1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2006 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 /* Copyright (c) 1983, 1984, 1985, 1986, 1987, 1988, 1989 AT&T */ 27 /* All Rights Reserved */ 28 29 /* 30 * University Copyright- Copyright (c) 1982, 1986, 1988 31 * The Regents of the University of California 32 * All Rights Reserved 33 * 34 * University Acknowledgment- Portions of this document are derived from 35 * software developed by the University of California, Berkeley, and its 36 * contributors. 37 */ 38 39 #pragma ident "%Z%%M% %I% %E% SMI" 40 41 /* 42 * VM - physical page management. 43 */ 44 45 #include <sys/types.h> 46 #include <sys/t_lock.h> 47 #include <sys/param.h> 48 #include <sys/systm.h> 49 #include <sys/errno.h> 50 #include <sys/time.h> 51 #include <sys/vnode.h> 52 #include <sys/vm.h> 53 #include <sys/vtrace.h> 54 #include <sys/swap.h> 55 #include <sys/cmn_err.h> 56 #include <sys/tuneable.h> 57 #include <sys/sysmacros.h> 58 #include <sys/cpuvar.h> 59 #include <sys/callb.h> 60 #include <sys/debug.h> 61 #include <sys/tnf_probe.h> 62 #include <sys/condvar_impl.h> 63 #include <sys/mem_config.h> 64 #include <sys/mem_cage.h> 65 #include <sys/kmem.h> 66 #include <sys/atomic.h> 67 #include <sys/strlog.h> 68 #include <sys/mman.h> 69 #include <sys/ontrap.h> 70 #include <sys/lgrp.h> 71 #include <sys/vfs.h> 72 73 #include <vm/hat.h> 74 #include <vm/anon.h> 75 #include <vm/page.h> 76 #include <vm/seg.h> 77 #include <vm/pvn.h> 78 #include <vm/seg_kmem.h> 79 #include <vm/vm_dep.h> 80 81 #include <fs/fs_subr.h> 82 83 static int nopageage = 0; 84 85 static pgcnt_t max_page_get; /* max page_get request size in pages */ 86 pgcnt_t total_pages = 0; /* total number of pages (used by /proc) */ 87 88 /* 89 * freemem_lock protects all freemem variables: 90 * availrmem. Also this lock protects the globals which track the 91 * availrmem changes for accurate kernel footprint calculation. 92 * See below for an explanation of these 93 * globals. 94 */ 95 kmutex_t freemem_lock; 96 pgcnt_t availrmem; 97 pgcnt_t availrmem_initial; 98 99 /* 100 * These globals track availrmem changes to get a more accurate 101 * estimate of tke kernel size. Historically pp_kernel is used for 102 * kernel size and is based on availrmem. But availrmem is adjusted for 103 * locked pages in the system not just for kernel locked pages. 104 * These new counters will track the pages locked through segvn and 105 * by explicit user locking. 106 * 107 * segvn_pages_locked : This keeps track on a global basis how many pages 108 * are currently locked because of I/O. 109 * 110 * pages_locked : How many pages are locked becuase of user specified 111 * locking through mlock or plock. 112 * 113 * pages_useclaim,pages_claimed : These two variables track the 114 * cliam adjustments because of the protection changes on a segvn segment. 115 * 116 * All these globals are protected by the same lock which protects availrmem. 117 */ 118 pgcnt_t segvn_pages_locked; 119 pgcnt_t pages_locked; 120 pgcnt_t pages_useclaim; 121 pgcnt_t pages_claimed; 122 123 124 /* 125 * new_freemem_lock protects freemem, freemem_wait & freemem_cv. 126 */ 127 static kmutex_t new_freemem_lock; 128 static uint_t freemem_wait; /* someone waiting for freemem */ 129 static kcondvar_t freemem_cv; 130 131 /* 132 * The logical page free list is maintained as two lists, the 'free' 133 * and the 'cache' lists. 134 * The free list contains those pages that should be reused first. 135 * 136 * The implementation of the lists is machine dependent. 137 * page_get_freelist(), page_get_cachelist(), 138 * page_list_sub(), and page_list_add() 139 * form the interface to the machine dependent implementation. 140 * 141 * Pages with p_free set are on the cache list. 142 * Pages with p_free and p_age set are on the free list, 143 * 144 * A page may be locked while on either list. 145 */ 146 147 /* 148 * free list accounting stuff. 149 * 150 * 151 * Spread out the value for the number of pages on the 152 * page free and page cache lists. If there is just one 153 * value, then it must be under just one lock. 154 * The lock contention and cache traffic are a real bother. 155 * 156 * When we acquire and then drop a single pcf lock 157 * we can start in the middle of the array of pcf structures. 158 * If we acquire more than one pcf lock at a time, we need to 159 * start at the front to avoid deadlocking. 160 * 161 * pcf_count holds the number of pages in each pool. 162 * 163 * pcf_block is set when page_create_get_something() has asked the 164 * PSM page freelist and page cachelist routines without specifying 165 * a color and nothing came back. This is used to block anything 166 * else from moving pages from one list to the other while the 167 * lists are searched again. If a page is freeed while pcf_block is 168 * set, then pcf_reserve is incremented. pcgs_unblock() takes care 169 * of clearning pcf_block, doing the wakeups, etc. 170 */ 171 172 #if NCPU <= 4 173 #define PAD 2 174 #define PCF_FANOUT 4 175 static uint_t pcf_mask = PCF_FANOUT - 1; 176 #else 177 #define PAD 10 178 #ifdef sun4v 179 #define PCF_FANOUT 32 180 #else 181 #define PCF_FANOUT 128 182 #endif 183 static uint_t pcf_mask = PCF_FANOUT - 1; 184 #endif 185 186 struct pcf { 187 kmutex_t pcf_lock; /* protects the structure */ 188 uint_t pcf_count; /* page count */ 189 uint_t pcf_wait; /* number of waiters */ 190 uint_t pcf_block; /* pcgs flag to page_free() */ 191 uint_t pcf_reserve; /* pages freed after pcf_block set */ 192 uint_t pcf_fill[PAD]; /* to line up on the caches */ 193 }; 194 195 static struct pcf pcf[PCF_FANOUT]; 196 #define PCF_INDEX() ((CPU->cpu_id) & (pcf_mask)) 197 198 kmutex_t pcgs_lock; /* serializes page_create_get_ */ 199 kmutex_t pcgs_cagelock; /* serializes NOSLEEP cage allocs */ 200 kmutex_t pcgs_wait_lock; /* used for delay in pcgs */ 201 static kcondvar_t pcgs_cv; /* cv for delay in pcgs */ 202 203 #define PAGE_LOCK_MAXIMUM \ 204 ((1 << (sizeof (((page_t *)0)->p_lckcnt) * NBBY)) - 1) 205 206 #ifdef VM_STATS 207 208 /* 209 * No locks, but so what, they are only statistics. 