1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2007 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 27 #pragma ident "%Z%%M% %I% %E% SMI" 28 29 /* 30 * vm_usage 31 * 32 * This file implements the getvmusage() private system call. 33 * getvmusage() counts the amount of resident memory pages and swap 34 * reserved by the specified process collective. A "process collective" is 35 * the set of processes owned by a particular, zone, project, task, or user. 36 * 37 * rss and swap are counted so that for a given process collective, a page is 38 * only counted once. For example, this means that if multiple processes in 39 * the same project map the same page, then the project will only be charged 40 * once for that page. On the other hand, if two processes in different 41 * projects map the same page, then both projects will be charged 42 * for the page. 43 * 44 * The vm_getusage() calculation is implemented so that the first thread 45 * performs the rss/swap counting. Other callers will wait for that thread to 46 * finish, copying the results. This enables multiple rcapds and prstats to 47 * consume data from the same calculation. The results are also cached so that 48 * a caller interested in recent results can just copy them instead of starting 49 * a new calculation. The caller passes the maximium age (in seconds) of the 50 * data. If the cached data is young enough, the cache is copied, otherwise, 51 * a new calculation is executed and the cache is replaced with the new 52 * data. 53 * 54 * The rss calculation for each process collective is as follows: 55 * 56 * - Inspect flags, determine if counting rss for zones, projects, tasks, 57 * and/or users. 58 * - For each proc: 59 * - Figure out proc's collectives (zone, project, task, and/or user). 60 * - For each seg in proc's address space: 61 * - If seg is private: 62 * - Lookup anons in the amp. 63 * - For incore pages not previously visited each of the 64 * proc's collectives, add incore pagesize to each. 65 * collective. 66 * Anon's with a refcnt of 1 can be assummed to be not 67 * previously visited. 68 * - For address ranges without anons in the amp: 69 * - Lookup pages in underlying vnode. 70 * - For incore pages not previously visiting for 71 * each of the proc's collectives, add incore 72 * pagesize to each collective. 73 * - If seg is shared: 74 * - Lookup pages in the shared amp or vnode. 75 * - For incore pages not previously visited for each of 76 * the proc's collectives, add incore pagesize to each 77 * collective. 78 * 79 * Swap is reserved by private segments, and shared anonymous segments. 80 * The only shared anon segments which do not reserve swap are ISM segments 81 * and schedctl segments, both of which can be identified by having 82 * amp->swresv == 0. 83 * 84 * The swap calculation for each collective is as follows: 85 * 86 * - Inspect flags, determine if counting rss for zones, projects, tasks, 87 * and/or users. 88 * - For each proc: 89 * - Figure out proc's collectives (zone, project, task, and/or user). 90 * - For each seg in proc's address space: 91 * - If seg is private: 92 * - Add svd->swresv pages to swap count for each of the 93 * proc's collectives. 94 * - If seg is anon, shared, and amp->swresv != 0 95 * - For address ranges in amp not previously visited for 96 * each of the proc's collectives, add size of address 97 * range to the swap count for each collective. 98 * 99 * These two calculations are done simultaneously, with most of the work 100 * being done in vmu_calculate_seg(). The results of the calculation are 101 * copied into "vmu_data.vmu_cache_results". 102 * 103 * To perform the calculation, various things are tracked and cached: 104 * 105 * - incore/not-incore page ranges for all vnodes. 106 * (vmu_data.vmu_all_vnodes_hash) 107 * This eliminates looking up the same page more than once. 108 * 109 * - incore/not-incore page ranges for all shared amps. 110 * (vmu_data.vmu_all_amps_hash) 111 * This eliminates looking up the same page more than once. 112 * 113 * - visited page ranges for each collective. 114 * - per vnode (entity->vme_vnode_hash) 115 * - per shared amp (entity->vme_amp_hash) 116 * For accurate counting of map-shared and cow-shared pages. 117 * 118 * - visited private anons (refcnt > 1) for each collective. 119 * (entity->vme_anon_hash) 120 * For accurate counting of cow-shared pages. 121 * 122 * The common accounting structure is the vmu_entity_t, which represents 123 * collectives: 124 * 125 * - A zone. 126 * - A project, task, or user within a zone. 127 * - The entire system (vmu_data.vmu_system). 128 * - Each collapsed (col) project and user. This means a given projid or 129 * uid, regardless of which zone the process is in. For instance, 130 * project 0 in the global zone and project 0 in a non global zone are 131 * the same collapsed project. 132 * 133 * Each entity structure tracks which pages have been already visited for 134 * that entity (via previously inspected processes) so that these pages are 135 * not double counted. 136 */ 137 138 #include <sys/errno.h> 139 #include <sys/types.h> 140 #include <sys/zone.h> 141 #include <sys/proc.h> 142 #include <sys/project.h> 143 #include <sys/task.h> 144 #include <sys/thread.h> 145 #include <sys/time.h> 146 #include <sys/mman.h> 147 #include <sys/modhash.h> 148 #include <sys/modhash_impl.h> 149 #include <sys/shm.h> 150 #include <sys/swap.h> 151 #include <sys/synch.h> 152 #include <sys/systm.h> 153 #include <sys/var.h> 154 #include <sys/vm_usage.h> 155 #include <sys/zone.h> 156 #include <vm/anon.h> 157 #include <vm/as.h> 158 #include <vm/seg_vn.h> 159 #include <vm/seg_spt.h> 160 161 #define VMUSAGE_HASH_SIZE 512 162 163 #define VMUSAGE_TYPE_VNODE 1 164 #define VMUSAGE_TYPE_AMP 2 165 #define VMUSAGE_TYPE_ANON 3 166 167 #define VMUSAGE_BOUND_UNKNOWN 0 168 #define VMUSAGE_BOUND_INCORE 1 169 #define VMUSAGE_BOUND_NOT_INCORE 2 170 171 /* 172 * bounds for vnodes and shared amps 173 * Each bound is either entirely incore, entirely not in core, or 174 * entirely unknown. bounds are stored in order by offset. 175 */ 176 typedef struct vmu_bound { 177 struct vmu_bound *vmb_next; 178 pgcnt_t vmb_start; /* page offset in vnode/amp on which bound starts */ 179 pgcnt_t vmb_end; /* page offset in vnode/amp on which bound ends */ 180 char vmb_type; /* One of VMUSAGE_BOUND_* */ 181 } vmu_bound_t; 182 183 /* 184 * hash of visited objects (vnodes or shared amps) 185 * key is address of vnode or amp. Bounds lists known incore/non-incore 186 * bounds for vnode/amp. 187 */ 188 typedef struct vmu_object { 189 struct vmu_object *vmo_next; /* free list */ 190 caddr_t vmo_key; 191 short vmo_type; 192 vmu_bound_t *vmo_bounds; 193 } vmu_object_t; 194 195 /* 196 * Entity by which to count results. 197 * 198 * The entity structure keeps the current rss/swap counts for each entity 199 * (zone, project, etc), and hashes of vm structures that have already 200 * been visited for the entity. 201 * 202 * vme_next: links the list of all entities currently being counted by 203 * vmu_calculate(). 204 * 205 * vme_next_calc: links the list of entities related to the current process 206 * being counted by vmu_calculate_proc(). 207 * 208 * vmu_calculate_proc() walks all processes. For each process, it makes a 209 * list of the entities related to that process using vme_next_calc. This 210 * list changes each time vmu_calculate_proc() is called. 