1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2008 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 27 28 #include <sys/types.h> 29 #include <sys/machparam.h> 30 #include <sys/x86_archext.h> 31 #include <sys/systm.h> 32 #include <sys/mach_mmu.h> 33 #include <sys/multiboot.h> 34 35 #if defined(__xpv) 36 37 #include <sys/hypervisor.h> 38 uintptr_t xen_virt_start; 39 pfn_t *mfn_to_pfn_mapping; 40 41 #else /* !__xpv */ 42 43 extern multiboot_header_t mb_header; 44 extern int have_cpuid(void); 45 46 #endif /* !__xpv */ 47 48 #include <sys/inttypes.h> 49 #include <sys/bootinfo.h> 50 #include <sys/mach_mmu.h> 51 #include <sys/boot_console.h> 52 53 #include "dboot_asm.h" 54 #include "dboot_printf.h" 55 #include "dboot_xboot.h" 56 #include "dboot_elfload.h" 57 58 /* 59 * This file contains code that runs to transition us from either a multiboot 60 * compliant loader (32 bit non-paging) or a XPV domain loader to 61 * regular kernel execution. Its task is to setup the kernel memory image 62 * and page tables. 63 * 64 * The code executes as: 65 * - 32 bits under GRUB (for 32 or 64 bit Solaris) 66 * - a 32 bit program for the 32-bit PV hypervisor 67 * - a 64 bit program for the 64-bit PV hypervisor (at least for now) 68 * 69 * Under the PV hypervisor, we must create mappings for any memory beyond the 70 * initial start of day allocation (such as the kernel itself). 71 * 72 * When on the metal, the mapping between maddr_t and paddr_t is 1:1. 73 * Since we are running in real mode, so all such memory is accessible. 74 */ 75 76 /* 77 * Standard bits used in PTE (page level) and PTP (internal levels) 78 */ 79 x86pte_t ptp_bits = PT_VALID | PT_REF | PT_WRITABLE | PT_USER; 80 x86pte_t pte_bits = PT_VALID | PT_REF | PT_WRITABLE | PT_MOD | PT_NOCONSIST; 81 82 /* 83 * This is the target addresses (physical) where the kernel text and data 84 * nucleus pages will be unpacked. On the hypervisor this is actually a 85 * virtual address. 86 */ 87 paddr_t ktext_phys; 88 uint32_t ksize = 2 * FOUR_MEG; /* kernel nucleus is 8Meg */ 89 90 static uint64_t target_kernel_text; /* value to use for KERNEL_TEXT */ 91 92 /* 93 * The stack is setup in assembler before entering startup_kernel() 94 */ 95 char stack_space[STACK_SIZE]; 96 97 /* 98 * Used to track physical memory allocation 99 */ 100 static paddr_t next_avail_addr = 0; 101 102 #if defined(__xpv) 103 /* 104 * Additional information needed for hypervisor memory allocation. 105 * Only memory up to scratch_end is mapped by page tables. 106 * mfn_base is the start of the hypervisor virtual image. It's ONE_GIG, so 107 * to derive a pfn from a pointer, you subtract mfn_base. 108 */ 109 110 static paddr_t scratch_end = 0; /* we can't write all of mem here */ 111 static paddr_t mfn_base; /* addr corresponding to mfn_list[0] */ 112 start_info_t *xen_info; 113 114 #else /* __xpv */ 115 116 /* 117 * If on the metal, then we have a multiboot loader. 118 */ 119 multiboot_info_t *mb_info; 120 121 #endif /* __xpv */ 122 123 /* 124 * This contains information passed to the kernel 125 */ 126 struct xboot_info boot_info[2]; /* extra space to fix alignement for amd64 */ 127 struct xboot_info *bi; 128 129 /* 130 * Page table and memory stuff. 131 */ 132 static paddr_t max_mem; /* maximum memory address */ 133 134 /* 135 * Information about processor MMU 136 */ 137 int amd64_support = 0; 138 int largepage_support = 0; 139 int pae_support = 0; 140 int pge_support = 0; 141 int NX_support = 0; 142 143 /* 144 * Low 32 bits of kernel entry address passed back to assembler. 145 * When running a 64 bit kernel, the high 32 bits are 0xffffffff. 146 */ 147 uint32_t entry_addr_low; 148 149 /* 150 * Memlists for the kernel. We shouldn't need a lot of these. 151 */ 152 #define MAX_MEMLIST (50) 153 struct boot_memlist memlists[MAX_MEMLIST]; 154 uint_t memlists_used = 0; 155 struct boot_memlist pcimemlists[MAX_MEMLIST]; 156 uint_t pcimemlists_used = 0; 157 158 #define MAX_MODULES (10) 159 struct boot_modules modules[MAX_MODULES]; 160 uint_t modules_used = 0; 161 162 /* 163 * Debugging macros 164 */ 165 uint_t prom_debug = 0; 166 uint_t map_debug = 0; 167 168 /* 169 * Either hypervisor-specific or grub-specific code builds the initial 170 * memlists. This code does the sort/merge/link for final use. 171 */ 172 static void 173 sort_physinstall(void) 174 { 175 int i; 176 #if !defined(__xpv) 177 int j; 178 struct boot_memlist tmp; 179 180 /* 181 * Now sort the memlists, in case they weren't in order. 182 * Yeah, this is a bubble sort; small, simple and easy to get right. 