itself, so softint will 748 * not work on this machine. In order to fix this problem 749 * a check is made to verify all the isr bits are clear. 750 * If not, EOIs are issued to clear the bits. 751 */ 752 for (i = 7; i >= 1; i--) { 753 isr = apic_reg_ops->apic_read(APIC_ISR_REG + (i * 4)); 754 if (isr != 0) 755 for (j = 0; ((j < 32) && (isr != 0)); j++) 756 if (isr & (1 << j)) { 757 apic_reg_ops->apic_write( 758 APIC_EOI_REG, 0); 759 isr &= ~(1 << j); 760 apic_error |= APIC_ERR_BOOT_EOI; 761 } 762 } 763 764 /* set a flag so we know we have run apic_picinit() */ 765 apic_picinit_called = 1; 766 LOCK_INIT_CLEAR(&apic_gethrtime_lock); 767 LOCK_INIT_CLEAR(&apic_ioapic_lock); 768 LOCK_INIT_CLEAR(&apic_error_lock); 769 770 picsetup(); /* initialise the 8259 */ 771 772 /* add nmi handler - least priority nmi handler */ 773 LOCK_INIT_CLEAR(&apic_nmi_lock); 774 775 if (!psm_add_nmintr(0, (avfunc) apic_nmi_intr, 776 "pcplusmp NMI handler", (caddr_t)NULL)) 777 cmn_err(CE_WARN, "pcplusmp: Unable to add nmi handler"); 778 779 ver = apic_reg_ops->apic_read(APIC_VERS_REG); 780 /* 781 * In order to determine support for Directed EOI capability, 782 * we check for 24th bit in Local APIC Version Register. 783 */ 784 if (ver & (0x1 << APIC_DIRECTED_EOI)) { 785 apic_direct_EOI = 1; 786 apic_change_eoi(); 787 } 788 789 apic_init_intr(); 790 791 /* enable apic mode if imcr present */ 792 if (apic_imcrp) { 793 outb(APIC_IMCR_P1, (uchar_t)APIC_IMCR_SELECT); 794 outb(APIC_IMCR_P2, (uchar_t)APIC_IMCR_APIC); 795 } 796 797 ioapic_init_intr(IOAPIC_MASK); 798 } 799 800 801 /*ARGSUSED1*/ 802 static int 803 apic_cpu_start(processorid_t cpun, caddr_t arg) 804 { 805 int loop_count; 806 uint32_t vector; 807 uint_t cpu_id; 808 ulong_t iflag; 809 810 cpu_id = apic_cpus[cpun].aci_local_id; 811 812 apic_cmos_ssb_set = 1; 813 814 /* 815 * Interrupts on BSP cpu will be disabled during these startup 816 * steps in order to avoid unwanted side effects from 817 * executing interrupt handlers on a problematic BIOS. 818 */ 819 820 iflag = intr_clear(); 821 outb(CMOS_ADDR, SSB); 822 outb(CMOS_DATA, BIOS_SHUTDOWN); 823 824 while (apic_reg_ops->apic_read(APIC_INT_CMD1) & AV_PENDING) 825 apic_ret(); 826 827 /* for integrated - make sure there is one INIT IPI in buffer */ 828 /* for external - it will wake up the cpu */ 829 apic_reg_ops->apic_write_int_cmd(cpu_id, AV_ASSERT | AV_RESET); 830 831 /* If only 1 CPU is installed, PENDING bit will not go low */ 832 for (loop_count = 0x1000; loop_count; loop_count--) 833 if (apic_reg_ops->apic_read(APIC_INT_CMD1) & AV_PENDING) 834 apic_ret(); 835 else 836 break; 837 838 apic_reg_ops->apic_write_int_cmd(cpu_id, AV_DEASSERT | AV_RESET); 839 840 drv_usecwait(20000); /* 20 milli sec */ 841 842 if (apic_cpus[cpun].aci_local_ver >= APIC_INTEGRATED_VERS) { 843 /* integrated apic */ 844 845 vector = (rm_platter_pa >> MMU_PAGESHIFT) & 846 (APIC_VECTOR_MASK | APIC_IPL_MASK); 847 848 /* to offset the INIT IPI queue up in the buffer */ 849 apic_reg_ops->apic_write_int_cmd(cpu_id, vector | AV_STARTUP); 850 851 drv_usecwait(200); /* 20 micro sec */ 852 853 apic_reg_ops->apic_write_int_cmd(cpu_id, vector | AV_STARTUP); 854 855 drv_usecwait(200); /* 20 micro sec */ 856 } 857 intr_restore(iflag); 858 return (0); 859 } 860 861 862 #ifdef DEBUG 863 int apic_break_on_cpu = 9; 864 int apic_stretch_interrupts = 0; 865 int apic_stretch_ISR = 1 << 3; /* IPL of 3 matches nothing now */ 866 867 void 868 apic_break() 869 { 870 } 871 #endif /* DEBUG */ 872 873 /* 874 * platform_intr_enter 875 * 876 * Called at the beginning of the interrupt service routine to 877 * mask all level equal to and below the interrupt priority 878 * of the interrupting vector. An EOI should be given to 879 * the interrupt controller to enable other HW interrupts. 880 * 881 * Return -1 for spurious interrupts 882 * 883 */ 884 /*ARGSUSED*/ 885 static int 886 apic_intr_enter(int ipl, int *vectorp) 887 { 888 uchar_t vector; 889 int nipl; 890 int irq; 891 ulong_t iflag; 892 apic_cpus_info_t *cpu_infop; 893 894 /* 895 * The real vector delivered is (*vectorp + 0x20), but our caller 896 * subtracts 0x20 from the vector before passing it to us. 897 * (That's why APIC_BASE_VECT is 0x20.) 898 */ 899 vector = (uchar_t)*vectorp; 900 901 /* if interrupted by the clock, increment apic_nsec_since_boot */ 902 if (vector == apic_clkvect) { 903 if (!apic_oneshot) { 904 /* NOTE: this is not MT aware */ 905 apic_hrtime_stamp++; 906 apic_nsec_since_boot += apic_nsec_per_intr; 907 apic_hrtime_stamp++; 908 last_count_read = apic_hertz_count; 909 apic_redistribute_compute(); 910 } 911 912 /* We will avoid all the book keeping overhead for clock */ 913 nipl = apic_ipls[vector]; 914 915 *vectorp = apic_vector_to_irq[vector + APIC_BASE_VECT]; 916 if (apic_mode == LOCAL_APIC) { 917 #if defined(__amd64) 918 setcr8((ulong_t)(apic_ipltopri[nipl] >> 919 APIC_IPL_SHIFT)); 920 #else 921 LOCAL_APIC_WRITE_REG(APIC_TASK_REG, 922 (uint32_t)apic_ipltopri[nipl]); 923 #endif 924 LOCAL_APIC_WRITE_REG(APIC_EOI_REG, 0); 925 } else { 926 X2APIC_WRITE(APIC_TASK_REG, apic_ipltopri[nipl]); 927 X2APIC_WRITE(APIC_EOI_REG, 0); 928 } 929 930 return (nipl); 931 } 932 933 cpu_infop = &apic_cpus[psm_get_cpu_id()]; 934 935 if (vector == (APIC_SPUR_INTR - APIC_BASE_VECT)) { 936 cpu_infop->aci_spur_cnt++; 937 return (APIC_INT_SPURIOUS); 938 } 939 940 /* Check if the vector we got is really what we need */ 941 if (apic_revector_pending) { 942 /* 943 * Disable interrupts for the duration of 944 * the vector translation to prevent a self-race for 945 * the apic_revector_lock. This cannot be done 946 * in apic_xlate_vector because it is recursive and 947 * we want the vector translation to be atomic with 948 * respect to other (higher-priority) interrupts. 