1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2007 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 27 #pragma ident "%Z%%M% %I% %E% SMI" 28 29 /* 30 * PSMI 1.1 extensions are supported only in 2.6 and later versions. 31 * PSMI 1.2 extensions are supported only in 2.7 and later versions. 32 * PSMI 1.3 and 1.4 extensions are supported in Solaris 10. 33 * PSMI 1.5 extensions are supported in Solaris Nevada. 34 */ 35 #define PSMI_1_5 36 37 #include <sys/processor.h> 38 #include <sys/time.h> 39 #include <sys/psm.h> 40 #include <sys/smp_impldefs.h> 41 #include <sys/cram.h> 42 #include <sys/acpi/acpi.h> 43 #include <sys/acpica.h> 44 #include <sys/psm_common.h> 45 #include <sys/apic.h> 46 #include <sys/pit.h> 47 #include <sys/ddi.h> 48 #include <sys/sunddi.h> 49 #include <sys/ddi_impldefs.h> 50 #include <sys/pci.h> 51 #include <sys/promif.h> 52 #include <sys/x86_archext.h> 53 #include <sys/cpc_impl.h> 54 #include <sys/uadmin.h> 55 #include <sys/panic.h> 56 #include <sys/debug.h> 57 #include <sys/archsystm.h> 58 #include <sys/trap.h> 59 #include <sys/machsystm.h> 60 #include <sys/sysmacros.h> 61 #include <sys/cpuvar.h> 62 #include <sys/rm_platter.h> 63 #include <sys/privregs.h> 64 #include <sys/cyclic.h> 65 #include <sys/note.h> 66 #include <sys/pci_intr_lib.h> 67 #include <sys/spl.h> 68 69 /* 70 * Local Function Prototypes 71 */ 72 static void apic_init_intr(); 73 static void apic_ret(); 74 static int get_apic_cmd1(); 75 static int get_apic_pri(); 76 static void apic_nmi_intr(caddr_t arg); 77 78 /* 79 * standard MP entries 80 */ 81 static int apic_probe(); 82 static int apic_clkinit(); 83 static int apic_getclkirq(int ipl); 84 static uint_t apic_calibrate(volatile uint32_t *addr, 85 uint16_t *pit_ticks_adj); 86 static hrtime_t apic_gettime(); 87 static hrtime_t apic_gethrtime(); 88 static void apic_init(); 89 static void apic_picinit(void); 90 static int apic_cpu_start(processorid_t, caddr_t); 91 static int apic_post_cpu_start(void); 92 static void apic_send_ipi(int cpun, int ipl); 93 static void apic_set_softintr(int softintr); 94 static void apic_set_idlecpu(processorid_t cpun); 95 static void apic_unset_idlecpu(processorid_t cpun); 96 static int apic_softlvl_to_irq(int ipl); 97 static int apic_intr_enter(int ipl, int *vect); 98 static void apic_setspl(int ipl); 99 static int apic_addspl(int ipl, int vector, int min_ipl, int max_ipl); 100 static int apic_delspl(int ipl, int vector, int min_ipl, int max_ipl); 101 static void apic_shutdown(int cmd, int fcn); 102 static void apic_preshutdown(int cmd, int fcn); 103 static int apic_disable_intr(processorid_t cpun); 104 static void apic_enable_intr(processorid_t cpun); 105 static processorid_t apic_get_next_processorid(processorid_t cpun); 106 static int apic_get_ipivect(int ipl, int type); 107 static void apic_timer_reprogram(hrtime_t time); 108 static void apic_timer_enable(void); 109 static void apic_timer_disable(void); 110 static void apic_post_cyclic_setup(void *arg); 111 112 static int apic_oneshot = 0; 113 int apic_oneshot_enable = 1; /* to allow disabling one-shot capability */ 114 115 /* Now the ones for Dynamic Interrupt distribution */ 116 int apic_enable_dynamic_migration = 0; 117 118 119 /* 120 * These variables are frequently accessed in apic_intr_enter(), 121 * apic_intr_exit and apic_setspl, so group them together 122 */ 123 volatile uint32_t *apicadr = NULL; /* virtual addr of local APIC */ 124 int apic_setspl_delay = 1; /* apic_setspl - delay enable */ 125 int apic_clkvect; 126 127 /* vector at which error interrupts come in */ 128 int apic_errvect; 129 int apic_enable_error_intr = 1; 130 int apic_error_display_delay = 100; 131 132 /* vector at which performance counter overflow interrupts come in */ 133 int apic_cpcovf_vect; 134 int apic_enable_cpcovf_intr = 1; 135 136 /* 137 * The following vector assignments influence the value of ipltopri and 138 * vectortoipl. Note that vectors 0 - 0x1f are not used. We can program 139 * idle to 0 and IPL 0 to 0xf to differentiate idle in case 140 * we care to do so in future. Note some IPLs which are rarely used 141 * will share the vector ranges and heavily used IPLs (5 and 6) have 142 * a wide range. 143 * 144 * This array is used to initialize apic_ipls[] (in apic_init()). 145 * 146 * IPL Vector range. as passed to intr_enter 147 * 0 none. 148 * 1,2,3 0x20-0x2f 0x0-0xf 149 * 4 0x30-0x3f 0x10-0x1f 150 * 5 0x40-0x5f 0x20-0x3f 151 * 6 0x60-0x7f 0x40-0x5f 152 * 7,8,9 0x80-0x8f 0x60-0x6f 153 * 10 0x90-0x9f 0x70-0x7f 154 * 11 0xa0-0xaf 0x80-0x8f 155 * ... ... 156 * 15 0xe0-0xef 0xc0-0xcf 157 * 15 0xf0-0xff 0xd0-0xdf 158 */ 159 uchar_t apic_vectortoipl[APIC_AVAIL_VECTOR / APIC_VECTOR_PER_IPL] = { 160 3, 4, 5, 5, 6, 6, 9, 10, 11, 12, 13, 14, 15, 15 161 }; 162 /* 163 * The ipl of an ISR at vector X is apic_vectortoipl[X>>4] 164 * NOTE that this is vector as passed into intr_enter which is 165 * programmed vector - 0x20 (APIC_BASE_VECT) 166 */ 167 168 uchar_t apic_ipltopri[MAXIPL + 1]; /* unix ipl to apic pri */ 169 /* The taskpri to be programmed into apic to mask given ipl */ 170 171 #if defined(__amd64) 172 uchar_t apic_cr8pri[MAXIPL + 1]; /* unix ipl to cr8 pri */ 173 #endif 174 175 /* 176 * Correlation of the hardware vector to the IPL in use, initialized 177 * from apic_vectortoipl[] in apic_init(). The final IPLs may not correlate 178 * to the IPLs in apic_vectortoipl on some systems that share interrupt lines 179 * connected to errata-stricken IOAPICs 180 */ 181 uchar_t apic_ipls[APIC_AVAIL_VECTOR]; 182 183 /* 184 * Patchable global variables. 185 */ 186 int apic_forceload = 0; 187 188 int apic_coarse_hrtime = 1; /* 0 - use accurate slow gethrtime() */ 189 /* 1 - use gettime() for performance */ 190 int apic_flat_model = 0; /* 0 - clustered. 1 - flat */ 191 int apic_enable_hwsoftint = 0; /* 0 - disable, 1 - enable */ 192 int apic_enable_bind_log = 1; /* 1 - display interrupt binding log */ 193 int apic_panic_on_nmi = 0; 194 int apic_panic_on_apic_error = 0; 195 196 int apic_verbose = 0; 197 198 /* minimum number of timer ticks to program to */ 199 int apic_min_timer_ticks = 1; 200 /* 201 * Local static data 202 */ 203 static struct psm_ops apic_ops = { 204 apic_probe, 205 206 apic_init, 207 apic_picinit, 208 apic_intr_enter, 209 apic_intr_exit, 210 apic_setspl, 211 apic_addspl, 212 apic_delspl, 213 apic_disable_intr, 214 apic_enable_intr, 215 apic_softlvl_to_irq, 216 apic_set_softintr, 217 218 apic_set_idlecpu, 219 apic_unset_idlecpu, 220 221 apic_clkinit, 222 apic_getclkirq, 223 (void (*)(void))NULL, /* psm_hrtimeinit */ 224 apic_gethrtime, 225 226 apic_get_next_processorid, 227 apic_cpu_start, 228 apic_post_cpu_start, 229 apic_shutdown, 230 apic_get_ipivect, 231 apic_send_ipi, 232 233 (int (*)(dev_info_t *, int))NULL, /* psm_translate_irq */ 234 (void (*)(int, char *))NULL, /* psm_notify_error */ 235 (void (*)(int))NULL, /* psm_notify_func */ 236 apic_timer_reprogram, 237 apic_timer_enable, 238 apic_timer_disable, 239 apic_post_cyclic_setup, 240 apic_preshutdown, 241 apic_intr_ops /* Advanced DDI Interrupt framework */ 242 }; 243 244 245 static struct psm_info apic_psm_info = { 246 PSM_INFO_VER01_5, /* version */ 247 PSM_OWN_EXCLUSIVE, /* ownership */ 248 (struct psm_ops *)&apic_ops, /* operation */ 249 APIC_PCPLUSMP_NAME, /* machine name */ 250 "pcplusmp v1.4 compatible %I%", 251 }; 252 253 static void *apic_hdlp; 254 255 #ifdef DEBUG 256 int apic_debug = 0; 257 int apic_restrict_vector = 0; 258 259 int apic_debug_msgbuf[APIC_DEBUG_MSGBUFSIZE]; 260 int apic_debug_msgbufindex = 0; 261 262 #endif /* DEBUG */ 263 264 apic_cpus_info_t *apic_cpus; 265 266 cpuset_t apic_cpumask; 267 uint_t apic_flag; 268 269 /* Flag to indicate that we need to shut down all processors */ 270 static uint_t apic_shutdown_processors; 271 272 uint_t apic_nsec_per_intr = 0; 273 274 /* 275 * apic_let_idle_redistribute can have the following values: 276 * 0 - If clock decremented it from 1 to 0, clock has to call redistribute. 