1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2009 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 27 /* 28 * 29 * xenbus_xs.c 30 * 31 * This is the kernel equivalent of the "xs" library. We don't need everything 32 * and we use xenbus_comms for communication. 33 * 34 * Copyright (C) 2005 Rusty Russell, IBM Corporation 35 * 36 * This file may be distributed separately from the Linux kernel, or 37 * incorporated into other software packages, subject to the following license: 38 * 39 * Permission is hereby granted, free of charge, to any person obtaining a copy 40 * of this source file (the "Software"), to deal in the Software without 41 * restriction, including without limitation the rights to use, copy, modify, 42 * merge, publish, distribute, sublicense, and/or sell copies of the Software, 43 * and to permit persons to whom the Software is furnished to do so, subject to 44 * the following conditions: 45 * 46 * The above copyright notice and this permission notice shall be included in 47 * all copies or substantial portions of the Software. 48 * 49 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 50 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 51 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE 52 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 53 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING 54 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS 55 * IN THE SOFTWARE. 56 */ 57 58 /* 59 * NOTE: To future maintainers of the Solaris version of this file: 60 * I found the Linux version of this code to be very disgusting in 61 * overloading pointers and error codes into void * return values. 62 * The main difference you will find is that all such usage is changed 63 * to pass pointers to void* to be filled in with return values and 64 * the functions return error codes. 65 */ 66 67 #include <sys/errno.h> 68 #include <sys/types.h> 69 #include <sys/sysmacros.h> 70 #include <sys/uio.h> 71 #include <sys/mutex.h> 72 #include <sys/condvar.h> 73 #include <sys/rwlock.h> 74 #include <sys/disp.h> 75 #include <sys/ddi.h> 76 #include <sys/sunddi.h> 77 #include <sys/avintr.h> 78 #include <sys/cmn_err.h> 79 #include <sys/mach_mmu.h> 80 #include <util/sscanf.h> 81 #define _XSD_ERRORS_DEFINED 82 #ifdef XPV_HVM_DRIVER 83 #include <sys/xpv_support.h> 84 #endif 85 #include <sys/hypervisor.h> 86 #include <sys/taskq.h> 87 #include <sys/sdt.h> 88 #include <xen/sys/xenbus_impl.h> 89 #include <xen/sys/xenbus_comms.h> 90 #include <xen/sys/xendev.h> 91 #include <xen/public/io/xs_wire.h> 92 93 #define streq(a, b) (strcmp((a), (b)) == 0) 94 95 #define list_empty(list) (list_head(list) == NULL) 96 97 struct xs_stored_msg { 98 list_t list; 99 100 struct xsd_sockmsg hdr; 101 102 union { 103 /* Queued replies. */ 104 struct { 105 char *body; 106 } reply; 107 108 /* Queued watch events. */ 109 struct { 110 struct xenbus_watch *handle; 111 char **vec; 112 unsigned int vec_size; 113 } watch; 114 } un; 115 }; 116 117 static struct xs_handle { 118 /* A list of replies. Currently only one will ever be outstanding. */ 119 list_t reply_list; 120 kmutex_t reply_lock; 121 kcondvar_t reply_cv; 122 123 /* One request at a time. */ 124 kmutex_t request_mutex; 125 126 /* Protect transactions against save/restore. */ 127 krwlock_t suspend_lock; 128 } xs_state; 129 130 static int last_req_id; 131 132 /* 133 * List of clients wanting a xenstore up notification, and a lock to protect it 134 */ 135 static boolean_t xenstore_up; 136 static list_t notify_list; 137 static kmutex_t notify_list_lock; 138 static taskq_t *xenbus_taskq; 139 140 /* List of registered watches, and