xref: /titanic_41/usr/src/uts/i86pc/io/pcplusmp/apic.c (revision 40cb5e5daa7b80bb70fcf8dadfb20f9281566331)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2006 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 #pragma ident	"%Z%%M%	%I%	%E% SMI"
27 
28 /*
29  * PSMI 1.1 extensions are supported only in 2.6 and later versions.
30  * PSMI 1.2 extensions are supported only in 2.7 and later versions.
31  * PSMI 1.3 and 1.4 extensions are supported in Solaris 10.
32  * PSMI 1.5 extensions are supported in Solaris Nevada.
33  */
34 #define	PSMI_1_5
35 
36 #include <sys/processor.h>
37 #include <sys/time.h>
38 #include <sys/psm.h>
39 #include <sys/smp_impldefs.h>
40 #include <sys/cram.h>
41 #include <sys/acpi/acpi.h>
42 #include <sys/acpica.h>
43 #include <sys/psm_common.h>
44 #include "apic.h"
45 #include <sys/pit.h>
46 #include <sys/ddi.h>
47 #include <sys/sunddi.h>
48 #include <sys/ddi_impldefs.h>
49 #include <sys/pci.h>
50 #include <sys/promif.h>
51 #include <sys/x86_archext.h>
52 #include <sys/cpc_impl.h>
53 #include <sys/uadmin.h>
54 #include <sys/panic.h>
55 #include <sys/debug.h>
56 #include <sys/archsystm.h>
57 #include <sys/trap.h>
58 #include <sys/machsystm.h>
59 #include <sys/cpuvar.h>
60 #include <sys/rm_platter.h>
61 #include <sys/privregs.h>
62 #include <sys/cyclic.h>
63 #include <sys/note.h>
64 #include <sys/pci_intr_lib.h>
65 
66 /*
67  *	Local Function Prototypes
68  */
69 static void apic_init_intr();
70 static void apic_ret();
71 static int apic_handle_defconf();
72 static int apic_parse_mpct(caddr_t mpct, int bypass);
73 static struct apic_mpfps_hdr *apic_find_fps_sig(caddr_t fptr, int size);
74 static int apic_checksum(caddr_t bptr, int len);
75 static int get_apic_cmd1();
76 static int get_apic_pri();
77 static int apic_find_bus_type(char *bus);
78 static int apic_find_bus(int busid);
79 static int apic_find_bus_id(int bustype);
80 static struct apic_io_intr *apic_find_io_intr(int irqno);
81 int apic_allocate_irq(int irq);
82 static int apic_find_free_irq(int start, int end);
83 static uchar_t apic_allocate_vector(int ipl, int irq, int pri);
84 static void apic_modify_vector(uchar_t vector, int irq);
85 static void apic_mark_vector(uchar_t oldvector, uchar_t newvector);
86 static uchar_t apic_xlate_vector(uchar_t oldvector);
87 static void apic_xlate_vector_free_timeout_handler(void *arg);
88 static void apic_free_vector(uchar_t vector);
89 static void apic_reprogram_timeout_handler(void *arg);
90 static int apic_check_stuck_interrupt(apic_irq_t *irq_ptr, int old_bind_cpu,
91     int new_bind_cpu, volatile int32_t *ioapic, int intin_no, int which_irq,
92     int iflag, boolean_t *restore_intrp);
93 static int apic_setup_io_intr(apic_irq_t *irqptr, int irq);
94 static int apic_setup_io_intr_deferred(apic_irq_t *irqptr, int irq);
95 static void apic_record_rdt_entry(apic_irq_t *irqptr, int irq);
96 static struct apic_io_intr *apic_find_io_intr_w_busid(int irqno, int busid);
97 static int apic_find_intin(uchar_t ioapic, uchar_t intin);
98 static int apic_handle_pci_pci_bridge(dev_info_t *idip, int child_devno,
99     int child_ipin, struct apic_io_intr **intrp);
100 static int apic_setup_irq_table(dev_info_t *dip, int irqno,
101     struct apic_io_intr *intrp, struct intrspec *ispec, iflag_t *intr_flagp,
102     int type);
103 static int apic_setup_sci_irq_table(int irqno, uchar_t ipl,
104     iflag_t *intr_flagp);
105 static void apic_nmi_intr(caddr_t arg);
106 uchar_t apic_bind_intr(dev_info_t *dip, int irq, uchar_t ioapicid,
107     uchar_t intin);
108 static int apic_rebind(apic_irq_t *irq_ptr, int bind_cpu, int acquire_lock,
109     int when);
110 int apic_rebind_all(apic_irq_t *irq_ptr, int bind_cpu, int safe);
111 static void apic_intr_redistribute();
112 static void apic_cleanup_busy();
113 static void apic_set_pwroff_method_from_mpcnfhdr(struct apic_mp_cnf_hdr *hdrp);
114 int apic_introp_xlate(dev_info_t *dip, struct intrspec *ispec, int type);
115 
116 /* ACPI support routines */
117 static int acpi_probe(void);
118 static int apic_acpi_irq_configure(acpi_psm_lnk_t *acpipsmlnkp, dev_info_t *dip,
119     int *pci_irqp, iflag_t *intr_flagp);
120 
121 static int apic_acpi_translate_pci_irq(dev_info_t *dip, int busid, int devid,
122     int ipin, int *pci_irqp, iflag_t *intr_flagp);
123 static uchar_t acpi_find_ioapic(int irq);
124 static int acpi_intr_compatible(iflag_t iflag1, iflag_t iflag2);
125 
126 /*
127  *	standard MP entries
128  */
129 static int	apic_probe();
130 static int	apic_clkinit();
131 static int	apic_getclkirq(int ipl);
132 static uint_t	apic_calibrate(volatile uint32_t *addr,
133     uint16_t *pit_ticks_adj);
134 static hrtime_t apic_gettime();
135 static hrtime_t apic_gethrtime();
136 static void	apic_init();
137 static void	apic_picinit(void);
138 static void	apic_cpu_start(processorid_t cpun, caddr_t rm_code);
139 static int	apic_post_cpu_start(void);
140 static void	apic_send_ipi(int cpun, int ipl);
141 static void	apic_set_softintr(int softintr);
142 static void	apic_set_idlecpu(processorid_t cpun);
143 static void	apic_unset_idlecpu(processorid_t cpun);
144 static int	apic_softlvl_to_irq(int ipl);
145 static int	apic_intr_enter(int ipl, int *vect);
146 static void	apic_intr_exit(int ipl, int vect);
147 static void	apic_setspl(int ipl);
148 static int	apic_addspl(int ipl, int vector, int min_ipl, int max_ipl);
149 static int	apic_delspl(int ipl, int vector, int min_ipl, int max_ipl);
150 static void	apic_shutdown(int cmd, int fcn);
151 static void	apic_preshutdown(int cmd, int fcn);
152 static int	apic_disable_intr(processorid_t cpun);
153 static void	apic_enable_intr(processorid_t cpun);
154 static processorid_t	apic_get_next_processorid(processorid_t cpun);
155 static int		apic_get_ipivect(int ipl, int type);
156 static void	apic_timer_reprogram(hrtime_t time);
157 static void	apic_timer_enable(void);
158 static void	apic_timer_disable(void);
159 static void	apic_post_cyclic_setup(void *arg);
160 extern int	apic_intr_ops(dev_info_t *, ddi_intr_handle_impl_t *,
161 		    psm_intr_op_t, int *);
162 
163 static int	apic_oneshot = 0;
164 int	apic_oneshot_enable = 1; /* to allow disabling one-shot capability */
165 
166 /*
167  * These variables are frequently accessed in apic_intr_enter(),
168  * apic_intr_exit and apic_setspl, so group them together
169  */
170 volatile uint32_t *apicadr =  NULL;	/* virtual addr of local APIC	*/
171 int apic_setspl_delay = 1;		/* apic_setspl - delay enable	*/
172 int apic_clkvect;
173 
174 /* ACPI SCI interrupt configuration; -1 if SCI not used */
175 int apic_sci_vect = -1;
176 iflag_t apic_sci_flags;
177 
178 /* vector at which error interrupts come in */
179 int apic_errvect;
180 int apic_enable_error_intr = 1;
181 int apic_error_display_delay = 100;
182 
183 /* vector at which performance counter overflow interrupts come in */
184 int apic_cpcovf_vect;
185 int apic_enable_cpcovf_intr = 1;
186 
187 /* Max wait time (in microsecs) for flags to clear in an RDT entry. */
188 static int apic_max_usecs_clear_pending = 1000;
189 
190 /* Amt of usecs to wait before checking if RDT flags have reset. */
191 #define	APIC_USECS_PER_WAIT_INTERVAL 100
192 
193 /* Maximum number of times to retry reprogramming via the timeout */
194 #define	APIC_REPROGRAM_MAX_TIMEOUTS 10
195 
196 /* timeout delay for IOAPIC delayed reprogramming */
197 #define	APIC_REPROGRAM_TIMEOUT_DELAY 5 /* microseconds */
198 
199 /* Parameter to apic_rebind(): Should reprogramming be done now or later? */
200 #define	DEFERRED 1
201 #define	IMMEDIATE 0
202 
203 /*
204  * number of bits per byte, from <sys/param.h>
205  */
206 #define	UCHAR_MAX	((1 << NBBY) - 1)
207 
208 uchar_t	apic_reserved_irqlist[MAX_ISA_IRQ + 1];
209 
210 /*
211  * The following vector assignments influence the value of ipltopri and
212  * vectortoipl. Note that vectors 0 - 0x1f are not used. We can program
213  * idle to 0 and IPL 0 to 0x10 to differentiate idle in case
214  * we care to do so in future. Note some IPLs which are rarely used
215  * will share the vector ranges and heavily used IPLs (5 and 6) have
216  * a wide range.
217  *	IPL		Vector range.		as passed to intr_enter
218  *	0		none.
219  *	1,2,3		0x20-0x2f		0x0-0xf
220  *	4		0x30-0x3f		0x10-0x1f
221  *	5		0x40-0x5f		0x20-0x3f
222  *	6		0x60-0x7f		0x40-0x5f
223  *	7,8,9		0x80-0x8f		0x60-0x6f
224  *	10		0x90-0x9f		0x70-0x7f
225  *	11		0xa0-0xaf		0x80-0x8f
226  *	...		...
227  *	16		0xf0-0xff		0xd0-0xdf
228  */
229 uchar_t apic_vectortoipl[APIC_AVAIL_VECTOR / APIC_VECTOR_PER_IPL] = {
230 	3, 4, 5, 5, 6, 6, 9, 10, 11, 12, 13, 14, 15, 16
231 };
232 	/*
233 	 * The ipl of an ISR at vector X is apic_vectortoipl[X<<4]
234 	 * NOTE that this is vector as passed into intr_enter which is
235 	 * programmed vector - 0x20 (APIC_BASE_VECT)
236 	 */
237 
238 uchar_t	apic_ipltopri[MAXIPL + 1];	/* unix ipl to apic pri	*/
239 	/* The taskpri to be programmed into apic to mask given ipl */
240 
241 #if defined(__amd64)
242 uchar_t	apic_cr8pri[MAXIPL + 1];	/* unix ipl to cr8 pri	*/
243 #endif
244 
245 /*
246  * Patchable global variables.
247  */
248 int	apic_forceload = 0;
249 
250 #define	INTR_ROUND_ROBIN_WITH_AFFINITY	0
251 #define	INTR_ROUND_ROBIN		1
252 #define	INTR_LOWEST_PRIORITY		2
253 
254 int	apic_intr_policy = INTR_ROUND_ROBIN_WITH_AFFINITY;
255 
256 static int	apic_next_bind_cpu = 1; /* For round robin assignment */
257 					/* start with cpu 1 */
258 
259 int	apic_coarse_hrtime = 1;		/* 0 - use accurate slow gethrtime() */
260 					/* 1 - use gettime() for performance */
261 int	apic_flat_model = 0;		/* 0 - clustered. 1 - flat */
262 int	apic_enable_hwsoftint = 0;	/* 0 - disable, 1 - enable	*/
263 int	apic_enable_bind_log = 1;	/* 1 - display interrupt binding log */
264 int	apic_panic_on_nmi = 0;
265 int	apic_panic_on_apic_error = 0;
266 
267 int	apic_verbose = 0;
268 
269 /* Flag definitions for apic_verbose */
270 #define	APIC_VERBOSE_IOAPIC_FLAG		0x00000001
271 #define	APIC_VERBOSE_IRQ_FLAG			0x00000002
272 #define	APIC_VERBOSE_POWEROFF_FLAG		0x00000004
273 #define	APIC_VERBOSE_POWEROFF_PAUSE_FLAG	0x00000008
274 
275 
276 #define	APIC_VERBOSE_IOAPIC(fmt) \
277 	if (apic_verbose & APIC_VERBOSE_IOAPIC_FLAG) \
278 		cmn_err fmt;
279 
280 #define	APIC_VERBOSE_IRQ(fmt) \
281 	if (apic_verbose & APIC_VERBOSE_IRQ_FLAG) \
282 		cmn_err fmt;
283 
284 #define	APIC_VERBOSE_POWEROFF(fmt) \
285 	if (apic_verbose & APIC_VERBOSE_POWEROFF_FLAG) \
286 		prom_printf fmt;
287 
288 
289 /* Now the ones for Dynamic Interrupt distribution */
290 int	apic_enable_dynamic_migration = 0;
291 
292 /*
293  * If enabled, the distribution works as follows:
294  * On every interrupt entry, the current ipl for the CPU is set in cpu_info
295  * and the irq corresponding to the ipl is also set in the aci_current array.
296  * interrupt exit and setspl (due to soft interrupts) will cause the current
297  * ipl to be be changed. This is cache friendly as these frequently used
298  * paths write into a per cpu structure.
299  *
300  * Sampling is done by checking the structures for all CPUs and incrementing
301  * the busy field of the irq (if any) executing on each CPU and the busy field
302  * of the corresponding CPU.
303  * In periodic mode this is done on every clock interrupt.
304  * In one-shot mode, this is done thru a cyclic with an interval of
305  * apic_redistribute_sample_interval (default 10 milli sec).
306  *
307  * Every apic_sample_factor_redistribution times we sample, we do computations
308  * to decide which interrupt needs to be migrated (see comments
309  * before apic_intr_redistribute().
310  */
311 
312 /*
313  * Following 3 variables start as % and can be patched or set using an
314  * API to be defined in future. They will be scaled to
315  * sample_factor_redistribution which is in turn set to hertz+1 (in periodic
316  * mode), or 101 in one-shot mode to stagger it away from one sec processing
317  */
318 
319 int	apic_int_busy_mark = 60;
320 int	apic_int_free_mark = 20;
321 int	apic_diff_for_redistribution = 10;
322 
323 /* sampling interval for interrupt redistribution for dynamic migration */
324 int	apic_redistribute_sample_interval = NANOSEC / 100; /* 10 millisec */
325 
326 /*
327  * number of times we sample before deciding to redistribute interrupts
328  * for dynamic migration
329  */
330 int	apic_sample_factor_redistribution = 101;
331 
332 /* timeout for xlate_vector, mark_vector */
333 int	apic_revector_timeout = 16 * 10000; /* 160 millisec */
334 
335 int	apic_redist_cpu_skip = 0;
336 int	apic_num_imbalance = 0;
337 int	apic_num_rebind = 0;
338 
339 int	apic_nproc = 0;
340 int	apic_defconf = 0;
341 int	apic_irq_translate = 0;
342 int	apic_spec_rev = 0;
343 int	apic_imcrp = 0;
344 
345 int	apic_use_acpi = 1;	/* 1 = use ACPI, 0 = don't use ACPI */
346 int	apic_use_acpi_madt_only = 0;	/* 1=ONLY use MADT from ACPI */
347 
348 /*
349  * For interrupt link devices, if apic_unconditional_srs is set, an irq resource
350  * will be assigned (via _SRS). If it is not set, use the current
351  * irq setting (via _CRS), but only if that irq is in the set of possible
352  * irqs (returned by _PRS) for the device.
353  */
354 int	apic_unconditional_srs = 1;
355 
356 /*
357  * For interrupt link devices, if apic_prefer_crs is set when we are
358  * assigning an IRQ resource to a device, prefer the current IRQ setting
359  * over other possible irq settings under same conditions.
360  */
361 
362 int	apic_prefer_crs = 1;
363 
364 
365 /* minimum number of timer ticks to program to */
366 int apic_min_timer_ticks = 1;
367 /*
368  *	Local static data
369  */
370 static struct	psm_ops apic_ops = {
371 	apic_probe,
372 
373 	apic_init,
374 	apic_picinit,
375 	apic_intr_enter,
376 	apic_intr_exit,
377 	apic_setspl,
378 	apic_addspl,
379 	apic_delspl,
380 	apic_disable_intr,
381 	apic_enable_intr,
382 	apic_softlvl_to_irq,
383 	apic_set_softintr,
384 
385 	apic_set_idlecpu,
386 	apic_unset_idlecpu,
387 
388 	apic_clkinit,
389 	apic_getclkirq,
390 	(void (*)(void))NULL,		/* psm_hrtimeinit */
391 	apic_gethrtime,
392 
393 	apic_get_next_processorid,
394 	apic_cpu_start,
395 	apic_post_cpu_start,
396 	apic_shutdown,
397 	apic_get_ipivect,
398 	apic_send_ipi,
399 
400 	(int (*)(dev_info_t *, int))NULL,	/* psm_translate_irq */
401 	(int (*)(todinfo_t *))NULL,	/* psm_tod_get */
402 	(int (*)(todinfo_t *))NULL,	/* psm_tod_set */
403 	(void (*)(int, char *))NULL,	/* psm_notify_error */
404 	(void (*)(int))NULL,		/* psm_notify_func */
405 	apic_timer_reprogram,
406 	apic_timer_enable,
407 	apic_timer_disable,
408 	apic_post_cyclic_setup,
409 	apic_preshutdown,
410 	apic_intr_ops			/* Advanced DDI Interrupt framework */
411 };
412 
413 
414 static struct	psm_info apic_psm_info = {
415 	PSM_INFO_VER01_5,			/* version */
416 	PSM_OWN_EXCLUSIVE,			/* ownership */
417 	(struct psm_ops *)&apic_ops,		/* operation */
418 	"pcplusmp",				/* machine name */
419 	"pcplusmp v1.4 compatible %I%",
420 };
421 
422 static void *apic_hdlp;
423 
424 #ifdef DEBUG
425 #define	DENT		0x0001
426 int	apic_debug = 0;
427 /*
428  * set apic_restrict_vector to the # of vectors we want to allow per range
429  * useful in testing shared interrupt logic by setting it to 2 or 3
430  */
431 int	apic_restrict_vector = 0;
432 
433 #define	APIC_DEBUG_MSGBUFSIZE	2048
434 int	apic_debug_msgbuf[APIC_DEBUG_MSGBUFSIZE];
435 int	apic_debug_msgbufindex = 0;
436 
437 /*
438  * Put "int" info into debug buffer. No MP consistency, but light weight.
439  * Good enough for most debugging.
440  */
441 #define	APIC_DEBUG_BUF_PUT(x) \
442 	apic_debug_msgbuf[apic_debug_msgbufindex++] = x; \
443 	if (apic_debug_msgbufindex >= (APIC_DEBUG_MSGBUFSIZE - NCPU)) \
444 		apic_debug_msgbufindex = 0;
445 
446 #endif /* DEBUG */
447 
448 apic_cpus_info_t	*apic_cpus;
449 
450 static cpuset_t	apic_cpumask;
451 static uint_t	apic_flag;
452 
453 /* Flag to indicate that we need to shut down all processors */
454 static uint_t	apic_shutdown_processors;
455 
456 uint_t apic_nsec_per_intr = 0;
457 
458 /*
459  * apic_let_idle_redistribute can have the following values:
460  * 0 - If clock decremented it from 1 to 0, clock has to call redistribute.
461  * apic_redistribute_lock prevents multiple idle cpus from redistributing
462  */
463 int	apic_num_idle_redistributions = 0;
464 static	int apic_let_idle_redistribute = 0;
465 static	uint_t apic_nticks = 0;
466 static	uint_t apic_skipped_redistribute = 0;
467 
468 /* to gather intr data and redistribute */
469 static void apic_redistribute_compute(void);
470 
471 static	uint_t last_count_read = 0;
472 static	lock_t	apic_gethrtime_lock;
473 volatile int	apic_hrtime_stamp = 0;
474 volatile hrtime_t apic_nsec_since_boot = 0;
475 static uint_t apic_hertz_count, apic_nsec_per_tick;
476 static hrtime_t apic_nsec_max;
477 
478 static	hrtime_t	apic_last_hrtime = 0;
479 int		apic_hrtime_error = 0;
480 int		apic_remote_hrterr = 0;
481 int		apic_num_nmis = 0;
482 int		apic_apic_error = 0;
483 int		apic_num_apic_errors = 0;
484 int		apic_num_cksum_errors = 0;
485 
486 static	uchar_t	apic_io_id[MAX_IO_APIC];
487 static	uchar_t	apic_io_ver[MAX_IO_APIC];
488 static	uchar_t	apic_io_vectbase[MAX_IO_APIC];
489 static	uchar_t	apic_io_vectend[MAX_IO_APIC];
490 volatile int32_t *apicioadr[MAX_IO_APIC];
491 
492 /*
493  * First available slot to be used as IRQ index into the apic_irq_table
494  * for those interrupts (like MSI/X) that don't have a physical IRQ.
495  */
496 int apic_first_avail_irq  = APIC_FIRST_FREE_IRQ;
497 
498 /*
499  * apic_ioapic_lock protects the ioapics (reg select), the status, temp_bound
500  * and bound elements of cpus_info and the temp_cpu element of irq_struct
501  */
502 lock_t	apic_ioapic_lock;
503 
504 /*
505  * apic_ioapic_reprogram_lock prevents a CPU from exiting
506  * apic_intr_exit before IOAPIC reprogramming information
507  * is collected.
508  */
509 static	lock_t	apic_ioapic_reprogram_lock;
510 static	int	apic_io_max = 0;	/* no. of i/o apics enabled */
511 
512 static	struct apic_io_intr *apic_io_intrp = 0;
513 static	struct apic_bus	*apic_busp;
514 
515 uchar_t	apic_vector_to_irq[APIC_MAX_VECTOR+1];
516 static	uchar_t	apic_resv_vector[MAXIPL+1];
517 
518 static	char	apic_level_intr[APIC_MAX_VECTOR+1];
519 static	int	apic_error = 0;
520 /* values which apic_error can take. Not catastrophic, but may help debug */
521 #define	APIC_ERR_BOOT_EOI		0x1
522 #define	APIC_ERR_GET_IPIVECT_FAIL	0x2
523 #define	APIC_ERR_INVALID_INDEX		0x4
524 #define	APIC_ERR_MARK_VECTOR_FAIL	0x8
525 #define	APIC_ERR_APIC_ERROR		0x40000000
526 #define	APIC_ERR_NMI			0x80000000
527 
528 static	int	apic_cmos_ssb_set = 0;
529 
530 static	uint32_t	eisa_level_intr_mask = 0;
531 	/* At least MSB will be set if EISA bus */
532 
533 static	int	apic_pci_bus_total = 0;
534 static	uchar_t	apic_single_pci_busid = 0;
535 
536 
537 /*
538  * airq_mutex protects additions to the apic_irq_table - the first
539  * pointer and any airq_nexts off of that one. It also protects
540  * apic_max_device_irq & apic_min_device_irq. It also guarantees
541  * that share_id is unique as new ids are generated only when new
542  * irq_t structs are linked in. Once linked in the structs are never
543  * deleted. temp_cpu & mps_intr_index field indicate if it is programmed
544  * or allocated. Note that there is a slight gap between allocating in
545  * apic_introp_xlate and programming in addspl.
546  */
547 kmutex_t	airq_mutex;
548 apic_irq_t	*apic_irq_table[APIC_MAX_VECTOR+1];
549 int		apic_max_device_irq = 0;
550 int		apic_min_device_irq = APIC_MAX_VECTOR;
551 
552 /* use to make sure only one cpu handles the nmi */
553 static	lock_t	apic_nmi_lock;
554 /* use to make sure only one cpu handles the error interrupt */
555 static	lock_t	apic_error_lock;
556 
557 /*
558  * Following declarations are for revectoring; used when ISRs at different
559  * IPLs share an irq.
560  */
561 static	lock_t	apic_revector_lock;
562 static	int	apic_revector_pending = 0;
563 static	uchar_t	*apic_oldvec_to_newvec;
564 static	uchar_t	*apic_newvec_to_oldvec;
565 
566 /* Ensures that the IOAPIC-reprogramming timeout is not reentrant */
567 static	kmutex_t	apic_reprogram_timeout_mutex;
568 
569 static	struct	ioapic_reprogram_data {
570 	int		valid;	 /* This entry is valid */
571 	int		bindcpu; /* The CPU to which the int will be bound */
572 	unsigned	timeouts; /* # times the reprogram timeout was called */
573 } apic_reprogram_info[APIC_MAX_VECTOR+1];
574 /*
575  * APIC_MAX_VECTOR + 1 is the maximum # of IRQs as well. apic_reprogram_info
576  * is indexed by IRQ number, NOT by vector number.
577  */
578 
579 
580 /*
581  * The following added to identify a software poweroff method if available.
