1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 1987, 2010, Oracle and/or its affiliates. All rights reserved. 23 */ 24 25 /* Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T */ 26 /* All Rights Reserved */ 27 28 /* 29 * University Copyright- Copyright (c) 1982, 1986, 1988 30 * The Regents of the University of California 31 * All Rights Reserved 32 * 33 * University Acknowledgment- Portions of this document are derived from 34 * software developed by the University of California, Berkeley, and its 35 * contributors. 36 */ 37 38 /* 39 * Each physical swap area has an associated bitmap representing 40 * its physical storage. The bitmap records which swap slots are 41 * currently allocated or freed. Allocation is done by searching 42 * through the bitmap for the first free slot. Thus, there's 43 * no linear relation between offset within the swap device and the 44 * address (within its segment(s)) of the page that the slot backs; 45 * instead, it's an arbitrary one-to-one mapping. 46 * 47 * Associated with each swap area is a swapinfo structure. These 48 * structures are linked into a linear list that determines the 49 * ordering of swap areas in the logical swap device. Each contains a 50 * pointer to the corresponding bitmap, the area's size, and its 51 * associated vnode. 52 */ 53 54 #include <sys/types.h> 55 #include <sys/inttypes.h> 56 #include <sys/param.h> 57 #include <sys/t_lock.h> 58 #include <sys/sysmacros.h> 59 #include <sys/systm.h> 60 #include <sys/errno.h> 61 #include <sys/kmem.h> 62 #include <sys/vfs.h> 63 #include <sys/vnode.h> 64 #include <sys/pathname.h> 65 #include <sys/cmn_err.h> 66 #include <sys/vtrace.h> 67 #include <sys/swap.h> 68 #include <sys/dumphdr.h> 69 #include <sys/debug.h> 70 #include <sys/fs/snode.h> 71 #include <sys/fs/swapnode.h> 72 #include <sys/policy.h> 73 #include <sys/zone.h> 74 75 #include <vm/as.h> 76 #include <vm/seg.h> 77 #include <vm/page.h> 78 #include <vm/seg_vn.h> 79 #include <vm/hat.h> 80 #include <vm/anon.h> 81 #include <vm/seg_map.h> 82 83 /* 84 * To balance the load among multiple swap areas, we don't allow 85 * more than swap_maxcontig allocations to be satisfied from a 86 * single swap area before moving on to the next swap area. This 87 * effectively "interleaves" allocations among the many swap areas. 88 */ 89 int swap_maxcontig; /* set by anon_init() to 1 Mb */ 90 91 #define MINIROOTSIZE 12000 /* ~6 Meg XXX */ 92 93 /* 94 * XXX - this lock is a kludge. It serializes some aspects of swapadd() and 95 * swapdel() (namely VOP_OPEN, VOP_CLOSE, VN_RELE). It protects against 96 * somebody swapadd'ing and getting swap slots from a vnode, while someone 97 * else is in the process of closing or rele'ing it. 98 */ 99 static kmutex_t swap_lock; 100 101 kmutex_t swapinfo_lock; 102 103 /* 104 * protected by the swapinfo_lock 105 */ 106 struct swapinfo *swapinfo; 107 108 static struct swapinfo *silast; 109 static int nswapfiles; 110 111 static u_offset_t swap_getoff(struct swapinfo *); 112 static int swapadd(struct vnode *, ulong_t, ulong_t, char *); 113 static int swapdel(struct vnode *, ulong_t); 114 static int swapslot_free(struct vnode *, u_offset_t, struct swapinfo *); 115 116 /* 117 * swap device bitmap allocation macros 118 */ 119 #define MAPSHIFT 5 120 #define NBBW (NBPW * NBBY) /* number of bits per word */ 121 #define TESTBIT(map, i) (((map)[(i) >> MAPSHIFT] & (1 << (i) % NBBW))) 122 #define SETBIT(map, i) (((map)[(i) >> MAPSHIFT] |= (1 << (i) % NBBW))) 123 #define CLEARBIT(map, i) (((map)[(i) >> MAPSHIFT] &= ~(1 << (i) % NBBW))) 124 125 int swap_debug = 0; /* set for debug printf's */ 126 int swap_verify = 0; /* set to verify slots when freeing and allocating */ 127 128 uint_t swapalloc_maxcontig; 129 130 /* 131 * Allocate a range of up to *lenp contiguous slots (page) from a physical 132 * swap device. Flags are one of: 133 * SA_NOT Must have a slot from a physical swap device other than the 134 * the one containing input (*vpp, *offp). 135 * Less slots than requested may be returned. *lenp allocated slots are 136 * returned starting at *offp on *vpp. 137 * Returns 1 for a successful allocation, 0 for couldn't allocate any slots. 138 */ 139 int 140 swap_phys_alloc( 141 struct vnode **vpp, 142 u_offset_t *offp, 143 size_t *lenp, 144 uint_t flags) 145 { 146 struct swapinfo *sip; 147 offset_t soff, noff; 148 size_t len; 149 150 mutex_enter(&swapinfo_lock); 151 sip = silast; 152 153 /* Find a desirable physical device and allocate from it. */ 154 do { 155 if (sip == NULL) 156 break; 157 if (!(sip->si_flags & ST_INDEL) && 158 (spgcnt_t)sip->si_nfpgs > 0) { 159 /* Caller wants other than specified swap device */ 160 if (flags & SA_NOT) { 161 if (*vpp != sip->si_vp || 162 *offp < sip->si_soff || 163 *offp >= sip->si_eoff) 164 goto found; 165 /* Caller is loose, will take anything */ 166 } else 167 goto found; 168 } else if (sip->si_nfpgs == 0) 169 sip->si_allocs = 0; 170 if ((sip = sip->si_next) == NULL) 171 sip = swapinfo; 172 } while (sip != silast); 173 mutex_exit(&swapinfo_lock); 174 return (0); 175 found: 176 soff = swap_getoff(sip); 177 sip->si_nfpgs--; 178 if (soff == -1) 179 panic("swap_alloc: swap_getoff failed!"); 180 181 for (len = PAGESIZE; len < *lenp; len += PAGESIZE) { 182 if (sip->si_nfpgs == 0) 183 break; 184 if (swapalloc_maxcontig && len >= swapalloc_maxcontig) 185 break; 186 noff = swap_getoff(sip); 187 if (noff == -1) { 188 break; 189 } else if (noff != soff + len) { 190 CLEARBIT(sip->si_swapslots, btop(noff - sip->si_soff)); 191 break; 192 } 193 sip->si_nfpgs--; 194 } 195 *vpp = sip->si_vp; 196 *offp = soff; 197 *lenp = len; 198 ASSERT((spgcnt_t)sip->si_nfpgs >= 0); 199 sip->si_allocs += btop(len); 200 if (sip->si_allocs >= swap_maxcontig) { 201 sip->si_allocs = 0; 202 if ((silast = sip->si_next) == NULL) 203 silast = swapinfo; 204 } 205 TRACE_2(TR_FAC_VM, TR_SWAP_ALLOC, 206 "swap_alloc:sip %p offset %lx", sip, soff); 207 mutex_exit(&swapinfo_lock); 208 return (1); 209 } 210 211 int swap_backsearch = 0; 212 213 /* 214 * Get a free offset on swap device sip. 215 * Return >=0 offset if succeeded, -1 for failure. 