210 */ 211 212 static struct page_tcnt { 213 int pc_free_cache; /* free's into cache list */ 214 int pc_free_dontneed; /* free's with dontneed */ 215 int pc_free_pageout; /* free's from pageout */ 216 int pc_free_free; /* free's into free list */ 217 int pc_free_pages; /* free's into large page free list */ 218 int pc_destroy_pages; /* large page destroy's */ 219 int pc_get_cache; /* get's from cache list */ 220 int pc_get_free; /* get's from free list */ 221 int pc_reclaim; /* reclaim's */ 222 int pc_abortfree; /* abort's of free pages */ 223 int pc_find_hit; /* find's that find page */ 224 int pc_find_miss; /* find's that don't find page */ 225 int pc_destroy_free; /* # of free pages destroyed */ 226 #define PC_HASH_CNT (4*PAGE_HASHAVELEN) 227 int pc_find_hashlen[PC_HASH_CNT+1]; 228 int pc_addclaim_pages; 229 int pc_subclaim_pages; 230 int pc_free_replacement_page[2]; 231 int pc_try_demote_pages[6]; 232 int pc_demote_pages[2]; 233 } pagecnt; 234 235 uint_t hashin_count; 236 uint_t hashin_not_held; 237 uint_t hashin_already; 238 239 uint_t hashout_count; 240 uint_t hashout_not_held; 241 242 uint_t page_create_count; 243 uint_t page_create_not_enough; 244 uint_t page_create_not_enough_again; 245 uint_t page_create_zero; 246 uint_t page_create_hashout; 247 uint_t page_create_page_lock_failed; 248 uint_t page_create_trylock_failed; 249 uint_t page_create_found_one; 250 uint_t page_create_hashin_failed; 251 uint_t page_create_dropped_phm; 252 253 uint_t page_create_new; 254 uint_t page_create_exists; 255 uint_t page_create_putbacks; 256 uint_t page_create_overshoot; 257 258 uint_t page_reclaim_zero; 259 uint_t page_reclaim_zero_locked; 260 261 uint_t page_rename_exists; 262 uint_t page_rename_count; 263 264 uint_t page_lookup_cnt[20]; 265 uint_t page_lookup_nowait_cnt[10]; 266 uint_t page_find_cnt; 267 uint_t page_exists_cnt; 268 uint_t page_exists_forreal_cnt; 269 uint_t page_lookup_dev_cnt; 270 uint_t get_cachelist_cnt; 271 uint_t page_create_cnt[10]; 272 uint_t alloc_pages[8]; 273 uint_t page_exphcontg[19]; 274 uint_t page_create_large_cnt[10]; 275 276 /* 277 * Collects statistics. 278 */ 279 #define PAGE_HASH_SEARCH(index, pp, vp, off) { \ 280 uint_t mylen = 0; \ 281 \ 282 for ((pp) = page_hash[(index)]; (pp); (pp) = (pp)->p_hash, mylen++) { \ 283 if ((pp)->p_vnode == (vp) && (pp)->p_offset == (off)) \ 284 break; \ 285 } \ 286 if ((pp) != NULL) \ 287 pagecnt.pc_find_hit++; \ 288 else \ 289 pagecnt.pc_find_miss++; \ 290 if (mylen > PC_HASH_CNT) \ 291 mylen = PC_HASH_CNT; \ 292 pagecnt.pc_find_hashlen[mylen]++; \ 293 } 294 295 #else /* VM_STATS */ 296 297 /* 298 * Don't collect statistics 299 */ 300 #define PAGE_HASH_SEARCH(index, pp, vp, off) { \ 301 for ((pp) = page_hash[(index)]; (pp); (pp) = (pp)->p_hash) { \ 302 if ((pp)->p_vnode == (vp) && (pp)->p_offset == (off)) \ 303 break; \ 304 } \ 305 } 306 307 #endif /* VM_STATS */ 308 309 310 311 #ifdef DEBUG 312 #define MEMSEG_SEARCH_STATS 313 #endif 314 315 #ifdef MEMSEG_SEARCH_STATS 316 struct memseg_stats { 317 uint_t nsearch; 318 uint_t nlastwon; 319 uint_t nhashwon; 320 uint_t nnotfound; 321 } memseg_stats; 322 323 #define MEMSEG_STAT_INCR(v) \ 324 atomic_add_32(&memseg_stats.v, 1) 325 #else 326 #define MEMSEG_STAT_INCR(x) 327 #endif 328 329 struct memseg *memsegs; /* list of memory segments */ 330 331 332 static void page_init_mem_config(void); 333 static int page_do_hashin(page_t *, vnode_t *, u_offset_t); 334 static void page_do_hashout(page_t *); 335 336 static void page_demote_vp_pages(page_t *); 337 338 /* 339 * vm subsystem related initialization 340 */ 341 void 342 vm_init(void) 343 { 344 boolean_t callb_vm_cpr(void *, int); 345 346 (void) callb_add(callb_vm_cpr, 0, CB_CL_CPR_VM, "vm"); 347 page_init_mem_config(); 348 page_retire_init(); 349 } 350 351 /* 352 * This function is called at startup and when memory is added or deleted. 353 */ 354 void 355 init_pages_pp_maximum() 356 { 357 static pgcnt_t p_min; 358 static pgcnt_t pages_pp_maximum_startup; 359 static pgcnt_t avrmem_delta; 360 static int init_done; 361 static int user_set; /* true if set in /etc/system */ 362 363 if (init_done == 0) { 364 365 /* If the user specified a value, save it */ 366 if (pages_pp_maximum != 0) { 367 user_set = 1; 368 pages_pp_maximum_startup = pages_pp_maximum; 369 } 370 371 /* 372 * Setting of pages_pp_maximum is based first time 373 * on the value of availrmem just after the start-up 374 * allocations. To preserve this relationship at run 375 * time, use a delta from availrmem_initial. 376 */ 377 ASSERT(availrmem_initial >= availrmem); 378 avrmem_delta = availrmem_initial - availrmem; 379 380 /* The allowable floor of pages_pp_maximum */ 381 p_min = tune.t_minarmem + 100; 382 383 /* Make sure we don't come through here again. */ 384 init_done = 1; 385 } 386 /* 387 * Determine pages_pp_maximum, the number of currently available 388 * pages (availrmem) that can't be `locked'. If not set by 389 * the user, we set it to 4% of the currently available memory 390 * plus 4MB. 391 * But we also insist that it be greater than tune.t_minarmem; 392 * otherwise a process could lock down a lot of memory, get swapped 393 * out, and never have enough to get swapped back in. 394 */ 395 if (user_set) 396 pages_pp_maximum = pages_pp_maximum_startup; 397 else 398 pages_pp_maximum = ((availrmem_initial - avrmem_delta) / 25) 399 + btop(4 * 1024 * 1024); 400 401 if (pages_pp_maximum <= p_min) { 402 pages_pp_maximum = p_min; 403 } 404 } 405 406 void 407 set_max_page_get(pgcnt_t target_total_pages) 408 { 409 max_page_get = target_total_pages / 2; 410 } 411 412 static pgcnt_t pending_delete; 413 414 /*ARGSUSED*/ 415 static void 416 page_mem_config_post_add( 417 void *arg, 418 pgcnt_t delta_pages) 419 { 420 set_max_page_get(total_pages - pending_delete); 421 init_pages_pp_maximum(); 422 } 423 424 /*ARGSUSED*/ 425 static int 426 page_mem_config_pre_del( 427 void *arg, 428 pgcnt_t delta_pages) 429 { 430 pgcnt_t nv; 431 432 nv = atomic_add_long_nv(&pending_delete, (spgcnt_t)delta_pages); 433 set_max_page_get(total_pages - nv); 434 return (0); 435 } 436 437 /*ARGSUSED*/ 438 static void 439 page_mem_config_post_del( 440 void *arg, 441 pgcnt_t delta_pages, 442 int cancelled) 443 { 444 pgcnt_t nv; 445 446 nv = atomic_add_long_nv(&pending_delete, -(spgcnt_t)delta_pages); 447 set_max_page_get(total_pages - nv); 448 if (!cancelled) 449 init_pages_pp_maximum(); 450 } 451 452 static kphysm_setup_vector_t page_mem_config_vec = { 453 KPHYSM_SETUP_VECTOR_VERSION, 454 page_mem_config_post_add, 455 page_mem_config_pre_del, 456 page_mem_config_post_del, 457 }; 458 459 static void 460 page_init_mem_config(void) 461 { 462 int ret; 463 464 ret = kphysm_setup_func_register(&page_mem_config_vec, (void *)NULL); 465 ASSERT(ret == 0); 466 } 467 468 /* 469 * Evenly spread out the PCF counters for large free pages 470 */ 471 static void 472 page_free_large_ctr(pgcnt_t npages) 473 { 474 static struct pcf *p = pcf; 475 pgcnt_t lump; 476 477 freemem += npages; 478 479 lump = roundup(npages, PCF_FANOUT) / PCF_FANOUT; 480 481 while (npages > 0) { 482 483 ASSERT(!p->pcf_block); 484 485 if (lump < npages) { 486 p->pcf_count += (uint_t)lump; 487 npages -= lump; 488 } else { 489 p->pcf_count += (uint_t)npages; 490 npages = 0; 491 } 492 493 ASSERT(!p->pcf_wait); 494 495 if (++p > &pcf[PCF_FANOUT - 1]) 496 p = pcf; 497 } 498 499 ASSERT(npages == 0); 500 } 501 502 /* 503 * Add a physical chunk of memory to the system freee lists during startup. 