211 * 212 */ 213 typedef struct vmu_entity { 214 struct vmu_entity *vme_next; 215 struct vmu_entity *vme_next_calc; 216 mod_hash_t *vme_vnode_hash; /* vnodes visited for entity */ 217 mod_hash_t *vme_amp_hash; /* shared amps visited for entity */ 218 mod_hash_t *vme_anon_hash; /* cow anons visited for entity */ 219 vmusage_t vme_result; /* identifies entity and results */ 220 } vmu_entity_t; 221 222 /* 223 * Hash of entities visited within a zone, and an entity for the zone 224 * itself. 225 */ 226 typedef struct vmu_zone { 227 struct vmu_zone *vmz_next; /* free list */ 228 id_t vmz_id; 229 vmu_entity_t *vmz_zone; 230 mod_hash_t *vmz_projects_hash; 231 mod_hash_t *vmz_tasks_hash; 232 mod_hash_t *vmz_rusers_hash; 233 mod_hash_t *vmz_eusers_hash; 234 } vmu_zone_t; 235 236 /* 237 * Cache of results from last calculation 238 */ 239 typedef struct vmu_cache { 240 vmusage_t *vmc_results; /* Results from last call to */ 241 /* vm_getusage(). */ 242 uint64_t vmc_nresults; /* Count of cached results */ 243 uint64_t vmc_refcnt; /* refcnt for free */ 244 uint_t vmc_flags; /* Flags for vm_getusage() */ 245 hrtime_t vmc_timestamp; /* when cache was created */ 246 } vmu_cache_t; 247 248 /* 249 * top level rss info for the system 250 */ 251 typedef struct vmu_data { 252 kmutex_t vmu_lock; /* Protects vmu_data */ 253 kcondvar_t vmu_cv; /* Used to signal threads */ 254 /* Waiting for */ 255 /* Rss_calc_thread to finish */ 256 vmu_entity_t *vmu_system; /* Entity for tracking */ 257 /* rss/swap for all processes */ 258 /* in all zones */ 259 mod_hash_t *vmu_zones_hash; /* Zones visited */ 260 mod_hash_t *vmu_projects_col_hash; /* These *_col_hash hashes */ 261 mod_hash_t *vmu_rusers_col_hash; /* keep track of entities, */ 262 mod_hash_t *vmu_eusers_col_hash; /* ignoring zoneid, in order */ 263 /* to implement VMUSAGE_COL_* */ 264 /* flags, which aggregate by */ 265 /* project or user regardless */ 266 /* of zoneid. */ 267 mod_hash_t *vmu_all_vnodes_hash; /* System wide visited vnodes */ 268 /* to track incore/not-incore */ 269 mod_hash_t *vmu_all_amps_hash; /* System wide visited shared */ 270 /* amps to track incore/not- */ 271 /* incore */ 272 vmu_entity_t *vmu_entities; /* Linked list of entities */ 273 size_t vmu_nentities; /* Count of entities in list */ 274 vmu_cache_t *vmu_cache; /* Cached results */ 275 kthread_t *vmu_calc_thread; /* NULL, or thread running */ 276 /* vmu_calculate() */ 277 uint_t vmu_calc_flags; /* Flags being using by */ 278 /* currently running calc */ 279 /* thread */ 280 uint_t vmu_pending_flags; /* Flags of vm_getusage() */ 281 /* threads waiting for */ 282 /* calc thread to finish */ 283 uint_t vmu_pending_waiters; /* Number of threads waiting */ 284 /* for calc thread */ 285 vmu_bound_t *vmu_free_bounds; 286 vmu_object_t *vmu_free_objects; 287 vmu_entity_t *vmu_free_entities; 288 vmu_zone_t *vmu_free_zones; 289 } vmu_data_t; 290 291 extern struct as kas; 292 extern proc_t *practive; 293 extern zone_t *global_zone; 294 extern struct seg_ops segvn_ops; 295 extern struct seg_ops segspt_shmops; 296 297 static vmu_data_t vmu_data; 298 static kmem_cache_t *vmu_bound_cache; 299 static kmem_cache_t *vmu_object_cache; 300 301 /* 302 * Save a bound on the free list 303 */ 304 static void 305 vmu_free_bound(vmu_bound_t *bound) 306 { 307 bound->vmb_next = vmu_data.vmu_free_bounds; 308 vmu_data.vmu_free_bounds = bound; 309 } 310 311 /* 312 * Free an object, and all visited bound info. 313 */ 314 static void 315 vmu_free_object(mod_hash_val_t val) 316 { 317 vmu_object_t *obj = (vmu_object_t *)val; 318 vmu_bound_t *bound = obj->vmo_bounds; 319 vmu_bound_t *tmp; 320 321 while (bound != NULL) { 322 tmp = bound; 323 bound = bound->vmb_next; 324 vmu_free_bound(tmp); 325 } 326 obj->vmo_next = vmu_data.vmu_free_objects; 327 vmu_data.vmu_free_objects = obj; 328 } 329 330 /* 331 * Free an entity, and hashes of visited objects for that entity. 332 */ 333 static void 334 vmu_free_entity(mod_hash_val_t val) 335 { 336 vmu_entity_t *entity = (vmu_entity_t *)val; 337 338 if (entity->vme_vnode_hash != NULL) 339 i_mod_hash_clear_nosync(entity->vme_vnode_hash); 340 if (entity->vme_amp_hash != NULL) 341 i_mod_hash_clear_nosync(entity->vme_amp_hash); 342 if (entity->vme_anon_hash != NULL) 343 i_mod_hash_clear_nosync(entity->vme_anon_hash); 344 345 entity->vme_next = vmu_data.vmu_free_entities; 346 vmu_data.vmu_free_entities = entity; 347 } 348 349 /* 350 * Free zone entity, and all hashes of entities inside that zone, 351 * which are projects, tasks, and users. 352 */ 353 static void 354 vmu_free_zone(mod_hash_val_t val) 355 { 356 vmu_zone_t *zone = (vmu_zone_t *)val; 357 358 if (zone->vmz_zone != NULL) { 359 vmu_free_entity((mod_hash_val_t)zone->vmz_zone); 360 zone->vmz_zone = NULL; 361 } 362 if (zone->vmz_projects_hash != NULL) 363 i_mod_hash_clear_nosync(zone->vmz_projects_hash); 364 if (zone->vmz_tasks_hash != NULL) 365 i_mod_hash_clear_nosync(zone->vmz_tasks_hash); 366 if (zone->vmz_rusers_hash != NULL) 367 i_mod_hash_clear_nosync(zone->vmz_rusers_hash); 368 if (zone->vmz_eusers_hash != NULL) 369 i_mod_hash_clear_nosync(zone->vmz_eusers_hash); 370 zone->vmz_next = vmu_data.vmu_free_zones; 371 vmu_data.vmu_free_zones = zone; 372 } 373 374 /* 375 * Initialize synchronization primitives and hashes for system-wide tracking 376 * of visited vnodes and shared amps. Initialize results cache. 377 */ 378 void 379 vm_usage_init() 380 { 381 mutex_init(&vmu_data.vmu_lock, NULL, MUTEX_DEFAULT, NULL); 382 cv_init(&vmu_data.vmu_cv, NULL, CV_DEFAULT, NULL); 383 384 vmu_data.vmu_system = NULL; 385 vmu_data.vmu_zones_hash = NULL; 386 vmu_data.vmu_projects_col_hash = NULL; 387 vmu_data.vmu_rusers_col_hash = NULL; 388 vmu_data.vmu_eusers_col_hash = NULL; 389 390 vmu_data.vmu_free_bounds = NULL; 391 vmu_data.vmu_free_objects = NULL; 392 vmu_data.vmu_free_entities = NULL; 393 vmu_data.vmu_free_zones = NULL; 394 395 vmu_data.vmu_all_vnodes_hash = mod_hash_create_ptrhash( 396 "vmusage vnode hash", VMUSAGE_HASH_SIZE, vmu_free_object, 397 sizeof (vnode_t)); 398 vmu_data.vmu_all_amps_hash = mod_hash_create_ptrhash( 399 "vmusage amp hash", VMUSAGE_HASH_SIZE, vmu_free_object, 400 sizeof (struct anon_map)); 401 vmu_data.vmu_projects_col_hash = mod_hash_create_idhash( 402 "vmusage collapsed project hash", VMUSAGE_HASH_SIZE, 403 vmu_free_entity); 404 vmu_data.vmu_rusers_col_hash = mod_hash_create_idhash( 405 "vmusage collapsed ruser hash", VMUSAGE_HASH_SIZE, 406 vmu_free_entity); 407 vmu_data.vmu_eusers_col_hash = mod_hash_create_idhash( 408 "vmusage collpased euser hash", VMUSAGE_HASH_SIZE, 409 vmu_free_entity); 410 vmu_data.vmu_zones_hash = mod_hash_create_idhash( 411 "vmusage zone hash", VMUSAGE_HASH_SIZE, vmu_free_zone); 412 413 vmu_bound_cache = kmem_cache_create("vmu_bound_cache", 414 sizeof (vmu_bound_t), 0, NULL, NULL, NULL, NULL, NULL, 0); 415 vmu_object_cache = kmem_cache_create("vmu_object_cache", 416 sizeof (vmu_object_t), 0, NULL, NULL, NULL, NULL, NULL, 0); 417 418 vmu_data.vmu_entities = NULL; 419 vmu_data.vmu_nentities = 0; 420 421 vmu_data.vmu_cache = NULL; 422 vmu_data.vmu_calc_thread = NULL; 423 vmu_data.vmu_calc_flags = 0; 424 vmu_data.vmu_pending_flags = 0; 425 vmu_data.vmu_pending_waiters = 0; 426 } 427 428 /* 429 * Allocate hashes for tracking vm objects visited for an entity. 430 * Update list of entities. 