xref: /titanic_41/usr/src/uts/i86pc/i86hvm/io/pv_cmdk.c (revision 7257d1b4d25bfac0c802847390e98a464fd787ac)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2008 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 #pragma ident	"%Z%%M%	%I%	%E% SMI"
27 
28 #include <sys/scsi/scsi_types.h>
29 #include <sys/modctl.h>
30 #include <sys/cmlb.h>
31 #include <sys/types.h>
32 #include <sys/xpv_support.h>
33 #include <sys/xendev.h>
34 #include <sys/gnttab.h>
35 #include <public/xen.h>
36 #include <public/grant_table.h>
37 #include <io/xdf.h>
38 #include <sys/vtoc.h>
39 #include <sys/dkio.h>
40 #include <sys/dktp/dadev.h>
41 #include <sys/dktp/dadkio.h>
42 #include <sys/dktp/tgdk.h>
43 #include <sys/dktp/bbh.h>
44 #include <sys/dktp/cmdk.h>
45 #include <sys/dktp/altsctr.h>
46 
47 /*
48  * General Notes
49  *
50  * We don't support disks with bad block mappins.  We have this
51  * limitation because the underlying xdf driver doesn't support
52  * bad block remapping.  If there is a need to support this feature
53  * it should be added directly to the xdf driver and we should just
54  * pass requests strait on through and let it handle the remapping.
55  * Also, it's probably worth pointing out that most modern disks do bad
56  * block remapping internally in the hardware so there's actually less
57  * of a chance of us ever discovering bad blocks.  Also, in most cases
58  * this driver (and the xdf driver) will only be used with virtualized
59  * devices, so one might wonder why a virtual device would ever actually
60  * experience bad blocks.  To wrap this up, you might be wondering how
61  * these bad block mappings get created and how they are managed.  Well,
62  * there are two tools for managing bad block mappings, format(1M) and
63  * addbadsec(1M).  Format(1M) can be used to do a surface scan of a disk
64  * to attempt to find bad block and create mappings for them.  Format(1M)
65  * and addbadsec(1M) can also be used to edit existing mappings that may
66  * be saved on the disk.
67  *
68  * The underlying PV driver that this driver passes on requests to is the
69  * xdf driver.  Since in most cases the xdf driver doesn't deal with
70  * physical disks it has it's own algorithm for assigning a physical
71  * geometry to a virtual disk (ie, cylinder count, head count, etc.)
72  * The default values chosen by the xdf driver may not match those
73  * assigned to a disk by a hardware disk emulator in an HVM environment.
74  * This is a problem since these physical geometry attributes affect
75  * things like the partition table, backup label location, etc.  So
76  * to emulate disk devices correctly we need to know the physical geometry
77  * that was assigned to a disk at the time of it's initalization.
78  * Normally in an HVM environment this information will passed to
79  * the BIOS and operating system from the hardware emulator that is
80  * emulating the disk devices.  In the case of a solaris dom0+xvm
81  * this would be qemu.  So to work around this issue, this driver will
82  * query the emulated hardware to get the assigned physical geometry
83  * and then pass this geometry onto the xdf driver so that it can use it.
84  * But really, this information is essentially metadata about the disk
85  * that should be kept with the disk image itself.  (Assuming or course
86  * that a disk image is the actual backingstore for this emulated device.)
87  * This metadata should also be made available to PV drivers via a common
88  * mechamisn, probably the xenstore.  The fact that this metadata isn't
89  * available outside of HVM domains means that it's difficult to move
90  * disks between HVM and PV domains, since a fully PV domain will have no
91  * way of knowing what the correct geometry of the target device is.
92  * (Short of reading the disk, looking for things like partition tables
93  * and labels, and taking a best guess at what the geometry was when
94  * the disk was initialized.  Unsuprisingly, qemu actually does this.)
95  *
96  * This driver has to map cmdk device instances into their corresponding
97  * xdf device instances.  We have to do this to ensure that when a user
98  * accesses a emulated cmdk device we map those accesses to the proper
99  * paravirtualized device.  Basically what we need to know is how multiple
100  * 'disk' entries in a domU configuration file get mapped to emulated
101  * cmdk devices and to xdf devices.  The 'disk' entry to xdf instance
102  * mappings we know because those are done within the Solaris xvdi code
103  * and the xpvd nexus driver.  But the config to emulated devices mappings
104  * are handled entirely within the xen management tool chain and the
105  * hardware emulator.  Since all the tools that establish these mappings
106  * live in dom0, dom0 should really supply us with this information,
107  * probably via the xenstore.  Unfortunatly it doesn't so, since there's
108  * no good way to determine this mapping dynamically, this driver uses
109  * a hard coded set of static mappings.  These mappings are hardware
110  * emulator specific because each different hardware emulator could have
111  * a different device tree with different cmdk device paths.  This
112  * means that if we want to continue to use this static mapping approach
113  * to allow Solaris to run on different hardware emulators we'll have
114  * to analyze each of those emulators to determine what paths they
115  * use and hard code those paths into this driver.  yech.  This metadata
116  * really needs to be supplied to us by dom0.
117  *
118  * This driver access underlying xdf nodes.  Unfortunatly, devices
119  * must create minor nodes during attach, and for disk devices to create
120  * minor nodes, they have to look at the label on the disk, so this means
121  * that disk drivers must be able to access a disk contents during
122  * attach.  That means that this disk driver must be able to access
123  * underlying xdf nodes during attach.  Unfortunatly, due to device tree
124  * locking restrictions, we cannot have an attach operation occuring on
125  * this device and then attempt to access another device which may
126  * cause another attach to occur in a different device tree branch
127  * since this could result in deadlock.  Hence, this driver can only
128  * access xdf device nodes that we know are attached, and it can't use
129  * any ddi interfaces to access those nodes if those interfaces could
130  * trigger an attach of the xdf device.  So this driver works around
131  * these restrictions by talking directly to xdf devices via
132  * xdf_hvm_hold().  This interface takes a pathname to an xdf device,
133  * and if that device is already attached then it returns the a held dip
134  * pointer for that device node.  This prevents us from getting into
135  * deadlock situations, but now we need a mechanism to ensure that all
136  * the xdf device nodes this driver might access are attached before
137  * this driver tries to access them.  This is accomplished via the
138  * hvmboot_rootconf() callback which is invoked just before root is
139  * mounted.  hvmboot_rootconf() will attach xpvd and tell it to configure
140  * all xdf device visible to the system.  All these xdf device nodes
141  * will also be marked with the "ddi-no-autodetach" property so that
142  * once they are configured, the will not be automatically unconfigured.
143  * The only way that they could be unconfigured is if the administrator
144  * explicitly attempts to unload required modules via rem_drv(1M)
145  * or modunload(1M).
146  */
147 
148 /*
149  * 16 paritions + fdisk (see xdf.h)
150  */
151 #define	XDF_DEV2UNIT(dev)	XDF_INST((getminor((dev))))
152 #define	XDF_DEV2PART(dev)	XDF_PART((getminor((dev))))
153 
154 #define	OTYP_VALID(otyp)	((otyp == OTYP_BLK) || \
155 					(otyp == OTYP_CHR) || \
156 					(otyp == OTYP_LYR))
157 
158 #define	PV_CMDK_NODES		4
159 
160 typedef struct hvm_to_pv {
161 	char	*h2p_hvm_path;
162 	char	*h2p_pv_path;
163 } hvm_to_pv_t;
164 
165 /*
166  */
167 static hvm_to_pv_t pv_cmdk_h2p_xen_qemu[] = {
168 	/*
169 	 * The paths mapping here are very specific to xen and qemu.  When a
170 	 * domU is booted under xen in HVM mode, qemu is normally used to
171 	 * emulate up to four ide disks.  These disks always have the four
172 	 * path listed below.  To configure an emulated ide device, the
173 	 * xen domain configuration file normally has an entry that looks
174 	 * like this:
175 	 *	disk = [ 'file:/foo.img,hda,w' ]
176 	 *
177 	 * The part we're interested in is the 'hda', which we'll call the
178 	 * xen disk device name here.  The xen management tools (which parse
179 	 * the xen domain configuration file and launch qemu) makes the
180 	 * following assumptions about this value:
181 	 *	hda == emulated ide disk 0 (ide bus 0, master)
182 	 *	hdb == emulated ide disk 1 (ide bus 0, slave)
183 	 *	hdc == emulated ide disk 2 (ide bus 1, master)
184 	 *	hdd == emulated ide disk 3 (ide bus 1, slave)
185 	 *
186 	 * (Uncoincidentally, these xen disk device names actually map to
187 	 * the /dev filesystem names of ide disk devices in Linux.  So in
188 	 * Linux /dev/hda is the first ide disk.)  So for the first part of
189 	 * our mapping we've just hardcoded the cmdk paths that we know
190 	 * qemu will use.