277 * apic_redistribute_lock prevents multiple idle cpus from redistributing 278 */ 279 int apic_num_idle_redistributions = 0; 280 static int apic_let_idle_redistribute = 0; 281 static uint_t apic_nticks = 0; 282 static uint_t apic_skipped_redistribute = 0; 283 284 /* to gather intr data and redistribute */ 285 static void apic_redistribute_compute(void); 286 287 static uint_t last_count_read = 0; 288 static lock_t apic_gethrtime_lock; 289 volatile int apic_hrtime_stamp = 0; 290 volatile hrtime_t apic_nsec_since_boot = 0; 291 static uint_t apic_hertz_count; 292 293 uint64_t apic_ticks_per_SFnsecs; /* # of ticks in SF nsecs */ 294 295 static hrtime_t apic_nsec_max; 296 297 static hrtime_t apic_last_hrtime = 0; 298 int apic_hrtime_error = 0; 299 int apic_remote_hrterr = 0; 300 int apic_num_nmis = 0; 301 int apic_apic_error = 0; 302 int apic_num_apic_errors = 0; 303 int apic_num_cksum_errors = 0; 304 305 int apic_error = 0; 306 static int apic_cmos_ssb_set = 0; 307 308 /* use to make sure only one cpu handles the nmi */ 309 static lock_t apic_nmi_lock; 310 /* use to make sure only one cpu handles the error interrupt */ 311 static lock_t apic_error_lock; 312 313 static struct { 314 uchar_t cntl; 315 uchar_t data; 316 } aspen_bmc[] = { 317 { CC_SMS_WR_START, 0x18 }, /* NetFn/LUN */ 318 { CC_SMS_WR_NEXT, 0x24 }, /* Cmd SET_WATCHDOG_TIMER */ 319 { CC_SMS_WR_NEXT, 0x84 }, /* DataByte 1: SMS/OS no log */ 320 { CC_SMS_WR_NEXT, 0x2 }, /* DataByte 2: Power Down */ 321 { CC_SMS_WR_NEXT, 0x0 }, /* DataByte 3: no pre-timeout */ 322 { CC_SMS_WR_NEXT, 0x0 }, /* DataByte 4: timer expir. */ 323 { CC_SMS_WR_NEXT, 0xa }, /* DataByte 5: init countdown */ 324 { CC_SMS_WR_END, 0x0 }, /* DataByte 6: init countdown */ 325 326 { CC_SMS_WR_START, 0x18 }, /* NetFn/LUN */ 327 { CC_SMS_WR_END, 0x22 } /* Cmd RESET_WATCHDOG_TIMER */ 328 }; 329 330 static struct { 331 int port; 332 uchar_t data; 333 } sitka_bmc[] = { 334 { SMS_COMMAND_REGISTER, SMS_WRITE_START }, 335 { SMS_DATA_REGISTER, 0x18 }, /* NetFn/LUN */ 336 { SMS_DATA_REGISTER, 0x24 }, /* Cmd SET_WATCHDOG_TIMER */ 337 { SMS_DATA_REGISTER, 0x84 }, /* DataByte 1: SMS/OS no log */ 338 { SMS_DATA_REGISTER, 0x2 }, /* DataByte 2: Power Down */ 339 { SMS_DATA_REGISTER, 0x0 }, /* DataByte 3: no pre-timeout */ 340 { SMS_DATA_REGISTER, 0x0 }, /* DataByte 4: timer expir. */ 341 { SMS_DATA_REGISTER, 0xa }, /* DataByte 5: init countdown */ 342 { SMS_COMMAND_REGISTER, SMS_WRITE_END }, 343 { SMS_DATA_REGISTER, 0x0 }, /* DataByte 6: init countdown */ 344 345 { SMS_COMMAND_REGISTER, SMS_WRITE_START }, 346 { SMS_DATA_REGISTER, 0x18 }, /* NetFn/LUN */ 347 { SMS_COMMAND_REGISTER, SMS_WRITE_END }, 348 { SMS_DATA_REGISTER, 0x22 } /* Cmd RESET_WATCHDOG_TIMER */ 349 }; 350 351 /* Patchable global variables. */ 352 int apic_kmdb_on_nmi = 0; /* 0 - no, 1 - yes enter kmdb */ 353 uint32_t apic_divide_reg_init = 0; /* 0 - divide by 2 */ 354 355 /* 356 * This is the loadable module wrapper 357 */ 358 359 int 360 _init(void) 361 { 362 if (apic_coarse_hrtime) 363 apic_ops.psm_gethrtime = &apic_gettime; 364 return (psm_mod_init(&apic_hdlp, &apic_psm_info)); 365 } 366 367 int 368 _fini(void) 369 { 370 return (psm_mod_fini(&apic_hdlp, &apic_psm_info)); 371 } 372 373 int 374 _info(struct modinfo *modinfop) 375 { 376 return (psm_mod_info(&apic_hdlp, &apic_psm_info, modinfop)); 377 } 378 379 380 static int 381 apic_probe() 382 { 383 return (apic_probe_common(apic_psm_info.p_mach_idstring)); 384 } 385 386 void 387 apic_init() 388 { 389 int i; 390 int j = 1; 391 392 apic_ipltopri[0] = APIC_VECTOR_PER_IPL; /* leave 0 for idle */ 393 for (i = 0; i < (APIC_AVAIL_VECTOR / APIC_VECTOR_PER_IPL); i++) { 394 if ((i < ((APIC_AVAIL_VECTOR / APIC_VECTOR_PER_IPL) - 1)) && 395 (apic_vectortoipl[i + 1] == apic_vectortoipl[i])) 396 /* get to highest vector at the same ipl */ 397 continue; 398 for (; j <= apic_vectortoipl[i]; j++) { 399 apic_ipltopri[j] = (i << APIC_IPL_SHIFT) + 400 APIC_BASE_VECT; 401 } 402 } 403 for (; j < MAXIPL + 1; j++) 404 /* fill up any empty ipltopri slots */ 405 apic_ipltopri[j] = (i << APIC_IPL_SHIFT) + APIC_BASE_VECT; 406 apic_init_common(); 407 #if defined(__amd64) 408 /* 409 * Make cpu-specific interrupt info point to cr8pri vector 410 */ 411 for (i = 0; i <= MAXIPL; i++) 412 apic_cr8pri[i] = apic_ipltopri[i] >> APIC_IPL_SHIFT; 413 CPU->cpu_pri_data = apic_cr8pri; 414 #endif /* __amd64 */ 415 } 416 417 /* 418 * handler for APIC Error interrupt. Just print a warning and continue 419 */ 420 static int 421 apic_error_intr() 422 { 423 uint_t error0, error1, error; 424 uint_t i; 425 426 /* 427 * We need to write before read as per 7.4.17 of system prog manual. 428 * We do both and or the results to be safe 429 */ 430 error0 = apicadr[APIC_ERROR_STATUS]; 431 apicadr[APIC_ERROR_STATUS] = 0; 432 error1 = apicadr[APIC_ERROR_STATUS]; 433 error = error0 | error1; 434 435 /* 436 * Clear the APIC error status (do this on all cpus that enter here) 437 * (two writes are required due to the semantics of accessing the 438 * error status register.) 439 */ 440 apicadr[APIC_ERROR_STATUS] = 0; 441 apicadr[APIC_ERROR_STATUS] = 0; 442 443 /* 444 * Prevent more than 1 CPU from handling error interrupt causing 445 * double printing (interleave of characters from multiple 446 * CPU's when using prom_printf) 447 */ 448 if (lock_try(&apic_error_lock) == 0) 449 return (error ? DDI_INTR_CLAIMED : DDI_INTR_UNCLAIMED); 450 if (error) { 451 #if DEBUG 452 if (apic_debug) 453 debug_enter("pcplusmp: APIC Error interrupt received"); 454 #endif /* DEBUG */ 455 if (apic_panic_on_apic_error) 456 cmn_err(CE_PANIC, 457 "APIC Error interrupt on CPU %d. Status = %x\n", 458 psm_get_cpu_id(), error); 459 else { 460 if ((error & ~APIC_CS_ERRORS) == 0) { 461 /* cksum error only */ 462 apic_error |= APIC_ERR_APIC_ERROR; 463 apic_apic_error |= error; 464 apic_num_apic_errors++; 465 apic_num_cksum_errors++; 466 } else { 467 /* 468 * prom_printf is the best shot we have of 469 * something which is problem free from 470 * high level/NMI type of interrupts 471 */ 472 prom_printf("APIC Error interrupt on CPU %d. " 473 "Status 0 = %x, Status 1 = %x\n", 474 psm_get_cpu_id(), error0, error1); 475 apic_error |= APIC_ERR_APIC_ERROR; 476 apic_apic_error |= error; 477 apic_num_apic_errors++; 478 for (i = 0; i < apic_error_display_delay; i++) { 479 tenmicrosec(); 480 } 481 /* 482 * provide more delay next time limited to 483 * roughly 1 clock tick time 484 */ 485 if (apic_error_display_delay < 500) 486 apic_error_display_delay *= 2; 487 } 488 } 489 lock_clear(&apic_error_lock); 490 return (DDI_INTR_CLAIMED); 491 } else { 492 lock_clear(&apic_error_lock); 493 return (DDI_INTR_UNCLAIMED); 494 } 495 /* NOTREACHED */ 496 } 497 498 /* 499 * Turn off the mask bit in the performance counter Local Vector Table entry. 