431 */ 432 static vmu_entity_t * 433 vmu_alloc_entity(id_t id, int type, id_t zoneid) 434 { 435 vmu_entity_t *entity; 436 437 if (vmu_data.vmu_free_entities != NULL) { 438 entity = vmu_data.vmu_free_entities; 439 vmu_data.vmu_free_entities = 440 vmu_data.vmu_free_entities->vme_next; 441 bzero(&entity->vme_result, sizeof (vmusage_t)); 442 } else { 443 entity = kmem_zalloc(sizeof (vmu_entity_t), KM_SLEEP); 444 } 445 entity->vme_result.vmu_id = id; 446 entity->vme_result.vmu_zoneid = zoneid; 447 entity->vme_result.vmu_type = type; 448 449 if (entity->vme_vnode_hash == NULL) 450 entity->vme_vnode_hash = mod_hash_create_ptrhash( 451 "vmusage vnode hash", VMUSAGE_HASH_SIZE, vmu_free_object, 452 sizeof (vnode_t)); 453 454 if (entity->vme_amp_hash == NULL) 455 entity->vme_amp_hash = mod_hash_create_ptrhash( 456 "vmusage amp hash", VMUSAGE_HASH_SIZE, vmu_free_object, 457 sizeof (struct anon_map)); 458 459 if (entity->vme_anon_hash == NULL) 460 entity->vme_anon_hash = mod_hash_create_ptrhash( 461 "vmusage anon hash", VMUSAGE_HASH_SIZE, 462 mod_hash_null_valdtor, sizeof (struct anon)); 463 464 entity->vme_next = vmu_data.vmu_entities; 465 vmu_data.vmu_entities = entity; 466 vmu_data.vmu_nentities++; 467 468 return (entity); 469 } 470 471 /* 472 * Allocate a zone entity, and hashes for tracking visited vm objects 473 * for projects, tasks, and users within that zone. 474 */ 475 static vmu_zone_t * 476 vmu_alloc_zone(id_t id) 477 { 478 vmu_zone_t *zone; 479 480 if (vmu_data.vmu_free_zones != NULL) { 481 zone = vmu_data.vmu_free_zones; 482 vmu_data.vmu_free_zones = 483 vmu_data.vmu_free_zones->vmz_next; 484 zone->vmz_next = NULL; 485 zone->vmz_zone = NULL; 486 } else { 487 zone = kmem_zalloc(sizeof (vmu_zone_t), KM_SLEEP); 488 } 489 490 zone->vmz_id = id; 491 492 if ((vmu_data.vmu_calc_flags & (VMUSAGE_ZONE | VMUSAGE_ALL_ZONES)) != 0) 493 zone->vmz_zone = vmu_alloc_entity(id, VMUSAGE_ZONE, id); 494 495 if ((vmu_data.vmu_calc_flags & (VMUSAGE_PROJECTS | 496 VMUSAGE_ALL_PROJECTS)) != 0 && zone->vmz_projects_hash == NULL) 497 zone->vmz_projects_hash = mod_hash_create_idhash( 498 "vmusage project hash", VMUSAGE_HASH_SIZE, vmu_free_entity); 499 500 if ((vmu_data.vmu_calc_flags & (VMUSAGE_TASKS | VMUSAGE_ALL_TASKS)) 501 != 0 && zone->vmz_tasks_hash == NULL) 502 zone->vmz_tasks_hash = mod_hash_create_idhash( 503 "vmusage task hash", VMUSAGE_HASH_SIZE, vmu_free_entity); 504 505 if ((vmu_data.vmu_calc_flags & (VMUSAGE_RUSERS | VMUSAGE_ALL_RUSERS)) 506 != 0 && zone->vmz_rusers_hash == NULL) 507 zone->vmz_rusers_hash = mod_hash_create_idhash( 508 "vmusage ruser hash", VMUSAGE_HASH_SIZE, vmu_free_entity); 509 510 if ((vmu_data.vmu_calc_flags & (VMUSAGE_EUSERS | VMUSAGE_ALL_EUSERS)) 511 != 0 && zone->vmz_eusers_hash == NULL) 512 zone->vmz_eusers_hash = mod_hash_create_idhash( 513 "vmusage euser hash", VMUSAGE_HASH_SIZE, vmu_free_entity); 514 515 return (zone); 516 } 517 518 /* 519 * Allocate a structure for tracking visited bounds for a vm object. 520 */ 521 static vmu_object_t * 522 vmu_alloc_object(caddr_t key, int type) 523 { 524 vmu_object_t *object; 525 526 if (vmu_data.vmu_free_objects != NULL) { 527 object = vmu_data.vmu_free_objects; 528 vmu_data.vmu_free_objects = 529 vmu_data.vmu_free_objects->vmo_next; 530 } else { 531 object = kmem_cache_alloc(vmu_object_cache, KM_SLEEP); 532 } 533 534 object->vmo_key = key; 535 object->vmo_type = type; 536 object->vmo_bounds = NULL; 537 538 return (object); 539 } 540 541 /* 542 * Allocate and return a bound structure. 543 */ 544 static vmu_bound_t * 545 vmu_alloc_bound() 546 { 547 vmu_bound_t *bound; 548 549 if (vmu_data.vmu_free_bounds != NULL) { 550 bound = vmu_data.vmu_free_bounds; 551 vmu_data.vmu_free_bounds = 552 vmu_data.vmu_free_bounds->vmb_next; 553 bzero(bound, sizeof (vmu_bound_t)); 554 } else { 555 bound = kmem_cache_alloc(vmu_bound_cache, KM_SLEEP); 556 bzero(bound, sizeof (vmu_bound_t)); 557 } 558 return (bound); 559 } 560 561 /* 562 * vmu_find_insert_* functions implement hash lookup or allocate and 563 * insert operations. 564 */ 565 static vmu_object_t * 566 vmu_find_insert_object(mod_hash_t *hash, caddr_t key, uint_t type) 567 { 568 int ret; 569 vmu_object_t *object; 570 571 ret = i_mod_hash_find_nosync(hash, (mod_hash_key_t)key, 572 (mod_hash_val_t *)&object); 573 if (ret != 0) { 574 object = vmu_alloc_object(key, type); 575 ret = i_mod_hash_insert_nosync(hash, (mod_hash_key_t)key, 576 (mod_hash_val_t)object, (mod_hash_hndl_t)0); 577 ASSERT(ret == 0); 578 } 579 return (object); 580 } 581 582 static int 583 vmu_find_insert_anon(mod_hash_t *hash, caddr_t key) 584 { 585 int ret; 586 caddr_t val; 587 588 ret = i_mod_hash_find_nosync(hash, (mod_hash_key_t)key, 589 (mod_hash_val_t *)&val); 590 591 if (ret == 0) 592 return (0); 593 594 ret = i_mod_hash_insert_nosync(hash, (mod_hash_key_t)key, 595 (mod_hash_val_t)key, (mod_hash_hndl_t)0); 596 597 ASSERT(ret == 0); 598 599 return (1); 600 } 601 602 static vmu_entity_t * 603 vmu_find_insert_entity(mod_hash_t *hash, id_t id, uint_t type, id_t zoneid) 604 { 605 int ret; 606 vmu_entity_t *entity; 607 608 ret = i_mod_hash_find_nosync(hash, (mod_hash_key_t)(uintptr_t)id, 609 (mod_hash_val_t *)&entity); 610 if (ret != 0) { 611 entity = vmu_alloc_entity(id, type, zoneid); 612 ret = i_mod_hash_insert_nosync(hash, 613 (mod_hash_key_t)(uintptr_t)id, (mod_hash_val_t)entity, 614 (mod_hash_hndl_t)0); 615 ASSERT(ret == 0); 616 } 617 return (entity); 618 } 619 620 621 622 623 /* 624 * Returns list of object bounds between start and end. New bounds inserted 625 * by this call are given type. 626 * 627 * Returns the number of pages covered if new bounds are created. Returns 0 628 * if region between start/end consists of all existing bounds. 629 */ 630 static pgcnt_t 631 vmu_insert_lookup_object_bounds(vmu_object_t *ro, pgcnt_t start, pgcnt_t 632 end, char type, vmu_bound_t **first, vmu_bound_t **last) 633 { 634 vmu_bound_t *next; 635 vmu_bound_t *prev = NULL; 636 vmu_bound_t *tmp = NULL; 637 pgcnt_t ret = 0; 638 639 *first = *last = NULL; 640 641 for (next = ro->vmo_bounds; next != NULL; next = next->vmb_next) { 642 /* 643 * Find bounds overlapping or overlapped by range [start,end]. 644 */ 645 if (start > next->vmb_end) { 646 /* bound is before new bound */ 647 prev = next; 648 continue; 649 } 650 if (next->vmb_start > end) { 651 /* bound is after new bound */ 652 break; 653 } 654 if (*first == NULL) 655 *first = next; 656 *last = next; 657 } 658 659 if (*first == NULL) { 660 ASSERT(*last == NULL); 661 /* 662 * No bounds overlapping range [start,end], so create new 663 * bound 664 */ 665 tmp = vmu_alloc_bound(); 666 tmp->vmb_start = start; 667 tmp->vmb_end = end; 668 tmp->vmb_type = type; 669 if (prev == NULL) { 670 tmp->vmb_next = ro->vmo_bounds; 671 ro->vmo_bounds = tmp; 672 } else { 673 tmp->vmb_next = prev->vmb_next; 674 prev->vmb_next = tmp; 675 } 676 *first = tmp; 677 *last = tmp; 678 ASSERT(tmp->vmb_end >= tmp->vmb_start); 679 ret = tmp->vmb_end - tmp->vmb_start + 1; 680 return (ret); 681 } 682 683 /* Check to see if start is before first known bound */ 684 ASSERT(first != NULL && last != NULL); 685 next = (*first); 686 if (start < (*first)->vmb_start) { 687 /* Create new bound before first bound */ 688 tmp = vmu_alloc_bound(); 689 tmp->vmb_start = start; 690 tmp->vmb_end = (*first)->vmb_start - 1; 691 tmp->vmb_type = type; 692 tmp->vmb_next = *first; 693 if (*first == ro->vmo_bounds) 694 ro->vmo_bounds = tmp; 695 if (prev != NULL) 696 prev->vmb_next = tmp; 697 ASSERT(tmp->vmb_end >= tmp->vmb_start); 698 ret += tmp->vmb_end - tmp->vmb_start + 1; 699 *first = tmp; 700 } 701 /* 702 * Between start and end, search for gaps between and after existing 703 * bounds. Create new bounds to fill gaps if they exist. 