1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2008 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 /* Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T */ 27 /* All Rights Reserved */ 28 29 /* 30 * University Copyright- Copyright (c) 1982, 1986, 1988 31 * The Regents of the University of California 32 * All Rights Reserved 33 * 34 * University Acknowledgment- Portions of this document are derived from 35 * software developed by the University of California, Berkeley, and its 36 * contributors. 37 */ 38 39 /* 40 * VM - paged vnode. 41 * 42 * This file supplies vm support for the vnode operations that deal with pages. 43 */ 44 #include <sys/types.h> 45 #include <sys/t_lock.h> 46 #include <sys/param.h> 47 #include <sys/sysmacros.h> 48 #include <sys/systm.h> 49 #include <sys/time.h> 50 #include <sys/buf.h> 51 #include <sys/vnode.h> 52 #include <sys/uio.h> 53 #include <sys/vmmeter.h> 54 #include <sys/vmsystm.h> 55 #include <sys/mman.h> 56 #include <sys/vfs.h> 57 #include <sys/cred.h> 58 #include <sys/user.h> 59 #include <sys/kmem.h> 60 #include <sys/cmn_err.h> 61 #include <sys/debug.h> 62 #include <sys/cpuvar.h> 63 #include <sys/vtrace.h> 64 #include <sys/tnf_probe.h> 65 66 #include <vm/hat.h> 67 #include <vm/as.h> 68 #include <vm/seg.h> 69 #include <vm/rm.h> 70 #include <vm/pvn.h> 71 #include <vm/page.h> 72 #include <vm/seg_map.h> 73 #include <vm/seg_kmem.h> 74 #include <sys/fs/swapnode.h> 75 76 int pvn_nofodklust = 0; 77 int pvn_write_noklust = 0; 78 79 uint_t pvn_vmodsort_supported = 0; /* set if HAT supports VMODSORT */ 80 uint_t pvn_vmodsort_disable = 0; /* set in /etc/system to disable HAT */ 81 /* support for vmodsort for testing */ 82 83 static struct kmem_cache *marker_cache = NULL; 84 85 /* 86 * Find the largest contiguous block which contains `addr' for file offset 87 * `offset' in it while living within the file system block sizes (`vp_off' 88 * and `vp_len') and the address space limits for which no pages currently 89 * exist and which map to consecutive file offsets. 90 */ 91 page_t * 92 pvn_read_kluster( 93 struct vnode *vp, 94 u_offset_t off, 95 struct seg *seg, 96 caddr_t addr, 97 u_offset_t *offp, /* return values */ 98 size_t *lenp, /* return values */ 99 u_offset_t vp_off, 100 size_t vp_len, 101 int isra) 102 { 103 ssize_t deltaf, deltab; 104 page_t *pp; 105 page_t *plist = NULL; 106 spgcnt_t pagesavail; 107 u_offset_t vp_end; 108 109 ASSERT(off >= vp_off && off < vp_off + vp_len); 110 111 /* 112 * We only want to do klustering/read ahead if there 113 * is more than minfree pages currently available. 114 */ 115 pagesavail = freemem - minfree; 116 117 if (pagesavail <= 0) 118 if (isra) 119 return ((page_t *)NULL); /* ra case - give up */ 120 else 121 pagesavail = 1; /* must return a page */ 122 123 /* We calculate in pages instead of bytes due to 32-bit overflows */ 124 if (pagesavail < (spgcnt_t)btopr(vp_len)) { 125 /* 126 * Don't have enough free memory for the 127 * max request, try sizing down vp request. 128 */ 129 deltab = (ssize_t)(off - vp_off); 130 vp_len -= deltab; 131 vp_off += deltab; 132 if (pagesavail < btopr(vp_len)) { 133 /* 134 * Still not enough memory, just settle for 135 * pagesavail which is at least 1. 136 */ 137 vp_len = ptob(pagesavail); 138 } 139 } 140 141 vp_end = vp_off + vp_len; 142 ASSERT(off >= vp_off && off < vp_end); 143 144 if (isra && SEGOP_KLUSTER(seg, addr, 0)) 145 return ((page_t *)NULL); /* segment driver says no */ 146 147 if ((plist = page_create_va(vp, off, 148 PAGESIZE, PG_EXCL | PG_WAIT, seg, addr)) == NULL) 149 return ((page_t *)NULL); 150 151 if (vp_len <= PAGESIZE || pvn_nofodklust) { 152 *offp = off; 153 *lenp = MIN(vp_len, PAGESIZE); 154 } else { 155 /* 156 * Scan back from front by incrementing "deltab" and 157 * comparing "off" with "vp_off + deltab" to avoid 158 * "signed" versus "unsigned" conversion problems. 159 */ 160 for (deltab = PAGESIZE; off >= vp_off + deltab; 161 deltab += PAGESIZE) { 162 /* 163 * Call back to the segment driver to verify that 164 * the klustering/read ahead operation makes sense. 