582  */
583 
584 static struct {
585 	int	poweroff_method;
586 	char	oem_id[APIC_MPS_OEM_ID_LEN + 1];	/* MAX + 1 for NULL */
587 	char	prod_id[APIC_MPS_PROD_ID_LEN + 1];	/* MAX + 1 for NULL */
588 } apic_mps_ids[] = {
589 	{ APIC_POWEROFF_VIA_RTC,	"INTEL",	"ALDER" },   /* 4300 */
590 	{ APIC_POWEROFF_VIA_RTC,	"NCR",		"AMC" },    /* 4300 */
591 	{ APIC_POWEROFF_VIA_ASPEN_BMC,	"INTEL",	"A450NX" },  /* 4400? */
592 	{ APIC_POWEROFF_VIA_ASPEN_BMC,	"INTEL",	"AD450NX" }, /* 4400 */
593 	{ APIC_POWEROFF_VIA_ASPEN_BMC,	"INTEL",	"AC450NX" }, /* 4400R */
594 	{ APIC_POWEROFF_VIA_SITKA_BMC,	"INTEL",	"S450NX" },  /* S50  */
595 	{ APIC_POWEROFF_VIA_SITKA_BMC,	"INTEL",	"SC450NX" }  /* S50? */
596 };
597 
598 int	apic_poweroff_method = APIC_POWEROFF_NONE;
599 
600 static	struct {
601 	uchar_t	cntl;
602 	uchar_t	data;
603 } aspen_bmc[] = {
604 	{ CC_SMS_WR_START,	0x18 },		/* NetFn/LUN */
605 	{ CC_SMS_WR_NEXT,	0x24 },		/* Cmd SET_WATCHDOG_TIMER */
606 	{ CC_SMS_WR_NEXT,	0x84 },		/* DataByte 1: SMS/OS no log */
607 	{ CC_SMS_WR_NEXT,	0x2 },		/* DataByte 2: Power Down */
608 	{ CC_SMS_WR_NEXT,	0x0 },		/* DataByte 3: no pre-timeout */
609 	{ CC_SMS_WR_NEXT,	0x0 },		/* DataByte 4: timer expir. */
610 	{ CC_SMS_WR_NEXT,	0xa },		/* DataByte 5: init countdown */
611 	{ CC_SMS_WR_END,	0x0 },		/* DataByte 6: init countdown */
612 
613 	{ CC_SMS_WR_START,	0x18 },		/* NetFn/LUN */
614 	{ CC_SMS_WR_END,	0x22 }		/* Cmd RESET_WATCHDOG_TIMER */
615 };
616 
617 static	struct {
618 	int	port;
619 	uchar_t	data;
620 } sitka_bmc[] = {
621 	{ SMS_COMMAND_REGISTER,	SMS_WRITE_START },
622 	{ SMS_DATA_REGISTER,	0x18 },		/* NetFn/LUN */
623 	{ SMS_DATA_REGISTER,	0x24 },		/* Cmd SET_WATCHDOG_TIMER */
624 	{ SMS_DATA_REGISTER,	0x84 },		/* DataByte 1: SMS/OS no log */
625 	{ SMS_DATA_REGISTER,	0x2 },		/* DataByte 2: Power Down */
626 	{ SMS_DATA_REGISTER,	0x0 },		/* DataByte 3: no pre-timeout */
627 	{ SMS_DATA_REGISTER,	0x0 },		/* DataByte 4: timer expir. */
628 	{ SMS_DATA_REGISTER,	0xa },		/* DataByte 5: init countdown */
629 	{ SMS_COMMAND_REGISTER,	SMS_WRITE_END },
630 	{ SMS_DATA_REGISTER,	0x0 },		/* DataByte 6: init countdown */
631 
632 	{ SMS_COMMAND_REGISTER,	SMS_WRITE_START },
633 	{ SMS_DATA_REGISTER,	0x18 },		/* NetFn/LUN */
634 	{ SMS_COMMAND_REGISTER,	SMS_WRITE_END },
635 	{ SMS_DATA_REGISTER,	0x22 }		/* Cmd RESET_WATCHDOG_TIMER */
636 };
637 
638 
639 /* Patchable global variables. */
640 int		apic_kmdb_on_nmi = 0;		/* 0 - no, 1 - yes enter kmdb */
641 int		apic_debug_mps_id = 0;		/* 1 - print MPS ID strings */
642 
643 /*
644  * ACPI definitions
645  */
646 /* _PIC method arguments */
647 #define	ACPI_PIC_MODE	0
648 #define	ACPI_APIC_MODE	1
649 
650 /* APIC error flags we care about */
651 #define	APIC_SEND_CS_ERROR	0x01
652 #define	APIC_RECV_CS_ERROR	0x02
653 #define	APIC_CS_ERRORS		(APIC_SEND_CS_ERROR|APIC_RECV_CS_ERROR)
654 
655 /*
656  * ACPI variables
657  */
658 /* 1 = acpi is enabled & working, 0 = acpi is not enabled or not there */
659 static	int apic_enable_acpi = 0;
660 
661 /* ACPI Multiple APIC Description Table ptr */
662 static	MULTIPLE_APIC_TABLE *acpi_mapic_dtp = NULL;
663 
664 /* ACPI Interrupt Source Override Structure ptr */
665 static	MADT_INTERRUPT_OVERRIDE *acpi_isop = NULL;
666 static	int acpi_iso_cnt = 0;
667 
668 /* ACPI Non-maskable Interrupt Sources ptr */
669 static	MADT_NMI_SOURCE *acpi_nmi_sp = NULL;
670 static	int acpi_nmi_scnt = 0;
671 static	MADT_LOCAL_APIC_NMI *acpi_nmi_cp = NULL;
672 static	int acpi_nmi_ccnt = 0;
673 
674 /*
675  * extern declarations
676  */
677 extern	int	intr_clear(void);
678 extern	void	intr_restore(uint_t);
679 #if defined(__amd64)
680 extern	int	intpri_use_cr8;
681 #endif	/* __amd64 */
682 
683 extern int	apic_pci_msi_enable_vector(dev_info_t *, int, int,
684 		    int, int, int);
685 extern apic_irq_t *apic_find_irq(dev_info_t *, struct intrspec *, int);
686 extern int	apic_pci_msi_unconfigure(dev_info_t *, int, int);
687 extern int	apic_pci_msi_disable_mode(dev_info_t *, int, int);
688 extern int	apic_pci_msi_enable_mode(dev_info_t *, int, int);
689 
690 /*
691  *	This is the loadable module wrapper
692  */
693 
694 int
695 _init(void)
696 {
697 	if (apic_coarse_hrtime)
698 		apic_ops.psm_gethrtime = &apic_gettime;
699 	return (psm_mod_init(&apic_hdlp, &apic_psm_info));
700 }
701 
702 int
703 _fini(void)
704 {
705 	return (psm_mod_fini(&apic_hdlp, &apic_psm_info));
706 }
707 
708 int
709 _info(struct modinfo *modinfop)
710 {
711 	return (psm_mod_info(&apic_hdlp, &apic_psm_info, modinfop));
712 }
713 
714 /*
715  * Auto-configuration routines
716  */
717 
718 /*
719  * Look at MPSpec 1.4 (Intel Order # 242016-005) for details of what we do here
720  * May work with 1.1 - but not guaranteed.
721  * According to the MP Spec, the MP floating pointer structure
722  * will be searched in the order described below:
723  * 1. In the first kilobyte of Extended BIOS Data Area (EBDA)
724  * 2. Within the last kilobyte of system base memory
725  * 3. In the BIOS ROM address space between 0F0000h and 0FFFFh
726  * Once we find the right signature with proper checksum, we call
727  * either handle_defconf or parse_mpct to get all info necessary for
728  * subsequent operations.
729  */
730 static int
731 apic_probe()
732 {
733 	uint32_t mpct_addr, ebda_start = 0, base_mem_end;
734 	caddr_t	biosdatap;
735 	caddr_t	mpct;
736 	caddr_t	fptr;
737 	int	i, mpct_size, mapsize, retval = PSM_FAILURE;
738 	ushort_t	ebda_seg, base_mem_size;
739 	struct	apic_mpfps_hdr	*fpsp;
740 	struct	apic_mp_cnf_hdr	*hdrp;
741 	int bypass_cpu_and_ioapics_in_mptables;
742 	int acpi_user_options;
743 
744 	if (apic_forceload < 0)
745 		return (retval);
746 
747 	/* Allow override for MADT-only mode */
748 	acpi_user_options = ddi_prop_get_int(DDI_DEV_T_ANY, ddi_root_node(), 0,
749 	    "acpi-user-options", 0);
750 	apic_use_acpi_madt_only = ((acpi_user_options & ACPI_OUSER_MADT) != 0);
751 
752 	/* Allow apic_use_acpi to override MADT-only mode */
753 	if (!apic_use_acpi)
754 		apic_use_acpi_madt_only = 0;
755 
756 	retval = acpi_probe();
757 
758 	/*
759 	 * mapin the bios data area 40:0
760 	 * 40:13h - two-byte location reports the base memory size
761 	 * 40:0Eh - two-byte location for the exact starting address of
762 	 *	    the EBDA segment for EISA
763 	 */
764 	biosdatap = psm_map_phys(0x400, 0x20, PROT_READ);
765 	if (!biosdatap)
766 		return (retval);
767 	fpsp = (struct apic_mpfps_hdr *)NULL;
768 	mapsize = MPFPS_RAM_WIN_LEN;
769 	/*LINTED: pointer cast may result in improper alignment */
770 	ebda_seg = *((ushort_t *)(biosdatap+0xe));
771 	/* check the 1k of EBDA */
772 	if (ebda_seg) {
773 		ebda_start = ((uint32_t)ebda_seg) << 4;
774 		fptr = psm_map_phys(ebda_start, MPFPS_RAM_WIN_LEN, PROT_READ);
775 		if (fptr) {
776 			if (!(fpsp =
777 			    apic_find_fps_sig(fptr, MPFPS_RAM_WIN_LEN)))
778 				psm_unmap_phys(fptr, MPFPS_RAM_WIN_LEN);
779 		}
780 	}
781 	/* If not in EBDA, check the last k of system base memory */
782 	if (!fpsp) {
783 		/*LINTED: pointer cast may result in improper alignment */
784 		base_mem_size = *((ushort_t *)(biosdatap + 0x13));
785 
786 		if (base_mem_size > 512)
787 			base_mem_end = 639 * 1024;
788 		else
789 			base_mem_end = 511 * 1024;
790 		/* if ebda == last k of base mem, skip to check BIOS ROM */
791 		if (base_mem_end != ebda_start) {
792 
793 			fptr = psm_map_phys(base_mem_end, MPFPS_RAM_WIN_LEN,
794 			    PROT_READ);
795 
796 			if (fptr) {
797 				if (!(fpsp = apic_find_fps_sig(fptr,
798 				    MPFPS_RAM_WIN_LEN)))
799 					psm_unmap_phys(fptr, MPFPS_RAM_WIN_LEN);
800 			}
801 		}
802 	}
803 	psm_unmap_phys(biosdatap, 0x20);
804 
805 	/* If still cannot find it, check the BIOS ROM space */
806 	if (!fpsp) {
807 		mapsize = MPFPS_ROM_WIN_LEN;
808 		fptr = psm_map_phys(MPFPS_ROM_WIN_START,
809 		    MPFPS_ROM_WIN_LEN, PROT_READ);
810 		if (fptr) {
811 			if (!(fpsp =
812 			    apic_find_fps_sig(fptr, MPFPS_ROM_WIN_LEN))) {
813 				psm_unmap_phys(fptr, MPFPS_ROM_WIN_LEN);
814 				return (retval);
815 			}
816 		}
817 	}
818 
819 	if (apic_checksum((caddr_t)fpsp, fpsp->mpfps_length * 16) != 0) {
820 		psm_unmap_phys(fptr, MPFPS_ROM_WIN_LEN);
821 		return (retval);
822 	}
823 
824 	apic_spec_rev = fpsp->mpfps_spec_rev;
825 	if ((apic_spec_rev != 04) && (apic_spec_rev != 01)) {
826 		psm_unmap_phys(fptr, MPFPS_ROM_WIN_LEN);
827 		return (retval);
828 	}
829 
830 	/* check IMCR is present or not */
831 	apic_imcrp = fpsp->mpfps_featinfo2 & MPFPS_FEATINFO2_IMCRP;
832 
833 	/* check default configuration (dual CPUs) */
834 	if ((apic_defconf = fpsp->mpfps_featinfo1) != 0) {
835 		psm_unmap_phys(fptr, mapsize);
836 		return (apic_handle_defconf());
837 	}
838 
839 	/* MP Configuration Table */
840 	mpct_addr = (uint32_t)(fpsp->mpfps_mpct_paddr);
841 
842 	psm_unmap_phys(fptr, mapsize); /* unmap floating ptr struct */
843 
844 	/*
845 	 * Map in enough memory for the MP Configuration Table Header.
846 	 * Use this table to read the total length of the BIOS data and
847 	 * map in all the info
848 	 */
849 	/*LINTED: pointer cast may result in improper alignment */
850 	hdrp = (struct apic_mp_cnf_hdr *)psm_map_phys(mpct_addr,
851 	    sizeof (struct apic_mp_cnf_hdr), PROT_READ);
852 	if (!hdrp)
853 		return (retval);
854 
855 	/* check mp configuration table signature PCMP */
856 	if (hdrp->mpcnf_sig != 0x504d4350) {
857 		psm_unmap_phys((caddr_t)hdrp, sizeof (struct apic_mp_cnf_hdr));
858 		return (retval);
859 	}
860 	mpct_size = (int)hdrp->mpcnf_tbl_length;
861 
862 	apic_set_pwroff_method_from_mpcnfhdr(hdrp);
863 
864 	psm_unmap_phys((caddr_t)hdrp, sizeof (struct apic_mp_cnf_hdr));
865 
866 	if ((retval == PSM_SUCCESS) && !apic_use_acpi_madt_only) {
867 		/* This is an ACPI machine No need for further checks */
868 		return (retval);
869 	}
870 
871 	/*
872 	 * Map in the entries for this machine, ie. Processor
873 	 * Entry Tables, Bus Entry Tables, etc.
874 	 * They are in fixed order following one another
875 	 */
876 	mpct = psm_map_phys(mpct_addr, mpct_size, PROT_READ);
877 	if (!mpct)
878 		return (retval);
879 
880 	if (apic_checksum(mpct, mpct_size) != 0)
881 		goto apic_fail1;
882 
883 
884 	/*LINTED: pointer cast may result in improper alignment */
885 	hdrp = (struct apic_mp_cnf_hdr *)mpct;
886 	/*LINTED: pointer cast may result in improper alignment */
887 	apicadr = (uint32_t *)psm_map_phys((uint32_t)hdrp->mpcnf_local_apic,
888 	    APIC_LOCAL_MEMLEN, PROT_READ | PROT_WRITE);
889 	if (!apicadr)
890 		goto apic_fail1;
891 
892 	/* Parse all information in the tables */
893 	bypass_cpu_and_ioapics_in_mptables = (retval == PSM_SUCCESS);
894 	if (apic_parse_mpct(mpct, bypass_cpu_and_ioapics_in_mptables) ==
895 	    PSM_SUCCESS)
896 		return (PSM_SUCCESS);
897 
898 	for (i = 0; i < apic_io_max; i++)
899 		psm_unmap_phys((caddr_t)apicioadr[i], APIC_IO_MEMLEN);
900 	if (apic_cpus)
901 		kmem_free(apic_cpus, sizeof (*apic_cpus) * apic_nproc);
902 	if (apicadr)
903 		psm_unmap_phys((caddr_t)apicadr, APIC_LOCAL_MEMLEN);
904 apic_fail1:
905 	psm_unmap_phys(mpct, mpct_size);
906 	return (retval);
907 }
908 
909 static void
910 apic_set_pwroff_method_from_mpcnfhdr(struct apic_mp_cnf_hdr *hdrp)
911 {
912 	int	i;
913 
914 	for (i = 0; i < (sizeof (apic_mps_ids) / sizeof (apic_mps_ids[0]));
915 	    i++) {
916 		if ((strncmp(hdrp->mpcnf_oem_str, apic_mps_ids[i].oem_id,
917 		    strlen(apic_mps_ids[i].oem_id)) == 0) &&
918 		    (strncmp(hdrp->mpcnf_prod_str, apic_mps_ids[i].prod_id,
919 		    strlen(apic_mps_ids[i].prod_id)) == 0)) {
920 
921 			apic_poweroff_method = apic_mps_ids[i].poweroff_method;
922 			break;
923 		}
924 	}
925 
926 	if (apic_debug_mps_id != 0) {
927 		cmn_err(CE_CONT, "pcplusmp: MPS OEM ID = '%c%c%c%c%c%c%c%c'"
928 		    "Product ID = '%c%c%c%c%c%c%c%c%c%c%c%c'\n",
929 		    hdrp->mpcnf_oem_str[0],
930 		    hdrp->mpcnf_oem_str[1],
931 		    hdrp->mpcnf_oem_str[2],
932 		    hdrp->mpcnf_oem_str[3],
933 		    hdrp->mpcnf_oem_str[4],
934 		    hdrp->mpcnf_oem_str[5],
935 		    hdrp->mpcnf_oem_str[6],
936 		    hdrp->mpcnf_oem_str[7],
937 		    hdrp->mpcnf_prod_str[0],
938 		    hdrp->mpcnf_prod_str[1],
939 		    hdrp->mpcnf_prod_str[2],
940 		    hdrp->mpcnf_prod_str[3],
941 		    hdrp->mpcnf_prod_str[4],
942 		    hdrp->mpcnf_prod_str[5],
943 		    hdrp->mpcnf_prod_str[6],
944 		    hdrp->mpcnf_prod_str[7],
945 		    hdrp->mpcnf_prod_str[8],
946 		    hdrp->mpcnf_prod_str[9],
947 		    hdrp->mpcnf_prod_str[10],
948 		    hdrp->mpcnf_prod_str[11]);
949 	}
950 }
951 
952 static int
953 acpi_probe(void)
954 {
955 	int			i, id, intmax, ver, index, rv;
956 	int			acpi_verboseflags = 0;
957 	int			madt_seen, madt_size;
958 	APIC_HEADER		*ap;
959 	MADT_PROCESSOR_APIC	*mpa;
960 	MADT_IO_APIC		*mia;
961 	MADT_IO_SAPIC		*misa;
962 	MADT_INTERRUPT_OVERRIDE	*mio;
963 	MADT_NMI_SOURCE		*mns;
964 	MADT_INTERRUPT_SOURCE	*mis;
965 	MADT_LOCAL_APIC_NMI	*mlan;
966 	MADT_ADDRESS_OVERRIDE	*mao;
967 	ACPI_OBJECT_LIST 	arglist;
968 	ACPI_OBJECT		arg;
969 	int			sci;
970 	iflag_t			sci_flags;
971 	volatile int32_t	*ioapic;
972 	char			local_ids[NCPU];
973 	char			proc_ids[NCPU];
974 	uchar_t			hid;
975 
976 	if (!apic_use_acpi)
977 		return (PSM_FAILURE);
978 
979 	if (AcpiGetFirmwareTable(APIC_SIG, 1, ACPI_LOGICAL_ADDRESSING,
980 	    (ACPI_TABLE_HEADER **) &acpi_mapic_dtp) != AE_OK)
981 		return (PSM_FAILURE);
982 
983 	apicadr = (uint32_t *)psm_map_phys(
984 	    (uint32_t)acpi_mapic_dtp->LocalApicAddress,
985 	    APIC_LOCAL_MEMLEN, PROT_READ | PROT_WRITE);
986 	if (!apicadr)
987 		return (PSM_FAILURE);
988 
989 	id = apicadr[APIC_LID_REG];
990 	local_ids[0] = (uchar_t)(((uint_t)id) >> 24);
991 	apic_nproc = index = 1;
992 	CPUSET_ONLY(apic_cpumask, 0);
993 	apic_io_max = 0;
994 
995 	ap = (APIC_HEADER *) (acpi_mapic_dtp + 1);
996 	madt_size = acpi_mapic_dtp->Length;
997 	madt_seen = sizeof (*acpi_mapic_dtp);
998 
999 	while (madt_seen < madt_size) {
1000 		switch (ap->Type) {
1001 		case APIC_PROCESSOR:
1002 			mpa = (MADT_PROCESSOR_APIC *) ap;
1003 			if (mpa->ProcessorEnabled) {
1004 				if (mpa->LocalApicId == local_ids[0])
1005 					proc_ids[0] = mpa->ProcessorId;
1006 				else if (apic_nproc < NCPU) {
1007 					local_ids[index] = mpa->LocalApicId;
1008 					proc_ids[index] = mpa->ProcessorId;
1009 					CPUSET_ADD(apic_cpumask, index);
1010 					index++;
1011 					apic_nproc++;
1012 				} else
1013 					cmn_err(CE_WARN, "pcplusmp: exceeded "
1014 					    "maximum no. of CPUs (= %d)", NCPU);
1015 			}
1016 			break;
1017 
1018 		case APIC_IO:
1019 			mia = (MADT_IO_APIC *) ap;
1020 			if (apic_io_max < MAX_IO_APIC) {
1021 				apic_io_id[apic_io_max] = mia->IoApicId;
1022 				apic_io_vectbase[apic_io_max] =
1023 				    mia->Interrupt;
1024 				ioapic = apicioadr[apic_io_max] =
1025 				    (int32_t *)psm_map_phys(
1026 				    (uint32_t)mia->Address,
1027 				    APIC_IO_MEMLEN, PROT_READ | PROT_WRITE);
1028 				if (!ioapic)
1029 					goto cleanup;
1030 				apic_io_max++;
1031 			}
1032 			break;
1033 
1034 		case APIC_XRUPT_OVERRIDE:
1035 			mio = (MADT_INTERRUPT_OVERRIDE *) ap;
1036 			if (acpi_isop == NULL)
1037 				acpi_isop = mio;
1038 			acpi_iso_cnt++;
1039 			break;
1040 
1041 		case APIC_NMI:
1042 			/* UNIMPLEMENTED */
1043 			mns = (MADT_NMI_SOURCE *) ap;
1044 			if (acpi_nmi_sp == NULL)
1045 				acpi_nmi_sp = mns;
1046 			acpi_nmi_scnt++;
1047 
1048 			cmn_err(CE_NOTE, "!apic: nmi source: %d %d %d\n",
1049 				mns->Interrupt, mns->Polarity,
1050 				mns->TriggerMode);
1051 			break;
1052 
1053 		case APIC_LOCAL_NMI:
1054 			/* UNIMPLEMENTED */
1055 			mlan = (MADT_LOCAL_APIC_NMI *) ap;
1056 			if (acpi_nmi_cp == NULL)
1057 				acpi_nmi_cp = mlan;
1058 			acpi_nmi_ccnt++;
1059 
1060 			cmn_err(CE_NOTE, "!apic: local nmi: %d %d %d %d\n",
1061 				mlan->ProcessorId, mlan->Polarity,
1062 				mlan->TriggerMode, mlan->Lint);
1063 			break;
1064 
1065 		case APIC_ADDRESS_OVERRIDE:
1066 			/* UNIMPLEMENTED */
1067 			mao = (MADT_ADDRESS_OVERRIDE *) ap;
1068 			cmn_err(CE_NOTE, "!apic: address override: %lx\n",
1069 				(long)mao->Address);
1070 			break;
1071 
1072 		case APIC_IO_SAPIC:
1073 			/* UNIMPLEMENTED */
1074 			misa = (MADT_IO_SAPIC *) ap;
1075 
1076 			cmn_err(CE_NOTE, "!apic: io sapic: %d %d %lx\n",
1077 				misa->IoSapicId, misa->InterruptBase,
1078 				(long)misa->Address);
1079 			break;
1080 
1081 		case APIC_XRUPT_SOURCE:
1082 			/* UNIMPLEMENTED */
1083 			mis = (MADT_INTERRUPT_SOURCE *) ap;
1084 
1085 			cmn_err(CE_NOTE,
1086 				"!apic: irq source: %d %d %d %d %d %d %d\n",
1087 				mis->ProcessorId, mis->ProcessorEid,
1088 				mis->Interrupt, mis->Polarity,
1089 				mis->TriggerMode, mis->InterruptType,
1090 				mis->IoSapicVector);
1091 			break;
1092 		case APIC_RESERVED:
1093 		default:
1094 			break;	/* ignore unknown items as per ACPI spec */
1095 		}
1096 
1097 		/* advance to next entry */
1098 		madt_seen += ap->Length;
1099 		ap = (APIC_HEADER *)(((char *)ap) + ap->Length);
1100 	}
1101 
1102 	if ((apic_cpus = kmem_zalloc(sizeof (*apic_cpus) * apic_nproc,
1103 	    KM_NOSLEEP)) == NULL)
1104 		goto cleanup;
1105 
1106 	/*
1107 	 * ACPI doesn't provide the local apic ver, get it directly from the
1108 	 * local apic
1109 	 */
1110 	ver = apicadr[APIC_VERS_REG];
1111 	for (i = 0; i < apic_nproc; i++) {
1112 		apic_cpus[i].aci_local_id = local_ids[i];
1113 		apic_cpus[i].aci_local_ver = (uchar_t)(ver & 0xFF);
1114 	}
1115 	for (i = 0; i < apic_io_max; i++) {
1116 		ioapic = apicioadr[i];
1117 
1118 		/*
1119 		 * need to check Sitka on the following acpi problem
1120 		 * On the Sitka, the ioapic's apic_id field isn't reporting
1121 		 * the actual io apic id. We have reported this problem
1122 		 * to Intel. Until they fix the problem, we will get the
1123 		 * actual id directly from the ioapic.
1124 		 */
1125 		ioapic[APIC_IO_REG] = APIC_ID_CMD;
1126 		id = ioapic[APIC_IO_DATA];
1127 		hid = (uchar_t)(((uint_t)id) >> 24);
1128 
1129 		if (hid != apic_io_id[i]) {
1130 			if (apic_io_id[i] == 0)
1131 				apic_io_id[i] = hid;
1132 			else { /* set ioapic id to whatever reported by ACPI */
1133 				id = ((int32_t)apic_io_id[i]) << 24;
1134 				ioapic[APIC_IO_REG] = APIC_ID_CMD;
1135 				ioapic[APIC_IO_DATA] = id;
1136 			}
1137 		}
1138 		ioapic[APIC_IO_REG] = APIC_VERS_CMD;
1139 		ver = ioapic[APIC_IO_DATA];
1140 		apic_io_ver[i] = (uchar_t)(ver & 0xff);
1141 		intmax = (ver >> 16) & 0xff;
1142 		apic_io_vectend[i] = apic_io_vectbase[i] + intmax;
1143 		if (apic_first_avail_irq <= apic_io_vectend[i])
1144 			apic_first_avail_irq = apic_io_vectend[i] + 1;
1145 	}
1146 
1147 
1148 	/*
1149 	 * Process SCI configuration here
1150 	 * An error may be returned here if
1151 	 * acpi-user-options specifies legacy mode
1152 	 * (no SCI, no ACPI mode)
1153 	 */
1154 	if (acpica_get_sci(&sci, &sci_flags) != AE_OK)
1155 		sci = -1;
1156 
1157 	/*
1158 	 * Now call acpi_init() to generate namespaces
1159 	 * If this fails, we don't attempt to use ACPI
1160 	 * even if we were able to get a MADT above
1161 	 */
1162 	if (acpica_init() != AE_OK)
1163 		goto cleanup;
1164 
1165 	/*
1166 	 * Squirrel away the SCI and flags for later on
1167 	 * in apic_picinit() when we're ready
1168 	 */
1169 	apic_sci_vect = sci;
1170 	apic_sci_flags = sci_flags;
1171 
1172 	if (apic_verbose & APIC_VERBOSE_IRQ_FLAG)
1173 		acpi_verboseflags |= PSM_VERBOSE_IRQ_FLAG;
1174 
1175 	if (apic_verbose & APIC_VERBOSE_POWEROFF_FLAG)
1176 		acpi_verboseflags |= PSM_VERBOSE_POWEROFF_FLAG;
1177 
1178 	if (apic_verbose & APIC_VERBOSE_POWEROFF_PAUSE_FLAG)
1179 		acpi_verboseflags |= PSM_VERBOSE_POWEROFF_PAUSE_FLAG;
1180 
1181 	if (acpi_psm_init(apic_psm_info.p_mach_idstring, acpi_verboseflags) ==
1182 	    ACPI_PSM_FAILURE)
1183 		goto cleanup;
1184 
1185 	/* Enable ACPI APIC interrupt routing */
1186 	arglist.Count = 1;
1187 	arglist.Pointer = &arg;
1188 	arg.Type = ACPI_TYPE_INTEGER;
1189 	arg.Integer.Value = ACPI_APIC_MODE;	/* 1 */
1190 	rv = AcpiEvaluateObject(NULL, "\\_PIC", &arglist, NULL);
1191 	if (rv == AE_OK) {
1192 		build_reserved_irqlist((uchar_t *)apic_reserved_irqlist);
1193 		apic_enable_acpi = 1;
1194 		if (apic_use_acpi_madt_only) {
1195 			cmn_err(CE_CONT,
1196 			    "?Using ACPI for CPU/IOAPIC information ONLY\n");
1197 		}
1198 		return (PSM_SUCCESS);
1199 	}
1200 	/* if setting APIC mode failed above, we fall through to cleanup */
1201 
1202 cleanup:
1203 	if (apicadr != NULL) {
1204 		psm_unmap_phys((caddr_t)apicadr, APIC_LOCAL_MEMLEN);
1205 		apicadr = NULL;
1206 	}
1207 	apic_nproc = 0;
1208 	for (i = 0; i < apic_io_max; i++) {
1209 		psm_unmap_phys((caddr_t)apicioadr[i], APIC_IO_MEMLEN);
1210 		apicioadr[i] = NULL;
1211 	}
1212 	apic_io_max = 0;
1213 	acpi_isop = NULL;
1214 	acpi_iso_cnt = 0;
1215 	acpi_nmi_sp = NULL;
1216 	acpi_nmi_scnt = 0;
1217 	acpi_nmi_cp = NULL;
1218 	acpi_nmi_ccnt = 0;
1219 	return (PSM_FAILURE);
1220 }
1221 
1222 /*
1223  * Handle default configuration. Fill in reqd global variables & tables
1224  * Fill all details as MP table does not give any more info
1225  */
1226 static int
1227 apic_handle_defconf()
1228 {
1229 	uint_t	lid;
1230 
1231 	/*LINTED: pointer cast may result in improper alignment */
1232 	apicioadr[0] = (int32_t *)psm_map_phys(APIC_IO_ADDR,
1233 	    APIC_IO_MEMLEN, PROT_READ | PROT_WRITE);
1234 	/*LINTED: pointer cast may result in improper alignment */
1235 	apicadr = (uint32_t *)psm_map_phys(APIC_LOCAL_ADDR,
1236 	    APIC_LOCAL_MEMLEN, PROT_READ | PROT_WRITE);
1237 	apic_cpus = (apic_cpus_info_t *)
1238 	    kmem_zalloc(sizeof (*apic_cpus) * 2, KM_NOSLEEP);
1239 	if ((!apicadr) || (!apicioadr[0]) || (!apic_cpus))
1240 		goto apic_handle_defconf_fail;
1241 	CPUSET_ONLY(apic_cpumask, 0);
1242 	CPUSET_ADD(apic_cpumask, 1);
1243 	apic_nproc = 2;
1244 	lid = apicadr[APIC_LID_REG];
1245 	apic_cpus[0].aci_local_id = (uchar_t)(lid >> APIC_ID_BIT_OFFSET);
1246 	/*
1247 	 * According to the PC+MP spec 1.1, the local ids
1248 	 * for the default configuration has to be 0 or 1
1249 	 */
1250 	if (apic_cpus[0].aci_local_id == 1)
1251 		apic_cpus[1].aci_local_id = 0;
1252 	else if (apic_cpus[0].aci_local_id == 0)
1253 		apic_cpus[1].aci_local_id = 1;
1254 	else
1255 		goto apic_handle_defconf_fail;
1256 
1257 	apic_io_id[0] = 2;
1258 	apic_io_max = 1;
1259 	if (apic_defconf >= 5) {
1260 		apic_cpus[0].aci_local_ver = APIC_INTEGRATED_VERS;
1261 		apic_cpus[1].aci_local_ver = APIC_INTEGRATED_VERS;
1262 		apic_io_ver[0] = APIC_INTEGRATED_VERS;
1263 	} else {
1264 		apic_cpus[0].aci_local_ver = 0;		/* 82489 DX */
1265 		apic_cpus[1].aci_local_ver = 0;
1266 		apic_io_ver[0] = 0;
1267 	}
1268 	if (apic_defconf == 2 || apic_defconf == 3 || apic_defconf == 6)
1269 		eisa_level_intr_mask = (inb(EISA_LEVEL_CNTL + 1) << 8) |
1270 		    inb(EISA_LEVEL_CNTL) | ((uint_t)INT32_MAX + 1);
1271 	return (PSM_SUCCESS);
1272 
1273 apic_handle_defconf_fail:
1274 	if (apic_cpus)
1275 		kmem_free(apic_cpus, sizeof (*apic_cpus) * 2);
1276 	if (apicadr)
1277 		psm_unmap_phys((caddr_t)apicadr, APIC_LOCAL_MEMLEN);
1278 	if (apicioadr[0])
1279 		psm_unmap_phys((caddr_t)apicioadr[0], APIC_IO_MEMLEN);
1280 	return (PSM_FAILURE);
1281 }
1282 
1283 /* Parse the entries in MP configuration table and collect info that we need */
1284 static int
1285 apic_parse_mpct(caddr_t mpct, int bypass_cpus_and_ioapics)
1286 {
1287 	struct	apic_procent	*procp;
1288 	struct	apic_bus	*busp;
1289 	struct	apic_io_entry	*ioapicp;
1290 	struct	apic_io_intr	*intrp;
1291 	volatile int32_t	*ioapic;
1292 	uint_t	lid;
1293 	int	id;
1294 	uchar_t hid;
1295 
1296 	/*LINTED: pointer cast may result in improper alignment */
1297 	procp = (struct apic_procent *)(mpct + sizeof (struct apic_mp_cnf_hdr));
1298 
1299 	/* No need to count cpu entries if we won't use them */
1300 	if (!bypass_cpus_and_ioapics) {
1301 
1302 		/* Find max # of CPUS and allocate structure accordingly */
1303 		apic_nproc = 0;
1304 		CPUSET_ZERO(apic_cpumask);
1305 		while (procp->proc_entry == APIC_CPU_ENTRY) {
1306 			if (procp->proc_cpuflags & CPUFLAGS_EN) {
1307 				if (apic_nproc < NCPU)
1308 					CPUSET_ADD(apic_cpumask, apic_nproc);
1309 				apic_nproc++;
1310 			}
1311 			procp++;
1312 		}
1313 		if (apic_nproc > NCPU)
1314 			cmn_err(CE_WARN, "pcplusmp: exceeded "
1315 			    "maximum no. of CPUs (= %d)", NCPU);
1316 		if (!apic_nproc || !(apic_cpus = (apic_cpus_info_t *)
1317 		    kmem_zalloc(sizeof (*apic_cpus)*apic_nproc, KM_NOSLEEP)))
1318 			return (PSM_FAILURE);
1319 	}
1320 
1321 	/*LINTED: pointer cast may result in improper alignment */
1322 	procp = (struct apic_procent *)(mpct + sizeof (struct apic_mp_cnf_hdr));
1323 
1324 	/*
1325 	 * start with index 1 as 0 needs to be filled in with Boot CPU, but
1326 	 * if we're bypassing this information, it has already been filled
1327 	 * in by acpi_probe(), so don't overwrite it.