216 */ 217 static u_offset_t 218 swap_getoff(struct swapinfo *sip) 219 { 220 uint_t *sp, *ep; 221 size_t aoff, boff, poff, slotnumber; 222 223 ASSERT(MUTEX_HELD(&swapinfo_lock)); 224 225 sip->si_alloccnt++; 226 for (sp = &sip->si_swapslots[sip->si_hint >> MAPSHIFT], 227 ep = &sip->si_swapslots[sip->si_mapsize / NBPW]; sp < ep; sp++) { 228 if (*sp != (uint_t)0xffffffff) 229 goto foundentry; 230 else 231 sip->si_checkcnt++; 232 } 233 SWAP_PRINT(SW_ALLOC, 234 "swap_getoff: couldn't find slot from hint %ld to end\n", 235 sip->si_hint, 0, 0, 0, 0); 236 /* 237 * Go backwards? Check for faster method XXX 238 */ 239 if (swap_backsearch) { 240 for (sp = &sip->si_swapslots[sip->si_hint >> MAPSHIFT], 241 ep = sip->si_swapslots; sp > ep; sp--) { 242 if (*sp != (uint_t)0xffffffff) 243 goto foundentry; 244 else 245 sip->si_checkcnt++; 246 } 247 } else { 248 for (sp = sip->si_swapslots, 249 ep = &sip->si_swapslots[sip->si_hint >> MAPSHIFT]; 250 sp < ep; sp++) { 251 if (*sp != (uint_t)0xffffffff) 252 goto foundentry; 253 else 254 sip->si_checkcnt++; 255 } 256 } 257 if (*sp == 0xffffffff) { 258 cmn_err(CE_WARN, "No free swap slots!"); 259 return ((u_offset_t)-1); 260 } 261 262 foundentry: 263 /* 264 * aoff is the page number offset (in bytes) of the si_swapslots 265 * array element containing a free page 266 * 267 * boff is the page number offset of the free page 268 * (i.e. cleared bit) in si_swapslots[aoff]. 269 */ 270 aoff = ((char *)sp - (char *)sip->si_swapslots) * NBBY; 271 272 for (boff = (sip->si_hint % NBBW); boff < NBBW; boff++) { 273 if (!TESTBIT(sip->si_swapslots, aoff + boff)) 274 goto foundslot; 275 else 276 sip->si_checkcnt++; 277 } 278 for (boff = 0; boff < (sip->si_hint % NBBW); boff++) { 279 if (!TESTBIT(sip->si_swapslots, aoff + boff)) 280 goto foundslot; 281 else 282 sip->si_checkcnt++; 283 } 284 panic("swap_getoff: didn't find slot in word hint %ld", sip->si_hint); 285 286 foundslot: 287 /* 288 * Return the offset of the free page in swap device. 289 * Convert page number of byte offset and add starting 290 * offset of swap device. 291 */ 292 slotnumber = aoff + boff; 293 SWAP_PRINT(SW_ALLOC, "swap_getoff: allocating slot %ld\n", 294 slotnumber, 0, 0, 0, 0); 295 poff = ptob(slotnumber); 296 if (poff + sip->si_soff >= sip->si_eoff) 297 printf("ptob(aoff(%ld) + boff(%ld))(%ld) >= eoff(%ld)\n", 298 aoff, boff, ptob(slotnumber), (long)sip->si_eoff); 299 ASSERT(poff < sip->si_eoff); 300 /* 301 * We could verify here that the slot isn't already allocated 302 * by looking through all the anon slots. 303 */ 304 SETBIT(sip->si_swapslots, slotnumber); 305 sip->si_hint = slotnumber + 1; /* hint = next slot */ 306 return (poff + sip->si_soff); 307 } 308 309 /* 310 * Free a swap page. 311 */ 312 void 313 swap_phys_free(struct vnode *vp, u_offset_t off, size_t len) 314 { 315 struct swapinfo *sip; 316 ssize_t pagenumber, npage; 317 318 mutex_enter(&swapinfo_lock); 319 sip = swapinfo; 320 321 do { 322 if (sip->si_vp == vp && 323 sip->si_soff <= off && off < sip->si_eoff) { 324 for (pagenumber = btop(off - sip->si_soff), 325 npage = btop(len) + pagenumber; 326 pagenumber < npage; pagenumber++) { 327 SWAP_PRINT(SW_ALLOC, 328 "swap_phys_free: freeing slot %ld on " 329 "sip %p\n", 330 pagenumber, sip, 0, 0, 0); 331 if (!TESTBIT(sip->si_swapslots, pagenumber)) { 332 panic( 333 "swap_phys_free: freeing free slot " 334 "%p,%lx\n", (void *)vp, 335 ptob(pagenumber) + sip->si_soff); 336 } 337 CLEARBIT(sip->si_swapslots, pagenumber); 338 sip->si_nfpgs++; 339 } 340 ASSERT(sip->si_nfpgs <= sip->si_npgs); 341 mutex_exit(&swapinfo_lock); 342 return; 343 } 344 } while ((sip = sip->si_next) != NULL); 345 panic("swap_phys_free"); 346 /*NOTREACHED*/ 347 } 348 349 /* 350 * Return the anon struct corresponding for the given 351 * <vnode, off> if it is part of the virtual swap device. 352 * Return the anon struct if found, otherwise NULL. 353 */ 354 struct anon * 355 swap_anon(struct vnode *vp, u_offset_t off) 356 { 357 struct anon *ap; 358 359 ASSERT(MUTEX_HELD(AH_MUTEX(vp, off))); 360 361 for (ap = anon_hash[ANON_HASH(vp, off)]; ap != NULL; ap = ap->an_hash) { 362 if (ap->an_vp == vp && ap->an_off == off) 363 return (ap); 364 } 365 return (NULL); 366 } 367 368 369 /* 370 * Determine if the vp offset range overlap a swap device. 371 */ 372 int 373 swap_in_range(struct vnode *vp, u_offset_t offset, size_t len) 374 { 375 struct swapinfo *sip; 376 u_offset_t eoff; 377 378 eoff = offset + len; 379 ASSERT(eoff > offset); 380 381 mutex_enter(&swapinfo_lock); 382 sip = swapinfo; 383 if (vp && sip) { 384 do { 385 if (vp != sip->si_vp || eoff <= sip->si_soff || 386 offset >= sip->si_eoff) 387 continue; 388 mutex_exit(&swapinfo_lock); 389 return (1); 390 } while ((sip = sip->si_next) != NULL); 391 } 392 mutex_exit(&swapinfo_lock); 393 return (0); 394 } 395 396 /* 397 * See if name is one of our swap files 398 * even though lookupname failed. 399 * This can be used by swapdel to delete 400 * swap resources on remote machines 401 * where the link has gone down. 402 */ 403 static struct vnode * 404 swapdel_byname( 405 char *name, /* pathname to delete */ 406 ulong_t lowblk) /* Low block number of area to delete */ 407 { 408 struct swapinfo **sipp, *osip; 409 u_offset_t soff; 410 411 /* 412 * Find the swap file entry for the file to 413 * be deleted. Skip any entries that are in 414 * transition. 415 */ 416 417 soff = ptob(btopr(lowblk << SCTRSHFT)); /* must be page aligned */ 418 419 mutex_enter(&swapinfo_lock); 420 for (sipp = &swapinfo; (osip = *sipp) != NULL; sipp = &osip->si_next) { 421 if ((strcmp(osip->si_pname, name) == 0) && 422 (osip->si_soff == soff) && (osip->si_flags == 0)) { 423 struct vnode *vp = osip->si_vp; 424 425 VN_HOLD(vp); 426 mutex_exit(&swapinfo_lock); 427 return (vp); 428 } 429 } 430 mutex_exit(&swapinfo_lock); 431 return (NULL); 432 } 433 434 435 /* 436 * New system call to manipulate swap files. 437 */ 438 int 439 swapctl(int sc_cmd, void *sc_arg, int *rv) 440 { 441 struct swapinfo *sip, *csip, *tsip; 442 int error = 0; 443 struct swapent st, *ust; 444 struct swapres sr; 445 struct vnode *vp; 446 int cnt = 0; 447 int tmp_nswapfiles; 448 int nswap; 449 int length, nlen; 450 int gplen = 0, plen; 451 char *swapname; 452 char *pname; 453 char *tpname; 454 struct anoninfo ai; 455 spgcnt_t avail; 456 int global = INGLOBALZONE(curproc); 457 struct zone *zp = curproc->p_zone; 458 459 /* 460 * When running in a zone we want to hide the details of the swap 461 * devices: we report there only being one swap device named "swap" 462 * having a size equal to the sum of the sizes of all real swap devices 463 * on the system. 