165 */ 166 if (SEGOP_KLUSTER(seg, addr, -deltab)) 167 break; /* page not eligible */ 168 if ((pp = page_create_va(vp, off - deltab, 169 PAGESIZE, PG_EXCL, seg, addr - deltab)) 170 == NULL) 171 break; /* already have the page */ 172 /* 173 * Add page to front of page list. 174 */ 175 page_add(&plist, pp); 176 } 177 deltab -= PAGESIZE; 178 179 /* scan forward from front */ 180 for (deltaf = PAGESIZE; off + deltaf < vp_end; 181 deltaf += PAGESIZE) { 182 /* 183 * Call back to the segment driver to verify that 184 * the klustering/read ahead operation makes sense. 185 */ 186 if (SEGOP_KLUSTER(seg, addr, deltaf)) 187 break; /* page not file extension */ 188 if ((pp = page_create_va(vp, off + deltaf, 189 PAGESIZE, PG_EXCL, seg, addr + deltaf)) 190 == NULL) 191 break; /* already have page */ 192 193 /* 194 * Add page to end of page list. 195 */ 196 page_add(&plist, pp); 197 plist = plist->p_next; 198 } 199 *offp = off = off - deltab; 200 *lenp = deltab + deltaf; 201 ASSERT(off >= vp_off); 202 203 /* 204 * If we ended up getting more than was actually 205 * requested, retract the returned length to only 206 * reflect what was requested. This might happen 207 * if we were allowed to kluster pages across a 208 * span of (say) 5 frags, and frag size is less 209 * than PAGESIZE. We need a whole number of 210 * pages to contain those frags, but the returned 211 * size should only allow the returned range to 212 * extend as far as the end of the frags. 213 */ 214 if ((vp_off + vp_len) < (off + *lenp)) { 215 ASSERT(vp_end > off); 216 *lenp = vp_end - off; 217 } 218 } 219 TRACE_3(TR_FAC_VM, TR_PVN_READ_KLUSTER, 220 "pvn_read_kluster:seg %p addr %x isra %x", 221 seg, addr, isra); 222 return (plist); 223 } 224 225 /* 226 * Handle pages for this vnode on either side of the page "pp" 227 * which has been locked by the caller. This routine will also 228 * do klustering in the range [vp_off, vp_off + vp_len] up 229 * until a page which is not found. The offset and length 230 * of pages included is returned in "*offp" and "*lenp". 231 * 232 * Returns a list of dirty locked pages all ready to be 233 * written back. 234 */ 235 page_t * 236 pvn_write_kluster( 237 struct vnode *vp, 238 page_t *pp, 239 u_offset_t *offp, /* return values */ 240 size_t *lenp, /* return values */ 241 u_offset_t vp_off, 242 size_t vp_len, 243 int flags) 244 { 245 u_offset_t off; 246 page_t *dirty; 247 size_t deltab, deltaf; 248 se_t se; 249 u_offset_t vp_end; 250 251 off = pp->p_offset; 252 253 /* 254 * Kustering should not be done if we are invalidating 255 * pages since we could destroy pages that belong to 256 * some other process if this is a swap vnode. 257 */ 258 if (pvn_write_noklust || ((flags & B_INVAL) && IS_SWAPVP(vp))) { 259 *offp = off; 260 *lenp = PAGESIZE; 261 return (pp); 262 } 263 264 if (flags & (B_FREE | B_INVAL)) 265 se = SE_EXCL; 266 else 267 se = SE_SHARED; 268 269 dirty = pp; 270 /* 271 * Scan backwards looking for pages to kluster by incrementing 272 * "deltab" and comparing "off" with "vp_off + deltab" to 273 * avoid "signed" versus "unsigned" conversion problems. 274 */ 275 for (deltab = PAGESIZE; off >= vp_off + deltab; deltab += PAGESIZE) { 276 pp = page_lookup_nowait(vp, off - deltab, se); 277 if (pp == NULL) 278 break; /* page not found */ 279 if (pvn_getdirty(pp, flags | B_DELWRI) == 0) 280 break; 281 page_add(&dirty, pp); 282 } 283 deltab -= PAGESIZE; 284 285 vp_end = vp_off + vp_len; 286 /* now scan forwards looking for pages to kluster */ 287 for (deltaf = PAGESIZE; off + deltaf < vp_end; deltaf += PAGESIZE) { 288 pp = page_lookup_nowait(vp, off + deltaf, se); 289 if (pp == NULL) 290 break; /* page not found */ 291 if (pvn_getdirty(pp, flags | B_DELWRI) == 0) 292 break; 293 page_add(&dirty, pp); 294 dirty = dirty->p_next; 295 } 296 297 *offp = off - deltab; 298 *lenp = deltab + deltaf; 299 return (dirty); 300 } 301 302 /* 303 * Generic entry point used to release the "shared/exclusive" lock 304 * and the "p_iolock" on pages after i/o is complete. 