183 */ 184 DBG_MSG("Sorting phys-installed list\n"); 185 for (j = memlists_used - 1; j > 0; --j) { 186 for (i = 0; i < j; ++i) { 187 if (memlists[i].addr < memlists[i + 1].addr) 188 continue; 189 tmp = memlists[i]; 190 memlists[i] = memlists[i + 1]; 191 memlists[i + 1] = tmp; 192 } 193 } 194 195 /* 196 * Merge any memlists that don't have holes between them. 197 */ 198 for (i = 0; i <= memlists_used - 1; ++i) { 199 if (memlists[i].addr + memlists[i].size != memlists[i + 1].addr) 200 continue; 201 202 if (prom_debug) 203 dboot_printf( 204 "merging mem segs %" PRIx64 "...%" PRIx64 205 " w/ %" PRIx64 "...%" PRIx64 "\n", 206 memlists[i].addr, 207 memlists[i].addr + memlists[i].size, 208 memlists[i + 1].addr, 209 memlists[i + 1].addr + memlists[i + 1].size); 210 211 memlists[i].size += memlists[i + 1].size; 212 for (j = i + 1; j < memlists_used - 1; ++j) 213 memlists[j] = memlists[j + 1]; 214 --memlists_used; 215 DBG(memlists_used); 216 --i; /* after merging we need to reexamine, so do this */ 217 } 218 #endif /* __xpv */ 219 220 if (prom_debug) { 221 dboot_printf("\nFinal memlists:\n"); 222 for (i = 0; i < memlists_used; ++i) { 223 dboot_printf("\t%d: addr=%" PRIx64 " size=%" 224 PRIx64 "\n", i, memlists[i].addr, memlists[i].size); 225 } 226 } 227 228 /* 229 * link together the memlists with native size pointers 230 */ 231 memlists[0].next = 0; 232 memlists[0].prev = 0; 233 for (i = 1; i < memlists_used; ++i) { 234 memlists[i].prev = (native_ptr_t)(uintptr_t)(memlists + i - 1); 235 memlists[i].next = 0; 236 memlists[i - 1].next = (native_ptr_t)(uintptr_t)(memlists + i); 237 } 238 bi->bi_phys_install = (native_ptr_t)memlists; 239 DBG(bi->bi_phys_install); 240 } 241 242 #if defined(__xpv) 243 244 /* 245 * halt on the hypervisor after a delay to drain console output 246 */ 247 void 248 dboot_halt(void) 249 { 250 uint_t i = 10000; 251 252 while (--i) 253 HYPERVISOR_yield(); 254 HYPERVISOR_shutdown(SHUTDOWN_poweroff); 255 } 256 257 /* 258 * From a machine address, find the corresponding pseudo-physical address. 259 * Pseudo-physical address are contiguous and run from mfn_base in each VM. 260 * Machine addresses are the real underlying hardware addresses. 261 * These are needed for page table entries. Note that this routine is 262 * poorly protected. A bad value of "ma" will cause a page fault. 263 */ 264 paddr_t 265 ma_to_pa(maddr_t ma) 266 { 267 ulong_t pgoff = ma & MMU_PAGEOFFSET; 268 ulong_t pfn = mfn_to_pfn_mapping[mmu_btop(ma)]; 269 paddr_t pa; 270 271 if (pfn >= xen_info->nr_pages) 272 return (-(paddr_t)1); 273 pa = mfn_base + mmu_ptob((paddr_t)pfn) + pgoff; 274 #ifdef DEBUG 275 if (ma != pa_to_ma(pa)) 276 dboot_printf("ma_to_pa(%" PRIx64 ") got %" PRIx64 ", " 277 "pa_to_ma() says %" PRIx64 "\n", ma, pa, pa_to_ma(pa)); 278 #endif 279 return (pa); 280 } 281 282 /* 283 * From a pseudo-physical address, find the corresponding machine address. 284 */ 285 maddr_t 286 pa_to_ma(paddr_t pa) 287 { 288 pfn_t pfn; 289 ulong_t mfn; 290 291 pfn = mmu_btop(pa - mfn_base); 292 if (pa < mfn_base || pfn >= xen_info->nr_pages) 293 dboot_panic("pa_to_ma(): illegal address 0x%lx", (ulong_t)pa); 294 mfn = ((ulong_t *)xen_info->mfn_list)[pfn]; 295 #ifdef DEBUG 296 if (mfn_to_pfn_mapping[mfn] != pfn) 297 dboot_printf("pa_to_ma(pfn=%lx) got %lx ma_to_pa() says %lx\n", 298 pfn, mfn, mfn_to_pfn_mapping[mfn]); 299 #endif 300 return (mfn_to_ma(mfn) | (pa & MMU_PAGEOFFSET)); 301 } 302 303 #endif /* __xpv */ 304 305 x86pte_t 306 get_pteval(paddr_t table, uint_t index) 307 { 308 if (pae_support) 309 return (((x86pte_t *)(uintptr_t)table)[index]); 310 return (((x86pte32_t *)(uintptr_t)table)[index]); 311 } 312 313 /*ARGSUSED*/ 314 void 315 set_pteval(paddr_t table, uint_t index, uint_t level, x86pte_t pteval) 316 { 317 #ifdef __xpv 318 mmu_update_t t; 319 maddr_t mtable = pa_to_ma(table); 320 int retcnt; 321 322 t.ptr = (mtable + index * pte_size) | MMU_NORMAL_PT_UPDATE; 323 t.val = pteval; 324 if (HYPERVISOR_mmu_update(&t, 1, &retcnt, DOMID_SELF) || retcnt != 1) 325 dboot_panic("HYPERVISOR_mmu_update() failed"); 326 #else /* __xpv */ 327 uintptr_t tab_addr = (uintptr_t)table; 328 329 if (pae_support) 330 ((x86pte_t *)tab_addr)[index] = pteval; 331 else 332 ((x86pte32_t *)tab_addr)[index] = (x86pte32_t)pteval; 333 if (level == top_level && level == 2) 334 reload_cr3(); 335 #endif /* __xpv */ 336 } 337 338 paddr_t 339 make_ptable(x86pte_t *pteval, uint_t level) 340 { 341 paddr_t new_table = (paddr_t)(uintptr_t)mem_alloc(MMU_PAGESIZE); 342 343 if (level == top_level && level == 2) 344 *pteval = pa_to_ma((uintptr_t)new_table) | PT_VALID; 345 else 346 *pteval = pa_to_ma((uintptr_t)new_table) | ptp_bits; 347 348 #ifdef __xpv 349 /* Remove write permission to the new page table. */ 350 if (HYPERVISOR_update_va_mapping(new_table, 351 *pteval & ~(x86pte_t)PT_WRITABLE, UVMF_INVLPG | UVMF_LOCAL)) 352 dboot_panic("HYP_update_va_mapping error"); 353 #endif 354 355 if (map_debug) 356 dboot_printf("new page table lvl=%d paddr=0x%lx ptp=0x%" 357 PRIx64 "\n", level, (ulong_t)new_table, *pteval); 358 return (new_table); 359 } 360 361 x86pte_t * 362 map_pte(paddr_t table, uint_t index) 363 { 364 return ((x86pte_t *)(uintptr_t)(table + index * pte_size)); 365 } 366 367 /* 368 * dump out the contents of page tables... 