a lock to protect it. */ 141 static list_t watches; 142 static kmutex_t watches_lock; 143 144 /* List of pending watch callback events, and a lock to protect it. */ 145 static list_t watch_events; 146 static kmutex_t watch_events_lock; 147 148 /* 149 * Details of the xenwatch callback kernel thread. The thread waits on the 150 * watch_events_cv for work to do (queued on watch_events list). When it 151 * wakes up it acquires the xenwatch_mutex before reading the list and 152 * carrying out work. 153 */ 154 static kmutex_t xenwatch_mutex; 155 static kcondvar_t watch_events_cv; 156 157 static int process_msg(void); 158 159 static int 160 get_error(const char *errorstring) 161 { 162 unsigned int i; 163 164 for (i = 0; !streq(errorstring, xsd_errors[i].errstring); i++) { 165 if (i == (sizeof (xsd_errors) / sizeof (xsd_errors[0])) - 1) { 166 cmn_err(CE_WARN, 167 "XENBUS xen store gave: unknown error %s", 168 errorstring); 169 return (EINVAL); 170 } 171 } 172 return (xsd_errors[i].errnum); 173 } 174 175 /* 176 * Read a synchronous reply from xenstore. Since we can return early before 177 * reading a relevant reply, we discard any messages not matching the request 178 * ID. Caller must free returned message on success. 179 */ 180 static int 181 read_reply(struct xsd_sockmsg *req_hdr, struct xs_stored_msg **reply) 182 { 183 extern int do_polled_io; 184 185 mutex_enter(&xs_state.reply_lock); 186 187 for (;;) { 188 while (list_empty(&xs_state.reply_list)) { 189 if (interrupts_unleashed && !do_polled_io) { 190 if (cv_wait_sig(&xs_state.reply_cv, 191 &xs_state.reply_lock) == 0) { 192 mutex_exit(&xs_state.reply_lock); 193 *reply = NULL; 194 return (EINTR); 195 } 196 } else { /* polled mode needed for early probes */ 197 mutex_exit(&xs_state.reply_lock); 198 (void) HYPERVISOR_yield(); 199 (void) process_msg(); 200 mutex_enter(&xs_state.reply_lock); 201 } 202 } 203 204 *reply = list_head(&xs_state.reply_list); 205 list_remove(&xs_state.reply_list, *reply); 206 207 if ((*reply)->hdr.req_id == req_hdr->req_id) 208 break; 209 } 210 211 mutex_exit(&xs_state.reply_lock); 212 return (0); 213 } 214 215 /* Emergency write. */ 216 void 217 xenbus_debug_write(const char *str, unsigned int count) 218 { 219 struct xsd_sockmsg msg = { 0 }; 220 221 msg.type = XS_DEBUG; 222 msg.len = sizeof ("print") + count + 1; 223 224 mutex_enter(&xs_state.request_mutex); 225 (void) xb_write(&msg, sizeof (msg)); 226 (void) xb_write("print", sizeof ("print")); 227 (void) xb_write(str, count); 228 (void) xb_write("", 1); 229 mutex_exit(&xs_state.request_mutex); 230 } 231 232 /* 233 * This is pretty unpleasant. First off, there's the horrible logic around 234 * suspend_lock and transactions. Also, we can be interrupted either before we 235 * write a message, or before we receive a reply. A client that wants to 236 * survive this can't know which case happened. Luckily all clients don't care 237 * about signals currently, and the alternative (a hard wait on a userspace 238 * daemon) isn't exactly preferable. Caller must free 'reply' on success. 239 */ 240 int 241 xenbus_dev_request_and_reply(struct xsd_sockmsg *msg, void **reply) 242 { 243 struct xsd_sockmsg req_msg = *msg; 244 struct xs_stored_msg *reply_msg = NULL; 245 int err; 246 247 if (req_msg.type == XS_TRANSACTION_START) 248 rw_enter(&xs_state.suspend_lock, RW_READER); 249 250 mutex_enter(&xs_state.request_mutex); 251 252 msg->req_id = last_req_id++; 253 254 err = xb_write(msg, sizeof (*msg) + msg->len); 255 if (err) { 256 if (req_msg.type == XS_TRANSACTION_START) 257 rw_exit(&xs_state.suspend_lock); 258 msg->type = XS_ERROR; 259 *reply = NULL; 260 goto out; 