305 */ 306 void 307 pvn_io_done(page_t *plist) 308 { 309 page_t *pp; 310 311 while (plist != NULL) { 312 pp = plist; 313 page_sub(&plist, pp); 314 page_io_unlock(pp); 315 page_unlock(pp); 316 } 317 } 318 319 /* 320 * Entry point to be used by file system getpage subr's and 321 * other such routines which either want to unlock pages (B_ASYNC 322 * request) or destroy a list of pages if an error occurred. 323 */ 324 void 325 pvn_read_done(page_t *plist, int flags) 326 { 327 page_t *pp; 328 329 while (plist != NULL) { 330 pp = plist; 331 page_sub(&plist, pp); 332 page_io_unlock(pp); 333 if (flags & B_ERROR) { 334 /*LINTED: constant in conditional context*/ 335 VN_DISPOSE(pp, B_INVAL, 0, kcred); 336 } else { 337 (void) page_release(pp, 0); 338 } 339 } 340 } 341 342 /* 343 * Automagic pageout. 344 * When memory gets tight, start freeing pages popping out of the 345 * write queue. 346 */ 347 int write_free = 1; 348 pgcnt_t pages_before_pager = 200; /* LMXXX */ 349 350 /* 351 * Routine to be called when page-out's complete. 352 * The caller, typically VOP_PUTPAGE, has to explicity call this routine 353 * after waiting for i/o to complete (biowait) to free the list of 354 * pages associated with the buffer. These pages must be locked 355 * before i/o is initiated. 356 * 357 * If a write error occurs, the pages are marked as modified 358 * so the write will be re-tried later. 359 */ 360 361 void 362 pvn_write_done(page_t *plist, int flags) 363 { 364 int dfree = 0; 365 int pgrec = 0; 366 int pgout = 0; 367 int pgpgout = 0; 368 int anonpgout = 0; 369 int anonfree = 0; 370 int fspgout = 0; 371 int fsfree = 0; 372 int execpgout = 0; 373 int execfree = 0; 374 page_t *pp; 375 struct cpu *cpup; 376 struct vnode *vp = NULL; /* for probe */ 377 uint_t ppattr; 378 kmutex_t *vphm = NULL; 379 380 ASSERT((flags & B_READ) == 0); 381 382 /* 383 * If we are about to start paging anyway, start freeing pages. 384 */ 385 if (write_free && freemem < lotsfree + pages_before_pager && 386 (flags & B_ERROR) == 0) { 387 flags |= B_FREE; 388 } 389 390 /* 391 * Handle each page involved in the i/o operation. 392 */ 393 while (plist != NULL) { 394 pp = plist; 395 ASSERT(PAGE_LOCKED(pp) && page_iolock_assert(pp)); 396 page_sub(&plist, pp); 397 398 /* Kernel probe support */ 399 if (vp == NULL) 400 vp = pp->p_vnode; 401 402 if (((flags & B_ERROR) == 0) && IS_VMODSORT(vp)) { 403 /* 404 * Move page to the top of the v_page list. 405 * Skip pages modified during IO. 406 */ 407 vphm = page_vnode_mutex(vp); 408 mutex_enter(vphm); 409 if ((pp->p_vpnext != pp) && !hat_ismod(pp)) { 410 page_vpsub(&vp->v_pages, pp); 411 page_vpadd(&vp->v_pages, pp); 412 } 413 mutex_exit(vphm); 414 } 415 416 if (flags & B_ERROR) { 417 /* 418 * Write operation failed. We don't want 419 * to destroy (or free) the page unless B_FORCE 420 * is set. We set the mod bit again and release 421 * all locks on the page so that it will get written 422 * back again later when things are hopefully 423 * better again. 424 * If B_INVAL and B_FORCE is set we really have 425 * to destroy the page. 426 */ 427 if ((flags & (B_INVAL|B_FORCE)) == (B_INVAL|B_FORCE)) { 428 page_io_unlock(pp); 429 /*LINTED: constant in conditional context*/ 430 VN_DISPOSE(pp, B_INVAL, 0, kcred); 431 } else { 432 hat_setmod_only(pp); 433 page_io_unlock(pp); 434 page_unlock(pp); 435 } 436 } else if (flags & B_INVAL) { 437 /* 438 * XXX - Failed writes with B_INVAL set are 439 * not handled appropriately. 440 */ 441 page_io_unlock(pp); 442 /*LINTED: constant in conditional context*/ 443 VN_DISPOSE(pp, B_INVAL, 0, kcred); 444 } else if (flags & B_FREE ||!hat_page_is_mapped(pp)) { 445 /* 446 * Update statistics for pages being paged out 447 */ 448 if (pp->p_vnode) { 449 if (IS_SWAPFSVP(pp->p_vnode)) { 450 anonpgout++; 451 } else { 452 if (pp->p_vnode->v_flag & VVMEXEC) { 453 execpgout++; 454 } else { 455 fspgout++; 456 } 457 } 458 } 459 page_io_unlock(pp); 460 pgout = 1; 461 pgpgout++; 462 TRACE_1(TR_FAC_VM, TR_PAGE_WS_OUT, 463 "page_ws_out:pp %p", pp); 464 465 /* 466 * The page_struct_lock need not be acquired to 467 * examine "p_lckcnt" and "p_cowcnt" since we'll 468 * have an "exclusive" lock if the upgrade succeeds. 