1328 	 */
1329 	if (!bypass_cpus_and_ioapics)
1330 		apic_nproc = 1;
1331 
1332 	while (procp->proc_entry == APIC_CPU_ENTRY) {
1333 		/* check whether the cpu exists or not */
1334 		if (!bypass_cpus_and_ioapics &&
1335 		    procp->proc_cpuflags & CPUFLAGS_EN) {
1336 			if (procp->proc_cpuflags & CPUFLAGS_BP) { /* Boot CPU */
1337 				lid = apicadr[APIC_LID_REG];
1338 				apic_cpus[0].aci_local_id = procp->proc_apicid;
1339 				if (apic_cpus[0].aci_local_id !=
1340 				    (uchar_t)(lid >> APIC_ID_BIT_OFFSET)) {
1341 					return (PSM_FAILURE);
1342 				}
1343 				apic_cpus[0].aci_local_ver =
1344 				    procp->proc_version;
1345 			} else {
1346 
1347 				apic_cpus[apic_nproc].aci_local_id =
1348 				    procp->proc_apicid;
1349 				apic_cpus[apic_nproc].aci_local_ver =
1350 				    procp->proc_version;
1351 				apic_nproc++;
1352 
1353 			}
1354 		}
1355 		procp++;
1356 	}
1357 
1358 	/*
1359 	 * Save start of bus entries for later use.
1360 	 * Get EISA level cntrl if EISA bus is present.
1361 	 * Also get the CPI bus id for single CPI bus case
1362 	 */
1363 	apic_busp = busp = (struct apic_bus *)procp;
1364 	while (busp->bus_entry == APIC_BUS_ENTRY) {
1365 		lid = apic_find_bus_type((char *)&busp->bus_str1);
1366 		if (lid	== BUS_EISA) {
1367 			eisa_level_intr_mask = (inb(EISA_LEVEL_CNTL + 1) << 8) |
1368 			    inb(EISA_LEVEL_CNTL) | ((uint_t)INT32_MAX + 1);
1369 		} else if (lid == BUS_PCI) {
1370 			/*
1371 			 * apic_single_pci_busid will be used only if
1372 			 * apic_pic_bus_total is equal to 1
1373 			 */
1374 			apic_pci_bus_total++;
1375 			apic_single_pci_busid = busp->bus_id;
1376 		}
1377 		busp++;
1378 	}
1379 
1380 	ioapicp = (struct apic_io_entry *)busp;
1381 
1382 	if (!bypass_cpus_and_ioapics)
1383 		apic_io_max = 0;
1384 	do {
1385 		if (!bypass_cpus_and_ioapics && apic_io_max < MAX_IO_APIC) {
1386 			if (ioapicp->io_flags & IOAPIC_FLAGS_EN) {
1387 				apic_io_id[apic_io_max] = ioapicp->io_apicid;
1388 				apic_io_ver[apic_io_max] = ioapicp->io_version;
1389 		/*LINTED: pointer cast may result in improper alignment */
1390 				apicioadr[apic_io_max] =
1391 				    (int32_t *)psm_map_phys(
1392 				    (uint32_t)ioapicp->io_apic_addr,
1393 				    APIC_IO_MEMLEN, PROT_READ | PROT_WRITE);
1394 
1395 				if (!apicioadr[apic_io_max])
1396 					return (PSM_FAILURE);
1397 
1398 				ioapic = apicioadr[apic_io_max];
1399 				ioapic[APIC_IO_REG] = APIC_ID_CMD;
1400 				id = ioapic[APIC_IO_DATA];
1401 				hid = (uchar_t)(((uint_t)id) >> 24);
1402 
1403 				if (hid != apic_io_id[apic_io_max]) {
1404 					if (apic_io_id[apic_io_max] == 0)
1405 						apic_io_id[apic_io_max] = hid;
1406 					else {
1407 						/*
1408 						 * set ioapic id to whatever
1409 						 * reported by MPS
1410 						 *
1411 						 * may not need to set index
1412 						 * again ???
1413 						 * take it out and try
1414 						 */
1415 
1416 						id = ((int32_t)
1417 						    apic_io_id[apic_io_max]) <<
1418 						    24;
1419 
1420 						ioapic[APIC_IO_REG] =
1421 						    APIC_ID_CMD;
1422 
1423 						ioapic[APIC_IO_DATA] = id;
1424 
1425 					}
1426 				}
1427 				apic_io_max++;
1428 			}
1429 		}
1430 		ioapicp++;
1431 	} while (ioapicp->io_entry == APIC_IO_ENTRY);
1432 
1433 	apic_io_intrp = (struct apic_io_intr *)ioapicp;
1434 
1435 	intrp = apic_io_intrp;
1436 	while (intrp->intr_entry == APIC_IO_INTR_ENTRY) {
1437 		if ((intrp->intr_irq > APIC_MAX_ISA_IRQ) ||
1438 		    (apic_find_bus(intrp->intr_busid) == BUS_PCI)) {
1439 			apic_irq_translate = 1;
1440 			break;
1441 		}
1442 		intrp++;
1443 	}
1444 
1445 	return (PSM_SUCCESS);
1446 }
1447 
1448 boolean_t
1449 apic_cpu_in_range(int cpu)
1450 {
1451 	return ((cpu & ~IRQ_USER_BOUND) < apic_nproc);
1452 }
1453 
1454 static struct apic_mpfps_hdr *
1455 apic_find_fps_sig(caddr_t cptr, int len)
1456 {
1457 	int	i;
1458 
1459 	/* Look for the pattern "_MP_" */
1460 	for (i = 0; i < len; i += 16) {
1461 		if ((*(cptr+i) == '_') &&
1462 		    (*(cptr+i+1) == 'M') &&
1463 		    (*(cptr+i+2) == 'P') &&
1464 		    (*(cptr+i+3) == '_'))
1465 		    /*LINTED: pointer cast may result in improper alignment */
1466 			return ((struct apic_mpfps_hdr *)(cptr + i));
1467 	}
1468 	return (NULL);
1469 }
1470 
1471 static int
1472 apic_checksum(caddr_t bptr, int len)
1473 {
1474 	int	i;
1475 	uchar_t	cksum;
1476 
1477 	cksum = 0;
1478 	for (i = 0; i < len; i++)
1479 		cksum += *bptr++;
1480 	return ((int)cksum);
1481 }
1482 
1483 
1484 /*
1485  * Initialise vector->ipl and ipl->pri arrays. level_intr and irqtable
1486  * are also set to NULL. vector->irq is set to a value which cannot map
1487  * to a real irq to show that it is free.
1488  */
1489 void
1490 apic_init()
1491 {
1492 	int	i;
1493 	int	*iptr;
1494 
1495 	int	j = 1;
1496 	apic_ipltopri[0] = APIC_VECTOR_PER_IPL; /* leave 0 for idle */
1497 	for (i = 0; i < (APIC_AVAIL_VECTOR / APIC_VECTOR_PER_IPL); i++) {
1498 		if ((i < ((APIC_AVAIL_VECTOR / APIC_VECTOR_PER_IPL) - 1)) &&
1499 		    (apic_vectortoipl[i + 1] == apic_vectortoipl[i]))
1500 			/* get to highest vector at the same ipl */
1501 			continue;
1502 		for (; j <= apic_vectortoipl[i]; j++) {
1503 			apic_ipltopri[j] = (i << APIC_IPL_SHIFT) +
1504 			    APIC_BASE_VECT;
1505 		}
1506 	}
1507 	for (; j < MAXIPL + 1; j++)
1508 		/* fill up any empty ipltopri slots */
1509 		apic_ipltopri[j] = (i << APIC_IPL_SHIFT) + APIC_BASE_VECT;
1510 
1511 	/* cpu 0 is always up */
1512 	apic_cpus[0].aci_status = APIC_CPU_ONLINE | APIC_CPU_INTR_ENABLE;
1513 
1514 	iptr = (int *)&apic_irq_table[0];
1515 	for (i = 0; i <= APIC_MAX_VECTOR; i++) {
1516 		apic_level_intr[i] = 0;
1517 		*iptr++ = NULL;
1518 		apic_vector_to_irq[i] = APIC_RESV_IRQ;
1519 		apic_reprogram_info[i].valid = 0;
1520 		apic_reprogram_info[i].bindcpu = 0;
1521 		apic_reprogram_info[i].timeouts = 0;
1522 	}
1523 
1524 	/*
1525 	 * Allocate a dummy irq table entry for the reserved entry.
1526 	 * This takes care of the race between removing an irq and
1527 	 * clock detecting a CPU in that irq during interrupt load
1528 	 * sampling.
1529 	 */
1530 	apic_irq_table[APIC_RESV_IRQ] =
1531 	    kmem_zalloc(sizeof (apic_irq_t), KM_NOSLEEP);
1532 
1533 	mutex_init(&airq_mutex, NULL, MUTEX_DEFAULT, NULL);
1534 	mutex_init(&apic_reprogram_timeout_mutex, NULL, MUTEX_DEFAULT, NULL);
1535 #if defined(__amd64)
1536 	/*
1537 	 * Make cpu-specific interrupt info point to cr8pri vector
1538 	 */
1539 	for (i = 0; i <= MAXIPL; i++)
1540 		apic_cr8pri[i] = apic_ipltopri[i] >> APIC_IPL_SHIFT;
1541 	CPU->cpu_pri_data = apic_cr8pri;
1542 	intpri_use_cr8 = 1;
1543 #endif	/* __amd64 */
1544 }
1545 
1546 /*
1547  * handler for APIC Error interrupt. Just print a warning and continue
1548  */
1549 static int
1550 apic_error_intr()
1551 {
1552 	uint_t	error0, error1, error;
1553 	uint_t	i;
1554 
1555 	/*
1556 	 * We need to write before read as per 7.4.17 of system prog manual.
1557 	 * We do both and or the results to be safe
1558 	 */
1559 	error0 = apicadr[APIC_ERROR_STATUS];
1560 	apicadr[APIC_ERROR_STATUS] = 0;
1561 	error1 = apicadr[APIC_ERROR_STATUS];
1562 	error = error0 | error1;
1563 
1564 	/*
1565 	 * Clear the APIC error status (do this on all cpus that enter here)
1566 	 * (two writes are required due to the semantics of accessing the
1567 	 * error status register.)
1568 	 */
1569 	apicadr[APIC_ERROR_STATUS] = 0;
1570 	apicadr[APIC_ERROR_STATUS] = 0;
1571 
1572 	/*
1573 	 * Prevent more than 1 CPU from handling error interrupt causing
1574 	 * double printing (interleave of characters from multiple
1575 	 * CPU's when using prom_printf)
1576 	 */
1577 	if (lock_try(&apic_error_lock) == 0)
1578 		return (error ? DDI_INTR_CLAIMED : DDI_INTR_UNCLAIMED);
1579 	if (error) {
1580 #if	DEBUG
1581 		if (apic_debug)
1582 			debug_enter("pcplusmp: APIC Error interrupt received");
1583 #endif /* DEBUG */
1584 		if (apic_panic_on_apic_error)
1585 			cmn_err(CE_PANIC,
1586 			    "APIC Error interrupt on CPU %d. Status = %x\n",
1587 			    psm_get_cpu_id(), error);
1588 		else {
1589 			if ((error & ~APIC_CS_ERRORS) == 0) {
1590 				/* cksum error only */
1591 				apic_error |= APIC_ERR_APIC_ERROR;
1592 				apic_apic_error |= error;
1593 				apic_num_apic_errors++;
1594 				apic_num_cksum_errors++;
1595 			} else {
1596 				/*
1597 				 * prom_printf is the best shot we have of
1598 				 * something which is problem free from
1599 				 * high level/NMI type of interrupts
1600 				 */
1601 				prom_printf("APIC Error interrupt on CPU %d. "
1602 				    "Status 0 = %x, Status 1 = %x\n",
1603 				    psm_get_cpu_id(), error0, error1);
1604 				apic_error |= APIC_ERR_APIC_ERROR;
1605 				apic_apic_error |= error;
1606 				apic_num_apic_errors++;
1607 				for (i = 0; i < apic_error_display_delay; i++) {
1608 					tenmicrosec();
1609 				}
1610 				/*
1611 				 * provide more delay next time limited to
1612 				 * roughly 1 clock tick time
1613 				 */
1614 				if (apic_error_display_delay < 500)
1615 					apic_error_display_delay *= 2;
1616 			}
1617 		}
1618 		lock_clear(&apic_error_lock);
1619 		return (DDI_INTR_CLAIMED);
1620 	} else {
1621 		lock_clear(&apic_error_lock);
1622 		return (DDI_INTR_UNCLAIMED);
1623 	}
1624 	/* NOTREACHED */
1625 }
1626 
1627 /*
1628  * Turn off the mask bit in the performance counter Local Vector Table entry.
1629  */
1630 static void
1631 apic_cpcovf_mask_clear(void)
1632 {
1633 	apicadr[APIC_PCINT_VECT] &= ~APIC_LVT_MASK;
1634 }
1635 
1636 static void
1637 apic_init_intr()
1638 {
1639 	processorid_t	cpun = psm_get_cpu_id();
1640 
1641 #if defined(__amd64)
1642 	setcr8((ulong_t)(APIC_MASK_ALL >> APIC_IPL_SHIFT));
1643 #else
1644 	apicadr[APIC_TASK_REG] = APIC_MASK_ALL;
1645 #endif
1646 
1647 	if (apic_flat_model)
1648 		apicadr[APIC_FORMAT_REG] = APIC_FLAT_MODEL;
1649 	else
1650 		apicadr[APIC_FORMAT_REG] = APIC_CLUSTER_MODEL;
1651 	apicadr[APIC_DEST_REG] = AV_HIGH_ORDER >> cpun;
1652 
1653 	/* need to enable APIC before unmasking NMI */
1654 	apicadr[APIC_SPUR_INT_REG] = AV_UNIT_ENABLE | APIC_SPUR_INTR;
1655 
1656 	apicadr[APIC_LOCAL_TIMER] = AV_MASK;
1657 	apicadr[APIC_INT_VECT0]	= AV_MASK;	/* local intr reg 0 */
1658 	apicadr[APIC_INT_VECT1] = AV_NMI;	/* enable NMI */
1659 
1660 	if (apic_cpus[cpun].aci_local_ver < APIC_INTEGRATED_VERS)
1661 		return;
1662 
1663 	/* Enable performance counter overflow interrupt */
1664 
1665 	if ((x86_feature & X86_MSR) != X86_MSR)
1666 		apic_enable_cpcovf_intr = 0;
1667 	if (apic_enable_cpcovf_intr) {
1668 		if (apic_cpcovf_vect == 0) {
1669 			int ipl = APIC_PCINT_IPL;
1670 			int irq = apic_get_ipivect(ipl, -1);
1671 
1672 			ASSERT(irq != -1);
1673 			apic_cpcovf_vect = apic_irq_table[irq]->airq_vector;
1674 			ASSERT(apic_cpcovf_vect);
1675 			(void) add_avintr(NULL, ipl,
1676 			    (avfunc)kcpc_hw_overflow_intr,
1677 			    "apic pcint", irq, NULL, NULL, NULL, NULL);
1678 			kcpc_hw_overflow_intr_installed = 1;
1679 			kcpc_hw_enable_cpc_intr = apic_cpcovf_mask_clear;
1680 		}
1681 		apicadr[APIC_PCINT_VECT] = apic_cpcovf_vect;
1682 	}
1683 
1684 	/* Enable error interrupt */
1685 
1686 	if (apic_enable_error_intr) {
1687 		if (apic_errvect == 0) {
1688 			int ipl = 0xf;	/* get highest priority intr */
1689 			int irq = apic_get_ipivect(ipl, -1);
1690 
1691 			ASSERT(irq != -1);
1692 			apic_errvect = apic_irq_table[irq]->airq_vector;
1693 			ASSERT(apic_errvect);
1694 			/*
1695 			 * Not PSMI compliant, but we are going to merge
1696 			 * with ON anyway
1697 			 */
1698 			(void) add_avintr((void *)NULL, ipl,
1699 			    (avfunc)apic_error_intr, "apic error intr",
1700 			    irq, NULL, NULL, NULL, NULL);
1701 		}
1702 		apicadr[APIC_ERR_VECT] = apic_errvect;
1703 		apicadr[APIC_ERROR_STATUS] = 0;
1704 		apicadr[APIC_ERROR_STATUS] = 0;
1705 	}
1706 }
1707 
1708 static void
1709 apic_disable_local_apic()
1710 {
1711 	apicadr[APIC_TASK_REG] = APIC_MASK_ALL;
1712 	apicadr[APIC_LOCAL_TIMER] = AV_MASK;
1713 	apicadr[APIC_INT_VECT0] = AV_MASK;	/* local intr reg 0 */
1714 	apicadr[APIC_INT_VECT1] = AV_MASK;	/* disable NMI */
1715 	apicadr[APIC_ERR_VECT] = AV_MASK;	/* and error interrupt */
1716 	apicadr[APIC_PCINT_VECT] = AV_MASK;	/* and perf counter intr */
1717 	apicadr[APIC_SPUR_INT_REG] = APIC_SPUR_INTR;
1718 }
1719 
1720 static void
1721 apic_picinit(void)
1722 {
1723 	int i, j;
1724 	uint_t isr;
1725 	volatile int32_t *ioapic;
1726 	apic_irq_t	*irqptr;
1727 	struct intrspec ispec;
1728 
1729 	/*
1730 	 * On UniSys Model 6520, the BIOS leaves vector 0x20 isr
1731 	 * bit on without clearing it with EOI.  Since softint
1732 	 * uses vector 0x20 to interrupt itself, so softint will
1733 	 * not work on this machine.  In order to fix this problem
1734 	 * a check is made to verify all the isr bits are clear.
1735 	 * If not, EOIs are issued to clear the bits.
1736 	 */
1737 	for (i = 7; i >= 1; i--) {
1738 		if ((isr = apicadr[APIC_ISR_REG + (i * 4)]) != 0)
1739 			for (j = 0; ((j < 32) && (isr != 0)); j++)
1740 				if (isr & (1 << j)) {
1741 					apicadr[APIC_EOI_REG] = 0;
1742 					isr &= ~(1 << j);
1743 					apic_error |= APIC_ERR_BOOT_EOI;
1744 				}
1745 	}
1746 
1747 	/* set a flag so we know we have run apic_picinit() */
1748 	apic_flag = 1;
1749 	LOCK_INIT_CLEAR(&apic_gethrtime_lock);
1750 	LOCK_INIT_CLEAR(&apic_ioapic_lock);
1751 	LOCK_INIT_CLEAR(&apic_revector_lock);
1752 	LOCK_INIT_CLEAR(&apic_ioapic_reprogram_lock);
1753 	LOCK_INIT_CLEAR(&apic_error_lock);
1754 
1755 	picsetup();	 /* initialise the 8259 */
1756 
1757 	/* add nmi handler - least priority nmi handler */
1758 	LOCK_INIT_CLEAR(&apic_nmi_lock);
1759 
1760 	if (!psm_add_nmintr(0, (avfunc) apic_nmi_intr,
1761 	    "pcplusmp NMI handler", (caddr_t)NULL))
1762 		cmn_err(CE_WARN, "pcplusmp: Unable to add nmi handler");
1763 
1764 	apic_init_intr();
1765 
1766 	/* enable apic mode if imcr present */
1767 	if (apic_imcrp) {
1768 		outb(APIC_IMCR_P1, (uchar_t)APIC_IMCR_SELECT);
1769 		outb(APIC_IMCR_P2, (uchar_t)APIC_IMCR_APIC);
1770 	}
1771 
1772 	/* mask interrupt vectors					*/
1773 	for (j = 0; j < apic_io_max; j++) {
1774 		int intin_max;
1775 		ioapic = apicioadr[j];
1776 		ioapic[APIC_IO_REG] = APIC_VERS_CMD;
1777 		/* Bits 23-16 define the maximum redirection entries */
1778 		intin_max = (ioapic[APIC_IO_DATA] >> 16) & 0xff;
1779 		for (i = 0; i < intin_max; i++) {
1780 			ioapic[APIC_IO_REG] = APIC_RDT_CMD + 2 * i;
1781 			ioapic[APIC_IO_DATA] = AV_MASK;
1782 		}
1783 	}
1784 
1785 	/*
1786 	 * Hack alert: deal with ACPI SCI interrupt chicken/egg here
1787 	 */
1788 	if (apic_sci_vect > 0) {
1789 		/*
1790 		 * acpica has already done add_avintr(); we just
1791 		 * to finish the job by mimicing translate_irq()
1792 		 *
1793 		 * Fake up an intrspec and setup the tables
1794 		 */
1795 		ispec.intrspec_vec = apic_sci_vect;
1796 		ispec.intrspec_pri = SCI_IPL;
1797 
1798 		if (apic_setup_irq_table(NULL, apic_sci_vect, NULL,
1799 		    &ispec, &apic_sci_flags, DDI_INTR_TYPE_FIXED) < 0) {
1800 			cmn_err(CE_WARN, "!apic: SCI setup failed");
1801 			return;
1802 		}
1803 		irqptr = apic_irq_table[apic_sci_vect];
1804 
1805 		/* Program I/O APIC */
1806 		(void) apic_setup_io_intr(irqptr, apic_sci_vect);
1807 
1808 		irqptr->airq_share++;
1809 	}
1810 }
1811 
1812 
1813 static void
1814 apic_cpu_start(processorid_t cpun, caddr_t rm_code)
1815 {
1816 	int		loop_count;
1817 	uint32_t	vector;
1818 	uint_t		cpu_id, iflag;
1819 
1820 	cpu_id = apic_cpus[cpun].aci_local_id;
1821 
1822 	apic_cmos_ssb_set = 1;
1823 
1824 	/*
1825 	 * Interrupts on BSP cpu will be disabled during these startup
1826 	 * steps in order to avoid unwanted side effects from
1827 	 * executing interrupt handlers on a problematic BIOS.
1828 	 */
1829 
1830 	iflag = intr_clear();
1831 	outb(CMOS_ADDR, SSB);
1832 	outb(CMOS_DATA, BIOS_SHUTDOWN);
1833 
1834 	while (get_apic_cmd1() & AV_PENDING)
1835 		apic_ret();
1836 
1837 	/* for integrated - make sure there is one INIT IPI in buffer */
1838 	/* for external - it will wake up the cpu */
1839 	apicadr[APIC_INT_CMD2] = cpu_id << APIC_ICR_ID_BIT_OFFSET;
1840 	apicadr[APIC_INT_CMD1] = AV_ASSERT | AV_RESET;
1841 
1842 	/* If only 1 CPU is installed, PENDING bit will not go low */
1843 	for (loop_count = 0x1000; loop_count; loop_count--)
1844 		if (get_apic_cmd1() & AV_PENDING)
1845 			apic_ret();
1846 		else
1847 			break;
1848 
1849 	apicadr[APIC_INT_CMD2] = cpu_id << APIC_ICR_ID_BIT_OFFSET;
1850 	apicadr[APIC_INT_CMD1] = AV_DEASSERT | AV_RESET;
1851 
1852 	drv_usecwait(20000);		/* 20 milli sec */
1853 
1854 	if (apic_cpus[cpun].aci_local_ver >= APIC_INTEGRATED_VERS) {
1855 		/* integrated apic */
1856 
1857 		rm_code = (caddr_t)(uintptr_t)rm_platter_pa;
1858 		vector = (rm_platter_pa >> MMU_PAGESHIFT) &
1859 		    (APIC_VECTOR_MASK | APIC_IPL_MASK);
1860 
1861 		/* to offset the INIT IPI queue up in the buffer */
1862 		apicadr[APIC_INT_CMD2] = cpu_id << APIC_ICR_ID_BIT_OFFSET;
1863 		apicadr[APIC_INT_CMD1] = vector | AV_STARTUP;
1864 
1865 		drv_usecwait(200);		/* 20 micro sec */
1866 
1867 		apicadr[APIC_INT_CMD2] = cpu_id << APIC_ICR_ID_BIT_OFFSET;
1868 		apicadr[APIC_INT_CMD1] = vector | AV_STARTUP;
1869 
1870 		drv_usecwait(200);		/* 20 micro sec */
1871 	}
1872 	intr_restore(iflag);
1873 }
1874 
1875 
1876 #ifdef	DEBUG
1877 int	apic_break_on_cpu = 9;
1878 int	apic_stretch_interrupts = 0;
1879 int	apic_stretch_ISR = 1 << 3;	/* IPL of 3 matches nothing now */
1880 
1881 void
1882 apic_break()
1883 {
1884 }
1885 #endif /* DEBUG */
1886 
1887 /*
1888  * platform_intr_enter
1889  *
1890  *	Called at the beginning of the interrupt service routine to
1891  *	mask all level equal to and below the interrupt priority
1892  *	of the interrupting vector.  An EOI should be given to
1893  *	the interrupt controller to enable other HW interrupts.