500 */ 501 static void 502 apic_cpcovf_mask_clear(void) 503 { 504 apicadr[APIC_PCINT_VECT] &= ~APIC_LVT_MASK; 505 } 506 507 static void 508 apic_init_intr() 509 { 510 processorid_t cpun = psm_get_cpu_id(); 511 512 #if defined(__amd64) 513 setcr8((ulong_t)(APIC_MASK_ALL >> APIC_IPL_SHIFT)); 514 #else 515 apicadr[APIC_TASK_REG] = APIC_MASK_ALL; 516 #endif 517 518 if (apic_flat_model) 519 apicadr[APIC_FORMAT_REG] = APIC_FLAT_MODEL; 520 else 521 apicadr[APIC_FORMAT_REG] = APIC_CLUSTER_MODEL; 522 apicadr[APIC_DEST_REG] = AV_HIGH_ORDER >> cpun; 523 524 /* need to enable APIC before unmasking NMI */ 525 apicadr[APIC_SPUR_INT_REG] = AV_UNIT_ENABLE | APIC_SPUR_INTR; 526 527 apicadr[APIC_LOCAL_TIMER] = AV_MASK; 528 apicadr[APIC_INT_VECT0] = AV_MASK; /* local intr reg 0 */ 529 apicadr[APIC_INT_VECT1] = AV_NMI; /* enable NMI */ 530 531 if (apic_cpus[cpun].aci_local_ver < APIC_INTEGRATED_VERS) 532 return; 533 534 /* Enable performance counter overflow interrupt */ 535 536 if ((x86_feature & X86_MSR) != X86_MSR) 537 apic_enable_cpcovf_intr = 0; 538 if (apic_enable_cpcovf_intr) { 539 if (apic_cpcovf_vect == 0) { 540 int ipl = APIC_PCINT_IPL; 541 int irq = apic_get_ipivect(ipl, -1); 542 543 ASSERT(irq != -1); 544 apic_cpcovf_vect = apic_irq_table[irq]->airq_vector; 545 ASSERT(apic_cpcovf_vect); 546 (void) add_avintr(NULL, ipl, 547 (avfunc)kcpc_hw_overflow_intr, 548 "apic pcint", irq, NULL, NULL, NULL, NULL); 549 kcpc_hw_overflow_intr_installed = 1; 550 kcpc_hw_enable_cpc_intr = apic_cpcovf_mask_clear; 551 } 552 apicadr[APIC_PCINT_VECT] = apic_cpcovf_vect; 553 } 554 555 /* Enable error interrupt */ 556 557 if (apic_enable_error_intr) { 558 if (apic_errvect == 0) { 559 int ipl = 0xf; /* get highest priority intr */ 560 int irq = apic_get_ipivect(ipl, -1); 561 562 ASSERT(irq != -1); 563 apic_errvect = apic_irq_table[irq]->airq_vector; 564 ASSERT(apic_errvect); 565 /* 566 * Not PSMI compliant, but we are going to merge 567 * with ON anyway 568 */ 569 (void) add_avintr((void *)NULL, ipl, 570 (avfunc)apic_error_intr, "apic error intr", 571 irq, NULL, NULL, NULL, NULL); 572 } 573 apicadr[APIC_ERR_VECT] = apic_errvect; 574 apicadr[APIC_ERROR_STATUS] = 0; 575 apicadr[APIC_ERROR_STATUS] = 0; 576 } 577 } 578 579 static void 580 apic_disable_local_apic() 581 { 582 apicadr[APIC_TASK_REG] = APIC_MASK_ALL; 583 apicadr[APIC_LOCAL_TIMER] = AV_MASK; 584 apicadr[APIC_INT_VECT0] = AV_MASK; /* local intr reg 0 */ 585 apicadr[APIC_INT_VECT1] = AV_MASK; /* disable NMI */ 586 apicadr[APIC_ERR_VECT] = AV_MASK; /* and error interrupt */ 587 apicadr[APIC_PCINT_VECT] = AV_MASK; /* and perf counter intr */ 588 apicadr[APIC_SPUR_INT_REG] = APIC_SPUR_INTR; 589 } 590 591 static void 592 apic_picinit(void) 593 { 594 int i, j; 595 uint_t isr; 596 597 /* 598 * On UniSys Model 6520, the BIOS leaves vector 0x20 isr 599 * bit on without clearing it with EOI. Since softint 600 * uses vector 0x20 to interrupt itself, so softint will 601 * not work on this machine. In order to fix this problem 602 * a check is made to verify all the isr bits are clear. 603 * If not, EOIs are issued to clear the bits. 604 */ 605 for (i = 7; i >= 1; i--) { 606 if ((isr = apicadr[APIC_ISR_REG + (i * 4)]) != 0) 607 for (j = 0; ((j < 32) && (isr != 0)); j++) 608 if (isr & (1 << j)) { 609 apicadr[APIC_EOI_REG] = 0; 610 isr &= ~(1 << j); 611 apic_error |= APIC_ERR_BOOT_EOI; 612 } 613 } 614 615 /* set a flag so we know we have run apic_picinit() */ 616 apic_flag = 1; 617 LOCK_INIT_CLEAR(&apic_gethrtime_lock); 618 LOCK_INIT_CLEAR(&apic_ioapic_lock); 619 LOCK_INIT_CLEAR(&apic_error_lock); 620 621 picsetup(); /* initialise the 8259 */ 622 623 /* add nmi handler - least priority nmi handler */ 624 LOCK_INIT_CLEAR(&apic_nmi_lock); 625 626 if (!psm_add_nmintr(0, (avfunc) apic_nmi_intr, 627 "pcplusmp NMI handler", (caddr_t)NULL)) 628 cmn_err(CE_WARN, "pcplusmp: Unable to add nmi handler"); 629 630 apic_init_intr(); 631 632 /* enable apic mode if imcr present */ 633 if (apic_imcrp) { 634 outb(APIC_IMCR_P1, (uchar_t)APIC_IMCR_SELECT); 635 outb(APIC_IMCR_P2, (uchar_t)APIC_IMCR_APIC); 636 } 637 638 ioapic_init_intr(IOAPIC_MASK); 639 } 640 641 642 /*ARGSUSED1*/ 643 static int 644 apic_cpu_start(processorid_t cpun, caddr_t arg) 645 { 646 int loop_count; 647 uint32_t vector; 648 uint_t cpu_id; 649 ulong_t iflag; 650 651 cpu_id = apic_cpus[cpun].aci_local_id; 652 653 apic_cmos_ssb_set = 1; 654 655 /* 656 * Interrupts on BSP cpu will be disabled during these startup 657 * steps in order to avoid unwanted side effects from 658 * executing interrupt handlers on a problematic BIOS. 659 */ 660 661 iflag = intr_clear(); 662 outb(CMOS_ADDR, SSB); 663 outb(CMOS_DATA, BIOS_SHUTDOWN); 664 665 while (get_apic_cmd1() & AV_PENDING) 666 apic_ret(); 667 668 /* for integrated - make sure there is one INIT IPI in buffer */ 669 /* for external - it will wake up the cpu */ 670 apicadr[APIC_INT_CMD2] = cpu_id << APIC_ICR_ID_BIT_OFFSET; 671 apicadr[APIC_INT_CMD1] = AV_ASSERT | AV_RESET; 672 673 /* If only 1 CPU is installed, PENDING bit will not go low */ 674 for (loop_count = 0x1000; loop_count; loop_count--) 675 if (get_apic_cmd1() & AV_PENDING) 676 apic_ret(); 677 else 678 break; 679 680 apicadr[APIC_INT_CMD2] = cpu_id << APIC_ICR_ID_BIT_OFFSET; 681 apicadr[APIC_INT_CMD1] = AV_DEASSERT | AV_RESET; 682 683 drv_usecwait(20000); /* 20 milli sec */ 684 685 if (apic_cpus[cpun].aci_local_ver >= APIC_INTEGRATED_VERS) { 686 /* integrated apic */ 687 688 vector = (rm_platter_pa >> MMU_PAGESHIFT) & 689 (APIC_VECTOR_MASK | APIC_IPL_MASK); 690 691 /* to offset the INIT IPI queue up in the buffer */ 692 apicadr[APIC_INT_CMD2] = cpu_id << APIC_ICR_ID_BIT_OFFSET; 693 apicadr[APIC_INT_CMD1] = vector | AV_STARTUP; 694 695 drv_usecwait(200); /* 20 micro sec */ 696 697 apicadr[APIC_INT_CMD2] = cpu_id << APIC_ICR_ID_BIT_OFFSET; 698 apicadr[APIC_INT_CMD1] = vector | AV_STARTUP; 699 700 drv_usecwait(200); /* 20 micro sec */ 701 } 702 intr_restore(iflag); 703 return (0); 704 } 705 706 707 #ifdef DEBUG 708 int apic_break_on_cpu = 9; 709 int apic_stretch_interrupts = 0; 710 int apic_stretch_ISR = 1 << 3; /* IPL of 3 matches nothing now */ 711 712 void 713 apic_break() 714 { 715 } 716 #endif /* DEBUG */ 717 718 /* 719 * platform_intr_enter 720 * 721 * Called at the beginning of the interrupt service routine to 722 * mask all level equal to and below the interrupt priority 723 * of the interrupting vector. An EOI should be given to 724 * the interrupt controller to enable other HW interrupts. 725 * 726 * Return -1 for spurious interrupts 727 * 728 */ 729 /*ARGSUSED*/ 730 static int 731 apic_intr_enter(int ipl, int *vectorp) 732 { 733 uchar_t vector; 734 int nipl; 735 int irq; 736 ulong_t iflag; 737 apic_cpus_info_t *cpu_infop; 738 739 /* 740 * The real vector delivered is (*vectorp + 0x20), but our caller 741 * subtracts 0x20 from the vector before passing it to us. 742 * (That's why APIC_BASE_VECT is 0x20.) 743 */ 744 vector = (uchar_t)*vectorp; 745 746 /* if interrupted by the clock, increment apic_nsec_since_boot */ 747 if (vector == apic_clkvect) { 748 if (!apic_oneshot) { 749 /* NOTE: this is not MT aware */ 750 apic_hrtime_stamp++; 751 apic_nsec_since_boot += apic_nsec_per_intr; 752 apic_hrtime_stamp++; 753 last_count_read = apic_hertz_count; 754 apic_redistribute_compute(); 755 } 756 757 /* We will avoid all the book keeping overhead for clock */ 758 nipl = apic_ipls[vector]; 759 760 #if defined(__amd64) 761 setcr8((ulong_t)apic_cr8pri[nipl]); 762 #else 763 apicadr[APIC_TASK_REG] = apic_ipltopri[nipl]; 764 #endif 765 *vectorp = apic_vector_to_irq[vector + APIC_BASE_VECT]; 766 apicadr[APIC_EOI_REG] = 0; 767 return (nipl); 768 } 769 770 cpu_infop = &apic_cpus[psm_get_cpu_id()]; 771 772 if (vector == (APIC_SPUR_INTR - APIC_BASE_VECT)) { 773 cpu_infop->aci_spur_cnt++; 774 return (APIC_INT_SPURIOUS); 775 } 776 777 /* Check if the vector we got is really what we need */ 778 if (apic_revector_pending) { 779 /* 780 * Disable interrupts for the duration of 781 * the vector translation to prevent a self-race for 782 * the apic_revector_lock. This cannot be done 783 * in apic_xlate_vector because it is recursive and 784 * we want the vector translation to be atomic with 785 * respect to other (higher-priority) interrupts. 