369 */ 370 static void 371 dump_tables(void) 372 { 373 uint_t save_index[4]; /* for recursion */ 374 char *save_table[4]; /* for recursion */ 375 uint_t l; 376 uint64_t va; 377 uint64_t pgsize; 378 int index; 379 int i; 380 x86pte_t pteval; 381 char *table; 382 static char *tablist = "\t\t\t"; 383 char *tabs = tablist + 3 - top_level; 384 uint_t pa, pa1; 385 #if !defined(__xpv) 386 #define maddr_t paddr_t 387 #endif /* !__xpv */ 388 389 dboot_printf("Finished pagetables:\n"); 390 table = (char *)(uintptr_t)top_page_table; 391 l = top_level; 392 va = 0; 393 for (index = 0; index < ptes_per_table; ++index) { 394 pgsize = 1ull << shift_amt[l]; 395 if (pae_support) 396 pteval = ((x86pte_t *)table)[index]; 397 else 398 pteval = ((x86pte32_t *)table)[index]; 399 if (pteval == 0) 400 goto next_entry; 401 402 dboot_printf("%s %p[0x%x] = %" PRIx64 ", va=%" PRIx64, 403 tabs + l, table, index, (uint64_t)pteval, va); 404 pa = ma_to_pa(pteval & MMU_PAGEMASK); 405 dboot_printf(" physaddr=%x\n", pa); 406 407 /* 408 * Don't try to walk hypervisor private pagetables 409 */ 410 if ((l > 1 || (l == 1 && (pteval & PT_PAGESIZE) == 0))) { 411 save_table[l] = table; 412 save_index[l] = index; 413 --l; 414 index = -1; 415 table = (char *)(uintptr_t) 416 ma_to_pa(pteval & MMU_PAGEMASK); 417 goto recursion; 418 } 419 420 /* 421 * shorten dump for consecutive mappings 422 */ 423 for (i = 1; index + i < ptes_per_table; ++i) { 424 if (pae_support) 425 pteval = ((x86pte_t *)table)[index + i]; 426 else 427 pteval = ((x86pte32_t *)table)[index + i]; 428 if (pteval == 0) 429 break; 430 pa1 = ma_to_pa(pteval & MMU_PAGEMASK); 431 if (pa1 != pa + i * pgsize) 432 break; 433 } 434 if (i > 2) { 435 dboot_printf("%s...\n", tabs + l); 436 va += pgsize * (i - 2); 437 index += i - 2; 438 } 439 next_entry: 440 va += pgsize; 441 if (l == 3 && index == 256) /* VA hole */ 442 va = 0xffff800000000000ull; 443 recursion: 444 ; 445 } 446 if (l < top_level) { 447 ++l; 448 index = save_index[l]; 449 table = save_table[l]; 450 goto recursion; 451 } 452 } 453 454 /* 455 * Add a mapping for the machine page at the given virtual address. 456 */ 457 static void 458 map_ma_at_va(maddr_t ma, native_ptr_t va, uint_t level) 459 { 460 x86pte_t *ptep; 461 x86pte_t pteval; 462 463 pteval = ma | pte_bits; 464 if (level > 0) 465 pteval |= PT_PAGESIZE; 466 if (va >= target_kernel_text && pge_support) 467 pteval |= PT_GLOBAL; 468 469 if (map_debug && ma != va) 470 dboot_printf("mapping ma=0x%" PRIx64 " va=0x%" PRIx64 471 " pte=0x%" PRIx64 " l=%d\n", 472 (uint64_t)ma, (uint64_t)va, pteval, level); 473 474 #if defined(__xpv) 475 /* 476 * see if we can avoid find_pte() on the hypervisor 477 */ 478 if (HYPERVISOR_update_va_mapping(va, pteval, 479 UVMF_INVLPG | UVMF_LOCAL) == 0) 480 return; 481 #endif 482 483 /* 484 * Find the pte that will map this address. This creates any 485 * missing intermediate level page tables 486 */ 487 ptep = find_pte(va, NULL, level, 0); 488 489 /* 490 * When paravirtualized, we must use hypervisor calls to modify the 491 * PTE, since paging is active. On real hardware we just write to 492 * the pagetables which aren't in use yet. 493 */ 494 #if defined(__xpv) 495 ptep = ptep; /* shut lint up */ 496 if (HYPERVISOR_update_va_mapping(va, pteval, UVMF_INVLPG | UVMF_LOCAL)) 497 dboot_panic("mmu_update failed-map_pa_at_va va=0x%" PRIx64 498 " l=%d ma=0x%" PRIx64 ", pte=0x%" PRIx64 "", 499 (uint64_t)va, level, (uint64_t)ma, pteval); 500 #else 501 if (va < 1024 * 1024) 502 pteval |= PT_NOCACHE; /* for video RAM */ 503 if (pae_support) 504 *ptep = pteval; 505 else 506 *((x86pte32_t *)ptep) = (x86pte32_t)pteval; 507 #endif 508 } 509 510 /* 511 * Add a mapping for the physical page at the given virtual address. 512 */ 513 static void 514 map_pa_at_va(paddr_t pa, native_ptr_t va, uint_t level) 515 { 516 map_ma_at_va(pa_to_ma(pa), va, level); 517 } 518 519 /* 520 * This is called to remove start..end from the 521 * possible range of PCI addresses. 