464 */ 465 switch (sc_cmd) { 466 case SC_GETNSWP: 467 if (global) 468 *rv = nswapfiles; 469 else 470 *rv = 1; 471 return (0); 472 473 case SC_AINFO: 474 /* 475 * Return anoninfo information with these changes: 476 * ani_max = maximum amount of swap space 477 * (including potentially available physical memory) 478 * ani_free = amount of unallocated anonymous memory 479 * (some of which might be reserved and including 480 * potentially available physical memory) 481 * ani_resv = amount of claimed (reserved) anonymous memory 482 */ 483 avail = MAX((spgcnt_t)(availrmem - swapfs_minfree), 0); 484 ai.ani_max = (k_anoninfo.ani_max + 485 k_anoninfo.ani_mem_resv) + avail; 486 487 ai.ani_free = k_anoninfo.ani_free + avail; 488 489 ai.ani_resv = k_anoninfo.ani_phys_resv + 490 k_anoninfo.ani_mem_resv; 491 492 if (!global && zp->zone_max_swap_ctl != UINT64_MAX) { 493 /* 494 * We're in a non-global zone with a swap cap. We 495 * always report the system-wide values for the global 496 * zone, even though it too can have a swap cap. 497 */ 498 499 /* 500 * For a swap-capped zone, the numbers are contrived 501 * since we don't have a correct value of 'reserved' 502 * for the zone. 503 * 504 * The ani_max value is always the zone's swap cap. 505 * 506 * The ani_free value is always the difference between 507 * the cap and the amount of swap in use by the zone. 508 * 509 * The ani_resv value is typically set to be the amount 510 * of swap in use by the zone, but can be adjusted 511 * upwards to indicate how much swap is currently 512 * unavailable to that zone due to usage by entities 513 * outside the zone. 514 * 515 * This works as follows. 516 * 517 * In the 'swap -s' output, the data is displayed 518 * as follows: 519 * allocated = ani_max - ani_free 520 * reserved = ani_resv - allocated 521 * available = ani_max - ani_resv 522 * 523 * Taking a contrived example, if the swap cap is 100 524 * and the amount of swap used by the zone is 75, this 525 * gives: 526 * allocated = ani_max - ani_free = 100 - 25 = 75 527 * reserved = ani_resv - allocated = 75 - 75 = 0 528 * available = ani_max - ani_resv = 100 - 75 = 25 529 * 530 * In this typical case, you can see that the 'swap -s' 531 * 'reserved' will always be 0 inside a swap capped 532 * zone. 533 * 534 * However, if the system as a whole has less free 535 * swap than the zone limits allow, then we adjust 536 * the ani_resv value up so that it is the difference 537 * between the zone cap and the amount of free system 538 * swap. Taking the above example, but when the 539 * system as a whole only has 20 of swap available, we 540 * get an ani_resv of 100 - 20 = 80. This gives: 541 * allocated = ani_max - ani_free = 100 - 25 = 75 542 * reserved = ani_resv - allocated = 80 - 75 = 5 543 * available = ani_max - ani_resv = 100 - 80 = 20 544 * 545 * In this case, you can see how the ani_resv value is 546 * tweaked up to make the 'swap -s' numbers work inside 547 * the zone. 548 */ 549 rctl_qty_t cap, used; 550 pgcnt_t pgcap, sys_avail; 551 552 mutex_enter(&zp->zone_mem_lock); 553 cap = zp->zone_max_swap_ctl; 554 used = zp->zone_max_swap; 555 mutex_exit(&zp->zone_mem_lock); 556 557 pgcap = MIN(btop(cap), ai.ani_max); 558 ai.ani_free = pgcap - btop(used); 559 560 /* Get the system-wide swap currently available. */ 561 sys_avail = ai.ani_max - ai.ani_resv; 562 if (sys_avail < ai.ani_free) 563 ai.ani_resv = pgcap - sys_avail; 564 else 565 ai.ani_resv = btop(used); 566 567 ai.ani_max = pgcap; 568 } 569 570 if (copyout(&ai, sc_arg, sizeof (struct anoninfo)) != 0) 571 return (EFAULT); 572 return (0); 573 574 case SC_LIST: 575 if (copyin(sc_arg, &length, sizeof (int)) != 0) 576 return (EFAULT); 577 if (!global) { 578 struct swapent st; 579 char *swappath = "swap"; 580 581 if (length < 1) 582 return (ENOMEM); 583 ust = (swapent_t *)((swaptbl_t *)sc_arg)->swt_ent; 584 if (copyin(ust, &st, sizeof (swapent_t)) != 0) 585 return (EFAULT); 586 st.ste_start = PAGESIZE >> SCTRSHFT; 587 st.ste_length = (off_t)0; 588 st.ste_pages = 0; 589 st.ste_free = 0; 590 st.ste_flags = 0; 591 592 mutex_enter(&swapinfo_lock); 593 for (sip = swapinfo, nswap = 0; 594 sip != NULL && nswap < nswapfiles; 595 sip = sip->si_next, nswap++) { 596 st.ste_length += 597 (sip->si_eoff - sip->si_soff) >> SCTRSHFT; 598 st.ste_pages += sip->si_npgs; 599 st.ste_free += sip->si_nfpgs; 600 } 601 mutex_exit(&swapinfo_lock); 602 603 if (zp->zone_max_swap_ctl != UINT64_MAX) { 604 rctl_qty_t cap, used; 605 606 mutex_enter(&zp->zone_mem_lock); 607 cap = zp->zone_max_swap_ctl; 608 used = zp->zone_max_swap; 609 mutex_exit(&zp->zone_mem_lock); 610 611 st.ste_length = MIN(cap, st.ste_length); 612 st.ste_pages = MIN(btop(cap), st.ste_pages); 613 st.ste_free = MIN(st.ste_pages - btop(used), 614 st.ste_free); 615 } 616 617 if (copyout(&st, ust, sizeof (swapent_t)) != 0 || 618 copyout(swappath, st.ste_path, 619 strlen(swappath) + 1) != 0) { 620 return (EFAULT); 621 } 622 *rv = 1; 623 return (0); 624 } 625 beginning: 626 tmp_nswapfiles = nswapfiles; 627 /* Return an error if not enough space for the whole table. */ 628 if (length < tmp_nswapfiles) 629 return (ENOMEM); 630 /* 631 * Get memory to hold the swap entries and their names. We'll 632 * copy the real entries into these and then copy these out. 633 * Allocating the pathname memory is only a guess so we may 634 * find that we need more and have to do it again. 635 * All this is because we have to hold the anon lock while 636 * traversing the swapinfo list, and we can't be doing copyouts 637 * and/or kmem_alloc()s during this. 638 */ 639 csip = kmem_zalloc(tmp_nswapfiles * sizeof (struct swapinfo), 640 KM_SLEEP); 641 retry: 642 nlen = tmp_nswapfiles * (gplen += 100); 643 pname = kmem_zalloc(nlen, KM_SLEEP); 644 645 mutex_enter(&swapinfo_lock); 646 647 if (tmp_nswapfiles != nswapfiles) { 648 mutex_exit(&swapinfo_lock); 649 kmem_free(pname, nlen); 650 kmem_free(csip, 651 tmp_nswapfiles * sizeof (struct swapinfo)); 652 gplen = 0; 653 goto beginning; 654 } 655 for (sip = swapinfo, tsip = csip, tpname = pname, nswap = 0; 656 sip && nswap < tmp_nswapfiles; 657 sip = sip->si_next, tsip++, tpname += plen, nswap++) { 658 plen = sip->si_pnamelen; 659 if (tpname + plen - pname > nlen) { 660 mutex_exit(&swapinfo_lock); 661 kmem_free(pname, nlen); 662 goto retry; 663 } 664 *tsip = *sip; 665 tsip->si_pname = tpname; 666 (void) strcpy(tsip->si_pname, sip->si_pname); 667 } 668 mutex_exit(&swapinfo_lock); 669 670 if (sip) { 671 error = ENOMEM; 672 goto lout; 673 } 674 ust = (swapent_t *)((swaptbl_t *)sc_arg)->swt_ent; 675 for (tsip = csip, cnt = 0; cnt < nswap; tsip++, ust++, cnt++) { 676 if (copyin(ust, &st, sizeof (swapent_t)) != 0) { 677 error = EFAULT; 678 goto lout; 679 } 680 st.ste_flags = tsip->si_flags; 681 st.ste_length = 682 (tsip->si_eoff - tsip->si_soff) >> SCTRSHFT; 683 st.ste_start = tsip->si_soff >> SCTRSHFT; 684 st.ste_pages = tsip->si_npgs; 685 st.ste_free = tsip->si_nfpgs; 686 if (copyout(&st, ust, sizeof (swapent_t)) != 0) { 687 error = EFAULT; 688 goto lout; 689 } 690 if (!tsip->si_pnamelen) 691 continue; 692 if (copyout(tsip->si_pname, st.ste_path, 693 tsip->si_pnamelen) != 0) { 694 error = EFAULT; 695 goto lout; 696 } 697 } 698 *rv = nswap; 699 lout: 700 kmem_free(csip, tmp_nswapfiles * sizeof (struct swapinfo)); 701 kmem_free(pname, nlen); 702 return (error); 703 704 case SC_ADD: 705 case SC_REMOVE: 706 break; 707 default: 708 return (EINVAL); 709 } 710 if ((error = secpolicy_swapctl(CRED())) != 0) 711 return (error); 712 713 if (copyin(sc_arg, &sr, sizeof (swapres_t))) 714 return (EFAULT); 715 716 /* Allocate the space to read in pathname */ 717 if ((swapname = kmem_alloc(MAXPATHLEN, KM_NOSLEEP)) == NULL) 718 return (ENOMEM); 719 720 error = copyinstr(sr.sr_name, swapname, MAXPATHLEN, 0); 721 if (error) 722 goto out; 723 724 error = lookupname(swapname, UIO_SYSSPACE, FOLLOW, NULLVPP, &vp); 725 if (error) { 726 if (sc_cmd == SC_ADD) 727 goto out; 728 /* see if we match by name */ 729 vp = swapdel_byname(swapname, (size_t)sr.sr_start); 730 if (vp == NULL) 731 goto out; 732 } 733 734 if (vp->v_flag & (VNOMAP | VNOSWAP)) { 735 VN_RELE(vp); 736 error = ENOSYS; 737 goto out; 738 } 739 switch (vp->v_type) { 740 case VBLK: 741 break; 742 743 case VREG: 744 if (vp->v_vfsp && vn_is_readonly(vp)) 745 error = EROFS; 746 else 747 error = VOP_ACCESS(vp, VREAD|VWRITE, 0, CRED(), NULL); 748 break; 749 750 case VDIR: 751 error = EISDIR; 752 break; 753 default: 754 error = ENOSYS; 755 break; 756 } 757 if (error == 0) { 758 if (sc_cmd == SC_REMOVE) 759 error = swapdel(vp, sr.sr_start); 760 else 761 error = swapadd(vp, sr.sr_start, 762 sr.sr_length, swapname); 763 } 764 VN_RELE(vp); 765 out: 766 kmem_free(swapname, MAXPATHLEN); 767 return (error); 768 } 769 770 #if defined(_LP64) && defined(_SYSCALL32) 771 772 int 773 swapctl32(int sc_cmd, void *sc_arg, int *rv) 774 { 775 struct swapinfo *sip, *csip, *tsip; 776 int error = 0; 777 struct swapent32 st, *ust; 778 struct swapres32 sr; 779 struct vnode *vp; 780 int cnt = 0; 781 int tmp_nswapfiles; 782 int nswap; 783 int length, nlen; 784 int gplen = 0, plen; 785 char *swapname; 786 char *pname; 787 char *tpname; 788 struct anoninfo32 ai; 789 size_t s; 790 spgcnt_t avail; 791 int global = INGLOBALZONE(curproc); 792 struct zone *zp = curproc->p_zone; 793 794 /* 795 * When running in a zone we want to hide the details of the swap 796 * devices: we report there only being one swap device named "swap" 797 * having a size equal to the sum of the sizes of all real swap devices 798 * on the system. 799 */ 800 switch (sc_cmd) { 801 case SC_GETNSWP: 802 if (global) 803 *rv = nswapfiles; 804 else 805 *rv = 1; 806 return (0); 807 808 case SC_AINFO: 809 /* 810 * Return anoninfo information with these changes: 811 * ani_max = maximum amount of swap space 812 * (including potentially available physical memory) 813 * ani_free = amount of unallocated anonymous memory 814 * (some of which might be reserved and including 815 * potentially available physical memory) 816 * ani_resv = amount of claimed (reserved) anonymous memory 817 */ 818 avail = MAX((spgcnt_t)(availrmem - swapfs_minfree), 0); 819 s = (k_anoninfo.ani_max + k_anoninfo.ani_mem_resv) + avail; 820 if (s > UINT32_MAX) 821 return (EOVERFLOW); 822 ai.ani_max = s; 823 824 s = k_anoninfo.ani_free + avail; 825 if (s > UINT32_MAX) 826 return (EOVERFLOW); 827 ai.ani_free = s; 828 829 s = k_anoninfo.ani_phys_resv + k_anoninfo.ani_mem_resv; 830 if (s > UINT32_MAX) 831 return (EOVERFLOW); 832 ai.ani_resv = s; 833 834 if (!global && zp->zone_max_swap_ctl != UINT64_MAX) { 835 /* 836 * We're in a non-global zone with a swap cap. We 837 * always report the system-wide values for the global 838 * zone, even though it too can have a swap cap. 839 * See the comment for the SC_AINFO case in swapctl() 840 * which explains the following logic. 841 */ 842 rctl_qty_t cap, used; 843 pgcnt_t pgcap, sys_avail; 844 845 mutex_enter(&zp->zone_mem_lock); 846 cap = zp->zone_max_swap_ctl; 847 used = zp->zone_max_swap; 848 mutex_exit(&zp->zone_mem_lock); 849 850 pgcap = MIN(btop(cap), ai.ani_max); 851 ai.ani_free = pgcap - btop(used); 852 853 /* Get the system-wide swap currently available. */ 854 sys_avail = ai.ani_max - ai.ani_resv; 855 if (sys_avail < ai.ani_free) 856 ai.ani_resv = pgcap - sys_avail; 857 else 858 ai.ani_resv = btop(used); 859 860 ai.ani_max = pgcap; 861 } 862 863 if (copyout(&ai, sc_arg, sizeof (ai)) != 0) 864 return (EFAULT); 865 return (0); 866 867 case SC_LIST: 868 if (copyin(sc_arg, &length, sizeof (int32_t)) != 0) 869 return (EFAULT); 870 if (!global) { 871 struct swapent32 st; 872 char *swappath = "swap"; 873 874 if (length < 1) 875 return (ENOMEM); 876 ust = (swapent32_t *)((swaptbl32_t *)sc_arg)->swt_ent; 877 if (copyin(ust, &st, sizeof (swapent32_t)) != 0) 878 return (EFAULT); 879 st.ste_start = PAGESIZE >> SCTRSHFT; 880 st.ste_length = (off_t)0; 881 st.ste_pages = 0; 882 st.ste_free = 0; 883 st.ste_flags = 0; 884 885 mutex_enter(&swapinfo_lock); 886 for (sip = swapinfo, nswap = 0; 887 sip != NULL && nswap < nswapfiles; 888 sip = sip->si_next, nswap++) { 889 st.ste_length += 890 (sip->si_eoff - sip->si_soff) >> SCTRSHFT; 891 st.ste_pages += sip->si_npgs; 892 st.ste_free += sip->si_nfpgs; 893 } 894 mutex_exit(&swapinfo_lock); 895 896 if (zp->zone_max_swap_ctl != UINT64_MAX) { 897 rctl_qty_t cap, used; 898 899 mutex_enter(&zp->zone_mem_lock); 900 cap = zp->zone_max_swap_ctl; 901 used = zp->zone_max_swap; 902 mutex_exit(&zp->zone_mem_lock); 903 904 st.ste_length = MIN(cap, st.ste_length); 905 st.ste_pages = MIN(btop(cap), st.ste_pages); 906 st.ste_free = MIN(st.ste_pages - btop(used), 907 st.ste_free); 908 } 909 910 if (copyout(&st, ust, sizeof (swapent32_t)) != 0 || 911 copyout(swappath, (caddr_t)(uintptr_t)st.ste_path, 912 strlen(swappath) + 1) != 0) { 913 return (EFAULT); 914 } 915 *rv = 1; 916 return (0); 917 } 918 beginning: 919 tmp_nswapfiles = nswapfiles; 920 /* Return an error if not enough space for the whole table. */ 921 if (length < tmp_nswapfiles) 922 return (ENOMEM); 923 /* 924 * Get memory to hold the swap entries and their names. We'll 925 * copy the real entries into these and then copy these out. 926 * Allocating the pathname memory is only a guess so we may 927 * find that we need more and have to do it again. 