786 */ 787 iflag = intr_clear(); 788 vector = apic_xlate_vector(vector + APIC_BASE_VECT) - 789 APIC_BASE_VECT; 790 intr_restore(iflag); 791 } 792 793 nipl = apic_ipls[vector]; 794 *vectorp = irq = apic_vector_to_irq[vector + APIC_BASE_VECT]; 795 796 #if defined(__amd64) 797 setcr8((ulong_t)apic_cr8pri[nipl]); 798 #else 799 apicadr[APIC_TASK_REG] = apic_ipltopri[nipl]; 800 #endif 801 802 cpu_infop->aci_current[nipl] = (uchar_t)irq; 803 cpu_infop->aci_curipl = (uchar_t)nipl; 804 cpu_infop->aci_ISR_in_progress |= 1 << nipl; 805 806 /* 807 * apic_level_intr could have been assimilated into the irq struct. 808 * but, having it as a character array is more efficient in terms of 809 * cache usage. So, we leave it as is. 810 */ 811 if (!apic_level_intr[irq]) 812 apicadr[APIC_EOI_REG] = 0; 813 814 #ifdef DEBUG 815 APIC_DEBUG_BUF_PUT(vector); 816 APIC_DEBUG_BUF_PUT(irq); 817 APIC_DEBUG_BUF_PUT(nipl); 818 APIC_DEBUG_BUF_PUT(psm_get_cpu_id()); 819 if ((apic_stretch_interrupts) && (apic_stretch_ISR & (1 << nipl))) 820 drv_usecwait(apic_stretch_interrupts); 821 822 if (apic_break_on_cpu == psm_get_cpu_id()) 823 apic_break(); 824 #endif /* DEBUG */ 825 return (nipl); 826 } 827 828 void 829 apic_intr_exit(int prev_ipl, int irq) 830 { 831 apic_cpus_info_t *cpu_infop; 832 833 #if defined(__amd64) 834 setcr8((ulong_t)apic_cr8pri[prev_ipl]); 835 #else 836 apicadr[APIC_TASK_REG] = apic_ipltopri[prev_ipl]; 837 #endif 838 839 cpu_infop = &apic_cpus[psm_get_cpu_id()]; 840 if (apic_level_intr[irq]) 841 apicadr[APIC_EOI_REG] = 0; 842 843 cpu_infop->aci_curipl = (uchar_t)prev_ipl; 844 /* ISR above current pri could not be in progress */ 845 cpu_infop->aci_ISR_in_progress &= (2 << prev_ipl) - 1; 846 } 847 848 /* 849 * Mask all interrupts below or equal to the given IPL 850 */ 851 static void 852 apic_setspl(int ipl) 853 { 854 855 #if defined(__amd64) 856 setcr8((ulong_t)apic_cr8pri[ipl]); 857 #else 858 apicadr[APIC_TASK_REG] = apic_ipltopri[ipl]; 859 #endif 860 861 /* interrupts at ipl above this cannot be in progress */ 862 apic_cpus[psm_get_cpu_id()].aci_ISR_in_progress &= (2 << ipl) - 1; 863 /* 864 * this is a patch fix for the ALR QSMP P5 machine, so that interrupts 865 * have enough time to come in before the priority is raised again 866 * during the idle() loop. 867 */ 868 if (apic_setspl_delay) 869 (void) get_apic_pri(); 870 } 871 872 /* 873 * trigger a software interrupt at the given IPL 874 */ 875 static void 876 apic_set_softintr(int ipl) 877 { 878 int vector; 879 ulong_t flag; 880 881 vector = apic_resv_vector[ipl]; 882 883 flag = intr_clear(); 884 885 while (get_apic_cmd1() & AV_PENDING) 886 apic_ret(); 887 888 /* generate interrupt at vector on itself only */ 889 apicadr[APIC_INT_CMD1] = AV_SH_SELF | vector; 890 891 intr_restore(flag); 892 } 893 894 /* 895 * generates an interprocessor interrupt to another CPU 896 */ 897 static void 898 apic_send_ipi(int cpun, int ipl) 899 { 900 int vector; 901 ulong_t flag; 902 903 vector = apic_resv_vector[ipl]; 904 905 flag = intr_clear(); 906 907 while (get_apic_cmd1() & AV_PENDING) 908 apic_ret(); 909 910 apicadr[APIC_INT_CMD2] = 911 apic_cpus[cpun].aci_local_id << APIC_ICR_ID_BIT_OFFSET; 912 apicadr[APIC_INT_CMD1] = vector; 913 914 intr_restore(flag); 915 } 916 917 918 /*ARGSUSED*/ 919 static void 920 apic_set_idlecpu(processorid_t cpun) 921 { 922 } 923 924 /*ARGSUSED*/ 925 static void 926 apic_unset_idlecpu(processorid_t cpun) 927 { 928 } 929 930 931 static void 932 apic_ret() 933 { 934 } 935 936 static int 937 get_apic_cmd1() 938 { 939 return (apicadr[APIC_INT_CMD1]); 940 } 941 942 static int 943 get_apic_pri() 944 { 945 #if defined(__amd64) 946 return ((int)getcr8()); 947 #else 948 return (apicadr[APIC_TASK_REG]); 949 #endif 950 } 951 952 /* 953 * If apic_coarse_time == 1, then apic_gettime() is used instead of 954 * apic_gethrtime(). This is used for performance instead of accuracy. 955 */ 956 957 static hrtime_t 958 apic_gettime() 959 { 960 int old_hrtime_stamp; 961 hrtime_t temp; 962 963 /* 964 * In one-shot mode, we do not keep time, so if anyone 965 * calls psm_gettime() directly, we vector over to 966 * gethrtime(). 967 * one-shot mode MUST NOT be enabled if this psm is the source of 968 * hrtime. 969 */ 970 971 if (apic_oneshot) 972 return (gethrtime()); 973 974 975 gettime_again: 976 while ((old_hrtime_stamp = apic_hrtime_stamp) & 1) 977 apic_ret(); 978 979 temp = apic_nsec_since_boot; 980 981 if (apic_hrtime_stamp != old_hrtime_stamp) { /* got an interrupt */ 982 goto gettime_again; 983 } 984 return (temp); 985 } 986 987 /* 988 * Here we return the number of nanoseconds since booting. Note every 989 * clock interrupt increments apic_nsec_since_boot by the appropriate 990 * amount. 991 */ 992 static hrtime_t 993 apic_gethrtime() 994 { 995 int curr_timeval, countval, elapsed_ticks; 996 int old_hrtime_stamp, status; 997 hrtime_t temp; 998 uchar_t cpun; 999 ulong_t oflags; 1000 1001 /* 1002 * In one-shot mode, we do not keep time, so if anyone 1003 * calls psm_gethrtime() directly, we vector over to 1004 * gethrtime(). 1005 * one-shot mode MUST NOT be enabled if this psm is the source of 1006 * hrtime. 1007 */ 1008 1009 if (apic_oneshot) 1010 return (gethrtime()); 1011 1012 oflags = intr_clear(); /* prevent migration */ 1013 1014 cpun = (uchar_t)((uint_t)apicadr[APIC_LID_REG] >> APIC_ID_BIT_OFFSET); 1015 1016 lock_set(&apic_gethrtime_lock); 1017 1018 gethrtime_again: 1019 while ((old_hrtime_stamp = apic_hrtime_stamp) & 1) 1020 apic_ret(); 1021 1022 /* 1023 * Check to see which CPU we are on. Note the time is kept on 1024 * the local APIC of CPU 0. If on CPU 0, simply read the current 1025 * counter. If on another CPU, issue a remote read command to CPU 0. 1026 */ 1027 if (cpun == apic_cpus[0].aci_local_id) { 1028 countval = apicadr[APIC_CURR_COUNT]; 1029 } else { 1030 while (get_apic_cmd1() & AV_PENDING) 1031 apic_ret(); 1032 1033 apicadr[APIC_INT_CMD2] = 1034 apic_cpus[0].aci_local_id << APIC_ICR_ID_BIT_OFFSET; 1035 apicadr[APIC_INT_CMD1] = APIC_CURR_ADD|AV_REMOTE; 1036 1037 while ((status = get_apic_cmd1()) & AV_READ_PENDING) 1038 apic_ret(); 1039 1040 if (status & AV_REMOTE_STATUS) /* 1 = valid */ 1041 countval = apicadr[APIC_REMOTE_READ]; 1042 else { /* 0 = invalid */ 1043 apic_remote_hrterr++; 1044 /* 1045 * return last hrtime right now, will need more 1046 * testing if change to retry 1047 */ 1048 temp = apic_last_hrtime; 1049 1050 lock_clear(&apic_gethrtime_lock); 1051 1052 intr_restore(oflags); 1053 1054 return (temp); 1055 } 1056 } 1057 if (countval > last_count_read) 1058 countval = 0; 1059 else 1060 last_count_read = countval; 1061 1062 elapsed_ticks = apic_hertz_count - countval; 1063 1064 curr_timeval = APIC_TICKS_TO_NSECS(elapsed_ticks); 1065 temp = apic_nsec_since_boot + curr_timeval; 1066 1067 if (apic_hrtime_stamp != old_hrtime_stamp) { /* got an interrupt */ 1068 /* we might have clobbered last_count_read. Restore it */ 1069 last_count_read = apic_hertz_count; 1070 goto gethrtime_again; 1071 } 1072 1073 if (temp < apic_last_hrtime) { 1074 /* return last hrtime if error occurs */ 1075 apic_hrtime_error++; 1076 temp = apic_last_hrtime; 1077 } 1078 else 1079 apic_last_hrtime = temp; 1080 1081 lock_clear(&apic_gethrtime_lock); 1082 intr_restore(oflags); 1083 1084 return (temp); 1085 } 1086 1087 /* apic NMI handler */ 1088 /*ARGSUSED*/ 1089 static void 1090 apic_nmi_intr(caddr_t arg) 1091 { 1092 if (apic_shutdown_processors) { 1093 apic_disable_local_apic(); 1094 return; 1095 } 1096 1097 if (lock_try(&apic_nmi_lock)) { 1098 if (apic_kmdb_on_nmi) { 1099 if (psm_debugger() == 0) { 1100 cmn_err(CE_PANIC, 1101 "NMI detected, kmdb is not available."); 1102 } else { 1103 debug_enter("\nNMI detected, entering kmdb.