522 */ 523 const uint64_t pci_lo_limit = 0x00100000ul; 524 const uint64_t pci_hi_limit = 0xfff00000ul; 525 static void 526 exclude_from_pci(uint64_t start, uint64_t end) 527 { 528 int i; 529 int j; 530 struct boot_memlist *ml; 531 532 for (i = 0; i < pcimemlists_used; ++i) { 533 ml = &pcimemlists[i]; 534 535 /* delete the entire range? */ 536 if (start <= ml->addr && ml->addr + ml->size <= end) { 537 --pcimemlists_used; 538 for (j = i; j < pcimemlists_used; ++j) 539 pcimemlists[j] = pcimemlists[j + 1]; 540 --i; /* to revisit the new one at this index */ 541 } 542 543 /* split a range? */ 544 else if (ml->addr < start && end < ml->addr + ml->size) { 545 546 ++pcimemlists_used; 547 if (pcimemlists_used > MAX_MEMLIST) 548 dboot_panic("too many pcimemlists"); 549 550 for (j = pcimemlists_used - 1; j > i; --j) 551 pcimemlists[j] = pcimemlists[j - 1]; 552 ml->size = start - ml->addr; 553 554 ++ml; 555 ml->size = (ml->addr + ml->size) - end; 556 ml->addr = end; 557 ++i; /* skip on to next one */ 558 } 559 560 /* cut memory off the start? */ 561 else if (ml->addr < end && end < ml->addr + ml->size) { 562 ml->size -= end - ml->addr; 563 ml->addr = end; 564 } 565 566 /* cut memory off the end? */ 567 else if (ml->addr <= start && start < ml->addr + ml->size) { 568 ml->size = start - ml->addr; 569 } 570 } 571 } 572 573 /* 574 * Xen strips the size field out of the mb_memory_map_t, see struct e820entry 575 * definition in Xen source. 576 */ 577 #ifdef __xpv 578 typedef struct { 579 uint32_t base_addr_low; 580 uint32_t base_addr_high; 581 uint32_t length_low; 582 uint32_t length_high; 583 uint32_t type; 584 } mmap_t; 585 #else 586 typedef mb_memory_map_t mmap_t; 587 #endif 588 589 static void 590 build_pcimemlists(mmap_t *mem, int num) 591 { 592 mmap_t *mmap; 593 uint64_t page_offset = MMU_PAGEOFFSET; /* needs to be 64 bits */ 594 uint64_t start; 595 uint64_t end; 596 int i; 597 598 /* 599 * initialize 600 */ 601 pcimemlists[0].addr = pci_lo_limit; 602 pcimemlists[0].size = pci_hi_limit - pci_lo_limit; 603 pcimemlists_used = 1; 604 605 /* 606 * Fill in PCI memlists. 607 */ 608 for (mmap = mem, i = 0; i < num; ++i, ++mmap) { 609 start = ((uint64_t)mmap->base_addr_high << 32) + 610 mmap->base_addr_low; 611 end = start + ((uint64_t)mmap->length_high << 32) + 612 mmap->length_low; 613 614 if (prom_debug) 615 dboot_printf("\ttype: %d %" PRIx64 "..%" 616 PRIx64 "\n", mmap->type, start, end); 617 618 /* 619 * page align start and end 620 */ 621 start = (start + page_offset) & ~page_offset; 622 end &= ~page_offset; 623 if (end <= start) 624 continue; 625 626 exclude_from_pci(start, end); 627 } 628 629 /* 630 * Finish off the pcimemlist 631 */ 632 if (prom_debug) { 633 for (i = 0; i < pcimemlists_used; ++i) { 634 dboot_printf("pcimemlist entry 0x%" PRIx64 "..0x%" 635 PRIx64 "\n", pcimemlists[i].addr, 636 pcimemlists[i].addr + pcimemlists[i].size); 637 } 638 } 639 pcimemlists[0].next = 0; 640 pcimemlists[0].prev = 0; 641 for (i = 1; i < pcimemlists_used; ++i) { 642 pcimemlists[i].prev = 643 (native_ptr_t)(uintptr_t)(pcimemlists + i - 1); 644 pcimemlists[i].next = 0; 645 pcimemlists[i - 1].next = 646 (native_ptr_t)(uintptr_t)(pcimemlists + i); 647 } 648 bi->bi_pcimem = (native_ptr_t)pcimemlists; 649 DBG(bi->bi_pcimem); 650 } 651 652 #if defined(__xpv) 653 /* 654 * Initialize memory allocator stuff from hypervisor-supplied start info. 655 * 656 * There is 512KB of scratch area after the boot stack page. 657 * We'll use that for everything except the kernel nucleus pages which are too 658 * big to fit there and are allocated last anyway. 659 */ 660 #define MAXMAPS 100 661 static mmap_t map_buffer[MAXMAPS]; 662 static void 663 init_mem_alloc(void) 664 { 665 int local; /* variables needed to find start region */ 666 paddr_t scratch_start; 667 xen_memory_map_t map; 668 669 DBG_MSG("Entered init_mem_alloc()\n"); 670 671 /* 672 * Free memory follows the stack. There's at least 512KB of scratch 673 * space, rounded up to at least 2Mb alignment. That should be enough 674 * for the page tables we'll need to build. The nucleus memory is 675 * allocated last and will be outside the addressible range. We'll 676 * switch to new page tables before we unpack the kernel 677 */ 678 scratch_start = RNDUP((paddr_t)(uintptr_t)&local, MMU_PAGESIZE); 679 DBG(scratch_start); 680 scratch_end = RNDUP((paddr_t)scratch_start + 512 * 1024, TWO_MEG); 681 DBG(scratch_end); 682 683 /* 684 * For paranoia, leave some space between hypervisor data and ours. 685 * Use 500 instead of 512. 686 */ 687 next_avail_addr = scratch_end - 500 * 1024; 688 DBG(next_avail_addr); 689 690 /* 691 * The domain builder gives us at most 1 module 692 */ 693 DBG(xen_info->mod_len); 694 if (xen_info->mod_len > 0) { 695 DBG(xen_info->mod_start); 696 modules[0].bm_addr = xen_info->mod_start; 697 modules[0].bm_size = xen_info->mod_len; 698 bi->bi_module_cnt = 1; 699 bi->bi_modules = (native_ptr_t)modules; 700 } else { 701 bi->bi_module_cnt = 0; 702 bi->bi_modules = NULL; 703 } 704 DBG(bi->bi_module_cnt); 705 DBG(bi->bi_modules); 706 707 DBG(xen_info->mfn_list); 708 DBG(xen_info->nr_pages); 709 max_mem = (paddr_t)xen_info->nr_pages << MMU_PAGESHIFT; 710 DBG(max_mem); 711 712 /* 713 * Using pseudo-physical addresses, so only 1 memlist element 714 */ 715 memlists[0].addr = 0; 716 DBG(memlists[0].addr); 717 memlists[0].size = max_mem; 718 DBG(memlists[0].size); 719 memlists_used = 1; 720 DBG(memlists_used); 721 722 /* 723 * finish building physinstall list 724 */ 725 sort_physinstall(); 726 727 if (DOMAIN_IS_INITDOMAIN(xen_info)) { 728 /* 729 * build PCI Memory list 730 */ 731 map.nr_entries = MAXMAPS; 732 /*LINTED: constant in conditional context*/ 733 set_xen_guest_handle(map.buffer, map_buffer); 734 if (HYPERVISOR_memory_op(XENMEM_machine_memory_map, &map) != 0) 735 dboot_panic("getting XENMEM_machine_memory_map failed"); 736 build_pcimemlists(map_buffer, map.nr_entries); 737 } 738 } 739 740 #else /* !