949 */ 950 iflag = intr_clear(); 951 vector = apic_xlate_vector(vector + APIC_BASE_VECT) - 952 APIC_BASE_VECT; 953 intr_restore(iflag); 954 } 955 956 nipl = apic_ipls[vector]; 957 *vectorp = irq = apic_vector_to_irq[vector + APIC_BASE_VECT]; 958 959 if (apic_mode == LOCAL_APIC) { 960 #if defined(__amd64) 961 setcr8((ulong_t)(apic_ipltopri[nipl] >> APIC_IPL_SHIFT)); 962 #else 963 LOCAL_APIC_WRITE_REG(APIC_TASK_REG, 964 (uint32_t)apic_ipltopri[nipl]); 965 #endif 966 } else { 967 X2APIC_WRITE(APIC_TASK_REG, apic_ipltopri[nipl]); 968 } 969 970 cpu_infop->aci_current[nipl] = (uchar_t)irq; 971 cpu_infop->aci_curipl = (uchar_t)nipl; 972 cpu_infop->aci_ISR_in_progress |= 1 << nipl; 973 974 /* 975 * apic_level_intr could have been assimilated into the irq struct. 976 * but, having it as a character array is more efficient in terms of 977 * cache usage. So, we leave it as is. 978 */ 979 if (!apic_level_intr[irq]) { 980 if (apic_mode == LOCAL_APIC) 981 LOCAL_APIC_WRITE_REG(APIC_EOI_REG, 0); 982 else 983 X2APIC_WRITE(APIC_EOI_REG, 0); 984 } 985 986 #ifdef DEBUG 987 APIC_DEBUG_BUF_PUT(vector); 988 APIC_DEBUG_BUF_PUT(irq); 989 APIC_DEBUG_BUF_PUT(nipl); 990 APIC_DEBUG_BUF_PUT(psm_get_cpu_id()); 991 if ((apic_stretch_interrupts) && (apic_stretch_ISR & (1 << nipl))) 992 drv_usecwait(apic_stretch_interrupts); 993 994 if (apic_break_on_cpu == psm_get_cpu_id()) 995 apic_break(); 996 #endif /* DEBUG */ 997 return (nipl); 998 } 999 1000 /* 1001 * This macro is a common code used by MMIO local apic and x2apic 1002 * local apic. 1003 */ 1004 #define APIC_INTR_EXIT() \ 1005 { \ 1006 cpu_infop = &apic_cpus[psm_get_cpu_id()]; \ 1007 if (apic_level_intr[irq]) \ 1008 apic_reg_ops->apic_send_eoi(irq); \ 1009 cpu_infop->aci_curipl = (uchar_t)prev_ipl; \ 1010 /* ISR above current pri could not be in progress */ \ 1011 cpu_infop->aci_ISR_in_progress &= (2 << prev_ipl) - 1; \ 1012 } 1013 1014 /* 1015 * Any changes made to this function must also change x2apic 1016 * version of intr_exit. 1017 */ 1018 void 1019 apic_intr_exit(int prev_ipl, int irq) 1020 { 1021 apic_cpus_info_t *cpu_infop; 1022 1023 #if defined(__amd64) 1024 setcr8((ulong_t)apic_cr8pri[prev_ipl]); 1025 #else 1026 apicadr[APIC_TASK_REG] = apic_ipltopri[prev_ipl]; 1027 #endif 1028 1029 APIC_INTR_EXIT(); 1030 } 1031 1032 /* 1033 * Same as apic_intr_exit() except it uses MSR rather than MMIO 1034 * to access local apic registers. 1035 */ 1036 void 1037 x2apic_intr_exit(int prev_ipl, int irq) 1038 { 1039 apic_cpus_info_t *cpu_infop; 1040 1041 X2APIC_WRITE(APIC_TASK_REG, apic_ipltopri[prev_ipl]); 1042 APIC_INTR_EXIT(); 1043 } 1044 1045 intr_exit_fn_t 1046 psm_intr_exit_fn(void) 1047 { 1048 if (apic_mode == LOCAL_X2APIC) 1049 return (x2apic_intr_exit); 1050 1051 return (apic_intr_exit); 1052 } 1053 1054 /* 1055 * Mask all interrupts below or equal to the given IPL. 1056 * Any changes made to this function must also change x2apic 1057 * version of setspl. 1058 */ 1059 static void 1060 apic_setspl(int ipl) 1061 { 1062 1063 #if defined(__amd64) 1064 setcr8((ulong_t)apic_cr8pri[ipl]); 1065 #else 1066 apicadr[APIC_TASK_REG] = apic_ipltopri[ipl]; 1067 #endif 1068 1069 /* interrupts at ipl above this cannot be in progress */ 1070 apic_cpus[psm_get_cpu_id()].aci_ISR_in_progress &= (2 << ipl) - 1; 1071 /* 1072 * this is a patch fix for the ALR QSMP P5 machine, so that interrupts 1073 * have enough time to come in before the priority is raised again 1074 * during the idle() loop. 1075 */ 1076 if (apic_setspl_delay) 1077 (void) apic_reg_ops->apic_get_pri(); 1078 } 1079 1080 /* 1081 * x2apic version of setspl. 1082 * Mask all interrupts below or equal to the given IPL 1083 */ 1084 static void 1085 x2apic_setspl(int ipl) 1086 { 1087 X2APIC_WRITE(APIC_TASK_REG, apic_ipltopri[ipl]); 1088 1089 /* interrupts at ipl above this cannot be in progress */ 1090 apic_cpus[psm_get_cpu_id()].aci_ISR_in_progress &= (2 << ipl) - 1; 1091 } 1092 1093 /* 1094 * generates an interprocessor interrupt to another CPU 1095 */ 1096 static void 1097 apic_send_ipi(int cpun, int ipl) 1098 { 1099 int vector; 1100 ulong_t flag; 1101 1102 vector = apic_resv_vector[ipl]; 1103 1104 ASSERT((vector >= APIC_BASE_VECT) && (vector <= APIC_SPUR_INTR)); 1105 1106 flag = intr_clear(); 1107 1108 while (apic_reg_ops->apic_read(APIC_INT_CMD1) & AV_PENDING) 1109 apic_ret(); 1110 1111 apic_reg_ops->apic_write_int_cmd(apic_cpus[cpun].aci_local_id, 1112 vector); 1113 1114 intr_restore(flag); 1115 } 1116 1117 1118 /*ARGSUSED*/ 1119 static void 1120 apic_set_idlecpu(processorid_t cpun) 1121 { 1122 } 1123 1124 /*ARGSUSED*/ 1125 static void 1126 apic_unset_idlecpu(processorid_t cpun) 1127 { 1128 } 1129 1130 1131 void 1132 apic_ret() 1133 { 1134 } 1135 1136 /* 1137 * If apic_coarse_time == 1, then apic_gettime() is used instead of 1138 * apic_gethrtime(). This is used for performance instead of accuracy. 1139 */ 1140 1141 static hrtime_t 1142 apic_gettime() 1143 { 1144 int old_hrtime_stamp; 1145 hrtime_t temp; 1146 1147 /* 1148 * In one-shot mode, we do not keep time, so if anyone 1149 * calls psm_gettime() directly, we vector over to 1150 * gethrtime(). 1151 * one-shot mode MUST NOT be enabled if this psm is the source of 1152 * hrtime. 1153 */ 1154 1155 if (apic_oneshot) 1156 return (gethrtime()); 1157 1158 1159 gettime_again: 1160 while ((old_hrtime_stamp = apic_hrtime_stamp) & 1) 1161 apic_ret(); 1162 1163 temp = apic_nsec_since_boot; 1164 1165 if (apic_hrtime_stamp != old_hrtime_stamp) { /* got an interrupt */ 1166 goto gettime_again; 1167 } 1168 return (temp); 1169 } 1170 1171 /* 1172 * Here we return the number of nanoseconds since booting. Note every 1173 * clock interrupt increments apic_nsec_since_boot by the appropriate 1174 * amount. 