191 	 *
192 	 * To understand the second half of the mapping (ie, the xdf device
193 	 * that each emulated cmdk device should be mapped two) we need to
194 	 * know the solaris device node address that will be assigned to
195 	 * each xdf device.  (The device node address is the decimal
196 	 * number that comes after the "xdf@" in the device path.)
197 	 *
198 	 * So the question becomes, how do we know what the xenstore device
199 	 * id for emulated disk will be?  Well, it turns out that since the
200 	 * xen management tools expect the disk device names to be Linux
201 	 * device names, those same management tools assign each disk a
202 	 * device id that matches the dev_t of the corresponding device
203 	 * under Linux.  (Big shocker.)  This xen device name-to-id mapping
204 	 * is currently all hard coded here:
205 	 *	xen.hg/tools/python/xen/util/blkif.py`blkdev_name_to_number()
206 	 *
207 	 * So looking at the code above we can see the following xen disk
208 	 * device name to xenstore device id mappings:
209 	 *	'hda' == 0t768  == ((3  * 256) + (0 * 64))
210 	 *	'hdb' == 0t832  == ((3  * 256) + (1 * 64))
211 	 *	'hdc' == 0t5632 == ((22 * 256) + (0 * 64))
212 	 *	'hdd' == 0t5696 == ((22 * 256) + (1 * 64))
213 	 */
214 	{ "/pci@0,0/pci-ide@1,1/ide@0/cmdk@0,0", "/xpvd/xdf@768" },
215 	{ "/pci@0,0/pci-ide@1,1/ide@0/cmdk@1,0", "/xpvd/xdf@832" },
216 	{ "/pci@0,0/pci-ide@1,1/ide@1/cmdk@0,0", "/xpvd/xdf@5632" },
217 	{ "/pci@0,0/pci-ide@1,1/ide@1/cmdk@1,0", "/xpvd/xdf@5696" },
218 	{ NULL, 0 }
219 };
220 
221 typedef struct pv_cmdk {
222 	dev_info_t	*dk_dip;
223 	cmlb_handle_t	dk_cmlbhandle;
224 	ddi_devid_t	dk_devid;
225 	kmutex_t	dk_mutex;
226 	dev_info_t	*dk_xdf_dip;
227 	dev_t		dk_xdf_dev;
228 	int		dk_xdf_otyp_count[OTYPCNT][XDF_PEXT];
229 	ldi_handle_t	dk_xdf_lh[XDF_PEXT];
230 } pv_cmdk_t;
231 
232 /*
233  * Globals
234  */
235 static void *pv_cmdk_state;
236 static major_t pv_cmdk_major;
237 static hvm_to_pv_t *pv_cmdk_h2p;
238 
239 /*
240  * Function prototypes for xdf callback functions
241  */
242 extern int xdf_lb_getinfo(dev_info_t *, int, void *, void *);
243 extern int xdf_lb_rdwr(dev_info_t *, uchar_t, void *, diskaddr_t, size_t,
244     void *);
245 
246 static boolean_t
247 pv_cmdk_isopen_part(struct pv_cmdk *dkp, int part)
248 {
249 	int otyp;
250 
251 	ASSERT(MUTEX_HELD(&dkp->dk_mutex));
252 
253 	for (otyp = 0; (otyp < OTYPCNT); otyp++) {
254 		if (dkp->dk_xdf_otyp_count[otyp][part] != 0)
255 			return (B_TRUE);
256 	}
257 	return (B_FALSE);
258 }
259 
260 /*
261  * Cmlb ops vectors, allows the cmlb module to directly access the entire
262  * pv_cmdk disk device without going through any partitioning layers.
263  */
264 /*ARGSUSED*/
265 static int
266 pv_cmdk_lb_rdwr(dev_info_t *dip, uchar_t cmd, void *bufaddr,
267     diskaddr_t start, size_t count, void *tg_cookie)
268 {
269 	int		instance = ddi_get_instance(dip);
270 	struct pv_cmdk	*dkp = ddi_get_soft_state(pv_cmdk_state, instance);
271 
272 	if (dkp == NULL)
273 		return (ENXIO);
274 
275 	return (xdf_lb_rdwr(dkp->dk_xdf_dip, cmd, bufaddr, start, count,
276 	    tg_cookie));
277 }
278 
279 /*ARGSUSED*/
280 static int
281 pv_cmdk_lb_getinfo(dev_info_t *dip, int cmd, void *arg, void *tg_cookie)
282 {
283 	int		instance = ddi_get_instance(dip);
284 	struct pv_cmdk	*dkp = ddi_get_soft_state(pv_cmdk_state, instance);
285 	int		err;
286 
287 	if (dkp == NULL)
288 		return (ENXIO);
289 
290 	if (cmd == TG_GETVIRTGEOM) {
291 		cmlb_geom_t	pgeom, *vgeomp;
292 		diskaddr_t	capacity;
293 
294 		/*
295 		 * The native xdf driver doesn't support this ioctl.
296 		 * Intead of passing it on, emulate it here so that the
297 		 * results look the same as what we get for a real cmdk
298 		 * device.
299 		 *
300 		 * Get the real size of the device
301 		 */
302 		if ((err = xdf_lb_getinfo(dkp->dk_xdf_dip,
303 		    TG_GETPHYGEOM, &pgeom, tg_cookie)) != 0)
304 			return (err);
305 		capacity = pgeom.g_capacity;
306 
307 		/*
308 		 * If the controller returned us something that doesn't
309 		 * really fit into an Int 13/function 8 geometry
310 		 * result, just fail the ioctl.  See PSARC 1998/313.
311 		 */
312 		if (capacity >= (63 * 254 * 1024))
313 			return (EINVAL);
314 
315 		vgeomp = (cmlb_geom_t *)arg;
316 		vgeomp->g_capacity	= capacity;
317 		vgeomp->g_nsect		= 63;
318 		vgeomp->g_nhead		= 254;
319 		vgeomp->g_ncyl		= capacity / (63 * 254);
320 		vgeomp->g_acyl		= 0;
321 		vgeomp->g_secsize	= 512;
322 		vgeomp->g_intrlv	= 1;
323 		vgeomp->g_rpm		= 3600;
324 		return (0);
325 	}
326 
327 	return (xdf_lb_getinfo(dkp->dk_xdf_dip, cmd, arg, tg_cookie));
328 }
329 
330 static cmlb_tg_ops_t pv_cmdk_lb_ops = {
331 	TG_DK_OPS_VERSION_1,
332 	pv_cmdk_lb_rdwr,
333 	pv_cmdk_lb_getinfo
334 };
335 
336 /*
337  * devid management functions
338  */
339 
340 /*
341  * pv_cmdk_get_modser() is basically a local copy of
342  * cmdk_get_modser() modified to work without the dadk layer.
343  * (which the non-pv version of the cmdk driver uses.)
344  */
345 static int
346 pv_cmdk_get_modser(struct pv_cmdk *dkp, int ioccmd, char *buf, int len)
347 {
348 	struct scsi_device	*scsi_device;
349 	opaque_t		ctlobjp;
350 	dadk_ioc_string_t	strarg;
351 	char			*s;
352 	char			ch;
353 	boolean_t		ret;
354 	int			i;
355 	int			tb;
356 
357 	strarg.is_buf = buf;
358 	strarg.is_size = len;
359 	scsi_device = ddi_get_driver_private(dkp->dk_dip);
360 	ctlobjp = scsi_device->sd_address.a_hba_tran;
361 	if (CTL_IOCTL(ctlobjp,
362 	    ioccmd, (uintptr_t)&strarg, FNATIVE | FKIOCTL) != 0)
363 		return (0);
364 
365 	/*
366 	 * valid model/serial string must contain a non-zero non-space
367 	 * trim trailing spaces/NULL
368 	 */
369 	ret = B_FALSE;
370 	s = buf;
371 	for (i = 0; i < strarg.is_size; i++) {
372 		ch = *s++;
373 		if (ch != ' ' && ch != '\0')
374 			tb = i + 1;
375 		if (ch != ' ' && ch != '\0' && ch != '0')
376 			ret = B_TRUE;
377 	}
378 
379 	if (ret == B_FALSE)
380 		return (0);
381 
382 	return (tb);
383 }
384 
385 /*
386  * pv_cmdk_devid_modser() is basically a copy of cmdk_devid_modser()
387  * that has been modified to use local pv cmdk driver functions.