704 */ 705 while (end > next->vmb_end) { 706 /* 707 * Check for gap between bound and next bound. if no gap, 708 * continue. 709 */ 710 if ((next != *last) && 711 ((next->vmb_end + 1) == next->vmb_next->vmb_start)) { 712 next = next->vmb_next; 713 continue; 714 } 715 /* 716 * Insert new bound in gap after bound, and before next 717 * bound if next bound exists. 718 */ 719 tmp = vmu_alloc_bound(); 720 tmp->vmb_type = type; 721 tmp->vmb_next = next->vmb_next; 722 tmp->vmb_start = next->vmb_end + 1; 723 724 if (next != *last) { 725 tmp->vmb_end = next->vmb_next->vmb_start - 1; 726 ASSERT(tmp->vmb_end >= tmp->vmb_start); 727 ret += tmp->vmb_end - tmp->vmb_start + 1; 728 next->vmb_next = tmp; 729 next = tmp->vmb_next; 730 } else { 731 tmp->vmb_end = end; 732 ASSERT(tmp->vmb_end >= tmp->vmb_start); 733 ret += tmp->vmb_end - tmp->vmb_start + 1; 734 next->vmb_next = tmp; 735 *last = tmp; 736 break; 737 } 738 } 739 return (ret); 740 } 741 742 /* 743 * vmu_update_bounds() 744 * 745 * first, last: list of continuous bounds, of which zero or more are of 746 * type VMUSAGE_BOUND_UNKNOWN. 747 * 748 * new_first, new_last: list of continuous bounds, of which none are of 749 * type VMUSAGE_BOUND_UNKNOWN. These bounds are used to 750 * update the types of bounds in (first,last) with 751 * type VMUSAGE_BOUND_UNKNOWN. 752 * 753 * For the list of bounds (first,last), this function updates any bounds 754 * with type VMUSAGE_BOUND_UNKNOWN using the type of the corresponding bound in 755 * the list (new_first, new_last). 756 * 757 * If a bound of type VMUSAGE_BOUND_UNKNOWN spans multiple bounds in the list 758 * (new_first, new_last), it will be split into multiple bounds. 759 * 760 * Return value: 761 * The number of pages in the list of bounds (first,last) that were of 762 * type VMUSAGE_BOUND_UNKNOWN, which have been updated to be of type 763 * VMUSAGE_BOUND_INCORE. 764 * 765 */ 766 static pgcnt_t 767 vmu_update_bounds(vmu_bound_t **first, vmu_bound_t **last, 768 vmu_bound_t *new_first, vmu_bound_t *new_last) 769 { 770 vmu_bound_t *next, *new_next, *tmp; 771 pgcnt_t rss = 0; 772 773 next = *first; 774 new_next = new_first; 775 776 /* 777 * Verify first and last bound are covered by new bounds if they 778 * have unknown type. 779 */ 780 ASSERT((*first)->vmb_type != VMUSAGE_BOUND_UNKNOWN || 781 (*first)->vmb_start >= new_next->vmb_start); 782 ASSERT((*last)->vmb_type != VMUSAGE_BOUND_UNKNOWN || 783 (*last)->vmb_end <= new_last->vmb_end); 784 for (;;) { 785 /* If bound already has type, proceed to next bound */ 786 if (next->vmb_type != VMUSAGE_BOUND_UNKNOWN) { 787 if (next == *last) 788 break; 789 next = next->vmb_next; 790 continue; 791 } 792 while (new_next->vmb_end < next->vmb_start) 793 new_next = new_next->vmb_next; 794 ASSERT(new_next->vmb_type != VMUSAGE_BOUND_UNKNOWN); 795 next->vmb_type = new_next->vmb_type; 796 if (new_next->vmb_end < next->vmb_end) { 797 /* need to split bound */ 798 tmp = vmu_alloc_bound(); 799 tmp->vmb_type = VMUSAGE_BOUND_UNKNOWN; 800 tmp->vmb_start = new_next->vmb_end + 1; 801 tmp->vmb_end = next->vmb_end; 802 tmp->vmb_next = next->vmb_next; 803 next->vmb_end = new_next->vmb_end; 804 next->vmb_next = tmp; 805 if (*last == next) 806 *last = tmp; 807 if (next->vmb_type == VMUSAGE_BOUND_INCORE) 808 rss += next->vmb_end - next->vmb_start + 1; 809 next = tmp; 810 } else { 811 if (next->vmb_type == VMUSAGE_BOUND_INCORE) 812 rss += next->vmb_end - next->vmb_start + 1; 813 if (next == *last) 814 break; 815 next = next->vmb_next; 816 } 817 } 818 return (rss); 819 } 820 821 /* 822 * merges adjacent bounds with same type between first and last bound. 823 * After merge, last pointer is no longer valid, as last bound may be 824 * merged away. 825 */ 826 static void 827 vmu_merge_bounds(vmu_bound_t **first, vmu_bound_t **last) 828 { 829 vmu_bound_t *next; 830 vmu_bound_t *tmp; 831 832 ASSERT(*first != NULL); 833 ASSERT(*last != NULL); 834 835 next = *first; 836 while (next != *last) { 837 838 /* If bounds are adjacent and have same type, merge them */ 839 if (((next->vmb_end + 1) == next->vmb_next->vmb_start) && 840 (next->vmb_type == next->vmb_next->vmb_type)) { 841 tmp = next->vmb_next; 842 next->vmb_end = tmp->vmb_end; 843 next->vmb_next = tmp->vmb_next; 844 vmu_free_bound(tmp); 845 if (tmp == *last) 846 *last = next; 847 } else { 848 next = next->vmb_next; 849 } 850 } 851 } 852 853 /* 854 * Given an amp and a list of bounds, updates each bound's type with 855 * VMUSAGE_BOUND_INCORE or VMUSAGE_BOUND_NOT_INCORE. 856 * 857 * If a bound is partially incore, it will be split into two bounds. 858 * first and last may be modified, as bounds may be split into multiple 859 * bounds if the are partially incore/not-incore. 860 * 861 * Set incore to non-zero if bounds are already known to be incore 862 * 863 */ 864 static void 865 vmu_amp_update_incore_bounds(struct anon_map *amp, vmu_bound_t **first, 866 vmu_bound_t **last, boolean_t incore) 867 { 868 vmu_bound_t *next; 869 vmu_bound_t *tmp; 870 pgcnt_t index; 871 short bound_type; 872 short page_type; 873 vnode_t *vn; 874 anoff_t off; 875 struct anon *ap; 876 877 next = *first; 878 /* Shared anon slots don't change once set */ 879 ANON_LOCK_ENTER(&->a_rwlock, RW_READER); 880 for (;;) { 881 if (incore == B_TRUE) 882 next->vmb_type = VMUSAGE_BOUND_INCORE; 883 884 if (next->vmb_type != VMUSAGE_BOUND_UNKNOWN) { 885 if (next == *last) 886 break; 887 next = next->vmb_next; 888 continue; 889 } 890 bound_type = next->vmb_type; 891 index = next->vmb_start; 892 while (index <= next->vmb_end) { 893 894 /* 895 * These are used to determine how much to increment 896 * index when a large page is found. 897 */ 898 page_t *page; 899 pgcnt_t pgcnt = 1; 900 uint_t pgshft; 901 pgcnt_t pgmsk; 902 903 ap = anon_get_ptr(amp->ahp, index); 904 if (ap != NULL) 905 swap_xlate(ap, &vn, &off); 906 907 if (ap != NULL && vn != NULL && vn->v_pages != NULL && 908 (page = page_exists(vn, off)) != NULL) { 909 page_type = VMUSAGE_BOUND_INCORE; 910 if (page->p_szc > 0) { 911 pgcnt = page_get_pagecnt(page->p_szc); 912 pgshft = page_get_shift(page->p_szc); 913 pgmsk = (0x1 << (pgshft - PAGESHIFT)) 914 - 1; 915 } 916 } else { 917 page_type = VMUSAGE_BOUND_NOT_INCORE; 918 } 919 if (bound_type == VMUSAGE_BOUND_UNKNOWN) { 920 next->vmb_type = page_type; 921 } else if (next->vmb_type != page_type) { 922 /* 923 * if current bound type does not match page 924 * type, need to split off new bound. 925 */ 926 tmp = vmu_alloc_bound(); 927 tmp->vmb_type = page_type; 928 tmp->vmb_start = index; 929 tmp->vmb_end = next->vmb_end; 930 tmp->vmb_next = next->vmb_next; 931 next->vmb_end = index - 1; 932 next->vmb_next = tmp; 933 if (*last == next) 934 *last = tmp; 935 next = tmp; 936 } 937 if (pgcnt > 1) { 938 /* 939 * If inside large page, jump to next large 940 * page 941 */ 942 index = (index & ~pgmsk) + pgcnt; 943 } else { 944 index++; 945 } 946 } 947 if (next == *last) { 948 ASSERT(next->vmb_type != VMUSAGE_BOUND_UNKNOWN); 949 break; 950 } else 951 next = next->vmb_next; 952 } 953 ANON_LOCK_EXIT(&->a_rwlock); 954 } 955 956 /* 957 * Same as vmu_amp_update_incore_bounds(), except for tracking 958 * incore-/not-incore for vnodes. 