928 * All this is because we have to hold the anon lock while 929 * traversing the swapinfo list, and we can't be doing copyouts 930 * and/or kmem_alloc()s during this. 931 */ 932 csip = kmem_zalloc(tmp_nswapfiles * sizeof (*csip), KM_SLEEP); 933 retry: 934 nlen = tmp_nswapfiles * (gplen += 100); 935 pname = kmem_zalloc(nlen, KM_SLEEP); 936 937 mutex_enter(&swapinfo_lock); 938 939 if (tmp_nswapfiles != nswapfiles) { 940 mutex_exit(&swapinfo_lock); 941 kmem_free(pname, nlen); 942 kmem_free(csip, tmp_nswapfiles * sizeof (*csip)); 943 gplen = 0; 944 goto beginning; 945 } 946 for (sip = swapinfo, tsip = csip, tpname = pname, nswap = 0; 947 (sip != NULL) && (nswap < tmp_nswapfiles); 948 sip = sip->si_next, tsip++, tpname += plen, nswap++) { 949 plen = sip->si_pnamelen; 950 if (tpname + plen - pname > nlen) { 951 mutex_exit(&swapinfo_lock); 952 kmem_free(pname, nlen); 953 goto retry; 954 } 955 *tsip = *sip; 956 tsip->si_pname = tpname; 957 (void) strcpy(tsip->si_pname, sip->si_pname); 958 } 959 mutex_exit(&swapinfo_lock); 960 961 if (sip != NULL) { 962 error = ENOMEM; 963 goto lout; 964 } 965 ust = (swapent32_t *)((swaptbl32_t *)sc_arg)->swt_ent; 966 for (tsip = csip, cnt = 0; cnt < nswap; tsip++, ust++, cnt++) { 967 if (copyin(ust, &st, sizeof (*ust)) != 0) { 968 error = EFAULT; 969 goto lout; 970 } 971 st.ste_flags = tsip->si_flags; 972 st.ste_length = 973 (tsip->si_eoff - tsip->si_soff) >> SCTRSHFT; 974 st.ste_start = tsip->si_soff >> SCTRSHFT; 975 st.ste_pages = tsip->si_npgs; 976 st.ste_free = tsip->si_nfpgs; 977 if (copyout(&st, ust, sizeof (st)) != 0) { 978 error = EFAULT; 979 goto lout; 980 } 981 if (!tsip->si_pnamelen) 982 continue; 983 if (copyout(tsip->si_pname, 984 (caddr_t)(uintptr_t)st.ste_path, 985 tsip->si_pnamelen) != 0) { 986 error = EFAULT; 987 goto lout; 988 } 989 } 990 *rv = nswap; 991 lout: 992 kmem_free(csip, tmp_nswapfiles * sizeof (*csip)); 993 kmem_free(pname, nlen); 994 return (error); 995 996 case SC_ADD: 997 case SC_REMOVE: 998 break; 999 default: 1000 return (EINVAL); 1001 } 1002 if ((error = secpolicy_swapctl(CRED())) != 0) 1003 return (error); 1004 1005 if (copyin(sc_arg, &sr, sizeof (sr))) 1006 return (EFAULT); 1007 1008 /* Allocate the space to read in pathname */ 1009 if ((swapname = kmem_alloc(MAXPATHLEN, KM_NOSLEEP)) == NULL) 1010 return (ENOMEM); 1011 1012 error = copyinstr((caddr_t)(uintptr_t)sr.sr_name, 1013 swapname, MAXPATHLEN, NULL); 1014 if (error) 1015 goto out; 1016 1017 error = lookupname(swapname, UIO_SYSSPACE, FOLLOW, NULLVPP, &vp); 1018 if (error) { 1019 if (sc_cmd == SC_ADD) 1020 goto out; 1021 /* see if we match by name */ 1022 vp = swapdel_byname(swapname, (uint_t)sr.sr_start); 1023 if (vp == NULL) 1024 goto out; 1025 } 1026 1027 if (vp->v_flag & (VNOMAP | VNOSWAP)) { 1028 VN_RELE(vp); 1029 error = ENOSYS; 1030 goto out; 1031 } 1032 switch (vp->v_type) { 1033 case VBLK: 1034 break; 1035 1036 case VREG: 1037 if (vp->v_vfsp && vn_is_readonly(vp)) 1038 error = EROFS; 1039 else 1040 error = VOP_ACCESS(vp, VREAD|VWRITE, 0, CRED(), NULL); 1041 break; 1042 1043 case VDIR: 1044 error = EISDIR; 1045 break; 1046 default: 1047 error = ENOSYS; 1048 break; 1049 } 1050 if (error == 0) { 1051 if (sc_cmd == SC_REMOVE) 1052 error = swapdel(vp, sr.sr_start); 1053 else 1054 error = swapadd(vp, sr.sr_start, sr.sr_length, 1055 swapname); 1056 } 1057 VN_RELE(vp); 1058 out: 1059 kmem_free(swapname, MAXPATHLEN); 1060 return (error); 1061 } 1062 1063 #endif /* _LP64 && _SYSCALL32 */ 1064 1065 /* 1066 * Add a new swap file. 1067 */ 1068 int 1069 swapadd(struct vnode *vp, ulong_t lowblk, ulong_t nblks, char *swapname) 1070 { 1071 struct swapinfo **sipp, *nsip = NULL, *esip = NULL; 1072 struct vnode *cvp; 1073 struct vattr vattr; 1074 pgcnt_t pages; 1075 u_offset_t soff, eoff; 1076 int error; 1077 ssize_t i, start, end; 1078 ushort_t wasswap; 1079 ulong_t startblk; 1080 size_t returned_mem; 1081 1082 SWAP_PRINT(SW_CTL, "swapadd: vp %p lowblk %ld nblks %ld swapname %s\n", 1083 vp, lowblk, nblks, swapname, 0); 1084 /* 1085 * Get the real vnode. (If vp is not a specnode it just returns vp, so 1086 * it does the right thing, but having this code know about specnodes 1087 * violates the spirit of having it be indepedent of vnode type.) 1088 */ 1089 cvp = common_specvp(vp); 1090 1091 /* 1092 * Or in VISSWAP so file system has chance to deny swap-ons during open. 1093 */ 1094 mutex_enter(&cvp->v_lock); 1095 wasswap = cvp->v_flag & VISSWAP; 1096 cvp->v_flag |= VISSWAP; 1097 mutex_exit(&cvp->v_lock); 1098 1099 mutex_enter(&swap_lock); 1100 if (error = VOP_OPEN(&cvp, FREAD|FWRITE, CRED(), NULL)) { 1101 mutex_exit(&swap_lock); 1102 /* restore state of v_flag */ 1103 if (!wasswap) { 1104 mutex_enter(&cvp->v_lock); 1105 cvp->v_flag &= ~VISSWAP; 1106 mutex_exit(&cvp->v_lock); 1107 } 1108 return (error); 1109 } 1110 mutex_exit(&swap_lock); 1111 1112 /* 1113 * Get partition size. Return error if empty partition, 1114 * or if request does not fit within the partition. 1115 * If this is the first swap device, we can reduce 1116 * the size of the swap area to match what is 1117 * available. This can happen if the system was built 1118 * on a machine with a different size swap partition. 1119 */ 1120 vattr.va_mask = AT_SIZE; 1121 if (error = VOP_GETATTR(cvp, &vattr, ATTR_COMM, CRED(), NULL)) 1122 goto out; 1123 1124 /* 1125 * Specfs returns a va_size of MAXOFFSET_T (UNKNOWN_SIZE) when the 1126 * size of the device can't be determined. 1127 */ 1128 if ((vattr.va_size == 0) || (vattr.va_size == MAXOFFSET_T)) { 1129 error = EINVAL; 1130 goto out; 1131 } 1132 1133 #ifdef _ILP32 1134 /* 1135 * No support for large swap in 32-bit OS, if the size of the swap is 1136 * bigger than MAXOFF32_T then the size used by swapfs must be limited. 