261 } 262 263 err = read_reply(msg, &reply_msg); 264 265 if (err) { 266 if (msg->type == XS_TRANSACTION_START) 267 rw_exit(&xs_state.suspend_lock); 268 *reply = NULL; 269 goto out; 270 } 271 272 *reply = reply_msg->un.reply.body; 273 *msg = reply_msg->hdr; 274 275 if (reply_msg->hdr.type == XS_TRANSACTION_END) 276 rw_exit(&xs_state.suspend_lock); 277 278 out: 279 if (reply_msg != NULL) 280 kmem_free(reply_msg, sizeof (*reply_msg)); 281 282 mutex_exit(&xs_state.request_mutex); 283 return (err); 284 } 285 286 /* 287 * Send message to xs, return errcode, rval filled in with pointer 288 * to kmem_alloc'ed reply. 289 */ 290 static int 291 xs_talkv(xenbus_transaction_t t, 292 enum xsd_sockmsg_type type, 293 const iovec_t *iovec, 294 unsigned int num_vecs, 295 void **rval, 296 unsigned int *len) 297 { 298 struct xsd_sockmsg msg; 299 struct xs_stored_msg *reply_msg; 300 char *reply; 301 unsigned int i; 302 int err; 303 304 msg.tx_id = (uint32_t)(unsigned long)t; 305 msg.type = type; 306 msg.len = 0; 307 for (i = 0; i < num_vecs; i++) 308 msg.len += iovec[i].iov_len; 309 310 mutex_enter(&xs_state.request_mutex); 311 312 msg.req_id = last_req_id++; 313 314 err = xb_write(&msg, sizeof (msg)); 315 if (err) { 316 mutex_exit(&xs_state.request_mutex); 317 return (err); 318 } 319 320 for (i = 0; i < num_vecs; i++) { 321 err = xb_write(iovec[i].iov_base, iovec[i].iov_len); 322 if (err) { 323 mutex_exit(&xs_state.request_mutex); 324 return (err); 325 } 326 } 327 328 err = read_reply(&msg, &reply_msg); 329 330 mutex_exit(&xs_state.request_mutex); 331 332 if (err) 333 return (err); 334 335 reply = reply_msg->un.reply.body; 336 337 if (reply_msg->hdr.type == XS_ERROR) { 338 err = get_error(reply); 339 kmem_free(reply, reply_msg->hdr.len + 1); 340 goto out; 341 } 342 343 if (len != NULL) 344 *len = reply_msg->hdr.len + 1; 345 346 ASSERT(reply_msg->hdr.type == type); 347 348 if (rval != NULL) 349 *rval = reply; 350 else 351 kmem_free(reply, reply_msg->hdr.len + 1); 352 353 out: 354 kmem_free(reply_msg, sizeof (*reply_msg)); 355 return (err); 356 } 357 358 /* Simplified version of xs_talkv: single message. */ 359 static int 360 xs_single(xenbus_transaction_t t, 361 enum xsd_sockmsg_type type, 362 const char *string, void **ret, 363 unsigned int *len) 364 { 365 iovec_t iovec; 366 367 iovec.iov_base = (char *)string; 368 iovec.iov_len = strlen(string) + 1; 369 return (xs_talkv(t, type, &iovec, 1, ret, len)); 370 } 371 372 static unsigned int 373 count_strings(const char *strings, unsigned int len) 374 { 375 unsigned int num; 376 const char *p; 377 378 for (p = strings, num = 0; p < strings + len; p += strlen(p) + 1) 379 num++; 380 381 return (num); 382 } 383 384 /* Return the path to dir with /name appended. Buffer must be kmem_free()'ed */ 385 static char * 386 join(const char *dir, const char *name) 387 { 388 char *buffer; 389 size_t slashlen; 390 391 slashlen = streq(name, "") ? 0 : 1; 392 buffer = kmem_alloc(strlen(dir) + slashlen + strlen(name) + 1, 393 KM_SLEEP); 394 395 (void) strcpy(buffer, dir); 396 if (slashlen != 0) { 397 (void) strcat(buffer, "/"); 398 (void) strcat(buffer, name); 399 } 400 return (buffer); 401 } 402 403 static char ** 404 split(char *strings, unsigned int len, unsigned int *num) 405 { 406 char *p, **ret; 407 408 /* Count the strings. */ 409 if ((*num = count_strings(strings, len - 1)) == 0) 410 return (NULL); 411 412 /* Transfer to one big alloc for easy freeing. */ 413 ret = kmem_alloc(*num * sizeof (char *) + (len - 1), KM_SLEEP); 414 (void) memcpy(&ret[*num], strings, len - 1); 415 kmem_free(strings, len); 416 417 strings = (char *)&ret[*num]; 418 for (p = strings, *num = 0; p < strings + (len - 1); 419 p += strlen(p) + 1) { 420 ret[(*num)++] = p; 421 } 422 423 return (ret); 424 } 425 426 char ** 427 xenbus_directory(xenbus_transaction_t t, 428 const char *dir, const char *node, unsigned int *num) 429 { 430 char *strings, *path; 431 unsigned int len; 432 int err; 433 434 path = join(dir, node); 435 err = xs_single(t, XS_DIRECTORY, path, (void **)&strings, &len); 436 kmem_free(path, strlen(path) + 1); 437 if (err != 0 || strings == NULL) { 438 /* sigh, we lose error code info here */ 439 *num = 0; 440 return (NULL); 441 } 442 443 return (split(strings, len, num)); 444 } 445 446 /* Check if a path exists. */ 447 boolean_t 448 xenbus_exists(const char *dir, const char *node) 449 { 450 void *p; 451 uint_t n; 452 453 if (xenbus_read(XBT_NULL, dir, node, &p, &n) != 0) 454 return (B_FALSE); 455 kmem_free(p, n); 456 return (B_TRUE); 457 } 458 459 /* Check if a directory path exists. */ 460 boolean_t 461 xenbus_exists_dir(const char *dir, const char *node) 462 { 463 char **d; 464 unsigned int dir_n; 465 int i, len; 466 467 d = xenbus_directory(XBT_NULL, dir, node, &dir_n); 468 if (d == NULL) 469 return (B_FALSE); 470 for (i = 0, len = 0; i < dir_n; i++) 471 len += strlen(d[i]) + 1 + sizeof (char *); 472 kmem_free(d, len); 473 return (B_TRUE); 474 } 475 476 /* 477 * Get the value of a single file. 478 * Returns a kmem_alloced value in retp: call kmem_free() on it after use. 479 * len indicates length in bytes. 480 */ 481 int 482 xenbus_read(xenbus_transaction_t t, 483 const char *dir, const char *node, void **retp, unsigned int *len) 484 { 485 char *path; 486 int err; 487 488 path = join(dir, node); 489 err = xs_single(t, XS_READ, path, retp, len); 490 kmem_free(path, strlen(path) + 1); 491 return (err); 492 } 493 494 int 495 xenbus_read_str(const char *dir, const char *node, char **retp) 496 { 497 uint_t n; 498 int err; 499 char *str; 500 501 /* 502 * Since we access the xenbus value immediatly we can't be 503 * part of a transaction. 504 */ 505 if ((err = xenbus_read(XBT_NULL, dir, node, (void **)&str, &n)) != 0) 506 return (err); 507 ASSERT((str != NULL) && (n > 0)); 508 509 /* 510 * Why bother with this? Because xenbus is truly annoying in the 511 * fact that when it returns a string, it doesn't guarantee that 512 * the memory that holds the string is of size strlen() + 1. 513 * This forces callers to keep track of the size of the memory 514 * containing the string. Ugh. We'll work around this by 515 * re-allocate strings to always be of size strlen() + 1. 516 */ 517 *retp = strdup(str); 518 kmem_free(str, n); 519 return (0); 520 } 521 522 /* 523 * Write the value of a single file. 524 * Returns err on failure. 525 */ 526 int 527 xenbus_write(xenbus_transaction_t t, 528 const char *dir, const char *node, const char *string) 529 { 530 char *path; 531 iovec_t iovec[2]; 532 int ret; 533 534 path = join(dir, node); 535 536 iovec[0].iov_base = (void *)path; 537 iovec[0].iov_len = strlen(path) + 1; 538 iovec[1].iov_base = (void *)string; 539 iovec[1].iov_len = strlen(string); 540 541 ret = xs_talkv(t, XS_WRITE, iovec, 2, NULL, NULL); 542 kmem_free(path, iovec[0].iov_len); 543 return (ret); 544 } 545 546 /* Create a new directory. */ 547 int 548 xenbus_mkdir(xenbus_transaction_t t, const char *dir, const char *node) 549 { 550 char *path; 551 int ret; 552 553 path = join(dir, node); 554 ret = xs_single(t, XS_MKDIR, path, NULL, NULL); 555 kmem_free(path, strlen(path) + 1); 556 return (ret); 557 } 558 559 /* Destroy a file or directory (directories must be empty). */ 560 int 561 xenbus_rm(xenbus_transaction_t t, const char *dir, const char *node) 562 { 563 char *path; 564 int ret; 565 566 path = join(dir, node); 567 ret = xs_single(t, XS_RM, path, NULL, NULL); 568 kmem_free(path, strlen(path) + 1); 569 return (ret); 570 } 571 572 /* 573 * Start a transaction: changes by others will not be seen during this 574 * transaction, and changes will not be visible to others until end. 575 */ 576 int 577 xenbus_transaction_start(xenbus_transaction_t *t) 578 { 579 void *id_str; 580 unsigned long id; 581 int err; 582 unsigned int len; 583 584 rw_enter(&xs_state.suspend_lock, RW_READER); 585 586 err = xs_single(XBT_NULL, XS_TRANSACTION_START, "", &id_str, &len); 587 if (err) { 588 rw_exit(&xs_state.suspend_lock); 589 return (err); 590 } 591 592 (void) ddi_strtoul((char *)id_str, NULL, 0, &id); 593 *t = (xenbus_transaction_t)id; 594 kmem_free(id_str, len); 595 596 return (0); 597 } 598 599 /* 600 * End a transaction. 601 * If abandon is true, transaction is discarded instead of committed. 602 */ 603 int 604 xenbus_transaction_end(xenbus_transaction_t t, int abort) 605 { 606 char abortstr[2]; 607 int err; 608 609 if (abort) 610 (void) strcpy(abortstr, "F"); 611 else 612 (void) strcpy(abortstr, "T"); 613 614 err = xs_single(t, XS_TRANSACTION_END, abortstr, NULL, NULL); 615 616 rw_exit(&xs_state.suspend_lock); 617 618 return (err); 619 } 620 621 /* 622 * Single read and scanf: returns errno or 0. This can only handle a single 623 * conversion specifier. 624 */ 625 /* SCANFLIKE4 */ 626 int 627 xenbus_scanf(xenbus_transaction_t t, 628 const char *dir, const char *node, const char *fmt, ...) 629 { 630 va_list ap; 631 int ret; 632 char *val; 633 unsigned int len; 634 635 ret = xenbus_read(t, dir, node, (void **)&val, &len); 636 if (ret) 637 return (ret); 638 639 va_start(ap, fmt); 640 if (vsscanf(val, fmt, ap) != 1) 641 ret = ERANGE; 642 va_end(ap); 643 kmem_free(val, len); 644 return (ret); 645 } 646 647 /* Single printf and write: returns errno or 0. */ 648 /* PRINTFLIKE4 */ 649 int 650 xenbus_printf(xenbus_transaction_t t, 651 const char *dir, const char *node, const char *fmt, ...) 652 { 653 va_list ap; 654 int ret; 655 #define PRINTF_BUFFER_SIZE 4096 656 char *printf_buffer; 657 658 printf_buffer = kmem_alloc(PRINTF_BUFFER_SIZE, KM_SLEEP); 659 660 va_start(ap, fmt); 661 ret = vsnprintf(printf_buffer, PRINTF_BUFFER_SIZE, fmt, ap); 662 va_end(ap); 663 664 ASSERT(ret <= PRINTF_BUFFER_SIZE-1); 665 ret = xenbus_write(t, dir, node, printf_buffer); 666 667 kmem_free(printf_buffer, PRINTF_BUFFER_SIZE); 668 669 return (ret); 670 } 671 672 673 /* Takes tuples of names, scanf-style args, and void **, NULL terminated. */ 674 int 675 xenbus_gather(xenbus_transaction_t t, const char *dir, ...) 676 { 677 va_list ap; 678 const char *name; 679 int ret = 0; 680 unsigned int len; 681 682 va_start(ap, dir); 683 while (ret == 0 && (name = va_arg(ap, char *)) != NULL) { 684 const char *fmt = va_arg(ap, char *); 685 void *result = va_arg(ap, void *); 686 char *p; 687 688 ret = xenbus_read(t, dir, name, (void **)&p, &len); 689 if (ret) 690 break; 691 if (fmt) { 692 ASSERT(result != NULL); 693 if (sscanf(p, fmt, result) != 1) 694 ret = EINVAL; 695 kmem_free(p, len); 696 } else 697 *(char **)result = p; 698 } 699 va_end(ap); 700 return (ret); 701 } 702 703 static int 704 xs_watch(const char *path, const char *token) 705 { 706 iovec_t iov[2]; 707 708 iov[0].iov_base = (void *)path; 709 iov[0].iov_len = strlen(path) + 1; 710 iov[1].iov_base = (void *)token; 711 iov[1].iov_len = strlen(token) + 1; 712 713 return (xs_talkv(XBT_NULL, XS_WATCH, iov, 2, NULL, NULL)); 714 } 715 716 static int 717 xs_unwatch(const char *path, const char *token) 718 { 719 