__xpv */ 741 742 /* 743 * During memory allocation, find the highest address not used yet. 744 */ 745 static void 746 check_higher(paddr_t a) 747 { 748 if (a < next_avail_addr) 749 return; 750 next_avail_addr = RNDUP(a + 1, MMU_PAGESIZE); 751 DBG(next_avail_addr); 752 } 753 754 /* 755 * Walk through the module information finding the last used address. 756 * The first available address will become the top level page table. 757 * 758 * We then build the phys_install memlist from the multiboot information. 759 */ 760 static void 761 init_mem_alloc(void) 762 { 763 mb_memory_map_t *mmap; 764 mb_module_t *mod; 765 uint64_t start; 766 uint64_t end; 767 uint64_t page_offset = MMU_PAGEOFFSET; /* needs to be 64 bits */ 768 extern char _end[]; 769 int i; 770 771 DBG_MSG("Entered init_mem_alloc()\n"); 772 DBG((uintptr_t)mb_info); 773 774 /* 775 * search the modules to find the last used address 776 * we'll build the module list while we're walking through here 777 */ 778 DBG_MSG("\nFinding Modules\n"); 779 check_higher((paddr_t)&_end); 780 for (mod = (mb_module_t *)(mb_info->mods_addr), i = 0; 781 i < mb_info->mods_count; 782 ++mod, ++i) { 783 if (prom_debug) { 784 dboot_printf("\tmodule #%d: %s at: 0x%lx, len 0x%lx\n", 785 i, (char *)(mod->mod_name), 786 (ulong_t)mod->mod_start, (ulong_t)mod->mod_end); 787 } 788 modules[i].bm_addr = mod->mod_start; 789 modules[i].bm_size = mod->mod_end; 790 791 check_higher(mod->mod_end); 792 } 793 bi->bi_modules = (native_ptr_t)modules; 794 DBG(bi->bi_modules); 795 bi->bi_module_cnt = mb_info->mods_count; 796 DBG(bi->bi_module_cnt); 797 798 /* 799 * Walk through the memory map from multiboot and build our memlist 800 * structures. Note these will have native format pointers. 801 */ 802 DBG_MSG("\nFinding Memory Map\n"); 803 DBG(mb_info->flags); 804 max_mem = 0; 805 if (mb_info->flags & 0x40) { 806 int cnt = 0; 807 808 DBG(mb_info->mmap_addr); 809 DBG(mb_info->mmap_length); 810 check_higher(mb_info->mmap_addr + mb_info->mmap_length); 811 812 for (mmap = (mb_memory_map_t *)mb_info->mmap_addr; 813 (uint32_t)mmap < mb_info->mmap_addr + mb_info->mmap_length; 814 mmap = (mb_memory_map_t *)((uint32_t)mmap + mmap->size 815 + sizeof (mmap->size))) { 816 ++cnt; 817 start = ((uint64_t)mmap->base_addr_high << 32) + 818 mmap->base_addr_low; 819 end = start + ((uint64_t)mmap->length_high << 32) + 820 mmap->length_low; 821 822 if (prom_debug) 823 dboot_printf("\ttype: %d %" PRIx64 "..%" 824 PRIx64 "\n", mmap->type, start, end); 825 826 /* 827 * page align start and end 828 */ 829 start = (start + page_offset) & ~page_offset; 830 end &= ~page_offset; 831 if (end <= start) 832 continue; 833 834 /* 835 * only type 1 is usable RAM 836 */ 837 if (mmap->type != 1) 838 continue; 839 840 if (end > max_mem) 841 max_mem = end; 842 843 memlists[memlists_used].addr = start; 844 memlists[memlists_used].size = end - start; 845 ++memlists_used; 846 if (memlists_used > MAX_MEMLIST) 847 dboot_panic("too many memlists"); 848 } 849 build_pcimemlists((mb_memory_map_t *)mb_info->mmap_addr, cnt); 850 } else if (mb_info->flags & 0x01) { 851 DBG(mb_info->mem_lower); 852 memlists[memlists_used].addr = 0; 853 memlists[memlists_used].size = mb_info->mem_lower * 1024; 854 ++memlists_used; 855 DBG(mb_info->mem_upper); 856 memlists[memlists_used].addr = 1024 * 1024; 857 memlists[memlists_used].size = mb_info->mem_upper * 1024; 858 ++memlists_used; 859 860 /* 861 * Old platform - assume I/O space at the end of memory. 862 */ 863 pcimemlists[0].addr = 864 (mb_info->mem_upper * 1024) + (1024 * 1024); 865 pcimemlists[0].size = pci_hi_limit - pcimemlists[0].addr; 866 pcimemlists[0].next = 0; 867 pcimemlists[0].prev = 0; 868 bi->bi_pcimem = (native_ptr_t)pcimemlists; 869 DBG(bi->bi_pcimem); 870 } else { 871 dboot_panic("No memory info from boot loader!!!"); 872 } 873 874 check_higher(bi->bi_cmdline); 875 876 /* 877 * finish processing the physinstall list 878 */ 879 sort_physinstall(); 880 } 881 #endif /* !__xpv */ 882 883 /* 884 * Simple memory allocator, allocates aligned physical memory. 885 * Note that startup_kernel() only allocates memory, never frees. 886 * Memory usage just grows in an upward direction. 