959 */ 960 static void 961 vmu_vnode_update_incore_bounds(vnode_t *vnode, vmu_bound_t **first, 962 vmu_bound_t **last) 963 { 964 vmu_bound_t *next; 965 vmu_bound_t *tmp; 966 pgcnt_t index; 967 short bound_type; 968 short page_type; 969 970 next = *first; 971 for (;;) { 972 if (vnode->v_pages == NULL) 973 next->vmb_type = VMUSAGE_BOUND_NOT_INCORE; 974 975 if (next->vmb_type != VMUSAGE_BOUND_UNKNOWN) { 976 if (next == *last) 977 break; 978 next = next->vmb_next; 979 continue; 980 } 981 982 bound_type = next->vmb_type; 983 index = next->vmb_start; 984 while (index <= next->vmb_end) { 985 986 /* 987 * These are used to determine how much to increment 988 * index when a large page is found. 989 */ 990 page_t *page; 991 pgcnt_t pgcnt = 1; 992 uint_t pgshft; 993 pgcnt_t pgmsk; 994 995 if (vnode->v_pages != NULL && 996 (page = page_exists(vnode, ptob(index))) != NULL) { 997 page_type = VMUSAGE_BOUND_INCORE; 998 if (page->p_szc > 0) { 999 pgcnt = page_get_pagecnt(page->p_szc); 1000 pgshft = page_get_shift(page->p_szc); 1001 pgmsk = (0x1 << (pgshft - PAGESHIFT)) 1002 - 1; 1003 } 1004 } else { 1005 page_type = VMUSAGE_BOUND_NOT_INCORE; 1006 } 1007 if (bound_type == VMUSAGE_BOUND_UNKNOWN) { 1008 next->vmb_type = page_type; 1009 } else if (next->vmb_type != page_type) { 1010 /* 1011 * if current bound type does not match page 1012 * type, need to split off new bound. 1013 */ 1014 tmp = vmu_alloc_bound(); 1015 tmp->vmb_type = page_type; 1016 tmp->vmb_start = index; 1017 tmp->vmb_end = next->vmb_end; 1018 tmp->vmb_next = next->vmb_next; 1019 next->vmb_end = index - 1; 1020 next->vmb_next = tmp; 1021 if (*last == next) 1022 *last = tmp; 1023 next = tmp; 1024 } 1025 if (pgcnt > 1) { 1026 /* 1027 * If inside large page, jump to next large 1028 * page 1029 */ 1030 index = (index & ~pgmsk) + pgcnt; 1031 } else { 1032 index++; 1033 } 1034 } 1035 if (next == *last) { 1036 ASSERT(next->vmb_type != VMUSAGE_BOUND_UNKNOWN); 1037 break; 1038 } else 1039 next = next->vmb_next; 1040 } 1041 } 1042 1043 /* 1044 * Calculate the rss and swap consumed by a segment. vmu_entities is the 1045 * list of entities to visit. For shared segments, the vnode or amp 1046 * is looked up in each entity to see if has been already counted. Private 1047 * anon pages are checked per entity to ensure that cow pages are not 1048 * double counted. 1049 * 1050 * For private mapped files, first the amp is checked for private pages. 1051 * Bounds not backed by the amp are looked up in the vnode for each entity 1052 * to avoid double counting of private COW vnode pages. 1053 */ 1054 static void 1055 vmu_calculate_seg(vmu_entity_t *vmu_entities, struct seg *seg) 1056 { 1057 struct segvn_data *svd; 1058 struct shm_data *shmd; 1059 struct spt_data *sptd; 1060 vmu_object_t *shared_object = NULL; 1061 vmu_object_t *entity_object = NULL; 1062 vmu_entity_t *entity; 1063 vmusage_t *result; 1064 vmu_bound_t *first = NULL; 1065 vmu_bound_t *last = NULL; 1066 vmu_bound_t *cur = NULL; 1067 vmu_bound_t *e_first = NULL; 1068 vmu_bound_t *e_last = NULL; 1069 vmu_bound_t *tmp; 1070 pgcnt_t p_index, s_index, p_start, p_end, s_start, s_end, rss, virt; 1071 struct anon_map *private_amp = NULL; 1072 boolean_t incore = B_FALSE; 1073 boolean_t shared = B_FALSE; 1074 int file = 0; 1075 pgcnt_t swresv = 0; 1076 pgcnt_t panon = 0; 1077 1078 /* Can zero-length segments exist? Not sure, so parenoia */ 1079 if (seg->s_size <= 0) 1080 return; 1081 1082 /* 1083 * Figure out if there is a shared object (such as a named vnode or 1084 * a shared amp, then figure out if there is a private amp, which 1085 * identifies private pages. 1086 */ 1087 if (seg->s_ops == &segvn_ops) { 1088 svd = (struct segvn_data *)seg->s_data; 1089 if (svd->type == MAP_SHARED) 1090 shared = B_TRUE; 1091 else 1092 swresv = svd->swresv; 1093 1094 if (svd->vp != NULL) { 1095 file = 1; 1096 shared_object = vmu_find_insert_object( 1097 vmu_data.vmu_all_vnodes_hash, (caddr_t)svd->vp, 1098 VMUSAGE_TYPE_VNODE); 1099 s_start = btop(svd->offset); 1100 s_end = btop(svd->offset + seg->s_size) - 1; 1101 } 1102 if (svd->amp != NULL && svd->type == MAP_SHARED) { 1103 ASSERT(shared_object == NULL); 1104 shared_object = vmu_find_insert_object( 1105 vmu_data.vmu_all_amps_hash, (caddr_t)svd->amp, 1106 VMUSAGE_TYPE_AMP); 1107 s_start = svd->anon_index; 1108 s_end = svd->anon_index + btop(seg->s_size) - 1; 1109 /* schedctl mappings are always in core */ 1110 if (svd->amp->swresv == 0) 1111 incore = B_TRUE; 1112 } 1113 if (svd->amp != NULL && svd->type == MAP_PRIVATE) { 1114 private_amp = svd->amp; 1115 p_start = svd->anon_index; 1116 p_end = svd->anon_index + btop(seg->s_size) - 1; 1117 } 1118 } else if (seg->s_ops == &segspt_shmops) { 1119 shared = B_TRUE; 1120 shmd = (struct shm_data *)seg->s_data; 1121 shared_object = vmu_find_insert_object( 1122 vmu_data.vmu_all_amps_hash, (caddr_t)shmd->shm_amp, 1123 VMUSAGE_TYPE_AMP); 1124 s_start = 0; 1125 s_end = btop(seg->s_size) - 1; 1126 sptd = shmd->shm_sptseg->s_data; 1127 1128 /* ism segments are always incore and do not reserve swap */ 1129 if (sptd->spt_flags & SHM_SHARE_MMU) 1130 incore = B_TRUE; 1131 1132 } else { 1133 return; 1134 } 1135 1136 /* 1137 * If there is a private amp, count anon pages that exist. If an 1138 * anon has a refcnt > 1 (cow sharing), then save the anon in a 1139 * hash so that it is not double counted. 1140 * 1141 * If there is also a shared object, they figure out the bounds 1142 * which are not mapped by the private amp. 1143 */ 1144 if (private_amp != NULL) { 1145 1146 /* Enter as writer to prevent cow anons from being freed */ 1147 ANON_LOCK_ENTER(&private_amp->a_rwlock, RW_WRITER); 1148 1149 p_index = p_start; 1150 s_index = s_start; 1151 1152 while (p_index <= p_end) { 1153 1154 pgcnt_t p_index_next; 1155 pgcnt_t p_bound_size; 1156 int cnt; 1157 anoff_t off; 1158 struct vnode *vn; 1159 struct anon *ap; 1160 page_t *page; /* For handling of large */ 1161 pgcnt_t pgcnt = 1; /* pages */ 1162 pgcnt_t pgstart; 1163 pgcnt_t pgend; 1164 uint_t pgshft; 1165 pgcnt_t pgmsk; 1166 1167 p_index_next = p_index; 1168 ap = anon_get_next_ptr(private_amp->ahp, 1169 &p_index_next); 1170 1171 /* 1172 * If next anon is past end of mapping, simulate 1173 * end of anon so loop terminates. 1174 */ 1175 if (p_index_next > p_end) { 1176 p_index_next = p_end + 1; 1177 ap = NULL; 1178 } 1179 /* 1180 * For cow segments, keep track of bounds not 1181 * backed by private amp so they can be looked 1182 * up in the backing vnode 1183 */ 1184 if (p_index_next != p_index) { 1185 1186 /* 1187 * Compute index difference between anon and 1188 * previous anon. 1189 */ 1190 p_bound_size = p_index_next - p_index - 1; 1191 1192 if (shared_object != NULL) { 1193 cur = vmu_alloc_bound(); 1194 cur->vmb_next = NULL; 1195 cur->vmb_start = s_index; 1196 cur->vmb_end = s_index + p_bound_size; 1197 cur->vmb_type = VMUSAGE_BOUND_UNKNOWN; 1198 if (first == NULL) { 1199 first = cur; 1200 last = cur; 1201 } else { 1202 last->vmb_next = cur; 1203 last = cur; 1204 } 1205 } 1206 p_index = p_index + p_bound_size + 1; 1207 s_index = s_index + p_bound_size + 1; 1208 } 1209 1210 /* Detect end of anons in amp */ 1211 if (ap == NULL) 1212 break; 1213 1214 cnt = ap->an_refcnt; 1215 swap_xlate(ap, &vn, &off); 1216 1217 if (vn == NULL || vn->v_pages == NULL || 1218 (page = page_exists(vn, off)) == NULL) { 1219 p_index++; 1220 s_index++; 1221 continue; 1222 } 1223 1224 /* 1225 * If large page is found, compute portion of large 1226 * page in mapping, and increment indicies to the next 1227 * large page. 1228 */ 1229 if (page->p_szc > 0) { 1230 1231 pgcnt = page_get_pagecnt(page->p_szc); 1232 pgshft = page_get_shift(page->p_szc); 1233 pgmsk = (0x1 << (pgshft - PAGESHIFT)) - 1; 1234 1235 /* First page in large page */ 1236 pgstart = p_index & ~pgmsk; 1237 /* Last page in large page */ 1238 pgend = pgstart + pgcnt - 1; 1239 /* 1240 * Artifically end page if page extends past 1241 * end of mapping. 