469 */ 470 if (page_tryupgrade(pp) && 471 pp->p_lckcnt == 0 && pp->p_cowcnt == 0) { 472 /* 473 * Check if someone has reclaimed the 474 * page. If ref and mod are not set, no 475 * one is using it so we can free it. 476 * The rest of the system is careful 477 * to use the NOSYNC flag to unload 478 * translations set up for i/o w/o 479 * affecting ref and mod bits. 480 * 481 * Obtain a copy of the real hardware 482 * mod bit using hat_pagesync(pp, HAT_DONTZERO) 483 * to avoid having to flush the cache. 484 */ 485 ppattr = hat_pagesync(pp, HAT_SYNC_DONTZERO | 486 HAT_SYNC_STOPON_MOD); 487 ck_refmod: 488 if (!(ppattr & (P_REF | P_MOD))) { 489 if (hat_page_is_mapped(pp)) { 490 /* 491 * Doesn't look like the page 492 * was modified so now we 493 * really have to unload the 494 * translations. Meanwhile 495 * another CPU could've 496 * modified it so we have to 497 * check again. We don't loop 498 * forever here because now 499 * the translations are gone 500 * and no one can get a new one 501 * since we have the "exclusive" 502 * lock on the page. 503 */ 504 (void) hat_pageunload(pp, 505 HAT_FORCE_PGUNLOAD); 506 ppattr = hat_page_getattr(pp, 507 P_REF | P_MOD); 508 goto ck_refmod; 509 } 510 /* 511 * Update statistics for pages being 512 * freed 513 */ 514 if (pp->p_vnode) { 515 if (IS_SWAPFSVP(pp->p_vnode)) { 516 anonfree++; 517 } else { 518 if (pp->p_vnode->v_flag 519 & VVMEXEC) { 520 execfree++; 521 } else { 522 fsfree++; 523 } 524 } 525 } 526 /*LINTED: constant in conditional ctx*/ 527 VN_DISPOSE(pp, B_FREE, 528 (flags & B_DONTNEED), kcred); 529 dfree++; 530 } else { 531 page_unlock(pp); 532 pgrec++; 533 TRACE_1(TR_FAC_VM, TR_PAGE_WS_FREE, 534 "page_ws_free:pp %p", pp); 535 } 536 } else { 537 /* 538 * Page is either `locked' in memory 539 * or was reclaimed and now has a 540 * "shared" lock, so release it. 541 */ 542 page_unlock(pp); 543 } 544 } else { 545 /* 546 * Neither B_FREE nor B_INVAL nor B_ERROR. 547 * Just release locks. 548 */ 549 page_io_unlock(pp); 550 page_unlock(pp); 551 } 552 } 553 554 CPU_STATS_ENTER_K(); 555 cpup = CPU; /* get cpup now that CPU cannot change */ 556 CPU_STATS_ADDQ(cpup, vm, dfree, dfree); 557 CPU_STATS_ADDQ(cpup, vm, pgrec, pgrec); 558 CPU_STATS_ADDQ(cpup, vm, pgout, pgout); 559 CPU_STATS_ADDQ(cpup, vm, pgpgout, pgpgout); 560 CPU_STATS_ADDQ(cpup, vm, anonpgout, anonpgout); 561 CPU_STATS_ADDQ(cpup, vm, anonfree, anonfree); 562 CPU_STATS_ADDQ(cpup, vm, fspgout, fspgout); 563 CPU_STATS_ADDQ(cpup, vm, fsfree, fsfree); 564 CPU_STATS_ADDQ(cpup, vm, execpgout, execpgout); 565 CPU_STATS_ADDQ(cpup, vm, execfree, execfree); 566 CPU_STATS_EXIT_K(); 567 568 /* Kernel probe */ 569 TNF_PROBE_4(pageout, "vm pageio io", /* CSTYLED */, 570 tnf_opaque, vnode, vp, 571 tnf_ulong, pages_pageout, pgpgout, 572 tnf_ulong, pages_freed, dfree, 573 tnf_ulong, pages_reclaimed, pgrec); 574 } 575 576 /* 577 * Flags are composed of {B_ASYNC, B_INVAL, B_FREE, B_DONTNEED, B_DELWRI, 578 * B_TRUNC, B_FORCE}. B_DELWRI indicates that this page is part of a kluster 579 * operation and is only to be considered if it doesn't involve any 580 * waiting here. B_TRUNC indicates that the file is being truncated 581 * and so no i/o needs to be done. B_FORCE indicates that the page 582 * must be destroyed so don't try wrting it out. 583 * 584 * The caller must ensure that the page is locked. Returns 1, if 585 * the page should be written back (the "iolock" is held in this 586 * case), or 0 if the page has been dealt with or has been 587 * unlocked. 588 */ 589 int 590 pvn_getdirty(page_t *pp, int flags) 591 { 592 ASSERT((flags & (B_INVAL | B_FREE)) ? 