887 */ 888 static void * 889 do_mem_alloc(uint32_t size, uint32_t align) 890 { 891 uint_t i; 892 uint64_t best; 893 uint64_t start; 894 uint64_t end; 895 896 /* 897 * make sure size is a multiple of pagesize 898 */ 899 size = RNDUP(size, MMU_PAGESIZE); 900 next_avail_addr = RNDUP(next_avail_addr, align); 901 902 /* 903 * XXPV fixme joe 904 * 905 * a really large bootarchive that causes you to run out of memory 906 * may cause this to blow up 907 */ 908 /* LINTED E_UNEXPECTED_UINT_PROMOTION */ 909 best = (uint64_t)-size; 910 for (i = 0; i < memlists_used; ++i) { 911 start = memlists[i].addr; 912 #if defined(__xpv) 913 start += mfn_base; 914 #endif 915 end = start + memlists[i].size; 916 917 /* 918 * did we find the desired address? 919 */ 920 if (start <= next_avail_addr && next_avail_addr + size <= end) { 921 best = next_avail_addr; 922 goto done; 923 } 924 925 /* 926 * if not is this address the best so far? 927 */ 928 if (start > next_avail_addr && start < best && 929 RNDUP(start, align) + size <= end) 930 best = RNDUP(start, align); 931 } 932 933 /* 934 * We didn't find exactly the address we wanted, due to going off the 935 * end of a memory region. Return the best found memory address. 936 */ 937 done: 938 next_avail_addr = best + size; 939 #if defined(__xpv) 940 if (next_avail_addr > scratch_end) 941 dboot_panic("Out of mem next_avail: 0x%lx, scratch_end: " 942 "0x%lx", (ulong_t)next_avail_addr, 943 (ulong_t)scratch_end); 944 #endif 945 (void) memset((void *)(uintptr_t)best, 0, size); 946 return ((void *)(uintptr_t)best); 947 } 948 949 void * 950 mem_alloc(uint32_t size) 951 { 952 return (do_mem_alloc(size, MMU_PAGESIZE)); 953 } 954 955 956 /* 957 * Build page tables to map all of memory used so far as well as the kernel. 958 */ 959 static void 960 build_page_tables(void) 961 { 962 uint32_t psize; 963 uint32_t level; 964 uint32_t off; 965 uint64_t start; 966 #if !defined(__xpv) 967 uint32_t i; 968 uint64_t end; 969 #endif /* __xpv */ 970 971 /* 972 * If we're on metal, we need to create the top level pagetable. 973 */ 974 #if defined(__xpv) 975 top_page_table = (paddr_t)(uintptr_t)xen_info->pt_base; 976 #else /* __xpv */ 977 top_page_table = (paddr_t)(uintptr_t)mem_alloc(MMU_PAGESIZE); 978 #endif /* __xpv */ 979 DBG((uintptr_t)top_page_table); 980 981 /* 982 * Determine if we'll use large mappings for kernel, then map it. 983 */ 984 if (largepage_support) { 985 psize = lpagesize; 986 level = 1; 987 } else { 988 psize = MMU_PAGESIZE; 989 level = 0; 990 } 991 992 DBG_MSG("Mapping kernel\n"); 993 DBG(ktext_phys); 994 DBG(target_kernel_text); 995 DBG(ksize); 996 DBG(psize); 997 for (off = 0; off < ksize; off += psize) 998 map_pa_at_va(ktext_phys + off, target_kernel_text + off, level); 999 1000 /* 1001 * The kernel will need a 1 page window to work with page tables 1002 */ 1003 bi->bi_pt_window = (uintptr_t)mem_alloc(MMU_PAGESIZE); 1004 DBG(bi->bi_pt_window); 1005 bi->bi_pte_to_pt_window = 1006 (uintptr_t)find_pte(bi->bi_pt_window, NULL, 0, 0); 1007 DBG(bi->bi_pte_to_pt_window); 1008 1009 #if defined(__xpv) 1010 if (!DOMAIN_IS_INITDOMAIN(xen_info)) { 1011 /* If this is a domU we're done. */ 1012 DBG_MSG("\nPage tables constructed\n"); 1013 return; 1014 } 1015 #endif /* __xpv */ 1016 1017 /* 1018 * We need 1:1 mappings for the lower 1M of memory to access 1019 * BIOS tables used by a couple of drivers during boot. 1020 * 1021 * The following code works because our simple memory allocator 1022 * only grows usage in an upwards direction. 1023 * 1024 * Note that by this point in boot some mappings for low memory 1025 * may already exist because we've already accessed device in low 1026 * memory. (Specifically the video frame buffer and keyboard 1027 * status ports.) If we're booting on raw hardware then GRUB 1028 * created these mappings for us. If we're booting under a 1029 * hypervisor then we went ahead and remapped these devices into 1030 * memory allocated within dboot itself. 1031 */ 1032 if (map_debug) 1033 dboot_printf("1:1 map pa=0..1Meg\n"); 1034 for (start = 0; start < 1024 * 1024; start += MMU_PAGESIZE) { 1035 #if defined(__xpv) 1036 map_ma_at_va(start, start, 0); 1037 #else /* __xpv */ 1038 map_pa_at_va(start, start, 0); 1039 #endif /* __xpv */ 1040 } 1041 1042 #if !defined(__xpv) 1043 for (i = 0; i < memlists_used; ++i) { 1044 start = memlists[i].addr; 1045 1046 end = start + memlists[i].size; 1047 1048 if (map_debug) 1049 dboot_printf("1:1 map pa=%" PRIx64 "..%" PRIx64 "\n", 1050 start, end); 1051 while (start < end && start < next_avail_addr) { 1052 map_pa_at_va(start, start, 0); 1053 start += MMU_PAGESIZE; 1054 } 1055 } 1056 #endif /* !__xpv */ 1057 1058 DBG_MSG("\nPage tables constructed\n"); 1059 } 1060 1061 #define NO_MULTIBOOT \ 1062 "multiboot is no longer used to boot the Solaris Operating System.