504 * Platform specific startup() allocates the memory for the page structs. 505 * 506 * num - number of page structures 507 * base - page number (pfn) to be associated with the first page. 508 * 509 * Since we are doing this during startup (ie. single threaded), we will 510 * use shortcut routines to avoid any locking overhead while putting all 511 * these pages on the freelists. 512 * 513 * NOTE: Any changes performed to page_free(), must also be performed to 514 * add_physmem() since this is how we initialize all page_t's at 515 * boot time. 516 */ 517 void 518 add_physmem( 519 page_t *pp, 520 pgcnt_t num, 521 pfn_t pnum) 522 { 523 page_t *root = NULL; 524 uint_t szc = page_num_pagesizes() - 1; 525 pgcnt_t large = page_get_pagecnt(szc); 526 pgcnt_t cnt = 0; 527 528 TRACE_2(TR_FAC_VM, TR_PAGE_INIT, 529 "add_physmem:pp %p num %lu", pp, num); 530 531 /* 532 * Arbitrarily limit the max page_get request 533 * to 1/2 of the page structs we have. 534 */ 535 total_pages += num; 536 set_max_page_get(total_pages); 537 538 PLCNT_MODIFY_MAX(pnum, (long)num); 539 540 /* 541 * The physical space for the pages array 542 * representing ram pages has already been 543 * allocated. Here we initialize each lock 544 * in the page structure, and put each on 545 * the free list 546 */ 547 for (; num; pp++, pnum++, num--) { 548 549 /* 550 * this needs to fill in the page number 551 * and do any other arch specific initialization 552 */ 553 add_physmem_cb(pp, pnum); 554 555 /* 556 * Initialize the page lock as unlocked, since nobody 557 * can see or access this page yet. 558 */ 559 pp->p_selock = 0; 560 561 /* 562 * Initialize IO lock 563 */ 564 page_iolock_init(pp); 565 566 /* 567 * initialize other fields in the page_t 568 */ 569 PP_SETFREE(pp); 570 page_clr_all_props(pp); 571 PP_SETAGED(pp); 572 pp->p_offset = (u_offset_t)-1; 573 pp->p_next = pp; 574 pp->p_prev = pp; 575 576 /* 577 * Simple case: System doesn't support large pages. 578 */ 579 if (szc == 0) { 580 pp->p_szc = 0; 581 page_free_at_startup(pp); 582 continue; 583 } 584 585 /* 586 * Handle unaligned pages, we collect them up onto 587 * the root page until we have a full large page. 588 */ 589 if (!IS_P2ALIGNED(pnum, large)) { 590 591 /* 592 * If not in a large page, 593 * just free as small page. 594 */ 595 if (root == NULL) { 596 pp->p_szc = 0; 597 page_free_at_startup(pp); 598 continue; 599 } 600 601 /* 602 * Link a constituent page into the large page. 603 */ 604 pp->p_szc = szc; 605 page_list_concat(&root, &pp); 606 607 /* 608 * When large page is fully formed, free it. 609 */ 610 if (++cnt == large) { 611 page_free_large_ctr(cnt); 612 page_list_add_pages(root, PG_LIST_ISINIT); 613 root = NULL; 614 cnt = 0; 615 } 616 continue; 617 } 618 619 /* 620 * At this point we have a page number which 621 * is aligned. We assert that we aren't already 622 * in a different large page. 623 */ 624 ASSERT(IS_P2ALIGNED(pnum, large)); 625 ASSERT(root == NULL && cnt == 0); 626 627 /* 628 * If insufficient number of pages left to form 629 * a large page, just free the small page. 630 */ 631 if (num < large) { 632 pp->p_szc = 0; 633 page_free_at_startup(pp); 634 continue; 635 } 636 637 /* 638 * Otherwise start a new large page. 639 */ 640 pp->p_szc = szc; 641 cnt++; 642 root = pp; 643 } 644 ASSERT(root == NULL && cnt == 0); 645 } 646 647 /* 648 * Find a page representing the specified [vp, offset]. 649 * If we find the page but it is intransit coming in, 650 * it will have an "exclusive" lock and we wait for 651 * the i/o to complete. A page found on the free list 652 * is always reclaimed and then locked. On success, the page 653 * is locked, its data is valid and it isn't on the free 654 * list, while a NULL is returned if the page doesn't exist. 655 */ 656 page_t * 657 page_lookup(vnode_t *vp, u_offset_t off, se_t se) 658 { 659 return (page_lookup_create(vp, off, se, NULL, NULL, 0)); 660 } 661 662 /* 663 * Find a page representing the specified [vp, offset]. 664 * We either return the one we found or, if passed in, 665 * create one with identity of [vp, offset] of the 666 * pre-allocated page. If we find exsisting page but it is 667 * intransit coming in, it will have an "exclusive" lock 668 * and we wait for the i/o to complete. A page found on 669 * the free list is always reclaimed and then locked. 670 * On success, the page is locked, its data is valid and 671 * it isn't on the free list, while a NULL is returned 672 * if the page doesn't exist and newpp is NULL; 673 */ 674 page_t * 675 page_lookup_create( 676 vnode_t *vp, 677 u_offset_t off, 678 se_t se, 679 page_t *newpp, 680 spgcnt_t *nrelocp, 681 int flags) 682 { 683 page_t *pp; 684 kmutex_t *phm; 685 ulong_t index; 686 uint_t hash_locked; 687 uint_t es; 688 689 ASSERT(MUTEX_NOT_HELD(page_vnode_mutex(vp))); 690 VM_STAT_ADD(page_lookup_cnt[0]); 691 ASSERT(newpp ? PAGE_EXCL(newpp) : 1); 692 693 /* 694 * Acquire the appropriate page hash lock since 695 * we have to search the hash list. Pages that 696 * hash to this list can't change identity while 697 * this lock is held. 698 */ 699 hash_locked = 0; 700 index = PAGE_HASH_FUNC(vp, off); 701 phm = NULL; 702 top: 703 PAGE_HASH_SEARCH(index, pp, vp, off); 704 if (pp != NULL) { 705 VM_STAT_ADD(page_lookup_cnt[1]); 706 es = (newpp != NULL) ? 1 : 0; 707 es |= flags; 708 if (!hash_locked) { 709 VM_STAT_ADD(page_lookup_cnt[2]); 710 if (!page_try_reclaim_lock(pp, se, es)) { 711 /* 712 * On a miss, acquire the phm. Then 713 * next time, page_lock() will be called, 714 * causing a wait if the page is busy. 715 * just looping with page_trylock() would 716 * get pretty boring. 