1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2009 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 27 /* 28 * PSMI 1.1 extensions are supported only in 2.6 and later versions. 29 * PSMI 1.2 extensions are supported only in 2.7 and later versions. 30 * PSMI 1.3 and 1.4 extensions are supported in Solaris 10. 31 * PSMI 1.5 extensions are supported in Solaris Nevada. 32 * PSMI 1.6 extensions are supported in Solaris Nevada. 33 */ 34 #define PSMI_1_6 35 36 #include <sys/processor.h> 37 #include <sys/time.h> 38 #include <sys/psm.h> 39 #include <sys/smp_impldefs.h> 40 #include <sys/cram.h> 41 #include <sys/acpi/acpi.h> 42 #include <sys/acpica.h> 43 #include <sys/psm_common.h> 44 #include <sys/apic.h> 45 #include <sys/pit.h> 46 #include <sys/ddi.h> 47 #include <sys/sunddi.h> 48 #include <sys/ddi_impldefs.h> 49 #include <sys/pci.h> 50 #include <sys/promif.h> 51 #include <sys/x86_archext.h> 52 #include <sys/cpc_impl.h> 53 #include <sys/uadmin.h> 54 #include <sys/panic.h> 55 #include <sys/debug.h> 56 #include <sys/archsystm.h> 57 #include <sys/trap.h> 58 #include <sys/machsystm.h> 59 #include <sys/sysmacros.h> 60 #include <sys/cpuvar.h> 61 #include <sys/rm_platter.h> 62 #include <sys/privregs.h> 63 #include <sys/note.h> 64 #include <sys/pci_intr_lib.h> 65 #include <sys/spl.h> 66 #include <sys/clock.h> 67 #include <sys/dditypes.h> 68 #include <sys/sunddi.h> 69 #include <sys/x_call.h> 70 #include <sys/reboot.h> 71 #include <sys/hpet.h> 72 73 /* 74 * Local Function Prototypes 75 */ 76 static void apic_init_intr(); 77 static void apic_nmi_intr(caddr_t arg, struct regs *rp); 78 79 /* 80 * standard MP entries 81 */ 82 static int apic_probe(); 83 static int apic_clkinit(); 84 static int apic_getclkirq(int ipl); 85 static uint_t apic_calibrate(volatile uint32_t *addr, 86 uint16_t *pit_ticks_adj); 87 static hrtime_t apic_gettime(); 88 static hrtime_t apic_gethrtime(); 89 static void apic_init(); 90 static void apic_picinit(void); 91 static int apic_cpu_start(processorid_t, caddr_t); 92 static int apic_post_cpu_start(void); 93 static void apic_send_ipi(int cpun, int ipl); 94 static void apic_set_idlecpu(processorid_t cpun); 95 static void apic_unset_idlecpu(processorid_t cpun); 96 static int apic_intr_enter(int ipl, int *vect); 97 static void apic_setspl(int ipl); 98 static void x2apic_setspl(int ipl); 99 static int apic_addspl(int ipl, int vector, int min_ipl, int max_ipl); 100 static int apic_delspl(int ipl, int vector, int min_ipl, int max_ipl); 101 static void apic_shutdown(int cmd, int fcn); 102 static void apic_preshutdown(int cmd, int fcn); 103 static int apic_disable_intr(processorid_t cpun); 104 static void apic_enable_intr(processorid_t cpun); 105 static processorid_t apic_get_next_processorid(processorid_t cpun); 106 static int apic_get_ipivect(int ipl, int type); 107 static void apic_timer_reprogram(hrtime_t time); 108 static void apic_timer_enable(void); 109 static void apic_timer_disable(void); 110 static void apic_post_cyclic_setup(void *arg); 111 static void apic_intrr_init(int apic_mode); 112 static void apic_record_ioapic_rdt(apic_irq_t *irq_ptr, ioapic_rdt_t *irdt); 113 static void apic_record_msi(apic_irq_t *irq_ptr, msi_regs_t *mregs); 114 115 static int apic_oneshot = 0; 116 int apic_oneshot_enable = 1; /* to allow disabling one-shot capability */ 117 118 /* Now the ones for Dynamic Interrupt distribution */ 119 int apic_enable_dynamic_migration = 0; 120 121 extern int apic_have_32bit_cr8; 122 123 /* 124 * These variables are frequently accessed in apic_intr_enter(), 125 * apic_intr_exit and apic_setspl, so group them together 126 */ 127 volatile uint32_t *apicadr = NULL; /* virtual addr of local APIC */ 128 int apic_setspl_delay = 1; /* apic_setspl - delay enable */ 129 int apic_clkvect; 130 131 /* vector at which error interrupts come in */ 132 int apic_errvect; 133 int apic_enable_error_intr = 1; 134 int apic_error_display_delay = 100; 135 136 /* vector at which performance counter overflow interrupts come in */ 137 int apic_cpcovf_vect; 138 int apic_enable_cpcovf_intr = 1; 139 140 /* vector at which CMCI interrupts come in */ 141 int apic_cmci_vect; 142 extern int cmi_enable_cmci; 143 extern void cmi_cmci_trap(void); 144 145 static kmutex_t cmci_cpu_setup_lock; /* protects cmci_cpu_setup_registered */ 146 static int cmci_cpu_setup_registered; 147 148 /* 149 * The following vector assignments influence the value of ipltopri and 150 * vectortoipl. Note that vectors 0 - 0x1f are not used. We can program 151 * idle to 0 and IPL 0 to 0xf to differentiate idle in case 152 * we care to do so in future. Note some IPLs which are rarely used 153 * will share the vector ranges and heavily used IPLs (5 and 6) have 154 * a wide range. 155 * 156 * This array is used to initialize apic_ipls[] (in apic_init()). 157 * 158 * IPL Vector range. as passed to intr_enter 159 * 0 none. 160 * 1,2,3 0x20-0x2f 0x0-0xf 161 * 4 0x30-0x3f 0x10-0x1f 162 * 5 0x40-0x5f 0x20-0x3f 163 * 6 0x60-0x7f 0x40-0x5f 164 * 7,8,9 0x80-0x8f 0x60-0x6f 165 * 10 0x90-0x9f 0x70-0x7f 166 * 11 0xa0-0xaf 0x80-0x8f 167 * ... ... 168 * 15 0xe0-0xef 0xc0-0xcf 169 * 15 0xf0-0xff 0xd0-0xdf 170 */ 171 uchar_t apic_vectortoipl[APIC_AVAIL_VECTOR / APIC_VECTOR_PER_IPL] = { 172 3, 4, 5, 5, 6, 6, 9, 10, 11, 12, 13, 14, 15, 15 173 }; 174 /* 175 * The ipl of an ISR at vector X is apic_vectortoipl[X>>4] 176 * NOTE that this is vector as passed into intr_enter which is 177 * programmed vector - 0x20 (APIC_BASE_VECT) 178 */ 179 180 uchar_t apic_ipltopri[MAXIPL + 1]; /* unix ipl to apic pri */ 181 /* The taskpri to be programmed into apic to mask given ipl */ 182 183 #if defined(__amd64) 184 uchar_t apic_cr8pri[MAXIPL + 1]; /* unix ipl to cr8 pri */ 185 #endif 186 187 /* 188 * Correlation of the hardware vector to the IPL in use, initialized 189 * from apic_vectortoipl[] in apic_init(). The final IPLs may not correlate 190 * to the IPLs in apic_vectortoipl on some systems that share interrupt lines 191 * connected to errata-stricken IOAPICs 192 */ 193 uchar_t apic_ipls[APIC_AVAIL_VECTOR]; 194 195 /* 196 * Patchable global variables. 197 */ 198 int apic_forceload = 0; 199 200 int apic_coarse_hrtime = 1; /* 0 - use accurate slow gethrtime() */ 201 /* 1 - use gettime() for performance */ 202 int apic_flat_model = 0; /* 0 - clustered. 1 - flat */ 203 int apic_enable_hwsoftint = 0; /* 0 - disable, 1 - enable */ 204 int apic_enable_bind_log = 1; /* 1 - display interrupt binding log */ 205 int apic_panic_on_nmi = 0; 206 int apic_panic_on_apic_error = 0; 207 208 int apic_verbose = 0; 209 210 /* minimum number of timer ticks to program to */ 211 int apic_min_timer_ticks = 1; 212 /* 213 * Local static data 214 */ 215 static struct psm_ops apic_ops = { 216 apic_probe, 217 218 apic_init, 219 apic_picinit, 220 apic_intr_enter, 221 apic_intr_exit, 222 apic_setspl, 223 apic_addspl, 224 apic_delspl, 225 apic_disable_intr, 226 apic_enable_intr, 227 (int (*)(int))NULL, /* psm_softlvl_to_irq */ 228 (void (*)(int))NULL, /* psm_set_softintr */ 229 230 apic_set_idlecpu, 231 apic_unset_idlecpu, 232 233 apic_clkinit, 234 apic_getclkirq, 235 (void (*)(void))NULL, /* psm_hrtimeinit */ 236 apic_gethrtime, 237 238 apic_get_next_processorid, 239 apic_cpu_start, 240 apic_post_cpu_start, 241 apic_shutdown, 242 apic_get_ipivect, 243 apic_send_ipi, 244 245 (int (*)(dev_info_t *, int))NULL, /* psm_translate_irq */ 246 (void (*)(int, char *))NULL, /* psm_notify_error */ 247 (void (*)(int))NULL, /* psm_notify_func */ 248 apic_timer_reprogram, 249 apic_timer_enable, 250 apic_timer_disable, 251 apic_post_cyclic_setup, 252 apic_preshutdown, 253 apic_intr_ops, /* Advanced DDI Interrupt framework */ 254 apic_state, /* save, restore apic state for S3 */ 255 }; 256 257 258 static struct psm_info apic_psm_info = { 259 PSM_INFO_VER01_6, /* version */ 260 PSM_OWN_EXCLUSIVE, /* ownership */ 261 (struct psm_ops *)&apic_ops, /* operation */ 262 APIC_PCPLUSMP_NAME, /* machine name */ 263 "pcplusmp v1.4 compatible", 264 }; 265 266 static void *apic_hdlp; 267 268 #ifdef DEBUG 269 int apic_debug = 0; 270 int apic_restrict_vector = 0; 271 272 int apic_debug_msgbuf[APIC_DEBUG_MSGBUFSIZE]; 273 int apic_debug_msgbufindex = 0; 274 275 #endif /* DEBUG */ 276 277 apic_cpus_info_t *apic_cpus; 278 279 cpuset_t apic_cpumask; 280 uint_t apic_picinit_called; 281 282 /* Flag to indicate that we need to shut down all processors */ 283 static uint_t apic_shutdown_processors; 284 285 uint_t apic_nsec_per_intr = 0; 286 287 /* 288 * apic_let_idle_redistribute can have the following values: 289 * 0 - If clock decremented it from 1 to 0, clock has to call redistribute. 