1137 * This limitation is imposed by the swap subsystem itself, a D_64BIT 1138 * driver as the target of swap operation should be able to field 1139 * the IO. 1140 */ 1141 if (vattr.va_size > MAXOFF32_T) { 1142 cmn_err(CE_NOTE, 1143 "!swap device %s truncated from 0x%llx to 0x%x bytes", 1144 swapname, vattr.va_size, MAXOFF32_T); 1145 vattr.va_size = MAXOFF32_T; 1146 } 1147 #endif /* _ILP32 */ 1148 1149 /* Fail if file not writeable (try to set size to current size) */ 1150 vattr.va_mask = AT_SIZE; 1151 if (error = VOP_SETATTR(cvp, &vattr, 0, CRED(), NULL)) 1152 goto out; 1153 1154 /* Fail if fs does not support VOP_PAGEIO */ 1155 error = VOP_PAGEIO(cvp, (page_t *)NULL, (u_offset_t)0, 0, 0, CRED(), 1156 NULL); 1157 1158 if (error == ENOSYS) 1159 goto out; 1160 else 1161 error = 0; 1162 /* 1163 * If swapping on the root filesystem don't put swap blocks that 1164 * correspond to the miniroot filesystem on the swap free list. 1165 */ 1166 if (cvp == rootdir) 1167 startblk = roundup(MINIROOTSIZE<<SCTRSHFT, klustsize)>>SCTRSHFT; 1168 else /* Skip 1st page (disk label) */ 1169 startblk = (ulong_t)(lowblk ? lowblk : 1); 1170 1171 soff = startblk << SCTRSHFT; 1172 if (soff >= vattr.va_size) { 1173 error = EINVAL; 1174 goto out; 1175 } 1176 1177 /* 1178 * If user specified 0 blks, use the size of the device 1179 */ 1180 eoff = nblks ? soff + (nblks - (startblk - lowblk) << SCTRSHFT) : 1181 vattr.va_size; 1182 1183 SWAP_PRINT(SW_CTL, "swapadd: va_size %ld soff %ld eoff %ld\n", 1184 vattr.va_size, soff, eoff, 0, 0); 1185 1186 if (eoff > vattr.va_size) { 1187 error = EINVAL; 1188 goto out; 1189 } 1190 1191 /* 1192 * The starting and ending offsets must be page aligned. 1193 * Round soff up to next page boundary, round eoff 1194 * down to previous page boundary. 1195 */ 1196 soff = ptob(btopr(soff)); 1197 eoff = ptob(btop(eoff)); 1198 if (soff >= eoff) { 1199 SWAP_PRINT(SW_CTL, "swapadd: soff %ld >= eoff %ld\n", 1200 soff, eoff, 0, 0, 0); 1201 error = EINVAL; 1202 goto out; 1203 } 1204 1205 pages = btop(eoff - soff); 1206 1207 /* Allocate and partially set up the new swapinfo */ 1208 nsip = kmem_zalloc(sizeof (struct swapinfo), KM_SLEEP); 1209 nsip->si_vp = cvp; 1210 1211 nsip->si_soff = soff; 1212 nsip->si_eoff = eoff; 1213 nsip->si_hint = 0; 1214 nsip->si_checkcnt = nsip->si_alloccnt = 0; 1215 1216 nsip->si_pnamelen = (int)strlen(swapname) + 1; 1217 nsip->si_pname = (char *)kmem_zalloc(nsip->si_pnamelen, KM_SLEEP); 1218 bcopy(swapname, nsip->si_pname, nsip->si_pnamelen - 1); 1219 SWAP_PRINT(SW_CTL, "swapadd: allocating swapinfo for %s, %ld pages\n", 1220 swapname, pages, 0, 0, 0); 1221 /* 1222 * Size of swapslots map in bytes 1223 */ 1224 nsip->si_mapsize = P2ROUNDUP(pages, NBBW) / NBBY; 1225 nsip->si_swapslots = kmem_zalloc(nsip->si_mapsize, KM_SLEEP); 1226 1227 /* 1228 * Permanently set the bits that can't ever be allocated, 1229 * i.e. those from the ending offset to the round up slot for the 1230 * swapslots bit map. 1231 */ 1232 start = pages; 1233 end = P2ROUNDUP(pages, NBBW); 1234 for (i = start; i < end; i++) { 1235 SWAP_PRINT(SW_CTL, "swapadd: set bit for page %ld\n", i, 1236 0, 0, 0, 0); 1237 SETBIT(nsip->si_swapslots, i); 1238 } 1239 nsip->si_npgs = nsip->si_nfpgs = pages; 1240 /* 1241 * Now check to see if we can add it. We wait til now to check because 1242 * we need the swapinfo_lock and we don't want sleep with it (e.g., 1243 * during kmem_alloc()) while we're setting up the swapinfo. 1244 */ 1245 mutex_enter(&swapinfo_lock); 1246 for (sipp = &swapinfo; (esip = *sipp) != NULL; sipp = &esip->si_next) { 1247 if (esip->si_vp == cvp) { 1248 if (esip->si_soff == soff && esip->si_npgs == pages && 1249 (esip->si_flags & ST_DOINGDEL)) { 1250 /* 1251 * We are adding a device that we are in the 1252 * middle of deleting. Just clear the 1253 * ST_DOINGDEL flag to signal this and 1254 * the deletion routine will eventually notice 1255 * it and add it back. 1256 */ 1257 esip->si_flags &= ~ST_DOINGDEL; 1258 mutex_exit(&swapinfo_lock); 1259 goto out; 1260 } 1261 /* disallow overlapping swap files */ 1262 if ((soff < esip->si_eoff) && (eoff > esip->si_soff)) { 1263 error = EEXIST; 1264 mutex_exit(&swapinfo_lock); 1265 goto out; 1266 } 1267 } 1268 } 1269 1270 nswapfiles++; 1271 1272 /* 1273 * add new swap device to list and shift allocations to it 1274 * before updating the anoninfo counters 1275 */ 1276 *sipp = nsip; 1277 silast = nsip; 1278 1279 /* 1280 * Update the total amount of reservable swap space 1281 * accounting properly for swap space from physical memory 1282 */ 1283 /* New swap device soaks up currently reserved memory swap */ 1284 mutex_enter(&anoninfo_lock); 1285 1286 ASSERT(k_anoninfo.ani_mem_resv >= k_anoninfo.ani_locked_swap); 1287 ASSERT(k_anoninfo.ani_max >= k_anoninfo.ani_phys_resv); 1288 1289 k_anoninfo.ani_max += pages; 1290 ANI_ADD(pages); 1291 if (k_anoninfo.ani_mem_resv > k_anoninfo.ani_locked_swap) { 1292 returned_mem = MIN(k_anoninfo.ani_mem_resv - 1293 k_anoninfo.ani_locked_swap, 1294 k_anoninfo.ani_max - k_anoninfo.ani_phys_resv); 1295 1296 ANI_ADD(-returned_mem); 1297 k_anoninfo.ani_free -= returned_mem; 1298 k_anoninfo.ani_mem_resv -= returned_mem; 1299 k_anoninfo.ani_phys_resv += returned_mem; 1300 1301 mutex_enter(&freemem_lock); 1302 availrmem += returned_mem; 1303 mutex_exit(&freemem_lock); 1304 } 1305 /* 1306 * At boot time, to permit booting small memory machines using 1307 * only physical memory as swap space, we allowed a dangerously 1308 * large amount of memory to be used as swap space; now that 1309 * more physical backing store is available bump down the amount 1310 * we can get from memory to a safer size. 1311 */ 1312 if (swapfs_minfree < swapfs_desfree) { 1313 mutex_enter(&freemem_lock); 1314 if (availrmem > swapfs_desfree || !k_anoninfo.ani_mem_resv) 1315 swapfs_minfree = swapfs_desfree; 1316 mutex_exit(&freemem_lock); 1317 } 1318 1319 SWAP_PRINT(SW_CTL, "swapadd: ani_max %ld ani_free %ld\n", 1320 k_anoninfo.ani_free, k_anoninfo.ani_free, 0, 0, 0); 1321 1322 mutex_exit(&anoninfo_lock); 1323 1324 mutex_exit(&swapinfo_lock); 1325 1326 /* Initialize the dump device */ 1327 mutex_enter(&dump_lock); 1328 if (dumpvp == NULL) 1329 (void) dumpinit(vp, swapname, 0); 1330 mutex_exit(&dump_lock); 1331 1332 VN_HOLD(cvp); 1333 out: 1334 if (error || esip) { 1335 SWAP_PRINT(SW_CTL, "swapadd: error (%d)\n", error, 0, 0, 0, 0); 1336 1337 if (!wasswap) { 1338 mutex_enter(&cvp->v_lock); 1339 cvp->v_flag &= ~VISSWAP; 1340 mutex_exit(&cvp->v_lock); 1341 } 1342 if (nsip) { 1343 kmem_free(nsip->si_swapslots, (size_t)nsip->si_mapsize); 1344 kmem_free(nsip->si_pname, nsip->si_pnamelen); 1345 kmem_free(nsip, sizeof (*nsip)); 1346 } 1347 mutex_enter(&swap_lock); 1348 (void) VOP_CLOSE(cvp, FREAD|FWRITE, 