1242 */ 1243 if (pgend > p_end) 1244 pgend = p_end; 1245 1246 /* 1247 * Compute number of pages from large page 1248 * which are mapped. 1249 */ 1250 pgcnt = pgend - p_index + 1; 1251 1252 /* 1253 * Point indicies at page after large page, 1254 * or at page after end of mapping. 1255 */ 1256 p_index += pgcnt; 1257 s_index += pgcnt; 1258 } else { 1259 p_index++; 1260 s_index++; 1261 } 1262 1263 /* 1264 * Assume anon structs with a refcnt 1265 * of 1 are not cow shared, so there 1266 * is no reason to track them per entity. 1267 */ 1268 if (cnt == 1) { 1269 panon += pgcnt; 1270 continue; 1271 } 1272 for (entity = vmu_entities; entity != NULL; 1273 entity = entity->vme_next_calc) { 1274 1275 result = &entity->vme_result; 1276 /* 1277 * Track cow anons per entity so 1278 * they are not double counted. 1279 */ 1280 if (vmu_find_insert_anon(entity->vme_anon_hash, 1281 (caddr_t)ap) == 0) 1282 continue; 1283 1284 result->vmu_rss_all += (pgcnt << PAGESHIFT); 1285 result->vmu_rss_private += 1286 (pgcnt << PAGESHIFT); 1287 } 1288 } 1289 ANON_LOCK_EXIT(&private_amp->a_rwlock); 1290 } 1291 1292 /* Add up resident anon and swap reserved for private mappings */ 1293 if (swresv > 0 || panon > 0) { 1294 for (entity = vmu_entities; entity != NULL; 1295 entity = entity->vme_next_calc) { 1296 result = &entity->vme_result; 1297 result->vmu_swap_all += swresv; 1298 result->vmu_swap_private += swresv; 1299 result->vmu_rss_all += (panon << PAGESHIFT); 1300 result->vmu_rss_private += (panon << PAGESHIFT); 1301 } 1302 } 1303 1304 /* Compute resident pages backing shared amp or named vnode */ 1305 if (shared_object != NULL) { 1306 if (first == NULL) { 1307 /* 1308 * No private amp, or private amp has no anon 1309 * structs. This means entire segment is backed by 1310 * the shared object. 1311 */ 1312 first = vmu_alloc_bound(); 1313 first->vmb_next = NULL; 1314 first->vmb_start = s_start; 1315 first->vmb_end = s_end; 1316 first->vmb_type = VMUSAGE_BOUND_UNKNOWN; 1317 } 1318 /* 1319 * Iterate bounds not backed by private amp, and compute 1320 * resident pages. 1321 */ 1322 cur = first; 1323 while (cur != NULL) { 1324 1325 if (vmu_insert_lookup_object_bounds(shared_object, 1326 cur->vmb_start, cur->vmb_end, VMUSAGE_BOUND_UNKNOWN, 1327 &first, &last) > 0) { 1328 /* new bounds, find incore/not-incore */ 1329 if (shared_object->vmo_type == 1330 VMUSAGE_TYPE_VNODE) 1331 vmu_vnode_update_incore_bounds( 1332 (vnode_t *) 1333 shared_object->vmo_key, &first, 1334 &last); 1335 else 1336 vmu_amp_update_incore_bounds( 1337 (struct anon_map *) 1338 shared_object->vmo_key, &first, 1339 &last, incore); 1340 vmu_merge_bounds(&first, &last); 1341 } 1342 for (entity = vmu_entities; entity != NULL; 1343 entity = entity->vme_next_calc) { 1344 1345 result = &entity->vme_result; 1346 1347 entity_object = vmu_find_insert_object( 1348 shared_object->vmo_type == 1349 VMUSAGE_TYPE_VNODE ? entity->vme_vnode_hash: 1350 entity->vme_amp_hash, 1351 shared_object->vmo_key, 1352 shared_object->vmo_type); 1353 1354 virt = vmu_insert_lookup_object_bounds( 1355 entity_object, cur->vmb_start, cur->vmb_end, 1356 VMUSAGE_BOUND_UNKNOWN, &e_first, &e_last); 1357 1358 if (virt == 0) 1359 continue; 1360 /* 1361 * Range visited for this entity 1362 */ 1363 rss = vmu_update_bounds(&e_first, 1364 &e_last, first, last); 1365 result->vmu_rss_all += (rss << PAGESHIFT); 1366 if (shared == B_TRUE && file == B_FALSE) { 1367 /* shared anon mapping */ 1368 result->vmu_swap_all += 1369 (virt << PAGESHIFT); 1370 result->vmu_swap_shared += 1371 (virt << PAGESHIFT); 1372 result->vmu_rss_shared += 1373 (rss << PAGESHIFT); 1374 } else if (shared == B_TRUE && file == B_TRUE) { 1375 /* shared file mapping */ 1376 result->vmu_rss_shared += 1377 (rss << PAGESHIFT); 1378 } else if (shared == B_FALSE && 1379 file == B_TRUE) { 1380 /* private file mapping */ 1381 result->vmu_rss_private += 1382 (rss << PAGESHIFT); 1383 } 1384 vmu_merge_bounds(&e_first, &e_last); 1385 } 1386 tmp = cur; 1387 cur = cur->vmb_next; 1388 vmu_free_bound(tmp); 1389 } 1390 } 1391 } 1392 1393 /* 1394 * Based on the current calculation flags, find the relevant entities 1395 * which are relative to the process. Then calculate each segment 1396 * in the process'es address space for each relevant entity. 1397 */ 1398 static void 1399 vmu_calculate_proc(proc_t *p) 1400 { 1401 vmu_entity_t *entities = NULL; 1402 vmu_zone_t *zone; 1403 vmu_entity_t *tmp; 1404 struct as *as; 1405 struct seg *seg; 1406 int ret; 1407 1408 /* Figure out which entities are being computed */ 1409 if ((vmu_data.vmu_system) != NULL) { 1410 tmp = vmu_data.vmu_system; 1411 tmp->vme_next_calc = entities; 1412 entities = tmp; 1413 } 1414 if (vmu_data.vmu_calc_flags & 1415 (VMUSAGE_ZONE | VMUSAGE_ALL_ZONES | VMUSAGE_PROJECTS | 1416 VMUSAGE_ALL_PROJECTS | VMUSAGE_TASKS | VMUSAGE_ALL_TASKS | 1417 VMUSAGE_RUSERS | VMUSAGE_ALL_RUSERS | VMUSAGE_EUSERS | 1418 VMUSAGE_ALL_EUSERS)) { 1419 ret = i_mod_hash_find_nosync(vmu_data.vmu_zones_hash, 1420 (mod_hash_key_t)(uintptr_t)p->p_zone->zone_id, 1421 (mod_hash_val_t *)&zone); 1422 if (ret != 0) { 1423 zone = vmu_alloc_zone(p->p_zone->zone_id); 1424 ret = i_mod_hash_insert_nosync(vmu_data.vmu_zones_hash, 1425 (mod_hash_key_t)(uintptr_t)p->p_zone->zone_id, 1426 (mod_hash_val_t)zone, (mod_hash_hndl_t)0); 1427 ASSERT(ret == 0); 1428 } 1429 if (zone->vmz_zone != NULL) { 1430 tmp = zone->vmz_zone; 1431 tmp->vme_next_calc = entities; 1432 entities = tmp; 1433 } 1434 if (vmu_data.vmu_calc_flags & 1435 (VMUSAGE_PROJECTS | VMUSAGE_ALL_PROJECTS)) { 1436 tmp = vmu_find_insert_entity(zone->vmz_projects_hash, 1437 p->p_task->tk_proj->kpj_id, VMUSAGE_PROJECTS, 1438 zone->vmz_id); 1439 tmp->vme_next_calc = entities; 1440 entities = tmp; 1441 } 1442 if (vmu_data.vmu_calc_flags & 1443 (VMUSAGE_TASKS | VMUSAGE_ALL_TASKS)) { 1444 tmp = vmu_find_insert_entity(zone->vmz_tasks_hash, 1445 p->p_task->tk_tkid, VMUSAGE_TASKS, zone->vmz_id); 1446 tmp->vme_next_calc = entities; 1447 entities = tmp; 1448 } 1449 if (vmu_data.vmu_calc_flags & 1450 (VMUSAGE_RUSERS | VMUSAGE_ALL_RUSERS)) { 1451 tmp = vmu_find_insert_entity(zone->vmz_rusers_hash, 1452 crgetruid(p->p_cred), VMUSAGE_RUSERS, zone->vmz_id); 1453 tmp->vme_next_calc = entities; 1454 entities = tmp; 1455 } 1456 if (vmu_data.vmu_calc_flags & 1457 (VMUSAGE_EUSERS | VMUSAGE_ALL_EUSERS)) { 1458 tmp = vmu_find_insert_entity(zone->vmz_eusers_hash, 1459 crgetuid(p->p_cred), VMUSAGE_EUSERS, zone->vmz_id); 1460 tmp->vme_next_calc = entities; 1461 entities = tmp; 1462 } 1463 } 1464 /* Entities which collapse projects and users for all zones */ 1465 if (vmu_data.vmu_calc_flags & VMUSAGE_COL_PROJECTS) { 1466 tmp = vmu_find_insert_entity(vmu_data.vmu_projects_col_hash, 1467 p->p_task->tk_proj->kpj_id, VMUSAGE_PROJECTS, ALL_ZONES); 1468 tmp->vme_next_calc = entities; 1469 entities = tmp; 1470 } 1471 if (vmu_data.vmu_calc_flags & VMUSAGE_COL_RUSERS) { 1472 tmp = vmu_find_insert_entity(vmu_data.vmu_rusers_col_hash, 1473 crgetruid(p->p_cred), VMUSAGE_RUSERS, ALL_ZONES); 1474 tmp->vme_next_calc = entities; 1475 entities = tmp; 1476 } 1477 if (vmu_data.vmu_calc_flags & VMUSAGE_COL_EUSERS) { 1478 tmp = vmu_find_insert_entity(vmu_data.vmu_eusers_col_hash, 1479 crgetuid(p->p_cred), VMUSAGE_EUSERS, ALL_ZONES); 1480 tmp->vme_next_calc = entities; 1481 entities = tmp; 1482 } 1483 1484 ASSERT(entities != NULL); 1485 /* process all segs in process's address space */ 1486 as = p->p_as; 1487 AS_LOCK_ENTER(as, &as->a_lock, RW_READER); 1488 for (seg = AS_SEGFIRST(as); seg != NULL; 1489 seg = AS_SEGNEXT(as, seg)) { 1490 vmu_calculate_seg(entities, seg); 1491 } 1492 AS_LOCK_EXIT(as, &as->a_lock); 1493 } 1494 1495 /* 1496 * Free data created by previous call to vmu_calculate(). 