388  *
389  * Build a devid from the model and serial number
390  * Return DDI_SUCCESS or DDI_FAILURE.
391  */
392 static int
393 pv_cmdk_devid_modser(struct pv_cmdk *dkp)
394 {
395 	int	rc = DDI_FAILURE;
396 	char	*hwid;
397 	int	modlen;
398 	int	serlen;
399 
400 	/*
401 	 * device ID is a concatenation of model number, '=', serial number.
402 	 */
403 	hwid = kmem_alloc(CMDK_HWIDLEN, KM_SLEEP);
404 	modlen = pv_cmdk_get_modser(dkp, DIOCTL_GETMODEL, hwid, CMDK_HWIDLEN);
405 	if (modlen == 0)
406 		goto err;
407 
408 	hwid[modlen++] = '=';
409 	serlen = pv_cmdk_get_modser(dkp, DIOCTL_GETSERIAL,
410 	    hwid + modlen, CMDK_HWIDLEN - modlen);
411 	if (serlen == 0)
412 		goto err;
413 
414 	hwid[modlen + serlen] = 0;
415 
416 	/* Initialize the device ID, trailing NULL not included */
417 	rc = ddi_devid_init(dkp->dk_dip, DEVID_ATA_SERIAL, modlen + serlen,
418 	    hwid, (ddi_devid_t *)&dkp->dk_devid);
419 	if (rc != DDI_SUCCESS)
420 		goto err;
421 
422 	kmem_free(hwid, CMDK_HWIDLEN);
423 	return (DDI_SUCCESS);
424 
425 err:
426 	kmem_free(hwid, CMDK_HWIDLEN);
427 	return (DDI_FAILURE);
428 }
429 
430 /*
431  * pv_cmdk_devid_read() is basically a local copy of
432  * cmdk_devid_read() modified to work without the dadk layer.
433  * (which the non-pv version of the cmdk driver uses.)
434  *
435  * Read a devid from on the first block of the last track of
436  * the last cylinder.  Make sure what we read is a valid devid.
437  * Return DDI_SUCCESS or DDI_FAILURE.
438  */
439 static int
440 pv_cmdk_devid_read(struct pv_cmdk *dkp)
441 {
442 	diskaddr_t	blk;
443 	struct dk_devid *dkdevidp;
444 	uint_t		*ip, chksum;
445 	int		i;
446 
447 	if (cmlb_get_devid_block(dkp->dk_cmlbhandle, &blk, 0) != 0)
448 		return (DDI_FAILURE);
449 
450 	dkdevidp = kmem_zalloc(NBPSCTR, KM_SLEEP);
451 	if (pv_cmdk_lb_rdwr(dkp->dk_dip,
452 	    TG_READ, dkdevidp, blk, NBPSCTR, NULL) != 0)
453 		goto err;
454 
455 	/* Validate the revision */
456 	if ((dkdevidp->dkd_rev_hi != DK_DEVID_REV_MSB) ||
457 	    (dkdevidp->dkd_rev_lo != DK_DEVID_REV_LSB))
458 		goto err;
459 
460 	/* Calculate the checksum */
461 	chksum = 0;
462 	ip = (uint_t *)dkdevidp;
463 	for (i = 0; i < ((NBPSCTR - sizeof (int))/sizeof (int)); i++)
464 		chksum ^= ip[i];
465 	if (DKD_GETCHKSUM(dkdevidp) != chksum)
466 		goto err;
467 
468 	/* Validate the device id */
469 	if (ddi_devid_valid((ddi_devid_t)dkdevidp->dkd_devid) != DDI_SUCCESS)
470 		goto err;
471 
472 	/* keep a copy of the device id */
473 	i = ddi_devid_sizeof((ddi_devid_t)dkdevidp->dkd_devid);
474 	dkp->dk_devid = kmem_alloc(i, KM_SLEEP);
475 	bcopy(dkdevidp->dkd_devid, dkp->dk_devid, i);
476 	kmem_free(dkdevidp, NBPSCTR);
477 	return (DDI_SUCCESS);
478 
479 err:
480 	kmem_free(dkdevidp, NBPSCTR);
481 	return (DDI_FAILURE);
482 }
483 
484 /*
485  * pv_cmdk_devid_fabricate() is basically a local copy of
486  * cmdk_devid_fabricate() modified to work without the dadk layer.
487  * (which the non-pv version of the cmdk driver uses.)
488  *
489  * Create a devid and write it on the first block of the last track of
490  * the last cylinder.
491  * Return DDI_SUCCESS or DDI_FAILURE.
492  */
493 static int
494 pv_cmdk_devid_fabricate(struct pv_cmdk *dkp)
495 {
496 	ddi_devid_t	devid = NULL; /* devid made by ddi_devid_init  */
497 	struct dk_devid	*dkdevidp = NULL; /* devid struct stored on disk */
498 	diskaddr_t	blk;
499 	uint_t		*ip, chksum;
500 	int		i;
501 
502 	if (cmlb_get_devid_block(dkp->dk_cmlbhandle, &blk, 0) != 0)
503 		return (DDI_FAILURE);
504 
505 	if (ddi_devid_init(dkp->dk_dip, DEVID_FAB, 0, NULL, &devid) !=
506 	    DDI_SUCCESS)
507 		return (DDI_FAILURE);
508 
509 	/* allocate a buffer */
510 	dkdevidp = (struct dk_devid *)kmem_zalloc(NBPSCTR, KM_SLEEP);
511 
512 	/* Fill in the revision */
513 	dkdevidp->dkd_rev_hi = DK_DEVID_REV_MSB;
514 	dkdevidp->dkd_rev_lo = DK_DEVID_REV_LSB;
515 
516 	/* Copy in the device id */
517 	i = ddi_devid_sizeof(devid);
518 	if (i > DK_DEVID_SIZE)
519 		goto err;
520 	bcopy(devid, dkdevidp->dkd_devid, i);
521 
522 	/* Calculate the chksum */
523 	chksum = 0;
524 	ip = (uint_t *)dkdevidp;
525 	for (i = 0; i < ((NBPSCTR - sizeof (int))/sizeof (int)); i++)
526 		chksum ^= ip[i];
527 
528 	/* Fill in the checksum */
529 	DKD_FORMCHKSUM(chksum, dkdevidp);
530 
531 	if (pv_cmdk_lb_rdwr(dkp->dk_dip,
532 	    TG_WRITE, dkdevidp, blk, NBPSCTR, NULL) != 0)
533 		goto err;
534 
535 	kmem_free(dkdevidp, NBPSCTR);
536 
537 	dkp->dk_devid = devid;
538 	return (DDI_SUCCESS);
539 
540 err:
541 	if (dkdevidp != NULL)
542 		kmem_free(dkdevidp, NBPSCTR);
543 	if (devid != NULL)
544 		ddi_devid_free(devid);
545 	return (DDI_FAILURE);
546 }
547 
548 /*
549  * pv_cmdk_devid_setup() is basically a local copy ofcmdk_devid_setup()
550  * that has been modified to use local pv cmdk driver functions.
551  *
552  * Create and register the devid.
553  * There are 4 different ways we can get a device id:
554  *    1. Already have one - nothing to do
555  *    2. Build one from the drive's model and serial numbers
556  *    3. Read one from the disk (first sector of last track)
557  *    4. Fabricate one and write it on the disk.