290 * apic_redistribute_lock prevents multiple idle cpus from redistributing 291 */ 292 int apic_num_idle_redistributions = 0; 293 static int apic_let_idle_redistribute = 0; 294 static uint_t apic_nticks = 0; 295 static uint_t apic_skipped_redistribute = 0; 296 297 /* to gather intr data and redistribute */ 298 static void apic_redistribute_compute(void); 299 300 static uint_t last_count_read = 0; 301 static lock_t apic_gethrtime_lock; 302 volatile int apic_hrtime_stamp = 0; 303 volatile hrtime_t apic_nsec_since_boot = 0; 304 static uint_t apic_hertz_count; 305 306 uint64_t apic_ticks_per_SFnsecs; /* # of ticks in SF nsecs */ 307 308 static hrtime_t apic_nsec_max; 309 310 static hrtime_t apic_last_hrtime = 0; 311 int apic_hrtime_error = 0; 312 int apic_remote_hrterr = 0; 313 int apic_num_nmis = 0; 314 int apic_apic_error = 0; 315 int apic_num_apic_errors = 0; 316 int apic_num_cksum_errors = 0; 317 318 int apic_error = 0; 319 static int apic_cmos_ssb_set = 0; 320 321 /* use to make sure only one cpu handles the nmi */ 322 static lock_t apic_nmi_lock; 323 /* use to make sure only one cpu handles the error interrupt */ 324 static lock_t apic_error_lock; 325 326 static struct { 327 uchar_t cntl; 328 uchar_t data; 329 } aspen_bmc[] = { 330 { CC_SMS_WR_START, 0x18 }, /* NetFn/LUN */ 331 { CC_SMS_WR_NEXT, 0x24 }, /* Cmd SET_WATCHDOG_TIMER */ 332 { CC_SMS_WR_NEXT, 0x84 }, /* DataByte 1: SMS/OS no log */ 333 { CC_SMS_WR_NEXT, 0x2 }, /* DataByte 2: Power Down */ 334 { CC_SMS_WR_NEXT, 0x0 }, /* DataByte 3: no pre-timeout */ 335 { CC_SMS_WR_NEXT, 0x0 }, /* DataByte 4: timer expir. */ 336 { CC_SMS_WR_NEXT, 0xa }, /* DataByte 5: init countdown */ 337 { CC_SMS_WR_END, 0x0 }, /* DataByte 6: init countdown */ 338 339 { CC_SMS_WR_START, 0x18 }, /* NetFn/LUN */ 340 { CC_SMS_WR_END, 0x22 } /* Cmd RESET_WATCHDOG_TIMER */ 341 }; 342 343 static struct { 344 int port; 345 uchar_t data; 346 } sitka_bmc[] = { 347 { SMS_COMMAND_REGISTER, SMS_WRITE_START }, 348 { SMS_DATA_REGISTER, 0x18 }, /* NetFn/LUN */ 349 { SMS_DATA_REGISTER, 0x24 }, /* Cmd SET_WATCHDOG_TIMER */ 350 { SMS_DATA_REGISTER, 0x84 }, /* DataByte 1: SMS/OS no log */ 351 { SMS_DATA_REGISTER, 0x2 }, /* DataByte 2: Power Down */ 352 { SMS_DATA_REGISTER, 0x0 }, /* DataByte 3: no pre-timeout */ 353 { SMS_DATA_REGISTER, 0x0 }, /* DataByte 4: timer expir. */ 354 { SMS_DATA_REGISTER, 0xa }, /* DataByte 5: init countdown */ 355 { SMS_COMMAND_REGISTER, SMS_WRITE_END }, 356 { SMS_DATA_REGISTER, 0x0 }, /* DataByte 6: init countdown */ 357 358 { SMS_COMMAND_REGISTER, SMS_WRITE_START }, 359 { SMS_DATA_REGISTER, 0x18 }, /* NetFn/LUN */ 360 { SMS_COMMAND_REGISTER, SMS_WRITE_END }, 361 { SMS_DATA_REGISTER, 0x22 } /* Cmd RESET_WATCHDOG_TIMER */ 362 }; 363 364 /* Patchable global variables. */ 365 int apic_kmdb_on_nmi = 0; /* 0 - no, 1 - yes enter kmdb */ 366 uint32_t apic_divide_reg_init = 0; /* 0 - divide by 2 */ 367 368 /* default apic ops without interrupt remapping */ 369 static apic_intrr_ops_t apic_nointrr_ops = { 370 (int (*)(int))return_instr, 371 (void (*)(int))return_instr, 372 (void (*)(apic_irq_t *))return_instr, 373 (void (*)(apic_irq_t *, void *))return_instr, 374 (void (*)(apic_irq_t *))return_instr, 375 apic_record_ioapic_rdt, 376 apic_record_msi, 377 }; 378 379 apic_intrr_ops_t *apic_vt_ops = &apic_nointrr_ops; 380 381 /* 382 * This is the loadable module wrapper 383 */ 384 385 int 386 _init(void) 387 { 388 if (apic_coarse_hrtime) 389 apic_ops.psm_gethrtime = &apic_gettime; 390 return (psm_mod_init(&apic_hdlp, &apic_psm_info)); 391 } 392 393 int 394 _fini(void) 395 { 396 return (psm_mod_fini(&apic_hdlp, &apic_psm_info)); 397 } 398 399 int 400 _info(struct modinfo *modinfop) 401 { 402 return (psm_mod_info(&apic_hdlp, &apic_psm_info, modinfop)); 403 } 404 405 406 static int 407 apic_probe() 408 { 409 return (apic_probe_common(apic_psm_info.p_mach_idstring)); 410 } 411 412 void 413 apic_init() 414 { 415 int i; 416 int j = 1; 417 418 apic_ipltopri[0] = APIC_VECTOR_PER_IPL; /* leave 0 for idle */ 419 for (i = 0; i < (APIC_AVAIL_VECTOR / APIC_VECTOR_PER_IPL); i++) { 420 if ((i < ((APIC_AVAIL_VECTOR / APIC_VECTOR_PER_IPL) - 1)) && 421 (apic_vectortoipl[i + 1] == apic_vectortoipl[i])) 422 /* get to highest vector at the same ipl */ 423 continue; 424 for (; j <= apic_vectortoipl[i]; j++) { 425 apic_ipltopri[j] = (i << APIC_IPL_SHIFT) + 426 APIC_BASE_VECT; 427 } 428 } 429 for (; j < MAXIPL + 1; j++) 430 /* fill up any empty ipltopri slots */ 431 apic_ipltopri[j] = (i << APIC_IPL_SHIFT) + APIC_BASE_VECT; 432 apic_init_common(); 433 #if defined(__amd64) 434 /* 435 * Make cpu-specific interrupt info point to cr8pri vector 436 */ 437 for (i = 0; i <= MAXIPL; i++) 438 apic_cr8pri[i] = apic_ipltopri[i] >> APIC_IPL_SHIFT; 439 CPU->cpu_pri_data = apic_cr8pri; 440 #else 441 if (cpuid_have_cr8access(CPU)) 442 apic_have_32bit_cr8 = 1; 443 #endif /* __amd64 */ 444 } 445 446 /* 447 * handler for APIC Error interrupt. Just print a warning and continue 448 */ 449 static int 450 apic_error_intr() 451 { 452 uint_t error0, error1, error; 453 uint_t i; 454 455 /* 456 * We need to write before read as per 7.4.17 of system prog manual. 457 * We do both and or the results to be safe 458 */ 459 error0 = apic_reg_ops->apic_read(APIC_ERROR_STATUS); 460 apic_reg_ops->apic_write(APIC_ERROR_STATUS, 0); 461 error1 = apic_reg_ops->apic_read(APIC_ERROR_STATUS); 462 error = error0 | error1; 463 464 /* 465 * Clear the APIC error status (do this on all cpus that enter here) 466 * (two writes are required due to the semantics of accessing the 467 * error status register.) 468 */ 469 apic_reg_ops->apic_write(APIC_ERROR_STATUS, 0); 470 apic_reg_ops->apic_write(APIC_ERROR_STATUS, 0); 471 472 /* 473 * Prevent more than 1 CPU from handling error interrupt causing 474 * double printing (interleave of characters from multiple 475 * CPU's when using prom_printf) 476 */ 477 if (lock_try(&apic_error_lock) == 0) 478 return (error ? DDI_INTR_CLAIMED : DDI_INTR_UNCLAIMED); 479 if (error) { 480 #if DEBUG 481 if (apic_debug) 482 debug_enter("pcplusmp: APIC Error interrupt received"); 483 #endif /* DEBUG */ 484 if (apic_panic_on_apic_error) 485 cmn_err(CE_PANIC, 486 "APIC Error interrupt on CPU %d. Status = %x\n", 487 psm_get_cpu_id(), error); 488 else { 489 if ((error & ~APIC_CS_ERRORS) == 0) { 490 /* cksum error only */ 491 apic_error |= APIC_ERR_APIC_ERROR; 492 apic_apic_error |= error; 493 apic_num_apic_errors++; 494 apic_num_cksum_errors++; 495 } else { 496 /* 497 * prom_printf is the best shot we have of 498 * something which is problem free from 499 * high level/NMI type of interrupts 500 */ 501 prom_printf("APIC Error interrupt on CPU %d. " 502 "Status 0 = %x, Status 1 = %x\n", 503 psm_get_cpu_id(), error0, error1); 504 apic_error |= APIC_ERR_APIC_ERROR; 505 apic_apic_error |= error; 506 apic_num_apic_errors++; 507 for (i = 0; i < apic_error_display_delay; i++) { 508 tenmicrosec(); 509 } 510 /* 511 * provide more delay next time limited to 512 * roughly 1 clock tick time 513 */ 514 if (apic_error_display_delay < 500) 515 apic_error_display_delay *= 2; 516 } 517 } 518 lock_clear(&apic_error_lock); 519 return (DDI_INTR_CLAIMED); 520 } else { 521 lock_clear(&apic_error_lock); 522 return (DDI_INTR_UNCLAIMED); 523 } 524 /* NOTREACHED */ 525 } 526 527 /* 528 * Turn off the mask bit in the performance counter Local Vector Table entry. 529 */ 530 static void 531 apic_cpcovf_mask_clear(void) 532 { 533 apic_reg_ops->apic_write(APIC_PCINT_VECT, 534 (apic_reg_ops->apic_read(APIC_PCINT_VECT) & ~APIC_LVT_MASK)); 535 } 536 537 /*ARGSUSED*/ 538 static int 539 apic_cmci_enable(xc_arg_t arg1, xc_arg_t arg2, xc_arg_t arg3) 540 { 541 apic_reg_ops->apic_write(APIC_CMCI_VECT, apic_cmci_vect); 542 return (0); 543 } 544 545 /*ARGSUSED*/ 546 static int 547 apic_cmci_disable(xc_arg_t arg1, xc_arg_t arg2, xc_arg_t arg3) 548 { 549 apic_reg_ops->apic_write(APIC_CMCI_VECT, apic_cmci_vect | AV_MASK); 550 return (0); 551 } 552 553 /*ARGSUSED*/ 554 static int 555 cmci_cpu_setup(cpu_setup_t what, int cpuid, void *arg) 556 { 557 cpuset_t cpu_set; 558 559 CPUSET_ONLY(cpu_set, cpuid); 560 561 switch (what) { 562 case CPU_ON: 563 xc_call(NULL, NULL, NULL, CPUSET2BV(cpu_set), 564 (xc_func_t)apic_cmci_enable); 565 break; 566 567 case CPU_OFF: 568 xc_call(NULL, NULL, NULL, CPUSET2BV(cpu_set), 569 (xc_func_t)apic_cmci_disable); 570 break; 571 572 default: 573 break; 574 } 575 576 return (0); 577 } 578 579 static void 580 apic_init_intr() 581 { 582 processorid_t cpun = psm_get_cpu_id(); 583 uint_t nlvt; 584 uint32_t svr = AV_UNIT_ENABLE | APIC_SPUR_INTR; 585 586 apic_reg_ops->apic_write_task_reg(APIC_MASK_ALL); 587 588 if (apic_mode == LOCAL_APIC) { 589 /* 590 * We are running APIC in MMIO mode. 591 */ 592 if (apic_flat_model) { 593 apic_reg_ops->apic_write(APIC_FORMAT_REG, 594 APIC_FLAT_MODEL); 595 } else { 596 apic_reg_ops->apic_write(APIC_FORMAT_REG, 597 APIC_CLUSTER_MODEL); 598 } 599 600 apic_reg_ops->apic_write(APIC_DEST_REG, 601 AV_HIGH_ORDER >> cpun); 602 } 603 604 if (apic_directed_EOI_supported()) { 605 /* 606 * Setting the 12th bit in the Spurious Interrupt Vector 607 * Register suppresses broadcast EOIs generated by the local 608 * APIC. The suppression of broadcast EOIs happens only when 609 * interrupts are level-triggered. 