\n"); 1104 } 1105 } else { 1106 if (apic_panic_on_nmi) { 1107 /* Keep panic from entering kmdb. */ 1108 nopanicdebug = 1; 1109 cmn_err(CE_PANIC, "pcplusmp: NMI received"); 1110 } else { 1111 /* 1112 * prom_printf is the best shot we have 1113 * of something which is problem free from 1114 * high level/NMI type of interrupts 1115 */ 1116 prom_printf("pcplusmp: NMI received\n"); 1117 apic_error |= APIC_ERR_NMI; 1118 apic_num_nmis++; 1119 } 1120 } 1121 lock_clear(&apic_nmi_lock); 1122 } 1123 } 1124 1125 /*ARGSUSED*/ 1126 static int 1127 apic_addspl(int irqno, int ipl, int min_ipl, int max_ipl) 1128 { 1129 return (apic_addspl_common(irqno, ipl, min_ipl, max_ipl)); 1130 } 1131 1132 static int 1133 apic_delspl(int irqno, int ipl, int min_ipl, int max_ipl) 1134 { 1135 return (apic_delspl_common(irqno, ipl, min_ipl, max_ipl)); 1136 } 1137 1138 /* 1139 * Return HW interrupt number corresponding to the given IPL 1140 */ 1141 /*ARGSUSED*/ 1142 static int 1143 apic_softlvl_to_irq(int ipl) 1144 { 1145 /* 1146 * Do not use apic to trigger soft interrupt. 1147 * It will cause the system to hang when 2 hardware interrupts 1148 * at the same priority with the softint are already accepted 1149 * by the apic. Cause the AV_PENDING bit will not be cleared 1150 * until one of the hardware interrupt is eoi'ed. If we need 1151 * to send an ipi at this time, we will end up looping forever 1152 * to wait for the AV_PENDING bit to clear. 1153 */ 1154 return (PSM_SV_SOFTWARE); 1155 } 1156 1157 static int 1158 apic_post_cpu_start() 1159 { 1160 int i, cpun; 1161 ulong_t iflag; 1162 apic_irq_t *irq_ptr; 1163 1164 splx(ipltospl(LOCK_LEVEL)); 1165 apic_init_intr(); 1166 1167 /* 1168 * since some systems don't enable the internal cache on the non-boot 1169 * cpus, so we have to enable them here 1170 */ 1171 setcr0(getcr0() & ~(CR0_CD | CR0_NW)); 1172 1173 while (get_apic_cmd1() & AV_PENDING) 1174 apic_ret(); 1175 1176 cpun = psm_get_cpu_id(); 1177 apic_cpus[cpun].aci_status = APIC_CPU_ONLINE | APIC_CPU_INTR_ENABLE; 1178 1179 for (i = apic_min_device_irq; i <= apic_max_device_irq; i++) { 1180 irq_ptr = apic_irq_table[i]; 1181 if ((irq_ptr == NULL) || 1182 ((irq_ptr->airq_cpu & ~IRQ_USER_BOUND) != cpun)) 1183 continue; 1184 1185 while (irq_ptr) { 1186 if (irq_ptr->airq_temp_cpu != IRQ_UNINIT) { 1187 iflag = intr_clear(); 1188 lock_set(&apic_ioapic_lock); 1189 1190 (void) apic_rebind(irq_ptr, cpun, NULL); 1191 1192 lock_clear(&apic_ioapic_lock); 1193 intr_restore(iflag); 1194 } 1195 irq_ptr = irq_ptr->airq_next; 1196 } 1197 } 1198 1199 apicadr[APIC_DIVIDE_REG] = apic_divide_reg_init; 1200 return (PSM_SUCCESS); 1201 } 1202 1203 processorid_t 1204 apic_get_next_processorid(processorid_t cpu_id) 1205 { 1206 1207 int i; 1208 1209 if (cpu_id == -1) 1210 return ((processorid_t)0); 1211 1212 for (i = cpu_id + 1; i < NCPU; i++) { 1213 if (CPU_IN_SET(apic_cpumask, i)) 1214 return (i); 1215 } 1216 1217 return ((processorid_t)-1); 1218 } 1219 1220 1221 /* 1222 * type == -1 indicates it is an internal request. Do not change 1223 * resv_vector for these requests 1224 */ 1225 static int 1226 apic_get_ipivect(int ipl, int type) 1227 { 1228 uchar_t vector; 1229 int irq; 1230 1231 if (irq = apic_allocate_irq(APIC_VECTOR(ipl))) { 1232 if (vector = apic_allocate_vector(ipl, irq, 1)) { 1233 apic_irq_table[irq]->airq_mps_intr_index = 1234 RESERVE_INDEX; 1235 apic_irq_table[irq]->airq_vector = vector; 1236 if (type != -1) { 1237 apic_resv_vector[ipl] = vector; 1238 } 1239 return (irq); 1240 } 1241 } 1242 apic_error |= APIC_ERR_GET_IPIVECT_FAIL; 1243 return (-1); /* shouldn't happen */ 1244 } 1245 1246 static int 1247 apic_getclkirq(int ipl) 1248 { 1249 int irq; 1250 1251 if ((irq = apic_get_ipivect(ipl, -1)) == -1) 1252 return (-1); 1253 /* 1254 * Note the vector in apic_clkvect for per clock handling. 1255 */ 1256 apic_clkvect = apic_irq_table[irq]->airq_vector - APIC_BASE_VECT; 1257 APIC_VERBOSE_IOAPIC((CE_NOTE, "get_clkirq: vector = %x\n", 1258 apic_clkvect)); 1259 return (irq); 1260 } 1261 1262 1263 /* 1264 * Return the number of APIC clock ticks elapsed for 8245 to decrement 1265 * (APIC_TIME_COUNT + pit_ticks_adj) ticks. 1266 */ 1267 static uint_t 1268 apic_calibrate(volatile uint32_t *addr, uint16_t *pit_ticks_adj) 1269 { 1270 uint8_t pit_tick_lo; 1271 uint16_t pit_tick, target_pit_tick; 1272 uint32_t start_apic_tick, end_apic_tick; 1273 ulong_t iflag; 1274 1275 addr += APIC_CURR_COUNT; 1276 1277 iflag = intr_clear(); 1278 1279 do { 1280 pit_tick_lo = inb(PITCTR0_PORT); 1281 pit_tick = (inb(PITCTR0_PORT) << 8) | pit_tick_lo; 1282 } while (pit_tick < APIC_TIME_MIN || 1283 pit_tick_lo <= APIC_LB_MIN || pit_tick_lo >= APIC_LB_MAX); 1284 1285 /* 1286 * Wait for the 8254 to decrement by 5 ticks to ensure 1287 * we didn't start in the middle of a tick. 1288 * Compare with 0x10 for the wrap around case. 1289 */ 1290 target_pit_tick = pit_tick - 5; 1291 do { 1292 pit_tick_lo = inb(PITCTR0_PORT); 1293 pit_tick = (inb(PITCTR0_PORT) << 8) | pit_tick_lo; 1294 } while (pit_tick > target_pit_tick || pit_tick_lo < 0x10); 1295 1296 start_apic_tick = *addr; 1297 1298 /* 1299 * Wait for the 8254 to decrement by 1300 * (APIC_TIME_COUNT + pit_ticks_adj) ticks 1301 */ 1302 target_pit_tick = pit_tick - APIC_TIME_COUNT; 1303 do { 1304 pit_tick_lo = inb(PITCTR0_PORT); 1305 pit_tick = (inb(PITCTR0_PORT) << 8) | pit_tick_lo; 1306 } while (pit_tick > target_pit_tick || pit_tick_lo < 0x10); 1307 1308 end_apic_tick = *addr; 1309 1310 *pit_ticks_adj = target_pit_tick - pit_tick; 1311 1312 intr_restore(iflag); 1313 1314 return (start_apic_tick - end_apic_tick); 1315 } 1316 1317 /* 1318 * Initialise the APIC timer on the local APIC of CPU 0 to the desired 1319 * frequency. Note at this stage in the boot sequence, the boot processor 1320 * is the only active processor. 1321 * hertz value of 0 indicates a one-shot mode request. In this case 1322 * the function returns the resolution (in nanoseconds) for the hardware 1323 * timer interrupt. If one-shot mode capability is not available, 1324 * the return value will be 0. apic_enable_oneshot is a global switch 1325 * for disabling the functionality. 1326 * A non-zero positive value for hertz indicates a periodic mode request. 1327 * In this case the hardware will be programmed to generate clock interrupts 1328 * at hertz frequency and returns the resolution of interrupts in 1329 * nanosecond. 