717 */ 718 VM_STAT_ADD(page_lookup_cnt[3]); 719 phm = PAGE_HASH_MUTEX(index); 720 mutex_enter(phm); 721 hash_locked = 1; 722 goto top; 723 } 724 } else { 725 VM_STAT_ADD(page_lookup_cnt[4]); 726 if (!page_lock_es(pp, se, phm, P_RECLAIM, es)) { 727 VM_STAT_ADD(page_lookup_cnt[5]); 728 goto top; 729 } 730 } 731 732 /* 733 * Since `pp' is locked it can not change identity now. 734 * Reconfirm we locked the correct page. 735 * 736 * Both the p_vnode and p_offset *must* be cast volatile 737 * to force a reload of their values: The PAGE_HASH_SEARCH 738 * macro will have stuffed p_vnode and p_offset into 739 * registers before calling page_trylock(); another thread, 740 * actually holding the hash lock, could have changed the 741 * page's identity in memory, but our registers would not 742 * be changed, fooling the reconfirmation. If the hash 743 * lock was held during the search, the casting would 744 * not be needed. 745 */ 746 VM_STAT_ADD(page_lookup_cnt[6]); 747 if (((volatile struct vnode *)(pp->p_vnode) != vp) || 748 ((volatile u_offset_t)(pp->p_offset) != off)) { 749 VM_STAT_ADD(page_lookup_cnt[7]); 750 if (hash_locked) { 751 panic("page_lookup_create: lost page %p", 752 (void *)pp); 753 /*NOTREACHED*/ 754 } 755 page_unlock(pp); 756 phm = PAGE_HASH_MUTEX(index); 757 mutex_enter(phm); 758 hash_locked = 1; 759 goto top; 760 } 761 762 /* 763 * If page_trylock() was called, then pp may still be on 764 * the cachelist (can't be on the free list, it would not 765 * have been found in the search). If it is on the 766 * cachelist it must be pulled now. To pull the page from 767 * the cachelist, it must be exclusively locked. 768 * 769 * The other big difference between page_trylock() and 770 * page_lock(), is that page_lock() will pull the 771 * page from whatever free list (the cache list in this 772 * case) the page is on. If page_trylock() was used 773 * above, then we have to do the reclaim ourselves. 774 */ 775 if ((!hash_locked) && (PP_ISFREE(pp))) { 776 ASSERT(PP_ISAGED(pp) == 0); 777 VM_STAT_ADD(page_lookup_cnt[8]); 778 779 /* 780 * page_relcaim will insure that we 781 * have this page exclusively 782 */ 783 784 if (!page_reclaim(pp, NULL)) { 785 /* 786 * Page_reclaim dropped whatever lock 787 * we held. 788 */ 789 VM_STAT_ADD(page_lookup_cnt[9]); 790 phm = PAGE_HASH_MUTEX(index); 791 mutex_enter(phm); 792 hash_locked = 1; 793 goto top; 794 } else if (se == SE_SHARED && newpp == NULL) { 795 VM_STAT_ADD(page_lookup_cnt[10]); 796 page_downgrade(pp); 797 } 798 } 799 800 if (hash_locked) { 801 mutex_exit(phm); 802 } 803 804 if (newpp != NULL && pp->p_szc < newpp->p_szc && 805 PAGE_EXCL(pp) && nrelocp != NULL) { 806 ASSERT(nrelocp != NULL); 807 (void) page_relocate(&pp, &newpp, 1, 1, nrelocp, 808 NULL); 809 if (*nrelocp > 0) { 810 VM_STAT_COND_ADD(*nrelocp == 1, 811 page_lookup_cnt[11]); 812 VM_STAT_COND_ADD(*nrelocp > 1, 813 page_lookup_cnt[12]); 814 pp = newpp; 815 se = SE_EXCL; 816 } else { 817 if (se == SE_SHARED) { 818 page_downgrade(pp); 819 } 820 VM_STAT_ADD(page_lookup_cnt[13]); 821 } 822 } else if (newpp != NULL && nrelocp != NULL) { 823 if (PAGE_EXCL(pp) && se == SE_SHARED) { 824 page_downgrade(pp); 825 } 826 VM_STAT_COND_ADD(pp->p_szc < newpp->p_szc, 827 page_lookup_cnt[14]); 828 VM_STAT_COND_ADD(pp->p_szc == newpp->p_szc, 829 page_lookup_cnt[15]); 830 VM_STAT_COND_ADD(pp->p_szc > newpp->p_szc, 831 page_lookup_cnt[16]); 832 } else if (newpp != NULL && PAGE_EXCL(pp)) { 833 se = SE_EXCL; 834 } 835 } else if (!hash_locked) { 836 VM_STAT_ADD(page_lookup_cnt[17]); 837 phm = PAGE_HASH_MUTEX(index); 838 mutex_enter(phm); 839 hash_locked = 1; 840 goto top; 841 } else if (newpp != NULL) { 842 /* 843 * If we have a preallocated page then 844 * insert it now and basically behave like 845 * page_create. 846 */ 847 VM_STAT_ADD(page_lookup_cnt[18]); 848 /* 849 * Since we hold the page hash mutex and 850 * just searched for this page, page_hashin 851 * had better not fail. If it does, that 852 * means some thread did not follow the 853 * page hash mutex rules. Panic now and 854 * get it over with. As usual, go down 855 * holding all the locks. 856 */ 857 ASSERT(MUTEX_HELD(phm)); 858 if (!page_hashin(newpp, vp, off, phm)) { 859 ASSERT(MUTEX_HELD(phm)); 860 panic("page_lookup_create: hashin failed %p %p %llx %p", 861 (void *)newpp, (void *)vp, off, (void *)phm); 862 /*NOTREACHED*/ 863 } 864 ASSERT(MUTEX_HELD(phm)); 865 mutex_exit(phm); 866 phm = NULL; 867 page_set_props(newpp, P_REF); 868 page_io_lock(newpp); 869 pp = newpp; 870 se = SE_EXCL; 871 } else { 872 VM_STAT_ADD(page_lookup_cnt[19]); 873 mutex_exit(phm); 874 } 875 876 ASSERT(pp ? PAGE_LOCKED_SE(pp, se) : 1); 877 878 ASSERT(pp ? ((PP_ISFREE(pp) == 0) && (PP_ISAGED(pp) == 0)) : 1); 879 880 return (pp); 881 } 882 883 /* 884 * Search the hash list for the page representing the 885 * specified [vp, offset] and return it locked. Skip 886 * free pages and pages that cannot be locked as requested. 887 * Used while attempting to kluster pages. 888 */ 889 page_t * 890 page_lookup_nowait(vnode_t *vp, u_offset_t off, se_t se) 891 { 892 page_t *pp; 893 kmutex_t *phm; 894 ulong_t index; 895 uint_t locked; 896 897 ASSERT(MUTEX_NOT_HELD(page_vnode_mutex(vp))); 898 VM_STAT_ADD(page_lookup_nowait_cnt[0]); 899 900 index = PAGE_HASH_FUNC(vp, off); 901 PAGE_HASH_SEARCH(index, pp, vp, off); 902 locked = 0; 903 if (pp == NULL) { 904 top: 905 VM_STAT_ADD(page_lookup_nowait_cnt[1]); 906 locked = 1; 907 phm = PAGE_HASH_MUTEX(index); 908 mutex_enter(phm); 909 PAGE_HASH_SEARCH(index, pp, vp, off); 910 } 911 912 if (pp == NULL || PP_ISFREE(pp)) { 913 VM_STAT_ADD(page_lookup_nowait_cnt[2]); 914 pp = NULL; 915 } else { 916 if (!page_trylock(pp, se)) { 917 VM_STAT_ADD(page_lookup_nowait_cnt[3]); 918 pp = NULL; 919 } else { 920 VM_STAT_ADD(page_lookup_nowait_cnt[4]); 921 /* 922 * See the comment in page_lookup() 923 */ 924 if (((volatile struct vnode *)(pp->p_vnode) != vp) || 925 ((u_offset_t)(pp->p_offset) != off)) { 926 VM_STAT_ADD(page_lookup_nowait_cnt[5]); 927 if (locked) { 928 panic("page_lookup_nowait %p", 929 (void *)pp); 930 /*NOTREACHED*/ 931 } 932 page_unlock(pp); 933 goto top; 934 } 935 if (PP_ISFREE(pp)) { 936 VM_STAT_ADD(page_lookup_nowait_cnt[6]); 937 page_unlock(pp); 938 pp = NULL; 939 } 940 } 941 } 942 if (locked) { 943 VM_STAT_ADD(page_lookup_nowait_cnt[7]); 944 mutex_exit(phm); 945 } 946 947 ASSERT(pp ? PAGE_LOCKED_SE(pp, se) : 1); 948 949 return (pp); 950 } 951 952 /* 953 * Search the hash list for a page with the specified [vp, off] 954 * that is known to exist and is already locked. This routine 955 * is typically used by segment SOFTUNLOCK routines. 