1894  *
1895  *	Return -1 for spurious interrupts
1896  *
1897  */
1898 /*ARGSUSED*/
1899 static int
1900 apic_intr_enter(int ipl, int *vectorp)
1901 {
1902 	uchar_t vector;
1903 	int nipl;
1904 	int irq, iflag;
1905 	apic_cpus_info_t *cpu_infop;
1906 
1907 	/*
1908 	 * The real vector programmed in APIC is *vectorp + 0x20
1909 	 * But, cmnint code subtracts 0x20 before pushing it.
1910 	 * Hence APIC_BASE_VECT is 0x20.
1911 	 */
1912 
1913 	vector = (uchar_t)*vectorp;
1914 
1915 	/* if interrupted by the clock, increment apic_nsec_since_boot */
1916 	if (vector == apic_clkvect) {
1917 		if (!apic_oneshot) {
1918 			/* NOTE: this is not MT aware */
1919 			apic_hrtime_stamp++;
1920 			apic_nsec_since_boot += apic_nsec_per_intr;
1921 			apic_hrtime_stamp++;
1922 			last_count_read = apic_hertz_count;
1923 			apic_redistribute_compute();
1924 		}
1925 
1926 		/* We will avoid all the book keeping overhead for clock */
1927 		nipl = apic_vectortoipl[vector >> APIC_IPL_SHIFT];
1928 #if defined(__amd64)
1929 		setcr8((ulong_t)apic_cr8pri[nipl]);
1930 #else
1931 		apicadr[APIC_TASK_REG] = apic_ipltopri[nipl];
1932 #endif
1933 		*vectorp = apic_vector_to_irq[vector + APIC_BASE_VECT];
1934 		apicadr[APIC_EOI_REG] = 0;
1935 		return (nipl);
1936 	}
1937 
1938 	cpu_infop = &apic_cpus[psm_get_cpu_id()];
1939 
1940 	if (vector == (APIC_SPUR_INTR - APIC_BASE_VECT)) {
1941 		cpu_infop->aci_spur_cnt++;
1942 		return (APIC_INT_SPURIOUS);
1943 	}
1944 
1945 	/* Check if the vector we got is really what we need */
1946 	if (apic_revector_pending) {
1947 		/*
1948 		 * Disable interrupts for the duration of
1949 		 * the vector translation to prevent a self-race for
1950 		 * the apic_revector_lock.  This cannot be done
1951 		 * in apic_xlate_vector because it is recursive and
1952 		 * we want the vector translation to be atomic with
1953 		 * respect to other (higher-priority) interrupts.
1954 		 */
1955 		iflag = intr_clear();
1956 		vector = apic_xlate_vector(vector + APIC_BASE_VECT) -
1957 		    APIC_BASE_VECT;
1958 		intr_restore(iflag);
1959 	}
1960 
1961 	nipl = apic_vectortoipl[vector >> APIC_IPL_SHIFT];
1962 	*vectorp = irq = apic_vector_to_irq[vector + APIC_BASE_VECT];
1963 
1964 #if defined(__amd64)
1965 	setcr8((ulong_t)apic_cr8pri[nipl]);
1966 #else
1967 	apicadr[APIC_TASK_REG] = apic_ipltopri[nipl];
1968 #endif
1969 
1970 	cpu_infop->aci_current[nipl] = (uchar_t)irq;
1971 	cpu_infop->aci_curipl = (uchar_t)nipl;
1972 	cpu_infop->aci_ISR_in_progress |= 1 << nipl;
1973 
1974 	/*
1975 	 * apic_level_intr could have been assimilated into the irq struct.
1976 	 * but, having it as a character array is more efficient in terms of
1977 	 * cache usage. So, we leave it as is.
1978 	 */
1979 	if (!apic_level_intr[irq])
1980 		apicadr[APIC_EOI_REG] = 0;
1981 
1982 #ifdef	DEBUG
1983 	APIC_DEBUG_BUF_PUT(vector);
1984 	APIC_DEBUG_BUF_PUT(irq);
1985 	APIC_DEBUG_BUF_PUT(nipl);
1986 	APIC_DEBUG_BUF_PUT(psm_get_cpu_id());
1987 	if ((apic_stretch_interrupts) && (apic_stretch_ISR & (1 << nipl)))
1988 		drv_usecwait(apic_stretch_interrupts);
1989 
1990 	if (apic_break_on_cpu == psm_get_cpu_id())
1991 		apic_break();
1992 #endif /* DEBUG */
1993 	return (nipl);
1994 }
1995 
1996 static void
1997 apic_intr_exit(int prev_ipl, int irq)
1998 {
1999 	apic_cpus_info_t *cpu_infop;
2000 
2001 #if defined(__amd64)
2002 	setcr8((ulong_t)apic_cr8pri[prev_ipl]);
2003 #else
2004 	apicadr[APIC_TASK_REG] = apic_ipltopri[prev_ipl];
2005 #endif
2006 
2007 	cpu_infop = &apic_cpus[psm_get_cpu_id()];
2008 	if (apic_level_intr[irq])
2009 		apicadr[APIC_EOI_REG] = 0;
2010 
2011 	cpu_infop->aci_curipl = (uchar_t)prev_ipl;
2012 	/* ISR above current pri could not be in progress */
2013 	cpu_infop->aci_ISR_in_progress &= (2 << prev_ipl) - 1;
2014 }
2015 
2016 /*
2017  * Mask all interrupts below or equal to the given IPL
2018  */
2019 static void
2020 apic_setspl(int ipl)
2021 {
2022 
2023 #if defined(__amd64)
2024 	setcr8((ulong_t)apic_cr8pri[ipl]);
2025 #else
2026 	apicadr[APIC_TASK_REG] = apic_ipltopri[ipl];
2027 #endif
2028 
2029 	/* interrupts at ipl above this cannot be in progress */
2030 	apic_cpus[psm_get_cpu_id()].aci_ISR_in_progress &= (2 << ipl) - 1;
2031 	/*
2032 	 * this is a patch fix for the ALR QSMP P5 machine, so that interrupts
2033 	 * have enough time to come in before the priority is raised again
2034 	 * during the idle() loop.
2035 	 */
2036 	if (apic_setspl_delay)
2037 		(void) get_apic_pri();
2038 }
2039 
2040 /*
2041  * trigger a software interrupt at the given IPL
2042  */
2043 static void
2044 apic_set_softintr(int ipl)
2045 {
2046 	int vector;
2047 	uint_t flag;
2048 
2049 	vector = apic_resv_vector[ipl];
2050 
2051 	flag = intr_clear();
2052 
2053 	while (get_apic_cmd1() & AV_PENDING)
2054 		apic_ret();
2055 
2056 	/* generate interrupt at vector on itself only */
2057 	apicadr[APIC_INT_CMD1] = AV_SH_SELF | vector;
2058 
2059 	intr_restore(flag);
2060 }
2061 
2062 /*
2063  * generates an interprocessor interrupt to another CPU
2064  */
2065 static void
2066 apic_send_ipi(int cpun, int ipl)
2067 {
2068 	int vector;
2069 	uint_t flag;
2070 
2071 	vector = apic_resv_vector[ipl];
2072 
2073 	flag = intr_clear();
2074 
2075 	while (get_apic_cmd1() & AV_PENDING)
2076 		apic_ret();
2077 
2078 	apicadr[APIC_INT_CMD2] =
2079 	    apic_cpus[cpun].aci_local_id << APIC_ICR_ID_BIT_OFFSET;
2080 	apicadr[APIC_INT_CMD1] = vector;
2081 
2082 	intr_restore(flag);
2083 }
2084 
2085 
2086 /*ARGSUSED*/
2087 static void
2088 apic_set_idlecpu(processorid_t cpun)
2089 {
2090 }
2091 
2092 /*ARGSUSED*/
2093 static void
2094 apic_unset_idlecpu(processorid_t cpun)
2095 {
2096 }
2097 
2098 
2099 static void
2100 apic_ret()
2101 {
2102 }
2103 
2104 static int
2105 get_apic_cmd1()
2106 {
2107 	return (apicadr[APIC_INT_CMD1]);
2108 }
2109 
2110 static int
2111 get_apic_pri()
2112 {
2113 #if defined(__amd64)
2114 	return ((int)getcr8());
2115 #else
2116 	return (apicadr[APIC_TASK_REG]);
2117 #endif
2118 }
2119 
2120 /*
2121  * If apic_coarse_time == 1, then apic_gettime() is used instead of
2122  * apic_gethrtime().  This is used for performance instead of accuracy.
2123  */
2124 
2125 static hrtime_t
2126 apic_gettime()
2127 {
2128 	int old_hrtime_stamp;
2129 	hrtime_t temp;
2130 
2131 	/*
2132 	 * In one-shot mode, we do not keep time, so if anyone
2133 	 * calls psm_gettime() directly, we vector over to
2134 	 * gethrtime().
2135 	 * one-shot mode MUST NOT be enabled if this psm is the source of
2136 	 * hrtime.
2137 	 */
2138 
2139 	if (apic_oneshot)
2140 		return (gethrtime());
2141 
2142 
2143 gettime_again:
2144 	while ((old_hrtime_stamp = apic_hrtime_stamp) & 1)
2145 		apic_ret();
2146 
2147 	temp = apic_nsec_since_boot;
2148 
2149 	if (apic_hrtime_stamp != old_hrtime_stamp) {	/* got an interrupt */
2150 		goto gettime_again;
2151 	}
2152 	return (temp);
2153 }
2154 
2155 /*
2156  * Here we return the number of nanoseconds since booting.  Note every
2157  * clock interrupt increments apic_nsec_since_boot by the appropriate
2158  * amount.
2159  */
2160 static hrtime_t
2161 apic_gethrtime()
2162 {
2163 	int curr_timeval, countval, elapsed_ticks, oflags;
2164 	int old_hrtime_stamp, status;
2165 	hrtime_t temp;
2166 	uchar_t	cpun;
2167 
2168 
2169 	/*
2170 	 * In one-shot mode, we do not keep time, so if anyone
2171 	 * calls psm_gethrtime() directly, we vector over to
2172 	 * gethrtime().
2173 	 * one-shot mode MUST NOT be enabled if this psm is the source of
2174 	 * hrtime.
2175 	 */
2176 
2177 	if (apic_oneshot)
2178 		return (gethrtime());
2179 
2180 	oflags = intr_clear();	/* prevent migration */
2181 
2182 	cpun = (uchar_t)((uint_t)apicadr[APIC_LID_REG] >> APIC_ID_BIT_OFFSET);
2183 
2184 	lock_set(&apic_gethrtime_lock);
2185 
2186 gethrtime_again:
2187 	while ((old_hrtime_stamp = apic_hrtime_stamp) & 1)
2188 		apic_ret();
2189 
2190 	/*
2191 	 * Check to see which CPU we are on.  Note the time is kept on
2192 	 * the local APIC of CPU 0.  If on CPU 0, simply read the current
2193 	 * counter.  If on another CPU, issue a remote read command to CPU 0.
2194 	 */
2195 	if (cpun == apic_cpus[0].aci_local_id) {
2196 		countval = apicadr[APIC_CURR_COUNT];
2197 	} else {
2198 		while (get_apic_cmd1() & AV_PENDING)
2199 			apic_ret();
2200 
2201 		apicadr[APIC_INT_CMD2] =
2202 		    apic_cpus[0].aci_local_id << APIC_ICR_ID_BIT_OFFSET;
2203 		apicadr[APIC_INT_CMD1] = APIC_CURR_ADD|AV_REMOTE;
2204 
2205 		while ((status = get_apic_cmd1()) & AV_READ_PENDING)
2206 			apic_ret();
2207 
2208 		if (status & AV_REMOTE_STATUS)	/* 1 = valid */
2209 			countval = apicadr[APIC_REMOTE_READ];
2210 		else {	/* 0 = invalid */
2211 			apic_remote_hrterr++;
2212 			/*
2213 			 * return last hrtime right now, will need more
2214 			 * testing if change to retry
2215 			 */
2216 			temp = apic_last_hrtime;
2217 
2218 			lock_clear(&apic_gethrtime_lock);
2219 
2220 			intr_restore(oflags);
2221 
2222 			return (temp);
2223 		}
2224 	}
2225 	if (countval > last_count_read)
2226 		countval = 0;
2227 	else
2228 		last_count_read = countval;
2229 
2230 	elapsed_ticks = apic_hertz_count - countval;
2231 
2232 	curr_timeval = elapsed_ticks * apic_nsec_per_tick;
2233 	temp = apic_nsec_since_boot + curr_timeval;
2234 
2235 	if (apic_hrtime_stamp != old_hrtime_stamp) {	/* got an interrupt */
2236 		/* we might have clobbered last_count_read. Restore it */
2237 		last_count_read = apic_hertz_count;
2238 		goto gethrtime_again;
2239 	}
2240 
2241 	if (temp < apic_last_hrtime) {
2242 		/* return last hrtime if error occurs */
2243 		apic_hrtime_error++;
2244 		temp = apic_last_hrtime;
2245 	}
2246 	else
2247 		apic_last_hrtime = temp;
2248 
2249 	lock_clear(&apic_gethrtime_lock);
2250 	intr_restore(oflags);
2251 
2252 	return (temp);
2253 }
2254 
2255 /* apic NMI handler */
2256 /*ARGSUSED*/
2257 static void
2258 apic_nmi_intr(caddr_t arg)
2259 {
2260 	if (apic_shutdown_processors) {
2261 		apic_disable_local_apic();
2262 		return;
2263 	}
2264 
2265 	if (lock_try(&apic_nmi_lock)) {
2266 		if (apic_kmdb_on_nmi) {
2267 			if (psm_debugger() == 0) {
2268 				cmn_err(CE_PANIC,
2269 				    "NMI detected, kmdb is not available.");
2270 			} else {
2271 				debug_enter("\nNMI detected, entering kmdb.\n");
2272 			}
2273 		} else {
2274 			if (apic_panic_on_nmi) {
2275 				/* Keep panic from entering kmdb. */
2276 				nopanicdebug = 1;
2277 				cmn_err(CE_PANIC, "pcplusmp: NMI received");
2278 			} else {
2279 				/*
2280 				 * prom_printf is the best shot we have
2281 				 * of something which is problem free from
2282 				 * high level/NMI type of interrupts
2283 				 */
2284 				prom_printf("pcplusmp: NMI received\n");
2285 				apic_error |= APIC_ERR_NMI;
2286 				apic_num_nmis++;
2287 			}
2288 		}
2289 		lock_clear(&apic_nmi_lock);
2290 	}
2291 }
2292 
2293 /*
2294  * Add mask bits to disable interrupt vector from happening
2295  * at or above IPL. In addition, it should remove mask bits
2296  * to enable interrupt vectors below the given IPL.
2297  *
2298  * Both add and delspl are complicated by the fact that different interrupts
2299  * may share IRQs. This can happen in two ways.
2300  * 1. The same H/W line is shared by more than 1 device
2301  * 1a. with interrupts at different IPLs
2302  * 1b. with interrupts at same IPL
2303  * 2. We ran out of vectors at a given IPL and started sharing vectors.
2304  * 1b and 2 should be handled gracefully, except for the fact some ISRs
2305  * will get called often when no interrupt is pending for the device.
2306  * For 1a, we just hope that the machine blows up with the person who
2307  * set it up that way!. In the meantime, we handle it at the higher IPL.
2308  */
2309 /*ARGSUSED*/
2310 static int
2311 apic_addspl(int irqno, int ipl, int min_ipl, int max_ipl)
2312 {
2313 	uchar_t vector;
2314 	int iflag;
2315 	apic_irq_t *irqptr, *irqheadptr;
2316 	int irqindex;
2317 
2318 	ASSERT(max_ipl <= UCHAR_MAX);
2319 	irqindex = IRQINDEX(irqno);
2320 
2321 	if ((irqindex == -1) || (!apic_irq_table[irqindex]))
2322 		return (PSM_FAILURE);
2323 
2324 	irqptr = irqheadptr = apic_irq_table[irqindex];
2325 
2326 	DDI_INTR_IMPLDBG((CE_CONT, "apic_addspl: dip=0x%p type=%d irqno=0x%x "
2327 	    "vector=0x%x\n", (void *)irqptr->airq_dip,
2328 	    irqptr->airq_mps_intr_index, irqno, irqptr->airq_vector));
2329 
2330 	while (irqptr) {
2331 		if (VIRTIRQ(irqindex, irqptr->airq_share_id) == irqno)
2332 			break;
2333 		irqptr = irqptr->airq_next;
2334 	}
2335 	irqptr->airq_share++;
2336 
2337 	/* return if it is not hardware interrupt */
2338 	if (irqptr->airq_mps_intr_index == RESERVE_INDEX)
2339 		return (PSM_SUCCESS);
2340 
2341 	/* Or if there are more interupts at a higher IPL */
2342 	if (ipl != max_ipl)
2343 		return (PSM_SUCCESS);
2344 
2345 	/*
2346 	 * if apic_picinit() has not been called yet, just return.
2347 	 * At the end of apic_picinit(), we will call setup_io_intr().
2348 	 */
2349 
2350 	if (!apic_flag)
2351 		return (PSM_SUCCESS);
2352 
2353 	iflag = intr_clear();
2354 
2355 	/*
2356 	 * Upgrade vector if max_ipl is not earlier ipl. If we cannot allocate,
2357 	 * return failure. Not very elegant, but then we hope the
2358 	 * machine will blow up with ...
2359 	 */
2360 	if (irqptr->airq_ipl != max_ipl) {
2361 		vector = apic_allocate_vector(max_ipl, irqindex, 1);
2362 		if (vector == 0) {
2363 			intr_restore(iflag);
2364 			irqptr->airq_share--;
2365 			return (PSM_FAILURE);
2366 		}
2367 		irqptr = irqheadptr;
2368 		apic_mark_vector(irqptr->airq_vector, vector);
2369 		while (irqptr) {
2370 			irqptr->airq_vector = vector;
2371 			irqptr->airq_ipl = (uchar_t)max_ipl;
2372 			/*
2373 			 * reprogram irq being added and every one else
2374 			 * who is not in the UNINIT state
2375 			 */
2376 			if ((VIRTIRQ(irqindex, irqptr->airq_share_id) ==
2377 			    irqno) || (irqptr->airq_temp_cpu != IRQ_UNINIT)) {
2378 				apic_record_rdt_entry(irqptr, irqindex);
2379 				(void) apic_setup_io_intr(irqptr, irqindex);
2380 			}
2381 			irqptr = irqptr->airq_next;
2382 		}
2383 		intr_restore(iflag);
2384 		return (PSM_SUCCESS);
2385 	}
2386 
2387 	ASSERT(irqptr);
2388 	(void) apic_setup_io_intr(irqptr, irqindex);
2389 	intr_restore(iflag);
2390 	return (PSM_SUCCESS);
2391 }
2392 
2393 /*
2394  * Recompute mask bits for the given interrupt vector.
2395  * If there is no interrupt servicing routine for this
2396  * vector, this function should disable interrupt vector
2397  * from happening at all IPLs. If there are still
2398  * handlers using the given vector, this function should
2399  * disable the given vector from happening below the lowest
2400  * IPL of the remaining hadlers.
2401  */
2402 /*ARGSUSED*/
2403 static int
2404 apic_delspl(int irqno, int ipl, int min_ipl, int max_ipl)
2405 {
2406 	uchar_t vector, bind_cpu;
2407 	int	iflag, intin, irqindex;
2408 	volatile int32_t *ioapic;
2409 	apic_irq_t	*irqptr, *irqheadptr;
2410 
2411 	irqindex = IRQINDEX(irqno);
2412 	irqptr = irqheadptr = apic_irq_table[irqindex];
2413 
2414 	DDI_INTR_IMPLDBG((CE_CONT, "apic_delspl: dip=0x%p type=%d irqno=0x%x "
2415 	    "vector=0x%x\n", (void *)irqptr->airq_dip,
2416 	    irqptr->airq_mps_intr_index, irqno, irqptr->airq_vector));
2417 
2418 	while (irqptr) {
2419 		if (VIRTIRQ(irqindex, irqptr->airq_share_id) == irqno)
2420 			break;
2421 		irqptr = irqptr->airq_next;
2422 	}
2423 	ASSERT(irqptr);
2424 
2425 	irqptr->airq_share--;
2426 
2427 	if (ipl < max_ipl)
2428 		return (PSM_SUCCESS);
2429 
2430 	/* return if it is not hardware interrupt */
2431 	if (irqptr->airq_mps_intr_index == RESERVE_INDEX)
2432 		return (PSM_SUCCESS);
2433 
2434 	if (!apic_flag) {
2435 		/*
2436 		 * Clear irq_struct. If two devices shared an intpt
2437 		 * line & 1 unloaded before picinit, we are hosed. But, then
2438 		 * we hope the machine will ...
2439 		 */
2440 		irqptr->airq_mps_intr_index = FREE_INDEX;
2441 		irqptr->airq_temp_cpu = IRQ_UNINIT;
2442 		apic_free_vector(irqptr->airq_vector);
2443 		return (PSM_SUCCESS);
2444 	}
2445 	/*
2446 	 * Downgrade vector to new max_ipl if needed.If we cannot allocate,
2447 	 * use old IPL. Not very elegant, but then we hope ...
2448 	 */
2449 	if ((irqptr->airq_ipl != max_ipl) && (max_ipl != PSM_INVALID_IPL)) {
2450 		apic_irq_t	*irqp;
2451 		if (vector = apic_allocate_vector(max_ipl, irqno, 1)) {
2452 			apic_mark_vector(irqheadptr->airq_vector, vector);
2453 			irqp = irqheadptr;
2454 			while (irqp) {
2455 				irqp->airq_vector = vector;
2456 				irqp->airq_ipl = (uchar_t)max_ipl;
2457 				if (irqp->airq_temp_cpu != IRQ_UNINIT) {
2458 					apic_record_rdt_entry(irqp, irqindex);
2459 					(void) apic_setup_io_intr(irqp,
2460 					    irqindex);
2461 				}
2462 				irqp = irqp->airq_next;
2463 			}
2464 		}
2465 	}
2466 
2467 	if (irqptr->airq_share)
2468 		return (PSM_SUCCESS);
2469 
2470 	ioapic = apicioadr[irqptr->airq_ioapicindex];
2471 	intin = irqptr->airq_intin_no;
2472 	iflag = intr_clear();
2473 	lock_set(&apic_ioapic_lock);
2474 	ioapic[APIC_IO_REG] = APIC_RDT_CMD + 2 * intin;
2475 	ioapic[APIC_IO_DATA] = AV_MASK;
2476 
2477 	/* Disable the MSI/X vector */
2478 	if (APIC_IS_MSI_OR_MSIX_INDEX(irqptr->airq_mps_intr_index)) {
2479 		int type = (irqptr->airq_mps_intr_index == MSI_INDEX) ?
2480 		    DDI_INTR_TYPE_MSI : DDI_INTR_TYPE_MSIX;
2481 
2482 		/*
2483 		 * Make sure we only disable on the last
2484 		 * of the multi-MSI support
2485 		 */
2486 		if (i_ddi_intr_get_current_nintrs(irqptr->airq_dip) == 1) {
2487 			(void) apic_pci_msi_unconfigure(irqptr->airq_dip,
2488 			    type, irqptr->airq_ioapicindex);
2489 			(void) apic_pci_msi_disable_mode(irqptr->airq_dip,
2490 			    type, irqptr->airq_ioapicindex);
2491 		}
2492 	}
2493 
2494 	if (max_ipl == PSM_INVALID_IPL) {
2495 		ASSERT(irqheadptr == irqptr);
2496 		bind_cpu = irqptr->airq_temp_cpu;
2497 		if (((uchar_t)bind_cpu != IRQ_UNBOUND) &&
2498 		    ((uchar_t)bind_cpu != IRQ_UNINIT)) {
2499 			ASSERT((bind_cpu & ~IRQ_USER_BOUND) < apic_nproc);
2500 			if (bind_cpu & IRQ_USER_BOUND) {
2501 				/* If hardbound, temp_cpu == cpu */
2502 				bind_cpu &= ~IRQ_USER_BOUND;
2503 				apic_cpus[bind_cpu].aci_bound--;
2504 			} else
2505 				apic_cpus[bind_cpu].aci_temp_bound--;
2506 		}
2507 		lock_clear(&apic_ioapic_lock);
2508 		intr_restore(iflag);
2509 		irqptr->airq_temp_cpu = IRQ_UNINIT;
2510 		irqptr->airq_mps_intr_index = FREE_INDEX;
2511 		apic_free_vector(irqptr->airq_vector);
2512 		return (PSM_SUCCESS);
2513 	}
2514 	lock_clear(&apic_ioapic_lock);
2515 	intr_restore(iflag);
2516 
2517 	mutex_enter(&airq_mutex);
2518 	if ((irqptr == apic_irq_table[irqindex])) {
2519 		apic_irq_t	*oldirqptr;
2520 		/* Move valid irq entry to the head */
2521 		irqheadptr = oldirqptr = irqptr;
2522 		irqptr = irqptr->airq_next;
2523 		ASSERT(irqptr);
2524 		while (irqptr) {
2525 			if (irqptr->airq_mps_intr_index != FREE_INDEX)
2526 				break;
2527 			oldirqptr = irqptr;
2528 			irqptr = irqptr->airq_next;
2529 		}
2530 		/* remove all invalid ones from the beginning */
2531 		apic_irq_table[irqindex] = irqptr;
2532 		/*
2533 		 * and link them back after the head. The invalid ones
2534 		 * begin with irqheadptr and end at oldirqptr
2535 		 */
2536 		oldirqptr->airq_next = irqptr->airq_next;
2537 		irqptr->airq_next = irqheadptr;
2538 	}
2539 	mutex_exit(&airq_mutex);
2540 
2541 	irqptr->airq_temp_cpu = IRQ_UNINIT;
2542 	irqptr->airq_mps_intr_index = FREE_INDEX;
2543 	return (PSM_SUCCESS);
2544 }
2545 
2546 /*
2547  * Return HW interrupt number corresponding to the given IPL
2548  */
2549 /*ARGSUSED*/
2550 static int
2551 apic_softlvl_to_irq(int ipl)
2552 {
2553 	/*
2554 	 * Do not use apic to trigger soft interrupt.
2555 	 * It will cause the system to hang when 2 hardware interrupts
2556 	 * at the same priority with the softint are already accepted
2557 	 * by the apic.  Cause the AV_PENDING bit will not be cleared
2558 	 * until one of the hardware interrupt is eoi'ed.  If we need
2559 	 * to send an ipi at this time, we will end up looping forever
2560 	 * to wait for the AV_PENDING bit to clear.
2561 	 */
2562 	return (PSM_SV_SOFTWARE);
2563 }
2564 
2565 static int
2566 apic_post_cpu_start()
2567 {
2568 	int i, cpun;
2569 	apic_irq_t *irq_ptr;
2570 
2571 	apic_init_intr();
2572 
2573 	/*
2574 	 * since some systems don't enable the internal cache on the non-boot
2575 	 * cpus, so we have to enable them here
2576 	 */
2577 	setcr0(getcr0() & ~(0x60000000));
2578 
2579 	while (get_apic_cmd1() & AV_PENDING)
2580 		apic_ret();
2581 
2582 	cpun = psm_get_cpu_id();
2583 	apic_cpus[cpun].aci_status = APIC_CPU_ONLINE | APIC_CPU_INTR_ENABLE;
2584 
2585 	for (i = apic_min_device_irq; i <= apic_max_device_irq; i++) {
2586 		irq_ptr = apic_irq_table[i];
2587 		if ((irq_ptr == NULL) ||
2588 		    ((irq_ptr->airq_cpu & ~IRQ_USER_BOUND) != cpun))
2589 			continue;
2590 
2591 		while (irq_ptr) {
2592 			if (irq_ptr->airq_temp_cpu != IRQ_UNINIT)
2593 				(void) apic_rebind(irq_ptr, cpun, 1, IMMEDIATE);
2594 			irq_ptr = irq_ptr->airq_next;
2595 		}
2596 	}
2597 
2598 	return (PSM_SUCCESS);
2599 }
2600 
2601 processorid_t
2602 apic_get_next_processorid(processorid_t cpu_id)
2603 {
2604 
2605 	int i;
2606 
2607 	if (cpu_id == -1)
2608 		return ((processorid_t)0);
2609 
2610 	for (i = cpu_id + 1; i < NCPU; i++) {
2611 		if (CPU_IN_SET(apic_cpumask, i))
2612 			return (i);
2613 	}
2614 
2615 	return ((processorid_t)-1);
2616 }
2617 
2618 
2619 /*
2620  * type == -1 indicates it is an internal request. Do not change
2621  * resv_vector for these requests
2622  */
2623 static int
2624 apic_get_ipivect(int ipl, int type)
2625 {
2626 	uchar_t vector;
2627 	int irq;
2628 
2629 	if (irq = apic_allocate_irq(APIC_VECTOR(ipl))) {
2630 		if (vector = apic_allocate_vector(ipl, irq, 1)) {
2631 			apic_irq_table[irq]->airq_mps_intr_index =
2632 			    RESERVE_INDEX;
2633 			apic_irq_table[irq]->airq_vector = vector;
2634 			if (type != -1) {
2635 				apic_resv_vector[ipl] = vector;
2636 			}
2637 			return (irq);
2638 		}
2639 	}
2640 	apic_error |= APIC_ERR_GET_IPIVECT_FAIL;
2641 	return (-1);	/* shouldn't happen */
2642 }
2643 
2644 static int
2645 apic_getclkirq(int ipl)
2646 {
2647 	int	irq;
2648 
2649 	if ((irq = apic_get_ipivect(ipl, -1)) == -1)
2650 		return (-1);
2651 	/*
2652 	 * Note the vector in apic_clkvect for per clock handling.
