1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2008 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 /* Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T */ 27 /* All Rights Reserved */ 28 29 /* 30 * University Copyright- Copyright (c) 1982, 1986, 1988 31 * The Regents of the University of California 32 * All Rights Reserved 33 * 34 * University Acknowledgment- Portions of this document are derived from 35 * software developed by the University of California, Berkeley, and its 36 * contributors. 37 */ 38 39 /* 40 * Each physical swap area has an associated bitmap representing 41 * its physical storage. The bitmap records which swap slots are 42 * currently allocated or freed. Allocation is done by searching 43 * through the bitmap for the first free slot. Thus, there's 44 * no linear relation between offset within the swap device and the 45 * address (within its segment(s)) of the page that the slot backs; 46 * instead, it's an arbitrary one-to-one mapping. 47 * 48 * Associated with each swap area is a swapinfo structure. These 49 * structures are linked into a linear list that determines the 50 * ordering of swap areas in the logical swap device. Each contains a 51 * pointer to the corresponding bitmap, the area's size, and its 52 * associated vnode. 53 */ 54 55 #include <sys/types.h> 56 #include <sys/inttypes.h> 57 #include <sys/param.h> 58 #include <sys/t_lock.h> 59 #include <sys/sysmacros.h> 60 #include <sys/systm.h> 61 #include <sys/errno.h> 62 #include <sys/kmem.h> 63 #include <sys/vfs.h> 64 #include <sys/vnode.h> 65 #include <sys/pathname.h> 66 #include <sys/cmn_err.h> 67 #include <sys/vtrace.h> 68 #include <sys/swap.h> 69 #include <sys/dumphdr.h> 70 #include <sys/debug.h> 71 #include <sys/fs/snode.h> 72 #include <sys/fs/swapnode.h> 73 #include <sys/policy.h> 74 #include <sys/zone.h> 75 76 #include <vm/as.h> 77 #include <vm/seg.h> 78 #include <vm/page.h> 79 #include <vm/seg_vn.h> 80 #include <vm/hat.h> 81 #include <vm/anon.h> 82 #include <vm/seg_map.h> 83 84 /* 85 * To balance the load among multiple swap areas, we don't allow 86 * more than swap_maxcontig allocations to be satisfied from a 87 * single swap area before moving on to the next swap area. This 88 * effectively "interleaves" allocations among the many swap areas. 89 */ 90 int swap_maxcontig; /* set by anon_init() to 1 Mb */ 91 92 #define MINIROOTSIZE 12000 /* ~6 Meg XXX */ 93 94 /* 95 * XXX - this lock is a kludge. It serializes some aspects of swapadd() and 96 * swapdel() (namely VOP_OPEN, VOP_CLOSE, VN_RELE). It protects against 97 * somebody swapadd'ing and getting swap slots from a vnode, while someone 98 * else is in the process of closing or rele'ing it. 99 */ 100 static kmutex_t swap_lock; 101 102 kmutex_t swapinfo_lock; 103 104 /* 105 * protected by the swapinfo_lock 106 */ 107 struct swapinfo *swapinfo; 108 109 static struct swapinfo *silast; 110 static int nswapfiles; 111 112 static u_offset_t swap_getoff(struct swapinfo *); 113 static int swapadd(struct vnode *, ulong_t, ulong_t, char *); 114 static int swapdel(struct vnode *, ulong_t); 115 static int swapslot_free(struct vnode *, u_offset_t, struct swapinfo *); 116 117 /* 118 * swap device bitmap allocation macros 119 */ 120 #define MAPSHIFT 5 121 #define NBBW (NBPW * NBBY) /* number of bits per word */ 122 #define TESTBIT(map, i) (((map)[(i) >> MAPSHIFT] & (1 << (i) % NBBW))) 123 #define SETBIT(map, i) (((map)[(i) >> MAPSHIFT] |= (1 << (i) % NBBW))) 124 #define CLEARBIT(map, i) (((map)[(i) >> MAPSHIFT] &= ~(1 << (i) % NBBW))) 125 126 int swap_debug = 0; /* set for debug printf's */ 127 int swap_verify = 0; /* set to verify slots when freeing and allocating */ 128 129 uint_t swapalloc_maxcontig; 130 131 /* 132 * Allocate a range of up to *lenp contiguous slots (page) from a physical 133 * swap device. Flags are one of: 134 * SA_NOT Must have a slot from a physical swap device other than the 135 * the one containing input (*vpp, *offp). 136 * Less slots than requested may be returned. *lenp allocated slots are 137 * returned starting at *offp on *vpp. 138 * Returns 1 for a successful allocation, 0 for couldn't allocate any slots. 139 */ 140 int 141 swap_phys_alloc( 142 struct vnode **vpp, 143 u_offset_t *offp, 144 size_t *lenp, 145 uint_t flags) 146 { 147 struct swapinfo *sip; 148 offset_t soff, noff; 149 size_t len; 150 151 mutex_enter(&swapinfo_lock); 152 sip = silast; 153 154 /* Find a desirable physical device and allocate from it. */ 155 do { 156 if (sip == NULL) 157 break; 158 if (!(sip->si_flags & ST_INDEL) && 159 (spgcnt_t)sip->si_nfpgs > 0) { 160 /* Caller wants other than specified swap device */ 161 if (flags & SA_NOT) { 162 if (*vpp != sip->si_vp || 163 *offp < sip->si_soff || 164 *offp >= sip->si_eoff) 165 goto found; 166 /* Caller is loose, will take anything */ 167 } else 168 goto found; 169 } else if (sip->si_nfpgs == 0) 170 sip->si_allocs = 0; 171 if ((sip = sip->si_next) == NULL) 172 sip = swapinfo; 173 } while (sip != silast); 174 mutex_exit(&swapinfo_lock); 175 return (0); 176 found: 177 soff = swap_getoff(sip); 178 sip->si_nfpgs--; 179 if (soff == -1) 180 panic("swap_alloc: swap_getoff failed!"); 181 182 for (len = PAGESIZE; len < *lenp; len += PAGESIZE) { 183 if (sip->si_nfpgs == 0) 184 break; 185 if (swapalloc_maxcontig && len >= swapalloc_maxcontig) 186 break; 187 noff = swap_getoff(sip); 188 if (noff == -1) { 189 break; 190 } else if (noff != soff + len) { 191 CLEARBIT(sip->si_swapslots, btop(noff - sip->si_soff)); 192 break; 193 } 194 sip->si_nfpgs--; 195 } 196 *vpp = sip->si_vp; 197 *offp = soff; 198 *lenp = len; 199 ASSERT((spgcnt_t)sip->si_nfpgs >= 0); 200 sip->si_allocs += btop(len); 201 if (sip->si_allocs >= swap_maxcontig) { 202 sip->si_allocs = 0; 203 if ((silast = sip->si_next) == NULL) 204 silast = swapinfo; 205 } 206 TRACE_2(TR_FAC_VM, TR_SWAP_ALLOC, 207 "swap_alloc:sip %p offset %lx", sip, soff); 208 mutex_exit(&swapinfo_lock); 209 return (1); 210 } 211 212 int swap_backsearch = 0; 213 214 /* 215 * Get a free offset on swap device sip. 216 * Return >=0 offset if succeeded, -1 for failure. 