956 */ 957 page_t * 958 page_find(vnode_t *vp, u_offset_t off) 959 { 960 page_t *pp; 961 kmutex_t *phm; 962 ulong_t index; 963 964 ASSERT(MUTEX_NOT_HELD(page_vnode_mutex(vp))); 965 VM_STAT_ADD(page_find_cnt); 966 967 index = PAGE_HASH_FUNC(vp, off); 968 phm = PAGE_HASH_MUTEX(index); 969 970 mutex_enter(phm); 971 PAGE_HASH_SEARCH(index, pp, vp, off); 972 mutex_exit(phm); 973 974 ASSERT(pp == NULL || PAGE_LOCKED(pp) || panicstr); 975 return (pp); 976 } 977 978 /* 979 * Determine whether a page with the specified [vp, off] 980 * currently exists in the system. Obviously this should 981 * only be considered as a hint since nothing prevents the 982 * page from disappearing or appearing immediately after 983 * the return from this routine. Subsequently, we don't 984 * even bother to lock the list. 985 */ 986 page_t * 987 page_exists(vnode_t *vp, u_offset_t off) 988 { 989 page_t *pp; 990 ulong_t index; 991 992 ASSERT(MUTEX_NOT_HELD(page_vnode_mutex(vp))); 993 VM_STAT_ADD(page_exists_cnt); 994 995 index = PAGE_HASH_FUNC(vp, off); 996 PAGE_HASH_SEARCH(index, pp, vp, off); 997 998 return (pp); 999 } 1000 1001 /* 1002 * Determine if physically contiguous pages exist for [vp, off] - [vp, off + 1003 * page_size(szc)) range. if they exist and ppa is not NULL fill ppa array 1004 * with these pages locked SHARED. If necessary reclaim pages from 1005 * freelist. Return 1 if contiguous pages exist and 0 otherwise. 1006 * 1007 * If we fail to lock pages still return 1 if pages exist and contiguous. 1008 * But in this case return value is just a hint. ppa array won't be filled. 1009 * Caller should initialize ppa[0] as NULL to distinguish return value. 1010 * 1011 * Returns 0 if pages don't exist or not physically contiguous. 1012 * 1013 * This routine doesn't work for anonymous(swapfs) pages. 1014 */ 1015 int 1016 page_exists_physcontig(vnode_t *vp, u_offset_t off, uint_t szc, page_t *ppa[]) 1017 { 1018 pgcnt_t pages; 1019 pfn_t pfn; 1020 page_t *rootpp; 1021 pgcnt_t i; 1022 pgcnt_t j; 1023 u_offset_t save_off = off; 1024 ulong_t index; 1025 kmutex_t *phm; 1026 page_t *pp; 1027 uint_t pszc; 1028 int loopcnt = 0; 1029 1030 ASSERT(szc != 0); 1031 ASSERT(vp != NULL); 1032 ASSERT(!IS_SWAPFSVP(vp)); 1033 ASSERT(vp != &kvp); 1034 1035 again: 1036 if (++loopcnt > 3) { 1037 VM_STAT_ADD(page_exphcontg[0]); 1038 return (0); 1039 } 1040 1041 index = PAGE_HASH_FUNC(vp, off); 1042 phm = PAGE_HASH_MUTEX(index); 1043 1044 mutex_enter(phm); 1045 PAGE_HASH_SEARCH(index, pp, vp, off); 1046 mutex_exit(phm); 1047 1048 VM_STAT_ADD(page_exphcontg[1]); 1049 1050 if (pp == NULL) { 1051 VM_STAT_ADD(page_exphcontg[2]); 1052 return (0); 1053 } 1054 1055 pages = page_get_pagecnt(szc); 1056 rootpp = pp; 1057 pfn = rootpp->p_pagenum; 1058 1059 if ((pszc = pp->p_szc) >= szc && ppa != NULL) { 1060 VM_STAT_ADD(page_exphcontg[3]); 1061 if (!page_trylock(pp, SE_SHARED)) { 1062 VM_STAT_ADD(page_exphcontg[4]); 1063 return (1); 1064 } 1065 if (pp->p_szc != pszc || pp->p_vnode != vp || 1066 pp->p_offset != off) { 1067 VM_STAT_ADD(page_exphcontg[5]); 1068 page_unlock(pp); 1069 off = save_off; 1070 goto again; 1071 } 1072 /* 1073 * szc was non zero and vnode and offset matched after we 1074 * locked the page it means it can't become free on us. 1075 */ 1076 ASSERT(!PP_ISFREE(pp)); 1077 if (!IS_P2ALIGNED(pfn, pages)) { 1078 page_unlock(pp); 1079 return (0); 1080 } 1081 ppa[0] = pp; 1082 pp++; 1083 off += PAGESIZE; 1084 pfn++; 1085 for (i = 1; i < pages; i++, pp++, off += PAGESIZE, pfn++) { 1086 if (!page_trylock(pp, SE_SHARED)) { 1087 VM_STAT_ADD(page_exphcontg[6]); 1088 pp--; 1089 while (i-- > 0) { 1090 page_unlock(pp); 1091 pp--; 1092 } 1093 ppa[0] = NULL; 1094 return (1); 1095 } 1096 if (pp->p_szc != pszc) { 1097 VM_STAT_ADD(page_exphcontg[7]); 1098 page_unlock(pp); 1099 pp--; 1100 while (i-- > 0) { 1101 page_unlock(pp); 1102 pp--; 1103 } 1104 ppa[0] = NULL; 1105 off = save_off; 1106 goto again; 1107 } 1108 /* 1109 * szc the same as for previous already locked pages 1110 * with right identity. Since this page had correct 1111 * szc after we locked it can't get freed or destroyed 1112 * and therefore must have the expected identity. 1113 */ 1114 ASSERT(!PP_ISFREE(pp)); 1115 if (pp->p_vnode != vp || 1116 pp->p_offset != off) { 1117 panic("page_exists_physcontig: " 1118 "large page identity doesn't match"); 1119 } 1120 ppa[i] = pp; 1121 ASSERT(pp->p_pagenum == pfn); 1122 } 1123 VM_STAT_ADD(page_exphcontg[8]); 1124 ppa[pages] = NULL; 1125 return (1); 1126 } else if (pszc >= szc) { 1127 VM_STAT_ADD(page_exphcontg[9]); 1128 if (!IS_P2ALIGNED(pfn, pages)) { 1129 return (0); 1130 } 1131 return (1); 1132 } 1133 1134 if (!IS_P2ALIGNED(pfn, pages)) { 1135 VM_STAT_ADD(page_exphcontg[10]); 1136 return (0); 1137 } 1138 1139 if (page_numtomemseg_nolock(pfn) != 1140 page_numtomemseg_nolock(pfn + pages - 1)) { 1141 VM_STAT_ADD(page_exphcontg[11]); 1142 return (0); 1143 } 1144 1145 /* 1146 * We loop up 4 times across pages to promote page size. 1147 * We're extra cautious to promote page size atomically with respect 1148 * to everybody else. But we can probably optimize into 1 loop if 1149 * this becomes an issue. 1150 */ 1151 1152 for (i = 0; i < pages; i++, pp++, off += PAGESIZE, pfn++) { 1153 ASSERT(pp->p_pagenum == pfn); 1154 if (!page_trylock(pp, SE_EXCL)) { 1155 VM_STAT_ADD(page_exphcontg[12]); 1156 break; 1157 } 1158 if (pp->p_vnode != vp || 1159 pp->p_offset != off) { 1160 VM_STAT_ADD(page_exphcontg[13]); 1161 page_unlock(pp); 1162 break; 1163 } 1164 if (pp->p_szc >= szc) { 1165 ASSERT(i == 0); 1166 page_unlock(pp); 1167 off = save_off; 1168 goto again; 1169 } 1170 } 1171 1172 if (i != pages) { 1173 VM_STAT_ADD(page_exphcontg[14]); 1174 --pp; 1175 while (i-- > 0) { 1176 page_unlock(pp); 1177 --pp; 1178 } 1179 return (0); 1180 } 1181 1182 pp = rootpp; 1183 for (i = 0; i < pages; i++, pp++) { 1184 if (PP_ISFREE(pp)) { 1185 VM_STAT_ADD(page_exphcontg[15]); 1186 ASSERT(!PP_ISAGED(pp)); 1187 ASSERT(pp->p_szc == 0); 1188 if (!page_reclaim(pp, NULL)) { 1189 break; 1190 } 1191 } else { 1192 ASSERT(pp->p_szc < szc); 1193 VM_STAT_ADD(page_exphcontg[16]); 1194 (void) hat_pageunload(pp, HAT_FORCE_PGUNLOAD); 1195 } 1196 } 1197 if (i < pages) { 1198 VM_STAT_ADD(page_exphcontg[17]); 1199 /* 1200 * page_reclaim failed because we were out of memory. 1201 * drop the rest of the locks and return because this page 1202 * must be already reallocated anyway. 