610 */ 611 svr |= APIC_SVR_SUPPRESS_BROADCAST_EOI; 612 } 613 614 /* need to enable APIC before unmasking NMI */ 615 apic_reg_ops->apic_write(APIC_SPUR_INT_REG, svr); 616 617 /* 618 * Presence of an invalid vector with delivery mode AV_FIXED can 619 * cause an error interrupt, even if the entry is masked...so 620 * write a valid vector to LVT entries along with the mask bit 621 */ 622 623 /* All APICs have timer and LINT0/1 */ 624 apic_reg_ops->apic_write(APIC_LOCAL_TIMER, AV_MASK|APIC_RESV_IRQ); 625 apic_reg_ops->apic_write(APIC_INT_VECT0, AV_MASK|APIC_RESV_IRQ); 626 apic_reg_ops->apic_write(APIC_INT_VECT1, AV_NMI); /* enable NMI */ 627 628 /* 629 * On integrated APICs, the number of LVT entries is 630 * 'Max LVT entry' + 1; on 82489DX's (non-integrated 631 * APICs), nlvt is "3" (LINT0, LINT1, and timer) 632 */ 633 634 if (apic_cpus[cpun].aci_local_ver < APIC_INTEGRATED_VERS) { 635 nlvt = 3; 636 } else { 637 nlvt = ((apic_reg_ops->apic_read(APIC_VERS_REG) >> 16) & 638 0xFF) + 1; 639 } 640 641 if (nlvt >= 5) { 642 /* Enable performance counter overflow interrupt */ 643 644 if ((x86_feature & X86_MSR) != X86_MSR) 645 apic_enable_cpcovf_intr = 0; 646 if (apic_enable_cpcovf_intr) { 647 if (apic_cpcovf_vect == 0) { 648 int ipl = APIC_PCINT_IPL; 649 int irq = apic_get_ipivect(ipl, -1); 650 651 ASSERT(irq != -1); 652 apic_cpcovf_vect = 653 apic_irq_table[irq]->airq_vector; 654 ASSERT(apic_cpcovf_vect); 655 (void) add_avintr(NULL, ipl, 656 (avfunc)kcpc_hw_overflow_intr, 657 "apic pcint", irq, NULL, NULL, NULL, NULL); 658 kcpc_hw_overflow_intr_installed = 1; 659 kcpc_hw_enable_cpc_intr = 660 apic_cpcovf_mask_clear; 661 } 662 apic_reg_ops->apic_write(APIC_PCINT_VECT, 663 apic_cpcovf_vect); 664 } 665 } 666 667 if (nlvt >= 6) { 668 /* Only mask TM intr if the BIOS apparently doesn't use it */ 669 670 uint32_t lvtval; 671 672 lvtval = apic_reg_ops->apic_read(APIC_THERM_VECT); 673 if (((lvtval & AV_MASK) == AV_MASK) || 674 ((lvtval & AV_DELIV_MODE) != AV_SMI)) { 675 apic_reg_ops->apic_write(APIC_THERM_VECT, 676 AV_MASK|APIC_RESV_IRQ); 677 } 678 } 679 680 /* Enable error interrupt */ 681 682 if (nlvt >= 4 && apic_enable_error_intr) { 683 if (apic_errvect == 0) { 684 int ipl = 0xf; /* get highest priority intr */ 685 int irq = apic_get_ipivect(ipl, -1); 686 687 ASSERT(irq != -1); 688 apic_errvect = apic_irq_table[irq]->airq_vector; 689 ASSERT(apic_errvect); 690 /* 691 * Not PSMI compliant, but we are going to merge 692 * with ON anyway 693 */ 694 (void) add_avintr((void *)NULL, ipl, 695 (avfunc)apic_error_intr, "apic error intr", 696 irq, NULL, NULL, NULL, NULL); 697 } 698 apic_reg_ops->apic_write(APIC_ERR_VECT, apic_errvect); 699 apic_reg_ops->apic_write(APIC_ERROR_STATUS, 0); 700 apic_reg_ops->apic_write(APIC_ERROR_STATUS, 0); 701 } 702 703 /* Enable CMCI interrupt */ 704 if (cmi_enable_cmci) { 705 706 mutex_enter(&cmci_cpu_setup_lock); 707 if (cmci_cpu_setup_registered == 0) { 708 mutex_enter(&cpu_lock); 709 register_cpu_setup_func(cmci_cpu_setup, NULL); 710 mutex_exit(&cpu_lock); 711 cmci_cpu_setup_registered = 1; 712 } 713 mutex_exit(&cmci_cpu_setup_lock); 714 715 if (apic_cmci_vect == 0) { 716 int ipl = 0x2; 717 int irq = apic_get_ipivect(ipl, -1); 718 719 ASSERT(irq != -1); 720 apic_cmci_vect = apic_irq_table[irq]->airq_vector; 721 ASSERT(apic_cmci_vect); 722 723 (void) add_avintr(NULL, ipl, 724 (avfunc)cmi_cmci_trap, 725 "apic cmci intr", irq, NULL, NULL, NULL, NULL); 726 } 727 apic_reg_ops->apic_write(APIC_CMCI_VECT, apic_cmci_vect); 728 } 729 } 730 731 static void 732 apic_disable_local_apic() 733 { 734 apic_reg_ops->apic_write_task_reg(APIC_MASK_ALL); 735 apic_reg_ops->apic_write(APIC_LOCAL_TIMER, AV_MASK); 736 737 /* local intr reg 0 */ 738 apic_reg_ops->apic_write(APIC_INT_VECT0, AV_MASK); 739 740 /* disable NMI */ 741 apic_reg_ops->apic_write(APIC_INT_VECT1, AV_MASK); 742 743 /* and error interrupt */ 744 apic_reg_ops->apic_write(APIC_ERR_VECT, AV_MASK); 745 746 /* and perf counter intr */ 747 apic_reg_ops->apic_write(APIC_PCINT_VECT, AV_MASK); 748 749 apic_reg_ops->apic_write(APIC_SPUR_INT_REG, APIC_SPUR_INTR); 750 } 751 752 static void 753 apic_picinit(void) 754 { 755 int i, j; 756 uint_t isr; 757 758 /* 759 * initialize interrupt remapping before apic 760 * hardware initialization 761 */ 762 apic_intrr_init(apic_mode); 763 764 /* 765 * On UniSys Model 6520, the BIOS leaves vector 0x20 isr 766 * bit on without clearing it with EOI. Since softint 767 * uses vector 0x20 to interrupt itself, so softint will 768 * not work on this machine. In order to fix this problem 769 * a check is made to verify all the isr bits are clear. 770 * If not, EOIs are issued to clear the bits. 771 */ 772 for (i = 7; i >= 1; i--) { 773 isr = apic_reg_ops->apic_read(APIC_ISR_REG + (i * 4)); 774 if (isr != 0) 775 for (j = 0; ((j < 32) && (isr != 0)); j++) 776 if (isr & (1 << j)) { 777 apic_reg_ops->apic_write( 778 APIC_EOI_REG, 0); 779 isr &= ~(1 << j); 780 apic_error |= APIC_ERR_BOOT_EOI; 781 } 782 } 783 784 /* set a flag so we know we have run apic_picinit() */ 785 apic_picinit_called = 1; 786 LOCK_INIT_CLEAR(&apic_gethrtime_lock); 787 LOCK_INIT_CLEAR(&apic_ioapic_lock); 788 LOCK_INIT_CLEAR(&apic_error_lock); 789 790 picsetup(); /* initialise the 8259 */ 791 792 /* add nmi handler - least priority nmi handler */ 793 LOCK_INIT_CLEAR(&apic_nmi_lock); 794 795 if (!psm_add_nmintr(0, (avfunc) apic_nmi_intr, 796 "pcplusmp NMI handler", (caddr_t)NULL)) 797 cmn_err(CE_WARN, "pcplusmp: Unable to add nmi handler"); 798 799 apic_init_intr(); 800 801 /* enable apic mode if imcr present */ 802 if (apic_imcrp) { 803 outb(APIC_IMCR_P1, (uchar_t)APIC_IMCR_SELECT); 804 outb(APIC_IMCR_P2, (uchar_t)APIC_IMCR_APIC); 805 } 806 807 ioapic_init_intr(IOAPIC_MASK); 808 } 809 810 811 /*ARGSUSED1*/ 812 static int 813 apic_cpu_start(processorid_t cpun, caddr_t arg) 814 { 815 int loop_count; 816 uint32_t vector; 817 uint_t cpu_id; 818 ulong_t iflag; 819 820 cpu_id = apic_cpus[cpun].aci_local_id; 821 822 apic_cmos_ssb_set = 1; 823 824 /* 825 * Interrupts on BSP cpu will be disabled during these startup 826 * steps in order to avoid unwanted side effects from 827 * executing interrupt handlers on a problematic BIOS. 828 */ 829 830 iflag = intr_clear(); 831 outb(CMOS_ADDR, SSB); 832 outb(CMOS_DATA, BIOS_SHUTDOWN); 833 834 /* 835 * According to X2APIC specification in section '2.3.5.1' of 836 * Interrupt Command Register Semantics, the semantics of 837 * programming the Interrupt Command Register to dispatch an interrupt 838 * is simplified. A single MSR write to the 64-bit ICR is required 839 * for dispatching an interrupt. Specifically, with the 64-bit MSR 840 * interface to ICR, system software is not required to check the 841 * status of the delivery status bit prior to writing to the ICR 842 * to send an IPI. With the removal of the Delivery Status bit, 843 * system software no longer has a reason to read the ICR. It remains 844 * readable only to aid in debugging. 845 */ 846 #ifdef DEBUG 847 APIC_AV_PENDING_SET(); 848 #else 849 if (apic_mode == LOCAL_APIC) { 850 APIC_AV_PENDING_SET(); 851 } 852 #endif /* DEBUG */ 853 854 /* for integrated - make sure there is one INIT IPI in buffer */ 855 /* for external - it will wake up the cpu */ 856 apic_reg_ops->apic_write_int_cmd(cpu_id, AV_ASSERT | AV_RESET); 857 858 /* If only 1 CPU is installed, PENDING bit will not go low */ 859 for (loop_count = 0x1000; loop_count; loop_count--) { 860 if (apic_mode == LOCAL_APIC && 861 apic_reg_ops->apic_read(APIC_INT_CMD1) & AV_PENDING) 862 apic_ret(); 863 else 864 break; 865 } 866 867 apic_reg_ops->apic_write_int_cmd(cpu_id, AV_DEASSERT | AV_RESET); 868 869 drv_usecwait(20000); /* 20 milli sec */ 870 871 if (apic_cpus[cpun].aci_local_ver >= APIC_INTEGRATED_VERS) { 872 /* integrated apic */ 873 874 vector = (rm_platter_pa >> MMU_PAGESHIFT) & 875 (APIC_VECTOR_MASK | APIC_IPL_MASK); 876 877 /* to offset the INIT IPI queue up in the buffer */ 878 apic_reg_ops->apic_write_int_cmd(cpu_id, vector | AV_STARTUP); 879 880 drv_usecwait(200); /* 20 micro sec */ 881 882 apic_reg_ops->apic_write_int_cmd(cpu_id, vector | AV_STARTUP); 883 884 drv_usecwait(200); /* 20 micro sec */ 885 } 886 intr_restore(iflag); 887 return (0); 888 } 889 890 891 #ifdef DEBUG 892 int apic_break_on_cpu = 9; 893 int apic_stretch_interrupts = 0; 894 int apic_stretch_ISR = 1 << 3; /* IPL of 3 matches nothing now */ 895 896 void 897 apic_break() 898 { 899 } 900 #endif /* DEBUG */ 901 902 /* 903 * platform_intr_enter 904 * 905 * Called at the beginning of the interrupt service routine to 906 * mask all level equal to and below the interrupt priority 907 * of the interrupting vector. An EOI should be given to 908 * the interrupt controller to enable other HW interrupts. 909 * 910 * Return -1 for spurious interrupts 911 * 912 */ 913 /*ARGSUSED*/ 914 static int 915 apic_intr_enter(int ipl, int *vectorp) 916 { 917 uchar_t vector; 918 int nipl; 919 int irq; 920 ulong_t iflag; 921 apic_cpus_info_t *cpu_infop; 922 923 /* 924 * The real vector delivered is (*vectorp + 0x20), but our caller 925 * subtracts 0x20 from the vector before passing it to us. 926 * (That's why APIC_BASE_VECT is 0x20.) 