217 */ 218 static u_offset_t 219 swap_getoff(struct swapinfo *sip) 220 { 221 uint_t *sp, *ep; 222 size_t aoff, boff, poff, slotnumber; 223 224 ASSERT(MUTEX_HELD(&swapinfo_lock)); 225 226 sip->si_alloccnt++; 227 for (sp = &sip->si_swapslots[sip->si_hint >> MAPSHIFT], 228 ep = &sip->si_swapslots[sip->si_mapsize / NBPW]; sp < ep; sp++) { 229 if (*sp != (uint_t)0xffffffff) 230 goto foundentry; 231 else 232 sip->si_checkcnt++; 233 } 234 SWAP_PRINT(SW_ALLOC, 235 "swap_getoff: couldn't find slot from hint %ld to end\n", 236 sip->si_hint, 0, 0, 0, 0); 237 /* 238 * Go backwards? Check for faster method XXX 239 */ 240 if (swap_backsearch) { 241 for (sp = &sip->si_swapslots[sip->si_hint >> MAPSHIFT], 242 ep = sip->si_swapslots; sp > ep; sp--) { 243 if (*sp != (uint_t)0xffffffff) 244 goto foundentry; 245 else 246 sip->si_checkcnt++; 247 } 248 } else { 249 for (sp = sip->si_swapslots, 250 ep = &sip->si_swapslots[sip->si_hint >> MAPSHIFT]; 251 sp < ep; sp++) { 252 if (*sp != (uint_t)0xffffffff) 253 goto foundentry; 254 else 255 sip->si_checkcnt++; 256 } 257 } 258 if (*sp == 0xffffffff) { 259 cmn_err(CE_WARN, "No free swap slots!"); 260 return ((u_offset_t)-1); 261 } 262 263 foundentry: 264 /* 265 * aoff is the page number offset (in bytes) of the si_swapslots 266 * array element containing a free page 267 * 268 * boff is the page number offset of the free page 269 * (i.e. cleared bit) in si_swapslots[aoff]. 270 */ 271 aoff = ((char *)sp - (char *)sip->si_swapslots) * NBBY; 272 273 for (boff = (sip->si_hint % NBBW); boff < NBBW; boff++) { 274 if (!TESTBIT(sip->si_swapslots, aoff + boff)) 275 goto foundslot; 276 else 277 sip->si_checkcnt++; 278 } 279 for (boff = 0; boff < (sip->si_hint % NBBW); boff++) { 280 if (!TESTBIT(sip->si_swapslots, aoff + boff)) 281 goto foundslot; 282 else 283 sip->si_checkcnt++; 284 } 285 panic("swap_getoff: didn't find slot in word hint %ld", sip->si_hint); 286 287 foundslot: 288 /* 289 * Return the offset of the free page in swap device. 290 * Convert page number of byte offset and add starting 291 * offset of swap device. 292 */ 293 slotnumber = aoff + boff; 294 SWAP_PRINT(SW_ALLOC, "swap_getoff: allocating slot %ld\n", 295 slotnumber, 0, 0, 0, 0); 296 poff = ptob(slotnumber); 297 if (poff + sip->si_soff >= sip->si_eoff) 298 printf("ptob(aoff(%ld) + boff(%ld))(%ld) >= eoff(%ld)\n", 299 aoff, boff, ptob(slotnumber), (long)sip->si_eoff); 300 ASSERT(poff < sip->si_eoff); 301 /* 302 * We could verify here that the slot isn't already allocated 303 * by looking through all the anon slots. 304 */ 305 SETBIT(sip->si_swapslots, slotnumber); 306 sip->si_hint = slotnumber + 1; /* hint = next slot */ 307 return (poff + sip->si_soff); 308 } 309 310 /* 311 * Free a swap page. 312 */ 313 void 314 swap_phys_free(struct vnode *vp, u_offset_t off, size_t len) 315 { 316 struct swapinfo *sip; 317 ssize_t pagenumber, npage; 318 319 mutex_enter(&swapinfo_lock); 320 sip = swapinfo; 321 322 do { 323 if (sip->si_vp == vp && 324 sip->si_soff <= off && off < sip->si_eoff) { 325 for (pagenumber = btop(off - sip->si_soff), 326 npage = btop(len) + pagenumber; 327 pagenumber < npage; pagenumber++) { 328 SWAP_PRINT(SW_ALLOC, 329 "swap_phys_free: freeing slot %ld on " 330 "sip %p\n", 331 pagenumber, sip, 0, 0, 0); 332 if (!TESTBIT(sip->si_swapslots, pagenumber)) { 333 panic( 334 "swap_phys_free: freeing free slot " 335 "%p,%lx\n", (void *)vp, 336 ptob(pagenumber) + sip->si_soff); 337 } 338 CLEARBIT(sip->si_swapslots, pagenumber); 339 sip->si_nfpgs++; 340 } 341 ASSERT(sip->si_nfpgs <= sip->si_npgs); 342 mutex_exit(&swapinfo_lock); 343 return; 344 } 345 } while ((sip = sip->si_next) != NULL); 346 panic("swap_phys_free"); 347 /*NOTREACHED*/ 348 } 349 350 /* 351 * Return the anon struct corresponding for the given 352 * <vnode, off> if it is part of the virtual swap device. 353 * Return the anon struct if found, otherwise NULL. 354 */ 355 struct anon * 356 swap_anon(struct vnode *vp, u_offset_t off) 357 { 358 struct anon *ap; 359 360 ASSERT(MUTEX_HELD(&anonhash_lock[AH_LOCK(vp, off)])); 361 362 for (ap = anon_hash[ANON_HASH(vp, off)]; ap != NULL; ap = ap->an_hash) { 363 if (ap->an_vp == vp && ap->an_off == off) 364 return (ap); 365 } 366 return (NULL); 367 } 368 369 370 /* 371 * Determine if the vp offset range overlap a swap device. 372 */ 373 int 374 swap_in_range(struct vnode *vp, u_offset_t offset, size_t len) 375 { 376 struct swapinfo *sip; 377 u_offset_t eoff; 378 379 eoff = offset + len; 380 ASSERT(eoff > offset); 381 382 mutex_enter(&swapinfo_lock); 383 sip = swapinfo; 384 if (vp && sip) { 385 do { 386 if (vp != sip->si_vp || eoff <= sip->si_soff || 387 offset >= sip->si_eoff) 388 continue; 389 mutex_exit(&swapinfo_lock); 390 return (1); 391 } while ((sip = sip->si_next) != NULL); 392 } 393 mutex_exit(&swapinfo_lock); 394 return (0); 395 } 396 397 /* 398 * See if name is one of our swap files 399 * even though lookupname failed. 400 * This can be used by swapdel to delete 401 * swap resources on remote machines 402 * where the link has gone down. 403 */ 404 static struct vnode * 405 swapdel_byname( 406 char *name, /* pathname to delete */ 407 ulong_t lowblk) /* Low block number of area to delete */ 408 { 409 struct swapinfo **sipp, *osip; 410 u_offset_t soff; 411 412 /* 413 * Find the swap file entry for the file to 414 * be deleted. Skip any entries that are in 415 * transition. 416 */ 417 418 soff = ptob(btopr(lowblk << SCTRSHFT)); /* must be page aligned */ 419 420 mutex_enter(&swapinfo_lock); 421 for (sipp = &swapinfo; (osip = *sipp) != NULL; sipp = &osip->si_next) { 422 if ((strcmp(osip->si_pname, name) == 0) && 423 (osip->si_soff == soff) && (osip->si_flags == 0)) { 424 struct vnode *vp = osip->si_vp; 425 426 VN_HOLD(vp); 427 mutex_exit(&swapinfo_lock); 428 return (vp); 429 } 430 } 431 mutex_exit(&swapinfo_lock); 432 return (NULL); 433 } 434 435 436 /* 437 * New system call to manipulate swap files. 438 */ 439 int 440 swapctl(int sc_cmd, void *sc_arg, int *rv) 441 { 442 struct swapinfo *sip, *csip, *tsip; 443 int error = 0; 444 struct swapent st, *ust; 445 struct swapres sr; 446 struct vnode *vp; 447 int cnt = 0; 448 int tmp_nswapfiles; 449 int nswap; 450 int length, nlen; 451 int gplen = 0, plen; 452 char *swapname; 453 char *pname; 454 char *tpname; 455 struct anoninfo ai; 456 spgcnt_t avail; 457 int global = INGLOBALZONE(curproc); 458 struct zone *zp = curproc->p_zone; 459 460 /* 461 * When running in a zone we want to hide the details of the swap 462 * devices: we report there only being one swap device named "swap" 463 * having a size equal to the sum of the sizes of all real swap devices 464 * on the system. 