2653 	 */
2654 	apic_clkvect = apic_irq_table[irq]->airq_vector - APIC_BASE_VECT;
2655 	APIC_VERBOSE_IOAPIC((CE_NOTE, "get_clkirq: vector = %x\n",
2656 	    apic_clkvect));
2657 	return (irq);
2658 }
2659 
2660 /*
2661  * Return the number of APIC clock ticks elapsed for 8245 to decrement
2662  * (APIC_TIME_COUNT + pit_ticks_adj) ticks.
2663  */
2664 static uint_t
2665 apic_calibrate(volatile uint32_t *addr, uint16_t *pit_ticks_adj)
2666 {
2667 	uint8_t		pit_tick_lo;
2668 	uint16_t	pit_tick, target_pit_tick;
2669 	uint32_t	start_apic_tick, end_apic_tick;
2670 	int		iflag;
2671 
2672 	addr += APIC_CURR_COUNT;
2673 
2674 	iflag = intr_clear();
2675 
2676 	do {
2677 		pit_tick_lo = inb(PITCTR0_PORT);
2678 		pit_tick = (inb(PITCTR0_PORT) << 8) | pit_tick_lo;
2679 	} while (pit_tick < APIC_TIME_MIN ||
2680 	    pit_tick_lo <= APIC_LB_MIN || pit_tick_lo >= APIC_LB_MAX);
2681 
2682 	/*
2683 	 * Wait for the 8254 to decrement by 5 ticks to ensure
2684 	 * we didn't start in the middle of a tick.
2685 	 * Compare with 0x10 for the wrap around case.
2686 	 */
2687 	target_pit_tick = pit_tick - 5;
2688 	do {
2689 		pit_tick_lo = inb(PITCTR0_PORT);
2690 		pit_tick = (inb(PITCTR0_PORT) << 8) | pit_tick_lo;
2691 	} while (pit_tick > target_pit_tick || pit_tick_lo < 0x10);
2692 
2693 	start_apic_tick = *addr;
2694 
2695 	/*
2696 	 * Wait for the 8254 to decrement by
2697 	 * (APIC_TIME_COUNT + pit_ticks_adj) ticks
2698 	 */
2699 	target_pit_tick = pit_tick - APIC_TIME_COUNT;
2700 	do {
2701 		pit_tick_lo = inb(PITCTR0_PORT);
2702 		pit_tick = (inb(PITCTR0_PORT) << 8) | pit_tick_lo;
2703 	} while (pit_tick > target_pit_tick || pit_tick_lo < 0x10);
2704 
2705 	end_apic_tick = *addr;
2706 
2707 	*pit_ticks_adj = target_pit_tick - pit_tick;
2708 
2709 	intr_restore(iflag);
2710 
2711 	return (start_apic_tick - end_apic_tick);
2712 }
2713 
2714 /*
2715  * Initialise the APIC timer on the local APIC of CPU 0 to the desired
2716  * frequency.  Note at this stage in the boot sequence, the boot processor
2717  * is the only active processor.
2718  * hertz value of 0 indicates a one-shot mode request.  In this case
2719  * the function returns the resolution (in nanoseconds) for the hardware
2720  * timer interrupt.  If one-shot mode capability is not available,
2721  * the return value will be 0. apic_enable_oneshot is a global switch
2722  * for disabling the functionality.
2723  * A non-zero positive value for hertz indicates a periodic mode request.
2724  * In this case the hardware will be programmed to generate clock interrupts
2725  * at hertz frequency and returns the resolution of interrupts in
2726  * nanosecond.
2727  */
2728 
2729 static int
2730 apic_clkinit(int hertz)
2731 {
2732 
2733 	uint_t		apic_ticks = 0;
2734 	uint_t		pit_time;
2735 	int		ret;
2736 	uint16_t	pit_ticks_adj;
2737 	static int	firsttime = 1;
2738 
2739 	if (firsttime) {
2740 		/* first time calibrate */
2741 
2742 		apicadr[APIC_DIVIDE_REG] = 0x0;
2743 		apicadr[APIC_INIT_COUNT] = APIC_MAXVAL;
2744 
2745 		/* set periodic interrupt based on CLKIN */
2746 		apicadr[APIC_LOCAL_TIMER] =
2747 		    (apic_clkvect + APIC_BASE_VECT) | AV_TIME;
2748 		tenmicrosec();
2749 
2750 		apic_ticks = apic_calibrate(apicadr, &pit_ticks_adj);
2751 
2752 		apicadr[APIC_LOCAL_TIMER] =
2753 		    (apic_clkvect + APIC_BASE_VECT) | AV_MASK;
2754 		/*
2755 		 * pit time is the amount of real time (in nanoseconds ) it took
2756 		 * the 8254 to decrement (APIC_TIME_COUNT + pit_ticks_adj) ticks
2757 		 */
2758 		pit_time = ((longlong_t)(APIC_TIME_COUNT +
2759 		    pit_ticks_adj) * NANOSEC) / PIT_HZ;
2760 
2761 		/*
2762 		 * Determine the number of nanoseconds per APIC clock tick
2763 		 * and then determine how many APIC ticks to interrupt at the
2764 		 * desired frequency
2765 		 */
2766 		apic_nsec_per_tick = pit_time / apic_ticks;
2767 		if (apic_nsec_per_tick == 0)
2768 			apic_nsec_per_tick = 1;
2769 
2770 		/* the interval timer initial count is 32 bit max */
2771 		apic_nsec_max = (hrtime_t)apic_nsec_per_tick * APIC_MAXVAL;
2772 		firsttime = 0;
2773 	}
2774 
2775 	if (hertz != 0) {
2776 		/* periodic */
2777 		apic_nsec_per_intr = NANOSEC / hertz;
2778 		apic_hertz_count = (longlong_t)apic_nsec_per_intr /
2779 		    apic_nsec_per_tick;
2780 		apic_sample_factor_redistribution = hertz + 1;
2781 	}
2782 
2783 	apic_int_busy_mark = (apic_int_busy_mark *
2784 	    apic_sample_factor_redistribution) / 100;
2785 	apic_int_free_mark = (apic_int_free_mark *
2786 	    apic_sample_factor_redistribution) / 100;
2787 	apic_diff_for_redistribution = (apic_diff_for_redistribution *
2788 	    apic_sample_factor_redistribution) / 100;
2789 
2790 	if (hertz == 0) {
2791 		/* requested one_shot */
2792 		if (!apic_oneshot_enable)
2793 			return (0);
2794 		apic_oneshot = 1;
2795 		ret = (int)apic_nsec_per_tick;
2796 	} else {
2797 		/* program the local APIC to interrupt at the given frequency */
2798 		apicadr[APIC_INIT_COUNT] = apic_hertz_count;
2799 		apicadr[APIC_LOCAL_TIMER] =
2800 		    (apic_clkvect + APIC_BASE_VECT) | AV_TIME;
2801 		apic_oneshot = 0;
2802 		ret = NANOSEC / hertz;
2803 	}
2804 
2805 	return (ret);
2806 
2807 }
2808 
2809 /*
2810  * apic_preshutdown:
2811  * Called early in shutdown whilst we can still access filesystems to do
2812  * things like loading modules which will be required to complete shutdown
2813  * after filesystems are all unmounted.
2814  */
2815 static void
2816 apic_preshutdown(int cmd, int fcn)
2817 {
2818 	APIC_VERBOSE_POWEROFF(("apic_preshutdown(%d,%d); m=%d a=%d\n",
2819 	    cmd, fcn, apic_poweroff_method, apic_enable_acpi));
2820 
2821 	if ((cmd != A_SHUTDOWN) || (fcn != AD_POWEROFF)) {
2822 		return;
2823 	}
2824 }
2825 
2826 static void
2827 apic_shutdown(int cmd, int fcn)
2828 {
2829 	int iflag, restarts, attempts;
2830 	int i, j;
2831 	volatile int32_t *ioapic;
2832 	uchar_t	byte;
2833 
2834 	/* Send NMI to all CPUs except self to do per processor shutdown */
2835 	iflag = intr_clear();
2836 	while (get_apic_cmd1() & AV_PENDING)
2837 		apic_ret();
2838 	apic_shutdown_processors = 1;
2839 	apicadr[APIC_INT_CMD1] = AV_NMI | AV_LEVEL | AV_SH_ALL_EXCSELF;
2840 
2841 	/* restore cmos shutdown byte before reboot */
2842 	if (apic_cmos_ssb_set) {
2843 		outb(CMOS_ADDR, SSB);
2844 		outb(CMOS_DATA, 0);
2845 	}
2846 	/* Disable the I/O APIC redirection entries */
2847 	for (j = 0; j < apic_io_max; j++) {
2848 		int intin_max;
2849 		ioapic = apicioadr[j];
2850 		ioapic[APIC_IO_REG] = APIC_VERS_CMD;
2851 		/* Bits 23-16 define the maximum redirection entries */
2852 		intin_max = (ioapic[APIC_IO_DATA] >> 16) & 0xff;
2853 		for (i = 0; i < intin_max; i++) {
2854 			ioapic[APIC_IO_REG] = APIC_RDT_CMD + 2 * i;
2855 			ioapic[APIC_IO_DATA] = AV_MASK;
2856 		}
2857 	}
2858 
2859 	/*	disable apic mode if imcr present	*/
2860 	if (apic_imcrp) {
2861 		outb(APIC_IMCR_P1, (uchar_t)APIC_IMCR_SELECT);
2862 		outb(APIC_IMCR_P2, (uchar_t)APIC_IMCR_PIC);
2863 	}
2864 
2865 	apic_disable_local_apic();
2866 
2867 	intr_restore(iflag);
2868 
2869 	if ((cmd != A_SHUTDOWN) || (fcn != AD_POWEROFF)) {
2870 		return;
2871 	}
2872 
2873 	switch (apic_poweroff_method) {
2874 		case APIC_POWEROFF_VIA_RTC:
2875 
2876 			/* select the extended NVRAM bank in the RTC */
2877 			outb(CMOS_ADDR, RTC_REGA);
2878 			byte = inb(CMOS_DATA);
2879 			outb(CMOS_DATA, (byte | EXT_BANK));
2880 
2881 			outb(CMOS_ADDR, PFR_REG);
2882 
2883 			/* for Predator must toggle the PAB bit */
2884 			byte = inb(CMOS_DATA);
2885 
2886 			/*
2887 			 * clear power active bar, wakeup alarm and
2888 			 * kickstart
2889 			 */
2890 			byte &= ~(PAB_CBIT | WF_FLAG | KS_FLAG);
2891 			outb(CMOS_DATA, byte);
2892 
2893 			/* delay before next write */
2894 			drv_usecwait(1000);
2895 
2896 			/* for S40 the following would suffice */
2897 			byte = inb(CMOS_DATA);
2898 
2899 			/* power active bar control bit */
2900 			byte |= PAB_CBIT;
2901 			outb(CMOS_DATA, byte);
2902 
2903 			break;
2904 
2905 		case APIC_POWEROFF_VIA_ASPEN_BMC:
2906 			restarts = 0;
2907 restart_aspen_bmc:
2908 			if (++restarts == 3)
2909 				break;
2910 			attempts = 0;
2911 			do {
2912 				byte = inb(MISMIC_FLAG_REGISTER);
2913 				byte &= MISMIC_BUSY_MASK;
2914 				if (byte != 0) {
2915 					drv_usecwait(1000);
2916 					if (attempts >= 3)
2917 						goto restart_aspen_bmc;
2918 					++attempts;
2919 				}
2920 			} while (byte != 0);
2921 			outb(MISMIC_CNTL_REGISTER, CC_SMS_GET_STATUS);
2922 			byte = inb(MISMIC_FLAG_REGISTER);
2923 			byte |= 0x1;
2924 			outb(MISMIC_FLAG_REGISTER, byte);
2925 			i = 0;
2926 			for (; i < (sizeof (aspen_bmc)/sizeof (aspen_bmc[0]));
2927 			    i++) {
2928 				attempts = 0;
2929 				do {
2930 					byte = inb(MISMIC_FLAG_REGISTER);
2931 					byte &= MISMIC_BUSY_MASK;
2932 					if (byte != 0) {
2933 						drv_usecwait(1000);
2934 						if (attempts >= 3)
2935 							goto restart_aspen_bmc;
2936 						++attempts;
2937 					}
2938 				} while (byte != 0);
2939 				outb(MISMIC_CNTL_REGISTER, aspen_bmc[i].cntl);
2940 				outb(MISMIC_DATA_REGISTER, aspen_bmc[i].data);
2941 				byte = inb(MISMIC_FLAG_REGISTER);
2942 				byte |= 0x1;
2943 				outb(MISMIC_FLAG_REGISTER, byte);
2944 			}
2945 			break;
2946 
2947 		case APIC_POWEROFF_VIA_SITKA_BMC:
2948 			restarts = 0;
2949 restart_sitka_bmc:
2950 			if (++restarts == 3)
2951 				break;
2952 			attempts = 0;
2953 			do {
2954 				byte = inb(SMS_STATUS_REGISTER);
2955 				byte &= SMS_STATE_MASK;
2956 				if ((byte == SMS_READ_STATE) ||
2957 				    (byte == SMS_WRITE_STATE)) {
2958 					drv_usecwait(1000);
2959 					if (attempts >= 3)
2960 						goto restart_sitka_bmc;
2961 					++attempts;
2962 				}
2963 			} while ((byte == SMS_READ_STATE) ||
2964 			    (byte == SMS_WRITE_STATE));
2965 			outb(SMS_COMMAND_REGISTER, SMS_GET_STATUS);
2966 			i = 0;
2967 			for (; i < (sizeof (sitka_bmc)/sizeof (sitka_bmc[0]));
2968 			    i++) {
2969 				attempts = 0;
2970 				do {
2971 					byte = inb(SMS_STATUS_REGISTER);
2972 					byte &= SMS_IBF_MASK;
2973 					if (byte != 0) {
2974 						drv_usecwait(1000);
2975 						if (attempts >= 3)
2976 							goto restart_sitka_bmc;
2977 						++attempts;
2978 					}
2979 				} while (byte != 0);
2980 				outb(sitka_bmc[i].port, sitka_bmc[i].data);
2981 			}
2982 			break;
2983 
2984 		case APIC_POWEROFF_NONE:
2985 
2986 			/* If no APIC direct method, we will try using ACPI */
2987 			if (apic_enable_acpi) {
2988 				if (acpi_poweroff() == 1)
2989 					return;
2990 			} else
2991 				return;
2992 
2993 			break;
2994 	}
2995 	/*
2996 	 * Wait a limited time here for power to go off.
2997 	 * If the power does not go off, then there was a
2998 	 * problem and we should continue to the halt which
2999 	 * prints a message for the user to press a key to
3000 	 * reboot.
3001 	 */
3002 	drv_usecwait(7000000); /* wait seven seconds */
3003 
3004 }
3005 
3006 /*
3007  * Try and disable all interrupts. We just assign interrupts to other
3008  * processors based on policy. If any were bound by user request, we
3009  * let them continue and return failure. We do not bother to check
3010  * for cache affinity while rebinding.
3011  */
3012 
3013 static int
3014 apic_disable_intr(processorid_t cpun)
3015 {
3016 	int bind_cpu = 0, i, hardbound = 0, iflag;
3017 	apic_irq_t *irq_ptr;
3018 
3019 	iflag = intr_clear();
3020 	lock_set(&apic_ioapic_lock);
3021 	apic_cpus[cpun].aci_status &= ~APIC_CPU_INTR_ENABLE;
3022 	lock_clear(&apic_ioapic_lock);
3023 	intr_restore(iflag);
3024 	apic_cpus[cpun].aci_curipl = 0;
3025 	i = apic_min_device_irq;
3026 	for (; i <= apic_max_device_irq; i++) {
3027 		/*
3028 		 * If there are bound interrupts on this cpu, then
3029 		 * rebind them to other processors.
3030 		 */
3031 		if ((irq_ptr = apic_irq_table[i]) != NULL) {
3032 			ASSERT((irq_ptr->airq_temp_cpu == IRQ_UNBOUND) ||
3033 			    (irq_ptr->airq_temp_cpu == IRQ_UNINIT) ||
3034 			    ((irq_ptr->airq_temp_cpu & ~IRQ_USER_BOUND) <
3035 			    apic_nproc));
3036 
3037 			if (irq_ptr->airq_temp_cpu == (cpun | IRQ_USER_BOUND)) {
3038 				hardbound = 1;
3039 				continue;
3040 			}
3041 
3042 			if (irq_ptr->airq_temp_cpu == cpun) {
3043 				do {
3044 					apic_next_bind_cpu += 2;
3045 					bind_cpu = apic_next_bind_cpu / 2;
3046 					if (bind_cpu >= apic_nproc) {
3047 						apic_next_bind_cpu = 1;
3048 						bind_cpu = 0;
3049 
3050 					}
3051 				} while (apic_rebind_all(irq_ptr, bind_cpu, 1));
3052 			}
3053 		}
3054 	}
3055 	if (hardbound) {
3056 		cmn_err(CE_WARN, "Could not disable interrupts on %d"
3057 		    "due to user bound interrupts", cpun);
3058 		return (PSM_FAILURE);
3059 	}
3060 	else
3061 		return (PSM_SUCCESS);
3062 }
3063 
3064 static void
3065 apic_enable_intr(processorid_t cpun)
3066 {
3067 	int	i, iflag;
3068 	apic_irq_t *irq_ptr;
3069 
3070 	iflag = intr_clear();
3071 	lock_set(&apic_ioapic_lock);
3072 	apic_cpus[cpun].aci_status |= APIC_CPU_INTR_ENABLE;
3073 	lock_clear(&apic_ioapic_lock);
3074 	intr_restore(iflag);
3075 
3076 	i = apic_min_device_irq;
3077 	for (i = apic_min_device_irq; i <= apic_max_device_irq; i++) {
3078 		if ((irq_ptr = apic_irq_table[i]) != NULL) {
3079 			if ((irq_ptr->airq_cpu & ~IRQ_USER_BOUND) == cpun) {
3080 				(void) apic_rebind_all(irq_ptr,
3081 				    irq_ptr->airq_cpu, 1);
3082 			}
3083 		}
3084 	}
3085 }
3086 
3087 /*
3088  * apic_introp_xlate() replaces apic_translate_irq() and is
3089  * called only from apic_intr_ops().  With the new ADII framework,
3090  * the priority can no longer be retrived through i_ddi_get_intrspec().
3091  * It has to be passed in from the caller.
3092  */
3093 int
3094 apic_introp_xlate(dev_info_t *dip, struct intrspec *ispec, int type)
3095 {
3096 	char dev_type[16];
3097 	int dev_len, pci_irq, newirq, bustype, devid, busid, i;
3098 	int irqno = ispec->intrspec_vec;
3099 	ddi_acc_handle_t cfg_handle;
3100 	uchar_t ipin;
3101 	struct apic_io_intr *intrp;
3102 	iflag_t intr_flag;
3103 	APIC_HEADER	*hp;
3104 	MADT_INTERRUPT_OVERRIDE	*isop;
3105 	apic_irq_t *airqp;
3106 
3107 	DDI_INTR_IMPLDBG((CE_CONT, "apic_introp_xlate: dip=0x%p name=%s "
3108 	    "type=%d irqno=0x%x\n", (void *)dip, ddi_get_name(dip), type,
3109 	    irqno));
3110 
3111 	if (DDI_INTR_IS_MSI_OR_MSIX(type)) {
3112 		if ((airqp = apic_find_irq(dip, ispec, type)) != NULL)
3113 			return (apic_vector_to_irq[airqp->airq_vector]);
3114 		return (apic_setup_irq_table(dip, irqno, NULL, ispec,
3115 		    NULL, type));
3116 	}
3117 
3118 	bustype = 0;
3119 
3120 	/* check if we have already translated this irq */
3121 	mutex_enter(&airq_mutex);
3122 	newirq = apic_min_device_irq;
3123 	for (; newirq <= apic_max_device_irq; newirq++) {
3124 		airqp = apic_irq_table[newirq];
3125 		while (airqp) {
3126 			if ((airqp->airq_dip == dip) &&
3127 			    (airqp->airq_origirq == irqno) &&
3128 			    (airqp->airq_mps_intr_index != FREE_INDEX)) {
3129 
3130 				mutex_exit(&airq_mutex);
3131 				return (VIRTIRQ(newirq, airqp->airq_share_id));
3132 			}
3133 			airqp = airqp->airq_next;
3134 		}
3135 	}
3136 	mutex_exit(&airq_mutex);
3137 
3138 	if (apic_defconf)
3139 		goto defconf;
3140 
3141 	if ((dip == NULL) || (!apic_irq_translate && !apic_enable_acpi))
3142 		goto nonpci;
3143 
3144 	dev_len = sizeof (dev_type);
3145 	if (ddi_getlongprop_buf(DDI_DEV_T_ANY, ddi_get_parent(dip),
3146 	    DDI_PROP_DONTPASS, "device_type", (caddr_t)dev_type,
3147 	    &dev_len) != DDI_PROP_SUCCESS) {
3148 		goto nonpci;
3149 	}
3150 
3151 	if ((strcmp(dev_type, "pci") == 0) ||
3152 	    (strcmp(dev_type, "pciex") == 0)) {
3153 		/* pci device */
3154 		if (acpica_get_bdf(dip, &busid, &devid, NULL) != 0)
3155 			goto nonpci;
3156 		if (busid == 0 && apic_pci_bus_total == 1)
3157 			busid = (int)apic_single_pci_busid;
3158 
3159 		if (pci_config_setup(dip, &cfg_handle) != DDI_SUCCESS)
3160 			goto nonpci;
3161 		ipin = pci_config_get8(cfg_handle, PCI_CONF_IPIN) - PCI_INTA;
3162 		pci_config_teardown(&cfg_handle);
3163 		if (apic_enable_acpi && !apic_use_acpi_madt_only) {
3164 			if (apic_acpi_translate_pci_irq(dip, busid, devid,
3165 			    ipin, &pci_irq, &intr_flag) != ACPI_PSM_SUCCESS)
3166 				goto nonpci;
3167 
3168 			intr_flag.bustype = BUS_PCI;
3169 			if ((newirq = apic_setup_irq_table(dip, pci_irq, NULL,
3170 			    ispec, &intr_flag, type)) == -1)
3171 				goto nonpci;
3172 			return (newirq);
3173 		} else {
3174 			pci_irq = ((devid & 0x1f) << 2) | (ipin & 0x3);
3175 			if ((intrp = apic_find_io_intr_w_busid(pci_irq, busid))
3176 			    == NULL) {
3177 				if ((pci_irq = apic_handle_pci_pci_bridge(dip,
3178 				    devid, ipin, &intrp)) == -1)
3179 					goto nonpci;
3180 			}
3181 			if ((newirq = apic_setup_irq_table(dip, pci_irq, intrp,
3182 			    ispec, NULL, type)) == -1)
3183 				goto nonpci;
3184 			return (newirq);
3185 		}
3186 	} else if (strcmp(dev_type, "isa") == 0)
3187 		bustype = BUS_ISA;
3188 	else if (strcmp(dev_type, "eisa") == 0)
3189 		bustype = BUS_EISA;
3190 
3191 nonpci:
3192 	if (apic_enable_acpi && !apic_use_acpi_madt_only) {
3193 		/* search iso entries first */
3194 		if (acpi_iso_cnt != 0) {
3195 			hp = (APIC_HEADER *)acpi_isop;
3196 			i = 0;
3197 			while (i < acpi_iso_cnt) {
3198 				if (hp->Type == APIC_XRUPT_OVERRIDE) {
3199 					isop = (MADT_INTERRUPT_OVERRIDE *)hp;
3200 					if (isop->Bus == 0 &&
3201 					    isop->Source == irqno) {
3202 						newirq = isop->Interrupt;
3203 						intr_flag.intr_po =
3204 						    isop->Polarity;
3205 						intr_flag.intr_el =
3206 						    isop->TriggerMode;
3207 						intr_flag.bustype = BUS_ISA;
3208 
3209 						return (apic_setup_irq_table(
3210 						    dip, newirq, NULL, ispec,
3211 						    &intr_flag, type));
3212 
3213 					}
3214 					i++;
3215 				}
3216 				hp = (APIC_HEADER *)(((char *)hp) +
3217 				    hp->Length);
3218 			}
3219 		}
3220 		intr_flag.intr_po = INTR_PO_ACTIVE_HIGH;
3221 		intr_flag.intr_el = INTR_EL_EDGE;
3222 		intr_flag.bustype = BUS_ISA;
3223 		return (apic_setup_irq_table(dip, irqno, NULL, ispec,
3224 		    &intr_flag, type));
3225 	} else {
3226 		if (bustype == 0)
3227 			bustype = eisa_level_intr_mask ? BUS_EISA : BUS_ISA;
3228 		for (i = 0; i < 2; i++) {
3229 			if (((busid = apic_find_bus_id(bustype)) != -1) &&
3230 			    ((intrp = apic_find_io_intr_w_busid(irqno, busid))
3231 			    != NULL)) {
3232 				if ((newirq = apic_setup_irq_table(dip, irqno,
3233 				    intrp, ispec, NULL, type)) != -1) {
3234 					return (newirq);
3235 				}
3236 				goto defconf;
3237 			}
3238 			bustype = (bustype == BUS_EISA) ? BUS_ISA : BUS_EISA;
3239 		}
3240 	}
3241 
3242 /* MPS default configuration */
3243 defconf:
3244 	newirq = apic_setup_irq_table(dip, irqno, NULL, ispec, NULL, type);
3245 	if (newirq == -1)
3246 		return (newirq);
3247 	ASSERT(IRQINDEX(newirq) == irqno);
3248 	ASSERT(apic_irq_table[irqno]);
3249 	return (newirq);
3250 }
3251 
3252 
3253 
3254 
3255 
3256 
3257 /*
3258  * On machines with PCI-PCI bridges, a device behind a PCI-PCI bridge
3259  * needs special handling.  We may need to chase up the device tree,
3260  * using the PCI-PCI Bridge specification's "rotating IPIN assumptions",
3261  * to find the IPIN at the root bus that relates to the IPIN on the
3262  * subsidiary bus (for ACPI or MP).  We may, however, have an entry
3263  * in the MP table or the ACPI namespace for this device itself.
3264  * We handle both cases in the search below.
3265  */
3266 /* this is the non-acpi version */
3267 static int
3268 apic_handle_pci_pci_bridge(dev_info_t *idip, int child_devno, int child_ipin,
3269 			struct apic_io_intr **intrp)
3270 {
3271 	dev_info_t *dipp, *dip;
3272 	int pci_irq;
3273 	ddi_acc_handle_t cfg_handle;
3274 	int bridge_devno, bridge_bus;
3275 	int ipin;
3276 
3277 	dip = idip;
3278 
3279 	/*CONSTCOND*/
3280 	while (1) {
3281 		if ((dipp = ddi_get_parent(dip)) == (dev_info_t *)NULL)
3282 			return (-1);
3283 		if ((pci_config_setup(dipp, &cfg_handle) == DDI_SUCCESS) &&
3284 		    (pci_config_get8(cfg_handle, PCI_CONF_BASCLASS) ==
3285 		    PCI_CLASS_BRIDGE) && (pci_config_get8(cfg_handle,
3286 		    PCI_CONF_SUBCLASS) == PCI_BRIDGE_PCI)) {
3287 			pci_config_teardown(&cfg_handle);
3288 			if (acpica_get_bdf(dipp, &bridge_bus, &bridge_devno,
3289 			    NULL) != 0)
3290 				return (-1);
3291 			/*
3292 			 * This is the rotating scheme that Compaq is using
3293 			 * and documented in the pci to pci spec.  Also, if
3294 			 * the pci to pci bridge is behind another pci to
3295 			 * pci bridge, then it need to keep transversing
3296 			 * up until an interrupt entry is found or reach
3297 			 * the top of the tree
3298 			 */
3299 			ipin = (child_devno + child_ipin) % PCI_INTD;
3300 				if (bridge_bus == 0 && apic_pci_bus_total == 1)
3301 					bridge_bus = (int)apic_single_pci_busid;
3302 				pci_irq = ((bridge_devno & 0x1f) << 2) |
3303 				    (ipin & 0x3);
3304 				if ((*intrp = apic_find_io_intr_w_busid(pci_irq,
3305 				    bridge_bus)) != NULL) {
3306 					return (pci_irq);
3307 				}
3308 			dip = dipp;
3309 			child_devno = bridge_devno;
3310 			child_ipin = ipin;
3311 		} else
3312 			return (-1);
3313 	}
3314 	/*LINTED: function will not fall off the bottom */
3315 }
3316 
3317 
3318 
3319 
3320 static uchar_t
3321 acpi_find_ioapic(int irq)
3322 {
3323 	int i;
3324 
3325 	for (i = 0; i < apic_io_max; i++) {
3326 		if (irq >= apic_io_vectbase[i] && irq <= apic_io_vectend[i])
3327 			return (i);
3328 	}
3329 	return (0xFF);	/* shouldn't happen */
3330 }
3331 
3332 /*
3333  * See if two irqs are compatible for sharing a vector.