1175 */ 1176 static hrtime_t 1177 apic_gethrtime() 1178 { 1179 int curr_timeval, countval, elapsed_ticks; 1180 int old_hrtime_stamp, status; 1181 hrtime_t temp; 1182 uint32_t cpun; 1183 ulong_t oflags; 1184 1185 /* 1186 * In one-shot mode, we do not keep time, so if anyone 1187 * calls psm_gethrtime() directly, we vector over to 1188 * gethrtime(). 1189 * one-shot mode MUST NOT be enabled if this psm is the source of 1190 * hrtime. 1191 */ 1192 1193 if (apic_oneshot) 1194 return (gethrtime()); 1195 1196 oflags = intr_clear(); /* prevent migration */ 1197 1198 cpun = apic_reg_ops->apic_read(APIC_LID_REG); 1199 if (apic_mode == LOCAL_APIC) 1200 cpun >>= APIC_ID_BIT_OFFSET; 1201 1202 lock_set(&apic_gethrtime_lock); 1203 1204 gethrtime_again: 1205 while ((old_hrtime_stamp = apic_hrtime_stamp) & 1) 1206 apic_ret(); 1207 1208 /* 1209 * Check to see which CPU we are on. Note the time is kept on 1210 * the local APIC of CPU 0. If on CPU 0, simply read the current 1211 * counter. If on another CPU, issue a remote read command to CPU 0. 1212 */ 1213 if (cpun == apic_cpus[0].aci_local_id) { 1214 countval = apic_reg_ops->apic_read(APIC_CURR_COUNT); 1215 } else { 1216 while (apic_reg_ops->apic_read(APIC_INT_CMD1) & AV_PENDING) 1217 apic_ret(); 1218 1219 apic_reg_ops->apic_write_int_cmd( 1220 apic_cpus[0].aci_local_id, APIC_CURR_ADD | AV_REMOTE); 1221 1222 while ((status = apic_reg_ops->apic_read(APIC_INT_CMD1)) 1223 & AV_READ_PENDING) { 1224 apic_ret(); 1225 } 1226 1227 if (status & AV_REMOTE_STATUS) /* 1 = valid */ 1228 countval = apic_reg_ops->apic_read(APIC_REMOTE_READ); 1229 else { /* 0 = invalid */ 1230 apic_remote_hrterr++; 1231 /* 1232 * return last hrtime right now, will need more 1233 * testing if change to retry 1234 */ 1235 temp = apic_last_hrtime; 1236 1237 lock_clear(&apic_gethrtime_lock); 1238 1239 intr_restore(oflags); 1240 1241 return (temp); 1242 } 1243 } 1244 if (countval > last_count_read) 1245 countval = 0; 1246 else 1247 last_count_read = countval; 1248 1249 elapsed_ticks = apic_hertz_count - countval; 1250 1251 curr_timeval = APIC_TICKS_TO_NSECS(elapsed_ticks); 1252 temp = apic_nsec_since_boot + curr_timeval; 1253 1254 if (apic_hrtime_stamp != old_hrtime_stamp) { /* got an interrupt */ 1255 /* we might have clobbered last_count_read. Restore it */ 1256 last_count_read = apic_hertz_count; 1257 goto gethrtime_again; 1258 } 1259 1260 if (temp < apic_last_hrtime) { 1261 /* return last hrtime if error occurs */ 1262 apic_hrtime_error++; 1263 temp = apic_last_hrtime; 1264 } 1265 else 1266 apic_last_hrtime = temp; 1267 1268 lock_clear(&apic_gethrtime_lock); 1269 intr_restore(oflags); 1270 1271 return (temp); 1272 } 1273 1274 /* apic NMI handler */ 1275 /*ARGSUSED*/ 1276 static void 1277 apic_nmi_intr(caddr_t arg, struct regs *rp) 1278 { 1279 if (apic_shutdown_processors) { 1280 apic_disable_local_apic(); 1281 return; 1282 } 1283 1284 apic_error |= APIC_ERR_NMI; 1285 1286 if (!lock_try(&apic_nmi_lock)) 1287 return; 1288 apic_num_nmis++; 1289 1290 if (apic_kmdb_on_nmi && psm_debugger()) { 1291 debug_enter("NMI received: entering kmdb\n"); 1292 } else if (apic_panic_on_nmi) { 1293 /* Keep panic from entering kmdb. */ 1294 nopanicdebug = 1; 1295 panic("NMI received\n"); 1296 } else { 1297 /* 1298 * prom_printf is the best shot we have of something which is 1299 * problem free from high level/NMI type of interrupts 1300 */ 1301 prom_printf("NMI received\n"); 1302 } 1303 1304 lock_clear(&apic_nmi_lock); 1305 } 1306 1307 /*ARGSUSED*/ 1308 static int 1309 apic_addspl(int irqno, int ipl, int min_ipl, int max_ipl) 1310 { 1311 return (apic_addspl_common(irqno, ipl, min_ipl, max_ipl)); 1312 } 1313 1314 static int 1315 apic_delspl(int irqno, int ipl, int min_ipl, int max_ipl) 1316 { 1317 return (apic_delspl_common(irqno, ipl, min_ipl, max_ipl)); 1318 } 1319 1320 static int 1321 apic_post_cpu_start() 1322 { 1323 int cpun; 1324 1325 apic_init_intr(); 1326 1327 /* 1328 * since some systems don't enable the internal cache on the non-boot 1329 * cpus, so we have to enable them here 1330 */ 1331 setcr0(getcr0() & ~(CR0_CD | CR0_NW)); 1332 1333 while (apic_reg_ops->apic_read(APIC_INT_CMD1) & AV_PENDING) 1334 apic_ret(); 1335 1336 /* 1337 * We may be booting, or resuming from suspend; aci_status will 1338 * be APIC_CPU_INTR_ENABLE if coming from suspend, so we add the 1339 * APIC_CPU_ONLINE flag here rather than setting aci_status completely. 1340 */ 1341 cpun = psm_get_cpu_id(); 1342 apic_cpus[cpun].aci_status |= APIC_CPU_ONLINE; 1343 1344 apic_reg_ops->apic_write(APIC_DIVIDE_REG, apic_divide_reg_init); 1345 return (PSM_SUCCESS); 1346 } 1347 1348 processorid_t 1349 apic_get_next_processorid(processorid_t cpu_id) 1350 { 1351 1352 int i; 1353 1354 if (cpu_id == -1) 1355 return ((processorid_t)0); 1356 1357 for (i = cpu_id + 1; i < NCPU; i++) { 1358 if (CPU_IN_SET(apic_cpumask, i)) 1359 return (i); 1360 } 1361 1362 return ((processorid_t)-1); 1363 } 1364 1365 1366 /* 1367 * type == -1 indicates it is an internal request. Do not change 1368 * resv_vector for these requests 1369 */ 1370 static int 1371 apic_get_ipivect(int ipl, int type) 1372 { 1373 uchar_t vector; 1374 int irq; 1375 1376 if (irq = apic_allocate_irq(APIC_VECTOR(ipl))) { 1377 if (vector = apic_allocate_vector(ipl, irq, 1)) { 1378 apic_irq_table[irq]->airq_mps_intr_index = 1379 RESERVE_INDEX; 1380 apic_irq_table[irq]->airq_vector = vector; 1381 if (type != -1) { 1382 apic_resv_vector[ipl] = vector; 1383 } 1384 return (irq); 1385 } 1386 } 1387 apic_error |= APIC_ERR_GET_IPIVECT_FAIL; 1388 return (-1); /* shouldn't happen */ 1389 } 1390 1391 static int 1392 apic_getclkirq(int ipl) 1393 { 1394 int irq; 1395 1396 if ((irq = apic_get_ipivect(ipl, -1)) == -1) 1397 return (-1); 1398 /* 1399 * Note the vector in apic_clkvect for per clock handling. 1400 */ 1401 apic_clkvect = apic_irq_table[irq]->airq_vector - APIC_BASE_VECT; 1402 APIC_VERBOSE_IOAPIC((CE_NOTE, "get_clkirq: vector = %x\n", 1403 apic_clkvect)); 1404 return (irq); 1405 } 1406 1407 1408 /* 1409 * Return the number of APIC clock ticks elapsed for 8245 to decrement 1410 * (APIC_TIME_COUNT + pit_ticks_adj) ticks. 