558  * If any of these succeeds, register the deviceid
559  */
560 static void
561 pv_cmdk_devid_setup(struct pv_cmdk *dkp)
562 {
563 	int	rc;
564 
565 	/* Try options until one succeeds, or all have failed */
566 
567 	/* 1. All done if already registered */
568 
569 	if (dkp->dk_devid != NULL)
570 		return;
571 
572 	/* 2. Build a devid from the model and serial number */
573 	rc = pv_cmdk_devid_modser(dkp);
574 	if (rc != DDI_SUCCESS) {
575 		/* 3. Read devid from the disk, if present */
576 		rc = pv_cmdk_devid_read(dkp);
577 
578 		/* 4. otherwise make one up and write it on the disk */
579 		if (rc != DDI_SUCCESS)
580 			rc = pv_cmdk_devid_fabricate(dkp);
581 	}
582 
583 	/* If we managed to get a devid any of the above ways, register it */
584 	if (rc == DDI_SUCCESS)
585 		(void) ddi_devid_register(dkp->dk_dip, dkp->dk_devid);
586 }
587 
588 /*
589  * Local Functions
590  */
591 static int
592 pv_cmdk_iodone(struct buf *bp)
593 {
594 	struct buf	*bp_orig = bp->b_chain;
595 
596 	/* Propegate back the io results */
597 	bp_orig->b_resid = bp->b_resid;
598 	bioerror(bp_orig, geterror(bp));
599 	biodone(bp_orig);
600 
601 	freerbuf(bp);
602 	return (0);
603 }
604 
605 static int
606 pv_cmdkstrategy(struct buf *bp)
607 {
608 	dev_t		dev = bp->b_edev;
609 	int		instance = XDF_DEV2UNIT(dev);
610 	int		part = XDF_DEV2PART(dev);
611 	struct pv_cmdk	*dkp = ddi_get_soft_state(pv_cmdk_state, instance);
612 	dev_t		xdf_devt;
613 	struct buf	*bp_clone;
614 
615 	/*
616 	 * Sanity checks that the dev_t associated with the buf we were
617 	 * passed actually corresponds us and that the partition we're
618 	 * trying to access is actually open.  On debug kernels we'll
619 	 * panic and on non-debug kernels we'll return failure.
620 	 */
621 	ASSERT(getmajor(dev) == pv_cmdk_major);
622 	if (getmajor(dev) != pv_cmdk_major)
623 		goto err;
624 
625 	mutex_enter(&dkp->dk_mutex);
626 	ASSERT(pv_cmdk_isopen_part(dkp, part));
627 	if (!pv_cmdk_isopen_part(dkp, part)) {
628 		mutex_exit(&dkp->dk_mutex);
629 		goto err;
630 	}
631 	mutex_exit(&dkp->dk_mutex);
632 
633 	/* clone this buffer */
634 	xdf_devt = dkp->dk_xdf_dev | part;
635 	bp_clone = bioclone(bp, 0, bp->b_bcount, xdf_devt, bp->b_blkno,
636 	    pv_cmdk_iodone, NULL, KM_SLEEP);
637 	bp_clone->b_chain = bp;
638 
639 	/*
640 	 * If we're being invoked on behalf of the physio() call in
641 	 * pv_cmdk_dioctl_rwcmd() then b_private will be set to
642 	 * XB_SLICE_NONE and we need to propegate this flag into the
643 	 * cloned buffer so that the xdf driver will see it.
644 	 */
645 	if (bp->b_private == (void *)XB_SLICE_NONE)
646 		bp_clone->b_private = (void *)XB_SLICE_NONE;
647 
648 	/*
649 	 * Pass on the cloned buffer.  Note that we don't bother to check
650 	 * for failure because the xdf strategy routine will have to
651 	 * invoke biodone() if it wants to return an error, which means
652 	 * that the pv_cmdk_iodone() callback will get invoked and it
653 	 * will propegate the error back up the stack and free the cloned
654 	 * buffer.
655 	 */
656 	ASSERT(dkp->dk_xdf_lh[part] != NULL);
657 	return (ldi_strategy(dkp->dk_xdf_lh[part], bp_clone));
658 
659 err:
660 	bioerror(bp, ENXIO);
661 	bp->b_resid = bp->b_bcount;
662 	biodone(bp);
663 	return (0);
664 }
665 
666 /*ARGSUSED*/
667 static int
668 pv_cmdkread(dev_t dev, struct uio *uio, cred_t *credp)
669 {
670 	int		instance = XDF_DEV2UNIT(dev);
671 	int		part = XDF_DEV2PART(dev);
672 	struct pv_cmdk	*dkp = ddi_get_soft_state(pv_cmdk_state, instance);
673 
674 	return (ldi_read(dkp->dk_xdf_lh[part], uio, credp));
675 }
676 
677 /*ARGSUSED*/
678 static int
679 pv_cmdkwrite(dev_t dev, struct uio *uio, cred_t *credp)
680 {
681 	int		instance = XDF_DEV2UNIT(dev);
682 	int		part = XDF_DEV2PART(dev);
683 	struct pv_cmdk	*dkp = ddi_get_soft_state(pv_cmdk_state, instance);
684 
685 	return (ldi_write(dkp->dk_xdf_lh[part], uio, credp));
686 }
687 
688 /*ARGSUSED*/
689 static int
690 pv_cmdkaread(dev_t dev, struct aio_req *aio, cred_t *credp)
691 {
692 	int		instance = XDF_DEV2UNIT(dev);
693 	int		part = XDF_DEV2PART(dev);
694 	struct pv_cmdk	*dkp = ddi_get_soft_state(pv_cmdk_state, instance);
695 	return (ldi_aread(dkp->dk_xdf_lh[part], aio, credp));
696 }
697 
698 /*ARGSUSED*/
699 static int
700 pv_cmdkawrite(dev_t dev, struct aio_req *aio, cred_t *credp)
701 {
702 	int		instance = XDF_DEV2UNIT(dev);
703 	int		part = XDF_DEV2PART(dev);
704 	struct pv_cmdk	*dkp = ddi_get_soft_state(pv_cmdk_state, instance);
705 	return (ldi_awrite(dkp->dk_xdf_lh[part], aio, credp));
706 }
707 
708 static int
709 pv_cmdkdump(dev_t dev, caddr_t addr, daddr_t blkno, int nblk)
710 {
711 	int		instance = XDF_DEV2UNIT(dev);
712 	int		part = XDF_DEV2PART(dev);
713 	struct pv_cmdk	*dkp = ddi_get_soft_state(pv_cmdk_state, instance);
714 
715 	return (ldi_dump(dkp->dk_xdf_lh[part], addr, blkno, nblk));
716 }
717 
718 /*
719  * pv_rwcmd_copyin() is a duplicate of rwcmd_copyin().
720  */
721 static int
722 pv_rwcmd_copyin(struct dadkio_rwcmd *rwcmdp, caddr_t inaddr, int flag)
723 {
724 	switch (ddi_model_convert_from(flag)) {
725 		case DDI_MODEL_ILP32: {
726 			struct dadkio_rwcmd32 cmd32;
727 
728 			if (ddi_copyin(inaddr, &cmd32,
729 			    sizeof (struct dadkio_rwcmd32), flag)) {
730 				return (EFAULT);
731 			}
732 
733 			rwcmdp->cmd = cmd32.cmd;
734 			rwcmdp->flags = cmd32.flags;
735 			rwcmdp->blkaddr = (daddr_t)cmd32.blkaddr;
736 			rwcmdp->buflen = cmd32.buflen;
737 			rwcmdp->bufaddr = (caddr_t)(intptr_t)cmd32.bufaddr;
738 			/*
739 			 * Note: we do not convert the 'status' field,
740 			 * as it should not contain valid data at this
741 			 * point.
742 			 */
743 			bzero(&rwcmdp->status, sizeof (rwcmdp->status));
744 			break;
745 		}
746 		case DDI_MODEL_NONE: {
747 			if (ddi_copyin(inaddr, rwcmdp,
748 			    sizeof (struct dadkio_rwcmd), flag)) {
749 				return (EFAULT);
750 			}
751 		}
752 	}
753 	return (0);
754 }
755 
756 /*
757  * pv_rwcmd_copyout() is a duplicate of rwcmd_copyout().