1497 */ 1498 static void 1499 vmu_clear_calc() 1500 { 1501 if (vmu_data.vmu_system != NULL) 1502 vmu_free_entity(vmu_data.vmu_system); 1503 vmu_data.vmu_system = NULL; 1504 if (vmu_data.vmu_zones_hash != NULL) 1505 i_mod_hash_clear_nosync(vmu_data.vmu_zones_hash); 1506 if (vmu_data.vmu_projects_col_hash != NULL) 1507 i_mod_hash_clear_nosync(vmu_data.vmu_projects_col_hash); 1508 if (vmu_data.vmu_rusers_col_hash != NULL) 1509 i_mod_hash_clear_nosync(vmu_data.vmu_rusers_col_hash); 1510 if (vmu_data.vmu_eusers_col_hash != NULL) 1511 i_mod_hash_clear_nosync(vmu_data.vmu_eusers_col_hash); 1512 1513 i_mod_hash_clear_nosync(vmu_data.vmu_all_vnodes_hash); 1514 i_mod_hash_clear_nosync(vmu_data.vmu_all_amps_hash); 1515 } 1516 1517 /* 1518 * Free unused data structures. These can result if the system workload 1519 * decreases between calculations. 1520 */ 1521 static void 1522 vmu_free_extra() 1523 { 1524 vmu_bound_t *tb; 1525 vmu_object_t *to; 1526 vmu_entity_t *te; 1527 vmu_zone_t *tz; 1528 1529 while (vmu_data.vmu_free_bounds != NULL) { 1530 tb = vmu_data.vmu_free_bounds; 1531 vmu_data.vmu_free_bounds = vmu_data.vmu_free_bounds->vmb_next; 1532 kmem_cache_free(vmu_bound_cache, tb); 1533 } 1534 while (vmu_data.vmu_free_objects != NULL) { 1535 to = vmu_data.vmu_free_objects; 1536 vmu_data.vmu_free_objects = 1537 vmu_data.vmu_free_objects->vmo_next; 1538 kmem_cache_free(vmu_object_cache, to); 1539 } 1540 while (vmu_data.vmu_free_entities != NULL) { 1541 te = vmu_data.vmu_free_entities; 1542 vmu_data.vmu_free_entities = 1543 vmu_data.vmu_free_entities->vme_next; 1544 if (te->vme_vnode_hash != NULL) 1545 mod_hash_destroy_hash(te->vme_vnode_hash); 1546 if (te->vme_amp_hash != NULL) 1547 mod_hash_destroy_hash(te->vme_amp_hash); 1548 if (te->vme_anon_hash != NULL) 1549 mod_hash_destroy_hash(te->vme_anon_hash); 1550 kmem_free(te, sizeof (vmu_entity_t)); 1551 } 1552 while (vmu_data.vmu_free_zones != NULL) { 1553 tz = vmu_data.vmu_free_zones; 1554 vmu_data.vmu_free_zones = 1555 vmu_data.vmu_free_zones->vmz_next; 1556 if (tz->vmz_projects_hash != NULL) 1557 mod_hash_destroy_hash(tz->vmz_projects_hash); 1558 if (tz->vmz_tasks_hash != NULL) 1559 mod_hash_destroy_hash(tz->vmz_tasks_hash); 1560 if (tz->vmz_rusers_hash != NULL) 1561 mod_hash_destroy_hash(tz->vmz_rusers_hash); 1562 if (tz->vmz_eusers_hash != NULL) 1563 mod_hash_destroy_hash(tz->vmz_eusers_hash); 1564 kmem_free(tz, sizeof (vmu_zone_t)); 1565 } 1566 } 1567 1568 extern kcondvar_t *pr_pid_cv; 1569 1570 /* 1571 * Determine which entity types are relevant and allocate the hashes to 1572 * track them. Then walk the process table and count rss and swap 1573 * for each process'es address space. Address space object such as 1574 * vnodes, amps and anons are tracked per entity, so that they are 1575 * not double counted in the results. 1576 * 1577 */ 1578 static void 1579 vmu_calculate() 1580 { 1581 int i = 0; 1582 int ret; 1583 proc_t *p; 1584 1585 vmu_clear_calc(); 1586 1587 if (vmu_data.vmu_calc_flags & VMUSAGE_SYSTEM) 1588 vmu_data.vmu_system = vmu_alloc_entity(0, VMUSAGE_SYSTEM, 1589 ALL_ZONES); 1590 1591 /* 1592 * Walk process table and calculate rss of each proc. 1593 * 1594 * Pidlock and p_lock cannot be held while doing the rss calculation. 1595 * This is because: 1596 * 1. The calculation allocates using KM_SLEEP. 1597 * 2. The calculation grabs a_lock, which cannot be grabbed 1598 * after p_lock. 1599 * 1600 * Since pidlock must be dropped, we cannot simply just walk the 1601 * practive list. Instead, we walk the process table, and sprlock 1602 * each process to ensure that it does not exit during the 1603 * calculation. 1604 */ 1605 1606 mutex_enter(&pidlock); 1607 for (i = 0; i < v.v_proc; i++) { 1608 again: 1609 p = pid_entry(i); 1610 if (p == NULL) 1611 continue; 1612 1613 mutex_enter(&p->p_lock); 1614 mutex_exit(&pidlock); 1615 1616 if (panicstr) { 1617 mutex_exit(&p->p_lock); 1618 return; 1619 } 1620 1621 /* Try to set P_PR_LOCK */ 1622 ret = sprtrylock_proc(p); 1623 if (ret == -1) { 1624 /* Process in invalid state */ 1625 mutex_exit(&p->p_lock); 1626 mutex_enter(&pidlock); 1627 continue; 1628 } else if (ret == 1) { 1629 /* 1630 * P_PR_LOCK is already set. Wait and try again. 1631 * This also drops p_lock. 1632 */ 1633 sprwaitlock_proc(p); 1634 mutex_enter(&pidlock); 1635 goto again; 1636 } 1637 mutex_exit(&p->p_lock); 1638 1639 vmu_calculate_proc(p); 1640 1641 mutex_enter(&p->p_lock); 1642 sprunlock(p); 1643 mutex_enter(&pidlock); 1644 } 1645 mutex_exit(&pidlock); 1646 1647 vmu_free_extra(); 1648 } 1649 1650 /* 1651 * allocate a new cache for N results satisfying flags 1652 */ 1653 vmu_cache_t * 1654 vmu_cache_alloc(size_t nres, uint_t flags) 1655 { 1656 vmu_cache_t *cache; 1657 1658 cache = kmem_zalloc(sizeof (vmu_cache_t), KM_SLEEP); 1659 cache->vmc_results = kmem_zalloc(sizeof (vmusage_t) * nres, KM_SLEEP); 1660 cache->vmc_nresults = nres; 1661 cache->vmc_flags = flags; 1662 cache->vmc_refcnt = 1; 1663 return (cache); 1664 } 1665 1666 /* 1667 * Make sure cached results are not freed 1668 */ 1669 static void 1670 vmu_cache_hold(vmu_cache_t *cache) 1671 { 1672 ASSERT(MUTEX_HELD(&vmu_data.vmu_lock)); 1673 cache->vmc_refcnt++; 1674 } 1675 1676 /* 1677 * free cache data 1678 */ 1679 static void 1680 vmu_cache_rele(vmu_cache_t *cache) 1681 { 1682 ASSERT(MUTEX_HELD(&vmu_data.vmu_lock)); 1683 ASSERT(cache->vmc_refcnt > 0); 1684 cache->vmc_refcnt--; 1685 if (cache->vmc_refcnt == 0) { 1686 kmem_free(cache->vmc_results, sizeof (vmusage_t) * 1687 cache->vmc_nresults); 1688 kmem_free(cache, sizeof (vmu_cache_t)); 1689 } 1690 } 1691 1692 /* 1693 * Copy out the cached results to a caller. Inspect the callers flags 1694 * and zone to determine which cached results should be copied. 1695 */ 1696 static int 1697 vmu_copyout_results(vmu_cache_t *cache, vmusage_t *buf, size_t *nres, 1698 uint_t flags) 1699 { 1700 vmusage_t *result, *out_result; 1701 vmusage_t dummy; 1702 size_t i, count = 0; 1703 size_t bufsize; 1704 int ret = 0; 1705 uint_t types = 0; 1706 1707 if (nres != NULL) { 1708 if (copyin((caddr_t)nres, &bufsize, sizeof (size_t))) 1709 return (set_errno(EFAULT)); 1710 } else { 1711 bufsize = 0; 1712 } 1713 1714 /* figure out what results the caller is interested in. */ 1715 if ((flags & VMUSAGE_SYSTEM) && curproc->p_zone == global_zone) 1716 types |= VMUSAGE_SYSTEM; 1717 if (flags & (VMUSAGE_ZONE | VMUSAGE_ALL_ZONES)) 1718 types |= VMUSAGE_ZONE; 1719 if (flags & (VMUSAGE_PROJECTS | VMUSAGE_ALL_PROJECTS | 1720 VMUSAGE_COL_PROJECTS)) 1721 types |= VMUSAGE_PROJECTS; 1722 if (flags & (VMUSAGE_TASKS | VMUSAGE_ALL_TASKS)) 1723 types |= VMUSAGE_TASKS; 1724 if (flags & (VMUSAGE_RUSERS | VMUSAGE_ALL_RUSERS | VMUSAGE_COL_RUSERS)) 1725 types |= VMUSAGE_RUSERS; 1726 if (flags & (VMUSAGE_EUSERS | VMUSAGE_ALL_EUSERS | VMUSAGE_COL_EUSERS)) 1727 types |= VMUSAGE_EUSERS; 1728 1729 /* count results for current zone */ 1730 out_result = buf; 1731 for (result = cache->vmc_results, i = 0; 1732 i < cache->vmc_nresults; result++, i++) { 1733 1734 /* Do not return "other-zone" results to non-global zones */ 1735 if (curproc->p_zone != global_zone && 1736 curproc->p_zone->zone_id != result->vmu_zoneid) 1737 continue; 1738 1739 /* 1740 * If non-global zone requests VMUSAGE_SYSTEM, fake 1741 * up VMUSAGE_ZONE result as VMUSAGE_SYSTEM result. 