1, (offset_t)0, CRED(), 1349 NULL); 1350 mutex_exit(&swap_lock); 1351 } 1352 return (error); 1353 } 1354 1355 /* 1356 * Delete a swap file. 1357 */ 1358 static int 1359 swapdel( 1360 struct vnode *vp, 1361 ulong_t lowblk) /* Low block number of area to delete. */ 1362 { 1363 struct swapinfo **sipp, *osip = NULL; 1364 struct vnode *cvp; 1365 u_offset_t soff; 1366 int error = 0; 1367 u_offset_t toff = 0; 1368 struct vnode *tvp = NULL; 1369 spgcnt_t pages; 1370 struct anon **app, *ap; 1371 kmutex_t *ahm; 1372 pgcnt_t adjust_swap = 0; 1373 1374 /* Find the swap file entry for the file to be deleted */ 1375 cvp = common_specvp(vp); 1376 1377 1378 lowblk = lowblk ? lowblk : 1; /* Skip first page (disk label) */ 1379 soff = ptob(btopr(lowblk << SCTRSHFT)); /* must be page aligned */ 1380 1381 mutex_enter(&swapinfo_lock); 1382 for (sipp = &swapinfo; (osip = *sipp) != NULL; sipp = &osip->si_next) { 1383 if ((osip->si_vp == cvp) && 1384 (osip->si_soff == soff) && (osip->si_flags == 0)) 1385 break; 1386 } 1387 1388 /* If the file was not found, error. */ 1389 if (osip == NULL) { 1390 error = EINVAL; 1391 mutex_exit(&swapinfo_lock); 1392 goto out; 1393 } 1394 1395 pages = osip->si_npgs; 1396 1397 /* 1398 * Do not delete if we will be low on swap pages. 1399 */ 1400 mutex_enter(&anoninfo_lock); 1401 1402 ASSERT(k_anoninfo.ani_mem_resv >= k_anoninfo.ani_locked_swap); 1403 ASSERT(k_anoninfo.ani_max >= k_anoninfo.ani_phys_resv); 1404 1405 mutex_enter(&freemem_lock); 1406 if (((k_anoninfo.ani_max - k_anoninfo.ani_phys_resv) + 1407 MAX((spgcnt_t)(availrmem - swapfs_minfree), 0)) < pages) { 1408 mutex_exit(&freemem_lock); 1409 mutex_exit(&anoninfo_lock); 1410 error = ENOMEM; 1411 cmn_err(CE_WARN, "swapdel - too few free pages"); 1412 mutex_exit(&swapinfo_lock); 1413 goto out; 1414 } 1415 mutex_exit(&freemem_lock); 1416 1417 k_anoninfo.ani_max -= pages; 1418 1419 /* If needed, reserve memory swap to replace old device */ 1420 if (k_anoninfo.ani_phys_resv > k_anoninfo.ani_max) { 1421 adjust_swap = k_anoninfo.ani_phys_resv - k_anoninfo.ani_max; 1422 k_anoninfo.ani_phys_resv -= adjust_swap; 1423 k_anoninfo.ani_mem_resv += adjust_swap; 1424 mutex_enter(&freemem_lock); 1425 availrmem -= adjust_swap; 1426 mutex_exit(&freemem_lock); 1427 ANI_ADD(adjust_swap); 1428 } 1429 ASSERT(k_anoninfo.ani_mem_resv >= k_anoninfo.ani_locked_swap); 1430 ASSERT(k_anoninfo.ani_max >= k_anoninfo.ani_phys_resv); 1431 mutex_exit(&anoninfo_lock); 1432 1433 ANI_ADD(-pages); 1434 1435 /* 1436 * Set the delete flag. This prevents anyone from allocating more 1437 * pages from this file. Also set ST_DOINGDEL. Someone who wants to 1438 * add the file back while we're deleting it will signify by clearing 1439 * this flag. 1440 */ 1441 osip->si_flags |= ST_INDEL|ST_DOINGDEL; 1442 mutex_exit(&swapinfo_lock); 1443 1444 /* 1445 * Free all the allocated physical slots for this file. We do this 1446 * by walking through the entire anon hash array, because we need 1447 * to update all the anon slots that have physical swap slots on 1448 * this file, and this is the only way to find them all. We go back 1449 * to the beginning of a bucket after each slot is freed because the 1450 * anonhash_lock is not held during the free and thus the hash table 1451 * may change under us. 1452 */ 1453 for (app = anon_hash; app < &anon_hash[ANON_HASH_SIZE]; app++) { 1454 ahm = &anonhash_lock[(app - anon_hash) & 1455 (AH_LOCK_SIZE - 1)].pad_mutex; 1456 mutex_enter(ahm); 1457 top: 1458 for (ap = *app; ap != NULL; ap = ap->an_hash) { 1459 if (ap->an_pvp == cvp && 1460 ap->an_poff >= osip->si_soff && 1461 ap->an_poff < osip->si_eoff) { 1462 ASSERT(TESTBIT(osip->si_swapslots, 1463 btop((size_t)(ap->an_poff - 1464 osip->si_soff)))); 1465 tvp = ap->an_vp; 1466 toff = ap->an_off; 1467 VN_HOLD(tvp); 1468 mutex_exit(ahm); 1469 1470 error = swapslot_free(tvp, toff, osip); 1471 1472 VN_RELE(tvp); 1473 mutex_enter(ahm); 1474 if (!error && (osip->si_flags & ST_DOINGDEL)) { 1475 goto top; 1476 } else { 1477 if (error) { 1478 cmn_err(CE_WARN, 1479 "swapslot_free failed %d", 1480 error); 1481 } 1482 1483 /* 1484 * Add device back before making it 1485 * visible. 1486 */ 1487 mutex_enter(&swapinfo_lock); 1488 osip->si_flags &= 1489 ~(ST_INDEL | ST_DOINGDEL); 1490 mutex_exit(&swapinfo_lock); 1491 1492 /* 1493 * Update the anon space available 1494 */ 1495 mutex_enter(&anoninfo_lock); 1496 1497 k_anoninfo.ani_phys_resv += adjust_swap; 1498 k_anoninfo.ani_mem_resv -= adjust_swap; 1499 k_anoninfo.ani_max += pages; 1500 1501 mutex_enter(&freemem_lock); 1502 availrmem += adjust_swap; 1503 mutex_exit(&freemem_lock); 1504 1505 mutex_exit(&anoninfo_lock); 1506 1507 ANI_ADD(pages); 1508 1509 mutex_exit(ahm); 1510 goto out; 1511 } 1512 } 1513 } 1514 mutex_exit(ahm); 1515 } 1516 1517 /* All done, they'd better all be free! */ 1518 mutex_enter(&swapinfo_lock); 1519 ASSERT(osip->si_nfpgs == osip->si_npgs); 1520 1521 /* Now remove it from the swapinfo list */ 1522 for (sipp = &swapinfo; *sipp != NULL; sipp = &(*sipp)->si_next) { 1523 if (*sipp == osip) 1524 break; 1525 } 1526 ASSERT(*sipp); 1527 *sipp = osip->si_next; 1528 if (silast == osip) 1529 if ((silast = osip->si_next) == NULL) 1530 silast = swapinfo; 1531 nswapfiles--; 1532 mutex_exit(&swapinfo_lock); 1533 1534 kmem_free(osip->si_swapslots, osip->si_mapsize); 1535 kmem_free(osip->si_pname, osip->si_pnamelen); 1536 kmem_free(osip, sizeof (*osip)); 1537 1538 mutex_enter(&dump_lock); 1539 if (cvp == dumpvp) 1540 dumpfini(); 1541 mutex_exit(&dump_lock); 1542 1543 /* Release the vnode */ 1544 1545 mutex_enter(&swap_lock); 1546 (void) VOP_CLOSE(cvp, FREAD|FWRITE, 1, (offset_t)0, CRED(), NULL); 1547 mutex_enter(&cvp->v_lock); 1548 cvp->v_flag &= ~VISSWAP; 1549 mutex_exit(&cvp->v_lock); 1550 VN_RELE(cvp); 1551 mutex_exit(&swap_lock); 1552 out: 1553 return (error); 1554 } 1555 1556 /* 1557 * Free up a physical swap slot on swapinfo sip, currently in use by the 1558 * anonymous page whose name is (vp, off). 