758  */
759 static int
760 pv_rwcmd_copyout(struct dadkio_rwcmd *rwcmdp, caddr_t outaddr, int flag)
761 {
762 	switch (ddi_model_convert_from(flag)) {
763 		case DDI_MODEL_ILP32: {
764 			struct dadkio_rwcmd32 cmd32;
765 
766 			cmd32.cmd = rwcmdp->cmd;
767 			cmd32.flags = rwcmdp->flags;
768 			cmd32.blkaddr = rwcmdp->blkaddr;
769 			cmd32.buflen = rwcmdp->buflen;
770 			ASSERT64(((uintptr_t)rwcmdp->bufaddr >> 32) == 0);
771 			cmd32.bufaddr = (caddr32_t)(uintptr_t)rwcmdp->bufaddr;
772 
773 			cmd32.status.status = rwcmdp->status.status;
774 			cmd32.status.resid = rwcmdp->status.resid;
775 			cmd32.status.failed_blk_is_valid =
776 			    rwcmdp->status.failed_blk_is_valid;
777 			cmd32.status.failed_blk = rwcmdp->status.failed_blk;
778 			cmd32.status.fru_code_is_valid =
779 			    rwcmdp->status.fru_code_is_valid;
780 			cmd32.status.fru_code = rwcmdp->status.fru_code;
781 
782 			bcopy(rwcmdp->status.add_error_info,
783 			    cmd32.status.add_error_info, DADKIO_ERROR_INFO_LEN);
784 
785 			if (ddi_copyout(&cmd32, outaddr,
786 			    sizeof (struct dadkio_rwcmd32), flag))
787 				return (EFAULT);
788 			break;
789 		}
790 		case DDI_MODEL_NONE: {
791 			if (ddi_copyout(rwcmdp, outaddr,
792 			    sizeof (struct dadkio_rwcmd), flag))
793 			return (EFAULT);
794 		}
795 	}
796 	return (0);
797 }
798 
799 static void
800 pv_cmdkmin(struct buf *bp)
801 {
802 	if (bp->b_bcount > DK_MAXRECSIZE)
803 		bp->b_bcount = DK_MAXRECSIZE;
804 }
805 
806 static int
807 pv_cmdk_dioctl_rwcmd(dev_t dev, intptr_t arg, int flag)
808 {
809 	struct dadkio_rwcmd	*rwcmdp;
810 	struct iovec		aiov;
811 	struct uio		auio;
812 	struct buf		*bp;
813 	int			rw, status;
814 
815 	rwcmdp = kmem_alloc(sizeof (struct dadkio_rwcmd), KM_SLEEP);
816 	status = pv_rwcmd_copyin(rwcmdp, (caddr_t)arg, flag);
817 
818 	if (status != 0)
819 		goto out;
820 
821 	switch (rwcmdp->cmd) {
822 		case DADKIO_RWCMD_READ:
823 		case DADKIO_RWCMD_WRITE:
824 			break;
825 		default:
826 			status = EINVAL;
827 			goto out;
828 	}
829 
830 	bzero((caddr_t)&aiov, sizeof (struct iovec));
831 	aiov.iov_base = rwcmdp->bufaddr;
832 	aiov.iov_len = rwcmdp->buflen;
833 
834 	bzero((caddr_t)&auio, sizeof (struct uio));
835 	auio.uio_iov = &aiov;
836 	auio.uio_iovcnt = 1;
837 	auio.uio_loffset = (offset_t)rwcmdp->blkaddr * (offset_t)XB_BSIZE;
838 	auio.uio_resid = rwcmdp->buflen;
839 	auio.uio_segflg = (flag & FKIOCTL) ? UIO_SYSSPACE : UIO_USERSPACE;
840 
841 	/*
842 	 * Tell the xdf driver that this I/O request is using an absolute
843 	 * offset.
844 	 */
845 	bp = getrbuf(KM_SLEEP);
846 	bp->b_private = (void *)XB_SLICE_NONE;
847 
848 	rw = ((rwcmdp->cmd == DADKIO_RWCMD_WRITE) ? B_WRITE : B_READ);
849 	status = physio(pv_cmdkstrategy, bp, dev, rw, pv_cmdkmin, &auio);
850 
851 	biofini(bp);
852 	kmem_free(bp, sizeof (buf_t));
853 
854 	if (status == 0)
855 		status = pv_rwcmd_copyout(rwcmdp, (caddr_t)arg, flag);
856 
857 out:
858 	kmem_free(rwcmdp, sizeof (struct dadkio_rwcmd));
859 	return (status);
860 }
861 
862 static int
863 pv_cmdkioctl(dev_t dev, int cmd, intptr_t arg, int flag, cred_t *credp,
864     int *rvalp)
865 {
866 	int		instance = XDF_DEV2UNIT(dev);
867 	int		part = XDF_DEV2PART(dev);
868 	struct pv_cmdk	*dkp = ddi_get_soft_state(pv_cmdk_state, instance);
869 	int		err;
870 
871 	switch (cmd) {
872 	default:
873 		return (ldi_ioctl(dkp->dk_xdf_lh[part],
874 		    cmd, arg, flag, credp, rvalp));
875 	case DKIOCGETWCE:
876 	case DKIOCSETWCE:
877 		return (EIO);
878 	case DKIOCADDBAD: {
879 		/*
880 		 * This is for ata/ide bad block handling.  It is supposed
881 		 * to cause the driver to re-read the bad block list and
882 		 * alternate map after it has been updated.  Our driver
883 		 * will refuse to attach to any disk which has a bad blocks
884 		 * list defined, so there really isn't much to do here.
885 		 */
886 		return (0);
887 	}
888 	case DKIOCGETDEF: {
889 		/*
890 		 * I can't actually find any code that utilizes this ioctl,
891 		 * hence we're leaving it explicitly unimplemented.
892 		 */
893 		ASSERT("ioctl cmd unsupported by pv_cmdk: DKIOCGETDEF");
894 		return (EIO);
895 	}
896 	case DIOCTL_RWCMD: {
897 		/*
898 		 * This just seems to just be an alternate interface for
899 		 * reading and writing the disk.  Great, another way to
900 		 * do the same thing...
901 		 */
902 		return (pv_cmdk_dioctl_rwcmd(dev, arg, flag));
903 	}
904 	case DKIOCINFO: {
905 		dev_info_t	*dip = dkp->dk_dip;
906 		struct dk_cinfo	info;
907 
908 		/* Pass on the ioctl request, save the response */
909 		if ((err = ldi_ioctl(dkp->dk_xdf_lh[part],
910 		    cmd, (intptr_t)&info, FKIOCTL, credp, rvalp)) != 0)
911 			return (err);
912 
913 		/* Update controller info */
914 		info.dki_cnum = ddi_get_instance(ddi_get_parent(dip));
915 		(void) strlcpy(info.dki_cname,
916 		    ddi_get_name(ddi_get_parent(dip)), sizeof (info.dki_cname));
917 
918 		/* Update unit info. */
919 		if (info.dki_ctype == DKC_VBD)
920 			info.dki_ctype = DKC_DIRECT;
921 		info.dki_unit = instance;
922 		(void) strlcpy(info.dki_dname,
923 		    ddi_driver_name(dip), sizeof (info.dki_dname));
924 		info.dki_addr = 1;
925 
926 		if (ddi_copyout(&info, (void *)arg, sizeof (info), flag))
927 			return (EFAULT);
928 		return (0);
929 	}
930 	} /* switch (cmd) */
931 	/*NOTREACHED*/
932 }
933 
934 /*ARGSUSED*/
935 static int
936 pv_cmdkopen(dev_t *dev_p, int flag, int otyp, cred_t *credp)
937 {
938 	ldi_ident_t	li;
939 	dev_t		dev = *dev_p;
940 	int		instance = XDF_DEV2UNIT(dev);
941 	int		part = XDF_DEV2PART(dev);
942 	struct pv_cmdk	*dkp = ddi_get_soft_state(pv_cmdk_state, instance);
943 	dev_t		xdf_devt = dkp->dk_xdf_dev | part;
944 	int		err = 0;
945 
946 	if ((otyp < 0) || (otyp >= OTYPCNT))
947 		return (EINVAL);
948 
949 	/* allocate an ldi handle */
950 	VERIFY(ldi_ident_from_dev(*dev_p, &li) == 0);
951 
952 	mutex_enter(&dkp->dk_mutex);
953 
954 	/*
955 	 * We translate all device opens (chr, blk, and lyr) into
956 	 * block device opens.  Why?  Because for all the opens that
957 	 * come through this driver, we only keep around one LDI handle.
958 	 * So that handle can only be of one open type.  The reason
959 	 * that we choose the block interface for this is that to use
960 	 * the block interfaces for a device the system needs to allocatex
961 	 * buf_ts, which are associated with system memory which can act
962 	 * as a cache for device data.  So normally when a block device
963 	 * is closed the system will ensure that all these pages get
964 	 * flushed out of memory.  But if we were to open the device
965 	 * as a character device, then when we went to close the underlying
966 	 * device (even if we had invoked the block interfaces) any data
967 	 * remaining in memory wouldn't necessairly be flushed out
968 	 * before the device was closed.