465 */ 466 switch (sc_cmd) { 467 case SC_GETNSWP: 468 if (global) 469 *rv = nswapfiles; 470 else 471 *rv = 1; 472 return (0); 473 474 case SC_AINFO: 475 /* 476 * Return anoninfo information with these changes: 477 * ani_max = maximum amount of swap space 478 * (including potentially available physical memory) 479 * ani_free = amount of unallocated anonymous memory 480 * (some of which might be reserved and including 481 * potentially available physical memory) 482 * ani_resv = amount of claimed (reserved) anonymous memory 483 */ 484 avail = MAX((spgcnt_t)(availrmem - swapfs_minfree), 0); 485 ai.ani_max = (k_anoninfo.ani_max + 486 k_anoninfo.ani_mem_resv) + avail; 487 488 ai.ani_free = k_anoninfo.ani_free + avail; 489 490 ai.ani_resv = k_anoninfo.ani_phys_resv + 491 k_anoninfo.ani_mem_resv; 492 493 if (!global && zp->zone_max_swap_ctl != UINT64_MAX) { 494 /* 495 * We're in a non-global zone with a swap cap. We 496 * always report the system-wide values for the global 497 * zone, even though it too can have a swap cap. 498 */ 499 500 /* 501 * For a swap-capped zone, the numbers are contrived 502 * since we don't have a correct value of 'reserved' 503 * for the zone. 504 * 505 * The ani_max value is always the zone's swap cap. 506 * 507 * The ani_free value is always the difference between 508 * the cap and the amount of swap in use by the zone. 509 * 510 * The ani_resv value is typically set to be the amount 511 * of swap in use by the zone, but can be adjusted 512 * upwards to indicate how much swap is currently 513 * unavailable to that zone due to usage by entities 514 * outside the zone. 515 * 516 * This works as follows. 517 * 518 * In the 'swap -s' output, the data is displayed 519 * as follows: 520 * allocated = ani_max - ani_free 521 * reserved = ani_resv - allocated 522 * available = ani_max - ani_resv 523 * 524 * Taking a contrived example, if the swap cap is 100 525 * and the amount of swap used by the zone is 75, this 526 * gives: 527 * allocated = ani_max - ani_free = 100 - 25 = 75 528 * reserved = ani_resv - allocated = 75 - 75 = 0 529 * available = ani_max - ani_resv = 100 - 75 = 25 530 * 531 * In this typical case, you can see that the 'swap -s' 532 * 'reserved' will always be 0 inside a swap capped 533 * zone. 534 * 535 * However, if the system as a whole has less free 536 * swap than the zone limits allow, then we adjust 537 * the ani_resv value up so that it is the difference 538 * between the zone cap and the amount of free system 539 * swap. Taking the above example, but when the 540 * system as a whole only has 20 of swap available, we 541 * get an ani_resv of 100 - 20 = 80. This gives: 542 * allocated = ani_max - ani_free = 100 - 25 = 75 543 * reserved = ani_resv - allocated = 80 - 75 = 5 544 * available = ani_max - ani_resv = 100 - 80 = 20 545 * 546 * In this case, you can see how the ani_resv value is 547 * tweaked up to make the 'swap -s' numbers work inside 548 * the zone. 549 */ 550 rctl_qty_t cap, used; 551 pgcnt_t pgcap, sys_avail; 552 553 mutex_enter(&zp->zone_mem_lock); 554 cap = zp->zone_max_swap_ctl; 555 used = zp->zone_max_swap; 556 mutex_exit(&zp->zone_mem_lock); 557 558 pgcap = MIN(btop(cap), ai.ani_max); 559 ai.ani_free = pgcap - btop(used); 560 561 /* Get the system-wide swap currently available. */ 562 sys_avail = ai.ani_max - ai.ani_resv; 563 if (sys_avail < ai.ani_free) 564 ai.ani_resv = pgcap - sys_avail; 565 else 566 ai.ani_resv = btop(used); 567 568 ai.ani_max = pgcap; 569 } 570 571 if (copyout(&ai, sc_arg, sizeof (struct anoninfo)) != 0) 572 return (EFAULT); 573 return (0); 574 575 case SC_LIST: 576 if (copyin(sc_arg, &length, sizeof (int)) != 0) 577 return (EFAULT); 578 if (!global) { 579 struct swapent st; 580 char *swappath = "swap"; 581 582 if (length < 1) 583 return (ENOMEM); 584 ust = (swapent_t *)((swaptbl_t *)sc_arg)->swt_ent; 585 if (copyin(ust, &st, sizeof (swapent_t)) != 0) 586 return (EFAULT); 587 st.ste_start = PAGESIZE >> SCTRSHFT; 588 st.ste_length = (off_t)0; 589 st.ste_pages = 0; 590 st.ste_free = 0; 591 st.ste_flags = 0; 592 593 mutex_enter(&swapinfo_lock); 594 for (sip = swapinfo, nswap = 0; 595 sip != NULL && nswap < nswapfiles; 596 sip = sip->si_next, nswap++) { 597 st.ste_length += 598 (sip->si_eoff - sip->si_soff) >> SCTRSHFT; 599 st.ste_pages += sip->si_npgs; 600 st.ste_free += sip->si_nfpgs; 601 } 602 mutex_exit(&swapinfo_lock); 603 604 if (zp->zone_max_swap_ctl != UINT64_MAX) { 605 rctl_qty_t cap, used; 606 607 mutex_enter(&zp->zone_mem_lock); 608 cap = zp->zone_max_swap_ctl; 609 used = zp->zone_max_swap; 610 mutex_exit(&zp->zone_mem_lock); 611 612 st.ste_length = MIN(cap, st.ste_length); 613 st.ste_pages = MIN(btop(cap), st.ste_pages); 614 st.ste_free = MIN(st.ste_pages - btop(used), 615 st.ste_free); 616 } 617 618 if (copyout(&st, ust, sizeof (swapent_t)) != 0 || 619 copyout(swappath, st.ste_path, 620 strlen(swappath) + 1) != 0) { 621 return (EFAULT); 622 } 623 *rv = 1; 624 return (0); 625 } 626 beginning: 627 tmp_nswapfiles = nswapfiles; 628 /* Return an error if not enough space for the whole table. */ 629 if (length < tmp_nswapfiles) 630 return (ENOMEM); 631 /* 632 * Get memory to hold the swap entries and their names. We'll 633 * copy the real entries into these and then copy these out. 634 * Allocating the pathname memory is only a guess so we may 635 * find that we need more and have to do it again. 636 * All this is because we have to hold the anon lock while 637 * traversing the swapinfo list, and we can't be doing copyouts 638 * and/or kmem_alloc()s during this. 639 */ 640 csip = kmem_zalloc(tmp_nswapfiles * sizeof (struct swapinfo), 641 KM_SLEEP); 642 retry: 643 nlen = tmp_nswapfiles * (gplen += 100); 644 pname = kmem_zalloc(nlen, KM_SLEEP); 645 646 mutex_enter(&swapinfo_lock); 647 648 if (tmp_nswapfiles != nswapfiles) { 649 mutex_exit(&swapinfo_lock); 650 kmem_free(pname, nlen); 651 kmem_free(csip, 652 tmp_nswapfiles * sizeof (struct swapinfo)); 653 gplen = 0; 654 goto beginning; 655 } 656 for (sip = swapinfo, tsip = csip, tpname = pname, nswap = 0; 657 sip && nswap < tmp_nswapfiles; 658 sip = sip->si_next, tsip++, tpname += plen, nswap++) { 659 plen = sip->si_pnamelen; 660 if (tpname + plen - pname > nlen) { 661 mutex_exit(&swapinfo_lock); 662 kmem_free(pname, nlen); 663 goto retry; 664 } 665 *tsip = *sip; 666 tsip->si_pname = tpname; 667 (void) strcpy(tsip->si_pname, sip->si_pname); 668 } 669 mutex_exit(&swapinfo_lock); 670 671 if (sip) { 672 error = ENOMEM; 673 goto lout; 674 } 675 ust = (swapent_t *)((swaptbl_t *)sc_arg)->swt_ent; 676 for (tsip = csip, cnt = 0; cnt < nswap; tsip++, ust++, cnt++) { 677 if (copyin(ust, &st, sizeof (swapent_t)) != 0) { 678 error = EFAULT; 679 goto lout; 680 } 681 st.ste_flags = tsip->si_flags; 682 st.ste_length = 683 (tsip->si_eoff - tsip->si_soff) >> SCTRSHFT; 684 st.ste_start = tsip->si_soff >> SCTRSHFT; 685 st.ste_pages = tsip->si_npgs; 686 st.ste_free = tsip->si_nfpgs; 687 if (copyout(&st, ust, sizeof (swapent_t)) != 0) { 688 error = EFAULT; 689 goto lout; 690 } 691 if (!tsip->si_pnamelen) 692 continue; 693 if (copyout(tsip->si_pname, st.ste_path, 694 tsip->si_pnamelen) != 0) { 695 error = EFAULT; 696 goto lout; 697 } 698 } 699 *rv = nswap; 700 lout: 701 kmem_free(csip, tmp_nswapfiles * sizeof (struct swapinfo)); 702 kmem_free(pname, nlen); 703 return (error); 704 705 case SC_ADD: 706 case SC_REMOVE: 707 break; 708 default: 709 return (EINVAL); 710 } 711 if ((error = secpolicy_swapctl(CRED())) != 0) 712 return (error); 713 714 if (copyin(sc_arg, &sr, sizeof (swapres_t))) 715 return (EFAULT); 716 717 /* Allocate the space to read in pathname */ 718 if ((swapname = kmem_alloc(MAXPATHLEN, KM_NOSLEEP)) == NULL) 719 return (ENOMEM); 720 721 error = copyinstr(sr.sr_name, swapname, MAXPATHLEN, 0); 722 if (error) 723 goto out; 724 725 error = lookupname(swapname, UIO_SYSSPACE, FOLLOW, NULLVPP, &vp); 726 if (error) { 727 if (sc_cmd == SC_ADD) 728 goto out; 729 /* see if we match by name */ 730 vp = swapdel_byname(swapname, (size_t)sr.sr_start); 731 if (vp == NULL) 732 goto out; 733 } 734 735 if (vp->v_flag & (VNOMAP | VNOSWAP)) { 736 VN_RELE(vp); 737 error = ENOSYS; 738 goto out; 739 } 740 switch (vp->v_type) { 741 case VBLK: 742 break; 743 744 case VREG: 745 if (vp->v_vfsp && vn_is_readonly(vp)) 746 error = EROFS; 747 else 748 error = VOP_ACCESS(vp, VREAD|VWRITE, 0, CRED(), NULL); 749 break; 750 751 case VDIR: 752 error = EISDIR; 753 break; 754 default: 755 error = ENOSYS; 756 break; 757 } 758 if (error == 0) { 759 if (sc_cmd == SC_REMOVE) 760 error = swapdel(vp, sr.sr_start); 761 else 762 error = swapadd(vp, sr.sr_start, 763 sr.sr_length, swapname); 764 } 765 VN_RELE(vp); 766 out: 767 kmem_free(swapname, MAXPATHLEN); 768 return (error); 769 } 770 771 #if defined(_LP64) && defined(_SYSCALL32) 772 773 int 774 swapctl32(int sc_cmd, void *sc_arg, int *rv) 775 { 776 struct swapinfo *sip, *csip, *tsip; 777 int error = 0; 778 struct swapent32 st, *ust; 779 struct swapres32 sr; 780 struct vnode *vp; 781 int cnt = 0; 782 int tmp_nswapfiles; 783 int nswap; 784 int length, nlen; 785 int gplen = 0, plen; 786 char *swapname; 787 char *pname; 788 char *tpname; 789 struct anoninfo32 ai; 790 size_t s; 791 spgcnt_t avail; 792 int global = INGLOBALZONE(curproc); 793 struct zone *zp = curproc->p_zone; 794 795 /* 796 * When running in a zone we want to hide the details of the swap 797 * devices: we report there only being one swap device named "swap" 798 * having a size equal to the sum of the sizes of all real swap devices 799 * on the system. 800 */ 801 switch (sc_cmd) { 802 case SC_GETNSWP: 803 if (global) 804 *rv = nswapfiles; 805 else 806 *rv = 1; 807 return (0); 808 809 case SC_AINFO: 810 /* 811 * Return anoninfo information with these changes: 812 * ani_max = maximum amount of swap space 813 * (including potentially available physical memory) 814 * ani_free = amount of unallocated anonymous memory 815 * (some of which might be reserved and including 816 * potentially available physical memory) 817 * ani_resv = amount of claimed (reserved) anonymous memory 818 */ 819 avail = MAX((spgcnt_t)(availrmem - swapfs_minfree), 0); 820 s = (k_anoninfo.ani_max + k_anoninfo.ani_mem_resv) + avail; 821 if (s > UINT32_MAX) 822 return (EOVERFLOW); 823 ai.ani_max = s; 824 825 s = k_anoninfo.ani_free + avail; 826 if (s > UINT32_MAX) 827 return (EOVERFLOW); 828 ai.ani_free = s; 829 830 s = k_anoninfo.ani_phys_resv + k_anoninfo.ani_mem_resv; 831 if (s > UINT32_MAX) 832 return (EOVERFLOW); 833 ai.ani_resv = s; 834 835 if (!global && zp->zone_max_swap_ctl != UINT64_MAX) { 836 /* 837 * We're in a non-global zone with a swap cap. We 838 * always report the system-wide values for the global 839 * zone, even though it too can have a swap cap. 840 * See the comment for the SC_AINFO case in swapctl() 841 * which explains the following logic. 842 */ 843 rctl_qty_t cap, used; 844 pgcnt_t pgcap, sys_avail; 845 846 mutex_enter(&zp->zone_mem_lock); 847 cap = zp->zone_max_swap_ctl; 848 used = zp->zone_max_swap; 849 mutex_exit(&zp->zone_mem_lock); 850 851 pgcap = MIN(btop(cap), ai.ani_max); 852 ai.ani_free = pgcap - btop(used); 853 854 /* Get the system-wide swap currently available. */ 855 sys_avail = ai.ani_max - ai.ani_resv; 856 if (sys_avail < ai.ani_free) 857 ai.ani_resv = pgcap - sys_avail; 858 else 859 ai.ani_resv = btop(used); 860 861 ai.ani_max = pgcap; 862 } 863 864 if (copyout(&ai, sc_arg, sizeof (ai)) != 0) 865 return (EFAULT); 866 return (0); 867 868 case SC_LIST: 869 if (copyin(sc_arg, &length, sizeof (int32_t)) != 0) 870 return (EFAULT); 871 if (!global) { 872 struct swapent32 st; 873 char *swappath = "swap"; 874 875 if (length < 1) 876 return (ENOMEM); 877 ust = (swapent32_t *)((swaptbl32_t *)sc_arg)->swt_ent; 878 if (copyin(ust, &st, sizeof (swapent32_t)) != 0) 879 return (EFAULT); 880 st.ste_start = PAGESIZE >> SCTRSHFT; 881 st.ste_length = (off_t)0; 882 st.ste_pages = 0; 883 st.ste_free = 0; 884 st.ste_flags = 0; 885 886 mutex_enter(&swapinfo_lock); 887 for (sip = swapinfo, nswap = 0; 888 sip != NULL && nswap < nswapfiles; 889 sip = sip->si_next, nswap++) { 890 st.ste_length += 891 (sip->si_eoff - sip->si_soff) >> SCTRSHFT; 892 st.ste_pages += sip->si_npgs; 893 st.ste_free += sip->si_nfpgs; 894 } 895 mutex_exit(&swapinfo_lock); 896 897 if (zp->zone_max_swap_ctl != UINT64_MAX) { 898 rctl_qty_t cap, used; 899 900 mutex_enter(&zp->zone_mem_lock); 901 cap = zp->zone_max_swap_ctl; 902 used = zp->zone_max_swap; 903 mutex_exit(&zp->zone_mem_lock); 904 905 st.ste_length = MIN(cap, st.ste_length); 906 st.ste_pages = MIN(btop(cap), st.ste_pages); 907 st.ste_free = MIN(st.ste_pages - btop(used), 908 st.ste_free); 909 } 910 911 if (copyout(&st, ust, sizeof (swapent32_t)) != 0 || 912 copyout(swappath, (caddr_t)(uintptr_t)st.ste_path, 913 strlen(swappath) + 1) != 0) { 914 return (EFAULT); 915 } 916 *rv = 1; 917 return (0); 918 } 919 beginning: 920 tmp_nswapfiles = nswapfiles; 921 /* Return an error if not enough space for the whole table. */ 922 if (length < tmp_nswapfiles) 923 return (ENOMEM); 924 /* 925 * Get memory to hold the swap entries and their names. We'll 926 * copy the real entries into these and then copy these out. 927 * Allocating the pathname memory is only a guess so we may 928 * find that we need more and have to do it again. 