1742 */ 1743 if (curproc->p_zone != global_zone && 1744 (flags & VMUSAGE_SYSTEM) != 0 && 1745 result->vmu_type == VMUSAGE_ZONE) { 1746 count++; 1747 if (out_result != NULL) { 1748 if (bufsize < count) { 1749 ret = set_errno(EOVERFLOW); 1750 } else { 1751 dummy = *result; 1752 dummy.vmu_zoneid = ALL_ZONES; 1753 dummy.vmu_id = 0; 1754 dummy.vmu_type = VMUSAGE_SYSTEM; 1755 if (copyout(&dummy, out_result, 1756 sizeof (vmusage_t))) 1757 return (set_errno( 1758 EFAULT)); 1759 out_result++; 1760 } 1761 } 1762 } 1763 1764 /* Skip results that do not match requested type */ 1765 if ((result->vmu_type & types) == 0) 1766 continue; 1767 1768 /* Skip collated results if not requested */ 1769 if (result->vmu_zoneid == ALL_ZONES) { 1770 if (result->vmu_type == VMUSAGE_PROJECTS && 1771 (flags & VMUSAGE_COL_PROJECTS) == 0) 1772 continue; 1773 if (result->vmu_type == VMUSAGE_EUSERS && 1774 (flags & VMUSAGE_COL_EUSERS) == 0) 1775 continue; 1776 if (result->vmu_type == VMUSAGE_RUSERS && 1777 (flags & VMUSAGE_COL_RUSERS) == 0) 1778 continue; 1779 } 1780 1781 /* Skip "other zone" results if not requested */ 1782 if (result->vmu_zoneid != curproc->p_zone->zone_id) { 1783 if (result->vmu_type == VMUSAGE_ZONE && 1784 (flags & VMUSAGE_ALL_ZONES) == 0) 1785 continue; 1786 if (result->vmu_type == VMUSAGE_PROJECTS && 1787 (flags & (VMUSAGE_ALL_PROJECTS | 1788 VMUSAGE_COL_PROJECTS)) == 0) 1789 continue; 1790 if (result->vmu_type == VMUSAGE_TASKS && 1791 (flags & VMUSAGE_ALL_TASKS) == 0) 1792 continue; 1793 if (result->vmu_type == VMUSAGE_RUSERS && 1794 (flags & (VMUSAGE_ALL_RUSERS | 1795 VMUSAGE_COL_RUSERS)) == 0) 1796 continue; 1797 if (result->vmu_type == VMUSAGE_EUSERS && 1798 (flags & (VMUSAGE_ALL_EUSERS | 1799 VMUSAGE_COL_EUSERS)) == 0) 1800 continue; 1801 } 1802 count++; 1803 if (out_result != NULL) { 1804 if (bufsize < count) { 1805 ret = set_errno(EOVERFLOW); 1806 } else { 1807 if (copyout(result, out_result, 1808 sizeof (vmusage_t))) 1809 return (set_errno(EFAULT)); 1810 out_result++; 1811 } 1812 } 1813 } 1814 if (nres != NULL) 1815 if (copyout(&count, (void *)nres, sizeof (size_t))) 1816 return (set_errno(EFAULT)); 1817 1818 return (ret); 1819 } 1820 1821 /* 1822 * vm_getusage() 1823 * 1824 * Counts rss and swap by zone, project, task, and/or user. The flags argument 1825 * determines the type of results structures returned. Flags requesting 1826 * results from more than one zone are "flattened" to the local zone if the 1827 * caller is not the global zone. 1828 * 1829 * args: 1830 * flags: bitmap consisting of one or more of VMUSAGE_*. 1831 * age: maximum allowable age (time since counting was done) in 1832 * seconds of the results. Results from previous callers are 1833 * cached in kernel. 1834 * buf: pointer to buffer array of vmusage_t. If NULL, then only nres 1835 * set on success. 1836 * nres: Set to number of vmusage_t structures pointed to by buf 1837 * before calling vm_getusage(). 1838 * On return 0 (success) or ENOSPC, is set to the number of result 1839 * structures returned or attempted to return. 1840 * 1841 * returns 0 on success, -1 on failure: 1842 * EINTR (interrupted) 1843 * ENOSPC (nres to small for results, nres set to needed value for success) 1844 * EINVAL (flags invalid) 1845 * EFAULT (bad address for buf or nres) 1846 */ 1847 int 1848 vm_getusage(uint_t flags, time_t age, vmusage_t *buf, size_t *nres) 1849 { 1850 vmu_entity_t *entity; 1851 vmusage_t *result; 1852 int ret = 0; 1853 int cacherecent = 0; 1854 hrtime_t now; 1855 uint_t flags_orig; 1856 1857 /* 1858 * Non-global zones cannot request system wide and/or collated 1859 * results, or the system result, so munge the flags accordingly. 1860 */ 1861 flags_orig = flags; 1862 if (curproc->p_zone != global_zone) { 1863 if (flags & (VMUSAGE_ALL_PROJECTS | VMUSAGE_COL_PROJECTS)) { 1864 flags &= ~(VMUSAGE_ALL_PROJECTS | VMUSAGE_COL_PROJECTS); 1865 flags |= VMUSAGE_PROJECTS; 1866 } 1867 if (flags & (VMUSAGE_ALL_RUSERS | VMUSAGE_COL_RUSERS)) { 1868 flags &= ~(VMUSAGE_ALL_RUSERS | VMUSAGE_COL_RUSERS); 1869 flags |= VMUSAGE_RUSERS; 1870 } 1871 if (flags & (VMUSAGE_ALL_EUSERS | VMUSAGE_COL_EUSERS)) { 1872 flags &= ~(VMUSAGE_ALL_EUSERS | VMUSAGE_COL_EUSERS); 1873 flags |= VMUSAGE_EUSERS; 1874 } 1875 if (flags & VMUSAGE_SYSTEM) { 1876 flags &= ~VMUSAGE_SYSTEM; 1877 flags |= VMUSAGE_ZONE; 1878 } 1879 } 1880 1881 /* Check for unknown flags */ 1882 if ((flags & (~VMUSAGE_MASK)) != 0) 1883 return (set_errno(EINVAL)); 1884 1885 /* Check for no flags */ 1886 if ((flags & VMUSAGE_MASK) == 0) 1887 return (set_errno(EINVAL)); 1888 1889 mutex_enter(&vmu_data.vmu_lock); 1890 now = gethrtime(); 1891 1892 start: 1893 if (vmu_data.vmu_cache != NULL) { 1894 1895 vmu_cache_t *cache; 1896 1897 if ((vmu_data.vmu_cache->vmc_timestamp + 1898 ((hrtime_t)age * NANOSEC)) > now) 1899 cacherecent = 1; 1900 1901 if ((vmu_data.vmu_cache->vmc_flags & flags) == flags && 1902 cacherecent == 1) { 1903 cache = vmu_data.vmu_cache; 1904 vmu_cache_hold(cache); 1905 mutex_exit(&vmu_data.vmu_lock); 1906 1907 ret = vmu_copyout_results(cache, buf, nres, flags_orig); 1908 mutex_enter(&vmu_data.vmu_lock); 1909 vmu_cache_rele(cache); 1910 if (vmu_data.vmu_pending_waiters > 0) 1911 cv_broadcast(&vmu_data.vmu_cv); 1912 mutex_exit(&vmu_data.vmu_lock); 1913 return (ret); 1914 } 1915 /* 1916 * If the cache is recent, it is likely that there are other 1917 * consumers of vm_getusage running, so add their flags to the 1918 * desired flags for the calculation. 1919 */ 1920 if (cacherecent == 1) 1921 flags = vmu_data.vmu_cache->vmc_flags | flags; 1922 } 1923 if (vmu_data.vmu_calc_thread == NULL) { 1924 1925 vmu_cache_t *cache; 1926 1927 vmu_data.vmu_calc_thread = curthread; 1928 vmu_data.vmu_calc_flags = flags; 1929 vmu_data.vmu_entities = NULL; 1930 vmu_data.vmu_nentities = 0; 1931 if (vmu_data.vmu_pending_waiters > 0) 1932 vmu_data.vmu_calc_flags |= 1933 vmu_data.vmu_pending_flags; 1934 1935 vmu_data.vmu_pending_flags = 0; 1936 mutex_exit(&vmu_data.vmu_lock); 1937 vmu_calculate(); 1938 mutex_enter(&vmu_data.vmu_lock); 1939 /* copy results to cache */ 1940 if (vmu_data.vmu_cache != NULL) 1941 vmu_cache_rele(vmu_data.vmu_cache); 1942 cache = vmu_data.vmu_cache = 1943 vmu_cache_alloc(vmu_data.vmu_nentities, 1944 vmu_data.vmu_calc_flags); 1945 1946 result = cache->vmc_results; 1947 for (entity = vmu_data.vmu_entities; entity != NULL; 1948 entity = entity->vme_next) { 1949 *result = entity->vme_result; 1950 result++; 1951 } 1952 cache->vmc_timestamp = gethrtime(); 1953 vmu_cache_hold(cache); 1954 1955 vmu_data.vmu_calc_flags = 0; 1956 vmu_data.vmu_calc_thread = NULL; 1957 1958 if (vmu_data.vmu_pending_waiters > 0) 1959 cv_broadcast(&vmu_data.vmu_cv); 1960 1961 mutex_exit(&vmu_data.vmu_lock); 1962 1963 /* copy cache */ 1964 ret = vmu_copyout_results(cache, buf, nres, flags_orig); 1965 mutex_enter(&vmu_data.vmu_lock); 1966 vmu_cache_rele(cache); 1967 mutex_exit(&vmu_data.vmu_lock); 1968 1969 return (ret); 1970 } 1971 vmu_data.vmu_pending_flags |= flags; 1972 vmu_data.vmu_pending_waiters++; 1973 while (vmu_data.vmu_calc_thread != NULL) { 1974 if (cv_wait_sig(&vmu_data.vmu_cv, 1975 &vmu_data.vmu_lock) == 0) { 1976 vmu_data.vmu_pending_waiters--; 1977 mutex_exit(&vmu_data.vmu_lock); 1978 return (set_errno(EINTR)); 1979 } 1980 } 1981 vmu_data.vmu_pending_waiters--; 1982 goto start; 1983 } 1984