927 */ 928 vector = (uchar_t)*vectorp; 929 930 /* if interrupted by the clock, increment apic_nsec_since_boot */ 931 if (vector == apic_clkvect) { 932 if (!apic_oneshot) { 933 /* NOTE: this is not MT aware */ 934 apic_hrtime_stamp++; 935 apic_nsec_since_boot += apic_nsec_per_intr; 936 apic_hrtime_stamp++; 937 last_count_read = apic_hertz_count; 938 apic_redistribute_compute(); 939 } 940 941 /* We will avoid all the book keeping overhead for clock */ 942 nipl = apic_ipls[vector]; 943 944 *vectorp = apic_vector_to_irq[vector + APIC_BASE_VECT]; 945 if (apic_mode == LOCAL_APIC) { 946 #if defined(__amd64) 947 setcr8((ulong_t)(apic_ipltopri[nipl] >> 948 APIC_IPL_SHIFT)); 949 #else 950 if (apic_have_32bit_cr8) 951 setcr8((ulong_t)(apic_ipltopri[nipl] >> 952 APIC_IPL_SHIFT)); 953 else 954 LOCAL_APIC_WRITE_REG(APIC_TASK_REG, 955 (uint32_t)apic_ipltopri[nipl]); 956 #endif 957 LOCAL_APIC_WRITE_REG(APIC_EOI_REG, 0); 958 } else { 959 X2APIC_WRITE(APIC_TASK_REG, apic_ipltopri[nipl]); 960 X2APIC_WRITE(APIC_EOI_REG, 0); 961 } 962 963 return (nipl); 964 } 965 966 cpu_infop = &apic_cpus[psm_get_cpu_id()]; 967 968 if (vector == (APIC_SPUR_INTR - APIC_BASE_VECT)) { 969 cpu_infop->aci_spur_cnt++; 970 return (APIC_INT_SPURIOUS); 971 } 972 973 /* Check if the vector we got is really what we need */ 974 if (apic_revector_pending) { 975 /* 976 * Disable interrupts for the duration of 977 * the vector translation to prevent a self-race for 978 * the apic_revector_lock. This cannot be done 979 * in apic_xlate_vector because it is recursive and 980 * we want the vector translation to be atomic with 981 * respect to other (higher-priority) interrupts. 982 */ 983 iflag = intr_clear(); 984 vector = apic_xlate_vector(vector + APIC_BASE_VECT) - 985 APIC_BASE_VECT; 986 intr_restore(iflag); 987 } 988 989 nipl = apic_ipls[vector]; 990 *vectorp = irq = apic_vector_to_irq[vector + APIC_BASE_VECT]; 991 992 if (apic_mode == LOCAL_APIC) { 993 #if defined(__amd64) 994 setcr8((ulong_t)(apic_ipltopri[nipl] >> APIC_IPL_SHIFT)); 995 #else 996 if (apic_have_32bit_cr8) 997 setcr8((ulong_t)(apic_ipltopri[nipl] >> 998 APIC_IPL_SHIFT)); 999 else 1000 LOCAL_APIC_WRITE_REG(APIC_TASK_REG, 1001 (uint32_t)apic_ipltopri[nipl]); 1002 #endif 1003 } else { 1004 X2APIC_WRITE(APIC_TASK_REG, apic_ipltopri[nipl]); 1005 } 1006 1007 cpu_infop->aci_current[nipl] = (uchar_t)irq; 1008 cpu_infop->aci_curipl = (uchar_t)nipl; 1009 cpu_infop->aci_ISR_in_progress |= 1 << nipl; 1010 1011 /* 1012 * apic_level_intr could have been assimilated into the irq struct. 1013 * but, having it as a character array is more efficient in terms of 1014 * cache usage. So, we leave it as is. 1015 */ 1016 if (!apic_level_intr[irq]) { 1017 if (apic_mode == LOCAL_APIC) { 1018 LOCAL_APIC_WRITE_REG(APIC_EOI_REG, 0); 1019 } else { 1020 X2APIC_WRITE(APIC_EOI_REG, 0); 1021 } 1022 } 1023 1024 #ifdef DEBUG 1025 APIC_DEBUG_BUF_PUT(vector); 1026 APIC_DEBUG_BUF_PUT(irq); 1027 APIC_DEBUG_BUF_PUT(nipl); 1028 APIC_DEBUG_BUF_PUT(psm_get_cpu_id()); 1029 if ((apic_stretch_interrupts) && (apic_stretch_ISR & (1 << nipl))) 1030 drv_usecwait(apic_stretch_interrupts); 1031 1032 if (apic_break_on_cpu == psm_get_cpu_id()) 1033 apic_break(); 1034 #endif /* DEBUG */ 1035 return (nipl); 1036 } 1037 1038 /* 1039 * This macro is a common code used by MMIO local apic and X2APIC 1040 * local apic. 1041 */ 1042 #define APIC_INTR_EXIT() \ 1043 { \ 1044 cpu_infop = &apic_cpus[psm_get_cpu_id()]; \ 1045 if (apic_level_intr[irq]) \ 1046 apic_reg_ops->apic_send_eoi(irq); \ 1047 cpu_infop->aci_curipl = (uchar_t)prev_ipl; \ 1048 /* ISR above current pri could not be in progress */ \ 1049 cpu_infop->aci_ISR_in_progress &= (2 << prev_ipl) - 1; \ 1050 } 1051 1052 /* 1053 * Any changes made to this function must also change X2APIC 1054 * version of intr_exit. 1055 */ 1056 void 1057 apic_intr_exit(int prev_ipl, int irq) 1058 { 1059 apic_cpus_info_t *cpu_infop; 1060 1061 #if defined(__amd64) 1062 setcr8((ulong_t)apic_cr8pri[prev_ipl]); 1063 #else 1064 if (apic_have_32bit_cr8) 1065 setcr8((ulong_t)(apic_ipltopri[prev_ipl] >> APIC_IPL_SHIFT)); 1066 else 1067 apicadr[APIC_TASK_REG] = apic_ipltopri[prev_ipl]; 1068 #endif 1069 1070 APIC_INTR_EXIT(); 1071 } 1072 1073 /* 1074 * Same as apic_intr_exit() except it uses MSR rather than MMIO 1075 * to access local apic registers. 1076 */ 1077 void 1078 x2apic_intr_exit(int prev_ipl, int irq) 1079 { 1080 apic_cpus_info_t *cpu_infop; 1081 1082 X2APIC_WRITE(APIC_TASK_REG, apic_ipltopri[prev_ipl]); 1083 APIC_INTR_EXIT(); 1084 } 1085 1086 intr_exit_fn_t 1087 psm_intr_exit_fn(void) 1088 { 1089 if (apic_mode == LOCAL_X2APIC) 1090 return (x2apic_intr_exit); 1091 1092 return (apic_intr_exit); 1093 } 1094 1095 /* 1096 * Mask all interrupts below or equal to the given IPL. 1097 * Any changes made to this function must also change X2APIC 1098 * version of setspl. 1099 */ 1100 static void 1101 apic_setspl(int ipl) 1102 { 1103 #if defined(__amd64) 1104 setcr8((ulong_t)apic_cr8pri[ipl]); 1105 #else 1106 if (apic_have_32bit_cr8) 1107 setcr8((ulong_t)(apic_ipltopri[ipl] >> APIC_IPL_SHIFT)); 1108 else 1109 apicadr[APIC_TASK_REG] = apic_ipltopri[ipl]; 1110 #endif 1111 1112 /* interrupts at ipl above this cannot be in progress */ 1113 apic_cpus[psm_get_cpu_id()].aci_ISR_in_progress &= (2 << ipl) - 1; 1114 /* 1115 * this is a patch fix for the ALR QSMP P5 machine, so that interrupts 1116 * have enough time to come in before the priority is raised again 1117 * during the idle() loop. 1118 */ 1119 if (apic_setspl_delay) 1120 (void) apic_reg_ops->apic_get_pri(); 1121 } 1122 1123 /* 1124 * X2APIC version of setspl. 1125 * Mask all interrupts below or equal to the given IPL 1126 */ 1127 static void 1128 x2apic_setspl(int ipl) 1129 { 1130 X2APIC_WRITE(APIC_TASK_REG, apic_ipltopri[ipl]); 1131 1132 /* interrupts at ipl above this cannot be in progress */ 1133 apic_cpus[psm_get_cpu_id()].aci_ISR_in_progress &= (2 << ipl) - 1; 1134 } 1135 1136 /* 1137 * generates an interprocessor interrupt to another CPU. Any changes made to 1138 * this routine must be accompanied by similar changes to 1139 * apic_common_send_ipi(). 1140 */ 1141 static void 1142 apic_send_ipi(int cpun, int ipl) 1143 { 1144 int vector; 1145 ulong_t flag; 1146 1147 vector = apic_resv_vector[ipl]; 1148 1149 ASSERT((vector >= APIC_BASE_VECT) && (vector <= APIC_SPUR_INTR)); 1150 1151 flag = intr_clear(); 1152 1153 APIC_AV_PENDING_SET(); 1154 1155 apic_reg_ops->apic_write_int_cmd(apic_cpus[cpun].aci_local_id, 1156 vector); 1157 1158 intr_restore(flag); 1159 } 1160 1161 1162 /*ARGSUSED*/ 1163 static void 1164 apic_set_idlecpu(processorid_t cpun) 1165 { 1166 } 1167 1168 /*ARGSUSED*/ 1169 static void 1170 apic_unset_idlecpu(processorid_t cpun) 1171 { 1172 } 1173 1174 1175 void 1176 apic_ret() 1177 { 1178 } 1179 1180 /* 1181 * If apic_coarse_time == 1, then apic_gettime() is used instead of 1182 * apic_gethrtime(). This is used for performance instead of accuracy. 1183 */ 1184 1185 static hrtime_t 1186 apic_gettime() 1187 { 1188 int old_hrtime_stamp; 1189 hrtime_t temp; 1190 1191 /* 1192 * In one-shot mode, we do not keep time, so if anyone 1193 * calls psm_gettime() directly, we vector over to 1194 * gethrtime(). 1195 * one-shot mode MUST NOT be enabled if this psm is the source of 1196 * hrtime. 1197 */ 1198 1199 if (apic_oneshot) 1200 return (gethrtime()); 1201 1202 1203 gettime_again: 1204 while ((old_hrtime_stamp = apic_hrtime_stamp) & 1) 1205 apic_ret(); 1206 1207 temp = apic_nsec_since_boot; 1208 1209 if (apic_hrtime_stamp != old_hrtime_stamp) { /* got an interrupt */ 1210 goto gettime_again; 1211 } 1212 return (temp); 1213 } 1214 1215 /* 1216 * Here we return the number of nanoseconds since booting. Note every 1217 * clock interrupt increments apic_nsec_since_boot by the appropriate 1218 * amount. 1219 */ 1220 static hrtime_t 1221 apic_gethrtime() 1222 { 1223 int curr_timeval, countval, elapsed_ticks; 1224 int old_hrtime_stamp, status; 1225 hrtime_t temp; 1226 uint32_t cpun; 1227 ulong_t oflags; 1228 1229 /* 1230 * In one-shot mode, we do not keep time, so if anyone 1231 * calls psm_gethrtime() directly, we vector over to 1232 * gethrtime(). 1233 * one-shot mode MUST NOT be enabled if this psm is the source of 1234 * hrtime. 1235 */ 1236 1237 if (apic_oneshot) 1238 return (gethrtime()); 1239 1240 oflags = intr_clear(); /* prevent migration */ 1241 1242 cpun = apic_reg_ops->apic_read(APIC_LID_REG); 1243 if (apic_mode == LOCAL_APIC) 1244 cpun >>= APIC_ID_BIT_OFFSET; 1245 1246 lock_set(&apic_gethrtime_lock); 1247 1248 gethrtime_again: 1249 while ((old_hrtime_stamp = apic_hrtime_stamp) & 1) 1250 apic_ret(); 1251 1252 /* 1253 * Check to see which CPU we are on. Note the time is kept on 1254 * the local APIC of CPU 0. If on CPU 0, simply read the current 1255 * counter. If on another CPU, issue a remote read command to CPU 0. 