1330 */ 1331 1332 static int 1333 apic_clkinit(int hertz) 1334 { 1335 1336 uint_t apic_ticks = 0; 1337 uint_t pit_ticks; 1338 int ret; 1339 uint16_t pit_ticks_adj; 1340 static int firsttime = 1; 1341 1342 if (firsttime) { 1343 /* first time calibrate on CPU0 only */ 1344 1345 apicadr[APIC_DIVIDE_REG] = apic_divide_reg_init; 1346 apicadr[APIC_INIT_COUNT] = APIC_MAXVAL; 1347 apic_ticks = apic_calibrate(apicadr, &pit_ticks_adj); 1348 1349 /* total number of PIT ticks corresponding to apic_ticks */ 1350 pit_ticks = APIC_TIME_COUNT + pit_ticks_adj; 1351 1352 /* 1353 * Determine the number of nanoseconds per APIC clock tick 1354 * and then determine how many APIC ticks to interrupt at the 1355 * desired frequency 1356 * apic_ticks / (pitticks / PIT_HZ) = apic_ticks_per_s 1357 * (apic_ticks * PIT_HZ) / pitticks = apic_ticks_per_s 1358 * apic_ticks_per_ns = (apic_ticks * PIT_HZ) / (pitticks * 10^9) 1359 * pic_ticks_per_SFns = 1360 * (SF * apic_ticks * PIT_HZ) / (pitticks * 10^9) 1361 */ 1362 apic_ticks_per_SFnsecs = 1363 ((SF * apic_ticks * PIT_HZ) / 1364 ((uint64_t)pit_ticks * NANOSEC)); 1365 1366 /* the interval timer initial count is 32 bit max */ 1367 apic_nsec_max = APIC_TICKS_TO_NSECS(APIC_MAXVAL); 1368 firsttime = 0; 1369 } 1370 1371 if (hertz != 0) { 1372 /* periodic */ 1373 apic_nsec_per_intr = NANOSEC / hertz; 1374 apic_hertz_count = APIC_NSECS_TO_TICKS(apic_nsec_per_intr); 1375 } 1376 1377 apic_int_busy_mark = (apic_int_busy_mark * 1378 apic_sample_factor_redistribution) / 100; 1379 apic_int_free_mark = (apic_int_free_mark * 1380 apic_sample_factor_redistribution) / 100; 1381 apic_diff_for_redistribution = (apic_diff_for_redistribution * 1382 apic_sample_factor_redistribution) / 100; 1383 1384 if (hertz == 0) { 1385 /* requested one_shot */ 1386 if (!apic_oneshot_enable) 1387 return (0); 1388 apic_oneshot = 1; 1389 ret = (int)APIC_TICKS_TO_NSECS(1); 1390 } else { 1391 /* program the local APIC to interrupt at the given frequency */ 1392 apicadr[APIC_INIT_COUNT] = apic_hertz_count; 1393 apicadr[APIC_LOCAL_TIMER] = 1394 (apic_clkvect + APIC_BASE_VECT) | AV_TIME; 1395 apic_oneshot = 0; 1396 ret = NANOSEC / hertz; 1397 } 1398 1399 return (ret); 1400 1401 } 1402 1403 /* 1404 * apic_preshutdown: 1405 * Called early in shutdown whilst we can still access filesystems to do 1406 * things like loading modules which will be required to complete shutdown 1407 * after filesystems are all unmounted. 1408 */ 1409 static void 1410 apic_preshutdown(int cmd, int fcn) 1411 { 1412 APIC_VERBOSE_POWEROFF(("apic_preshutdown(%d,%d); m=%d a=%d\n", 1413 cmd, fcn, apic_poweroff_method, apic_enable_acpi)); 1414 1415 } 1416 1417 static void 1418 apic_shutdown(int cmd, int fcn) 1419 { 1420 int restarts, attempts; 1421 int i; 1422 uchar_t byte; 1423 ulong_t iflag; 1424 1425 /* Send NMI to all CPUs except self to do per processor shutdown */ 1426 iflag = intr_clear(); 1427 while (get_apic_cmd1() & AV_PENDING) 1428 apic_ret(); 1429 apic_shutdown_processors = 1; 1430 apicadr[APIC_INT_CMD1] = AV_NMI | AV_LEVEL | AV_SH_ALL_EXCSELF; 1431 1432 /* restore cmos shutdown byte before reboot */ 1433 if (apic_cmos_ssb_set) { 1434 outb(CMOS_ADDR, SSB); 1435 outb(CMOS_DATA, 0); 1436 } 1437 1438 ioapic_disable_redirection(); 1439 1440 /* disable apic mode if imcr present */ 1441 if (apic_imcrp) { 1442 outb(APIC_IMCR_P1, (uchar_t)APIC_IMCR_SELECT); 1443 outb(APIC_IMCR_P2, (uchar_t)APIC_IMCR_PIC); 1444 } 1445 1446 apic_disable_local_apic(); 1447 1448 intr_restore(iflag); 1449 1450 /* remainder of function is for shutdown cases only */ 1451 if (cmd != A_SHUTDOWN) 1452 return; 1453 1454 /* 1455 * Switch system back into Legacy-Mode if using ACPI and 1456 * not powering-off. Some BIOSes need to remain in ACPI-mode 1457 * for power-off to succeed (Dell Dimension 4600) 1458 */ 1459 if (apic_enable_acpi && (fcn != AD_POWEROFF)) 1460 (void) AcpiDisable(); 1461 1462 /* remainder of function is for shutdown+poweroff case only */ 1463 if (fcn != AD_POWEROFF) 1464 return; 1465 1466 switch (apic_poweroff_method) { 1467 case APIC_POWEROFF_VIA_RTC: 1468 1469 /* select the extended NVRAM bank in the RTC */ 1470 outb(CMOS_ADDR, RTC_REGA); 1471 byte = inb(CMOS_DATA); 1472 outb(CMOS_DATA, (byte | EXT_BANK)); 1473 1474 outb(CMOS_ADDR, PFR_REG); 1475 1476 /* for Predator must toggle the PAB bit */ 1477 byte = inb(CMOS_DATA); 1478 1479 /* 1480 * clear power active bar, wakeup alarm and 1481 * kickstart 1482 */ 1483 byte &= ~(PAB_CBIT | WF_FLAG | KS_FLAG); 1484 outb(CMOS_DATA, byte); 1485 1486 /* delay before next write */ 1487 drv_usecwait(1000); 1488 1489 /* for S40 the following would suffice */ 1490 byte = inb(CMOS_DATA); 1491 1492 /* power active bar control bit */ 1493 byte |= PAB_CBIT; 1494 outb(CMOS_DATA, byte); 1495 1496 break; 1497 1498 case APIC_POWEROFF_VIA_ASPEN_BMC: 1499 restarts = 0; 1500 restart_aspen_bmc: 1501 if (++restarts == 3) 1502 break; 1503 attempts = 0; 1504 do { 1505 byte = inb(MISMIC_FLAG_REGISTER); 1506 byte &= MISMIC_BUSY_MASK; 1507 if (byte != 0) { 1508 drv_usecwait(1000); 1509 if (attempts >= 3) 1510 goto restart_aspen_bmc; 1511 ++attempts; 1512 } 1513 } while (byte != 0); 1514 outb(MISMIC_CNTL_REGISTER, CC_SMS_GET_STATUS); 1515 byte = inb(MISMIC_FLAG_REGISTER); 1516 byte |= 0x1; 1517 outb(MISMIC_FLAG_REGISTER, byte); 1518 i = 0; 1519 for (; i < (sizeof (aspen_bmc)/sizeof (aspen_bmc[0])); 1520 i++) { 1521 attempts = 0; 1522 do { 1523 byte = inb(MISMIC_FLAG_REGISTER); 1524 byte &= MISMIC_BUSY_MASK; 1525 if (byte != 0) { 1526 drv_usecwait(1000); 1527 if (attempts >= 3) 1528 goto restart_aspen_bmc; 1529 ++attempts; 1530 } 1531 } while (byte != 0); 1532 outb(MISMIC_CNTL_REGISTER, aspen_bmc[i].cntl); 1533 outb(MISMIC_DATA_REGISTER, aspen_bmc[i].data); 1534 byte = inb(MISMIC_FLAG_REGISTER); 1535 byte |= 0x1; 1536 outb(MISMIC_FLAG_REGISTER, byte); 1537 } 1538 break; 1539 1540 case APIC_POWEROFF_VIA_SITKA_BMC: 1541 restarts = 0; 1542 restart_sitka_bmc: 1543 if (++restarts == 3) 1544 break; 1545 attempts = 0; 1546 do { 1547 byte = inb(SMS_STATUS_REGISTER); 1548 byte &= SMS_STATE_MASK; 1549 if ((byte == SMS_READ_STATE) || 1550 (byte == SMS_WRITE_STATE)) { 1551 drv_usecwait(1000); 1552 if (attempts >= 3) 1553 goto restart_sitka_bmc; 1554 ++attempts; 1555 } 1556 } while ((byte == SMS_READ_STATE) || 1557 (byte == SMS_WRITE_STATE)); 1558 outb(SMS_COMMAND_REGISTER, SMS_GET_STATUS); 1559 i = 0; 1560 for (; i < (sizeof (sitka_bmc)/sizeof (sitka_bmc[0])); 1561 i++) { 1562 attempts = 0; 1563 do { 1564 byte = inb(SMS_STATUS_REGISTER); 1565 byte &= SMS_IBF_MASK; 1566 if (byte != 0) { 1567 drv_usecwait(1000); 1568 if (attempts >= 3) 1569 goto restart_sitka_bmc; 1570 ++attempts; 1571 } 1572 } while (byte != 0); 1573 outb(sitka_bmc[i].port, sitka_bmc[i].data); 1574 } 1575 break; 1576 1577 case APIC_POWEROFF_NONE: 1578 1579 /* If no APIC direct method, we will try using ACPI */ 1580 if (apic_enable_acpi) { 1581 if (acpi_poweroff() == 1) 1582 return; 1583 } else 1584 return; 1585 1586 break; 1587 } 1588 /* 1589 * Wait a limited time here for power to go off. 1590 * If the power does not go off, then there was a 1591 * problem and we should continue to the halt which 1592 * prints a message for the user to press a key to 1593 * reboot. 1594 */ 1595 drv_usecwait(7000000); /* wait seven seconds */ 1596 1597 } 1598 1599 /* 1600 * Try and disable all interrupts. We just assign interrupts to other 1601 * processors based on policy. If any were bound by user request, we 1602 * let them continue and return failure. We do not bother to check 1603 * for cache affinity while rebinding. 