929 * All this is because we have to hold the anon lock while 930 * traversing the swapinfo list, and we can't be doing copyouts 931 * and/or kmem_alloc()s during this. 932 */ 933 csip = kmem_zalloc(tmp_nswapfiles * sizeof (*csip), KM_SLEEP); 934 retry: 935 nlen = tmp_nswapfiles * (gplen += 100); 936 pname = kmem_zalloc(nlen, KM_SLEEP); 937 938 mutex_enter(&swapinfo_lock); 939 940 if (tmp_nswapfiles != nswapfiles) { 941 mutex_exit(&swapinfo_lock); 942 kmem_free(pname, nlen); 943 kmem_free(csip, tmp_nswapfiles * sizeof (*csip)); 944 gplen = 0; 945 goto beginning; 946 } 947 for (sip = swapinfo, tsip = csip, tpname = pname, nswap = 0; 948 (sip != NULL) && (nswap < tmp_nswapfiles); 949 sip = sip->si_next, tsip++, tpname += plen, nswap++) { 950 plen = sip->si_pnamelen; 951 if (tpname + plen - pname > nlen) { 952 mutex_exit(&swapinfo_lock); 953 kmem_free(pname, nlen); 954 goto retry; 955 } 956 *tsip = *sip; 957 tsip->si_pname = tpname; 958 (void) strcpy(tsip->si_pname, sip->si_pname); 959 } 960 mutex_exit(&swapinfo_lock); 961 962 if (sip != NULL) { 963 error = ENOMEM; 964 goto lout; 965 } 966 ust = (swapent32_t *)((swaptbl32_t *)sc_arg)->swt_ent; 967 for (tsip = csip, cnt = 0; cnt < nswap; tsip++, ust++, cnt++) { 968 if (copyin(ust, &st, sizeof (*ust)) != 0) { 969 error = EFAULT; 970 goto lout; 971 } 972 st.ste_flags = tsip->si_flags; 973 st.ste_length = 974 (tsip->si_eoff - tsip->si_soff) >> SCTRSHFT; 975 st.ste_start = tsip->si_soff >> SCTRSHFT; 976 st.ste_pages = tsip->si_npgs; 977 st.ste_free = tsip->si_nfpgs; 978 if (copyout(&st, ust, sizeof (st)) != 0) { 979 error = EFAULT; 980 goto lout; 981 } 982 if (!tsip->si_pnamelen) 983 continue; 984 if (copyout(tsip->si_pname, 985 (caddr_t)(uintptr_t)st.ste_path, 986 tsip->si_pnamelen) != 0) { 987 error = EFAULT; 988 goto lout; 989 } 990 } 991 *rv = nswap; 992 lout: 993 kmem_free(csip, tmp_nswapfiles * sizeof (*csip)); 994 kmem_free(pname, nlen); 995 return (error); 996 997 case SC_ADD: 998 case SC_REMOVE: 999 break; 1000 default: 1001 return (EINVAL); 1002 } 1003 if ((error = secpolicy_swapctl(CRED())) != 0) 1004 return (error); 1005 1006 if (copyin(sc_arg, &sr, sizeof (sr))) 1007 return (EFAULT); 1008 1009 /* Allocate the space to read in pathname */ 1010 if ((swapname = kmem_alloc(MAXPATHLEN, KM_NOSLEEP)) == NULL) 1011 return (ENOMEM); 1012 1013 error = copyinstr((caddr_t)(uintptr_t)sr.sr_name, 1014 swapname, MAXPATHLEN, NULL); 1015 if (error) 1016 goto out; 1017 1018 error = lookupname(swapname, UIO_SYSSPACE, FOLLOW, NULLVPP, &vp); 1019 if (error) { 1020 if (sc_cmd == SC_ADD) 1021 goto out; 1022 /* see if we match by name */ 1023 vp = swapdel_byname(swapname, (uint_t)sr.sr_start); 1024 if (vp == NULL) 1025 goto out; 1026 } 1027 1028 if (vp->v_flag & (VNOMAP | VNOSWAP)) { 1029 VN_RELE(vp); 1030 error = ENOSYS; 1031 goto out; 1032 } 1033 switch (vp->v_type) { 1034 case VBLK: 1035 break; 1036 1037 case VREG: 1038 if (vp->v_vfsp && vn_is_readonly(vp)) 1039 error = EROFS; 1040 else 1041 error = VOP_ACCESS(vp, VREAD|VWRITE, 0, CRED(), NULL); 1042 break; 1043 1044 case VDIR: 1045 error = EISDIR; 1046 break; 1047 default: 1048 error = ENOSYS; 1049 break; 1050 } 1051 if (error == 0) { 1052 if (sc_cmd == SC_REMOVE) 1053 error = swapdel(vp, sr.sr_start); 1054 else 1055 error = swapadd(vp, sr.sr_start, sr.sr_length, 1056 swapname); 1057 } 1058 VN_RELE(vp); 1059 out: 1060 kmem_free(swapname, MAXPATHLEN); 1061 return (error); 1062 } 1063 1064 #endif /* _LP64 && _SYSCALL32 */ 1065 1066 /* 1067 * Add a new swap file. 1068 */ 1069 int 1070 swapadd(struct vnode *vp, ulong_t lowblk, ulong_t nblks, char *swapname) 1071 { 1072 struct swapinfo **sipp, *nsip = NULL, *esip = NULL; 1073 struct vnode *cvp; 1074 struct vattr vattr; 1075 pgcnt_t pages; 1076 u_offset_t soff, eoff; 1077 int error; 1078 ssize_t i, start, end; 1079 ushort_t wasswap; 1080 ulong_t startblk; 1081 size_t returned_mem; 1082 1083 SWAP_PRINT(SW_CTL, "swapadd: vp %p lowblk %ld nblks %ld swapname %s\n", 1084 vp, lowblk, nblks, swapname, 0); 1085 /* 1086 * Get the real vnode. (If vp is not a specnode it just returns vp, so 1087 * it does the right thing, but having this code know about specnodes 1088 * violates the spirit of having it be indepedent of vnode type.) 1089 */ 1090 cvp = common_specvp(vp); 1091 1092 /* 1093 * Or in VISSWAP so file system has chance to deny swap-ons during open. 1094 */ 1095 mutex_enter(&cvp->v_lock); 1096 wasswap = cvp->v_flag & VISSWAP; 1097 cvp->v_flag |= VISSWAP; 1098 mutex_exit(&cvp->v_lock); 1099 1100 mutex_enter(&swap_lock); 1101 if (error = VOP_OPEN(&cvp, FREAD|FWRITE, CRED(), NULL)) { 1102 mutex_exit(&swap_lock); 1103 /* restore state of v_flag */ 1104 if (!wasswap) { 1105 mutex_enter(&cvp->v_lock); 1106 cvp->v_flag &= ~VISSWAP; 1107 mutex_exit(&cvp->v_lock); 1108 } 1109 return (error); 1110 } 1111 mutex_exit(&swap_lock); 1112 1113 /* 1114 * Get partition size. Return error if empty partition, 1115 * or if request does not fit within the partition. 1116 * If this is the first swap device, we can reduce 1117 * the size of the swap area to match what is 1118 * available. This can happen if the system was built 1119 * on a machine with a different size swap partition. 1120 */ 1121 vattr.va_mask = AT_SIZE; 1122 if (error = VOP_GETATTR(cvp, &vattr, ATTR_COMM, CRED(), NULL)) 1123 goto out; 1124 1125 /* 1126 * Specfs returns a va_size of MAXOFFSET_T (UNKNOWN_SIZE) when the 1127 * size of the device can't be determined. 1128 */ 1129 if ((vattr.va_size == 0) || (vattr.va_size == MAXOFFSET_T)) { 1130 error = EINVAL; 1131 goto out; 1132 } 1133 1134 #ifdef _ILP32 1135 /* 1136 * No support for large swap in 32-bit OS, if the size of the swap is 1137 * bigger than MAXOFF32_T then the size used by swapfs must be limited. 