1411 */ 1412 static uint_t 1413 apic_calibrate(volatile uint32_t *addr, uint16_t *pit_ticks_adj) 1414 { 1415 uint8_t pit_tick_lo; 1416 uint16_t pit_tick, target_pit_tick; 1417 uint32_t start_apic_tick, end_apic_tick; 1418 ulong_t iflag; 1419 uint32_t reg; 1420 1421 reg = addr + APIC_CURR_COUNT - apicadr; 1422 1423 iflag = intr_clear(); 1424 1425 do { 1426 pit_tick_lo = inb(PITCTR0_PORT); 1427 pit_tick = (inb(PITCTR0_PORT) << 8) | pit_tick_lo; 1428 } while (pit_tick < APIC_TIME_MIN || 1429 pit_tick_lo <= APIC_LB_MIN || pit_tick_lo >= APIC_LB_MAX); 1430 1431 /* 1432 * Wait for the 8254 to decrement by 5 ticks to ensure 1433 * we didn't start in the middle of a tick. 1434 * Compare with 0x10 for the wrap around case. 1435 */ 1436 target_pit_tick = pit_tick - 5; 1437 do { 1438 pit_tick_lo = inb(PITCTR0_PORT); 1439 pit_tick = (inb(PITCTR0_PORT) << 8) | pit_tick_lo; 1440 } while (pit_tick > target_pit_tick || pit_tick_lo < 0x10); 1441 1442 start_apic_tick = apic_reg_ops->apic_read(reg); 1443 1444 /* 1445 * Wait for the 8254 to decrement by 1446 * (APIC_TIME_COUNT + pit_ticks_adj) ticks 1447 */ 1448 target_pit_tick = pit_tick - APIC_TIME_COUNT; 1449 do { 1450 pit_tick_lo = inb(PITCTR0_PORT); 1451 pit_tick = (inb(PITCTR0_PORT) << 8) | pit_tick_lo; 1452 } while (pit_tick > target_pit_tick || pit_tick_lo < 0x10); 1453 1454 end_apic_tick = apic_reg_ops->apic_read(reg); 1455 1456 *pit_ticks_adj = target_pit_tick - pit_tick; 1457 1458 intr_restore(iflag); 1459 1460 return (start_apic_tick - end_apic_tick); 1461 } 1462 1463 /* 1464 * Initialise the APIC timer on the local APIC of CPU 0 to the desired 1465 * frequency. Note at this stage in the boot sequence, the boot processor 1466 * is the only active processor. 1467 * hertz value of 0 indicates a one-shot mode request. In this case 1468 * the function returns the resolution (in nanoseconds) for the hardware 1469 * timer interrupt. If one-shot mode capability is not available, 1470 * the return value will be 0. apic_enable_oneshot is a global switch 1471 * for disabling the functionality. 1472 * A non-zero positive value for hertz indicates a periodic mode request. 1473 * In this case the hardware will be programmed to generate clock interrupts 1474 * at hertz frequency and returns the resolution of interrupts in 1475 * nanosecond. 1476 */ 1477 1478 static int 1479 apic_clkinit(int hertz) 1480 { 1481 uint_t apic_ticks = 0; 1482 uint_t pit_ticks; 1483 int ret; 1484 uint16_t pit_ticks_adj; 1485 static int firsttime = 1; 1486 1487 if (firsttime) { 1488 /* first time calibrate on CPU0 only */ 1489 1490 apic_reg_ops->apic_write(APIC_DIVIDE_REG, apic_divide_reg_init); 1491 apic_reg_ops->apic_write(APIC_INIT_COUNT, APIC_MAXVAL); 1492 apic_ticks = apic_calibrate(apicadr, &pit_ticks_adj); 1493 1494 /* total number of PIT ticks corresponding to apic_ticks */ 1495 pit_ticks = APIC_TIME_COUNT + pit_ticks_adj; 1496 1497 /* 1498 * Determine the number of nanoseconds per APIC clock tick 1499 * and then determine how many APIC ticks to interrupt at the 1500 * desired frequency 1501 * apic_ticks / (pitticks / PIT_HZ) = apic_ticks_per_s 1502 * (apic_ticks * PIT_HZ) / pitticks = apic_ticks_per_s 1503 * apic_ticks_per_ns = (apic_ticks * PIT_HZ) / (pitticks * 10^9) 1504 * pic_ticks_per_SFns = 1505 * (SF * apic_ticks * PIT_HZ) / (pitticks * 10^9) 1506 */ 1507 apic_ticks_per_SFnsecs = 1508 ((SF * apic_ticks * PIT_HZ) / 1509 ((uint64_t)pit_ticks * NANOSEC)); 1510 1511 /* the interval timer initial count is 32 bit max */ 1512 apic_nsec_max = APIC_TICKS_TO_NSECS(APIC_MAXVAL); 1513 firsttime = 0; 1514 } 1515 1516 if (hertz != 0) { 1517 /* periodic */ 1518 apic_nsec_per_intr = NANOSEC / hertz; 1519 apic_hertz_count = APIC_NSECS_TO_TICKS(apic_nsec_per_intr); 1520 } 1521 1522 apic_int_busy_mark = (apic_int_busy_mark * 1523 apic_sample_factor_redistribution) / 100; 1524 apic_int_free_mark = (apic_int_free_mark * 1525 apic_sample_factor_redistribution) / 100; 1526 apic_diff_for_redistribution = (apic_diff_for_redistribution * 1527 apic_sample_factor_redistribution) / 100; 1528 1529 if (hertz == 0) { 1530 /* requested one_shot */ 1531 if (!tsc_gethrtime_enable || !apic_oneshot_enable) 1532 return (0); 1533 apic_oneshot = 1; 1534 ret = (int)APIC_TICKS_TO_NSECS(1); 1535 } else { 1536 /* program the local APIC to interrupt at the given frequency */ 1537 apic_reg_ops->apic_write(APIC_INIT_COUNT, apic_hertz_count); 1538 apic_reg_ops->apic_write(APIC_LOCAL_TIMER, 1539 (apic_clkvect + APIC_BASE_VECT) | AV_TIME); 1540 apic_oneshot = 0; 1541 ret = NANOSEC / hertz; 1542 } 1543 1544 return (ret); 1545 1546 } 1547 1548 /* 1549 * apic_preshutdown: 1550 * Called early in shutdown whilst we can still access filesystems to do 1551 * things like loading modules which will be required to complete shutdown 1552 * after filesystems are all unmounted. 