593 PAGE_EXCL(pp) : PAGE_SHARED(pp)); 594 ASSERT(PP_ISFREE(pp) == 0); 595 596 /* 597 * If trying to invalidate or free a logically `locked' page, 598 * forget it. Don't need page_struct_lock to check p_lckcnt and 599 * p_cowcnt as the page is exclusively locked. 600 */ 601 if ((flags & (B_INVAL | B_FREE)) && !(flags & (B_TRUNC|B_FORCE)) && 602 (pp->p_lckcnt != 0 || pp->p_cowcnt != 0)) { 603 page_unlock(pp); 604 return (0); 605 } 606 607 /* 608 * Now acquire the i/o lock so we can add it to the dirty 609 * list (if necessary). We avoid blocking on the i/o lock 610 * in the following cases: 611 * 612 * If B_DELWRI is set, which implies that this request is 613 * due to a klustering operartion. 614 * 615 * If this is an async (B_ASYNC) operation and we are not doing 616 * invalidation (B_INVAL) [The current i/o or fsflush will ensure 617 * that the the page is written out]. 618 */ 619 if ((flags & B_DELWRI) || ((flags & (B_INVAL | B_ASYNC)) == B_ASYNC)) { 620 if (!page_io_trylock(pp)) { 621 page_unlock(pp); 622 return (0); 623 } 624 } else { 625 page_io_lock(pp); 626 } 627 628 /* 629 * If we want to free or invalidate the page then 630 * we need to unload it so that anyone who wants 631 * it will have to take a minor fault to get it. 632 * Otherwise, we're just writing the page back so we 633 * need to sync up the hardwre and software mod bit to 634 * detect any future modifications. We clear the 635 * software mod bit when we put the page on the dirty 636 * list. 637 */ 638 if (flags & (B_INVAL | B_FREE)) { 639 (void) hat_pageunload(pp, HAT_FORCE_PGUNLOAD); 640 } else { 641 (void) hat_pagesync(pp, HAT_SYNC_ZERORM); 642 } 643 644 if (!hat_ismod(pp) || (flags & B_TRUNC)) { 645 /* 646 * Don't need to add it to the 647 * list after all. 648 */ 649 page_io_unlock(pp); 650 if (flags & B_INVAL) { 651 /*LINTED: constant in conditional context*/ 652 VN_DISPOSE(pp, B_INVAL, 0, kcred); 653 } else if (flags & B_FREE) { 654 /*LINTED: constant in conditional context*/ 655 VN_DISPOSE(pp, B_FREE, (flags & B_DONTNEED), kcred); 656 } else { 657 /* 658 * This is advisory path for the callers 659 * of VOP_PUTPAGE() who prefer freeing the 660 * page _only_ if no one else is accessing it. 661 * E.g. segmap_release() 662 * 663 * The above hat_ismod() check is useless because: 664 * (1) we may not be holding SE_EXCL lock; 665 * (2) we've not unloaded _all_ translations 666 * 667 * Let page_release() do the heavy-lifting. 668 */ 669 (void) page_release(pp, 1); 670 } 671 return (0); 672 } 673 674 /* 675 * Page is dirty, get it ready for the write back 676 * and add page to the dirty list. 677 */ 678 hat_clrrefmod(pp); 679 680 /* 681 * If we're going to free the page when we're done 682 * then we can let others try to use it starting now. 683 * We'll detect the fact that they used it when the 684 * i/o is done and avoid freeing the page. 685 */ 686 if (flags & B_FREE) 687 page_downgrade(pp); 688 689 690 TRACE_1(TR_FAC_VM, TR_PVN_GETDIRTY, "pvn_getdirty:pp %p", pp); 691 692 return (1); 693 } 694 695 696 /*ARGSUSED*/ 697 static int 698 marker_constructor(void *buf, void *cdrarg, int kmflags) 699 { 700 page_t *mark = buf; 701 bzero(mark, sizeof (page_t)); 702 return (0); 703 } 704 705 void 706 pvn_init() 707 { 708 if (pvn_vmodsort_disable == 0) 709 pvn_vmodsort_supported = hat_supported(HAT_VMODSORT, NULL); 710 marker_cache = kmem_cache_create("marker_cache", 711 sizeof (page_t), 0, marker_constructor, 712 NULL, NULL, NULL, NULL, 0); 713 } 714 715 716 /* 717 * Process a vnode's page list for all pages whose offset is >= off. 718 * Pages are to either be free'd, invalidated, or written back to disk. 719 * 720 * An "exclusive" lock is acquired for each page if B_INVAL or B_FREE 721 * is specified, otherwise they are "shared" locked. 722 * 723 * Flags are {B_ASYNC, B_INVAL, B_FREE, B_DONTNEED, B_TRUNC} 724 * 725 * Special marker page_t's are inserted in the list in order 726 * to keep track of where we are in the list when locks are dropped. 