1256 */ 1257 if (cpun == apic_cpus[0].aci_local_id) { 1258 countval = apic_reg_ops->apic_read(APIC_CURR_COUNT); 1259 } else { 1260 #ifdef DEBUG 1261 APIC_AV_PENDING_SET(); 1262 #else 1263 if (apic_mode == LOCAL_APIC) 1264 APIC_AV_PENDING_SET(); 1265 #endif /* DEBUG */ 1266 1267 apic_reg_ops->apic_write_int_cmd( 1268 apic_cpus[0].aci_local_id, APIC_CURR_ADD | AV_REMOTE); 1269 1270 while ((status = apic_reg_ops->apic_read(APIC_INT_CMD1)) 1271 & AV_READ_PENDING) { 1272 apic_ret(); 1273 } 1274 1275 if (status & AV_REMOTE_STATUS) /* 1 = valid */ 1276 countval = apic_reg_ops->apic_read(APIC_REMOTE_READ); 1277 else { /* 0 = invalid */ 1278 apic_remote_hrterr++; 1279 /* 1280 * return last hrtime right now, will need more 1281 * testing if change to retry 1282 */ 1283 temp = apic_last_hrtime; 1284 1285 lock_clear(&apic_gethrtime_lock); 1286 1287 intr_restore(oflags); 1288 1289 return (temp); 1290 } 1291 } 1292 if (countval > last_count_read) 1293 countval = 0; 1294 else 1295 last_count_read = countval; 1296 1297 elapsed_ticks = apic_hertz_count - countval; 1298 1299 curr_timeval = APIC_TICKS_TO_NSECS(elapsed_ticks); 1300 temp = apic_nsec_since_boot + curr_timeval; 1301 1302 if (apic_hrtime_stamp != old_hrtime_stamp) { /* got an interrupt */ 1303 /* we might have clobbered last_count_read. Restore it */ 1304 last_count_read = apic_hertz_count; 1305 goto gethrtime_again; 1306 } 1307 1308 if (temp < apic_last_hrtime) { 1309 /* return last hrtime if error occurs */ 1310 apic_hrtime_error++; 1311 temp = apic_last_hrtime; 1312 } 1313 else 1314 apic_last_hrtime = temp; 1315 1316 lock_clear(&apic_gethrtime_lock); 1317 intr_restore(oflags); 1318 1319 return (temp); 1320 } 1321 1322 /* apic NMI handler */ 1323 /*ARGSUSED*/ 1324 static void 1325 apic_nmi_intr(caddr_t arg, struct regs *rp) 1326 { 1327 if (apic_shutdown_processors) { 1328 apic_disable_local_apic(); 1329 return; 1330 } 1331 1332 apic_error |= APIC_ERR_NMI; 1333 1334 if (!lock_try(&apic_nmi_lock)) 1335 return; 1336 apic_num_nmis++; 1337 1338 if (apic_kmdb_on_nmi && psm_debugger()) { 1339 debug_enter("NMI received: entering kmdb\n"); 1340 } else if (apic_panic_on_nmi) { 1341 /* Keep panic from entering kmdb. */ 1342 nopanicdebug = 1; 1343 panic("NMI received\n"); 1344 } else { 1345 /* 1346 * prom_printf is the best shot we have of something which is 1347 * problem free from high level/NMI type of interrupts 1348 */ 1349 prom_printf("NMI received\n"); 1350 } 1351 1352 lock_clear(&apic_nmi_lock); 1353 } 1354 1355 /*ARGSUSED*/ 1356 static int 1357 apic_addspl(int irqno, int ipl, int min_ipl, int max_ipl) 1358 { 1359 return (apic_addspl_common(irqno, ipl, min_ipl, max_ipl)); 1360 } 1361 1362 static int 1363 apic_delspl(int irqno, int ipl, int min_ipl, int max_ipl) 1364 { 1365 return (apic_delspl_common(irqno, ipl, min_ipl, max_ipl)); 1366 } 1367 1368 static int 1369 apic_post_cpu_start() 1370 { 1371 int cpun; 1372 static int cpus_started = 1; 1373 struct psm_ops *pops = &apic_ops; 1374 1375 /* We know this CPU + BSP started successfully. */ 1376 cpus_started++; 1377 1378 /* 1379 * On BSP we would have enabled X2APIC, if supported by processor, 1380 * in acpi_probe(), but on AP we do it here. 1381 * 1382 * We enable X2APIC mode only if BSP is running in X2APIC & the 1383 * local APIC mode of the current CPU is MMIO (xAPIC). 1384 */ 1385 if (apic_mode == LOCAL_X2APIC && apic_detect_x2apic() && 1386 apic_local_mode() == LOCAL_APIC) { 1387 apic_enable_x2apic(); 1388 } 1389 1390 /* 1391 * We change psm_send_ipi and send_dirintf only if Solaris 1392 * is booted in kmdb & the current CPU is the last CPU being 1393 * brought up. We don't need to do anything if Solaris is running 1394 * in MMIO mode (xAPIC). 1395 */ 1396 if ((boothowto & RB_DEBUG) && 1397 (cpus_started == boot_ncpus || cpus_started == apic_nproc) && 1398 apic_mode == LOCAL_X2APIC) { 1399 /* 1400 * We no longer need help from apic_common_send_ipi() 1401 * since we will not start any more CPUs. 1402 * 1403 * We will need to revisit this if we start supporting 1404 * hot-plugging of CPUs. 1405 */ 1406 pops->psm_send_ipi = x2apic_send_ipi; 1407 send_dirintf = pops->psm_send_ipi; 1408 } 1409 1410 splx(ipltospl(LOCK_LEVEL)); 1411 apic_init_intr(); 1412 1413 /* 1414 * since some systems don't enable the internal cache on the non-boot 1415 * cpus, so we have to enable them here 1416 */ 1417 setcr0(getcr0() & ~(CR0_CD | CR0_NW)); 1418 1419 #ifdef DEBUG 1420 APIC_AV_PENDING_SET(); 1421 #else 1422 if (apic_mode == LOCAL_APIC) 1423 APIC_AV_PENDING_SET(); 1424 #endif /* DEBUG */ 1425 1426 /* 1427 * We may be booting, or resuming from suspend; aci_status will 1428 * be APIC_CPU_INTR_ENABLE if coming from suspend, so we add the 1429 * APIC_CPU_ONLINE flag here rather than setting aci_status completely. 1430 */ 1431 cpun = psm_get_cpu_id(); 1432 apic_cpus[cpun].aci_status |= APIC_CPU_ONLINE; 1433 1434 apic_reg_ops->apic_write(APIC_DIVIDE_REG, apic_divide_reg_init); 1435 return (PSM_SUCCESS); 1436 } 1437 1438 processorid_t 1439 apic_get_next_processorid(processorid_t cpu_id) 1440 { 1441 1442 int i; 1443 1444 if (cpu_id == -1) 1445 return ((processorid_t)0); 1446 1447 for (i = cpu_id + 1; i < NCPU; i++) { 1448 if (CPU_IN_SET(apic_cpumask, i)) 1449 return (i); 1450 } 1451 1452 return ((processorid_t)-1); 1453 } 1454 1455 1456 /* 1457 * type == -1 indicates it is an internal request. Do not change 1458 * resv_vector for these requests 1459 */ 1460 static int 1461 apic_get_ipivect(int ipl, int type) 1462 { 1463 uchar_t vector; 1464 int irq; 1465 1466 if (irq = apic_allocate_irq(APIC_VECTOR(ipl))) { 1467 if (vector = apic_allocate_vector(ipl, irq, 1)) { 1468 apic_irq_table[irq]->airq_mps_intr_index = 1469 RESERVE_INDEX; 1470 apic_irq_table[irq]->airq_vector = vector; 1471 if (type != -1) { 1472 apic_resv_vector[ipl] = vector; 1473 } 1474 return (irq); 1475 } 1476 } 1477 apic_error |= APIC_ERR_GET_IPIVECT_FAIL; 1478 return (-1); /* shouldn't happen */ 1479 } 1480 1481 static int 1482 apic_getclkirq(int ipl) 1483 { 1484 int irq; 1485 1486 if ((irq = apic_get_ipivect(ipl, -1)) == -1) 1487 return (-1); 1488 /* 1489 * Note the vector in apic_clkvect for per clock handling. 1490 */ 1491 apic_clkvect = apic_irq_table[irq]->airq_vector - APIC_BASE_VECT; 1492 APIC_VERBOSE_IOAPIC((CE_NOTE, "get_clkirq: vector = %x\n", 1493 apic_clkvect)); 1494 return (irq); 1495 } 1496 1497 1498 /* 1499 * Return the number of APIC clock ticks elapsed for 8245 to decrement 1500 * (APIC_TIME_COUNT + pit_ticks_adj) ticks. 1501 */ 1502 static uint_t 1503 apic_calibrate(volatile uint32_t *addr, uint16_t *pit_ticks_adj) 1504 { 1505 uint8_t pit_tick_lo; 1506 uint16_t pit_tick, target_pit_tick; 1507 uint32_t start_apic_tick, end_apic_tick; 1508 ulong_t iflag; 1509 uint32_t reg; 1510 1511 reg = addr + APIC_CURR_COUNT - apicadr; 1512 1513 iflag = intr_clear(); 1514 1515 do { 1516 pit_tick_lo = inb(PITCTR0_PORT); 1517 pit_tick = (inb(PITCTR0_PORT) << 8) | pit_tick_lo; 1518 } while (pit_tick < APIC_TIME_MIN || 1519 pit_tick_lo <= APIC_LB_MIN || pit_tick_lo >= APIC_LB_MAX); 1520 1521 /* 1522 * Wait for the 8254 to decrement by 5 ticks to ensure 1523 * we didn't start in the middle of a tick. 1524 * Compare with 0x10 for the wrap around case. 1525 */ 1526 target_pit_tick = pit_tick - 5; 1527 do { 1528 pit_tick_lo = inb(PITCTR0_PORT); 1529 pit_tick = (inb(PITCTR0_PORT) << 8) | pit_tick_lo; 1530 } while (pit_tick > target_pit_tick || pit_tick_lo < 0x10); 1531 1532 start_apic_tick = apic_reg_ops->apic_read(reg); 1533 1534 /* 1535 * Wait for the 8254 to decrement by 1536 * (APIC_TIME_COUNT + pit_ticks_adj) ticks 1537 */ 1538 target_pit_tick = pit_tick - APIC_TIME_COUNT; 1539 do { 1540 pit_tick_lo = inb(PITCTR0_PORT); 1541 pit_tick = (inb(PITCTR0_PORT) << 8) | pit_tick_lo; 1542 } while (pit_tick > target_pit_tick || pit_tick_lo < 0x10); 1543 1544 end_apic_tick = apic_reg_ops->apic_read(reg); 1545 1546 *pit_ticks_adj = target_pit_tick - pit_tick; 1547 1548 intr_restore(iflag); 1549 1550 return (start_apic_tick - end_apic_tick); 1551 } 1552 1553 /* 1554 * Initialise the APIC timer on the local APIC of CPU 0 to the desired 1555 * frequency. Note at this stage in the boot sequence, the boot processor 1556 * is the only active processor. 1557 * hertz value of 0 indicates a one-shot mode request. In this case 1558 * the function returns the resolution (in nanoseconds) for the hardware 1559 * timer interrupt. If one-shot mode capability is not available, 1560 * the return value will be 0. apic_enable_oneshot is a global switch 1561 * for disabling the functionality. 1562 * A non-zero positive value for hertz indicates a periodic mode request. 1563 * In this case the hardware will be programmed to generate clock interrupts 1564 * at hertz frequency and returns the resolution of interrupts in 1565 * nanosecond. 1566 */ 1567 1568 static int 1569 apic_clkinit(int hertz) 1570 { 1571 uint_t apic_ticks = 0; 1572 uint_t pit_ticks; 1573 int ret; 1574 uint16_t pit_ticks_adj; 1575 static int firsttime = 1; 1576 1577 if (firsttime) { 1578 /* first time calibrate on CPU0 only */ 1579 1580 apic_reg_ops->apic_write(APIC_DIVIDE_REG, apic_divide_reg_init); 1581 apic_reg_ops->apic_write(APIC_INIT_COUNT, APIC_MAXVAL); 1582 apic_ticks = apic_calibrate(apicadr, &pit_ticks_adj); 1583 1584 /* total number of PIT ticks corresponding to apic_ticks */ 1585 pit_ticks = APIC_TIME_COUNT + pit_ticks_adj; 1586 1587 /* 1588 * Determine the number of nanoseconds per APIC clock tick 1589 * and then determine how many APIC ticks to interrupt at the 1590 * desired frequency 1591 * apic_ticks / (pitticks / PIT_HZ) = apic_ticks_per_s 1592 * (apic_ticks * PIT_HZ) / pitticks = apic_ticks_per_s 1593 * apic_ticks_per_ns = (apic_ticks * PIT_HZ) / (pitticks * 10^9) 1594 * pic_ticks_per_SFns = 1595 * (SF * apic_ticks * PIT_HZ) / (pitticks * 10^9) 1596 */ 1597 apic_ticks_per_SFnsecs = 1598 ((SF * apic_ticks * PIT_HZ) / 1599 ((uint64_t)pit_ticks * NANOSEC)); 1600 1601 /* the interval timer initial count is 32 bit max */ 1602 apic_nsec_max = APIC_TICKS_TO_NSECS(APIC_MAXVAL); 1603 firsttime = 0; 1604 } 1605 1606 if (hertz != 0) { 1607 /* periodic */ 1608 apic_nsec_per_intr = NANOSEC / hertz; 1609 apic_hertz_count = APIC_NSECS_TO_TICKS(apic_nsec_per_intr); 1610 } 1611 1612 apic_int_busy_mark = (apic_int_busy_mark * 1613 apic_sample_factor_redistribution) / 100; 1614 apic_int_free_mark = (apic_int_free_mark * 1615 apic_sample_factor_redistribution) / 100; 1616 apic_diff_for_redistribution = (apic_diff_for_redistribution * 1617 apic_sample_factor_redistribution) / 100; 1618 1619 if (hertz == 0) { 1620 /* requested one_shot */ 1621 if (!tsc_gethrtime_enable || !apic_oneshot_enable) 1622 return (0); 1623 apic_oneshot = 1; 1624 ret = (int)APIC_TICKS_TO_NSECS(1); 1625 } else { 1626 /* program the local APIC to interrupt at the given frequency */ 1627 apic_reg_ops->apic_write(APIC_INIT_COUNT, apic_hertz_count); 1628 apic_reg_ops->apic_write(APIC_LOCAL_TIMER, 1629 (apic_clkvect + APIC_BASE_VECT) | AV_TIME); 1630 apic_oneshot = 0; 1631 ret = NANOSEC / hertz; 1632 } 1633 1634 return (ret); 1635 1636 } 1637 1638 /* 1639 * apic_preshutdown: 1640 * Called early in shutdown whilst we can still access filesystems to do 1641 * things like loading modules which will be required to complete shutdown 1642 * after filesystems are all unmounted. 