3334  * Currently we only support sharing of PCI devices.
3335  */
3336 static int
3337 acpi_intr_compatible(iflag_t iflag1, iflag_t iflag2)
3338 {
3339 	uint_t	level1, po1;
3340 	uint_t	level2, po2;
3341 
3342 	/* Assume active high by default */
3343 	po1 = 0;
3344 	po2 = 0;
3345 
3346 	if (iflag1.bustype != iflag2.bustype || iflag1.bustype != BUS_PCI)
3347 		return (0);
3348 
3349 	if (iflag1.intr_el == INTR_EL_CONFORM)
3350 		level1 = AV_LEVEL;
3351 	else
3352 		level1 = (iflag1.intr_el == INTR_EL_LEVEL) ? AV_LEVEL : 0;
3353 
3354 	if (level1 && ((iflag1.intr_po == INTR_PO_ACTIVE_LOW) ||
3355 	    (iflag1.intr_po == INTR_PO_CONFORM)))
3356 		po1 = AV_ACTIVE_LOW;
3357 
3358 	if (iflag2.intr_el == INTR_EL_CONFORM)
3359 		level2 = AV_LEVEL;
3360 	else
3361 		level2 = (iflag2.intr_el == INTR_EL_LEVEL) ? AV_LEVEL : 0;
3362 
3363 	if (level2 && ((iflag2.intr_po == INTR_PO_ACTIVE_LOW) ||
3364 	    (iflag2.intr_po == INTR_PO_CONFORM)))
3365 		po2 = AV_ACTIVE_LOW;
3366 
3367 	if ((level1 == level2) && (po1 == po2))
3368 		return (1);
3369 
3370 	return (0);
3371 }
3372 
3373 /*
3374  * Attempt to share vector with someone else
3375  */
3376 static int
3377 apic_share_vector(int irqno, iflag_t *intr_flagp, short intr_index, int ipl,
3378 	uchar_t ioapicindex, uchar_t ipin, apic_irq_t **irqptrp)
3379 {
3380 #ifdef DEBUG
3381 	apic_irq_t *tmpirqp = NULL;
3382 #endif /* DEBUG */
3383 	apic_irq_t *irqptr, dummyirq;
3384 	int	newirq, chosen_irq = -1, share = 127;
3385 	int	lowest, highest, i;
3386 	uchar_t	share_id;
3387 
3388 	DDI_INTR_IMPLDBG((CE_CONT, "apic_share_vector: irqno=0x%x "
3389 	    "intr_index=0x%x ipl=0x%x\n", irqno, intr_index, ipl));
3390 
3391 	highest = apic_ipltopri[ipl] + APIC_VECTOR_MASK;
3392 	lowest = apic_ipltopri[ipl-1] + APIC_VECTOR_PER_IPL;
3393 
3394 	if (highest < lowest) /* Both ipl and ipl-1 map to same pri */
3395 		lowest -= APIC_VECTOR_PER_IPL;
3396 	dummyirq.airq_mps_intr_index = intr_index;
3397 	dummyirq.airq_ioapicindex = ioapicindex;
3398 	dummyirq.airq_intin_no = ipin;
3399 	if (intr_flagp)
3400 		dummyirq.airq_iflag = *intr_flagp;
3401 	apic_record_rdt_entry(&dummyirq, irqno);
3402 	for (i = lowest; i <= highest; i++) {
3403 		newirq = apic_vector_to_irq[i];
3404 		if (newirq == APIC_RESV_IRQ)
3405 			continue;
3406 		irqptr = apic_irq_table[newirq];
3407 
3408 		if ((dummyirq.airq_rdt_entry & 0xFF00) !=
3409 		    (irqptr->airq_rdt_entry & 0xFF00))
3410 			/* not compatible */
3411 			continue;
3412 
3413 		if (irqptr->airq_share < share) {
3414 			share = irqptr->airq_share;
3415 			chosen_irq = newirq;
3416 		}
3417 	}
3418 	if (chosen_irq != -1) {
3419 		/*
3420 		 * Assign a share id which is free or which is larger
3421 		 * than the largest one.
3422 		 */
3423 		share_id = 1;
3424 		mutex_enter(&airq_mutex);
3425 		irqptr = apic_irq_table[chosen_irq];
3426 		while (irqptr) {
3427 			if (irqptr->airq_mps_intr_index == FREE_INDEX) {
3428 				share_id = irqptr->airq_share_id;
3429 				break;
3430 			}
3431 			if (share_id <= irqptr->airq_share_id)
3432 				share_id = irqptr->airq_share_id + 1;
3433 #ifdef DEBUG
3434 			tmpirqp = irqptr;
3435 #endif /* DEBUG */
3436 			irqptr = irqptr->airq_next;
3437 		}
3438 		if (!irqptr) {
3439 			irqptr = kmem_zalloc(sizeof (apic_irq_t), KM_SLEEP);
3440 			irqptr->airq_temp_cpu = IRQ_UNINIT;
3441 			irqptr->airq_next =
3442 			    apic_irq_table[chosen_irq]->airq_next;
3443 			apic_irq_table[chosen_irq]->airq_next = irqptr;
3444 #ifdef	DEBUG
3445 			tmpirqp = apic_irq_table[chosen_irq];
3446 #endif /* DEBUG */
3447 		}
3448 		irqptr->airq_mps_intr_index = intr_index;
3449 		irqptr->airq_ioapicindex = ioapicindex;
3450 		irqptr->airq_intin_no = ipin;
3451 		if (intr_flagp)
3452 			irqptr->airq_iflag = *intr_flagp;
3453 		irqptr->airq_vector = apic_irq_table[chosen_irq]->airq_vector;
3454 		irqptr->airq_share_id = share_id;
3455 		apic_record_rdt_entry(irqptr, irqno);
3456 		*irqptrp = irqptr;
3457 #ifdef	DEBUG
3458 		/* shuffle the pointers to test apic_delspl path */
3459 		if (tmpirqp) {
3460 			tmpirqp->airq_next = irqptr->airq_next;
3461 			irqptr->airq_next = apic_irq_table[chosen_irq];
3462 			apic_irq_table[chosen_irq] = irqptr;
3463 		}
3464 #endif /* DEBUG */
3465 		mutex_exit(&airq_mutex);
3466 		return (VIRTIRQ(chosen_irq, share_id));
3467 	}
3468 	return (-1);
3469 }
3470 
3471 /*
3472  *
3473  */
3474 static int
3475 apic_setup_irq_table(dev_info_t *dip, int irqno, struct apic_io_intr *intrp,
3476     struct intrspec *ispec, iflag_t *intr_flagp, int type)
3477 {
3478 	int origirq = ispec->intrspec_vec;
3479 	uchar_t ipl = ispec->intrspec_pri;
3480 	int	newirq, intr_index;
3481 	uchar_t	ipin, ioapic, ioapicindex, vector;
3482 	apic_irq_t *irqptr;
3483 	major_t	major;
3484 	dev_info_t	*sdip;
3485 
3486 	DDI_INTR_IMPLDBG((CE_CONT, "apic_setup_irq_table: dip=0x%p type=%d "
3487 	    "irqno=0x%x origirq=0x%x\n", (void *)dip, type, irqno, origirq));
3488 
3489 	ASSERT(ispec != NULL);
3490 
3491 	major =  (dip != NULL) ? ddi_name_to_major(ddi_get_name(dip)) : 0;
3492 
3493 	if (DDI_INTR_IS_MSI_OR_MSIX(type)) {
3494 		/* MSI/X doesn't need to setup ioapic stuffs */
3495 		ioapicindex = 0xff;
3496 		ioapic = 0xff;
3497 		ipin = (uchar_t)0xff;
3498 		intr_index = (type == DDI_INTR_TYPE_MSI) ? MSI_INDEX :
3499 		    MSIX_INDEX;
3500 		mutex_enter(&airq_mutex);
3501 		if ((irqno = apic_allocate_irq(apic_first_avail_irq)) == -1) {
3502 			mutex_exit(&airq_mutex);
3503 			/* need an irq for MSI/X to index into autovect[] */
3504 			cmn_err(CE_WARN, "No interrupt irq: %s instance %d",
3505 			    ddi_get_name(dip), ddi_get_instance(dip));
3506 			return (-1);
3507 		}
3508 		mutex_exit(&airq_mutex);
3509 
3510 	} else if (intrp != NULL) {
3511 		intr_index = (int)(intrp - apic_io_intrp);
3512 		ioapic = intrp->intr_destid;
3513 		ipin = intrp->intr_destintin;
3514 		/* Find ioapicindex. If destid was ALL, we will exit with 0. */
3515 		for (ioapicindex = apic_io_max - 1; ioapicindex; ioapicindex--)
3516 			if (apic_io_id[ioapicindex] == ioapic)
3517 				break;
3518 		ASSERT((ioapic == apic_io_id[ioapicindex]) ||
3519 		    (ioapic == INTR_ALL_APIC));
3520 
3521 		/* check whether this intin# has been used by another irqno */
3522 		if ((newirq = apic_find_intin(ioapicindex, ipin)) != -1) {
3523 			return (newirq);
3524 		}
3525 
3526 	} else if (intr_flagp != NULL) {
3527 		/* ACPI case */
3528 		intr_index = ACPI_INDEX;
3529 		ioapicindex = acpi_find_ioapic(irqno);
3530 		ASSERT(ioapicindex != 0xFF);
3531 		ioapic = apic_io_id[ioapicindex];
3532 		ipin = irqno - apic_io_vectbase[ioapicindex];
3533 		if (apic_irq_table[irqno] &&
3534 		    apic_irq_table[irqno]->airq_mps_intr_index == ACPI_INDEX) {
3535 			ASSERT(apic_irq_table[irqno]->airq_intin_no == ipin &&
3536 			    apic_irq_table[irqno]->airq_ioapicindex ==
3537 			    ioapicindex);
3538 			return (irqno);
3539 		}
3540 
3541 	} else {
3542 		/* default configuration */
3543 		ioapicindex = 0;
3544 		ioapic = apic_io_id[ioapicindex];
3545 		ipin = (uchar_t)irqno;
3546 		intr_index = DEFAULT_INDEX;
3547 	}
3548 
3549 	if (ispec == NULL) {
3550 		APIC_VERBOSE_IOAPIC((CE_WARN, "No intrspec for irqno = %x\n",
3551 		    irqno));
3552 	} else if ((vector = apic_allocate_vector(ipl, irqno, 0)) == 0) {
3553 		if ((newirq = apic_share_vector(irqno, intr_flagp, intr_index,
3554 		    ipl, ioapicindex, ipin, &irqptr)) != -1) {
3555 			irqptr->airq_ipl = ipl;
3556 			irqptr->airq_origirq = (uchar_t)origirq;
3557 			irqptr->airq_dip = dip;
3558 			irqptr->airq_major = major;
3559 			sdip = apic_irq_table[IRQINDEX(newirq)]->airq_dip;
3560 			/* This is OK to do really */
3561 			if (sdip == NULL) {
3562 				cmn_err(CE_WARN, "Sharing vectors: %s"
3563 				    " instance %d and SCI",
3564 				    ddi_get_name(dip), ddi_get_instance(dip));
3565 			} else {
3566 				cmn_err(CE_WARN, "Sharing vectors: %s"
3567 				    " instance %d and %s instance %d",
3568 				    ddi_get_name(sdip), ddi_get_instance(sdip),
3569 				    ddi_get_name(dip), ddi_get_instance(dip));
3570 			}
3571 			return (newirq);
3572 		}
3573 		/* try high priority allocation now  that share has failed */
3574 		if ((vector = apic_allocate_vector(ipl, irqno, 1)) == 0) {
3575 			cmn_err(CE_WARN, "No interrupt vector: %s instance %d",
3576 			    ddi_get_name(dip), ddi_get_instance(dip));
3577 			return (-1);
3578 		}
3579 	}
3580 
3581 	mutex_enter(&airq_mutex);
3582 	if (apic_irq_table[irqno] == NULL) {
3583 		irqptr = kmem_zalloc(sizeof (apic_irq_t), KM_SLEEP);
3584 		irqptr->airq_temp_cpu = IRQ_UNINIT;
3585 		apic_irq_table[irqno] = irqptr;
3586 	} else {
3587 		irqptr = apic_irq_table[irqno];
3588 		if (irqptr->airq_mps_intr_index != FREE_INDEX) {
3589 			/*
3590 			 * The slot is used by another irqno, so allocate
3591 			 * a free irqno for this interrupt
3592 			 */
3593 			newirq = apic_allocate_irq(apic_first_avail_irq);
3594 			if (newirq == -1) {
3595 				mutex_exit(&airq_mutex);
3596 				return (-1);
3597 			}
3598 			irqno = newirq;
3599 			irqptr = apic_irq_table[irqno];
3600 			if (irqptr == NULL) {
3601 				irqptr = kmem_zalloc(sizeof (apic_irq_t),
3602 				    KM_SLEEP);
3603 				irqptr->airq_temp_cpu = IRQ_UNINIT;
3604 				apic_irq_table[irqno] = irqptr;
3605 			}
3606 			apic_modify_vector(vector, newirq);
3607 		}
3608 	}
3609 	apic_max_device_irq = max(irqno, apic_max_device_irq);
3610 	apic_min_device_irq = min(irqno, apic_min_device_irq);
3611 	mutex_exit(&airq_mutex);
3612 	irqptr->airq_ioapicindex = ioapicindex;
3613 	irqptr->airq_intin_no = ipin;
3614 	irqptr->airq_ipl = ipl;
3615 	irqptr->airq_vector = vector;
3616 	irqptr->airq_origirq = (uchar_t)origirq;
3617 	irqptr->airq_share_id = 0;
3618 	irqptr->airq_mps_intr_index = (short)intr_index;
3619 	irqptr->airq_dip = dip;
3620 	irqptr->airq_major = major;
3621 	irqptr->airq_cpu = apic_bind_intr(dip, irqno, ioapic, ipin);
3622 	if (intr_flagp)
3623 		irqptr->airq_iflag = *intr_flagp;
3624 
3625 	if (!DDI_INTR_IS_MSI_OR_MSIX(type)) {
3626 		/* setup I/O APIC entry for non-MSI/X interrupts */
3627 		apic_record_rdt_entry(irqptr, irqno);
3628 	}
3629 	return (irqno);
3630 }
3631 
3632 /*
3633  * return the cpu to which this intr should be bound.
3634  * Check properties or any other mechanism to see if user wants it
3635  * bound to a specific CPU. If so, return the cpu id with high bit set.
3636  * If not, use the policy to choose a cpu and return the id.
3637  */
3638 uchar_t
3639 apic_bind_intr(dev_info_t *dip, int irq, uchar_t ioapicid, uchar_t intin)
3640 {
3641 	int	instance, instno, prop_len, bind_cpu, count;
3642 	uint_t	i, rc;
3643 	uchar_t	cpu;
3644 	major_t	major;
3645 	char	*name, *drv_name, *prop_val, *cptr;
3646 	char	prop_name[32];
3647 
3648 
3649 	if (apic_intr_policy == INTR_LOWEST_PRIORITY)
3650 		return (IRQ_UNBOUND);
3651 
3652 	drv_name = NULL;
3653 	rc = DDI_PROP_NOT_FOUND;
3654 	major = (major_t)-1;
3655 	if (dip != NULL) {
3656 		name = ddi_get_name(dip);
3657 		major = ddi_name_to_major(name);
3658 		drv_name = ddi_major_to_name(major);
3659 		instance = ddi_get_instance(dip);
3660 		if (apic_intr_policy == INTR_ROUND_ROBIN_WITH_AFFINITY) {
3661 			i = apic_min_device_irq;
3662 			for (; i <= apic_max_device_irq; i++) {
3663 
3664 				if ((i == irq) || (apic_irq_table[i] == NULL) ||
3665 				    (apic_irq_table[i]->airq_mps_intr_index
3666 				    == FREE_INDEX))
3667 					continue;
3668 
3669 				if ((apic_irq_table[i]->airq_major == major) &&
3670 				    (!(apic_irq_table[i]->airq_cpu &
3671 				    IRQ_USER_BOUND))) {
3672 
3673 					cpu = apic_irq_table[i]->airq_cpu;
3674 
3675 					cmn_err(CE_CONT,
3676 					    "!pcplusmp: %s (%s) instance #%d "
3677 					    "vector 0x%x ioapic 0x%x "
3678 					    "intin 0x%x is bound to cpu %d\n",
3679 					    name, drv_name, instance, irq,
3680 					    ioapicid, intin, cpu);
3681 					return (cpu);
3682 				}
3683 			}
3684 		}
3685 		/*
3686 		 * search for "drvname"_intpt_bind_cpus property first, the
3687 		 * syntax of the property should be "a[,b,c,...]" where
3688 		 * instance 0 binds to cpu a, instance 1 binds to cpu b,
3689 		 * instance 3 binds to cpu c...
3690 		 * ddi_getlongprop() will search /option first, then /
3691 		 * if "drvname"_intpt_bind_cpus doesn't exist, then find
3692 		 * intpt_bind_cpus property.  The syntax is the same, and
3693 		 * it applies to all the devices if its "drvname" specific
3694 		 * property doesn't exist
3695 		 */
3696 		(void) strcpy(prop_name, drv_name);
3697 		(void) strcat(prop_name, "_intpt_bind_cpus");
3698 		rc = ddi_getlongprop(DDI_DEV_T_ANY, dip, 0, prop_name,
3699 		    (caddr_t)&prop_val, &prop_len);
3700 		if (rc != DDI_PROP_SUCCESS) {
3701 			rc = ddi_getlongprop(DDI_DEV_T_ANY, dip, 0,
3702 			    "intpt_bind_cpus", (caddr_t)&prop_val, &prop_len);
3703 		}
3704 	}
3705 	if (rc == DDI_PROP_SUCCESS) {
3706 		for (i = count = 0; i < (prop_len - 1); i++)
3707 			if (prop_val[i] == ',')
3708 				count++;
3709 		if (prop_val[i-1] != ',')
3710 			count++;
3711 		/*
3712 		 * if somehow the binding instances defined in the
3713 		 * property are not enough for this instno., then
3714 		 * reuse the pattern for the next instance until
3715 		 * it reaches the requested instno
3716 		 */
3717 		instno = instance % count;
3718 		i = 0;
3719 		cptr = prop_val;
3720 		while (i < instno)
3721 			if (*cptr++ == ',')
3722 				i++;
3723 		bind_cpu = stoi(&cptr);
3724 		kmem_free(prop_val, prop_len);
3725 		/* if specific cpu is bogus, then default to cpu 0 */
3726 		if (bind_cpu >= apic_nproc) {
3727 			cmn_err(CE_WARN, "pcplusmp: %s=%s: CPU %d not present",
3728 			    prop_name, prop_val, bind_cpu);
3729 			bind_cpu = 0;
3730 		} else {
3731 			/* indicate that we are bound at user request */
3732 			bind_cpu |= IRQ_USER_BOUND;
3733 		}
3734 		/*
3735 		 * no need to check apic_cpus[].aci_status, if specific cpu is
3736 		 * not up, then post_cpu_start will handle it.
3737 		 */
3738 	} else {
3739 		bind_cpu = apic_next_bind_cpu++;
3740 		if (bind_cpu >= apic_nproc) {
3741 			apic_next_bind_cpu = 1;
3742 			bind_cpu = 0;
3743 		}
3744 	}
3745 	if (drv_name != NULL)
3746 		cmn_err(CE_CONT, "!pcplusmp: %s (%s) instance %d "
3747 		    "vector 0x%x ioapic 0x%x intin 0x%x is bound to cpu %d\n",
3748 		    name, drv_name, instance,
3749 		    irq, ioapicid, intin, bind_cpu & ~IRQ_USER_BOUND);
3750 	else
3751 		cmn_err(CE_CONT, "!pcplusmp: "
3752 		    "vector 0x%x ioapic 0x%x intin 0x%x is bound to cpu %d\n",
3753 		    irq, ioapicid, intin, bind_cpu & ~IRQ_USER_BOUND);
3754 
3755 	return ((uchar_t)bind_cpu);
3756 }
3757 
3758 static struct apic_io_intr *
3759 apic_find_io_intr_w_busid(int irqno, int busid)
3760 {
3761 	struct	apic_io_intr	*intrp;
3762 
3763 	/*
3764 	 * It can have more than 1 entry with same source bus IRQ,
3765 	 * but unique with the source bus id
3766 	 */
3767 	intrp = apic_io_intrp;
3768 	if (intrp != NULL) {
3769 		while (intrp->intr_entry == APIC_IO_INTR_ENTRY) {
3770 			if (intrp->intr_irq == irqno &&
3771 			    intrp->intr_busid == busid &&
3772 			    intrp->intr_type == IO_INTR_INT)
3773 				return (intrp);
3774 			intrp++;
3775 		}
3776 	}
3777 	APIC_VERBOSE_IOAPIC((CE_NOTE, "Did not find io intr for irqno:"
3778 	    "busid %x:%x\n", irqno, busid));
3779 	return ((struct apic_io_intr *)NULL);
3780 }
3781 
3782 
3783 struct mps_bus_info {
3784 	char	*bus_name;
3785 	int	bus_id;
3786 } bus_info_array[] = {
3787 	"ISA ", BUS_ISA,
3788 	"PCI ", BUS_PCI,
3789 	"EISA ", BUS_EISA,
3790 	"XPRESS", BUS_XPRESS,
3791 	"PCMCIA", BUS_PCMCIA,
3792 	"VL ", BUS_VL,
3793 	"CBUS ", BUS_CBUS,
3794 	"CBUSII", BUS_CBUSII,
3795 	"FUTURE", BUS_FUTURE,
3796 	"INTERN", BUS_INTERN,
3797 	"MBI ", BUS_MBI,
3798 	"MBII ", BUS_MBII,
3799 	"MPI ", BUS_MPI,
3800 	"MPSA ", BUS_MPSA,
3801 	"NUBUS ", BUS_NUBUS,
3802 	"TC ", BUS_TC,
3803 	"VME ", BUS_VME
3804 };
3805 
3806 static int
3807 apic_find_bus_type(char *bus)
3808 {
3809 	int	i = 0;
3810 
3811 	for (; i < sizeof (bus_info_array)/sizeof (struct mps_bus_info); i++)
3812 		if (strncmp(bus, bus_info_array[i].bus_name,
3813 		    strlen(bus_info_array[i].bus_name)) == 0)
3814 			return (bus_info_array[i].bus_id);
3815 	APIC_VERBOSE_IOAPIC((CE_WARN, "Did not find bus type for bus %s", bus));
3816 	return (0);
3817 }
3818 
3819 static int
3820 apic_find_bus(int busid)
3821 {
3822 	struct	apic_bus	*busp;
3823 
3824 	busp = apic_busp;
3825 	while (busp->bus_entry == APIC_BUS_ENTRY) {
3826 		if (busp->bus_id == busid)
3827 			return (apic_find_bus_type((char *)&busp->bus_str1));
3828 		busp++;
3829 	}
3830 	APIC_VERBOSE_IOAPIC((CE_WARN, "Did not find bus for bus id %x", busid));
3831 	return (0);
3832 }
3833 
3834 static int
3835 apic_find_bus_id(int bustype)
3836 {
3837 	struct	apic_bus	*busp;
3838 
3839 	busp = apic_busp;
3840 	while (busp->bus_entry == APIC_BUS_ENTRY) {
3841 		if (apic_find_bus_type((char *)&busp->bus_str1) == bustype)
3842 			return (busp->bus_id);
3843 		busp++;
3844 	}
3845 	APIC_VERBOSE_IOAPIC((CE_WARN, "Did not find bus id for bustype %x",
3846 	    bustype));
3847 	return (-1);
3848 }
3849 
3850 /*
3851  * Check if a particular irq need to be reserved for any io_intr
3852  */
3853 static struct apic_io_intr *
3854 apic_find_io_intr(int irqno)
3855 {
3856 	struct	apic_io_intr	*intrp;
3857 
3858 	intrp = apic_io_intrp;
3859 	if (intrp != NULL) {
3860 		while (intrp->intr_entry == APIC_IO_INTR_ENTRY) {
3861 			if (intrp->intr_irq == irqno &&
3862 			    intrp->intr_type == IO_INTR_INT)
3863 				return (intrp);
3864 			intrp++;
3865 		}
3866 	}
3867 	return ((struct apic_io_intr *)NULL);
3868 }
3869 
3870 /*
3871  * Check if the given ioapicindex intin combination has already been assigned
3872  * an irq. If so return irqno. Else -1
3873  */
3874 static int
3875 apic_find_intin(uchar_t ioapic, uchar_t intin)
3876 {
3877 	apic_irq_t *irqptr;
3878 	int	i;
3879 
3880 	/* find ioapic and intin in the apic_irq_table[] and return the index */
3881 	for (i = apic_min_device_irq; i <= apic_max_device_irq; i++) {
3882 		irqptr = apic_irq_table[i];
3883 		while (irqptr) {
3884 			if ((irqptr->airq_mps_intr_index >= 0) &&
3885 			    (irqptr->airq_intin_no == intin) &&
3886 			    (irqptr->airq_ioapicindex == ioapic)) {
3887 				APIC_VERBOSE_IOAPIC((CE_NOTE, "!Found irq "
3888 				    "entry for ioapic:intin %x:%x "
3889 				    "shared interrupts ?", ioapic, intin));
3890 				return (i);
3891 			}
3892 			irqptr = irqptr->airq_next;
3893 		}
3894 	}
3895 	return (-1);
3896 }
3897 
3898 int
3899 apic_allocate_irq(int irq)
3900 {
3901 	int	freeirq, i;
3902 
3903 	if ((freeirq = apic_find_free_irq(irq, (APIC_RESV_IRQ - 1))) == -1)
3904 		if ((freeirq = apic_find_free_irq(APIC_FIRST_FREE_IRQ,
3905 		    (irq - 1))) == -1) {
3906 			/*
3907 			 * if BIOS really defines every single irq in the mps
3908 			 * table, then don't worry about conflicting with
3909 			 * them, just use any free slot in apic_irq_table
3910 			 */
3911 			for (i = APIC_FIRST_FREE_IRQ; i < APIC_RESV_IRQ; i++) {
3912 				if ((apic_irq_table[i] == NULL) ||
3913 				    apic_irq_table[i]->airq_mps_intr_index ==
3914 				    FREE_INDEX) {
3915 				freeirq = i;
3916 				break;
3917 			}
3918 		}
3919 		if (freeirq == -1) {
3920 			/* This shouldn't happen, but just in case */
3921 			cmn_err(CE_WARN, "pcplusmp: NO available IRQ");
3922 			return (-1);
3923 		}
3924 	}
3925 	if (apic_irq_table[freeirq] == NULL) {
3926 		apic_irq_table[freeirq] =
3927 		    kmem_zalloc(sizeof (apic_irq_t), KM_NOSLEEP);
3928 		if (apic_irq_table[freeirq] == NULL) {
3929 			cmn_err(CE_WARN, "pcplusmp: NO memory to allocate IRQ");
3930 			return (-1);
3931 		}
3932 		apic_irq_table[freeirq]->airq_mps_intr_index = FREE_INDEX;
3933 	}
3934 	return (freeirq);
3935 }
3936 
3937 static int
3938 apic_find_free_irq(int start, int end)
3939 {
3940 	int	i;
3941 
3942 	for (i = start; i <= end; i++)
3943 		/* Check if any I/O entry needs this IRQ */
3944 		if (apic_find_io_intr(i) == NULL) {
3945 			/* Then see if it is free */
3946 			if ((apic_irq_table[i] == NULL) ||
3947 			    (apic_irq_table[i]->airq_mps_intr_index ==
3948 			    FREE_INDEX)) {
3949 				return (i);
3950 			}
3951 		}
3952 	return (-1);
3953 }
3954 
3955 /*
3956  * Allocate a free vector for irq at ipl. Takes care of merging of multiple
3957  * IPLs into a single APIC level as well as stretching some IPLs onto multiple
3958  * levels. APIC_HI_PRI_VECTS interrupts are reserved for high priority
3959  * requests and allocated only when pri is set.