1553 */ 1554 static void 1555 apic_preshutdown(int cmd, int fcn) 1556 { 1557 APIC_VERBOSE_POWEROFF(("apic_preshutdown(%d,%d); m=%d a=%d\n", 1558 cmd, fcn, apic_poweroff_method, apic_enable_acpi)); 1559 1560 if ((cmd != A_SHUTDOWN) || (fcn != AD_POWEROFF)) { 1561 return; 1562 } 1563 } 1564 1565 static void 1566 apic_shutdown(int cmd, int fcn) 1567 { 1568 int restarts, attempts; 1569 int i; 1570 uchar_t byte; 1571 ulong_t iflag; 1572 1573 /* Send NMI to all CPUs except self to do per processor shutdown */ 1574 iflag = intr_clear(); 1575 while (apic_reg_ops->apic_read(APIC_INT_CMD1) & AV_PENDING) 1576 apic_ret(); 1577 apic_shutdown_processors = 1; 1578 apic_reg_ops->apic_write(APIC_INT_CMD1, 1579 AV_NMI | AV_LEVEL | AV_SH_ALL_EXCSELF); 1580 1581 /* restore cmos shutdown byte before reboot */ 1582 if (apic_cmos_ssb_set) { 1583 outb(CMOS_ADDR, SSB); 1584 outb(CMOS_DATA, 0); 1585 } 1586 1587 ioapic_disable_redirection(); 1588 1589 /* disable apic mode if imcr present */ 1590 if (apic_imcrp) { 1591 outb(APIC_IMCR_P1, (uchar_t)APIC_IMCR_SELECT); 1592 outb(APIC_IMCR_P2, (uchar_t)APIC_IMCR_PIC); 1593 } 1594 1595 apic_disable_local_apic(); 1596 1597 intr_restore(iflag); 1598 1599 /* remainder of function is for shutdown cases only */ 1600 if (cmd != A_SHUTDOWN) 1601 return; 1602 1603 /* 1604 * Switch system back into Legacy-Mode if using ACPI and 1605 * not powering-off. Some BIOSes need to remain in ACPI-mode 1606 * for power-off to succeed (Dell Dimension 4600) 1607 * Do not disable ACPI while doing fastreboot 1608 */ 1609 if (apic_enable_acpi && fcn != AD_POWEROFF && fcn != AD_FASTREBOOT) 1610 (void) AcpiDisable(); 1611 1612 if (fcn == AD_FASTREBOOT) { 1613 apicadr[APIC_INT_CMD1] = AV_ASSERT | AV_RESET | 1614 AV_SH_ALL_EXCSELF; 1615 } 1616 1617 /* remainder of function is for shutdown+poweroff case only */ 1618 if (fcn != AD_POWEROFF) 1619 return; 1620 1621 switch (apic_poweroff_method) { 1622 case APIC_POWEROFF_VIA_RTC: 1623 1624 /* select the extended NVRAM bank in the RTC */ 1625 outb(CMOS_ADDR, RTC_REGA); 1626 byte = inb(CMOS_DATA); 1627 outb(CMOS_DATA, (byte | EXT_BANK)); 1628 1629 outb(CMOS_ADDR, PFR_REG); 1630 1631 /* for Predator must toggle the PAB bit */ 1632 byte = inb(CMOS_DATA); 1633 1634 /* 1635 * clear power active bar, wakeup alarm and 1636 * kickstart 1637 */ 1638 byte &= ~(PAB_CBIT | WF_FLAG | KS_FLAG); 1639 outb(CMOS_DATA, byte); 1640 1641 /* delay before next write */ 1642 drv_usecwait(1000); 1643 1644 /* for S40 the following would suffice */ 1645 byte = inb(CMOS_DATA); 1646 1647 /* power active bar control bit */ 1648 byte |= PAB_CBIT; 1649 outb(CMOS_DATA, byte); 1650 1651 break; 1652 1653 case APIC_POWEROFF_VIA_ASPEN_BMC: 1654 restarts = 0; 1655 restart_aspen_bmc: 1656 if (++restarts == 3) 1657 break; 1658 attempts = 0; 1659 do { 1660 byte = inb(MISMIC_FLAG_REGISTER); 1661 byte &= MISMIC_BUSY_MASK; 1662 if (byte != 0) { 1663 drv_usecwait(1000); 1664 if (attempts >= 3) 1665 goto restart_aspen_bmc; 1666 ++attempts; 1667 } 1668 } while (byte != 0); 1669 outb(MISMIC_CNTL_REGISTER, CC_SMS_GET_STATUS); 1670 byte = inb(MISMIC_FLAG_REGISTER); 1671 byte |= 0x1; 1672 outb(MISMIC_FLAG_REGISTER, byte); 1673 i = 0; 1674 for (; i < (sizeof (aspen_bmc)/sizeof (aspen_bmc[0])); 1675 i++) { 1676 attempts = 0; 1677 do { 1678 byte = inb(MISMIC_FLAG_REGISTER); 1679 byte &= MISMIC_BUSY_MASK; 1680 if (byte != 0) { 1681 drv_usecwait(1000); 1682 if (attempts >= 3) 1683 goto restart_aspen_bmc; 1684 ++attempts; 1685 } 1686 } while (byte != 0); 1687 outb(MISMIC_CNTL_REGISTER, aspen_bmc[i].cntl); 1688 outb(MISMIC_DATA_REGISTER, aspen_bmc[i].data); 1689 byte = inb(MISMIC_FLAG_REGISTER); 1690 byte |= 0x1; 1691 outb(MISMIC_FLAG_REGISTER, byte); 1692 } 1693 break; 1694 1695 case APIC_POWEROFF_VIA_SITKA_BMC: 1696 restarts = 0; 1697 restart_sitka_bmc: 1698 if (++restarts == 3) 1699 break; 1700 attempts = 0; 1701 do { 1702 byte = inb(SMS_STATUS_REGISTER); 1703 byte &= SMS_STATE_MASK; 1704 if ((byte == SMS_READ_STATE) || 1705 (byte == SMS_WRITE_STATE)) { 1706 drv_usecwait(1000); 1707 if (attempts >= 3) 1708 goto restart_sitka_bmc; 1709 ++attempts; 1710 } 1711 } while ((byte == SMS_READ_STATE) || 1712 (byte == SMS_WRITE_STATE)); 1713 outb(SMS_COMMAND_REGISTER, SMS_GET_STATUS); 1714 i = 0; 1715 for (; i < (sizeof (sitka_bmc)/sizeof (sitka_bmc[0])); 1716 i++) { 1717 attempts = 0; 1718 do { 1719 byte = inb(SMS_STATUS_REGISTER); 1720 byte &= SMS_IBF_MASK; 1721 if (byte != 0) { 1722 drv_usecwait(1000); 1723 if (attempts >= 3) 1724 goto restart_sitka_bmc; 1725 ++attempts; 1726 } 1727 } while (byte != 0); 1728 outb(sitka_bmc[i].port, sitka_bmc[i].data); 1729 } 1730 break; 1731 1732 case APIC_POWEROFF_NONE: 1733 1734 /* If no APIC direct method, we will try using ACPI */ 1735 if (apic_enable_acpi) { 1736 if (acpi_poweroff() == 1) 1737 return; 1738 } else 1739 return; 1740 1741 break; 1742 } 1743 /* 1744 * Wait a limited time here for power to go off. 1745 * If the power does not go off, then there was a 1746 * problem and we should continue to the halt which 1747 * prints a message for the user to press a key to 1748 * reboot. 1749 */ 1750 drv_usecwait(7000000); /* wait seven seconds */ 1751 1752 } 1753 1754 /* 1755 * Try and disable all interrupts. We just assign interrupts to other 1756 * processors based on policy. If any were bound by user request, we 1757 * let them continue and return failure. We do not bother to check 1758 * for cache affinity while rebinding. 1759 */ 1760 1761 static int 1762 apic_disable_intr(processorid_t cpun) 1763 { 1764 int bind_cpu = 0, i, hardbound = 0; 1765 apic_irq_t *irq_ptr; 1766 ulong_t iflag; 1767 1768 iflag = intr_clear(); 1769 lock_set(&apic_ioapic_lock); 1770 1771 for (i = 0; i <= APIC_MAX_VECTOR; i++) { 1772 if (apic_reprogram_info[i].done == B_FALSE) { 1773 if (apic_reprogram_info[i].bindcpu == cpun) { 1774 /* 1775 * CPU is busy -- it's the target of 1776 * a pending reprogramming attempt 1777 */ 1778 lock_clear(&apic_ioapic_lock); 1779 intr_restore(iflag); 1780 return (PSM_FAILURE); 1781 } 1782 } 1783 } 1784 1785 apic_cpus[cpun].aci_status &= ~APIC_CPU_INTR_ENABLE; 1786 1787 apic_cpus[cpun].aci_curipl = 0; 1788 1789 i = apic_min_device_irq; 1790 for (; i <= apic_max_device_irq; i++) { 1791 /* 1792 * If there are bound interrupts on this cpu, then 1793 * rebind them to other processors. 