1203 */ 1204 pp = rootpp; 1205 for (j = 0; j < pages; j++, pp++) { 1206 if (j != i) { 1207 page_unlock(pp); 1208 } 1209 } 1210 return (0); 1211 } 1212 1213 off = save_off; 1214 pp = rootpp; 1215 for (i = 0; i < pages; i++, pp++, off += PAGESIZE) { 1216 ASSERT(PAGE_EXCL(pp)); 1217 ASSERT(!PP_ISFREE(pp)); 1218 ASSERT(!hat_page_is_mapped(pp)); 1219 ASSERT(pp->p_vnode == vp); 1220 ASSERT(pp->p_offset == off); 1221 pp->p_szc = szc; 1222 } 1223 pp = rootpp; 1224 for (i = 0; i < pages; i++, pp++) { 1225 if (ppa == NULL) { 1226 page_unlock(pp); 1227 } else { 1228 ppa[i] = pp; 1229 page_downgrade(ppa[i]); 1230 } 1231 } 1232 if (ppa != NULL) { 1233 ppa[pages] = NULL; 1234 } 1235 VM_STAT_ADD(page_exphcontg[18]); 1236 ASSERT(vp->v_pages != NULL); 1237 return (1); 1238 } 1239 1240 /* 1241 * Determine whether a page with the specified [vp, off] 1242 * currently exists in the system and if so return its 1243 * size code. Obviously this should only be considered as 1244 * a hint since nothing prevents the page from disappearing 1245 * or appearing immediately after the return from this routine. 1246 */ 1247 int 1248 page_exists_forreal(vnode_t *vp, u_offset_t off, uint_t *szc) 1249 { 1250 page_t *pp; 1251 kmutex_t *phm; 1252 ulong_t index; 1253 int rc = 0; 1254 1255 ASSERT(MUTEX_NOT_HELD(page_vnode_mutex(vp))); 1256 ASSERT(szc != NULL); 1257 VM_STAT_ADD(page_exists_forreal_cnt); 1258 1259 index = PAGE_HASH_FUNC(vp, off); 1260 phm = PAGE_HASH_MUTEX(index); 1261 1262 mutex_enter(phm); 1263 PAGE_HASH_SEARCH(index, pp, vp, off); 1264 if (pp != NULL) { 1265 *szc = pp->p_szc; 1266 rc = 1; 1267 } 1268 mutex_exit(phm); 1269 return (rc); 1270 } 1271 1272 /* wakeup threads waiting for pages in page_create_get_something() */ 1273 void 1274 wakeup_pcgs(void) 1275 { 1276 if (!CV_HAS_WAITERS(&pcgs_cv)) 1277 return; 1278 cv_broadcast(&pcgs_cv); 1279 } 1280 1281 /* 1282 * 'freemem' is used all over the kernel as an indication of how many 1283 * pages are free (either on the cache list or on the free page list) 1284 * in the system. In very few places is a really accurate 'freemem' 1285 * needed. To avoid contention of the lock protecting a the 1286 * single freemem, it was spread out into NCPU buckets. Set_freemem 1287 * sets freemem to the total of all NCPU buckets. It is called from 1288 * clock() on each TICK. 1289 */ 1290 void 1291 set_freemem() 1292 { 1293 struct pcf *p; 1294 ulong_t t; 1295 uint_t i; 1296 1297 t = 0; 1298 p = pcf; 1299 for (i = 0; i < PCF_FANOUT; i++) { 1300 t += p->pcf_count; 1301 p++; 1302 } 1303 freemem = t; 1304 1305 /* 1306 * Don't worry about grabbing mutex. It's not that 1307 * critical if we miss a tick or two. This is 1308 * where we wakeup possible delayers in 1309 * page_create_get_something(). 1310 */ 1311 wakeup_pcgs(); 1312 } 1313 1314 ulong_t 1315 get_freemem() 1316 { 1317 struct pcf *p; 1318 ulong_t t; 1319 uint_t i; 1320 1321 t = 0; 1322 p = pcf; 1323 for (i = 0; i < PCF_FANOUT; i++) { 1324 t += p->pcf_count; 1325 p++; 1326 } 1327 /* 1328 * We just calculated it, might as well set it. 1329 */ 1330 freemem = t; 1331 return (t); 1332 } 1333 1334 /* 1335 * Acquire all of the page cache & free (pcf) locks. 1336 */ 1337 void 1338 pcf_acquire_all() 1339 { 1340 struct pcf *p; 1341 uint_t i; 1342 1343 p = pcf; 1344 for (i = 0; i < PCF_FANOUT; i++) { 1345 mutex_enter(&p->pcf_lock); 1346 p++; 1347 } 1348 } 1349 1350 /* 1351 * Release all the pcf_locks. 1352 */ 1353 void 1354 pcf_release_all() 1355 { 1356 struct pcf *p; 1357 uint_t i; 1358 1359 p = pcf; 1360 for (i = 0; i < PCF_FANOUT; i++) { 1361 mutex_exit(&p->pcf_lock); 1362 p++; 1363 } 1364 } 1365 1366 /* 1367 * Inform the VM system that we need some pages freed up. 1368 * Calls must be symmetric, e.g.: 1369 * 1370 * page_needfree(100); 1371 * wait a bit; 1372 * page_needfree(-100); 1373 */ 1374 void 1375 page_needfree(spgcnt_t npages) 1376 { 1377 mutex_enter(&new_freemem_lock); 1378 needfree += npages; 1379 mutex_exit(&new_freemem_lock); 1380 } 1381 1382 /* 1383 * Throttle for page_create(): try to prevent freemem from dropping 1384 * below throttlefree. We can't provide a 100% guarantee because 1385 * KM_NOSLEEP allocations, page_reclaim(), and various other things 1386 * nibble away at the freelist. However, we can block all PG_WAIT 1387 * allocations until memory becomes available. The motivation is 1388 * that several things can fall apart when there's no free memory: 1389 * 1390 * (1) If pageout() needs memory to push a page, the system deadlocks. 1391 * 1392 * (2) By (broken) specification, timeout(9F) can neither fail nor 1393 * block, so it has no choice but to panic the system if it 1394 * cannot allocate a callout structure. 1395 * 1396 * (3) Like timeout(), ddi_set_callback() cannot fail and cannot block; 1397 * it panics if it cannot allocate a callback structure. 1398 * 1399 * (4) Untold numbers of third-party drivers have not yet been hardened 1400 * against KM_NOSLEEP and/or allocb() failures; they simply assume 1401 * success and panic the system with a data fault on failure. 1402 * (The long-term solution to this particular problem is to ship 1403 * hostile fault-injecting DEBUG kernels with the DDK.) 1404 * 1405 * It is theoretically impossible to guarantee success of non-blocking 1406 * allocations, but in practice, this throttle is very hard to break. 1407 */ 1408 static int 1409 page_create_throttle(pgcnt_t npages, int flags) 1410 { 1411 ulong_t fm; 1412 uint_t i; 1413 pgcnt_t tf; /* effective value of throttlefree */ 1414 1415 /* 1416 * Never deny pages when: 1417 * - it's a thread that cannot block [NOMEMWAIT()] 1418 * - the allocation cannot block and must not fail 1419 * - the allocation cannot block and is pageout dispensated 1420 */ 1421 if (NOMEMWAIT() || 1422 ((flags & (PG_WAIT | PG_PANIC)) == PG_PANIC) || 1423 ((flags & (PG_WAIT | PG_PUSHPAGE)) == PG_PUSHPAGE)) 1424 return (1); 1425 1426 /* 1427 * If the allocation can't block, we look favorably upon it 1428 * unless we're below pageout_reserve. In that case we fail 1429 * the allocation because we want to make sure there are a few 1430 * pages available for pageout. 1431 */ 1432 if ((flags & PG_WAIT) == 0) 1433 return (freemem >= npages + pageout_reserve); 1434 1435 /* Calculate the effective throttlefree value */ 1436 tf = throttlefree - 1437 ((flags & PG_PUSHPAGE) ? pageout_reserve : 0); 1438 1439 cv_signal(&proc_pageout->p_cv); 1440 1441 while (freemem < npages + tf) { 1442 pcf_acquire_all(); 1443 mutex_enter(&new_freemem_lock); 1444 fm = 0; 1445 for (i = 0; i < PCF_FANOUT; i++) { 1446 fm += pcf[i].pcf_count; 1447 pcf[i].pcf_wait++; 1448 mutex_exit(&pcf[i].pcf_lock); 1449 } 1450 freemem = fm; 1451 needfree += npages; 1452 freemem_wait++; 1453 cv_wait(&freemem_cv, &new_freemem_lock); 1454 freemem_wait--; 1455 needfree -= npages; 1456 mutex_exit(&new_freemem_lock); 1457 } 1458 return (1); 1459 } 1460 1461 /* 1462 * page_create_wait() is called to either coalecse pages from the 1463 * different pcf buckets or to wait because there simply are not 1464 * enough pages to satisfy the caller's request. 