3960  */
3961 static uchar_t
3962 apic_allocate_vector(int ipl, int irq, int pri)
3963 {
3964 	int	lowest, highest, i;
3965 
3966 	highest = apic_ipltopri[ipl] + APIC_VECTOR_MASK;
3967 	lowest = apic_ipltopri[ipl - 1] + APIC_VECTOR_PER_IPL;
3968 
3969 	if (highest < lowest) /* Both ipl and ipl - 1 map to same pri */
3970 		lowest -= APIC_VECTOR_PER_IPL;
3971 
3972 #ifdef	DEBUG
3973 	if (apic_restrict_vector)	/* for testing shared interrupt logic */
3974 		highest = lowest + apic_restrict_vector + APIC_HI_PRI_VECTS;
3975 #endif /* DEBUG */
3976 	if (pri == 0)
3977 		highest -= APIC_HI_PRI_VECTS;
3978 
3979 	for (i = lowest; i < highest; i++) {
3980 		if (APIC_CHECK_RESERVE_VECTORS(i))
3981 			continue;
3982 		if (apic_vector_to_irq[i] == APIC_RESV_IRQ) {
3983 			apic_vector_to_irq[i] = (uchar_t)irq;
3984 			return (i);
3985 		}
3986 	}
3987 
3988 	return (0);
3989 }
3990 
3991 static void
3992 apic_modify_vector(uchar_t vector, int irq)
3993 {
3994 	apic_vector_to_irq[vector] = (uchar_t)irq;
3995 }
3996 
3997 /*
3998  * Mark vector as being in the process of being deleted. Interrupts
3999  * may still come in on some CPU. The moment an interrupt comes with
4000  * the new vector, we know we can free the old one. Called only from
4001  * addspl and delspl with interrupts disabled. Because an interrupt
4002  * can be shared, but no interrupt from either device may come in,
4003  * we also use a timeout mechanism, which we arbitrarily set to
4004  * apic_revector_timeout microseconds.
4005  */
4006 static void
4007 apic_mark_vector(uchar_t oldvector, uchar_t newvector)
4008 {
4009 	int iflag = intr_clear();
4010 	lock_set(&apic_revector_lock);
4011 	if (!apic_oldvec_to_newvec) {
4012 		apic_oldvec_to_newvec =
4013 		    kmem_zalloc(sizeof (newvector) * APIC_MAX_VECTOR * 2,
4014 		    KM_NOSLEEP);
4015 
4016 		if (!apic_oldvec_to_newvec) {
4017 			/*
4018 			 * This failure is not catastrophic.
4019 			 * But, the oldvec will never be freed.
4020 			 */
4021 			apic_error |= APIC_ERR_MARK_VECTOR_FAIL;
4022 			lock_clear(&apic_revector_lock);
4023 			intr_restore(iflag);
4024 			return;
4025 		}
4026 		apic_newvec_to_oldvec = &apic_oldvec_to_newvec[APIC_MAX_VECTOR];
4027 	}
4028 
4029 	/* See if we already did this for drivers which do double addintrs */
4030 	if (apic_oldvec_to_newvec[oldvector] != newvector) {
4031 		apic_oldvec_to_newvec[oldvector] = newvector;
4032 		apic_newvec_to_oldvec[newvector] = oldvector;
4033 		apic_revector_pending++;
4034 	}
4035 	lock_clear(&apic_revector_lock);
4036 	intr_restore(iflag);
4037 	(void) timeout(apic_xlate_vector_free_timeout_handler,
4038 	    (void *)(uintptr_t)oldvector, drv_usectohz(apic_revector_timeout));
4039 }
4040 
4041 /*
4042  * xlate_vector is called from intr_enter if revector_pending is set.
4043  * It will xlate it if needed and mark the old vector as free.
4044  */
4045 static uchar_t
4046 apic_xlate_vector(uchar_t vector)
4047 {
4048 	uchar_t	newvector, oldvector = 0;
4049 
4050 	lock_set(&apic_revector_lock);
4051 	/* Do we really need to do this ? */
4052 	if (!apic_revector_pending) {
4053 		lock_clear(&apic_revector_lock);
4054 		return (vector);
4055 	}
4056 	if ((newvector = apic_oldvec_to_newvec[vector]) != 0)
4057 		oldvector = vector;
4058 	else {
4059 		/*
4060 		 * The incoming vector is new . See if a stale entry is
4061 		 * remaining
4062 		 */
4063 		if ((oldvector = apic_newvec_to_oldvec[vector]) != 0)
4064 			newvector = vector;
4065 	}
4066 
4067 	if (oldvector) {
4068 		apic_revector_pending--;
4069 		apic_oldvec_to_newvec[oldvector] = 0;
4070 		apic_newvec_to_oldvec[newvector] = 0;
4071 		apic_free_vector(oldvector);
4072 		lock_clear(&apic_revector_lock);
4073 		/* There could have been more than one reprogramming! */
4074 		return (apic_xlate_vector(newvector));
4075 	}
4076 	lock_clear(&apic_revector_lock);
4077 	return (vector);
4078 }
4079 
4080 void
4081 apic_xlate_vector_free_timeout_handler(void *arg)
4082 {
4083 	int iflag;
4084 	uchar_t oldvector, newvector;
4085 
4086 	oldvector = (uchar_t)(uintptr_t)arg;
4087 	iflag = intr_clear();
4088 	lock_set(&apic_revector_lock);
4089 	if ((newvector = apic_oldvec_to_newvec[oldvector]) != 0) {
4090 		apic_free_vector(oldvector);
4091 		apic_oldvec_to_newvec[oldvector] = 0;
4092 		apic_newvec_to_oldvec[newvector] = 0;
4093 		apic_revector_pending--;
4094 	}
4095 
4096 	lock_clear(&apic_revector_lock);
4097 	intr_restore(iflag);
4098 }
4099 
4100 
4101 /* Mark vector as not being used by any irq */
4102 static void
4103 apic_free_vector(uchar_t vector)
4104 {
4105 	apic_vector_to_irq[vector] = APIC_RESV_IRQ;
4106 }
4107 
4108 /*
4109  * compute the polarity, trigger mode and vector for programming into
4110  * the I/O apic and record in airq_rdt_entry.
4111  */
4112 static void
4113 apic_record_rdt_entry(apic_irq_t *irqptr, int irq)
4114 {
4115 	int	ioapicindex, bus_type, vector;
4116 	short	intr_index;
4117 	uint_t	level, po, io_po;
4118 	struct apic_io_intr *iointrp;
4119 
4120 	intr_index = irqptr->airq_mps_intr_index;
4121 	DDI_INTR_IMPLDBG((CE_CONT, "apic_record_rdt_entry: intr_index=%d "
4122 	    "irq = 0x%x dip = 0x%p vector = 0x%x\n", intr_index, irq,
4123 	    (void *)irqptr->airq_dip, irqptr->airq_vector));
4124 
4125 	if (intr_index == RESERVE_INDEX) {
4126 		apic_error |= APIC_ERR_INVALID_INDEX;
4127 		return;
4128 	} else if (APIC_IS_MSI_OR_MSIX_INDEX(intr_index)) {
4129 		return;
4130 	}
4131 
4132 	vector = irqptr->airq_vector;
4133 	ioapicindex = irqptr->airq_ioapicindex;
4134 	/* Assume edge triggered by default */
4135 	level = 0;
4136 	/* Assume active high by default */
4137 	po = 0;
4138 
4139 	if (intr_index == DEFAULT_INDEX || intr_index == FREE_INDEX) {
4140 		ASSERT(irq < 16);
4141 		if (eisa_level_intr_mask & (1 << irq))
4142 			level = AV_LEVEL;
4143 		if (intr_index == FREE_INDEX && apic_defconf == 0)
4144 			apic_error |= APIC_ERR_INVALID_INDEX;
4145 	} else if (intr_index == ACPI_INDEX) {
4146 		bus_type = irqptr->airq_iflag.bustype;
4147 		if (irqptr->airq_iflag.intr_el == INTR_EL_CONFORM) {
4148 			if (bus_type == BUS_PCI)
4149 				level = AV_LEVEL;
4150 		} else
4151 			level = (irqptr->airq_iflag.intr_el == INTR_EL_LEVEL) ?
4152 			    AV_LEVEL : 0;
4153 		if (level &&
4154 		    ((irqptr->airq_iflag.intr_po == INTR_PO_ACTIVE_LOW) ||
4155 		    (irqptr->airq_iflag.intr_po == INTR_PO_CONFORM &&
4156 		    bus_type == BUS_PCI)))
4157 			po = AV_ACTIVE_LOW;
4158 	} else {
4159 		iointrp = apic_io_intrp + intr_index;
4160 		bus_type = apic_find_bus(iointrp->intr_busid);
4161 		if (iointrp->intr_el == INTR_EL_CONFORM) {
4162 			if ((irq < 16) && (eisa_level_intr_mask & (1 << irq)))
4163 				level = AV_LEVEL;
4164 			else if (bus_type == BUS_PCI)
4165 				level = AV_LEVEL;
4166 		} else
4167 			level = (iointrp->intr_el == INTR_EL_LEVEL) ?
4168 			    AV_LEVEL : 0;
4169 		if (level && ((iointrp->intr_po == INTR_PO_ACTIVE_LOW) ||
4170 		    (iointrp->intr_po == INTR_PO_CONFORM &&
4171 		    bus_type == BUS_PCI)))
4172 			po = AV_ACTIVE_LOW;
4173 	}
4174 	if (level)
4175 		apic_level_intr[irq] = 1;
4176 	/*
4177 	 * The 82489DX External APIC cannot do active low polarity interrupts.
4178 	 */
4179 	if (po && (apic_io_ver[ioapicindex] != IOAPIC_VER_82489DX))
4180 		io_po = po;
4181 	else
4182 		io_po = 0;
4183 
4184 	if (apic_verbose & APIC_VERBOSE_IOAPIC_FLAG)
4185 		printf("setio: ioapic=%x intin=%x level=%x po=%x vector=%x\n",
4186 		    ioapicindex, irqptr->airq_intin_no, level, io_po, vector);
4187 
4188 	irqptr->airq_rdt_entry = level|io_po|vector;
4189 }
4190 
4191 /*
4192  * Call rebind to do the actual programming.
4193  */
4194 static int
4195 apic_setup_io_intr(apic_irq_t *irqptr, int irq)
4196 {
4197 	int rv;
4198 
4199 	if (rv = apic_rebind(irqptr, apic_irq_table[irq]->airq_cpu, 1,
4200 	    IMMEDIATE))
4201 		/* CPU is not up or interrupt is disabled. Fall back to 0 */
4202 		rv = apic_rebind(irqptr, 0, 1, IMMEDIATE);
4203 
4204 	return (rv);
4205 }
4206 
4207 /*
4208  * Deferred reprogramming: Call apic_rebind to do the real work.
4209  */
4210 static int
4211 apic_setup_io_intr_deferred(apic_irq_t *irqptr, int irq)
4212 {
4213 	int rv;
4214 
4215 	if (rv = apic_rebind(irqptr, apic_irq_table[irq]->airq_cpu, 1,
4216 	    DEFERRED))
4217 		/* CPU is not up or interrupt is disabled. Fall back to 0 */
4218 		rv = apic_rebind(irqptr, 0, 1, DEFERRED);
4219 
4220 	return (rv);
4221 }
4222 
4223 /*
4224  * Bind interrupt corresponding to irq_ptr to bind_cpu. acquire_lock
4225  * if false (0) means lock is already held (e.g: in rebind_all).
4226  */
4227 static int
4228 apic_rebind(apic_irq_t *irq_ptr, int bind_cpu, int acquire_lock, int when)
4229 {
4230 	int			intin_no;
4231 	volatile int32_t	*ioapic;
4232 	uchar_t			airq_temp_cpu;
4233 	apic_cpus_info_t	*cpu_infop;
4234 	int			iflag;
4235 	int		which_irq = apic_vector_to_irq[irq_ptr->airq_vector];
4236 	boolean_t		restore_iflag = B_TRUE;
4237 
4238 	intin_no = irq_ptr->airq_intin_no;
4239 	ioapic = apicioadr[irq_ptr->airq_ioapicindex];
4240 	airq_temp_cpu = irq_ptr->airq_temp_cpu;
4241 	if (airq_temp_cpu != IRQ_UNINIT && airq_temp_cpu != IRQ_UNBOUND) {
4242 		if (airq_temp_cpu & IRQ_USER_BOUND)
4243 			/* Mask off high bit so it can be used as array index */
4244 			airq_temp_cpu &= ~IRQ_USER_BOUND;
4245 
4246 		ASSERT(airq_temp_cpu < apic_nproc);
4247 	}
4248 
4249 	iflag = intr_clear();
4250 
4251 	if (acquire_lock)
4252 		lock_set(&apic_ioapic_lock);
4253 
4254 	/*
4255 	 * Can't bind to a CPU that's not online:
4256 	 */
4257 	cpu_infop = &apic_cpus[bind_cpu & ~IRQ_USER_BOUND];
4258 	if (!(cpu_infop->aci_status & APIC_CPU_INTR_ENABLE)) {
4259 
4260 		if (acquire_lock)
4261 			lock_clear(&apic_ioapic_lock);
4262 
4263 		intr_restore(iflag);
4264 		return (1);
4265 	}
4266 
4267 	/*
4268 	 * If this is a deferred reprogramming attempt, ensure we have
4269 	 * not been passed stale data:
4270 	 */
4271 	if ((when == DEFERRED) &&
4272 	    (apic_reprogram_info[which_irq].valid == 0)) {
4273 		/* stale info, so just return */
4274 		if (acquire_lock)
4275 			lock_clear(&apic_ioapic_lock);
4276 
4277 		intr_restore(iflag);
4278 		return (0);
4279 	}
4280 
4281 	/*
4282 	 * If this interrupt has been delivered to a CPU and that CPU
4283 	 * has not handled it yet, we cannot reprogram the IOAPIC now:
4284 	 */
4285 	if (!APIC_IS_MSI_OR_MSIX_INDEX(irq_ptr->airq_mps_intr_index) &&
4286 	    apic_check_stuck_interrupt(irq_ptr, airq_temp_cpu, bind_cpu,
4287 	    ioapic, intin_no, which_irq, iflag, &restore_iflag) != 0) {
4288 
4289 		if (acquire_lock)
4290 			lock_clear(&apic_ioapic_lock);
4291 
4292 		if (restore_iflag)
4293 			intr_restore(iflag);
4294 		return (0);
4295 	}
4296 
4297 	/*
4298 	 * NOTE: We do not unmask the RDT here, as an interrupt MAY still
4299 	 * come in before we have a chance to reprogram it below.  The
4300 	 * reprogramming below will simultaneously change and unmask the
4301 	 * RDT entry.
4302 	 */
4303 
4304 	if ((uchar_t)bind_cpu == IRQ_UNBOUND) {
4305 		/* Write the RDT entry -- no specific CPU binding */
4306 		WRITE_IOAPIC_RDT_ENTRY_HIGH_DWORD(ioapic, intin_no, AV_TOALL);
4307 
4308 		if (airq_temp_cpu != IRQ_UNINIT && airq_temp_cpu != IRQ_UNBOUND)
4309 			apic_cpus[airq_temp_cpu].aci_temp_bound--;
4310 
4311 		/* Write the vector, trigger, and polarity portion of the RDT */
4312 		WRITE_IOAPIC_RDT_ENTRY_LOW_DWORD(ioapic, intin_no,
4313 		    AV_LDEST | AV_LOPRI | irq_ptr->airq_rdt_entry);
4314 		if (acquire_lock)
4315 			lock_clear(&apic_ioapic_lock);
4316 		irq_ptr->airq_temp_cpu = IRQ_UNBOUND;
4317 		intr_restore(iflag);
4318 		return (0);
4319 	}
4320 
4321 	if (bind_cpu & IRQ_USER_BOUND) {
4322 		cpu_infop->aci_bound++;
4323 	} else {
4324 		cpu_infop->aci_temp_bound++;
4325 	}
4326 	ASSERT((bind_cpu & ~IRQ_USER_BOUND) < apic_nproc);
4327 	if (!APIC_IS_MSI_OR_MSIX_INDEX(irq_ptr->airq_mps_intr_index)) {
4328 		/* Write the RDT entry -- bind to a specific CPU: */
4329 		WRITE_IOAPIC_RDT_ENTRY_HIGH_DWORD(ioapic, intin_no,
4330 		    cpu_infop->aci_local_id << APIC_ID_BIT_OFFSET);
4331 	}
4332 	if ((airq_temp_cpu != IRQ_UNBOUND) && (airq_temp_cpu != IRQ_UNINIT)) {
4333 		apic_cpus[airq_temp_cpu].aci_temp_bound--;
4334 	}
4335 	if (!APIC_IS_MSI_OR_MSIX_INDEX(irq_ptr->airq_mps_intr_index)) {
4336 		/* Write the vector, trigger, and polarity portion of the RDT */
4337 		WRITE_IOAPIC_RDT_ENTRY_LOW_DWORD(ioapic, intin_no,
4338 		    AV_PDEST | AV_FIXED | irq_ptr->airq_rdt_entry);
4339 	} else {
4340 		int type = (irq_ptr->airq_mps_intr_index == MSI_INDEX) ?
4341 		    DDI_INTR_TYPE_MSI : DDI_INTR_TYPE_MSIX;
4342 		(void) apic_pci_msi_disable_mode(irq_ptr->airq_dip, type,
4343 		    irq_ptr->airq_ioapicindex);
4344 		if (irq_ptr->airq_ioapicindex == irq_ptr->airq_origirq) {
4345 			/* first one */
4346 			DDI_INTR_IMPLDBG((CE_CONT, "apic_rebind: call "
4347 			    "apic_pci_msi_enable_vector\n"));
4348 			if (apic_pci_msi_enable_vector(irq_ptr->airq_dip, type,
4349 			    which_irq, irq_ptr->airq_vector,
4350 			    irq_ptr->airq_intin_no,
4351 			    cpu_infop->aci_local_id) != PSM_SUCCESS) {
4352 				cmn_err(CE_WARN, "pcplusmp: "
4353 					"apic_pci_msi_enable_vector "
4354 					"returned PSM_FAILURE");
4355 			}
4356 		}
4357 		if ((irq_ptr->airq_ioapicindex + irq_ptr->airq_intin_no - 1) ==
4358 		    irq_ptr->airq_origirq) { /* last one */
4359 			DDI_INTR_IMPLDBG((CE_CONT, "apic_rebind: call "
4360 			    "pci_msi_enable_mode\n"));
4361 			if (apic_pci_msi_enable_mode(irq_ptr->airq_dip,
4362 			    type, which_irq) != PSM_SUCCESS) {
4363 				DDI_INTR_IMPLDBG((CE_CONT, "pcplusmp: "
4364 				    "pci_msi_enable failed\n"));
4365 				(void) apic_pci_msi_unconfigure(
4366 				    irq_ptr->airq_dip, type, which_irq);
4367 			}
4368 		}
4369 	}
4370 	if (acquire_lock)
4371 		lock_clear(&apic_ioapic_lock);
4372 	irq_ptr->airq_temp_cpu = (uchar_t)bind_cpu;
4373 	apic_redist_cpu_skip &= ~(1 << (bind_cpu & ~IRQ_USER_BOUND));
4374 	intr_restore(iflag);
4375 	return (0);
4376 }
4377 
4378 /*
4379  * Checks to see if the IOAPIC interrupt entry specified has its Remote IRR
4380  * bit set.  Sets up a timeout to perform the reprogramming at a later time
4381  * if it cannot wait for the Remote IRR bit to clear (or if waiting did not
4382  * result in the bit's clearing).
4383  *
4384  * This function will mask the RDT entry if the Remote IRR bit is set.
4385  *
4386  * Returns non-zero if the caller should defer IOAPIC reprogramming.
4387  */
4388 static int
4389 apic_check_stuck_interrupt(apic_irq_t *irq_ptr, int old_bind_cpu,
4390     int new_bind_cpu, volatile int32_t *ioapic, int intin_no, int which_irq,
4391     int iflag, boolean_t *intr_restorep)
4392 {
4393 	int32_t			rdt_entry;
4394 	int			waited;
4395 
4396 	/* Mask the RDT entry, but only if it's a level-triggered interrupt */
4397 	rdt_entry = READ_IOAPIC_RDT_ENTRY_LOW_DWORD(ioapic, intin_no);
4398 	if ((rdt_entry & (AV_LEVEL|AV_MASK)) == AV_LEVEL) {
4399 
4400 		/* Mask it */
4401 		WRITE_IOAPIC_RDT_ENTRY_LOW_DWORD(ioapic, intin_no,
4402 		    AV_MASK | rdt_entry);
4403 	}
4404 
4405 	/*
4406 	 * Wait for the delivery pending bit to clear.
4407 	 */
4408 	if ((READ_IOAPIC_RDT_ENTRY_LOW_DWORD(ioapic, intin_no) &
4409 	    (AV_LEVEL|AV_PENDING)) == (AV_LEVEL|AV_PENDING)) {
4410 
4411 		/*
4412 		 * If we're still waiting on the delivery of this interrupt,
4413 		 * continue to wait here until it is delivered (this should be
4414 		 * a very small amount of time, but include a timeout just in
4415 		 * case).
4416 		 */
4417 		for (waited = 0; waited < apic_max_usecs_clear_pending;
4418 		    waited += APIC_USECS_PER_WAIT_INTERVAL) {
4419 			if ((READ_IOAPIC_RDT_ENTRY_LOW_DWORD(ioapic, intin_no)
4420 			    & AV_PENDING) == 0) {
4421 				break;
4422 			}
4423 			drv_usecwait(APIC_USECS_PER_WAIT_INTERVAL);
4424 		}
4425 
4426 		if ((READ_IOAPIC_RDT_ENTRY_LOW_DWORD(ioapic, intin_no) &
4427 		    AV_PENDING) != 0) {
4428 			cmn_err(CE_WARN, "!IOAPIC %d intin %d: Could not "
4429 			    "deliver interrupt to local APIC within "
4430 			    "%d usecs.", irq_ptr->airq_ioapicindex,
4431 			    irq_ptr->airq_intin_no,
4432 			    apic_max_usecs_clear_pending);
4433 		}
4434 	}
4435 
4436 	/*
4437 	 * If the remote IRR bit is set, then the interrupt has been sent
4438 	 * to a CPU for processing.  We have no choice but to wait for
4439 	 * that CPU to process the interrupt, at which point the remote IRR
4440 	 * bit will be cleared.
4441 	 */
4442 	if ((READ_IOAPIC_RDT_ENTRY_LOW_DWORD(ioapic, intin_no) &
4443 	    (AV_LEVEL|AV_REMOTE_IRR)) == (AV_LEVEL|AV_REMOTE_IRR)) {
4444 
4445 		/*
4446 		 * If the CPU that this RDT is bound to is NOT the current
4447 		 * CPU, wait until that CPU handles the interrupt and ACKs
4448 		 * it.  If this interrupt is not bound to any CPU (that is,
4449 		 * if it's bound to the logical destination of "anyone"), it
4450 		 * may have been delivered to the current CPU so handle that
4451 		 * case by deferring the reprogramming (below).
4452 		 */
4453 		kpreempt_disable();
4454 		if ((old_bind_cpu != IRQ_UNBOUND) &&
4455 		    (old_bind_cpu != IRQ_UNINIT) &&
4456 		    (old_bind_cpu != psm_get_cpu_id())) {
4457 			for (waited = 0; waited < apic_max_usecs_clear_pending;
4458 			    waited += APIC_USECS_PER_WAIT_INTERVAL) {
4459 				if ((READ_IOAPIC_RDT_ENTRY_LOW_DWORD(ioapic,
4460 				    intin_no) & AV_REMOTE_IRR) == 0) {
4461 
4462 					/* Clear the reprogramming state: */
4463 					lock_set(&apic_ioapic_reprogram_lock);
4464 
4465 					apic_reprogram_info[which_irq].valid
4466 					    = 0;
4467 					apic_reprogram_info[which_irq].bindcpu
4468 					    = 0;
4469 					apic_reprogram_info[which_irq].timeouts
4470 					    = 0;
4471 
4472 					lock_clear(&apic_ioapic_reprogram_lock);
4473 
4474 					/* Remote IRR has cleared! */
4475 					kpreempt_enable();
4476 					return (0);
4477 				}
4478 				drv_usecwait(APIC_USECS_PER_WAIT_INTERVAL);
4479 			}
4480 		}
4481 		kpreempt_enable();
4482 
4483 		/*
4484 		 * If we waited and the Remote IRR bit is still not cleared,
4485 		 * AND if we've invoked the timeout APIC_REPROGRAM_MAX_TIMEOUTS
4486 		 * times for this interrupt, try the last-ditch workarounds:
4487 		 */
4488 		if (apic_reprogram_info[which_irq].timeouts >=
4489 		    APIC_REPROGRAM_MAX_TIMEOUTS) {
4490 
4491 			if ((READ_IOAPIC_RDT_ENTRY_LOW_DWORD(ioapic, intin_no)
4492 			    & AV_REMOTE_IRR) != 0) {
4493 				/*
4494 				 * Trying to clear the bit through normal
4495 				 * channels has failed.  So as a last-ditch
4496 				 * effort, try to set the trigger mode to
4497 				 * edge, then to level.  This has been
4498 				 * observed to work on many systems.
4499 				 */
4500 				WRITE_IOAPIC_RDT_ENTRY_LOW_DWORD(ioapic,
4501 				    intin_no,
4502 				    READ_IOAPIC_RDT_ENTRY_LOW_DWORD(ioapic,
4503 				    intin_no) & ~AV_LEVEL);
4504 
4505 				WRITE_IOAPIC_RDT_ENTRY_LOW_DWORD(ioapic,
4506 				    intin_no,
4507 				    READ_IOAPIC_RDT_ENTRY_LOW_DWORD(ioapic,
4508 				    intin_no) | AV_LEVEL);
4509 
4510 				/*
4511 				 * If the bit's STILL set, declare total and
4512 				 * utter failure
4513 				 */
4514 				if ((READ_IOAPIC_RDT_ENTRY_LOW_DWORD(ioapic,
4515 				    intin_no) & AV_REMOTE_IRR) != 0) {
4516 					cmn_err(CE_WARN, "!IOAPIC %d intin %d: "
4517 					    "Remote IRR failed to reset "
4518 					    "within %d usecs.  Interrupts to "
4519 					    "this pin may cease to function.",
4520 					    irq_ptr->airq_ioapicindex,
4521 					    irq_ptr->airq_intin_no,
4522 					    apic_max_usecs_clear_pending);
4523 				}
4524 			}
4525 			/* Clear the reprogramming state: */
4526 			lock_set(&apic_ioapic_reprogram_lock);
4527 
4528 			apic_reprogram_info[which_irq].valid = 0;
4529 			apic_reprogram_info[which_irq].bindcpu = 0;
4530 			apic_reprogram_info[which_irq].timeouts = 0;
4531 
4532 			lock_clear(&apic_ioapic_reprogram_lock);
4533 		} else {
4534 #ifdef DEBUG
4535 			cmn_err(CE_WARN, "Deferring reprogramming of irq %d",
4536 			    which_irq);
4537 #endif	/* DEBUG */
4538 			/*
4539 			 * If waiting for the Remote IRR bit (above) didn't
4540 			 * allow it to clear, defer the reprogramming:
4541 			 */
4542 			lock_set(&apic_ioapic_reprogram_lock);
4543 
4544 			apic_reprogram_info[which_irq].valid = 1;
4545 			apic_reprogram_info[which_irq].bindcpu = new_bind_cpu;
4546 			apic_reprogram_info[which_irq].timeouts++;
4547 
4548 			lock_clear(&apic_ioapic_reprogram_lock);
4549 
4550 			*intr_restorep = B_FALSE;
4551 			intr_restore(iflag);
4552 
4553 			/* Fire up a timeout to handle this later */
4554 			(void) timeout(apic_reprogram_timeout_handler,
4555 			    (void *) 0,
4556 			    drv_usectohz(APIC_REPROGRAM_TIMEOUT_DELAY));
4557 
4558 			/* Inform caller to defer IOAPIC programming: */
4559 			return (1);
4560 		}
4561 	}
4562 	return (0);
4563 }
4564 
4565 /*
4566  * Timeout handler that performs the APIC reprogramming
4567  */
4568 /*ARGSUSED*/
4569 static void
4570 apic_reprogram_timeout_handler(void *arg)
4571 {
4572 	/*LINTED: set but not used in function*/
4573 	int i, result;
4574 
4575 	/* Serialize access to this function */
4576 	mutex_enter(&apic_reprogram_timeout_mutex);
4577 
4578 	/*
4579 	 * For each entry in the reprogramming state that's valid,
4580 	 * try the reprogramming again:
4581 	 */
4582 	for (i = 0; i < APIC_MAX_VECTOR; i++) {
4583 		if (apic_reprogram_info[i].valid == 0)
4584 			continue;
4585 		/*
4586 		 * Though we can't really do anything about errors
4587 		 * at this point, keep track of them for reporting.