1643 */ 1644 static void 1645 apic_preshutdown(int cmd, int fcn) 1646 { 1647 APIC_VERBOSE_POWEROFF(("apic_preshutdown(%d,%d); m=%d a=%d\n", 1648 cmd, fcn, apic_poweroff_method, apic_enable_acpi)); 1649 1650 if ((cmd != A_SHUTDOWN) || (fcn != AD_POWEROFF)) { 1651 return; 1652 } 1653 } 1654 1655 static void 1656 apic_shutdown(int cmd, int fcn) 1657 { 1658 int restarts, attempts; 1659 int i; 1660 uchar_t byte; 1661 ulong_t iflag; 1662 1663 hpet_acpi_fini(); 1664 1665 /* Send NMI to all CPUs except self to do per processor shutdown */ 1666 iflag = intr_clear(); 1667 #ifdef DEBUG 1668 APIC_AV_PENDING_SET(); 1669 #else 1670 if (apic_mode == LOCAL_APIC) 1671 APIC_AV_PENDING_SET(); 1672 #endif /* DEBUG */ 1673 apic_shutdown_processors = 1; 1674 apic_reg_ops->apic_write(APIC_INT_CMD1, 1675 AV_NMI | AV_LEVEL | AV_SH_ALL_EXCSELF); 1676 1677 /* restore cmos shutdown byte before reboot */ 1678 if (apic_cmos_ssb_set) { 1679 outb(CMOS_ADDR, SSB); 1680 outb(CMOS_DATA, 0); 1681 } 1682 1683 ioapic_disable_redirection(); 1684 1685 /* disable apic mode if imcr present */ 1686 if (apic_imcrp) { 1687 outb(APIC_IMCR_P1, (uchar_t)APIC_IMCR_SELECT); 1688 outb(APIC_IMCR_P2, (uchar_t)APIC_IMCR_PIC); 1689 } 1690 1691 apic_disable_local_apic(); 1692 1693 intr_restore(iflag); 1694 1695 /* remainder of function is for shutdown cases only */ 1696 if (cmd != A_SHUTDOWN) 1697 return; 1698 1699 /* 1700 * Switch system back into Legacy-Mode if using ACPI and 1701 * not powering-off. Some BIOSes need to remain in ACPI-mode 1702 * for power-off to succeed (Dell Dimension 4600) 1703 * Do not disable ACPI while doing fastreboot 1704 */ 1705 if (apic_enable_acpi && fcn != AD_POWEROFF && fcn != AD_FASTREBOOT) 1706 (void) AcpiDisable(); 1707 1708 if (fcn == AD_FASTREBOOT) { 1709 apic_reg_ops->apic_write(APIC_INT_CMD1, 1710 AV_ASSERT | AV_RESET | AV_SH_ALL_EXCSELF); 1711 } 1712 1713 /* remainder of function is for shutdown+poweroff case only */ 1714 if (fcn != AD_POWEROFF) 1715 return; 1716 1717 switch (apic_poweroff_method) { 1718 case APIC_POWEROFF_VIA_RTC: 1719 1720 /* select the extended NVRAM bank in the RTC */ 1721 outb(CMOS_ADDR, RTC_REGA); 1722 byte = inb(CMOS_DATA); 1723 outb(CMOS_DATA, (byte | EXT_BANK)); 1724 1725 outb(CMOS_ADDR, PFR_REG); 1726 1727 /* for Predator must toggle the PAB bit */ 1728 byte = inb(CMOS_DATA); 1729 1730 /* 1731 * clear power active bar, wakeup alarm and 1732 * kickstart 1733 */ 1734 byte &= ~(PAB_CBIT | WF_FLAG | KS_FLAG); 1735 outb(CMOS_DATA, byte); 1736 1737 /* delay before next write */ 1738 drv_usecwait(1000); 1739 1740 /* for S40 the following would suffice */ 1741 byte = inb(CMOS_DATA); 1742 1743 /* power active bar control bit */ 1744 byte |= PAB_CBIT; 1745 outb(CMOS_DATA, byte); 1746 1747 break; 1748 1749 case APIC_POWEROFF_VIA_ASPEN_BMC: 1750 restarts = 0; 1751 restart_aspen_bmc: 1752 if (++restarts == 3) 1753 break; 1754 attempts = 0; 1755 do { 1756 byte = inb(MISMIC_FLAG_REGISTER); 1757 byte &= MISMIC_BUSY_MASK; 1758 if (byte != 0) { 1759 drv_usecwait(1000); 1760 if (attempts >= 3) 1761 goto restart_aspen_bmc; 1762 ++attempts; 1763 } 1764 } while (byte != 0); 1765 outb(MISMIC_CNTL_REGISTER, CC_SMS_GET_STATUS); 1766 byte = inb(MISMIC_FLAG_REGISTER); 1767 byte |= 0x1; 1768 outb(MISMIC_FLAG_REGISTER, byte); 1769 i = 0; 1770 for (; i < (sizeof (aspen_bmc)/sizeof (aspen_bmc[0])); 1771 i++) { 1772 attempts = 0; 1773 do { 1774 byte = inb(MISMIC_FLAG_REGISTER); 1775 byte &= MISMIC_BUSY_MASK; 1776 if (byte != 0) { 1777 drv_usecwait(1000); 1778 if (attempts >= 3) 1779 goto restart_aspen_bmc; 1780 ++attempts; 1781 } 1782 } while (byte != 0); 1783 outb(MISMIC_CNTL_REGISTER, aspen_bmc[i].cntl); 1784 outb(MISMIC_DATA_REGISTER, aspen_bmc[i].data); 1785 byte = inb(MISMIC_FLAG_REGISTER); 1786 byte |= 0x1; 1787 outb(MISMIC_FLAG_REGISTER, byte); 1788 } 1789 break; 1790 1791 case APIC_POWEROFF_VIA_SITKA_BMC: 1792 restarts = 0; 1793 restart_sitka_bmc: 1794 if (++restarts == 3) 1795 break; 1796 attempts = 0; 1797 do { 1798 byte = inb(SMS_STATUS_REGISTER); 1799 byte &= SMS_STATE_MASK; 1800 if ((byte == SMS_READ_STATE) || 1801 (byte == SMS_WRITE_STATE)) { 1802 drv_usecwait(1000); 1803 if (attempts >= 3) 1804 goto restart_sitka_bmc; 1805 ++attempts; 1806 } 1807 } while ((byte == SMS_READ_STATE) || 1808 (byte == SMS_WRITE_STATE)); 1809 outb(SMS_COMMAND_REGISTER, SMS_GET_STATUS); 1810 i = 0; 1811 for (; i < (sizeof (sitka_bmc)/sizeof (sitka_bmc[0])); 1812 i++) { 1813 attempts = 0; 1814 do { 1815 byte = inb(SMS_STATUS_REGISTER); 1816 byte &= SMS_IBF_MASK; 1817 if (byte != 0) { 1818 drv_usecwait(1000); 1819 if (attempts >= 3) 1820 goto restart_sitka_bmc; 1821 ++attempts; 1822 } 1823 } while (byte != 0); 1824 outb(sitka_bmc[i].port, sitka_bmc[i].data); 1825 } 1826 break; 1827 1828 case APIC_POWEROFF_NONE: 1829 1830 /* If no APIC direct method, we will try using ACPI */ 1831 if (apic_enable_acpi) { 1832 if (acpi_poweroff() == 1) 1833 return; 1834 } else 1835 return; 1836 1837 break; 1838 } 1839 /* 1840 * Wait a limited time here for power to go off. 1841 * If the power does not go off, then there was a 1842 * problem and we should continue to the halt which 1843 * prints a message for the user to press a key to 1844 * reboot. 1845 */ 1846 drv_usecwait(7000000); /* wait seven seconds */ 1847 1848 } 1849 1850 /* 1851 * Try and disable all interrupts. We just assign interrupts to other 1852 * processors based on policy. If any were bound by user request, we 1853 * let them continue and return failure. We do not bother to check 1854 * for cache affinity while rebinding. 1855 */ 1856 1857 static int 1858 apic_disable_intr(processorid_t cpun) 1859 { 1860 int bind_cpu = 0, i, hardbound = 0; 1861 apic_irq_t *irq_ptr; 1862 ulong_t iflag; 1863 1864 iflag = intr_clear(); 1865 lock_set(&apic_ioapic_lock); 1866 1867 for (i = 0; i <= APIC_MAX_VECTOR; i++) { 1868 if (apic_reprogram_info[i].done == B_FALSE) { 1869 if (apic_reprogram_info[i].bindcpu == cpun) { 1870 /* 1871 * CPU is busy -- it's the target of 1872 * a pending reprogramming attempt 1873 */ 1874 lock_clear(&apic_ioapic_lock); 1875 intr_restore(iflag); 1876 return (PSM_FAILURE); 1877 } 1878 } 1879 } 1880 1881 apic_cpus[cpun].aci_status &= ~APIC_CPU_INTR_ENABLE; 1882 1883 apic_cpus[cpun].aci_curipl = 0; 1884 1885 i = apic_min_device_irq; 1886 for (; i <= apic_max_device_irq; i++) { 1887 /* 1888 * If there are bound interrupts on this cpu, then 1889 * rebind them to other processors. 1890 */ 1891 if ((irq_ptr = apic_irq_table[i]) != NULL) { 1892 ASSERT((irq_ptr->airq_temp_cpu == IRQ_UNBOUND) || 1893 (irq_ptr->airq_temp_cpu == IRQ_UNINIT) || 1894 ((irq_ptr->airq_temp_cpu & ~IRQ_USER_BOUND) < 1895 apic_nproc)); 1896 1897 if (irq_ptr->airq_temp_cpu == (cpun | IRQ_USER_BOUND)) { 1898 hardbound = 1; 1899 continue; 1900 } 1901 1902 if (irq_ptr->airq_temp_cpu == cpun) { 1903 do { 1904 bind_cpu = apic_next_bind_cpu++; 1905 if (bind_cpu >= apic_nproc) { 1906 apic_next_bind_cpu = 1; 1907 bind_cpu = 0; 1908 1909 } 1910 } while (apic_rebind_all(irq_ptr, bind_cpu)); 1911 } 1912 } 1913 } 1914 1915 lock_clear(&apic_ioapic_lock); 1916 intr_restore(iflag); 1917 1918 if (hardbound) { 1919 cmn_err(CE_WARN, "Could not disable interrupts on %d" 1920 "due to user bound interrupts", cpun); 1921 return (PSM_FAILURE); 1922 } 1923 else 1924 return (PSM_SUCCESS); 1925 } 1926 1927 /* 1928 * Bind interrupts to the CPU's local APIC. 1929 * Interrupts should not be bound to a CPU's local APIC until the CPU 1930 * is ready to receive interrupts. 1931 */ 1932 static void 1933 apic_enable_intr(processorid_t cpun) 1934 { 1935 int i; 1936 apic_irq_t *irq_ptr; 1937 ulong_t iflag; 1938 1939 iflag = intr_clear(); 1940 lock_set(&apic_ioapic_lock); 1941 1942 apic_cpus[cpun].aci_status |= APIC_CPU_INTR_ENABLE; 1943 1944 i = apic_min_device_irq; 1945 for (i = apic_min_device_irq; i <= apic_max_device_irq; i++) { 1946 if ((irq_ptr = apic_irq_table[i]) != NULL) { 1947 if ((irq_ptr->airq_cpu & ~IRQ_USER_BOUND) == cpun) { 1948 (void) apic_rebind_all(irq_ptr, 1949 irq_ptr->airq_cpu); 1950 } 1951 } 1952 } 1953 1954 lock_clear(&apic_ioapic_lock); 1955 intr_restore(iflag); 1956 } 1957 1958 1959 /* 1960 * This function will reprogram the timer. 