1465 * 1466 * Sadly, this is called from platform/vm/vm_machdep.c 1467 */ 1468 int 1469 page_create_wait(size_t npages, uint_t flags) 1470 { 1471 pgcnt_t total; 1472 uint_t i; 1473 struct pcf *p; 1474 1475 /* 1476 * Wait until there are enough free pages to satisfy our 1477 * entire request. 1478 * We set needfree += npages before prodding pageout, to make sure 1479 * it does real work when npages > lotsfree > freemem. 1480 */ 1481 VM_STAT_ADD(page_create_not_enough); 1482 1483 ASSERT(!kcage_on ? !(flags & PG_NORELOC) : 1); 1484 checkagain: 1485 if ((flags & PG_NORELOC) && 1486 kcage_freemem < kcage_throttlefree + npages) 1487 (void) kcage_create_throttle(npages, flags); 1488 1489 if (freemem < npages + throttlefree) 1490 if (!page_create_throttle(npages, flags)) 1491 return (0); 1492 1493 /* 1494 * Since page_create_va() looked at every 1495 * bucket, assume we are going to have to wait. 1496 * Get all of the pcf locks. 1497 */ 1498 total = 0; 1499 p = pcf; 1500 for (i = 0; i < PCF_FANOUT; i++) { 1501 mutex_enter(&p->pcf_lock); 1502 total += p->pcf_count; 1503 if (total >= npages) { 1504 /* 1505 * Wow! There are enough pages laying around 1506 * to satisfy the request. Do the accounting, 1507 * drop the locks we acquired, and go back. 1508 * 1509 * freemem is not protected by any lock. So, 1510 * we cannot have any assertion containing 1511 * freemem. 1512 */ 1513 freemem -= npages; 1514 1515 while (p >= pcf) { 1516 if (p->pcf_count <= npages) { 1517 npages -= p->pcf_count; 1518 p->pcf_count = 0; 1519 } else { 1520 p->pcf_count -= (uint_t)npages; 1521 npages = 0; 1522 } 1523 mutex_exit(&p->pcf_lock); 1524 p--; 1525 } 1526 ASSERT(npages == 0); 1527 return (1); 1528 } 1529 p++; 1530 } 1531 1532 /* 1533 * All of the pcf locks are held, there are not enough pages 1534 * to satisfy the request (npages < total). 1535 * Be sure to acquire the new_freemem_lock before dropping 1536 * the pcf locks. This prevents dropping wakeups in page_free(). 1537 * The order is always pcf_lock then new_freemem_lock. 1538 * 1539 * Since we hold all the pcf locks, it is a good time to set freemem. 1540 * 1541 * If the caller does not want to wait, return now. 1542 * Else turn the pageout daemon loose to find something 1543 * and wait till it does. 1544 * 1545 */ 1546 freemem = total; 1547 1548 if ((flags & PG_WAIT) == 0) { 1549 pcf_release_all(); 1550 1551 TRACE_2(TR_FAC_VM, TR_PAGE_CREATE_NOMEM, 1552 "page_create_nomem:npages %ld freemem %ld", npages, freemem); 1553 return (0); 1554 } 1555 1556 ASSERT(proc_pageout != NULL); 1557 cv_signal(&proc_pageout->p_cv); 1558 1559 TRACE_2(TR_FAC_VM, TR_PAGE_CREATE_SLEEP_START, 1560 "page_create_sleep_start: freemem %ld needfree %ld", 1561 freemem, needfree); 1562 1563 /* 1564 * We are going to wait. 1565 * We currently hold all of the pcf_locks, 1566 * get the new_freemem_lock (it protects freemem_wait), 1567 * before dropping the pcf_locks. 1568 */ 1569 mutex_enter(&new_freemem_lock); 1570 1571 p = pcf; 1572 for (i = 0; i < PCF_FANOUT; i++) { 1573 p->pcf_wait++; 1574 mutex_exit(&p->pcf_lock); 1575 p++; 1576 } 1577 1578 needfree += npages; 1579 freemem_wait++; 1580 1581 cv_wait(&freemem_cv, &new_freemem_lock); 1582 1583 freemem_wait--; 1584 needfree -= npages; 1585 1586 mutex_exit(&new_freemem_lock); 1587 1588 TRACE_2(TR_FAC_VM, TR_PAGE_CREATE_SLEEP_END, 1589 "page_create_sleep_end: freemem %ld needfree %ld", 1590 freemem, needfree); 1591 1592 VM_STAT_ADD(page_create_not_enough_again); 1593 goto checkagain; 1594 } 1595 1596 /* 1597 * A routine to do the opposite of page_create_wait(). 1598 */ 1599 void 1600 page_create_putback(spgcnt_t npages) 1601 { 1602 struct pcf *p; 1603 pgcnt_t lump; 1604 uint_t *which; 1605 1606 /* 1607 * When a contiguous lump is broken up, we have to 1608 * deal with lots of pages (min 64) so lets spread 1609 * the wealth around. 1610 */ 1611 lump = roundup(npages, PCF_FANOUT) / PCF_FANOUT; 1612 freemem += npages; 1613 1614 for (p = pcf; (npages > 0) && (p < &pcf[PCF_FANOUT]); p++) { 1615 which = &p->pcf_count; 1616 1617 mutex_enter(&p->pcf_lock); 1618 1619 if (p->pcf_block) { 1620 which = &p->pcf_reserve; 1621 } 1622 1623 if (lump < npages) { 1624 *which += (uint_t)lump; 1625 npages -= lump; 1626 } else { 1627 *which += (uint_t)npages; 1628 npages = 0; 1629 } 1630 1631 if (p->pcf_wait) { 1632 mutex_enter(&new_freemem_lock); 1633 /* 1634 * Check to see if some other thread 1635 * is actually waiting. Another bucket 1636 * may have woken it up by now. If there 1637 * are no waiters, then set our pcf_wait 1638 * count to zero to avoid coming in here 1639 * next time. 1640 */ 1641 if (freemem_wait) { 1642 if (npages > 1) { 1643 cv_broadcast(&freemem_cv); 1644 } else { 1645 cv_signal(&freemem_cv); 1646 } 1647 p->pcf_wait--; 1648 } else { 1649 p->pcf_wait = 0; 1650 } 1651 mutex_exit(&new_freemem_lock); 1652 } 1653 mutex_exit(&p->pcf_lock); 1654 } 1655 ASSERT(npages == 0); 1656 } 1657 1658 /* 1659 * A helper routine for page_create_get_something. 1660 * The indenting got to deep down there. 1661 * Unblock the pcf counters. Any pages freed after 1662 * pcf_block got set are moved to pcf_count and 1663 * wakeups (cv_broadcast() or cv_signal()) are done as needed. 1664 */ 1665 static void 1666 pcgs_unblock(void) 1667 { 1668 int i; 1669 struct pcf *p; 1670 1671 /* Update freemem while we're here. */ 1672 freemem = 0; 1673 p = pcf; 1674 for (i = 0; i < PCF_FANOUT; i++) { 1675 mutex_enter(&p->pcf_lock); 1676 ASSERT(p->pcf_count == 0); 1677 p->pcf_count = p->pcf_reserve; 1678 p->pcf_block = 0; 1679 freemem += p->pcf_count; 1680 if (p->pcf_wait) { 1681 mutex_enter(&new_freemem_lock); 1682 if (freemem_wait) { 1683 if (p->pcf_reserve > 1) { 1684 cv_broadcast(&freemem_cv); 1685 p->pcf_wait = 0; 1686 } else { 1687 cv_signal(&freemem_cv); 1688 p->pcf_wait--; 1689 } 1690 } else { 1691 p->pcf_wait = 0; 1692 } 1693 mutex_exit(&new_freemem_lock); 1694 } 1695 p->pcf_reserve = 0; 1696 mutex_exit(&p->pcf_lock); 1697 p++; 1698 } 1699 } 1700 1701 /* 1702 * Called from page_create_va() when both the cache and free lists 1703 * have been checked once. 1704 * 1705 * Either returns a page or panics since the accounting was done 1706 * way before we got here. 1707 * 1708 * We don't come here often, so leave the accounting on permanently. 