727 * 728 * Note the list is circular and insertions can happen only at the 729 * head and tail of the list. The algorithm ensures visiting all pages 730 * on the list in the following way: 731 * 732 * Drop two marker pages at the end of the list. 733 * 734 * Move one marker page backwards towards the start of the list until 735 * it is at the list head, processing the pages passed along the way. 736 * 737 * Due to race conditions when the vphm mutex is dropped, additional pages 738 * can be added to either end of the list, so we'll continue to move 739 * the marker and process pages until it is up against the end marker. 740 * 741 * There is one special exit condition. If we are processing a VMODSORT 742 * vnode and only writing back modified pages, we can stop as soon as 743 * we run into an unmodified page. This makes fsync(3) operations fast. 744 */ 745 int 746 pvn_vplist_dirty( 747 vnode_t *vp, 748 u_offset_t off, 749 int (*putapage)(vnode_t *, page_t *, u_offset_t *, 750 size_t *, int, cred_t *), 751 int flags, 752 cred_t *cred) 753 { 754 page_t *pp; 755 page_t *mark; /* marker page that moves toward head */ 756 page_t *end; /* marker page at end of list */ 757 int err = 0; 758 int error; 759 kmutex_t *vphm; 760 se_t se; 761 page_t **where_to_move; 762 763 ASSERT(vp->v_type != VCHR); 764 765 if (vp->v_pages == NULL) 766 return (0); 767 768 769 /* 770 * Serialize vplist_dirty operations on this vnode by setting VVMLOCK. 771 * 772 * Don't block on VVMLOCK if B_ASYNC is set. This prevents sync() 773 * from getting blocked while flushing pages to a dead NFS server. 774 */ 775 mutex_enter(&vp->v_lock); 776 if ((vp->v_flag & VVMLOCK) && (flags & B_ASYNC)) { 777 mutex_exit(&vp->v_lock); 778 return (EAGAIN); 779 } 780 781 while (vp->v_flag & VVMLOCK) 782 cv_wait(&vp->v_cv, &vp->v_lock); 783 784 if (vp->v_pages == NULL) { 785 mutex_exit(&vp->v_lock); 786 return (0); 787 } 788 789 vp->v_flag |= VVMLOCK; 790 mutex_exit(&vp->v_lock); 791 792 793 /* 794 * Set up the marker pages used to walk the list 795 */ 796 end = kmem_cache_alloc(marker_cache, KM_SLEEP); 797 end->p_vnode = vp; 798 end->p_offset = (u_offset_t)-2; 799 mark = kmem_cache_alloc(marker_cache, KM_SLEEP); 800 mark->p_vnode = vp; 801 mark->p_offset = (u_offset_t)-1; 802 803 /* 804 * Grab the lock protecting the vnode's page list 805 * note that this lock is dropped at times in the loop. 806 */ 807 vphm = page_vnode_mutex(vp); 808 mutex_enter(vphm); 809 if (vp->v_pages == NULL) 810 goto leave; 811 812 /* 813 * insert the markers and loop through the list of pages 814 */ 815 page_vpadd(&vp->v_pages->p_vpprev->p_vpnext, mark); 816 page_vpadd(&mark->p_vpnext, end); 817 for (;;) { 818 819 /* 820 * If only doing an async write back, then we can 821 * stop as soon as we get to start of the list. 822 */ 823 if (flags == B_ASYNC && vp->v_pages == mark) 824 break; 825 826 /* 827 * otherwise stop when we've gone through all the pages 828 */ 829 if (mark->p_vpprev == end) 830 break; 831 832 pp = mark->p_vpprev; 833 if (vp->v_pages == pp) 834 where_to_move = &vp->v_pages; 835 else 836 where_to_move = &pp->p_vpprev->p_vpnext; 837 838 ASSERT(pp->p_vnode == vp); 839 840 /* 841 * If just flushing dirty pages to disk and this vnode 842 * is using a sorted list of pages, we can stop processing 843 * as soon as we find an unmodified page. Since all the 844 * modified pages are visited first. 845 */ 846 if (IS_VMODSORT(vp) && 847 !(flags & (B_INVAL | B_FREE | B_TRUNC))) { 848 if (!hat_ismod(pp) && !page_io_locked(pp)) { 849 #ifdef DEBUG 850 /* 851 * For debug kernels examine what should be 852 * all the remaining clean pages, asserting 853 * that they are not modified. 854 */ 855 page_t *chk = pp; 856 int attr; 857 858 page_vpsub(&vp->v_pages, mark); 859 page_vpadd(where_to_move, mark); 860 do { 861 chk = chk->p_vpprev; 862 ASSERT(chk != end); 863 if (chk == mark) 864 continue; 865 attr = hat_page_getattr(chk, P_MOD | 866 P_REF); 867 if ((attr & P_MOD) == 0) 868 continue; 869 panic("v_pages list not all clean: " 870 "page_t*=%p vnode=%p off=%lx " 871 "attr=0x%x last clean page_t*=%p\n", 872 (void *)chk, (void *)chk->p_vnode, 873 (long)chk->p_offset, attr, 874 (void *)pp); 875 } while (chk != vp->v_pages); 876 #endif 877 break; 878 } else if (!