iovec_t iov[2]; 720 721 iov[0].iov_base = (char *)path; 722 iov[0].iov_len = strlen(path) + 1; 723 iov[1].iov_base = (char *)token; 724 iov[1].iov_len = strlen(token) + 1; 725 726 return (xs_talkv(XBT_NULL, XS_UNWATCH, iov, 2, NULL, NULL)); 727 } 728 729 static struct xenbus_watch * 730 find_watch(const char *token) 731 { 732 struct xenbus_watch *i, *cmp; 733 734 (void) ddi_strtoul(token, NULL, 16, (unsigned long *)&cmp); 735 736 for (i = list_head(&watches); i != NULL; i = list_next(&watches, i)) 737 if (i == cmp) 738 break; 739 740 return (i); 741 } 742 743 /* Register a xenstore state notify callback */ 744 int 745 xs_register_xenbus_callback(void (*callback)(int)) 746 { 747 struct xenbus_notify *xbn, *xnp; 748 749 xbn = kmem_alloc(sizeof (struct xenbus_notify), KM_SLEEP); 750 xbn->notify_func = callback; 751 mutex_enter(¬ify_list_lock); 752 /* 753 * Make sure not already on the list 754 */ 755 xnp = list_head(¬ify_list); 756 for (; xnp != NULL; xnp = list_next(¬ify_list, xnp)) { 757 if (xnp->notify_func == callback) { 758 kmem_free(xbn, sizeof (struct xenbus_notify)); 759 mutex_exit(¬ify_list_lock); 760 return (EEXIST); 761 } 762 } 763 xnp = xbn; 764 list_insert_tail(¬ify_list, xbn); 765 done: 766 if (xenstore_up) 767 xnp->notify_func(XENSTORE_UP); 768 mutex_exit(¬ify_list_lock); 769 return (0); 770 } 771 772 /* 773 * Notify clients of xenstore state 774 */ 775 static void 776 do_notify_callbacks(void *arg) 777 { 778 struct xenbus_notify *xnp; 779 780 mutex_enter(¬ify_list_lock); 781 xnp = list_head(¬ify_list); 782 for (; xnp != NULL; xnp = list_next(¬ify_list, xnp)) { 783 xnp->notify_func((int)((uintptr_t)arg)); 784 } 785 mutex_exit(¬ify_list_lock); 786 } 787 788 void 789 xs_notify_xenstore_up(void) 790 { 791 xenstore_up = B_TRUE; 792 (void) taskq_dispatch(xenbus_taskq, do_notify_callbacks, 793 (void *)XENSTORE_UP, 0); 794 } 795 796 void 797 xs_notify_xenstore_down(void) 798 { 799 xenstore_up = B_FALSE; 800 (void) taskq_dispatch(xenbus_taskq, do_notify_callbacks, 801 (void *)XENSTORE_DOWN, 0); 802 } 803 804 /* Register callback to watch this node. */ 805 int 806 register_xenbus_watch(struct xenbus_watch *watch) 807 { 808 /* Pointer in ascii is the token. */ 809 char token[sizeof (watch) * 2 + 1]; 810 int err; 811 812 ASSERT(xenstore_up); 813 (void) snprintf(token, sizeof (token), "%lX", (long)watch); 814 815 rw_enter(&xs_state.suspend_lock, RW_READER); 816 817 mutex_enter(&watches_lock); 818 /* 819 * May be re-registering a watch if xenstore daemon was restarted 820 */ 821 if (find_watch(token) == NULL) 822 list_insert_tail(&watches, watch); 823 mutex_exit(&watches_lock); 824 825 DTRACE_XPV3(xenbus__register__watch, const char *, watch->node, 826 uintptr_t, watch->callback, struct xenbus_watch *, watch); 827 828 err = xs_watch(watch->node, token); 829 830 /* Ignore errors due to multiple registration. */ 831 if ((err != 0) && (err != EEXIST)) { 832 mutex_enter(&watches_lock); 833 list_remove(&watches, watch); 834 mutex_exit(&watches_lock); 835 } 836 837 rw_exit(&xs_state.suspend_lock); 838 839 return (err); 840 } 841 842 static void 843 free_stored_msg(struct xs_stored_msg *msg) 844 { 845 int i, len = 0; 846 847 for (i = 0; i < msg->un.watch.vec_size; i++) 848 len += strlen(msg->un.watch.vec[i]) + 1 + sizeof (char *); 849 kmem_free(msg->un.watch.vec, len); 850 kmem_free(msg, sizeof (*msg)); 851 } 852 853 void 854 unregister_xenbus_watch(struct xenbus_watch *watch) 855 { 856 struct xs_stored_msg *msg; 857 char token[sizeof (watch) * 2 + 1]; 858 int err; 859 860 (void) snprintf(token, sizeof (token), "%lX", (long)watch); 861 862 rw_enter(&xs_state.suspend_lock, RW_READER); 