4588 		 * Note that it is very possible for apic_setup_io_intr
4589 		 * to re-register this very timeout if the Remote IRR bit
4590 		 * has not yet cleared.
4591 		 */
4592 		result = apic_setup_io_intr_deferred(apic_irq_table[i], i);
4593 
4594 #ifdef DEBUG
4595 		if (result)
4596 			cmn_err(CE_WARN, "apic_reprogram_timeout: "
4597 			    "apic_setup_io_intr returned nonzero for "
4598 			    "irq=%d!", i);
4599 #endif	/* DEBUG */
4600 	}
4601 
4602 	mutex_exit(&apic_reprogram_timeout_mutex);
4603 }
4604 
4605 
4606 /*
4607  * Called to migrate all interrupts at an irq to another cpu. safe
4608  * if true means we are not being called from an interrupt
4609  * context and hence it is safe to do a lock_set. If false
4610  * do only a lock_try and return failure ( non 0 ) if we cannot get it
4611  */
4612 int
4613 apic_rebind_all(apic_irq_t *irq_ptr, int bind_cpu, int safe)
4614 {
4615 	apic_irq_t	*irqptr = irq_ptr;
4616 	int		retval = 0;
4617 	int		iflag;
4618 
4619 	iflag = intr_clear();
4620 	if (!safe) {
4621 		if (lock_try(&apic_ioapic_lock) == 0) {
4622 			intr_restore(iflag);
4623 			return (1);
4624 		}
4625 	} else
4626 		lock_set(&apic_ioapic_lock);
4627 
4628 	while (irqptr) {
4629 		if (irqptr->airq_temp_cpu != IRQ_UNINIT)
4630 			retval |= apic_rebind(irqptr, bind_cpu, 0, IMMEDIATE);
4631 		irqptr = irqptr->airq_next;
4632 	}
4633 	lock_clear(&apic_ioapic_lock);
4634 	intr_restore(iflag);
4635 	return (retval);
4636 }
4637 
4638 /*
4639  * apic_intr_redistribute does all the messy computations for identifying
4640  * which interrupt to move to which CPU. Currently we do just one interrupt
4641  * at a time. This reduces the time we spent doing all this within clock
4642  * interrupt. When it is done in idle, we could do more than 1.
4643  * First we find the most busy and the most free CPU (time in ISR only)
4644  * skipping those CPUs that has been identified as being ineligible (cpu_skip)
4645  * Then we look for IRQs which are closest to the difference between the
4646  * most busy CPU and the average ISR load. We try to find one whose load
4647  * is less than difference.If none exists, then we chose one larger than the
4648  * difference, provided it does not make the most idle CPU worse than the
4649  * most busy one. In the end, we clear all the busy fields for CPUs. For
4650  * IRQs, they are cleared as they are scanned.
4651  */
4652 static void
4653 apic_intr_redistribute()
4654 {
4655 	int busiest_cpu, most_free_cpu;
4656 	int cpu_free, cpu_busy, max_busy, min_busy;
4657 	int min_free, diff;
4658 	int	average_busy, cpus_online;
4659 	int i, busy;
4660 	apic_cpus_info_t *cpu_infop;
4661 	apic_irq_t *min_busy_irq = NULL;
4662 	apic_irq_t *max_busy_irq = NULL;
4663 
4664 	busiest_cpu = most_free_cpu = -1;
4665 	cpu_free = cpu_busy = max_busy = average_busy = 0;
4666 	min_free = apic_sample_factor_redistribution;
4667 	cpus_online = 0;
4668 	/*
4669 	 * Below we will check for CPU_INTR_ENABLE, bound, temp_bound, temp_cpu
4670 	 * without ioapic_lock. That is OK as we are just doing statistical
4671 	 * sampling anyway and any inaccuracy now will get corrected next time
4672 	 * The call to rebind which actually changes things will make sure
4673 	 * we are consistent.
4674 	 */
4675 	for (i = 0; i < apic_nproc; i++) {
4676 		if (!(apic_redist_cpu_skip & (1 << i)) &&
4677 		    (apic_cpus[i].aci_status & APIC_CPU_INTR_ENABLE)) {
4678 
4679 			cpu_infop = &apic_cpus[i];
4680 			/*
4681 			 * If no unbound interrupts or only 1 total on this
4682 			 * CPU, skip
4683 			 */
4684 			if (!cpu_infop->aci_temp_bound ||
4685 			    (cpu_infop->aci_bound + cpu_infop->aci_temp_bound)
4686 			    == 1) {
4687 				apic_redist_cpu_skip |= 1 << i;
4688 				continue;
4689 			}
4690 
4691 			busy = cpu_infop->aci_busy;
4692 			average_busy += busy;
4693 			cpus_online++;
4694 			if (max_busy < busy) {
4695 				max_busy = busy;
4696 				busiest_cpu = i;
4697 			}
4698 			if (min_free > busy) {
4699 				min_free = busy;
4700 				most_free_cpu = i;
4701 			}
4702 			if (busy > apic_int_busy_mark) {
4703 				cpu_busy |= 1 << i;
4704 			} else {
4705 				if (busy < apic_int_free_mark)
4706 					cpu_free |= 1 << i;
4707 			}
4708 		}
4709 	}
4710 	if ((cpu_busy && cpu_free) ||
4711 	    (max_busy >= (min_free + apic_diff_for_redistribution))) {
4712 
4713 		apic_num_imbalance++;
4714 #ifdef	DEBUG
4715 		if (apic_verbose & APIC_VERBOSE_IOAPIC_FLAG) {
4716 			prom_printf(
4717 			    "redistribute busy=%x free=%x max=%x min=%x",
4718 			    cpu_busy, cpu_free, max_busy, min_free);
4719 		}
4720 #endif /* DEBUG */
4721 
4722 
4723 		average_busy /= cpus_online;
4724 
4725 		diff = max_busy - average_busy;
4726 		min_busy = max_busy; /* start with the max possible value */
4727 		max_busy = 0;
4728 		min_busy_irq = max_busy_irq = NULL;
4729 		i = apic_min_device_irq;
4730 		for (; i < apic_max_device_irq; i++) {
4731 			apic_irq_t *irq_ptr;
4732 			/* Change to linked list per CPU ? */
4733 			if ((irq_ptr = apic_irq_table[i]) == NULL)
4734 				continue;
4735 			/* Check for irq_busy & decide which one to move */
4736 			/* Also zero them for next round */
4737 			if ((irq_ptr->airq_temp_cpu == busiest_cpu) &&
4738 			    irq_ptr->airq_busy) {
4739 				if (irq_ptr->airq_busy < diff) {
4740 					/*
4741 					 * Check for least busy CPU,
4742 					 * best fit or what ?
4743 					 */
4744 					if (max_busy < irq_ptr->airq_busy) {
4745 						/*
4746 						 * Most busy within the
4747 						 * required differential
4748 						 */
4749 						max_busy = irq_ptr->airq_busy;
4750 						max_busy_irq = irq_ptr;
4751 					}
4752 				} else {
4753 					if (min_busy > irq_ptr->airq_busy) {
4754 						/*
4755 						 * least busy, but more than
4756 						 * the reqd diff
4757 						 */
4758 						if (min_busy <
4759 						    (diff + average_busy -
4760 						    min_free)) {
4761 							/*
4762 							 * Making sure new cpu
4763 							 * will not end up
4764 							 * worse
4765 							 */
4766 							min_busy =
4767 							    irq_ptr->airq_busy;
4768 
4769 							min_busy_irq = irq_ptr;
4770 						}
4771 					}
4772 				}
4773 			}
4774 			irq_ptr->airq_busy = 0;
4775 		}
4776 
4777 		if (max_busy_irq != NULL) {
4778 #ifdef	DEBUG
4779 			if (apic_verbose & APIC_VERBOSE_IOAPIC_FLAG) {
4780 				prom_printf("rebinding %x to %x",
4781 				    max_busy_irq->airq_vector, most_free_cpu);
4782 			}
4783 #endif /* DEBUG */
4784 			if (apic_rebind_all(max_busy_irq, most_free_cpu, 0)
4785 			    == 0)
4786 				/* Make change permenant */
4787 				max_busy_irq->airq_cpu = (uchar_t)most_free_cpu;
4788 		} else if (min_busy_irq != NULL) {
4789 #ifdef	DEBUG
4790 			if (apic_verbose & APIC_VERBOSE_IOAPIC_FLAG) {
4791 				prom_printf("rebinding %x to %x",
4792 				    min_busy_irq->airq_vector, most_free_cpu);
4793 			}
4794 #endif /* DEBUG */
4795 
4796 			if (apic_rebind_all(min_busy_irq, most_free_cpu, 0) ==
4797 			    0)
4798 				/* Make change permenant */
4799 				min_busy_irq->airq_cpu = (uchar_t)most_free_cpu;
4800 		} else {
4801 			if (cpu_busy != (1 << busiest_cpu)) {
4802 				apic_redist_cpu_skip |= 1 << busiest_cpu;
4803 				/*
4804 				 * We leave cpu_skip set so that next time we
4805 				 * can choose another cpu
4806 				 */
4807 			}
4808 		}
4809 		apic_num_rebind++;
4810 	} else {
4811 		/*
4812 		 * found nothing. Could be that we skipped over valid CPUs
4813 		 * or we have balanced everything. If we had a variable
4814 		 * ticks_for_redistribution, it could be increased here.
4815 		 * apic_int_busy, int_free etc would also need to be
4816 		 * changed.
4817 		 */
4818 		if (apic_redist_cpu_skip)
4819 			apic_redist_cpu_skip = 0;
4820 	}
4821 	for (i = 0; i < apic_nproc; i++) {
4822 		apic_cpus[i].aci_busy = 0;
4823 	}
4824 }
4825 
4826 static void
4827 apic_cleanup_busy()
4828 {
4829 	int i;
4830 	apic_irq_t *irq_ptr;
4831 
4832 	for (i = 0; i < apic_nproc; i++) {
4833 		apic_cpus[i].aci_busy = 0;
4834 	}
4835 
4836 	for (i = apic_min_device_irq; i < apic_max_device_irq; i++) {
4837 		if ((irq_ptr = apic_irq_table[i]) != NULL)
4838 			irq_ptr->airq_busy = 0;
4839 	}
4840 	apic_skipped_redistribute = 0;
4841 }
4842 
4843 
4844 /*
4845  * This function will reprogram the timer.
4846  *
4847  * When in oneshot mode the argument is the absolute time in future to
4848  * generate the interrupt at.
4849  *
4850  * When in periodic mode, the argument is the interval at which the
4851  * interrupts should be generated. There is no need to support the periodic
4852  * mode timer change at this time.
4853  */
4854 static void
4855 apic_timer_reprogram(hrtime_t time)
4856 {
4857 	hrtime_t now;
4858 	uint_t ticks;
4859 
4860 	/*
4861 	 * We should be called from high PIL context (CBE_HIGH_PIL),
4862 	 * so kpreempt is disabled.
4863 	 */
4864 
4865 	if (!apic_oneshot) {
4866 		/* time is the interval for periodic mode */
4867 		ticks = (uint_t)((time) / apic_nsec_per_tick);
4868 	} else {
4869 		/* one shot mode */
4870 
4871 		now = gethrtime();
4872 
4873 		if (time <= now) {
4874 			/*
4875 			 * requested to generate an interrupt in the past
4876 			 * generate an interrupt as soon as possible
4877 			 */
4878 			ticks = apic_min_timer_ticks;
4879 		} else if ((time - now) > apic_nsec_max) {
4880 			/*
4881 			 * requested to generate an interrupt at a time
4882 			 * further than what we are capable of. Set to max
4883 			 * the hardware can handle
4884 			 */
4885 
4886 			ticks = APIC_MAXVAL;
4887 #ifdef DEBUG
4888 			cmn_err(CE_CONT, "apic_timer_reprogram, request at"
4889 			    "  %lld  too far in future, current time"
4890 			    "  %lld \n", time, now);
4891 #endif	/* DEBUG */
4892 		} else
4893 			ticks = (uint_t)((time - now) / apic_nsec_per_tick);
4894 	}
4895 
4896 	if (ticks < apic_min_timer_ticks)
4897 		ticks = apic_min_timer_ticks;
4898 
4899 	apicadr[APIC_INIT_COUNT] = ticks;
4900 
4901 }
4902 
4903 /*
4904  * This function will enable timer interrupts.
4905  */
4906 static void
4907 apic_timer_enable(void)
4908 {
4909 	/*
4910 	 * We should be Called from high PIL context (CBE_HIGH_PIL),
4911 	 * so kpreempt is disabled.
4912 	 */
4913 
4914 	if (!apic_oneshot)
4915 		apicadr[APIC_LOCAL_TIMER] =
4916 		    (apic_clkvect + APIC_BASE_VECT) | AV_TIME;
4917 	else {
4918 		/* one shot */
4919 		apicadr[APIC_LOCAL_TIMER] = (apic_clkvect + APIC_BASE_VECT);
4920 	}
4921 }
4922 
4923 /*
4924  * This function will disable timer interrupts.
4925  */
4926 static void
4927 apic_timer_disable(void)
4928 {
4929 	/*
4930 	 * We should be Called from high PIL context (CBE_HIGH_PIL),
4931 	 * so kpreempt is disabled.
4932 	 */
4933 
4934 	apicadr[APIC_LOCAL_TIMER] = (apic_clkvect + APIC_BASE_VECT) | AV_MASK;
4935 }
4936 
4937 
4938 cyclic_id_t apic_cyclic_id;
4939 
4940 /*
4941  * If this module needs to be a consumer of cyclic subsystem, they
4942  * can be added here, since at this time kernel cyclic subsystem is initialized
4943  * argument is not currently used, and is reserved for future.
4944  */
4945 static void
4946 apic_post_cyclic_setup(void *arg)
4947 {
4948 _NOTE(ARGUNUSED(arg))
4949 	cyc_handler_t hdlr;
4950 	cyc_time_t when;
4951 
4952 	/* cpu_lock is held */
4953 
4954 	/* set up cyclics for intr redistribution */
4955 
4956 	/*
4957 	 * In peridoc mode intr redistribution processing is done in
4958 	 * apic_intr_enter during clk intr processing
4959 	 */
4960 	if (!apic_oneshot)
4961 		return;
4962 
4963 	hdlr.cyh_level = CY_LOW_LEVEL;
4964 	hdlr.cyh_func = (cyc_func_t)apic_redistribute_compute;
4965 	hdlr.cyh_arg = NULL;
4966 
4967 	when.cyt_when = 0;
4968 	when.cyt_interval = apic_redistribute_sample_interval;
4969 	apic_cyclic_id = cyclic_add(&hdlr, &when);
4970 
4971 
4972 }
4973 
4974 static void
4975 apic_redistribute_compute(void)
4976 {
4977 	int	i, j, max_busy;
4978 
4979 	if (apic_enable_dynamic_migration) {
4980 		if (++apic_nticks == apic_sample_factor_redistribution) {
4981 			/*
4982 			 * Time to call apic_intr_redistribute().
4983 			 * reset apic_nticks. This will cause max_busy
4984 			 * to be calculated below and if it is more than
4985 			 * apic_int_busy, we will do the whole thing
4986 			 */
4987 			apic_nticks = 0;
4988 		}
4989 		max_busy = 0;
4990 		for (i = 0; i < apic_nproc; i++) {
4991 
4992 			/*
4993 			 * Check if curipl is non zero & if ISR is in
4994 			 * progress
4995 			 */
4996 			if (((j = apic_cpus[i].aci_curipl) != 0) &&
4997 			    (apic_cpus[i].aci_ISR_in_progress & (1 << j))) {
4998 
4999 				int	irq;
5000 				apic_cpus[i].aci_busy++;
5001 				irq = apic_cpus[i].aci_current[j];
5002 				apic_irq_table[irq]->airq_busy++;
5003 			}
5004 
5005 			if (!apic_nticks &&
5006 			    (apic_cpus[i].aci_busy > max_busy))
5007 				max_busy = apic_cpus[i].aci_busy;
5008 		}
5009 		if (!apic_nticks) {
5010 			if (max_busy > apic_int_busy_mark) {
5011 			/*
5012 			 * We could make the following check be
5013 			 * skipped > 1 in which case, we get a
5014 			 * redistribution at half the busy mark (due to
5015 			 * double interval). Need to be able to collect
5016 			 * more empirical data to decide if that is a
5017 			 * good strategy. Punt for now.
5018 			 */
5019 				if (apic_skipped_redistribute)
5020 					apic_cleanup_busy();
5021 				else
5022 					apic_intr_redistribute();
5023 			} else
5024 				apic_skipped_redistribute++;
5025 		}
5026 	}
5027 }
5028 
5029 
5030 static int
5031 apic_acpi_translate_pci_irq(dev_info_t *dip, int busid, int devid,
5032     int ipin, int *pci_irqp, iflag_t *intr_flagp)
5033 {
5034 
5035 	int status;
5036 	acpi_psm_lnk_t acpipsmlnk;
5037 
5038 	if ((status = acpi_get_irq_cache_ent(busid, devid, ipin, pci_irqp,
5039 	    intr_flagp)) == ACPI_PSM_SUCCESS) {
5040 		APIC_VERBOSE_IRQ((CE_CONT, "!pcplusmp: Found irqno %d "
5041 		    "from cache for device %s, instance #%d\n", *pci_irqp,
5042 		    ddi_get_name(dip), ddi_get_instance(dip)));
5043 		return (status);
5044 	}
5045 
5046 	bzero(&acpipsmlnk, sizeof (acpi_psm_lnk_t));
5047 
5048 	if ((status = acpi_translate_pci_irq(dip, ipin, pci_irqp, intr_flagp,
5049 	    &acpipsmlnk)) == ACPI_PSM_FAILURE) {
5050 		APIC_VERBOSE_IRQ((CE_WARN, "pcplusmp: "
5051 		    " acpi_translate_pci_irq failed for device %s, instance"
5052 		    " #%d", ddi_get_name(dip), ddi_get_instance(dip)));
5053 		return (status);
5054 	}
5055 
5056 	if (status == ACPI_PSM_PARTIAL && acpipsmlnk.lnkobj != NULL) {
5057 		status = apic_acpi_irq_configure(&acpipsmlnk, dip, pci_irqp,
5058 		    intr_flagp);
5059 		if (status != ACPI_PSM_SUCCESS) {
5060 			status = acpi_get_current_irq_resource(&acpipsmlnk,
5061 			    pci_irqp, intr_flagp);
5062 		}
5063 	}
5064 
5065 	if (status == ACPI_PSM_SUCCESS) {
5066 		acpi_new_irq_cache_ent(busid, devid, ipin, *pci_irqp,
5067 		    intr_flagp, &acpipsmlnk);
5068 
5069 		APIC_VERBOSE_IRQ((CE_CONT, "pcplusmp: [ACPI] "
5070 		    "new irq %d for device %s, instance #%d\n",
5071 		    *pci_irqp, ddi_get_name(dip), ddi_get_instance(dip)));
5072 	}
5073 
5074 	return (status);
5075 }
5076 
5077 /*
5078  * Configures the irq for the interrupt link device identified by
5079  * acpipsmlnkp.
5080  *
5081  * Gets the current and the list of possible irq settings for the
5082  * device. If apic_unconditional_srs is not set, and the current
5083  * resource setting is in the list of possible irq settings,
5084  * current irq resource setting is passed to the caller.
5085  *
5086  * Otherwise, picks an irq number from the list of possible irq
5087  * settings, and sets the irq of the device to this value.
5088  * If prefer_crs is set, among a set of irq numbers in the list that have
5089  * the least number of devices sharing the interrupt, we pick current irq
5090  * resource setting if it is a member of this set.
5091  *
5092  * Passes the irq number in the value pointed to by pci_irqp, and
5093  * polarity and sensitivity in the structure pointed to by dipintrflagp
5094  * to the caller.
5095  *
5096  * Note that if setting the irq resource failed, but successfuly obtained
5097  * the current irq resource settings, passes the current irq resources
5098  * and considers it a success.
5099  *
5100  * Returns:
5101  * ACPI_PSM_SUCCESS on success.
5102  *
5103  * ACPI_PSM_FAILURE if an error occured during the configuration or
5104  * if a suitable irq was not found for this device, or if setting the
5105  * irq resource and obtaining the current resource fails.
5106  *
5107  */
5108 static int
5109 apic_acpi_irq_configure(acpi_psm_lnk_t *acpipsmlnkp, dev_info_t *dip,
5110     int *pci_irqp, iflag_t *dipintr_flagp)
5111 {
5112 
5113 	int i, min_share, foundnow, done = 0;
5114 	int32_t irq;
5115 	int32_t share_irq = -1;
5116 	int32_t chosen_irq = -1;
5117 	int cur_irq = -1;
5118 	acpi_irqlist_t *irqlistp;
5119 	acpi_irqlist_t *irqlistent;
5120 
5121 	if ((acpi_get_possible_irq_resources(acpipsmlnkp, &irqlistp))
5122 	    == ACPI_PSM_FAILURE) {
5123 		APIC_VERBOSE_IRQ((CE_WARN, "!pcplusmp: Unable to determine "
5124 		    "or assign IRQ for device %s, instance #%d: The system was "
5125 		    "unable to get the list of potential IRQs from ACPI.",
5126 		    ddi_get_name(dip), ddi_get_instance(dip)));
5127 
5128 		return (ACPI_PSM_FAILURE);
5129 	}
5130 
5131 	if ((acpi_get_current_irq_resource(acpipsmlnkp, &cur_irq,
5132 	    dipintr_flagp) == ACPI_PSM_SUCCESS) && (!apic_unconditional_srs) &&
5133 	    (cur_irq > 0)) {
5134 		/*
5135 		 * If an IRQ is set in CRS and that IRQ exists in the set
5136 		 * returned from _PRS, return that IRQ, otherwise print
5137 		 * a warning
5138 		 */
5139 
5140 		if (acpi_irqlist_find_irq(irqlistp, cur_irq, NULL)
5141 		    == ACPI_PSM_SUCCESS) {
5142 
5143 			acpi_free_irqlist(irqlistp);
5144 			ASSERT(pci_irqp != NULL);
5145 			*pci_irqp = cur_irq;
5146 			return (ACPI_PSM_SUCCESS);
5147 		}
5148 
5149 		APIC_VERBOSE_IRQ((CE_WARN, "!pcplusmp: Could not find the "
5150 		    "current irq %d for device %s, instance #%d in ACPI's "
5151 		    "list of possible irqs for this device. Picking one from "
5152 		    " the latter list.", cur_irq, ddi_get_name(dip),
5153 		    ddi_get_instance(dip)));
5154 	}
5155 
5156 	irqlistent = irqlistp;
5157 	min_share = 255;
5158 
5159 	while (irqlistent != NULL) {
5160 		irqlistent->intr_flags.bustype = BUS_PCI;
5161 
5162 		for (foundnow = 0, i = 0; i < irqlistent->num_irqs; i++) {
5163 
5164 			irq = irqlistent->irqs[i];
5165 
5166 			if ((irq < 16) && (apic_reserved_irqlist[irq]))
5167 				continue;
5168 
5169 			if (irq == 0) {
5170 				/* invalid irq number */
5171 				continue;
5172 			}
5173 
5174 			if ((apic_irq_table[irq] == NULL) ||
5175 			    (apic_irq_table[irq]->airq_dip == dip)) {
5176 				chosen_irq = irq;
5177 				foundnow = 1;
5178 				/*
5179 				 * If we do not prefer current irq from crs
5180 				 * or if we do and this irq is the same as
5181 				 * current irq from crs, this is the one
5182 				 * to pick.
5183 				 */
5184 				if (!(apic_prefer_crs) || (irq == cur_irq)) {
5185 					done = 1;
5186 					break;
5187 				}
5188 				continue;
5189 			}
5190 
5191 			if (irqlistent->intr_flags.intr_el == INTR_EL_EDGE)
5192 				continue;
5193 
5194 			if (!acpi_intr_compatible(irqlistent->intr_flags,
5195 			    apic_irq_table[irq]->airq_iflag))
5196 				continue;
5197 
5198 			if ((apic_irq_table[irq]->airq_share < min_share) ||
5199 			    ((apic_irq_table[irq]->airq_share == min_share) &&
5200 			    (cur_irq == irq) && (apic_prefer_crs))) {
5201 				min_share = apic_irq_table[irq]->airq_share;
5202 				share_irq = irq;
5203 				foundnow = 1;
5204 			}
5205 		}
5206 
5207 		/*
5208 		 * If we found an IRQ in the inner loop this time, save the
5209 		 * details from the irqlist for later use.
5210 		 */
5211 		if (foundnow && ((chosen_irq != -1) || (share_irq != -1))) {
5212 			/*
5213 			 * Copy the acpi_prs_private_t and flags from this
5214 			 * irq list entry, since we found an irq from this
5215 			 * entry.
5216 			 */
5217 			acpipsmlnkp->acpi_prs_prv = irqlistent->acpi_prs_prv;
5218 			*dipintr_flagp = irqlistent->intr_flags;
5219 		}
5220 
5221 		if (done)
5222 			break;
5223 
5224 		/* Go to the next irqlist entry */
5225 		irqlistent = irqlistent->next;
5226 	}
5227 
5228 
5229 	acpi_free_irqlist(irqlistp);
5230 	if (chosen_irq != -1)
5231 		irq = chosen_irq;
5232 	else if (share_irq != -1)
5233 		irq = share_irq;
5234 	else {
5235 		APIC_VERBOSE_IRQ((CE_WARN, "!pcplusmp: Could not find a "
5236 		    "suitable irq from the list of possible irqs for device "
5237 		    "%s, instance #%d in ACPI's list of possible irqs",
5238 		    ddi_get_name(dip), ddi_get_instance(dip)));
5239 		return (ACPI_PSM_FAILURE);
5240 	}
5241 
5242 	APIC_VERBOSE_IRQ((CE_CONT, "!pcplusmp: Setting irq %d for device %s "
5243 	    "instance #%d\n", irq, ddi_get_name(dip), ddi_get_instance(dip)));
5244 
5245 	if ((acpi_set_irq_resource(acpipsmlnkp, irq)) == ACPI_PSM_SUCCESS) {
5246 		/*
5247 		 * setting irq was successful, check to make sure CRS
5248 		 * reflects that. If CRS does not agree with what we
5249 		 * set, return the irq that was set.
5250 		 */
5251 
5252 		if (acpi_get_current_irq_resource(acpipsmlnkp, &cur_irq,
5253 		    dipintr_flagp) == ACPI_PSM_SUCCESS) {
5254 
5255 			if (cur_irq != irq)
5256 				APIC_VERBOSE_IRQ((CE_WARN, "!pcplusmp: "
5257 				    "IRQ resource set (irqno %d) for device %s "
5258 				    "instance #%d, differs from current "
5259 				    "setting irqno %d",
5260 				    irq, ddi_get_name(dip),
5261 				    ddi_get_instance(dip), cur_irq));
5262 		}
5263 
5264 		/*
5265 		 * return the irq that was set, and not what CRS reports,
5266 		 * since CRS has been seen to be bogus on some systems
5267 		 */
5268 		cur_irq = irq;
5269 	} else {
5270 		APIC_VERBOSE_IRQ((CE_WARN, "!pcplusmp: set resource irq %d "
5271 		    "failed for device %s instance #%d",
5272 		    irq, ddi_get_name(dip), ddi_get_instance(dip)));
5273 
5274 		if (cur_irq == -1)
5275 			return (ACPI_PSM_FAILURE);
5276 	}
5277 
5278 	ASSERT(pci_irqp != NULL);
5279 	*pci_irqp = cur_irq;
5280 	return (ACPI_PSM_SUCCESS);
5281 }
5282