1961 * 1962 * When in oneshot mode the argument is the absolute time in future to 1963 * generate the interrupt at. 1964 * 1965 * When in periodic mode, the argument is the interval at which the 1966 * interrupts should be generated. There is no need to support the periodic 1967 * mode timer change at this time. 1968 */ 1969 static void 1970 apic_timer_reprogram(hrtime_t time) 1971 { 1972 hrtime_t now; 1973 uint_t ticks; 1974 int64_t delta; 1975 1976 /* 1977 * We should be called from high PIL context (CBE_HIGH_PIL), 1978 * so kpreempt is disabled. 1979 */ 1980 1981 if (!apic_oneshot) { 1982 /* time is the interval for periodic mode */ 1983 ticks = APIC_NSECS_TO_TICKS(time); 1984 } else { 1985 /* one shot mode */ 1986 1987 now = gethrtime(); 1988 delta = time - now; 1989 1990 if (delta <= 0) { 1991 /* 1992 * requested to generate an interrupt in the past 1993 * generate an interrupt as soon as possible 1994 */ 1995 ticks = apic_min_timer_ticks; 1996 } else if (delta > apic_nsec_max) { 1997 /* 1998 * requested to generate an interrupt at a time 1999 * further than what we are capable of. Set to max 2000 * the hardware can handle 2001 */ 2002 2003 ticks = APIC_MAXVAL; 2004 #ifdef DEBUG 2005 cmn_err(CE_CONT, "apic_timer_reprogram, request at" 2006 " %lld too far in future, current time" 2007 " %lld \n", time, now); 2008 #endif 2009 } else 2010 ticks = APIC_NSECS_TO_TICKS(delta); 2011 } 2012 2013 if (ticks < apic_min_timer_ticks) 2014 ticks = apic_min_timer_ticks; 2015 2016 apic_reg_ops->apic_write(APIC_INIT_COUNT, ticks); 2017 } 2018 2019 /* 2020 * This function will enable timer interrupts. 2021 */ 2022 static void 2023 apic_timer_enable(void) 2024 { 2025 /* 2026 * We should be Called from high PIL context (CBE_HIGH_PIL), 2027 * so kpreempt is disabled. 2028 */ 2029 2030 if (!apic_oneshot) { 2031 apic_reg_ops->apic_write(APIC_LOCAL_TIMER, 2032 (apic_clkvect + APIC_BASE_VECT) | AV_TIME); 2033 } else { 2034 /* one shot */ 2035 apic_reg_ops->apic_write(APIC_LOCAL_TIMER, 2036 (apic_clkvect + APIC_BASE_VECT)); 2037 } 2038 } 2039 2040 /* 2041 * This function will disable timer interrupts. 2042 */ 2043 static void 2044 apic_timer_disable(void) 2045 { 2046 /* 2047 * We should be Called from high PIL context (CBE_HIGH_PIL), 2048 * so kpreempt is disabled. 2049 */ 2050 apic_reg_ops->apic_write(APIC_LOCAL_TIMER, 2051 (apic_clkvect + APIC_BASE_VECT) | AV_MASK); 2052 } 2053 2054 /* 2055 * Set timer far into the future and return timer 2056 * current Count in nanoseconds. 2057 */ 2058 hrtime_t 2059 apic_timer_stop_count(void) 2060 { 2061 hrtime_t ns_val; 2062 int enable_val, count_val; 2063 2064 /* 2065 * Should be called with interrupts disabled. 2066 */ 2067 ASSERT(!interrupts_enabled()); 2068 2069 enable_val = apic_reg_ops->apic_read(APIC_LOCAL_TIMER); 2070 if ((enable_val & AV_MASK) == AV_MASK) 2071 return ((hrtime_t)-1); /* timer is disabled */ 2072 2073 count_val = apic_reg_ops->apic_read(APIC_CURR_COUNT); 2074 ns_val = APIC_TICKS_TO_NSECS(count_val); 2075 2076 apic_reg_ops->apic_write(APIC_INIT_COUNT, APIC_MAXVAL); 2077 2078 return (ns_val); 2079 } 2080 2081 /* 2082 * Reprogram timer after Deep C-State. 2083 */ 2084 void 2085 apic_timer_restart(hrtime_t time) 2086 { 2087 apic_timer_reprogram(time); 2088 } 2089 2090 ddi_periodic_t apic_periodic_id; 2091 2092 /* 2093 * If this module needs a periodic handler for the interrupt distribution, it 2094 * can be added here. The argument to the periodic handler is not currently 2095 * used, but is reserved for future. 2096 */ 2097 static void 2098 apic_post_cyclic_setup(void *arg) 2099 { 2100 _NOTE(ARGUNUSED(arg)) 2101 /* cpu_lock is held */ 2102 /* set up a periodic handler for intr redistribution */ 2103 2104 /* 2105 * In peridoc mode intr redistribution processing is done in 2106 * apic_intr_enter during clk intr processing 2107 */ 2108 if (!apic_oneshot) 2109 return; 2110 /* 2111 * Register a periodical handler for the redistribution processing. 2112 * On X86, CY_LOW_LEVEL is mapped to the level 2 interrupt, so 2113 * DDI_IPL_2 should be passed to ddi_periodic_add() here. 2114 */ 2115 apic_periodic_id = ddi_periodic_add( 2116 (void (*)(void *))apic_redistribute_compute, NULL, 2117 apic_redistribute_sample_interval, DDI_IPL_2); 2118 } 2119 2120 static void 2121 apic_redistribute_compute(void) 2122 { 2123 int i, j, max_busy; 2124 2125 if (apic_enable_dynamic_migration) { 2126 if (++apic_nticks == apic_sample_factor_redistribution) { 2127 /* 2128 * Time to call apic_intr_redistribute(). 2129 * reset apic_nticks. This will cause max_busy 2130 * to be calculated below and if it is more than 2131 * apic_int_busy, we will do the whole thing 2132 */ 2133 apic_nticks = 0; 2134 } 2135 max_busy = 0; 2136 for (i = 0; i < apic_nproc; i++) { 2137 2138 /* 2139 * Check if curipl is non zero & if ISR is in 2140 * progress 2141 */ 2142 if (((j = apic_cpus[i].aci_curipl) != 0) && 2143 (apic_cpus[i].aci_ISR_in_progress & (1 << j))) { 2144 2145 int irq; 2146 apic_cpus[i].aci_busy++; 2147 irq = apic_cpus[i].aci_current[j]; 2148 apic_irq_table[irq]->airq_busy++; 2149 } 2150 2151 if (!apic_nticks && 2152 (apic_cpus[i].aci_busy > max_busy)) 2153 max_busy = apic_cpus[i].aci_busy; 2154 } 2155 if (!apic_nticks) { 2156 if (max_busy > apic_int_busy_mark) { 2157 /* 2158 * We could make the following check be 2159 * skipped > 1 in which case, we get a 2160 * redistribution at half the busy mark (due to 2161 * double interval). Need to be able to collect 2162 * more empirical data to decide if that is a 2163 * good strategy. Punt for now. 2164 */ 2165 if (apic_skipped_redistribute) { 2166 apic_cleanup_busy(); 2167 apic_skipped_redistribute = 0; 2168 } else { 2169 apic_intr_redistribute(); 2170 } 2171 } else 2172 apic_skipped_redistribute++; 2173 } 2174 } 2175 } 2176 2177 2178 /* 2179 * The following functions are in the platform specific file so that they 2180 * can be different functions depending on whether we are running on 2181 * bare metal or a hypervisor. 2182 */ 2183 2184 /* 2185 * map an apic for memory-mapped access 2186 */ 2187 uint32_t * 2188 mapin_apic(uint32_t addr, size_t len, int flags) 2189 { 2190 /*LINTED: pointer cast may result in improper alignment */ 2191 return ((uint32_t *)psm_map_phys(addr, len, flags)); 2192 } 2193 2194 uint32_t * 2195 mapin_ioapic(uint32_t addr, size_t len, int flags) 2196 { 2197 return (mapin_apic(addr, len, flags)); 2198 } 2199 2200 /* 2201 * unmap an apic 2202 */ 2203 void 2204 mapout_apic(caddr_t addr, size_t len) 2205 { 2206 psm_unmap_phys(addr, len); 2207 } 2208 2209 void 2210 mapout_ioapic(caddr_t addr, size_t len) 2211 { 2212 mapout_apic(addr, len); 2213 } 2214 2215 /* 2216 * Check to make sure there are enough irq slots 2217 */ 2218 int 2219 apic_check_free_irqs(int count) 2220 { 2221 int i, avail; 2222 2223 avail = 0; 2224 for (i = APIC_FIRST_FREE_IRQ; i < APIC_RESV_IRQ; i++) { 2225 if ((apic_irq_table[i] == NULL) || 2226 apic_irq_table[i]->airq_mps_intr_index == FREE_INDEX) { 2227 if (++avail >= count) 2228 return (PSM_SUCCESS); 2229 } 2230 } 2231 return (PSM_FAILURE); 2232 } 2233 2234 /* 2235 * This function allocates "count" MSI vector(s) for the given "dip/pri/type" 2236 */ 2237 int 2238 apic_alloc_msi_vectors(dev_info_t *dip, int inum, int count, int pri, 2239 int behavior) 2240 { 2241 int rcount, i; 2242 uchar_t start, irqno; 2243 uint32_t cpu; 2244 major_t major; 2245 apic_irq_t *irqptr; 2246 2247 DDI_INTR_IMPLDBG((CE_CONT, "apic_alloc_msi_vectors: dip=0x%p " 2248 "inum=0x%x pri=0x%x count=0x%x behavior=%d\n", 2249 (void *)dip, inum, pri, count, behavior)); 2250 2251 if (count > 1) { 2252 if (behavior == DDI_INTR_ALLOC_STRICT && 2253 apic_multi_msi_enable == 0) 2254 return (0); 2255 if (apic_multi_msi_enable == 0) 2256 count = 1; 2257 } 2258 2259 if ((rcount = apic_navail_vector(dip, pri)) > count) 2260 rcount = count; 2261 else if (rcount == 0 || (rcount < count && 2262 behavior == DDI_INTR_ALLOC_STRICT)) 2263 return (0); 2264 2265 /* if not ISP2, then round it down */ 2266 if (!ISP2(rcount)) 2267 rcount = 1 << (highbit(rcount) - 1); 2268 2269 mutex_enter(&airq_mutex); 2270 2271 for (start = 0; rcount > 0; rcount >>= 1) { 2272 if ((start = apic_find_multi_vectors(pri, rcount)) != 0 || 2273 behavior == DDI_INTR_ALLOC_STRICT) 2274 break; 2275 } 2276 2277 if (start == 0) { 2278 /* no vector available */ 2279 mutex_exit(&airq_mutex); 2280 return (0); 2281 } 2282 2283 if (apic_check_free_irqs(rcount) == PSM_FAILURE) { 2284 /* not enough free irq slots available */ 2285 mutex_exit(&airq_mutex); 2286 return (0); 2287 } 2288 2289 major = (dip != NULL) ? ddi_driver_major(dip) : 0; 2290 for (i = 0; i < rcount; i++) { 2291 if ((irqno = apic_allocate_irq(apic_first_avail_irq)) == 2292 (uchar_t)-1) { 2293 /* 2294 * shouldn't happen because of the 2295 * apic_check_free_irqs() check earlier 2296 */ 2297 mutex_exit(&airq_mutex); 2298 DDI_INTR_IMPLDBG((CE_CONT, "apic_alloc_msi_vectors: " 2299 "apic_allocate_irq failed\n")); 2300 return (i); 2301 } 2302 apic_max_device_irq = max(irqno, apic_max_device_irq); 2303 apic_min_device_irq = min(irqno, apic_min_device_irq); 2304 irqptr = apic_irq_table[irqno]; 2305 #ifdef DEBUG 2306 if (apic_vector_to_irq[start + i] != APIC_RESV_IRQ) 2307 DDI_INTR_IMPLDBG((CE_CONT, "apic_alloc_msi_vectors: " 2308 "apic_vector_to_irq is not APIC_RESV_IRQ\n")); 2309 #endif 2310 apic_vector_to_irq[start + i] = (uchar_t)irqno; 2311 2312 irqptr->airq_vector = (uchar_t)(start + i); 2313 irqptr->airq_ioapicindex = (uchar_t)inum; /* start */ 2314 irqptr->airq_intin_no = (uchar_t)rcount; 2315 irqptr->airq_ipl = pri; 2316 irqptr->airq_vector = start + i; 2317 irqptr->airq_origirq = (uchar_t)(inum + i); 2318 irqptr->airq_share_id = 0; 2319 irqptr->airq_mps_intr_index = MSI_INDEX; 2320 irqptr->airq_dip = dip; 2321 irqptr->airq_major = major; 2322 if (i == 0) /* they all bound to the same cpu */ 2323 cpu = irqptr->airq_cpu = apic_bind_intr(dip, irqno, 2324 0xff, 0xff); 2325 else 2326 irqptr->airq_cpu = cpu; 2327 DDI_INTR_IMPLDBG((CE_CONT, "apic_alloc_msi_vectors: irq=0x%x " 2328 "dip=0x%p vector=0x%x origirq=0x%x pri=0x%x\n", irqno, 2329 (void *)irqptr->airq_dip, irqptr->airq_vector, 2330 irqptr->airq_origirq, pri)); 2331 } 2332 mutex_exit(&airq_mutex); 2333 return (rcount); 2334 } 2335 2336 /* 2337 * This function allocates "count" MSI-X vector(s) for the given "dip/pri/type" 2338 */ 2339 int 2340 apic_alloc_msix_vectors(dev_info_t *dip, int inum, int count, int pri, 2341 int behavior) 2342 { 2343 int rcount, i; 2344 major_t major; 2345 2346 mutex_enter(&airq_mutex); 2347 2348 if ((rcount = apic_navail_vector(dip, pri)) > count) 2349 rcount = count; 2350 else if (rcount == 0 || (rcount < count && 2351 behavior == DDI_INTR_ALLOC_STRICT)) { 2352 rcount = 0; 2353 goto out; 2354 } 2355 2356 if (apic_check_free_irqs(rcount) == PSM_FAILURE) { 2357 /* not enough free irq slots available */ 2358 rcount = 0; 2359 goto out; 2360 } 2361 2362 major = (dip != NULL) ? ddi_driver_major(dip) : 0; 2363 for (i = 0; i < rcount; i++) { 2364 uchar_t vector, irqno; 2365 apic_irq_t *irqptr; 2366 2367 if ((irqno = apic_allocate_irq(apic_first_avail_irq)) == 2368 (uchar_t)-1) { 2369 /* 2370 * shouldn't happen because of the 2371 * apic_check_free_irqs() check earlier 2372 */ 2373 DDI_INTR_IMPLDBG((CE_CONT, "apic_alloc_msix_vectors: " 2374 "apic_allocate_irq failed\n")); 2375 rcount = i; 2376 goto out; 2377 } 2378 if ((vector = apic_allocate_vector(pri, irqno, 1)) == 0) { 2379 /* 2380 * shouldn't happen because of the 2381 * apic_navail_vector() call earlier 2382 */ 2383 DDI_INTR_IMPLDBG((CE_CONT, "apic_alloc_msix_vectors: " 2384 "apic_allocate_vector failed\n")); 2385 rcount = i; 2386 goto out; 2387 } 2388 apic_max_device_irq = max(irqno, apic_max_device_irq); 2389 apic_min_device_irq = min(irqno, apic_min_device_irq); 2390 irqptr = apic_irq_table[irqno]; 2391 irqptr->airq_vector = (uchar_t)vector; 2392 irqptr->airq_ipl = pri; 2393 irqptr->airq_origirq = (uchar_t)(inum + i); 2394 irqptr->airq_share_id = 0; 2395 irqptr->airq_mps_intr_index = MSIX_INDEX; 2396 irqptr->airq_dip = dip; 2397 irqptr->airq_major = major; 2398 irqptr->airq_cpu = apic_bind_intr(dip, irqno, 0xff, 0xff); 2399 } 2400 out: 2401 mutex_exit(&airq_mutex); 2402 return (rcount); 2403 } 2404 2405 /* 2406 * Allocate a free vector for irq at ipl. Takes care of merging of multiple 2407 * IPLs into a single APIC level as well as stretching some IPLs onto multiple 2408 * levels. APIC_HI_PRI_VECTS interrupts are reserved for high priority 2409 * requests and allocated only when pri is set. 2410 */ 2411 uchar_t 2412 apic_allocate_vector(int ipl, int irq, int pri) 2413 { 2414 int lowest, highest, i; 2415 2416 highest = apic_ipltopri[ipl] + APIC_VECTOR_MASK; 2417 lowest = apic_ipltopri[ipl - 1] + APIC_VECTOR_PER_IPL; 2418 2419 if (highest < lowest) /* Both ipl and ipl - 1 map to same pri */ 2420 lowest -= APIC_VECTOR_PER_IPL; 2421 2422 #ifdef DEBUG 2423 if (apic_restrict_vector) /* for testing shared interrupt logic */ 2424 highest = lowest + apic_restrict_vector + APIC_HI_PRI_VECTS; 2425 #endif /* DEBUG */ 2426 if (pri == 0) 2427 highest -= APIC_HI_PRI_VECTS; 2428 2429 for (i = lowest; i < highest; i++) { 2430 if (APIC_CHECK_RESERVE_VECTORS(i)) 2431 continue; 2432 if (apic_vector_to_irq[i] == APIC_RESV_IRQ) { 2433 apic_vector_to_irq[i] = (uchar_t)irq; 2434 return (i); 2435 } 2436 } 2437 2438 return (0); 2439 } 2440 2441 /* Mark vector as not being used by any irq */ 2442 void 2443 apic_free_vector(uchar_t vector) 2444 { 2445 apic_vector_to_irq[vector] = APIC_RESV_IRQ; 2446 } 2447 2448 uint32_t 2449 ioapic_read(int ioapic_ix, uint32_t reg) 2450 { 2451 volatile uint32_t *ioapic; 2452 2453 ioapic = apicioadr[ioapic_ix]; 2454 ioapic[APIC_IO_REG] = reg; 2455 return (ioapic[APIC_IO_DATA]); 2456 } 2457 2458 void 2459 ioapic_write(int ioapic_ix, uint32_t reg, uint32_t value) 2460 { 2461 volatile uint32_t *ioapic; 2462 2463 ioapic = apicioadr[ioapic_ix]; 2464 ioapic[APIC_IO_REG] = reg; 2465 ioapic[APIC_IO_DATA] = value; 2466 } 2467 2468 void 2469 ioapic_write_eoi(int ioapic_ix, uint32_t value) 2470 { 2471 volatile uint32_t *ioapic; 2472 2473 ioapic = apicioadr[ioapic_ix]; 2474 ioapic[APIC_IO_EOI] = value; 2475 } 2476 2477 static processorid_t 2478 apic_find_cpu(int flag) 2479 { 2480 processorid_t acid = 0; 2481 int i; 2482 2483 /* Find the first CPU with the passed-in flag set */ 2484 for (i = 0; i < apic_nproc; i++) { 2485 if (apic_cpus[i].aci_status & flag) { 2486 acid = i; 2487 break; 2488 } 2489 } 2490 2491 ASSERT((apic_cpus[acid].aci_status & flag) != 0); 2492 return (acid); 2493 } 2494 2495 /* 2496 * Call rebind to do the actual programming. 2497 * Must be called with interrupts disabled and apic_ioapic_lock held 2498 * 'p' is polymorphic -- if this function is called to process a deferred 2499 * reprogramming, p is of type 'struct ioapic_reprogram_data *', from which 2500 * the irq pointer is retrieved. If not doing deferred reprogramming, 2501 * p is of the type 'apic_irq_t *'. 2502 * 2503 * apic_ioapic_lock must be held across this call, as it protects apic_rebind 2504 * and it protects apic_find_cpu() from a race in which a CPU can be taken 2505 * offline after a cpu is selected, but before apic_rebind is called to 2506 * bind interrupts to it. 2507 */ 2508 int 2509 apic_setup_io_intr(void *p, int irq, boolean_t deferred) 2510 { 2511 apic_irq_t *irqptr; 2512 struct ioapic_reprogram_data *drep = NULL; 2513 int rv; 2514 2515 if (deferred) { 2516 drep = (struct ioapic_reprogram_data *)p; 2517 ASSERT(drep != NULL); 2518 irqptr = drep->irqp; 2519 } else 2520 irqptr = (apic_irq_t *)p; 2521 2522 ASSERT(irqptr != NULL); 2523 2524 rv = apic_rebind(irqptr, apic_irq_table[irq]->airq_cpu, drep); 2525 if (rv) { 2526 /* 2527 * CPU is not up or interrupts are disabled. Fall back to 2528 * the first available CPU 2529 */ 2530 rv = apic_rebind(irqptr, apic_find_cpu(APIC_CPU_INTR_ENABLE), 2531 drep); 2532 } 2533 2534 return (rv); 2535 } 2536 2537 2538 uchar_t 2539 apic_modify_vector(uchar_t vector, int irq) 2540 { 2541 apic_vector_to_irq[vector] = (uchar_t)irq; 2542 return (vector); 2543 } 2544 2545 char * 2546 apic_get_apic_type() 2547 { 2548 return (apic_psm_info.p_mach_idstring); 2549 } 2550 2551 void 2552 x2apic_update_psm() 2553 { 2554 struct psm_ops *pops = &apic_ops; 2555 2556 ASSERT(pops != NULL); 2557 2558 /* 2559 * We don't need to do any magic if one of the following 2560 * conditions is true : 2561 * - Not being run under kernel debugger. 2562 * - MP is not set. 2563 * - Booted with one CPU only. 2564 * - One CPU configured. 2565 * 2566 * We set apic_common_send_ipi() since kernel debuggers 2567 * attempt to send IPIs to other slave CPUs during 2568 * entry (exit) from (to) debugger. 2569 */ 2570 if (!(boothowto & RB_DEBUG) || use_mp == 0 || 2571 apic_nproc == 1 || boot_ncpus == 1) { 2572 pops->psm_send_ipi = x2apic_send_ipi; 2573 } else { 2574 pops->psm_send_ipi = apic_common_send_ipi; 2575 } 2576 2577 pops->psm_intr_exit = x2apic_intr_exit; 2578 pops->psm_setspl = x2apic_setspl; 2579 2580 send_dirintf = pops->psm_send_ipi; 2581 2582 apic_mode = LOCAL_X2APIC; 2583 apic_change_ops(); 2584 } 2585 2586 static void 2587 apic_intrr_init(int apic_mode) 2588 { 2589 int suppress_brdcst_eoi = 0; 2590 2591 if (psm_vt_ops != NULL) { 2592 if (((apic_intrr_ops_t *)psm_vt_ops)->apic_intrr_init(apic_mode) 2593 == DDI_SUCCESS) { 2594 apic_vt_ops = psm_vt_ops; 2595 2596 /* 2597 * We leverage the interrupt remapping engine to 2598 * suppress broadcast EOI; thus we must send the 2599 * directed EOI with the directed-EOI handler. 2600 */ 2601 if (apic_directed_EOI_supported() == 0) { 2602 suppress_brdcst_eoi = 1; 2603 apic_set_directed_EOI_handler(); 2604 } 2605 2606 apic_vt_ops->apic_intrr_enable(suppress_brdcst_eoi); 2607 } 2608 } 2609 } 2610 2611 /*ARGSUSED*/ 2612 static void 2613 apic_record_ioapic_rdt(apic_irq_t *irq_ptr, ioapic_rdt_t *irdt) 2614 { 2615 irdt->ir_hi <<= APIC_ID_BIT_OFFSET; 2616 } 2617 2618 /*ARGSUSED*/ 2619 static void 2620 apic_record_msi(apic_irq_t *irq_ptr, msi_regs_t *mregs) 2621 { 2622 mregs->mr_addr = MSI_ADDR_HDR | 2623 (MSI_ADDR_RH_FIXED << MSI_ADDR_RH_SHIFT) | 2624 (MSI_ADDR_DM_PHYSICAL << MSI_ADDR_DM_SHIFT) | 2625 (mregs->mr_addr << MSI_ADDR_DEST_SHIFT); 2626 mregs->mr_data = (MSI_DATA_TM_EDGE << MSI_DATA_TM_SHIFT) | 2627 mregs->mr_data; 2628 } 2629