863 864 mutex_enter(&watches_lock); 865 ASSERT(find_watch(token)); 866 list_remove(&watches, watch); 867 mutex_exit(&watches_lock); 868 869 DTRACE_XPV3(xenbus__unregister__watch, const char *, watch->node, 870 uintptr_t, watch->callback, struct xenbus_watch *, watch); 871 872 err = xs_unwatch(watch->node, token); 873 if (err) 874 cmn_err(CE_WARN, "XENBUS Failed to release watch %s: %d", 875 watch->node, err); 876 877 rw_exit(&xs_state.suspend_lock); 878 879 /* Cancel pending watch events. */ 880 mutex_enter(&watch_events_lock); 881 msg = list_head(&watch_events); 882 883 while (msg != NULL) { 884 struct xs_stored_msg *tmp = list_next(&watch_events, msg); 885 if (msg->un.watch.handle == watch) { 886 list_remove(&watch_events, msg); 887 free_stored_msg(msg); 888 } 889 msg = tmp; 890 } 891 892 mutex_exit(&watch_events_lock); 893 894 /* Flush any currently-executing callback, unless we are it. :-) */ 895 if (mutex_owner(&xenwatch_mutex) != curthread) { 896 mutex_enter(&xenwatch_mutex); 897 mutex_exit(&xenwatch_mutex); 898 } 899 } 900 901 void 902 xenbus_suspend(void) 903 { 904 rw_enter(&xs_state.suspend_lock, RW_WRITER); 905 mutex_enter(&xs_state.request_mutex); 906 907 xb_suspend(); 908 } 909 910 void 911 xenbus_resume(void) 912 { 913 struct xenbus_watch *watch; 914 char token[sizeof (watch) * 2 + 1]; 915 916 mutex_exit(&xs_state.request_mutex); 917 918 xb_init(); 919 xb_setup_intr(); 920 921 /* No need for watches_lock: the suspend_lock is sufficient. */ 922 for (watch = list_head(&watches); watch != NULL; 923 watch = list_next(&watches, watch)) { 924 (void) snprintf(token, sizeof (token), "%lX", (long)watch); 925 (void) xs_watch(watch->node, token); 926 } 927 928 rw_exit(&xs_state.suspend_lock); 929 } 930 931 static void 932 xenwatch_thread(void) 933 { 934 struct xs_stored_msg *msg; 935 struct xenbus_watch *watch; 936 937 for (;;) { 938 mutex_enter(&watch_events_lock); 939 while (list_empty(&watch_events)) 940 cv_wait(&watch_events_cv, &watch_events_lock); 941 msg = list_head(&watch_events); 942 ASSERT(msg != NULL); 943 list_remove(&watch_events, msg); 944 watch = msg->un.watch.handle; 945 mutex_exit(&watch_events_lock); 946 947 mutex_enter(&xenwatch_mutex); 948 949 DTRACE_XPV4(xenbus__fire__watch, 950 const char *, watch->node, 951 uintptr_t, watch->callback, 952 struct xenbus_watch *, watch, 953 const char *, msg->un.watch.vec[XS_WATCH_PATH]); 954 955 watch->callback(watch, (const char **)msg->un.watch.vec, 956 msg->un.watch.vec_size); 957 958 free_stored_msg(msg); 959 mutex_exit(&xenwatch_mutex); 960 } 961 } 962 963 static int 964 process_msg(void) 965 { 966 struct xs_stored_msg *msg; 967 char *body; 968 int err, mlen; 969 970 msg = kmem_alloc(sizeof (*msg), KM_SLEEP); 971 972 err = xb_read(&msg->hdr, sizeof (msg->hdr)); 973 if (err) { 974 kmem_free(msg, sizeof (*msg)); 975 return (err); 976 } 977 978 mlen = msg->hdr.len + 1; 979 body = kmem_alloc(mlen, KM_SLEEP); 980 981 err = xb_read(body, msg->hdr.len); 982 if (err) { 983 kmem_free(body, mlen); 984 kmem_free(msg, sizeof (*msg)); 985 return (err); 986 } 987 988 body[mlen - 1] = '\0'; 989 990 if (msg->hdr.type == XS_WATCH_EVENT) { 991 const char *token; 992 msg->un.watch.vec = split(body, msg->hdr.len + 1, 993 &msg->un.watch.vec_size); 994 if (msg->un.watch.vec == NULL) { 995 kmem_free(msg, sizeof (*msg)); 996 return (EIO); 997 } 998 999 mutex_enter(&watches_lock); 1000 token = msg->un.watch.vec[XS_WATCH_TOKEN]; 1001 if ((msg->un.watch.handle = find_watch(token)) != NULL) { 1002 mutex_enter(&watch_events_lock); 1003 1004 DTRACE_XPV4(xenbus__enqueue__watch, 1005 const char *, msg->un.watch.handle->node, 1006 