1794 */ 1795 if ((irq_ptr = apic_irq_table[i]) != NULL) { 1796 ASSERT((irq_ptr->airq_temp_cpu == IRQ_UNBOUND) || 1797 (irq_ptr->airq_temp_cpu == IRQ_UNINIT) || 1798 ((irq_ptr->airq_temp_cpu & ~IRQ_USER_BOUND) < 1799 apic_nproc)); 1800 1801 if (irq_ptr->airq_temp_cpu == (cpun | IRQ_USER_BOUND)) { 1802 hardbound = 1; 1803 continue; 1804 } 1805 1806 if (irq_ptr->airq_temp_cpu == cpun) { 1807 do { 1808 bind_cpu = apic_next_bind_cpu++; 1809 if (bind_cpu >= apic_nproc) { 1810 apic_next_bind_cpu = 1; 1811 bind_cpu = 0; 1812 1813 } 1814 } while (apic_rebind_all(irq_ptr, bind_cpu)); 1815 } 1816 } 1817 } 1818 1819 lock_clear(&apic_ioapic_lock); 1820 intr_restore(iflag); 1821 1822 if (hardbound) { 1823 cmn_err(CE_WARN, "Could not disable interrupts on %d" 1824 "due to user bound interrupts", cpun); 1825 return (PSM_FAILURE); 1826 } 1827 else 1828 return (PSM_SUCCESS); 1829 } 1830 1831 /* 1832 * Bind interrupts to the CPU's local APIC. 1833 * Interrupts should not be bound to a CPU's local APIC until the CPU 1834 * is ready to receive interrupts. 1835 */ 1836 static void 1837 apic_enable_intr(processorid_t cpun) 1838 { 1839 int i; 1840 apic_irq_t *irq_ptr; 1841 ulong_t iflag; 1842 1843 iflag = intr_clear(); 1844 lock_set(&apic_ioapic_lock); 1845 1846 apic_cpus[cpun].aci_status |= APIC_CPU_INTR_ENABLE; 1847 1848 i = apic_min_device_irq; 1849 for (i = apic_min_device_irq; i <= apic_max_device_irq; i++) { 1850 if ((irq_ptr = apic_irq_table[i]) != NULL) { 1851 if ((irq_ptr->airq_cpu & ~IRQ_USER_BOUND) == cpun) { 1852 (void) apic_rebind_all(irq_ptr, 1853 irq_ptr->airq_cpu); 1854 } 1855 } 1856 } 1857 1858 lock_clear(&apic_ioapic_lock); 1859 intr_restore(iflag); 1860 } 1861 1862 1863 /* 1864 * This function will reprogram the timer. 1865 * 1866 * When in oneshot mode the argument is the absolute time in future to 1867 * generate the interrupt at. 1868 * 1869 * When in periodic mode, the argument is the interval at which the 1870 * interrupts should be generated. There is no need to support the periodic 1871 * mode timer change at this time. 1872 */ 1873 static void 1874 apic_timer_reprogram(hrtime_t time) 1875 { 1876 hrtime_t now; 1877 uint_t ticks; 1878 int64_t delta; 1879 1880 /* 1881 * We should be called from high PIL context (CBE_HIGH_PIL), 1882 * so kpreempt is disabled. 1883 */ 1884 1885 if (!apic_oneshot) { 1886 /* time is the interval for periodic mode */ 1887 ticks = APIC_NSECS_TO_TICKS(time); 1888 } else { 1889 /* one shot mode */ 1890 1891 now = gethrtime(); 1892 delta = time - now; 1893 1894 if (delta <= 0) { 1895 /* 1896 * requested to generate an interrupt in the past 1897 * generate an interrupt as soon as possible 1898 */ 1899 ticks = apic_min_timer_ticks; 1900 } else if (delta > apic_nsec_max) { 1901 /* 1902 * requested to generate an interrupt at a time 1903 * further than what we are capable of. Set to max 1904 * the hardware can handle 1905 */ 1906 1907 ticks = APIC_MAXVAL; 1908 #ifdef DEBUG 1909 cmn_err(CE_CONT, "apic_timer_reprogram, request at" 1910 " %lld too far in future, current time" 1911 " %lld \n", time, now); 1912 #endif 1913 } else 1914 ticks = APIC_NSECS_TO_TICKS(delta); 1915 } 1916 1917 if (ticks < apic_min_timer_ticks) 1918 ticks = apic_min_timer_ticks; 1919 1920 apic_reg_ops->apic_write(APIC_INIT_COUNT, ticks); 1921 } 1922 1923 /* 1924 * This function will enable timer interrupts. 1925 */ 1926 static void 1927 apic_timer_enable(void) 1928 { 1929 /* 1930 * We should be Called from high PIL context (CBE_HIGH_PIL), 1931 * so kpreempt is disabled. 1932 */ 1933 1934 if (!apic_oneshot) { 1935 apic_reg_ops->apic_write(APIC_LOCAL_TIMER, 1936 (apic_clkvect + APIC_BASE_VECT) | AV_TIME); 1937 } else { 1938 /* one shot */ 1939 apic_reg_ops->apic_write(APIC_LOCAL_TIMER, 1940 (apic_clkvect + APIC_BASE_VECT)); 1941 } 1942 } 1943 1944 /* 1945 * This function will disable timer interrupts. 1946 */ 1947 static void 1948 apic_timer_disable(void) 1949 { 1950 /* 1951 * We should be Called from high PIL context (CBE_HIGH_PIL), 1952 * so kpreempt is disabled. 1953 */ 1954 apic_reg_ops->apic_write(APIC_LOCAL_TIMER, 1955 (apic_clkvect + APIC_BASE_VECT) | AV_MASK); 1956 } 1957 1958 1959 ddi_periodic_t apic_periodic_id; 1960 1961 /* 1962 * If this module needs a periodic handler for the interrupt distribution, it 1963 * can be added here. The argument to the periodic handler is not currently 1964 * used, but is reserved for future. 1965 */ 1966 static void 1967 apic_post_cyclic_setup(void *arg) 1968 { 1969 _NOTE(ARGUNUSED(arg)) 1970 /* cpu_lock is held */ 1971 /* set up a periodic handler for intr redistribution */ 1972 1973 /* 1974 * In peridoc mode intr redistribution processing is done in 1975 * apic_intr_enter during clk intr processing 1976 */ 1977 if (!apic_oneshot) 1978 return; 1979 /* 1980 * Register a periodical handler for the redistribution processing. 1981 * On X86, CY_LOW_LEVEL is mapped to the level 2 interrupt, so 1982 * DDI_IPL_2 should be passed to ddi_periodic_add() here. 1983 */ 1984 apic_periodic_id = ddi_periodic_add( 1985 (void (*)(void *))apic_redistribute_compute, NULL, 1986 apic_redistribute_sample_interval, DDI_IPL_2); 1987 } 1988 1989 static void 1990 apic_redistribute_compute(void) 1991 { 1992 int i, j, max_busy; 1993 1994 if (apic_enable_dynamic_migration) { 1995 if (++apic_nticks == apic_sample_factor_redistribution) { 1996 /* 1997 * Time to call apic_intr_redistribute(). 