(flags & B_ASYNC) && !hat_ismod(pp)) { 879 /* 880 * Couldn't get io lock, wait until IO is done. 881 * Block only for sync IO since we don't want 882 * to block async IO. 883 */ 884 mutex_exit(vphm); 885 page_io_wait(pp); 886 mutex_enter(vphm); 887 continue; 888 } 889 } 890 891 /* 892 * Skip this page if the offset is out of the desired range. 893 * Just move the marker and continue. 894 */ 895 if (pp->p_offset < off) { 896 page_vpsub(&vp->v_pages, mark); 897 page_vpadd(where_to_move, mark); 898 continue; 899 } 900 901 /* 902 * If we are supposed to invalidate or free this 903 * page, then we need an exclusive lock. 904 */ 905 se = (flags & (B_INVAL | B_FREE)) ? SE_EXCL : SE_SHARED; 906 907 /* 908 * We must acquire the page lock for all synchronous 909 * operations (invalidate, free and write). 910 */ 911 if ((flags & B_INVAL) != 0 || (flags & B_ASYNC) == 0) { 912 /* 913 * If the page_lock() drops the mutex 914 * we must retry the loop. 915 */ 916 if (!page_lock(pp, se, vphm, P_NO_RECLAIM)) 917 continue; 918 919 /* 920 * It's ok to move the marker page now. 921 */ 922 page_vpsub(&vp->v_pages, mark); 923 page_vpadd(where_to_move, mark); 924 } else { 925 926 /* 927 * update the marker page for all remaining cases 928 */ 929 page_vpsub(&vp->v_pages, mark); 930 page_vpadd(where_to_move, mark); 931 932 /* 933 * For write backs, If we can't lock the page, it's 934 * invalid or in the process of being destroyed. Skip 935 * it, assuming someone else is writing it. 936 */ 937 if (!page_trylock(pp, se)) 938 continue; 939 } 940 941 ASSERT(pp->p_vnode == vp); 942 943 /* 944 * Successfully locked the page, now figure out what to 945 * do with it. Free pages are easily dealt with, invalidate 946 * if desired or just go on to the next page. 947 */ 948 if (PP_ISFREE(pp)) { 949 if ((flags & B_INVAL) == 0) { 950 page_unlock(pp); 951 continue; 952 } 953 954 /* 955 * Invalidate (destroy) the page. 956 */ 957 mutex_exit(vphm); 958 page_destroy_free(pp); 959 mutex_enter(vphm); 960 continue; 961 } 962 963 /* 964 * pvn_getdirty() figures out what do do with a dirty page. 965 * If the page is dirty, the putapage() routine will write it 966 * and will kluster any other adjacent dirty pages it can. 967 * 968 * pvn_getdirty() and `(*putapage)' unlock the page. 969 */ 970 mutex_exit(vphm); 971 if (pvn_getdirty(pp, flags)) { 972 error = (*putapage)(vp, pp, NULL, NULL, flags, cred); 973 if (!err) 974 err = error; 975 } 976 mutex_enter(vphm); 977 } 978 page_vpsub(&vp->v_pages, mark); 979 page_vpsub(&vp->v_pages, end); 980 981 leave: 982 /* 983 * Release v_pages mutex, also VVMLOCK and wakeup blocked thrds 984 */ 985 mutex_exit(vphm); 986 kmem_cache_free(marker_cache, mark); 987 kmem_cache_free(marker_cache, end); 988 mutex_enter(&vp->v_lock); 989 vp->v_flag &= ~VVMLOCK; 990 cv_broadcast(&vp->v_cv); 991 mutex_exit(&vp->v_lock); 992 return (err); 993 } 994 995 /* 996 * Zero out zbytes worth of data. Caller should be aware that this 997 * routine may enter back into the fs layer (xxx_getpage). Locks 998 * that the xxx_getpage routine may need should not be held while 999 * calling this. 1000 */ 1001 void 1002 pvn_vpzero(struct vnode *vp, u_offset_t vplen, size_t zbytes) 1003 { 1004 caddr_t addr; 1005 1006 ASSERT(vp->v_type != VCHR); 1007 1008 if (vp->v_pages == NULL) 1009 return; 1010 1011 /* 1012 * zbytes may be zero but there still may be some portion of 1013 * a page which needs clearing (since zbytes is a function 1014 * of filesystem block size, not pagesize.) 