1604 */ 1605 1606 static int 1607 apic_disable_intr(processorid_t cpun) 1608 { 1609 int bind_cpu = 0, i, hardbound = 0; 1610 apic_irq_t *irq_ptr; 1611 ulong_t iflag; 1612 1613 iflag = intr_clear(); 1614 lock_set(&apic_ioapic_lock); 1615 1616 for (i = 0; i <= APIC_MAX_VECTOR; i++) { 1617 if (apic_reprogram_info[i].done == B_FALSE) { 1618 if (apic_reprogram_info[i].bindcpu == cpun) { 1619 /* 1620 * CPU is busy -- it's the target of 1621 * a pending reprogramming attempt 1622 */ 1623 lock_clear(&apic_ioapic_lock); 1624 intr_restore(iflag); 1625 return (PSM_FAILURE); 1626 } 1627 } 1628 } 1629 1630 apic_cpus[cpun].aci_status &= ~APIC_CPU_INTR_ENABLE; 1631 1632 apic_cpus[cpun].aci_curipl = 0; 1633 1634 i = apic_min_device_irq; 1635 for (; i <= apic_max_device_irq; i++) { 1636 /* 1637 * If there are bound interrupts on this cpu, then 1638 * rebind them to other processors. 1639 */ 1640 if ((irq_ptr = apic_irq_table[i]) != NULL) { 1641 ASSERT((irq_ptr->airq_temp_cpu == IRQ_UNBOUND) || 1642 (irq_ptr->airq_temp_cpu == IRQ_UNINIT) || 1643 ((irq_ptr->airq_temp_cpu & ~IRQ_USER_BOUND) < 1644 apic_nproc)); 1645 1646 if (irq_ptr->airq_temp_cpu == (cpun | IRQ_USER_BOUND)) { 1647 hardbound = 1; 1648 continue; 1649 } 1650 1651 if (irq_ptr->airq_temp_cpu == cpun) { 1652 do { 1653 bind_cpu = apic_next_bind_cpu++; 1654 if (bind_cpu >= apic_nproc) { 1655 apic_next_bind_cpu = 1; 1656 bind_cpu = 0; 1657 1658 } 1659 } while (apic_rebind_all(irq_ptr, bind_cpu)); 1660 } 1661 } 1662 } 1663 1664 lock_clear(&apic_ioapic_lock); 1665 intr_restore(iflag); 1666 1667 if (hardbound) { 1668 cmn_err(CE_WARN, "Could not disable interrupts on %d" 1669 "due to user bound interrupts", cpun); 1670 return (PSM_FAILURE); 1671 } 1672 else 1673 return (PSM_SUCCESS); 1674 } 1675 1676 static void 1677 apic_enable_intr(processorid_t cpun) 1678 { 1679 int i; 1680 apic_irq_t *irq_ptr; 1681 ulong_t iflag; 1682 1683 iflag = intr_clear(); 1684 lock_set(&apic_ioapic_lock); 1685 1686 apic_cpus[cpun].aci_status |= APIC_CPU_INTR_ENABLE; 1687 1688 i = apic_min_device_irq; 1689 for (i = apic_min_device_irq; i <= apic_max_device_irq; i++) { 1690 if ((irq_ptr = apic_irq_table[i]) != NULL) { 1691 if ((irq_ptr->airq_cpu & ~IRQ_USER_BOUND) == cpun) { 1692 (void) apic_rebind_all(irq_ptr, 1693 irq_ptr->airq_cpu); 1694 } 1695 } 1696 } 1697 1698 lock_clear(&apic_ioapic_lock); 1699 intr_restore(iflag); 1700 } 1701 1702 1703 /* 1704 * This function will reprogram the timer. 1705 * 1706 * When in oneshot mode the argument is the absolute time in future to 1707 * generate the interrupt at. 1708 * 1709 * When in periodic mode, the argument is the interval at which the 1710 * interrupts should be generated. There is no need to support the periodic 1711 * mode timer change at this time. 1712 */ 1713 static void 1714 apic_timer_reprogram(hrtime_t time) 1715 { 1716 hrtime_t now; 1717 uint_t ticks; 1718 int64_t delta; 1719 1720 /* 1721 * We should be called from high PIL context (CBE_HIGH_PIL), 1722 * so kpreempt is disabled. 1723 */ 1724 1725 if (!apic_oneshot) { 1726 /* time is the interval for periodic mode */ 1727 ticks = APIC_NSECS_TO_TICKS(time); 1728 } else { 1729 /* one shot mode */ 1730 1731 now = gethrtime(); 1732 delta = time - now; 1733 1734 if (delta <= 0) { 1735 /* 1736 * requested to generate an interrupt in the past 1737 * generate an interrupt as soon as possible 1738 */ 1739 ticks = apic_min_timer_ticks; 1740 } else if (delta > apic_nsec_max) { 1741 /* 1742 * requested to generate an interrupt at a time 1743 * further than what we are capable of. Set to max 1744 * the hardware can handle 1745 */ 1746 1747 ticks = APIC_MAXVAL; 1748 #ifdef DEBUG 1749 cmn_err(CE_CONT, "apic_timer_reprogram, request at" 1750 " %lld too far in future, current time" 1751 " %lld \n", time, now); 1752 #endif 1753 } else 1754 ticks = APIC_NSECS_TO_TICKS(delta); 1755 } 1756 1757 if (ticks < apic_min_timer_ticks) 1758 ticks = apic_min_timer_ticks; 1759 1760 apicadr[APIC_INIT_COUNT] = ticks; 1761 1762 } 1763 1764 /* 1765 * This function will enable timer interrupts. 1766 */ 1767 static void 1768 apic_timer_enable(void) 1769 { 1770 /* 1771 * We should be Called from high PIL context (CBE_HIGH_PIL), 1772 * so kpreempt is disabled. 1773 */ 1774 1775 if (!apic_oneshot) 1776 apicadr[APIC_LOCAL_TIMER] = 1777 (apic_clkvect + APIC_BASE_VECT) | AV_TIME; 1778 else { 1779 /* one shot */ 1780 apicadr[APIC_LOCAL_TIMER] = (apic_clkvect + APIC_BASE_VECT); 1781 } 1782 } 1783 1784 /* 1785 * This function will disable timer interrupts. 1786 */ 1787 static void 1788 apic_timer_disable(void) 1789 { 1790 /* 1791 * We should be Called from high PIL context (CBE_HIGH_PIL), 1792 * so kpreempt is disabled. 1793 */ 1794 1795 apicadr[APIC_LOCAL_TIMER] = (apic_clkvect + APIC_BASE_VECT) | AV_MASK; 1796 } 1797 1798 1799 cyclic_id_t apic_cyclic_id; 1800 1801 /* 1802 * If this module needs to be a consumer of cyclic subsystem, they 1803 * can be added here, since at this time kernel cyclic subsystem is initialized 1804 * argument is not currently used, and is reserved for future. 1805 */ 1806 static void 1807 apic_post_cyclic_setup(void *arg) 1808 { 1809 _NOTE(ARGUNUSED(arg)) 1810 cyc_handler_t hdlr; 1811 cyc_time_t when; 1812 1813 /* cpu_lock is held */ 1814 1815 /* set up cyclics for intr redistribution */ 1816 1817 /* 1818 * In peridoc mode intr redistribution processing is done in 1819 * apic_intr_enter during clk intr processing 1820 */ 1821 if (!apic_oneshot) 1822 return; 1823 1824 hdlr.cyh_level = CY_LOW_LEVEL; 1825 hdlr.cyh_func = (cyc_func_t)apic_redistribute_compute; 1826 hdlr.cyh_arg = NULL; 1827 1828 when.cyt_when = 0; 1829 when.cyt_interval = apic_redistribute_sample_interval; 1830 apic_cyclic_id = cyclic_add(&hdlr, &when); 1831 1832 1833 } 1834 1835 static void 1836 apic_redistribute_compute(void) 1837 { 1838 int i, j, max_busy; 1839 1840 if (apic_enable_dynamic_migration) { 1841 if (++apic_nticks == apic_sample_factor_redistribution) { 1842 /* 1843 * Time to call apic_intr_redistribute(). 1844 * reset apic_nticks. This will cause max_busy 1845 * to be calculated below and if it is more than 1846 * apic_int_busy, we will do the whole thing 1847 */ 1848 apic_nticks = 0; 1849 } 1850 max_busy = 0; 1851 for (i = 0; i < apic_nproc; i++) { 1852 1853 /* 1854 * Check if curipl is non zero & if ISR is in 1855 * progress 1856 */ 1857 if (((j = apic_cpus[i].aci_curipl) != 0) && 1858 (apic_cpus[i].aci_ISR_in_progress & (1 << j))) { 1859 1860 int irq; 1861 apic_cpus[i].aci_busy++; 1862 irq = apic_cpus[i].aci_current[j]; 1863 apic_irq_table[irq]->airq_busy++; 1864 } 1865 1866 if (!apic_nticks && 1867 (apic_cpus[i].aci_busy > max_busy)) 1868 max_busy = apic_cpus[i].aci_busy; 1869 } 1870 if (!apic_nticks) { 1871 if (max_busy > apic_int_busy_mark) { 1872 /* 1873 * We could make the following check be 1874 * skipped > 1 in which case, we get a 1875 * redistribution at half the busy mark (due to 1876 * double interval). Need to be able to collect 1877 * more empirical data to decide if that is a 1878 * good strategy. Punt for now. 1879 */ 1880 if (apic_skipped_redistribute) { 1881 apic_cleanup_busy(); 1882 apic_skipped_redistribute = 0; 1883 } else { 1884 apic_intr_redistribute(); 1885 } 1886 } else 1887 apic_skipped_redistribute++; 1888 } 1889 } 1890 } 1891 1892 1893 /* 1894 * The following functions are in the platform specific file so that they 1895 * can be different functions depending on whether we are running on 1896 * bare metal or a hypervisor. 