1998 * reset apic_nticks. This will cause max_busy 1999 * to be calculated below and if it is more than 2000 * apic_int_busy, we will do the whole thing 2001 */ 2002 apic_nticks = 0; 2003 } 2004 max_busy = 0; 2005 for (i = 0; i < apic_nproc; i++) { 2006 2007 /* 2008 * Check if curipl is non zero & if ISR is in 2009 * progress 2010 */ 2011 if (((j = apic_cpus[i].aci_curipl) != 0) && 2012 (apic_cpus[i].aci_ISR_in_progress & (1 << j))) { 2013 2014 int irq; 2015 apic_cpus[i].aci_busy++; 2016 irq = apic_cpus[i].aci_current[j]; 2017 apic_irq_table[irq]->airq_busy++; 2018 } 2019 2020 if (!apic_nticks && 2021 (apic_cpus[i].aci_busy > max_busy)) 2022 max_busy = apic_cpus[i].aci_busy; 2023 } 2024 if (!apic_nticks) { 2025 if (max_busy > apic_int_busy_mark) { 2026 /* 2027 * We could make the following check be 2028 * skipped > 1 in which case, we get a 2029 * redistribution at half the busy mark (due to 2030 * double interval). Need to be able to collect 2031 * more empirical data to decide if that is a 2032 * good strategy. Punt for now. 2033 */ 2034 if (apic_skipped_redistribute) { 2035 apic_cleanup_busy(); 2036 apic_skipped_redistribute = 0; 2037 } else { 2038 apic_intr_redistribute(); 2039 } 2040 } else 2041 apic_skipped_redistribute++; 2042 } 2043 } 2044 } 2045 2046 2047 /* 2048 * The following functions are in the platform specific file so that they 2049 * can be different functions depending on whether we are running on 2050 * bare metal or a hypervisor. 2051 */ 2052 2053 /* 2054 * map an apic for memory-mapped access 2055 */ 2056 uint32_t * 2057 mapin_apic(uint32_t addr, size_t len, int flags) 2058 { 2059 /*LINTED: pointer cast may result in improper alignment */ 2060 return ((uint32_t *)psm_map_phys(addr, len, flags)); 2061 } 2062 2063 uint32_t * 2064 mapin_ioapic(uint32_t addr, size_t len, int flags) 2065 { 2066 return (mapin_apic(addr, len, flags)); 2067 } 2068 2069 /* 2070 * unmap an apic 2071 */ 2072 void 2073 mapout_apic(caddr_t addr, size_t len) 2074 { 2075 psm_unmap_phys(addr, len); 2076 } 2077 2078 void 2079 mapout_ioapic(caddr_t addr, size_t len) 2080 { 2081 mapout_apic(addr, len); 2082 } 2083 2084 /* 2085 * Check to make sure there are enough irq slots 2086 */ 2087 int 2088 apic_check_free_irqs(int count) 2089 { 2090 int i, avail; 2091 2092 avail = 0; 2093 for (i = APIC_FIRST_FREE_IRQ; i < APIC_RESV_IRQ; i++) { 2094 if ((apic_irq_table[i] == NULL) || 2095 apic_irq_table[i]->airq_mps_intr_index == FREE_INDEX) { 2096 if (++avail >= count) 2097 return (PSM_SUCCESS); 2098 } 2099 } 2100 return (PSM_FAILURE); 2101 } 2102 2103 /* 2104 * This function allocates "count" MSI vector(s) for the given "dip/pri/type" 2105 */ 2106 int 2107 apic_alloc_msi_vectors(dev_info_t *dip, int inum, int count, int pri, 2108 int behavior) 2109 { 2110 int rcount, i; 2111 uchar_t start, irqno; 2112 uint32_t cpu; 2113 major_t major; 2114 apic_irq_t *irqptr; 2115 2116 DDI_INTR_IMPLDBG((CE_CONT, "apic_alloc_msi_vectors: dip=0x%p " 2117 "inum=0x%x pri=0x%x count=0x%x behavior=%d\n", 2118 (void *)dip, inum, pri, count, behavior)); 2119 2120 if (count > 1) { 2121 if (behavior == DDI_INTR_ALLOC_STRICT && 2122 (apic_multi_msi_enable == 0 || count > apic_multi_msi_max)) 2123 return (0); 2124 2125 if (apic_multi_msi_enable == 0) 2126 count = 1; 2127 else if (count > apic_multi_msi_max) 2128 count = apic_multi_msi_max; 2129 } 2130 2131 if ((rcount = apic_navail_vector(dip, pri)) > count) 2132 rcount = count; 2133 else if (rcount == 0 || (rcount < count && 2134 behavior == DDI_INTR_ALLOC_STRICT)) 2135 return (0); 2136 2137 /* if not ISP2, then round it down */ 2138 if (!ISP2(rcount)) 2139 rcount = 1 << (highbit(rcount) - 1); 2140 2141 mutex_enter(&airq_mutex); 2142 2143 for (start = 0; rcount > 0; rcount >>= 1) { 2144 if ((start = apic_find_multi_vectors(pri, rcount)) != 0 || 2145 behavior == DDI_INTR_ALLOC_STRICT) 2146 break; 2147 } 2148 2149 if (start == 0) { 2150 /* no vector available */ 2151 mutex_exit(&airq_mutex); 2152 return (0); 2153 } 2154 2155 if (apic_check_free_irqs(rcount) == PSM_FAILURE) { 2156 /* not enough free irq slots available */ 2157 mutex_exit(&airq_mutex); 2158 return (0); 2159 } 2160 2161 major = (dip != NULL) ? ddi_name_to_major(ddi_get_name(dip)) : 0; 2162 for (i = 0; i < rcount; i++) { 2163 if ((irqno = apic_allocate_irq(apic_first_avail_irq)) == 2164 (uchar_t)-1) { 2165 /* 2166 * shouldn't happen because of the 2167 * apic_check_free_irqs() check earlier 2168 */ 2169 mutex_exit(&airq_mutex); 2170 DDI_INTR_IMPLDBG((CE_CONT, "apic_alloc_msi_vectors: " 2171 "apic_allocate_irq failed\n")); 2172 return (i); 2173 } 2174 apic_max_device_irq = max(irqno, apic_max_device_irq); 2175 apic_min_device_irq = min(irqno, apic_min_device_irq); 2176 irqptr = apic_irq_table[irqno]; 2177 #ifdef DEBUG 2178 if (apic_vector_to_irq[start + i] != APIC_RESV_IRQ) 2179 DDI_INTR_IMPLDBG((CE_CONT, "apic_alloc_msi_vectors: " 2180 "apic_vector_to_irq is not APIC_RESV_IRQ\n")); 2181 #endif 2182 apic_vector_to_irq[start + i] = (uchar_t)irqno; 2183 2184 irqptr->airq_vector = (uchar_t)(start + i); 2185 irqptr->airq_ioapicindex = (uchar_t)inum; /* start */ 2186 irqptr->airq_intin_no = (uchar_t)rcount; 2187 irqptr->airq_ipl = pri; 2188 irqptr->airq_vector = start + i; 2189 irqptr->airq_origirq = (uchar_t)(inum + i); 2190 irqptr->airq_share_id = 0; 2191 irqptr->airq_mps_intr_index = MSI_INDEX; 2192 irqptr->airq_dip = dip; 2193 irqptr->airq_major = major; 2194 if (i == 0) /* they all bound to the same cpu */ 2195 cpu = irqptr->airq_cpu = apic_bind_intr(dip, irqno, 2196 0xff, 0xff); 2197 else 2198 irqptr->airq_cpu = cpu; 2199 DDI_INTR_IMPLDBG((CE_CONT, "apic_alloc_msi_vectors: irq=0x%x " 2200 "dip=0x%p vector=0x%x origirq=0x%x pri=0x%x\n", irqno, 2201 (void *)irqptr->airq_dip, irqptr->airq_vector, 2202 irqptr->airq_origirq, pri)); 2203 } 2204 mutex_exit(&airq_mutex); 2205 return (rcount); 2206 } 2207 2208 /* 2209 * This function allocates "count" MSI-X vector(s) for the given "dip/pri/type" 2210 */ 2211 int 2212 apic_alloc_msix_vectors(dev_info_t *dip, int inum, int count, int pri, 2213 int behavior) 2214 { 2215 int rcount, i; 2216 major_t major; 2217 2218 if (count > 1) { 2219 if (behavior == DDI_INTR_ALLOC_STRICT) { 2220 if (count > apic_msix_max) 2221 return (0); 2222 } else if (count > apic_msix_max) 2223 count = apic_msix_max; 2224 } 2225 2226 mutex_enter(&airq_mutex); 2227 2228 if ((rcount = apic_navail_vector(dip, pri)) > count) 2229 rcount = count; 2230 else if (rcount == 0 || (rcount < count && 2231 behavior == DDI_INTR_ALLOC_STRICT)) { 2232 rcount = 