1138 * This limitation is imposed by the swap subsystem itself, a D_64BIT 1139 * driver as the target of swap operation should be able to field 1140 * the IO. 1141 */ 1142 if (vattr.va_size > MAXOFF32_T) { 1143 cmn_err(CE_NOTE, 1144 "!swap device %s truncated from 0x%llx to 0x%x bytes", 1145 swapname, vattr.va_size, MAXOFF32_T); 1146 vattr.va_size = MAXOFF32_T; 1147 } 1148 #endif /* _ILP32 */ 1149 1150 /* Fail if file not writeable (try to set size to current size) */ 1151 vattr.va_mask = AT_SIZE; 1152 if (error = VOP_SETATTR(cvp, &vattr, 0, CRED(), NULL)) 1153 goto out; 1154 1155 /* Fail if fs does not support VOP_PAGEIO */ 1156 error = VOP_PAGEIO(cvp, (page_t *)NULL, (u_offset_t)0, 0, 0, CRED(), 1157 NULL); 1158 1159 if (error == ENOSYS) 1160 goto out; 1161 else 1162 error = 0; 1163 /* 1164 * If swapping on the root filesystem don't put swap blocks that 1165 * correspond to the miniroot filesystem on the swap free list. 1166 */ 1167 if (cvp == rootdir) 1168 startblk = roundup(MINIROOTSIZE<<SCTRSHFT, klustsize)>>SCTRSHFT; 1169 else /* Skip 1st page (disk label) */ 1170 startblk = (ulong_t)(lowblk ? lowblk : 1); 1171 1172 soff = startblk << SCTRSHFT; 1173 if (soff >= vattr.va_size) { 1174 error = EINVAL; 1175 goto out; 1176 } 1177 1178 /* 1179 * If user specified 0 blks, use the size of the device 1180 */ 1181 eoff = nblks ? soff + (nblks - (startblk - lowblk) << SCTRSHFT) : 1182 vattr.va_size; 1183 1184 SWAP_PRINT(SW_CTL, "swapadd: va_size %ld soff %ld eoff %ld\n", 1185 vattr.va_size, soff, eoff, 0, 0); 1186 1187 if (eoff > vattr.va_size) { 1188 error = EINVAL; 1189 goto out; 1190 } 1191 1192 /* 1193 * The starting and ending offsets must be page aligned. 1194 * Round soff up to next page boundary, round eoff 1195 * down to previous page boundary. 1196 */ 1197 soff = ptob(btopr(soff)); 1198 eoff = ptob(btop(eoff)); 1199 if (soff >= eoff) { 1200 SWAP_PRINT(SW_CTL, "swapadd: soff %ld >= eoff %ld\n", 1201 soff, eoff, 0, 0, 0); 1202 error = EINVAL; 1203 goto out; 1204 } 1205 1206 pages = btop(eoff - soff); 1207 1208 /* Allocate and partially set up the new swapinfo */ 1209 nsip = kmem_zalloc(sizeof (struct swapinfo), KM_SLEEP); 1210 nsip->si_vp = cvp; 1211 1212 nsip->si_soff = soff; 1213 nsip->si_eoff = eoff; 1214 nsip->si_hint = 0; 1215 nsip->si_checkcnt = nsip->si_alloccnt = 0; 1216 1217 nsip->si_pnamelen = (int)strlen(swapname) + 1; 1218 nsip->si_pname = (char *)kmem_zalloc(nsip->si_pnamelen, KM_SLEEP); 1219 bcopy(swapname, nsip->si_pname, nsip->si_pnamelen - 1); 1220 SWAP_PRINT(SW_CTL, "swapadd: allocating swapinfo for %s, %ld pages\n", 1221 swapname, pages, 0, 0, 0); 1222 /* 1223 * Size of swapslots map in bytes 1224 */ 1225 nsip->si_mapsize = P2ROUNDUP(pages, NBBW) / NBBY; 1226 nsip->si_swapslots = kmem_zalloc(nsip->si_mapsize, KM_SLEEP); 1227 1228 /* 1229 * Permanently set the bits that can't ever be allocated, 1230 * i.e. those from the ending offset to the round up slot for the 1231 * swapslots bit map. 1232 */ 1233 start = pages; 1234 end = P2ROUNDUP(pages, NBBW); 1235 for (i = start; i < end; i++) { 1236 SWAP_PRINT(SW_CTL, "swapadd: set bit for page %ld\n", i, 1237 0, 0, 0, 0); 1238 SETBIT(nsip->si_swapslots, i); 1239 } 1240 nsip->si_npgs = nsip->si_nfpgs = pages; 1241 /* 1242 * Now check to see if we can add it. We wait til now to check because 1243 * we need the swapinfo_lock and we don't want sleep with it (e.g., 1244 * during kmem_alloc()) while we're setting up the swapinfo. 1245 */ 1246 mutex_enter(&swapinfo_lock); 1247 for (sipp = &swapinfo; (esip = *sipp) != NULL; sipp = &esip->si_next) { 1248 if (esip->si_vp == cvp) { 1249 if (esip->si_soff == soff && esip->si_npgs == pages && 1250 (esip->si_flags & ST_DOINGDEL)) { 1251 /* 1252 * We are adding a device that we are in the 1253 * middle of deleting. Just clear the 1254 * ST_DOINGDEL flag to signal this and 1255 * the deletion routine will eventually notice 1256 * it and add it back. 1257 */ 1258 esip->si_flags &= ~ST_DOINGDEL; 1259 mutex_exit(&swapinfo_lock); 1260 goto out; 1261 } 1262 /* disallow overlapping swap files */ 1263 if ((soff < esip->si_eoff) && (eoff > esip->si_soff)) { 1264 error = EEXIST; 1265 mutex_exit(&swapinfo_lock); 1266 goto out; 1267 } 1268 } 1269 } 1270 1271 nswapfiles++; 1272 1273 /* 1274 * add new swap device to list and shift allocations to it 1275 * before updating the anoninfo counters 1276 */ 1277 *sipp = nsip; 1278 silast = nsip; 1279 1280 /* 1281 * Update the total amount of reservable swap space 1282 * accounting properly for swap space from physical memory 1283 */ 1284 /* New swap device soaks up currently reserved memory swap */ 1285 mutex_enter(&anoninfo_lock); 1286 1287 ASSERT(k_anoninfo.ani_mem_resv >= k_anoninfo.ani_locked_swap); 1288 ASSERT(k_anoninfo.ani_max >= k_anoninfo.ani_phys_resv); 1289 1290 k_anoninfo.ani_max += pages; 1291 ANI_ADD(pages); 1292 if (k_anoninfo.ani_mem_resv > k_anoninfo.ani_locked_swap) { 1293 returned_mem = MIN(k_anoninfo.ani_mem_resv - 1294 k_anoninfo.ani_locked_swap, 1295 k_anoninfo.ani_max - k_anoninfo.ani_phys_resv); 1296 1297 ANI_ADD(-returned_mem); 1298 k_anoninfo.ani_free -= returned_mem; 1299 k_anoninfo.ani_mem_resv -= returned_mem; 1300 k_anoninfo.ani_phys_resv += returned_mem; 1301 1302 mutex_enter(&freemem_lock); 1303 availrmem += returned_mem; 1304 mutex_exit(&freemem_lock); 1305 } 1306 /* 1307 * At boot time, to permit booting small memory machines using 1308 * only physical memory as swap space, we allowed a dangerously 1309 * large amount of memory to be used as swap space; now that 1310 * more physical backing store is available bump down the amount 1311 * we can get from memory to a safer size. 1312 */ 1313 if (swapfs_minfree < swapfs_desfree) { 1314 mutex_enter(&freemem_lock); 1315 if (availrmem > swapfs_desfree || !k_anoninfo.ani_mem_resv) 1316 swapfs_minfree = swapfs_desfree; 1317 mutex_exit(&freemem_lock); 1318 } 1319 1320 SWAP_PRINT(SW_CTL, "swapadd: ani_max %ld ani_free %ld\n", 1321 k_anoninfo.ani_free, k_anoninfo.ani_free, 0, 0, 0); 1322 1323 mutex_exit(&anoninfo_lock); 1324 1325 mutex_exit(&swapinfo_lock); 1326 1327 /* Initialize the dump device */ 1328 mutex_enter(&dump_lock); 1329 if (dumpvp == NULL) 1330 (void) dumpinit(vp, swapname, 0); 1331 mutex_exit(&dump_lock); 1332 1333 VN_HOLD(cvp); 1334 out: 1335 if (error || esip) { 1336 SWAP_PRINT(SW_CTL, "swapadd: error (%d)\n", error, 0, 0, 0, 0); 1337 1338 if (!wasswap) { 1339 mutex_enter(&cvp->v_lock); 1340 cvp->v_flag &= ~VISSWAP; 1341 mutex_exit(&cvp->v_lock); 1342 } 1343 if (nsip) { 1344 kmem_free(nsip->si_swapslots, (size_t)nsip->si_mapsize); 1345 kmem_free(nsip->si_pname, nsip->si_pnamelen); 1346 kmem_free(nsip, sizeof (*nsip)); 1347 } 1348 mutex_enter(&swap_lock); 1349 (void) VOP_CLOSE(cvp, FREAD|FWRITE, 1, (offset_t)0, CRED(), 