\n\ 1063 The grub entry should be changed to:\n\ 1064 kernel$ /platform/i86pc/kernel/$ISADIR/unix\n\ 1065 module$ /platform/i86pc/$ISADIR/boot_archive\n\ 1066 See http://www.sun.com/msg/SUNOS-8000-AK for details.\n" 1067 1068 /* 1069 * startup_kernel has a pretty simple job. It builds pagetables which reflect 1070 * 1:1 mappings for all memory in use. It then also adds mappings for 1071 * the kernel nucleus at virtual address of target_kernel_text using large page 1072 * mappings. The page table pages are also accessible at 1:1 mapped 1073 * virtual addresses. 1074 */ 1075 /*ARGSUSED*/ 1076 void 1077 startup_kernel(void) 1078 { 1079 char *cmdline; 1080 uintptr_t addr; 1081 #if defined(__xpv) 1082 physdev_set_iopl_t set_iopl; 1083 #endif /* __xpv */ 1084 1085 /* 1086 * At this point we are executing in a 32 bit real mode. 1087 */ 1088 #if defined(__xpv) 1089 cmdline = (char *)xen_info->cmd_line; 1090 #else /* __xpv */ 1091 cmdline = (char *)mb_info->cmdline; 1092 #endif /* __xpv */ 1093 1094 prom_debug = (strstr(cmdline, "prom_debug") != NULL); 1095 map_debug = (strstr(cmdline, "map_debug") != NULL); 1096 1097 #if defined(__xpv) 1098 /* 1099 * For dom0, before we initialize the console subsystem we'll 1100 * need to enable io operations, so set I/O priveldge level to 1. 1101 */ 1102 if (DOMAIN_IS_INITDOMAIN(xen_info)) { 1103 set_iopl.iopl = 1; 1104 (void) HYPERVISOR_physdev_op(PHYSDEVOP_set_iopl, &set_iopl); 1105 } 1106 #endif /* __xpv */ 1107 1108 bcons_init(cmdline); 1109 DBG_MSG("\n\nSolaris prekernel set: "); 1110 DBG_MSG(cmdline); 1111 DBG_MSG("\n"); 1112 1113 if (strstr(cmdline, "multiboot") != NULL) { 1114 dboot_panic(NO_MULTIBOOT); 1115 } 1116 1117 /* 1118 * boot info must be 16 byte aligned for 64 bit kernel ABI 1119 */ 1120 addr = (uintptr_t)boot_info; 1121 addr = (addr + 0xf) & ~0xf; 1122 bi = (struct xboot_info *)addr; 1123 DBG((uintptr_t)bi); 1124 bi->bi_cmdline = (native_ptr_t)(uintptr_t)cmdline; 1125 1126 /* 1127 * Need correct target_kernel_text value 1128 */ 1129 #if defined(_BOOT_TARGET_amd64) 1130 target_kernel_text = KERNEL_TEXT_amd64; 1131 #elif defined(__xpv) 1132 target_kernel_text = KERNEL_TEXT_i386_xpv; 1133 #else 1134 target_kernel_text = KERNEL_TEXT_i386; 1135 #endif 1136 DBG(target_kernel_text); 1137 1138 #if defined(__xpv) 1139 1140 /* 1141 * XXPV Derive this stuff from CPUID / what the hypervisor has enabled 1142 */ 1143 1144 #if defined(_BOOT_TARGET_amd64) 1145 /* 1146 * 64-bit hypervisor. 1147 */ 1148 amd64_support = 1; 1149 pae_support = 1; 1150 1151 #else /* _BOOT_TARGET_amd64 */ 1152 1153 /* 1154 * See if we are running on a PAE Hypervisor 1155 */ 1156 { 1157 xen_capabilities_info_t caps; 1158 1159 if (HYPERVISOR_xen_version(XENVER_capabilities, &caps) != 0) 1160 dboot_panic("HYPERVISOR_xen_version(caps) failed"); 1161 caps[sizeof (caps) - 1] = 0; 1162 if (prom_debug) 1163 dboot_printf("xen capabilities %s\n", caps); 1164 if (strstr(caps, "x86_32p") != NULL) 1165 pae_support = 1; 1166 } 1167 1168 #endif /* _BOOT_TARGET_amd64 */ 1169 { 1170 xen_platform_parameters_t p; 1171 1172 if (HYPERVISOR_xen_version(XENVER_platform_parameters, &p) != 0) 1173 dboot_panic("HYPERVISOR_xen_version(parms) failed"); 1174 DBG(p.virt_start); 1175 mfn_to_pfn_mapping = (pfn_t *)(xen_virt_start = p.virt_start); 1176 } 1177 1178 /* 1179 * The hypervisor loads stuff starting at 1Gig 1180 */ 1181 mfn_base = ONE_GIG; 1182 DBG(mfn_base); 1183 1184 /* 1185 * enable writable page table mode for the hypervisor 1186 */ 1187 if (HYPERVISOR_vm_assist(VMASST_CMD_enable, 1188 VMASST_TYPE_writable_pagetables) < 0) 1189 dboot_panic("HYPERVISOR_vm_assist(writable_pagetables) failed"); 1190 1191 /* 1192 * check for NX support 1193 */ 1194 if (pae_support) { 1195 uint32_t eax = 0x80000000; 1196 uint32_t edx = get_cpuid_edx(&eax); 1197 1198 if (eax >= 0x80000001) { 1199 eax = 0x80000001; 1200 edx = get_cpuid_edx(&eax); 1201 if (edx & CPUID_AMD_EDX_NX) 1202 NX_support = 1; 1203 } 1204 } 1205 1206 #if !defined(_BOOT_TARGET_amd64) 1207 1208 /* 1209 * The 32-bit hypervisor uses segmentation to protect itself from 1210 * guests. This means when a guest attempts to install a flat 4GB 1211 * code or data descriptor the 32-bit hypervisor will protect itself 1212 * by silently shrinking the segment such that if the guest attempts 1213 * any access where the hypervisor lives a #gp fault is generated. 1214 * The problem is that some applications expect a full 4GB flat 1215 * segment for their current thread pointer and will use negative 1216 * offset segment wrap around to access data. TLS support in linux 1217 * brand is one example of this. 1218 * 1219 * The 32-bit hypervisor can catch the #gp fault in these cases 1220 * and emulate the access without passing the #gp fault to the guest 1221 * but only if VMASST_TYPE_4gb_segments is explicitly turned on. 1222 * Seems like this should have been the default. 