0; 2233 goto out; 2234 } 2235 2236 if (apic_check_free_irqs(rcount) == PSM_FAILURE) { 2237 /* not enough free irq slots available */ 2238 rcount = 0; 2239 goto out; 2240 } 2241 2242 major = (dip != NULL) ? ddi_name_to_major(ddi_get_name(dip)) : 0; 2243 for (i = 0; i < rcount; i++) { 2244 uchar_t vector, irqno; 2245 apic_irq_t *irqptr; 2246 2247 if ((irqno = apic_allocate_irq(apic_first_avail_irq)) == 2248 (uchar_t)-1) { 2249 /* 2250 * shouldn't happen because of the 2251 * apic_check_free_irqs() check earlier 2252 */ 2253 DDI_INTR_IMPLDBG((CE_CONT, "apic_alloc_msix_vectors: " 2254 "apic_allocate_irq failed\n")); 2255 rcount = i; 2256 goto out; 2257 } 2258 if ((vector = apic_allocate_vector(pri, irqno, 1)) == 0) { 2259 /* 2260 * shouldn't happen because of the 2261 * apic_navail_vector() call earlier 2262 */ 2263 DDI_INTR_IMPLDBG((CE_CONT, "apic_alloc_msix_vectors: " 2264 "apic_allocate_vector failed\n")); 2265 rcount = i; 2266 goto out; 2267 } 2268 apic_max_device_irq = max(irqno, apic_max_device_irq); 2269 apic_min_device_irq = min(irqno, apic_min_device_irq); 2270 irqptr = apic_irq_table[irqno]; 2271 irqptr->airq_vector = (uchar_t)vector; 2272 irqptr->airq_ipl = pri; 2273 irqptr->airq_origirq = (uchar_t)(inum + i); 2274 irqptr->airq_share_id = 0; 2275 irqptr->airq_mps_intr_index = MSIX_INDEX; 2276 irqptr->airq_dip = dip; 2277 irqptr->airq_major = major; 2278 irqptr->airq_cpu = apic_bind_intr(dip, irqno, 0xff, 0xff); 2279 } 2280 out: 2281 mutex_exit(&airq_mutex); 2282 return (rcount); 2283 } 2284 2285 /* 2286 * Allocate a free vector for irq at ipl. Takes care of merging of multiple 2287 * IPLs into a single APIC level as well as stretching some IPLs onto multiple 2288 * levels. APIC_HI_PRI_VECTS interrupts are reserved for high priority 2289 * requests and allocated only when pri is set. 2290 */ 2291 uchar_t 2292 apic_allocate_vector(int ipl, int irq, int pri) 2293 { 2294 int lowest, highest, i; 2295 2296 highest = apic_ipltopri[ipl] + APIC_VECTOR_MASK; 2297 lowest = apic_ipltopri[ipl - 1] + APIC_VECTOR_PER_IPL; 2298 2299 if (highest < lowest) /* Both ipl and ipl - 1 map to same pri */ 2300 lowest -= APIC_VECTOR_PER_IPL; 2301 2302 #ifdef DEBUG 2303 if (apic_restrict_vector) /* for testing shared interrupt logic */ 2304 highest = lowest + apic_restrict_vector + APIC_HI_PRI_VECTS; 2305 #endif /* DEBUG */ 2306 if (pri == 0) 2307 highest -= APIC_HI_PRI_VECTS; 2308 2309 for (i = lowest; i < highest; i++) { 2310 if (APIC_CHECK_RESERVE_VECTORS(i)) 2311 continue; 2312 if (apic_vector_to_irq[i] == APIC_RESV_IRQ) { 2313 apic_vector_to_irq[i] = (uchar_t)irq; 2314 return (i); 2315 } 2316 } 2317 2318 return (0); 2319 } 2320 2321 /* Mark vector as not being used by any irq */ 2322 void 2323 apic_free_vector(uchar_t vector) 2324 { 2325 apic_vector_to_irq[vector] = APIC_RESV_IRQ; 2326 } 2327 2328 uint32_t 2329 ioapic_read(int ioapic_ix, uint32_t reg) 2330 { 2331 volatile uint32_t *ioapic; 2332 2333 ioapic = apicioadr[ioapic_ix]; 2334 ioapic[APIC_IO_REG] = reg; 2335 return (ioapic[APIC_IO_DATA]); 2336 } 2337 2338 void 2339 ioapic_write(int ioapic_ix, uint32_t reg, uint32_t value) 2340 { 2341 volatile uint32_t *ioapic; 2342 2343 ioapic = apicioadr[ioapic_ix]; 2344 ioapic[APIC_IO_REG] = reg; 2345 ioapic[APIC_IO_DATA] = value; 2346 } 2347 2348 void 2349 ioapic_write_eoi(int ioapic_ix, uint32_t value) 2350 { 2351 volatile uint32_t *ioapic; 2352 2353 ioapic = apicioadr[ioapic_ix]; 2354 ioapic[APIC_IO_EOI] = value; 2355 } 2356 2357 static processorid_t 2358 apic_find_cpu(int flag) 2359 { 2360 processorid_t acid = 0; 2361 int i; 2362 2363 /* Find the first CPU with the passed-in flag set */ 2364 for (i = 0; i < apic_nproc; i++) { 2365 if (apic_cpus[i].aci_status & flag) { 2366 acid = i; 2367 break; 2368 } 2369 } 2370 2371 ASSERT((apic_cpus[acid].aci_status & flag) != 0); 2372 return (acid); 2373 } 2374 2375 /* 2376 * Call rebind to do the actual programming. 2377 * Must be called with interrupts disabled and apic_ioapic_lock held 2378 * 'p' is polymorphic -- if this function is called to process a deferred 2379 * reprogramming, p is of type 'struct ioapic_reprogram_data *', from which 2380 * the irq pointer is retrieved. If not doing deferred reprogramming, 2381 * p is of the type 'apic_irq_t *'. 2382 * 2383 * apic_ioapic_lock must be held across this call, as it protects apic_rebind 2384 * and it protects apic_find_cpu() from a race in which a CPU can be taken 2385 * offline after a cpu is selected, but before apic_rebind is called to 2386 * bind interrupts to it. 2387 */ 2388 int 2389 apic_setup_io_intr(void *p, int irq, boolean_t deferred) 2390 { 2391 apic_irq_t *irqptr; 2392 struct ioapic_reprogram_data *drep = NULL; 2393 int rv; 2394 2395 if (deferred) { 2396 drep = (struct ioapic_reprogram_data *)p; 2397 ASSERT(drep != NULL); 2398 irqptr = drep->irqp; 2399 } else 2400 irqptr = (apic_irq_t *)p; 2401 2402 ASSERT(irqptr != NULL); 2403 2404 rv = apic_rebind(irqptr, apic_irq_table[irq]->airq_cpu, drep); 2405 if (rv) { 2406 /* 2407 * CPU is not up or interrupts are disabled. Fall back to 2408 * the first available CPU 2409 */ 2410 rv = apic_rebind(irqptr, apic_find_cpu(APIC_CPU_INTR_ENABLE), 2411 drep); 2412 } 2413 2414 return (rv); 2415 } 2416 2417 2418 uchar_t 2419 apic_modify_vector(uchar_t vector, int irq) 2420 { 2421 apic_vector_to_irq[vector] = (uchar_t)irq; 2422 return (vector); 2423 } 2424 2425 char * 2426 apic_get_apic_type() 2427 { 2428 return (apic_psm_info.p_mach_idstring); 2429 } 2430 2431 void 2432 x2apic_update_psm() 2433 { 2434 struct psm_ops *pops = &apic_ops; 2435 2436 ASSERT(pops != NULL); 2437 2438 pops->psm_send_ipi = x2apic_send_ipi; 2439 pops->psm_intr_exit = x2apic_intr_exit; 2440 pops->psm_setspl = x2apic_setspl; 2441 2442 /* global functions */ 2443 send_dirintf = pops->psm_send_ipi; 2444 } 2445