1559 */ 1560 static int 1561 swapslot_free( 1562 struct vnode *vp, 1563 u_offset_t off, 1564 struct swapinfo *sip) 1565 { 1566 struct page *pp = NULL; 1567 struct anon *ap = NULL; 1568 int error = 0; 1569 kmutex_t *ahm; 1570 struct vnode *pvp = NULL; 1571 u_offset_t poff; 1572 int alloc_pg = 0; 1573 1574 ASSERT(sip->si_vp != NULL); 1575 /* 1576 * Get the page for the old swap slot if exists or create a new one. 1577 */ 1578 again: 1579 if ((pp = page_lookup(vp, off, SE_SHARED)) == NULL) { 1580 pp = page_create_va(vp, off, PAGESIZE, PG_WAIT | PG_EXCL, 1581 segkmap, NULL); 1582 if (pp == NULL) 1583 goto again; 1584 alloc_pg = 1; 1585 1586 error = swap_getphysname(vp, off, &pvp, &poff); 1587 if (error || pvp != sip->si_vp || poff < sip->si_soff || 1588 poff >= sip->si_eoff) { 1589 page_io_unlock(pp); 1590 /*LINTED: constant in conditional context*/ 1591 VN_DISPOSE(pp, B_INVAL, 0, kcred); 1592 return (0); 1593 } 1594 1595 error = VOP_PAGEIO(pvp, pp, poff, PAGESIZE, B_READ, 1596 CRED(), NULL); 1597 if (error) { 1598 page_io_unlock(pp); 1599 if (error == EFAULT) 1600 error = 0; 1601 /*LINTED: constant in conditional context*/ 1602 VN_DISPOSE(pp, B_INVAL, 0, kcred); 1603 return (error); 1604 } 1605 } 1606 1607 /* 1608 * The anon could have been removed by anon_decref* and/or reallocated 1609 * by anon layer (an_pvp == NULL) with the same vp, off. 1610 * In this case the page which has been allocated needs to 1611 * be freed. 1612 */ 1613 if (!alloc_pg) 1614 page_io_lock(pp); 1615 ahm = AH_MUTEX(vp, off); 1616 mutex_enter(ahm); 1617 ap = swap_anon(vp, off); 1618 if ((ap == NULL || ap->an_pvp == NULL) && alloc_pg) { 1619 mutex_exit(ahm); 1620 page_io_unlock(pp); 1621 /*LINTED: constant in conditional context*/ 1622 VN_DISPOSE(pp, B_INVAL, 0, kcred); 1623 return (0); 1624 } 1625 1626 /* 1627 * Free the physical slot. It may have been freed up and replaced with 1628 * another one while we were getting the page so we have to re-verify 1629 * that this is really one we want. If we do free the slot we have 1630 * to mark the page modified, as its backing store is now gone. 1631 */ 1632 if ((ap != NULL) && (ap->an_pvp == sip->si_vp && ap->an_poff >= 1633 sip->si_soff && ap->an_poff < sip->si_eoff)) { 1634 swap_phys_free(ap->an_pvp, ap->an_poff, PAGESIZE); 1635 ap->an_pvp = NULL; 1636 ap->an_poff = 0; 1637 mutex_exit(ahm); 1638 hat_setmod(pp); 1639 } else { 1640 mutex_exit(ahm); 1641 } 1642 page_io_unlock(pp); 1643 page_unlock(pp); 1644 return (0); 1645 } 1646 1647 1648 /* 1649 * Get contig physical backing store for vp, in the range 1650 * [*offp, *offp + *lenp), May back a subrange of this, but must 1651 * always include the requested offset or fail. Returns the offsets 1652 * backed as [*offp, *offp + *lenp) and the physical offsets used to 1653 * back them from *pvpp in the range [*pstartp, *pstartp + *lenp). 1654 * Returns 0 for success 1655 * SE_NOANON -- no anon slot for requested paged 1656 * SE_NOSWAP -- no physical swap space available 1657 */ 1658 int 1659 swap_newphysname( 1660 struct vnode *vp, 1661 u_offset_t offset, 1662 u_offset_t *offp, 1663 size_t *lenp, 1664 struct vnode **pvpp, 1665 u_offset_t *poffp) 1666 { 1667 struct anon *ap = NULL; /* anon slot for vp, off */ 1668 int error = 0; 1669 struct vnode *pvp; 1670 u_offset_t poff, pstart, prem; 1671 size_t plen; 1672 u_offset_t off, start; 1673 kmutex_t *ahm; 1674 1675 ASSERT(*offp <= offset && offset < *offp + *lenp); 1676 1677 /* Get new physical swap slots. */ 1678 plen = *lenp; 1679 if (!swap_phys_alloc(&pvp, &pstart, &plen, 0)) { 1680 /* 1681 * No swap available so return error unless requested 1682 * offset is already backed in which case return that. 1683 */ 1684 ahm = AH_MUTEX(vp, offset); 1685 mutex_enter(ahm); 1686 if ((ap = swap_anon(vp, offset)) == NULL) { 1687 error = SE_NOANON; 1688 mutex_exit(ahm); 1689 return (error); 1690 } 1691 error = (ap->an_pvp ? 0 : SE_NOSWAP); 1692 *offp = offset; 1693 *lenp = PAGESIZE; 1694 *pvpp = ap->an_pvp; 1695 *poffp = ap->an_poff; 1696 mutex_exit(ahm); 1697 return (error); 1698 } 1699 1700 /* 1701 * We got plen (<= *lenp) contig slots. Use these to back a 1702 * subrange of [*offp, *offp + *lenp) which includes offset. 1703 * For now we just put offset at the end of the kluster. 1704 * Clearly there are other possible choices - which is best? 1705 */ 1706 start = MAX(*offp, 1707 (offset + PAGESIZE > plen) ? (offset + PAGESIZE - plen) : 0); 1708 ASSERT(start + plen <= *offp + *lenp); 1709 1710 for (off = start, poff = pstart; poff < pstart + plen; 1711 off += PAGESIZE, poff += PAGESIZE) { 1712 ahm = AH_MUTEX(vp, off); 1713 mutex_enter(ahm); 1714 if ((ap = swap_anon(vp, off)) != NULL) { 1715 /* Free old slot if any, and assign new one */ 1716 if (ap->an_pvp) 1717 swap_phys_free(ap->an_pvp, ap->an_poff, 1718 PAGESIZE); 1719 ap->an_pvp = pvp; 1720 ap->an_poff = poff; 1721 } else { /* No anon slot for a klustered page, quit. */ 1722 prem = (pstart + plen) - poff; 1723 /* Already did requested page, do partial kluster */ 1724 if (off > offset) { 1725 plen = poff - pstart; 1726 error = 0; 1727 /* Fail on requested page, error */ 1728 } else if (off == offset) { 1729 error = SE_NOANON; 1730 /* Fail on prior page, fail on requested page, error */ 1731 } else if ((ap = swap_anon(vp, offset)) == NULL) { 1732 error = SE_NOANON; 1733 /* Fail on prior page, got requested page, do only it */ 1734 } else { 1735 /* Free old slot if any, and assign new one */ 1736 if (ap->an_pvp) 1737 swap_phys_free(ap->an_pvp, ap->an_poff, 1738 PAGESIZE); 1739 ap->an_pvp = pvp; 1740 ap->an_poff = poff; 1741 /* One page kluster */ 1742 start = offset; 1743 plen = PAGESIZE; 1744 pstart = poff; 1745 poff += PAGESIZE; 1746 prem -= PAGESIZE; 1747 } 1748 /* Free unassigned slots */ 1749 swap_phys_free(pvp, poff, prem); 1750 mutex_exit(ahm); 1751 break; 1752 } 1753 mutex_exit(ahm); 1754 } 1755 ASSERT(*offp <= start && start + plen <= *offp + *lenp); 1756 ASSERT(start <= offset && offset < start + plen); 1757 *offp = start; 1758 *lenp = plen; 1759 *pvpp = pvp; 1760 *poffp = pstart; 1761 return (error); 1762 } 1763 1764 1765 /* 1766 * Get the physical swap backing store location for a given anonymous page 1767 * named (vp, off). The backing store name is returned in (*pvpp, *poffp). 1768 * Returns 0 success 1769 * EIDRM -- no anon slot (page is not allocated) 1770 */ 1771 int 1772 swap_getphysname( 1773 struct vnode *vp, 1774 u_offset_t off, 1775 struct vnode **pvpp, 1776 u_offset_t *poffp) 1777 { 1778 struct anon *ap; 1779 int error = 0; 1780 kmutex_t *ahm; 1781 1782 ahm = AH_MUTEX(vp, off); 1783 mutex_enter(ahm); 1784 1785 /* Get anon slot for vp, off */ 1786 ap = swap_anon(vp, off); 1787 if (ap == NULL) { 1788 error = EIDRM; 1789 goto out; 1790 } 1791 *pvpp = ap->an_pvp; 1792 *poffp = ap->an_poff; 1793 out: 1794 mutex_exit(ahm); 1795 return (error); 1796 } 1797