1015 */ 1016 if (zbytes == 0 && (PAGESIZE - (vplen & PAGEOFFSET)) == 0) 1017 return; 1018 1019 /* 1020 * We get the last page and handle the partial 1021 * zeroing via kernel mappings. This will make the page 1022 * dirty so that we know that when this page is written 1023 * back, the zeroed information will go out with it. If 1024 * the page is not currently in memory, then the kzero 1025 * operation will cause it to be brought it. We use kzero 1026 * instead of bzero so that if the page cannot be read in 1027 * for any reason, the system will not panic. We need 1028 * to zero out a minimum of the fs given zbytes, but we 1029 * might also have to do more to get the entire last page. 1030 */ 1031 1032 if ((zbytes + (vplen & MAXBOFFSET)) > MAXBSIZE) 1033 panic("pvn_vptrunc zbytes"); 1034 addr = segmap_getmapflt(segkmap, vp, vplen, 1035 MAX(zbytes, PAGESIZE - (vplen & PAGEOFFSET)), 1, S_WRITE); 1036 (void) kzero(addr + (vplen & MAXBOFFSET), 1037 MAX(zbytes, PAGESIZE - (vplen & PAGEOFFSET))); 1038 (void) segmap_release(segkmap, addr, SM_WRITE | SM_ASYNC); 1039 } 1040 1041 /* 1042 * Handles common work of the VOP_GETPAGE routines when more than 1043 * one page must be returned by calling a file system specific operation 1044 * to do most of the work. Must be called with the vp already locked 1045 * by the VOP_GETPAGE routine. 1046 */ 1047 int 1048 pvn_getpages( 1049 int (*getpage)(vnode_t *, u_offset_t, size_t, uint_t *, page_t *[], 1050 size_t, struct seg *, caddr_t, enum seg_rw, cred_t *), 1051 struct vnode *vp, 1052 u_offset_t off, 1053 size_t len, 1054 uint_t *protp, 1055 page_t *pl[], 1056 size_t plsz, 1057 struct seg *seg, 1058 caddr_t addr, 1059 enum seg_rw rw, 1060 struct cred *cred) 1061 { 1062 page_t **ppp; 1063 u_offset_t o, eoff; 1064 size_t sz, xlen; 1065 int err; 1066 1067 ASSERT(plsz >= len); /* insure that we have enough space */ 1068 1069 /* 1070 * Loop one page at a time and let getapage function fill 1071 * in the next page in array. We only allow one page to be 1072 * returned at a time (except for the last page) so that we 1073 * don't have any problems with duplicates and other such 1074 * painful problems. This is a very simple minded algorithm, 1075 * but it does the job correctly. We hope that the cost of a 1076 * getapage call for a resident page that we might have been 1077 * able to get from an earlier call doesn't cost too much. 1078 */ 1079 ppp = pl; 1080 sz = PAGESIZE; 1081 eoff = off + len; 1082 xlen = len; 1083 for (o = off; o < eoff; o += PAGESIZE, addr += PAGESIZE, 1084 xlen -= PAGESIZE) { 1085 if (o + PAGESIZE >= eoff) { 1086 /* 1087 * Last time through - allow the all of 1088 * what's left of the pl[] array to be used. 1089 */ 1090 sz = plsz - (o - off); 1091 } 1092 err = (*getpage)(vp, o, xlen, protp, ppp, sz, seg, addr, 1093 rw, cred); 1094 if (err) { 1095 /* 1096 * Release any pages we already got. 1097 */ 1098 if (o > off && pl != NULL) { 1099 for (ppp = pl; *ppp != NULL; *ppp++ = NULL) 1100 (void) page_release(*ppp, 1); 1101 } 1102 break; 1103 } 1104 if (pl != NULL) 1105 ppp++; 1106 } 1107 return (err); 1108 } 1109 1110 /* 1111 * Initialize the page list array. 1112 */ 1113 /*ARGSUSED*/ 1114 void 1115 pvn_plist_init(page_t *pp, page_t *pl[], size_t plsz, 1116 u_offset_t off, size_t io_len, enum seg_rw rw) 1117 { 1118 ssize_t sz; 1119 page_t *ppcur, **ppp; 1120 1121 /* 1122 * Set up to load plsz worth 1123 * starting at the needed page. 1124 */ 1125 while (pp != NULL && pp->p_offset != off) { 1126 /* 1127 * Remove page from the i/o list, 1128 * release the i/o and the page lock. 1129 */ 1130 ppcur = pp; 1131 page_sub(&pp, ppcur); 1132 page_io_unlock(ppcur); 1133 (void) page_release(ppcur, 1); 1134 } 1135 1136 if (pp == NULL) { 1137 pl[0] = NULL; 1138 return; 1139 } 1140 1141 sz = plsz; 1142 1143 /* 1144 * Initialize the page list array. 1145 */ 1146 ppp = pl; 1147 do { 1148 ppcur = pp; 1149 *ppp++ = ppcur; 1150 page_sub(&pp, ppcur); 1151 page_io_unlock(ppcur); 1152 if (rw != S_CREATE) 1153 page_downgrade(ppcur); 1154 sz -= PAGESIZE; 1155 } while (sz > 0 && pp != NULL); 1156 *ppp = NULL; /* terminate list */ 1157 1158 /* 1159 * Now free the remaining pages that weren't 1160 * loaded in the page list. 1161 */ 1162 while (pp != NULL) { 1163 ppcur = pp; 1164 page_sub(&pp, ppcur); 1165 page_io_unlock(ppcur); 1166 (void) page_release(ppcur, 1); 1167 } 1168 } 1169