969 	 */
970 	if (dkp->dk_xdf_lh[part] == NULL) {
971 		ASSERT(!pv_cmdk_isopen_part(dkp, part));
972 
973 		err = ldi_open_by_dev(&xdf_devt, OTYP_BLK, flag, credp,
974 		    &dkp->dk_xdf_lh[part], li);
975 
976 		if (err != 0) {
977 			mutex_exit(&dkp->dk_mutex);
978 			ldi_ident_release(li);
979 			return (err);
980 		}
981 
982 		/* Disk devices really shouldn't clone */
983 		ASSERT(xdf_devt == (dkp->dk_xdf_dev | part));
984 	} else {
985 		ldi_handle_t lh_tmp;
986 
987 		ASSERT(pv_cmdk_isopen_part(dkp, part));
988 
989 		/* do ldi open/close to get flags and cred check */
990 		err = ldi_open_by_dev(&xdf_devt, OTYP_BLK, flag, credp,
991 		    &lh_tmp, li);
992 		if (err != 0) {
993 			mutex_exit(&dkp->dk_mutex);
994 			ldi_ident_release(li);
995 			return (err);
996 		}
997 
998 		/* Disk devices really shouldn't clone */
999 		ASSERT(xdf_devt == (dkp->dk_xdf_dev | part));
1000 		(void) ldi_close(lh_tmp, flag, credp);
1001 	}
1002 	ldi_ident_release(li);
1003 
1004 	dkp->dk_xdf_otyp_count[otyp][part]++;
1005 
1006 	mutex_exit(&dkp->dk_mutex);
1007 	return (0);
1008 }
1009 
1010 /*ARGSUSED*/
1011 static int
1012 pv_cmdkclose(dev_t dev, int flag, int otyp, cred_t *credp)
1013 {
1014 	int		instance = XDF_DEV2UNIT(dev);
1015 	int		part = XDF_DEV2PART(dev);
1016 	struct pv_cmdk	*dkp = ddi_get_soft_state(pv_cmdk_state, instance);
1017 	int		err = 0;
1018 
1019 	ASSERT((otyp >= 0) && otyp < OTYPCNT);
1020 
1021 	/*
1022 	 * Sanity check that that the dev_t specified corresponds to this
1023 	 * driver and that the device is actually open.  On debug kernels we'll
1024 	 * panic and on non-debug kernels we'll return failure.
1025 	 */
1026 	ASSERT(getmajor(dev) == pv_cmdk_major);
1027 	if (getmajor(dev) != pv_cmdk_major)
1028 		return (ENXIO);
1029 
1030 	mutex_enter(&dkp->dk_mutex);
1031 	ASSERT(pv_cmdk_isopen_part(dkp, part));
1032 	if (!pv_cmdk_isopen_part(dkp, part)) {
1033 		mutex_exit(&dkp->dk_mutex);
1034 		return (ENXIO);
1035 	}
1036 
1037 	ASSERT(dkp->dk_xdf_lh[part] != NULL);
1038 	ASSERT(dkp->dk_xdf_otyp_count[otyp][part] > 0);
1039 	if (otyp == OTYP_LYR) {
1040 		dkp->dk_xdf_otyp_count[otyp][part]--;
1041 	} else {
1042 		dkp->dk_xdf_otyp_count[otyp][part] = 0;
1043 	}
1044 
1045 	if (!pv_cmdk_isopen_part(dkp, part)) {
1046 		err = ldi_close(dkp->dk_xdf_lh[part], flag, credp);
1047 		dkp->dk_xdf_lh[part] = NULL;
1048 	}
1049 
1050 	mutex_exit(&dkp->dk_mutex);
1051 
1052 	return (err);
1053 }
1054 
1055 static int
1056 pv_cmdk_getpgeom(dev_info_t *dip, cmlb_geom_t *pgeom)
1057 {
1058 	struct scsi_device	*scsi_device;
1059 	struct tgdk_geom	tgdk_geom;
1060 	opaque_t		ctlobjp;
1061 	int			err;
1062 
1063 	scsi_device = ddi_get_driver_private(dip);
1064 	ctlobjp = scsi_device->sd_address.a_hba_tran;
1065 	if ((err = CTL_IOCTL(ctlobjp,
1066 	    DIOCTL_GETPHYGEOM, (uintptr_t)&tgdk_geom, FKIOCTL)) != 0)
1067 		return (err);
1068 
1069 	/* This driver won't work if this isn't true */
1070 	ASSERT(tgdk_geom.g_secsiz == XB_BSIZE);
1071 
1072 	pgeom->g_ncyl = tgdk_geom.g_cyl;
1073 	pgeom->g_acyl = tgdk_geom.g_acyl;
1074 	pgeom->g_nhead = tgdk_geom.g_head;
1075 	pgeom->g_nsect = tgdk_geom.g_sec;
1076 	pgeom->g_secsize = tgdk_geom.g_secsiz;
1077 	pgeom->g_capacity = tgdk_geom.g_cap;
1078 	pgeom->g_intrlv = 1;
1079 	pgeom->g_rpm = 3600;
1080 	return (0);
1081 }
1082 
1083 /*
1084  * pv_cmdk_bb_check() checks for the existance of bad blocks mappings in
1085  * the alternate partition/slice.  Returns B_FALSE is there are no bad
1086  * block mappins found, and B_TRUE is there are bad block mappins found.
1087  */
1088 static boolean_t
1089 pv_cmdk_bb_check(struct pv_cmdk *dkp)
1090 {
1091 	struct alts_parttbl	*ap;
1092 	diskaddr_t		nblocks, blk;
1093 	uint32_t		altused, altbase, altlast;
1094 	uint16_t		vtoctag;
1095 	int			alts;
1096 
1097 	/* find slice with V_ALTSCTR tag */
1098 	for (alts = 0; alts < NDKMAP; alts++) {
1099 
1100 		if (cmlb_partinfo(dkp->dk_cmlbhandle, alts,
1101 		    &nblocks, &blk, NULL, &vtoctag, 0) != 0) {
1102 			/* no partition table exists */
1103 			return (B_FALSE);
1104 		}
1105 
1106 		if ((vtoctag == V_ALTSCTR) && (nblocks > 1))
1107 			break;
1108 	}
1109 	if (alts >= NDKMAP)
1110 		return (B_FALSE); /* no V_ALTSCTR slice defined */
1111 
1112 	/* read in ALTS label block */
1113 	ap = (struct alts_parttbl *)kmem_zalloc(NBPSCTR, KM_SLEEP);
1114 	if (pv_cmdk_lb_rdwr(dkp->dk_dip,
1115 	    TG_READ, ap, blk, NBPSCTR, NULL) != 0)
1116 		goto err;
1117 
1118 	altused = ap->alts_ent_used;	/* number of BB entries */
1119 	altbase = ap->alts_ent_base;	/* blk offset from begin slice */
1120 	altlast = ap->alts_ent_end;	/* blk offset to last block */
1121 
1122 	if ((altused == 0) || (altbase < 1) ||
1123 	    (altbase > altlast) || (altlast >= nblocks))
1124 		goto err;
1125 
1126 	/* we found bad block mappins */
1127 	kmem_free(ap, NBPSCTR);
1128 	return (B_TRUE);
1129 
1130 err:
1131 	kmem_free(ap, NBPSCTR);
1132 	return (B_FALSE);
1133 }
1134 
1135 /*
1136  * Autoconfiguration Routines
1137  */
1138 static int
1139 pv_cmdkattach(dev_info_t *dip, ddi_attach_cmd_t cmd)
1140 {
1141 	int			instance = ddi_get_instance(dip);
1142 	dev_info_t		*xdf_dip = NULL;
1143 	struct pv_cmdk		*dkp;
1144 	cmlb_geom_t		pgeom;
1145 	char			*path;
1146 	int			i;
1147 
1148 	if (cmd != DDI_ATTACH)
1149 		return (DDI_FAILURE);
1150 
1151 	/*
1152 	 * This cmdk device layers on top of an xdf device.  So the first
1153 	 * thing we need to do is determine which xdf device instance this
1154 	 * cmdk instance should be layered on top of.
1155 	 */
1156 	path = kmem_alloc(MAXPATHLEN, KM_SLEEP);
1157 	(void) ddi_pathname(dip, path);
1158 	for (i = 0; pv_cmdk_h2p[i].h2p_hvm_path != NULL; i++) {
1159 		if (strcmp(pv_cmdk_h2p[i].h2p_hvm_path, path) == 0)
1160 			break;
1161 	}
1162 	kmem_free(path, MAXPATHLEN);
1163 
1164 	if (pv_cmdk_h2p[i].h2p_hvm_path == NULL) {
1165 		/*
1166 		 * UhOh.  We don't know what xdf instance this cmdk device
1167 		 * should be mapped to.