1897 */ 1898 1899 /* 1900 * map an apic for memory-mapped access 1901 */ 1902 uint32_t * 1903 mapin_apic(uint32_t addr, size_t len, int flags) 1904 { 1905 /*LINTED: pointer cast may result in improper alignment */ 1906 return ((uint32_t *)psm_map_phys(addr, len, flags)); 1907 } 1908 1909 uint32_t * 1910 mapin_ioapic(uint32_t addr, size_t len, int flags) 1911 { 1912 return (mapin_apic(addr, len, flags)); 1913 } 1914 1915 /* 1916 * unmap an apic 1917 */ 1918 void 1919 mapout_apic(caddr_t addr, size_t len) 1920 { 1921 psm_unmap_phys(addr, len); 1922 } 1923 1924 void 1925 mapout_ioapic(caddr_t addr, size_t len) 1926 { 1927 mapout_apic(addr, len); 1928 } 1929 1930 /* 1931 * This function allocate "count" vector(s) for the given "dip/pri/type" 1932 */ 1933 int 1934 apic_alloc_vectors(dev_info_t *dip, int inum, int count, int pri, int type, 1935 int behavior) 1936 { 1937 int rcount, i; 1938 uchar_t start, irqno, cpu; 1939 major_t major; 1940 apic_irq_t *irqptr; 1941 1942 /* only supports MSI at the moment, will add MSI-X support later */ 1943 if (type != DDI_INTR_TYPE_MSI) 1944 return (0); 1945 1946 DDI_INTR_IMPLDBG((CE_CONT, "apic_alloc_vectors: dip=0x%p type=%d " 1947 "inum=0x%x pri=0x%x count=0x%x behavior=%d\n", 1948 (void *)dip, type, inum, pri, count, behavior)); 1949 1950 if (count > 1) { 1951 if (behavior == DDI_INTR_ALLOC_STRICT && 1952 (apic_multi_msi_enable == 0 || count > apic_multi_msi_max)) 1953 return (0); 1954 1955 if (apic_multi_msi_enable == 0) 1956 count = 1; 1957 else if (count > apic_multi_msi_max) 1958 count = apic_multi_msi_max; 1959 } 1960 1961 if ((rcount = apic_navail_vector(dip, pri)) > count) 1962 rcount = count; 1963 else if (rcount == 0 || (rcount < count && 1964 behavior == DDI_INTR_ALLOC_STRICT)) 1965 return (0); 1966 1967 /* if not ISP2, then round it down */ 1968 if (!ISP2(rcount)) 1969 rcount = 1 << (highbit(rcount) - 1); 1970 1971 mutex_enter(&airq_mutex); 1972 1973 for (start = 0; rcount > 0; rcount >>= 1) { 1974 if ((start = apic_find_multi_vectors(pri, rcount)) != 0 || 1975 behavior == DDI_INTR_ALLOC_STRICT) 1976 break; 1977 } 1978 1979 if (start == 0) { 1980 /* no vector available */ 1981 mutex_exit(&airq_mutex); 1982 return (0); 1983 } 1984 1985 major = (dip != NULL) ? ddi_name_to_major(ddi_get_name(dip)) : 0; 1986 for (i = 0; i < rcount; i++) { 1987 if ((irqno = apic_allocate_irq(apic_first_avail_irq)) == 1988 (uchar_t)-1) { 1989 mutex_exit(&airq_mutex); 1990 DDI_INTR_IMPLDBG((CE_CONT, "apic_alloc_vectors: " 1991 "apic_allocate_irq failed\n")); 1992 return (i); 1993 } 1994 apic_max_device_irq = max(irqno, apic_max_device_irq); 1995 apic_min_device_irq = min(irqno, apic_min_device_irq); 1996 irqptr = apic_irq_table[irqno]; 1997 #ifdef DEBUG 1998 if (apic_vector_to_irq[start + i] != APIC_RESV_IRQ) 1999 DDI_INTR_IMPLDBG((CE_CONT, "apic_alloc_vectors: " 2000 "apic_vector_to_irq is not APIC_RESV_IRQ\n")); 2001 #endif 2002 apic_vector_to_irq[start + i] = (uchar_t)irqno; 2003 2004 irqptr->airq_vector = (uchar_t)(start + i); 2005 irqptr->airq_ioapicindex = (uchar_t)inum; /* start */ 2006 irqptr->airq_intin_no = (uchar_t)rcount; 2007 irqptr->airq_ipl = pri; 2008 irqptr->airq_vector = start + i; 2009 irqptr->airq_origirq = (uchar_t)(inum + i); 2010 irqptr->airq_share_id = 0; 2011 irqptr->airq_mps_intr_index = MSI_INDEX; 2012 irqptr->airq_dip = dip; 2013 irqptr->airq_major = major; 2014 if (i == 0) /* they all bound to the same cpu */ 2015 cpu = irqptr->airq_cpu = apic_bind_intr(dip, irqno, 2016 0xff, 0xff); 2017 else 2018 irqptr->airq_cpu = cpu; 2019 DDI_INTR_IMPLDBG((CE_CONT, "apic_alloc_vectors: irq=0x%x " 2020 "dip=0x%p vector=0x%x origirq=0x%x pri=0x%x\n", irqno, 2021 (void *)irqptr->airq_dip, irqptr->airq_vector, 2022 irqptr->airq_origirq, pri)); 2023 } 2024 mutex_exit(&airq_mutex); 2025 return (rcount); 2026 } 2027 2028 /* 2029 * Allocate a free vector for irq at ipl. Takes care of merging of multiple 2030 * IPLs into a single APIC level as well as stretching some IPLs onto multiple 2031 * levels. APIC_HI_PRI_VECTS interrupts are reserved for high priority 2032 * requests and allocated only when pri is set. 2033 */ 2034 uchar_t 2035 apic_allocate_vector(int ipl, int irq, int pri) 2036 { 2037 int lowest, highest, i; 2038 2039 highest = apic_ipltopri[ipl] + APIC_VECTOR_MASK; 2040 lowest = apic_ipltopri[ipl - 1] + APIC_VECTOR_PER_IPL; 2041 2042 if (highest < lowest) /* Both ipl and ipl - 1 map to same pri */ 2043 lowest -= APIC_VECTOR_PER_IPL; 2044 2045 #ifdef DEBUG 2046 if (apic_restrict_vector) /* for testing shared interrupt logic */ 2047 highest = lowest + apic_restrict_vector + APIC_HI_PRI_VECTS; 2048 #endif /* DEBUG */ 2049 if (pri == 0) 2050 highest -= APIC_HI_PRI_VECTS; 2051 2052 for (i = lowest; i < highest; i++) { 2053 if (APIC_CHECK_RESERVE_VECTORS(i)) 2054 continue; 2055 if (apic_vector_to_irq[i] == APIC_RESV_IRQ) { 2056 apic_vector_to_irq[i] = (uchar_t)irq; 2057 return (i); 2058 } 2059 } 2060 2061 return (0); 2062 } 2063 2064 /* Mark vector as not being used by any irq */ 2065 void 2066 apic_free_vector(uchar_t vector) 2067 { 2068 apic_vector_to_irq[vector] = APIC_RESV_IRQ; 2069 } 2070 2071 uint32_t 2072 ioapic_read(int ioapic_ix, uint32_t reg) 2073 { 2074 volatile uint32_t *ioapic; 2075 2076 ioapic = apicioadr[ioapic_ix]; 2077 ioapic[APIC_IO_REG] = reg; 2078 return (ioapic[APIC_IO_DATA]); 2079 } 2080 2081 void 2082 ioapic_write(int ioapic_ix, uint32_t reg, uint32_t value) 2083 { 2084 volatile uint32_t *ioapic; 2085 2086 ioapic = apicioadr[ioapic_ix]; 2087 ioapic[APIC_IO_REG] = reg; 2088 ioapic[APIC_IO_DATA] = value; 2089 } 2090 2091 static processorid_t 2092 apic_find_cpu(int flag) 2093 { 2094 processorid_t acid = 0; 2095 int i; 2096 2097 /* Find the first CPU with the passed-in flag set */ 2098 for (i = 0; i < apic_nproc; i++) { 2099 if (apic_cpus[i].aci_status & flag) { 2100 acid = i; 2101 break; 2102 } 2103 } 2104 2105 ASSERT((apic_cpus[acid].aci_status & flag) != 0); 2106 return (acid); 2107 } 2108 2109 /* 2110 * Call rebind to do the actual programming. 2111 * Must be called with interrupts disabled and apic_ioapic_lock held 2112 * 'p' is polymorphic -- if this function is called to process a deferred 2113 * reprogramming, p is of type 'struct ioapic_reprogram_data *', from which 2114 * the irq pointer is retrieved. If not doing deferred reprogramming, 2115 * p is of the type 'apic_irq_t *'. 2116 * 2117 * apic_ioapic_lock must be held across this call, as it protects apic_rebind 2118 * and it protects apic_find_cpu() from a race in which a CPU can be taken 2119 * offline after a cpu is selected, but before apic_rebind is called to 2120 * bind interrupts to it. 2121 */ 2122 int 2123 apic_setup_io_intr(void *p, int irq, boolean_t deferred) 2124 { 2125 apic_irq_t *irqptr; 2126 struct ioapic_reprogram_data *drep = NULL; 2127 int rv; 2128 2129 if (deferred) { 2130 drep = (struct ioapic_reprogram_data *)p; 2131 ASSERT(drep != NULL); 2132 irqptr = drep->irqp; 2133 } else 2134 irqptr = (apic_irq_t *)p; 2135 2136 ASSERT(irqptr != NULL); 2137 2138 rv = apic_rebind(irqptr, apic_irq_table[irq]->airq_cpu, drep); 2139 if (rv) { 2140 /* 2141 * CPU is not up or interrupts are disabled. Fall back to 2142 * the first available CPU 2143 */ 2144 rv = apic_rebind(irqptr, apic_find_cpu(APIC_CPU_INTR_ENABLE), 2145 drep); 2146 } 2147 2148 return (rv); 2149 } 2150 2151 2152 uchar_t 2153 apic_modify_vector(uchar_t vector, int irq) 2154 { 2155 apic_vector_to_irq[vector] = (uchar_t)irq; 2156 return (vector); 2157 } 2158 2159 char * 2160 apic_get_apic_type() 2161 { 2162 return (apic_psm_info.p_mach_idstring); 2163 } 2164