1350 NULL); 1351 mutex_exit(&swap_lock); 1352 } 1353 return (error); 1354 } 1355 1356 /* 1357 * Delete a swap file. 1358 */ 1359 static int 1360 swapdel( 1361 struct vnode *vp, 1362 ulong_t lowblk) /* Low block number of area to delete. */ 1363 { 1364 struct swapinfo **sipp, *osip = NULL; 1365 struct vnode *cvp; 1366 u_offset_t soff; 1367 int error = 0; 1368 u_offset_t toff = 0; 1369 struct vnode *tvp = NULL; 1370 spgcnt_t pages; 1371 struct anon **app, *ap; 1372 kmutex_t *ahm; 1373 pgcnt_t adjust_swap = 0; 1374 1375 /* Find the swap file entry for the file to be deleted */ 1376 cvp = common_specvp(vp); 1377 1378 1379 lowblk = lowblk ? lowblk : 1; /* Skip first page (disk label) */ 1380 soff = ptob(btopr(lowblk << SCTRSHFT)); /* must be page aligned */ 1381 1382 mutex_enter(&swapinfo_lock); 1383 for (sipp = &swapinfo; (osip = *sipp) != NULL; sipp = &osip->si_next) { 1384 if ((osip->si_vp == cvp) && 1385 (osip->si_soff == soff) && (osip->si_flags == 0)) 1386 break; 1387 } 1388 1389 /* If the file was not found, error. */ 1390 if (osip == NULL) { 1391 error = EINVAL; 1392 mutex_exit(&swapinfo_lock); 1393 goto out; 1394 } 1395 1396 pages = osip->si_npgs; 1397 1398 /* 1399 * Do not delete if we will be low on swap pages. 1400 */ 1401 mutex_enter(&anoninfo_lock); 1402 1403 ASSERT(k_anoninfo.ani_mem_resv >= k_anoninfo.ani_locked_swap); 1404 ASSERT(k_anoninfo.ani_max >= k_anoninfo.ani_phys_resv); 1405 1406 mutex_enter(&freemem_lock); 1407 if (((k_anoninfo.ani_max - k_anoninfo.ani_phys_resv) + 1408 MAX((spgcnt_t)(availrmem - swapfs_minfree), 0)) < pages) { 1409 mutex_exit(&freemem_lock); 1410 mutex_exit(&anoninfo_lock); 1411 error = ENOMEM; 1412 cmn_err(CE_WARN, "swapdel - too few free pages"); 1413 mutex_exit(&swapinfo_lock); 1414 goto out; 1415 } 1416 mutex_exit(&freemem_lock); 1417 1418 k_anoninfo.ani_max -= pages; 1419 1420 /* If needed, reserve memory swap to replace old device */ 1421 if (k_anoninfo.ani_phys_resv > k_anoninfo.ani_max) { 1422 adjust_swap = k_anoninfo.ani_phys_resv - k_anoninfo.ani_max; 1423 k_anoninfo.ani_phys_resv -= adjust_swap; 1424 k_anoninfo.ani_mem_resv += adjust_swap; 1425 mutex_enter(&freemem_lock); 1426 availrmem -= adjust_swap; 1427 mutex_exit(&freemem_lock); 1428 ANI_ADD(adjust_swap); 1429 } 1430 ASSERT(k_anoninfo.ani_mem_resv >= k_anoninfo.ani_locked_swap); 1431 ASSERT(k_anoninfo.ani_max >= k_anoninfo.ani_phys_resv); 1432 mutex_exit(&anoninfo_lock); 1433 1434 ANI_ADD(-pages); 1435 1436 /* 1437 * Set the delete flag. This prevents anyone from allocating more 1438 * pages from this file. Also set ST_DOINGDEL. Someone who wants to 1439 * add the file back while we're deleting it will signify by clearing 1440 * this flag. 1441 */ 1442 osip->si_flags |= ST_INDEL|ST_DOINGDEL; 1443 mutex_exit(&swapinfo_lock); 1444 1445 /* 1446 * Free all the allocated physical slots for this file. We do this 1447 * by walking through the entire anon hash array, because we need 1448 * to update all the anon slots that have physical swap slots on 1449 * this file, and this is the only way to find them all. We go back 1450 * to the beginning of a bucket after each slot is freed because the 1451 * anonhash_lock is not held during the free and thus the hash table 1452 * may change under us. 1453 */ 1454 for (app = anon_hash; app < &anon_hash[ANON_HASH_SIZE]; app++) { 1455 ahm = &anonhash_lock[(app-anon_hash) & (AH_LOCK_SIZE - 1)]; 1456 mutex_enter(ahm); 1457 top: 1458 for (ap = *app; ap != NULL; ap = ap->an_hash) { 1459 if (ap->an_pvp == cvp && 1460 ap->an_poff >= osip->si_soff && 1461 ap->an_poff < osip->si_eoff) { 1462 ASSERT(TESTBIT(osip->si_swapslots, 1463 btop((size_t)(ap->an_poff - 1464 osip->si_soff)))); 1465 tvp = ap->an_vp; 1466 toff = ap->an_off; 1467 VN_HOLD(tvp); 1468 mutex_exit(ahm); 1469 1470 error = swapslot_free(tvp, toff, osip); 1471 1472 VN_RELE(tvp); 1473 mutex_enter(ahm); 1474 if (!error && (osip->si_flags & ST_DOINGDEL)) { 1475 goto top; 1476 } else { 1477 if (error) { 1478 cmn_err(CE_WARN, 1479 "swapslot_free failed %d", 1480 error); 1481 } 1482 1483 /* 1484 * Add device back before making it 1485 * visible. 1486 */ 1487 mutex_enter(&swapinfo_lock); 1488 osip->si_flags &= 1489 ~(ST_INDEL | ST_DOINGDEL); 1490 mutex_exit(&swapinfo_lock); 1491 1492 /* 1493 * Update the anon space available 1494 */ 1495 mutex_enter(&anoninfo_lock); 1496 1497 k_anoninfo.ani_phys_resv += adjust_swap; 1498 k_anoninfo.ani_mem_resv -= adjust_swap; 1499 k_anoninfo.ani_max += pages; 1500 1501 mutex_enter(&freemem_lock); 1502 availrmem += adjust_swap; 1503 mutex_exit(&freemem_lock); 1504 1505 mutex_exit(&anoninfo_lock); 1506 1507 ANI_ADD(pages); 1508 1509 mutex_exit(ahm); 1510 goto out; 1511 } 1512 } 1513 } 1514 mutex_exit(ahm); 1515 } 1516 1517 /* All done, they'd better all be free! */ 1518 mutex_enter(&swapinfo_lock); 1519 ASSERT(osip->si_nfpgs == osip->si_npgs); 1520 1521 /* Now remove it from the swapinfo list */ 1522 for (sipp = &swapinfo; *sipp != NULL; sipp = &(*sipp)->si_next) { 1523 if (*sipp == osip) 1524 break; 1525 } 1526 ASSERT(*sipp); 1527 *sipp = osip->si_next; 1528 if (silast == osip) 1529 if ((silast = osip->si_next) == NULL) 1530 silast = swapinfo; 1531 nswapfiles--; 1532 mutex_exit(&swapinfo_lock); 1533 1534 kmem_free(osip->si_swapslots, osip->si_mapsize); 1535 kmem_free(osip->si_pname, osip->si_pnamelen); 1536 kmem_free(osip, sizeof (*osip)); 1537 1538 mutex_enter(&dump_lock); 1539 if (cvp == dumpvp) 1540 dumpfini(); 1541 mutex_exit(&dump_lock); 1542 1543 /* Release the vnode */ 1544 1545 mutex_enter(&swap_lock); 1546 (void) VOP_CLOSE(cvp, FREAD|FWRITE, 1, (offset_t)0, CRED(), NULL); 1547 mutex_enter(&cvp->v_lock); 1548 cvp->v_flag &= ~VISSWAP; 1549 mutex_exit(&cvp->v_lock); 1550 VN_RELE(cvp); 1551 mutex_exit(&swap_lock); 1552 out: 1553 return (error); 1554 } 1555 1556 /* 1557 * Free up a physical swap slot on swapinfo sip, currently in use by the 1558 * anonymous page whose name is (vp, off). 