1223 * Either way, we want the hypervisor -- and not Solaris -- to deal 1224 * to deal with emulating these accesses. 1225 */ 1226 if (HYPERVISOR_vm_assist(VMASST_CMD_enable, 1227 VMASST_TYPE_4gb_segments) < 0) 1228 dboot_panic("HYPERVISOR_vm_assist(4gb_segments) failed"); 1229 #endif /* !_BOOT_TARGET_amd64 */ 1230 1231 #else /* __xpv */ 1232 1233 /* 1234 * use cpuid to enable MMU features 1235 */ 1236 if (have_cpuid()) { 1237 uint32_t eax, edx; 1238 1239 eax = 1; 1240 edx = get_cpuid_edx(&eax); 1241 if (edx & CPUID_INTC_EDX_PSE) 1242 largepage_support = 1; 1243 if (edx & CPUID_INTC_EDX_PGE) 1244 pge_support = 1; 1245 if (edx & CPUID_INTC_EDX_PAE) 1246 pae_support = 1; 1247 1248 eax = 0x80000000; 1249 edx = get_cpuid_edx(&eax); 1250 if (eax >= 0x80000001) { 1251 eax = 0x80000001; 1252 edx = get_cpuid_edx(&eax); 1253 if (edx & CPUID_AMD_EDX_LM) 1254 amd64_support = 1; 1255 if (edx & CPUID_AMD_EDX_NX) 1256 NX_support = 1; 1257 } 1258 } else { 1259 dboot_printf("cpuid not supported\n"); 1260 } 1261 #endif /* __xpv */ 1262 1263 1264 #if defined(_BOOT_TARGET_amd64) 1265 if (amd64_support == 0) 1266 dboot_panic("long mode not supported, rebooting"); 1267 else if (pae_support == 0) 1268 dboot_panic("long mode, but no PAE; rebooting"); 1269 #else 1270 /* 1271 * Allow the command line to over-ride use of PAE for 32 bit. 1272 */ 1273 if (strstr(cmdline, "disablePAE=true") != NULL) { 1274 pae_support = 0; 1275 NX_support = 0; 1276 amd64_support = 0; 1277 } 1278 #endif 1279 1280 /* 1281 * initialize the simple memory allocator 1282 */ 1283 init_mem_alloc(); 1284 1285 #if !defined(__xpv) && !defined(_BOOT_TARGET_amd64) 1286 /* 1287 * disable PAE on 32 bit h/w w/o NX and < 4Gig of memory 1288 */ 1289 if (max_mem < FOUR_GIG && NX_support == 0) 1290 pae_support = 0; 1291 #endif 1292 1293 /* 1294 * configure mmu information 1295 */ 1296 if (pae_support) { 1297 shift_amt = shift_amt_pae; 1298 ptes_per_table = 512; 1299 pte_size = 8; 1300 lpagesize = TWO_MEG; 1301 #if defined(_BOOT_TARGET_amd64) 1302 top_level = 3; 1303 #else 1304 top_level = 2; 1305 #endif 1306 } else { 1307 pae_support = 0; 1308 NX_support = 0; 1309 shift_amt = shift_amt_nopae; 1310 ptes_per_table = 1024; 1311 pte_size = 4; 1312 lpagesize = FOUR_MEG; 1313 top_level = 1; 1314 } 1315 1316 DBG(pge_support); 1317 DBG(NX_support); 1318 DBG(largepage_support); 1319 DBG(amd64_support); 1320 DBG(top_level); 1321 DBG(pte_size); 1322 DBG(ptes_per_table); 1323 DBG(lpagesize); 1324 1325 #if defined(__xpv) 1326 ktext_phys = ONE_GIG; /* from UNIX Mapfile */ 1327 #else 1328 ktext_phys = FOUR_MEG; /* from UNIX Mapfile */ 1329 #endif 1330 1331 #if !defined(__xpv) && defined(_BOOT_TARGET_amd64) 1332 /* 1333 * For grub, copy kernel bits from the ELF64 file to final place. 1334 */ 1335 DBG_MSG("\nAllocating nucleus pages.\n"); 1336 ktext_phys = (uintptr_t)do_mem_alloc(ksize, FOUR_MEG); 1337 if (ktext_phys == 0) 1338 dboot_panic("failed to allocate aligned kernel memory"); 1339 if (dboot_elfload64(mb_header.load_addr) != 0) 1340 dboot_panic("failed to parse kernel ELF image, rebooting"); 1341 #endif 1342 1343 DBG(ktext_phys); 1344 1345 /* 1346 * Allocate page tables. 1347 */ 1348 build_page_tables(); 1349 1350 /* 1351 * return to assembly code to switch to running kernel 1352 */ 1353 entry_addr_low = (uint32_t)target_kernel_text; 1354 DBG(entry_addr_low); 1355 bi->bi_use_largepage = largepage_support; 1356 bi->bi_use_pae = pae_support; 1357 bi->bi_use_pge = pge_support; 1358 bi->bi_use_nx = NX_support; 1359 1360 #if defined(__xpv) 1361 1362 bi->bi_next_paddr = next_avail_addr - mfn_base; 1363 DBG(bi->bi_next_paddr); 1364 bi->bi_next_vaddr = (native_ptr_t)next_avail_addr; 1365 DBG(bi->bi_next_vaddr); 1366 1367 /* 1368 * unmap unused pages in start area to make them available for DMA 1369 */ 1370 while (next_avail_addr < scratch_end) { 1371 (void) HYPERVISOR_update_va_mapping(next_avail_addr, 1372 0, UVMF_INVLPG | UVMF_LOCAL); 1373 next_avail_addr += MMU_PAGESIZE; 1374 } 1375 1376 bi->bi_xen_start_info = (uintptr_t)xen_info; 1377 DBG((uintptr_t)HYPERVISOR_shared_info); 1378 bi->bi_shared_info = (native_ptr_t)HYPERVISOR_shared_info; 1379 bi->bi_top_page_table = (uintptr_t)top_page_table - mfn_base; 1380 1381 #else /* __xpv */ 1382 1383 bi->bi_next_paddr = next_avail_addr; 1384 DBG(bi->bi_next_paddr); 1385 bi->bi_next_vaddr = (uintptr_t)next_avail_addr; 1386 DBG(bi->bi_next_vaddr); 1387 bi->bi_mb_info = (uintptr_t)mb_info; 1388 bi->bi_top_page_table = (uintptr_t)top_page_table; 1389 1390 #endif /* __xpv */ 1391 1392 bi->bi_kseg_size = FOUR_MEG; 1393 DBG(bi->bi_kseg_size); 1394 1395 #ifndef __xpv 1396 if (prom_debug) 1397 dump_tables(); 1398 #endif 1399 1400 DBG_MSG("\n\n*** DBOOT DONE -- back to asm to jump to kernel\n\n"); 1401 } 1402