1168 		 */
1169 		return (DDI_FAILURE);
1170 	}
1171 
1172 	/* Check if this device exists */
1173 	xdf_dip = xdf_hvm_hold(pv_cmdk_h2p[i].h2p_pv_path);
1174 	if (xdf_dip == NULL)
1175 		return (DDI_FAILURE);
1176 
1177 	/* allocate and initialize our state structure */
1178 	(void) ddi_soft_state_zalloc(pv_cmdk_state, instance);
1179 	dkp = ddi_get_soft_state(pv_cmdk_state, instance);
1180 	mutex_init(&dkp->dk_mutex, NULL, MUTEX_DRIVER, NULL);
1181 	dkp->dk_dip = dip;
1182 	dkp->dk_xdf_dip = xdf_dip;
1183 	dkp->dk_xdf_dev = makedevice(ddi_driver_major(xdf_dip),
1184 	    XDF_MINOR(ddi_get_instance(xdf_dip), 0));
1185 
1186 	ASSERT((dkp->dk_xdf_dev & XDF_PMASK) == 0);
1187 
1188 	/*
1189 	 * GROSS HACK ALERT!  GROSS HACK ALERT!
1190 	 *
1191 	 * Before we can initialize the cmlb layer, we have to tell the
1192 	 * underlying xdf device what it's physical geometry should be.
1193 	 * See the block comments at the top of this file for more info.
1194 	 */
1195 	if ((pv_cmdk_getpgeom(dip, &pgeom) != 0) ||
1196 	    (xdf_hvm_setpgeom(dkp->dk_xdf_dip, &pgeom) != 0)) {
1197 		ddi_release_devi(dkp->dk_xdf_dip);
1198 		mutex_destroy(&dkp->dk_mutex);
1199 		ddi_soft_state_free(pv_cmdk_state, instance);
1200 		return (DDI_FAILURE);
1201 	}
1202 
1203 	/* create kstat for iostat(1M) */
1204 	if (xdf_kstat_create(dkp->dk_xdf_dip, "cmdk", instance) != 0) {
1205 		ddi_release_devi(dkp->dk_xdf_dip);
1206 		mutex_destroy(&dkp->dk_mutex);
1207 		ddi_soft_state_free(pv_cmdk_state, instance);
1208 		return (DDI_FAILURE);
1209 	}
1210 
1211 	/*
1212 	 * Force the xdf front end driver to connect to the backend.  From
1213 	 * the solaris device tree perspective, the xdf driver devinfo node
1214 	 * is already in the ATTACHED state.  (Otherwise xdf_hvm_hold()
1215 	 * would not have returned a dip.)  But this doesn't mean that the
1216 	 * xdf device has actually established a connection to it's back
1217 	 * end driver.  For us to be able to access the xdf device it needs
1218 	 * to be connected.  There are two ways to force the xdf driver to
1219 	 * connect to the backend device.
1220 	 */
1221 	if (xdf_hvm_connect(dkp->dk_xdf_dip) != 0) {
1222 		cmn_err(CE_WARN,
1223 		    "pv driver failed to connect: %s",
1224 		    pv_cmdk_h2p[i].h2p_pv_path);
1225 		xdf_kstat_delete(dkp->dk_xdf_dip);
1226 		ddi_release_devi(dkp->dk_xdf_dip);
1227 		mutex_destroy(&dkp->dk_mutex);
1228 		ddi_soft_state_free(pv_cmdk_state, instance);
1229 		return (DDI_FAILURE);
1230 	}
1231 
1232 	/*
1233 	 * Initalize cmlb.  Note that for partition information cmlb
1234 	 * will access the underly xdf disk device directly via
1235 	 * pv_cmdk_lb_rdwr() and pv_cmdk_lb_getinfo().  There are no
1236 	 * layered driver handles associated with this access because
1237 	 * it is a direct disk access that doesn't go through
1238 	 * any of the device nodes exported by the xdf device (since
1239 	 * all exported device nodes only reflect the portion of
1240 	 * the device visible via the partition/slice that the node
1241 	 * is associated with.)  So while not observable via the LDI,
1242 	 * this direct disk access is ok since we're actually holding
1243 	 * the target device.
1244 	 */
1245 	cmlb_alloc_handle((cmlb_handle_t *)&dkp->dk_cmlbhandle);
1246 	if (cmlb_attach(dkp->dk_dip, &pv_cmdk_lb_ops,
1247 	    DTYPE_DIRECT,		/* device_type */
1248 	    0,				/* not removable */
1249 	    0,				/* not hot pluggable */
1250 	    DDI_NT_BLOCK,
1251 	    CMLB_CREATE_ALTSLICE_VTOC_16_DTYPE_DIRECT,	/* mimic cmdk */
1252 	    dkp->dk_cmlbhandle, 0) != 0) {
1253 		cmlb_free_handle(&dkp->dk_cmlbhandle);
1254 		xdf_kstat_delete(dkp->dk_xdf_dip);
1255 		ddi_release_devi(dkp->dk_xdf_dip);
1256 		mutex_destroy(&dkp->dk_mutex);
1257 		ddi_soft_state_free(pv_cmdk_state, instance);
1258 		return (DDI_FAILURE);
1259 	}
1260 
1261 	if (pv_cmdk_bb_check(dkp)) {
1262 		cmn_err(CE_WARN,
1263 		    "pv cmdk disks with bad blocks are unsupported: %s",
1264 		    pv_cmdk_h2p[i].h2p_hvm_path);
1265 
1266 		cmlb_detach(dkp->dk_cmlbhandle, 0);
1267 		cmlb_free_handle(&dkp->dk_cmlbhandle);
1268 		xdf_kstat_delete(dkp->dk_xdf_dip);
1269 		ddi_release_devi(dkp->dk_xdf_dip);
1270 		mutex_destroy(&dkp->dk_mutex);
1271 		ddi_soft_state_free(pv_cmdk_state, instance);
1272 		return (DDI_FAILURE);
1273 	}
1274 
1275 	/* setup devid string */
1276 	pv_cmdk_devid_setup(dkp);
1277 
1278 	/* Calling validate will create minor nodes according to disk label */
1279 	(void) cmlb_validate(dkp->dk_cmlbhandle, 0, 0);
1280 
1281 	/*
1282 	 * Add a zero-length attribute to tell the world we support
1283 	 * kernel ioctls (for layered drivers).
1284 	 */
1285 	(void) ddi_prop_create(DDI_DEV_T_NONE, dip, DDI_PROP_CANSLEEP,
1286 	    DDI_KERNEL_IOCTL, NULL, 0);
1287 
1288 	/* Have the system report any newly created device nodes */
1289 	ddi_report_dev(dip);
1290 
1291 	return (DDI_SUCCESS);
1292 }
1293 
1294 static int
1295 pv_cmdkdetach(dev_info_t *dip, ddi_detach_cmd_t cmd)
1296 {
1297 	int		instance = ddi_get_instance(dip);
1298 	struct pv_cmdk	*dkp = ddi_get_soft_state(pv_cmdk_state, instance);
1299 
1300 	if (cmd != DDI_DETACH)
1301 		return (DDI_FAILURE);
1302 
1303 	ASSERT(MUTEX_NOT_HELD(&dkp->dk_mutex));
1304 
1305 	ddi_devid_unregister(dip);
1306 	if (dkp->dk_devid)
1307 		ddi_devid_free(dkp->dk_devid);
1308 	cmlb_detach(dkp->dk_cmlbhandle, 0);
1309 	cmlb_free_handle(&dkp->dk_cmlbhandle);
1310 	mutex_destroy(&dkp->dk_mutex);
1311 	xdf_kstat_delete(dkp->dk_xdf_dip);
1312 	ddi_release_devi(dkp->dk_xdf_dip);
1313 	ddi_soft_state_free(pv_cmdk_state, instance);
1314 	ddi_prop_remove_all(dip);
1315 
1316 	return (DDI_SUCCESS);
1317 }
1318 
1319 /*ARGSUSED*/
1320 static int
1321 pv_cmdk_getinfo(dev_info_t *dip, ddi_info_cmd_t infocmd, void *arg,
1322     void **result)
1323 {
1324 	dev_t		dev = (dev_t)arg;
1325 	int		instance = XDF_DEV2UNIT(dev);
1326 	struct pv_cmdk	*dkp = ddi_get_soft_state(pv_cmdk_state, instance);
1327 
1328 	switch (infocmd) {
1329 		case DDI_INFO_DEVT2DEVINFO:
1330 			if (dkp == NULL)
1331 				return (DDI_FAILURE);
1332 			*result = (void *)dkp->dk_dip;
1333 			break;
1334 		case DDI_INFO_DEVT2INSTANCE:
1335 			*result = (void *)(intptr_t)instance;
1336 			break;
1337 		default:
1338 			return (DDI_FAILURE);
1339 	}
1340 	return (DDI_SUCCESS);
1341 }
1342 
1343 static int
1344 pv_cmdk_prop_op(dev_t dev, dev_info_t *dip, ddi_prop_op_t prop_op,
1345     int flags, char *name, caddr_t valuep, int *lengthp)
1346 {
1347 	int		instance = ddi_get_instance(dip);
1348 	struct pv_cmdk	*dkp = ddi_get_soft_state(pv_cmdk_state, instance);
1349 	dev_info_t	*xdf_dip;
1350 	dev_t		xdf_devt;
1351 	int		err;
1352 
1353 	/*
1354 	 * Sanity check that if a dev_t or dip were specified that they
1355 	 * correspond to this device driver.  On debug kernels we'll
1356 	 * panic and on non-debug kernels we'll return failure.