1559 */ 1560 static int 1561 swapslot_free( 1562 struct vnode *vp, 1563 u_offset_t off, 1564 struct swapinfo *sip) 1565 { 1566 struct page *pp = NULL; 1567 struct anon *ap = NULL; 1568 int error = 0; 1569 kmutex_t *ahm; 1570 struct vnode *pvp = NULL; 1571 u_offset_t poff; 1572 int alloc_pg = 0; 1573 1574 ASSERT(sip->si_vp != NULL); 1575 /* 1576 * Get the page for the old swap slot if exists or create a new one. 1577 */ 1578 again: 1579 if ((pp = page_lookup(vp, off, SE_SHARED)) == NULL) { 1580 pp = page_create_va(vp, off, PAGESIZE, PG_WAIT | PG_EXCL, 1581 segkmap, NULL); 1582 if (pp == NULL) 1583 goto again; 1584 alloc_pg = 1; 1585 1586 error = swap_getphysname(vp, off, &pvp, &poff); 1587 if (error || pvp != sip->si_vp || poff < sip->si_soff || 1588 poff >= sip->si_eoff) { 1589 page_io_unlock(pp); 1590 /*LINTED: constant in conditional context*/ 1591 VN_DISPOSE(pp, B_INVAL, 0, kcred); 1592 return (0); 1593 } 1594 1595 error = VOP_PAGEIO(pvp, pp, poff, PAGESIZE, B_READ, 1596 CRED(), NULL); 1597 if (error) { 1598 page_io_unlock(pp); 1599 if (error == EFAULT) 1600 error = 0; 1601 /*LINTED: constant in conditional context*/ 1602 VN_DISPOSE(pp, B_INVAL, 0, kcred); 1603 return (error); 1604 } 1605 } 1606 1607 /* 1608 * The anon could have been removed by anon_decref* and/or reallocated 1609 * by anon layer (an_pvp == NULL) with the same vp, off. 1610 * In this case the page which has been allocated needs to 1611 * be freed. 1612 */ 1613 if (!alloc_pg) 1614 page_io_lock(pp); 1615 ahm = &anonhash_lock[AH_LOCK(vp, off)]; 1616 mutex_enter(ahm); 1617 ap = swap_anon(vp, off); 1618 if ((ap == NULL || ap->an_pvp == NULL) && alloc_pg) { 1619 mutex_exit(ahm); 1620 page_io_unlock(pp); 1621 /*LINTED: constant in conditional context*/ 1622 VN_DISPOSE(pp, B_INVAL, 0, kcred); 1623 return (0); 1624 } 1625 1626 /* 1627 * Free the physical slot. It may have been freed up and replaced with 1628 * another one while we were getting the page so we have to re-verify 1629 * that this is really one we want. If we do free the slot we have 1630 * to mark the page modified, as its backing store is now gone. 1631 */ 1632 if ((ap != NULL) && (ap->an_pvp == sip->si_vp && ap->an_poff >= 1633 sip->si_soff && ap->an_poff < sip->si_eoff)) { 1634 swap_phys_free(ap->an_pvp, ap->an_poff, PAGESIZE); 1635 ap->an_pvp = NULL; 1636 ap->an_poff = 0; 1637 mutex_exit(ahm); 1638 hat_setmod(pp); 1639 } else { 1640 mutex_exit(ahm); 1641 } 1642 page_io_unlock(pp); 1643 page_unlock(pp); 1644 return (0); 1645 } 1646 1647 1648 /* 1649 * Get contig physical backing store for vp, in the range 1650 * [*offp, *offp + *lenp), May back a subrange of this, but must 1651 * always include the requested offset or fail. Returns the offsets 1652 * backed as [*offp, *offp + *lenp) and the physical offsets used to 1653 * back them from *pvpp in the range [*pstartp, *pstartp + *lenp). 1654 * Returns 0 for success 1655 * SE_NOANON -- no anon slot for requested paged 1656 * SE_NOSWAP -- no physical swap space available 1657 */ 1658 int 1659 swap_newphysname( 1660 struct vnode *vp, 1661 u_offset_t offset, 1662 u_offset_t *offp, 1663 size_t *lenp, 1664 struct vnode **pvpp, 1665 u_offset_t *poffp) 1666 { 1667 struct anon *ap = NULL; /* anon slot for vp, off */ 1668 int error = 0; 1669 struct vnode *pvp; 1670 u_offset_t poff, pstart, prem; 1671 size_t plen; 1672 u_offset_t off, start; 1673 kmutex_t *ahm; 1674 1675 ASSERT(*offp <= offset && offset < *offp + *lenp); 1676 1677 /* Get new physical swap slots. */ 1678 plen = *lenp; 1679 if (!swap_phys_alloc(&pvp, &pstart, &plen, 0)) { 1680 /* 1681 * No swap available so return error unless requested 1682 * offset is already backed in which case return that. 1683 */ 1684 ahm = &anonhash_lock[AH_LOCK(vp, offset)]; 1685 mutex_enter(ahm); 1686 if ((ap = swap_anon(vp, offset)) == NULL) { 1687 error = SE_NOANON; 1688 mutex_exit(ahm); 1689 return (error); 1690 } 1691 error = (ap->an_pvp ? 0 : SE_NOSWAP); 1692 *offp = offset; 1693 *lenp = PAGESIZE; 1694 *pvpp = ap->an_pvp; 1695 *poffp = ap->an_poff; 1696 mutex_exit(ahm); 1697 return (error); 1698 } 1699 1700 /* 1701 * We got plen (<= *lenp) contig slots. Use these to back a 1702 * subrange of [*offp, *offp + *lenp) which includes offset. 1703 * For now we just put offset at the end of the kluster. 1704 * Clearly there are other possible choices - which is best? 1705 */ 1706 start = MAX(*offp, 1707 (offset + PAGESIZE > plen) ? (offset + PAGESIZE - plen) : 0); 1708 ASSERT(start + plen <= *offp + *lenp); 1709 1710 for (off = start, poff = pstart; poff < pstart + plen; 1711 off += PAGESIZE, poff += PAGESIZE) { 1712 ahm = &anonhash_lock[AH_LOCK(vp, off)]; 1713 mutex_enter(ahm); 1714 if ((ap = swap_anon(vp, off)) != NULL) { 1715 /* Free old slot if any, and assign new one */ 1716 if (ap->an_pvp) 1717 swap_phys_free(ap->an_pvp, ap->an_poff, 1718 PAGESIZE); 1719 ap->an_pvp = pvp; 1720 ap->an_poff = poff; 1721 } else { /* No anon slot for a klustered page, quit. */ 1722 prem = (pstart + plen) - poff; 1723 /* Already did requested page, do partial kluster */ 1724 if (off > offset) { 1725 plen = poff - pstart; 1726 error = 0; 1727 /* Fail on requested page, error */ 1728 } else if (off == offset) { 1729 error = SE_NOANON; 1730 /* Fail on prior page, fail on requested page, error */ 1731 } else if ((ap = swap_anon(vp, offset)) == NULL) { 1732 error = SE_NOANON; 1733 /* Fail on prior page, got requested page, do only it */ 1734 } else { 1735 /* Free old slot if any, and assign new one */ 1736 if (ap->an_pvp) 1737 swap_phys_free(ap->an_pvp, ap->an_poff, 1738 PAGESIZE); 1739 ap->an_pvp = pvp; 1740 ap->an_poff = poff; 1741 /* One page kluster */ 1742 start = offset; 1743 plen = PAGESIZE; 1744 pstart = poff; 1745 poff += PAGESIZE; 1746 prem -= PAGESIZE; 1747 } 1748 /* Free unassigned slots */ 1749 swap_phys_free(pvp, poff, prem); 1750 mutex_exit(ahm); 1751 break; 1752 } 1753 mutex_exit(ahm); 1754 } 1755 ASSERT(*offp <= start && start + plen <= *offp + *lenp); 1756 ASSERT(start <= offset && offset < start + plen); 1757 *offp = start; 1758 *lenp = plen; 1759 *pvpp = pvp; 1760 *poffp = pstart; 1761 return (error); 1762 } 1763 1764 1765 /* 1766 * Get the physical swap backing store location for a given anonymous page 1767 * named (vp, off). The backing store name is returned in (*pvpp, *poffp). 1768 * Returns 0 success 1769 * EIDRM -- no anon slot (page is not allocated) 1770 */ 1771 int 1772 swap_getphysname( 1773 struct vnode *vp, 1774 u_offset_t off, 1775 struct vnode **pvpp, 1776 u_offset_t *poffp) 1777 { 1778 struct anon *ap; 1779 int error = 0; 1780 kmutex_t *ahm; 1781 1782 ahm = &anonhash_lock[AH_LOCK(vp, off)]; 1783 mutex_enter(ahm); 1784 1785 /* Get anon slot for vp, off */ 1786 ap = swap_anon(vp, off); 1787 if (ap == NULL) { 1788 error = EIDRM; 1789 goto out; 1790 } 1791 *pvpp = ap->an_pvp; 1792 *poffp = ap->an_poff; 1793 out: 1794 mutex_exit(ahm); 1795 return (error); 1796 } 1797