uintptr_t, msg->un.watch.handle->callback, 1007 struct xenbus_watch *, msg->un.watch.handle, 1008 const char *, msg->un.watch.vec[XS_WATCH_PATH]); 1009 1010 list_insert_tail(&watch_events, msg); 1011 cv_broadcast(&watch_events_cv); 1012 mutex_exit(&watch_events_lock); 1013 } else { 1014 free_stored_msg(msg); 1015 } 1016 mutex_exit(&watches_lock); 1017 } else { 1018 msg->un.reply.body = body; 1019 mutex_enter(&xs_state.reply_lock); 1020 list_insert_tail(&xs_state.reply_list, msg); 1021 mutex_exit(&xs_state.reply_lock); 1022 cv_signal(&xs_state.reply_cv); 1023 } 1024 1025 return (0); 1026 } 1027 1028 static void 1029 xenbus_thread(void) 1030 { 1031 int err; 1032 1033 for (; interrupts_unleashed != 0; ) { 1034 err = process_msg(); 1035 if (err) 1036 cmn_err(CE_WARN, "XENBUS error %d while reading " 1037 "message", err); 1038 } 1039 } 1040 1041 /* 1042 * When setting up xenbus, dom0 and domU have to take different paths, which 1043 * makes this code a little confusing. For dom0: 1044 * 1045 * xs_early_init - mutex init only 1046 * xs_dom0_init - called on xenbus dev attach: set up our xenstore page and 1047 * event channel; start xenbus threads for responding to interrupts. 1048 * 1049 * And for domU: 1050 * 1051 * xs_early_init - mutex init; set up our xenstore page and event channel 1052 * xs_domu_init - installation of IRQ handler; start xenbus threads. 1053 * 1054 * We need an early init on domU so we can use xenbus in polled mode to 1055 * discover devices, VCPUs etc. 1056 * 1057 * On resume, we use xb_init() and xb_setup_intr() to restore xenbus to a 1058 * working state. 1059 */ 1060 1061 void 1062 xs_early_init(void) 1063 { 1064 list_create(&xs_state.reply_list, sizeof (struct xs_stored_msg), 1065 offsetof(struct xs_stored_msg, list)); 1066 list_create(&watch_events, sizeof (struct xs_stored_msg), 1067 offsetof(struct xs_stored_msg, list)); 1068 list_create(&watches, sizeof (struct xenbus_watch), 1069 offsetof(struct xenbus_watch, list)); 1070 list_create(¬ify_list, sizeof (struct xenbus_notify), 1071 offsetof(struct xenbus_notify, list)); 1072 mutex_init(&xs_state.reply_lock, NULL, MUTEX_DEFAULT, NULL); 1073 mutex_init(&xs_state.request_mutex, NULL, MUTEX_DEFAULT, NULL); 1074 mutex_init(¬ify_list_lock, NULL, MUTEX_DEFAULT, NULL); 1075 rw_init(&xs_state.suspend_lock, NULL, RW_DEFAULT, NULL); 1076 cv_init(&xs_state.reply_cv, NULL, CV_DEFAULT, NULL); 1077 1078 if (DOMAIN_IS_INITDOMAIN(xen_info)) 1079 return; 1080 1081 xb_init(); 1082 xenstore_up = B_TRUE; 1083 } 1084 1085 static void 1086 xs_thread_init(void) 1087 { 1088 (void) thread_create(NULL, 0, xenwatch_thread, NULL, 0, &p0, 1089 TS_RUN, minclsyspri); 1090 (void) thread_create(NULL, 0, xenbus_thread, NULL, 0, &p0, 1091 TS_RUN, minclsyspri); 1092 xenbus_taskq = taskq_create("xenbus_taskq", 1, 1093 maxclsyspri - 1, 1, 1, TASKQ_PREPOPULATE); 1094 ASSERT(xenbus_taskq != NULL); 1095 } 1096 1097 void 1098 xs_domu_init(void) 1099 { 1100 if (DOMAIN_IS_INITDOMAIN(xen_info)) 1101 return; 1102 1103 /* 1104 * Add interrupt handler for xenbus now, must wait till after 1105 * psm module is loaded. All use of xenbus is in polled mode 1106 * until xs_init is called since it is what kicks off the xs 1107 * server threads. 1108 */ 1109 xs_thread_init(); 1110 xb_setup_intr(); 1111 } 1112 1113 1114 void 1115 xs_dom0_init(void) 1116 { 1117 static boolean_t initialized = B_FALSE; 1118 1119 ASSERT(DOMAIN_IS_INITDOMAIN(xen_info)); 1120 1121 /* 1122 * The xenbus driver might be re-attaching. 1123 */ 1124 if (initialized) 1125 return; 1126 1127 xb_init(); 1128 xs_thread_init(); 1129 xb_setup_intr(); 1130 1131 initialized = B_TRUE; 1132 } 1133