1357 	 */
1358 	ASSERT(ddi_driver_major(dip) == pv_cmdk_major);
1359 	ASSERT((dev == DDI_DEV_T_ANY) || (getmajor(dev) == pv_cmdk_major));
1360 	if ((ddi_driver_major(dip) != pv_cmdk_major) ||
1361 	    ((dev != DDI_DEV_T_ANY) && (getmajor(dev) != pv_cmdk_major)))
1362 		return (DDI_PROP_NOT_FOUND);
1363 
1364 	/*
1365 	 * This property lookup might be associated with a device node
1366 	 * that is not yet attached, if so pass it onto ddi_prop_op().
1367 	 */
1368 	if (dkp == NULL)
1369 		return (ddi_prop_op(dev, dip, prop_op, flags,
1370 		    name, valuep, lengthp));
1371 
1372 	/*
1373 	 * Make sure we only lookup static properties.
1374 	 *
1375 	 * If there are static properties of the underlying xdf driver
1376 	 * that we want to mirror, then we'll have to explicity look them
1377 	 * up and define them during attach.  There are a few reasons
1378 	 * for this.  Most importantly, most static properties are typed
1379 	 * and all dynamic properties are untyped, ie, for dynamic
1380 	 * properties the caller must know the type of the property and
1381 	 * how to interpret the value of the property.  the prop_op drivedr
1382 	 * entry point is only designed for returning dynamic/untyped
1383 	 * properties, so if we were to attempt to lookup and pass back
1384 	 * static properties of the underlying device here then we would
1385 	 * be losing the type information for those properties.  Another
1386 	 * reason we don't want to pass on static property requests is that
1387 	 * static properties are enumerable in the device tree, where as
1388 	 * dynamic ones are not.
1389 	 */
1390 	flags |= DDI_PROP_DYNAMIC;
1391 
1392 	/*
1393 	 * We can't use the ldi here to access the underlying device because
1394 	 * the ldi actually opens the device, and that open might fail if the
1395 	 * device has already been opened with the FEXCL flag.  If we used
1396 	 * the ldi here, it would also be possible for some other caller
1397 	 * to try open the device with the FEXCL flag and get a failure
1398 	 * back because we have it open to do a property query.
1399 	 *
1400 	 * Instad we'll grab a hold on the target dip and query the
1401 	 * property directly.
1402 	 */
1403 	mutex_enter(&dkp->dk_mutex);
1404 
1405 	if ((xdf_dip = dkp->dk_xdf_dip) == NULL) {
1406 		mutex_exit(&dkp->dk_mutex);
1407 		return (DDI_PROP_NOT_FOUND);
1408 	}
1409 	e_ddi_hold_devi(xdf_dip);
1410 
1411 	/* figure out the dev_t we're going to pass on down */
1412 	if (dev == DDI_DEV_T_ANY) {
1413 		xdf_devt = DDI_DEV_T_ANY;
1414 	} else {
1415 		xdf_devt = dkp->dk_xdf_dev | XDF_DEV2PART(dev);
1416 	}
1417 
1418 	mutex_exit(&dkp->dk_mutex);
1419 
1420 	/*
1421 	 * Cdev_prop_op() is not a public interface, and normally the caller
1422 	 * is required to make sure that the target driver actually implements
1423 	 * this interface before trying to invoke it.  In this case we know
1424 	 * that we're always accessing the xdf driver and it does have this
1425 	 * interface defined, so we can skip the check.
1426 	 */
1427 	err = cdev_prop_op(xdf_devt, xdf_dip,
1428 	    prop_op, flags, name, valuep, lengthp);
1429 	ddi_release_devi(xdf_dip);
1430 	return (err);
1431 }
1432 
1433 /*
1434  * Device driver ops vector
1435  */
1436 static struct cb_ops pv_cmdk_cb_ops = {
1437 	pv_cmdkopen,		/* open */
1438 	pv_cmdkclose,		/* close */
1439 	pv_cmdkstrategy,	/* strategy */
1440 	nodev,			/* print */
1441 	pv_cmdkdump,		/* dump */
1442 	pv_cmdkread,		/* read */
1443 	pv_cmdkwrite,		/* write */
1444 	pv_cmdkioctl,		/* ioctl */
1445 	nodev,			/* devmap */
1446 	nodev,			/* mmap */
1447 	nodev,			/* segmap */
1448 	nochpoll,		/* poll */
1449 	pv_cmdk_prop_op,	/* cb_prop_op */
1450 	0,			/* streamtab  */
1451 	D_64BIT | D_MP | D_NEW,	/* Driver comaptibility flag */
1452 	CB_REV,			/* cb_rev */
1453 	pv_cmdkaread,		/* async read */
1454 	pv_cmdkawrite		/* async write */
1455 };
1456 
1457 struct dev_ops pv_cmdk_ops = {
1458 	DEVO_REV,		/* devo_rev, */
1459 	0,			/* refcnt  */
1460 	pv_cmdk_getinfo,	/* info */
1461 	nulldev,		/* identify */
1462 	nulldev,		/* probe */
1463 	pv_cmdkattach,		/* attach */
1464 	pv_cmdkdetach,		/* detach */
1465 	nodev,			/* reset */
1466 	&pv_cmdk_cb_ops,	/* driver operations */
1467 	(struct bus_ops *)0	/* bus operations */
1468 };
1469 
1470 /*
1471  * Module linkage information for the kernel.
1472  */
1473 static struct modldrv modldrv = {
1474 	&mod_driverops,		/* Type of module. This one is a driver */
1475 	"PV Common Direct Access Disk",
1476 	&pv_cmdk_ops,		/* driver ops		*/
1477 };
1478 
1479 static struct modlinkage modlinkage = {
1480 	MODREV_1, (void *)&modldrv, NULL
1481 };
1482 
1483 int
1484 _init(void)
1485 {
1486 	int rval;
1487 
1488 	if ((pv_cmdk_major = ddi_name_to_major("cmdk")) == (major_t)-1)
1489 		return (EINVAL);
1490 
1491 	/*
1492 	 * In general ide usually supports 4 disk devices, this same
1493 	 * limitation also applies to software emulating ide devices.
1494 	 * so by default we pre-allocate 4 cmdk soft state structures.
1495 	 */
1496 	if ((rval = ddi_soft_state_init(&pv_cmdk_state,
1497 	    sizeof (struct pv_cmdk), PV_CMDK_NODES)) != 0)
1498 		return (rval);
1499 
1500 	/*
1501 	 * Currently we only support qemu as the backing hardware emulator
1502 	 * for cmdk devices.
1503 	 */
1504 	pv_cmdk_h2p = pv_cmdk_h2p_xen_qemu;
1505 
1506 	/* Install our module */
1507 	if ((rval = mod_install(&modlinkage)) != 0) {
1508 		ddi_soft_state_fini(&pv_cmdk_state);
1509 		return (rval);
1510 	}
1511 
1512 	return (0);
1513 }
1514 
1515 int
1516 _info(struct modinfo *modinfop)
1517 {
1518 	return (mod_info(&modlinkage, modinfop));
1519 }
1520 
1521 int
1522 _fini(void)
1523 {
1524 	int	rval;
1525 	if ((rval = mod_remove(&modlinkage)) != 0)
1526 		return (rval);
1527 	ddi_soft_state_fini(&pv_cmdk_state);
1528 	return (0);
1529 }
1530