1709 */ 1710 1711 #define MAX_PCGS 100 1712 1713 #ifdef DEBUG 1714 #define PCGS_TRIES 100 1715 #else /* DEBUG */ 1716 #define PCGS_TRIES 10 1717 #endif /* DEBUG */ 1718 1719 #ifdef VM_STATS 1720 uint_t pcgs_counts[PCGS_TRIES]; 1721 uint_t pcgs_too_many; 1722 uint_t pcgs_entered; 1723 uint_t pcgs_entered_noreloc; 1724 uint_t pcgs_locked; 1725 uint_t pcgs_cagelocked; 1726 #endif /* VM_STATS */ 1727 1728 static page_t * 1729 page_create_get_something(vnode_t *vp, u_offset_t off, struct seg *seg, 1730 caddr_t vaddr, uint_t flags) 1731 { 1732 uint_t count; 1733 page_t *pp; 1734 uint_t locked, i; 1735 struct pcf *p; 1736 lgrp_t *lgrp; 1737 int cagelocked = 0; 1738 1739 VM_STAT_ADD(pcgs_entered); 1740 1741 /* 1742 * Tap any reserve freelists: if we fail now, we'll die 1743 * since the page(s) we're looking for have already been 1744 * accounted for. 1745 */ 1746 flags |= PG_PANIC; 1747 1748 if ((flags & PG_NORELOC) != 0) { 1749 VM_STAT_ADD(pcgs_entered_noreloc); 1750 /* 1751 * Requests for free pages from critical threads 1752 * such as pageout still won't throttle here, but 1753 * we must try again, to give the cageout thread 1754 * another chance to catch up. Since we already 1755 * accounted for the pages, we had better get them 1756 * this time. 1757 * 1758 * N.B. All non-critical threads acquire the pcgs_cagelock 1759 * to serialize access to the freelists. This implements a 1760 * turnstile-type synchornization to avoid starvation of 1761 * critical requests for PG_NORELOC memory by non-critical 1762 * threads: all non-critical threads must acquire a 'ticket' 1763 * before passing through, which entails making sure 1764 * kcage_freemem won't fall below minfree prior to grabbing 1765 * pages from the freelists. 1766 */ 1767 if (kcage_create_throttle(1, flags) == KCT_NONCRIT) { 1768 mutex_enter(&pcgs_cagelock); 1769 cagelocked = 1; 1770 VM_STAT_ADD(pcgs_cagelocked); 1771 } 1772 } 1773 1774 /* 1775 * Time to get serious. 1776 * We failed to get a `correctly colored' page from both the 1777 * free and cache lists. 1778 * We escalate in stage. 1779 * 1780 * First try both lists without worring about color. 1781 * 1782 * Then, grab all page accounting locks (ie. pcf[]) and 1783 * steal any pages that they have and set the pcf_block flag to 1784 * stop deletions from the lists. This will help because 1785 * a page can get added to the free list while we are looking 1786 * at the cache list, then another page could be added to the cache 1787 * list allowing the page on the free list to be removed as we 1788 * move from looking at the cache list to the free list. This 1789 * could happen over and over. We would never find the page 1790 * we have accounted for. 1791 * 1792 * Noreloc pages are a subset of the global (relocatable) page pool. 1793 * They are not tracked separately in the pcf bins, so it is 1794 * impossible to know when doing pcf accounting if the available 1795 * page(s) are noreloc pages or not. When looking for a noreloc page 1796 * it is quite easy to end up here even if the global (relocatable) 1797 * page pool has plenty of free pages but the noreloc pool is empty. 1798 * 1799 * When the noreloc pool is empty (or low), additional noreloc pages 1800 * are created by converting pages from the global page pool. This 1801 * process will stall during pcf accounting if the pcf bins are 1802 * already locked. Such is the case when a noreloc allocation is 1803 * looping here in page_create_get_something waiting for more noreloc 1804 * pages to appear. 1805 * 1806 * Short of adding a new field to the pcf bins to accurately track 1807 * the number of free noreloc pages, we instead do not grab the 1808 * pcgs_lock, do not set the pcf blocks and do not timeout when 1809 * allocating a noreloc page. This allows noreloc allocations to 1810 * loop without blocking global page pool allocations. 1811 * 1812 * NOTE: the behaviour of page_create_get_something has not changed 1813 * for the case of global page pool allocations. 1814 */ 1815 1816 flags &= ~PG_MATCH_COLOR; 1817 locked = 0; 1818 #if defined(__i386) || defined(__amd64) 1819 /* 1820 * page_create_get_something may be called because 4g memory may be 1821 * depleted. Set flags to allow for relocation of base page below 1822 * 4g if necessary. 1823 */ 1824 if (physmax4g) 1825 flags |= (PGI_PGCPSZC0 | PGI_PGCPHIPRI); 1826 #endif 1827 1828 lgrp = lgrp_mem_choose(seg, vaddr, PAGESIZE); 1829 1830 for (count = 0; kcage_on || count < MAX_PCGS; count++) { 1831 pp = page_get_freelist(vp, off, seg, vaddr, PAGESIZE, 1832 flags, lgrp); 1833 if (pp == NULL) { 1834 pp = page_get_cachelist(vp, off, seg, vaddr, 1835 flags, lgrp); 1836 } 1837 if (pp == NULL) { 1838 /* 1839 * Serialize. Don't fight with other pcgs(). 1840 */ 1841 if (!locked && (!kcage_on || !(flags & PG_NORELOC))) { 1842 mutex_enter(&pcgs_lock); 1843 VM_STAT_ADD(pcgs_locked); 1844 locked = 1; 1845 p = pcf; 1846 for (i = 0; i < PCF_FANOUT; i++) { 1847 mutex_enter(&p->pcf_lock); 1848 ASSERT(p->pcf_block == 0); 1849 p->pcf_block = 1; 1850 p->pcf_reserve = p->pcf_count; 1851 p->pcf_count = 0; 1852 mutex_exit(&p->pcf_lock); 1853 p++; 1854 } 1855 freemem = 0; 1856 } 1857 1858 if (count) { 1859 /* 1860 * Since page_free() puts pages on 1861 * a list then accounts for it, we 1862 * just have to wait for page_free() 1863 * to unlock any page it was working 1864 * with. The page_lock()-page_reclaim() 1865 * path falls in the same boat. 1866 * 1867 * We don't need to check on the 1868 * PG_WAIT flag, we have already 1869 * accounted for the page we are 1870 * looking for in page_create_va(). 1871 * 1872 * We just wait a moment to let any 1873 * locked pages on the lists free up, 1874 * then continue around and try again. 1875 * 1876 * Will be awakened by set_freemem(). 1877 */ 1878 mutex_enter(&pcgs_wait_lock); 1879 cv_wait(&pcgs_cv, &pcgs_wait_lock); 1880 mutex_exit(&pcgs_wait_lock); 1881 } 1882 } else { 1883 #ifdef VM_STATS 1884 if (count >= PCGS_TRIES) { 1885 VM_STAT_ADD(pcgs_too_many); 1886 } else { 1887 VM_STAT_ADD(pcgs_counts[count]); 1888 } 1889 #endif 1890 if (locked) { 1891 pcgs_unblock(); 1892 mutex_exit(&pcgs_lock); 1893 } 1894 if (cagelocked) 1895 mutex_exit(&pcgs_cagelock); 1896 return (pp); 1897 } 1898 } 1899 /* 1900 * we go down holding the pcf locks. 1901 */ 1902 panic("no %spage found %d", 1903 ((flags & PG_NORELOC) ? "non-reloc " : ""), count); 1904 /*NOTREACHED*/ 1905 } 1906 1907 /* 1908 * Create enough pages for "bytes" worth of data starting at 1909 * "off" in "vp". 1910 * 1911 * Where flag must be one of: 1912 * 1913 * PG_EXCL: Exclusive create (fail if any page already 1914 * exists in the page cache) which does not 1915 * wait for memory to become available. 1916 * 1917 * PG_WAIT: Non-exclusive create which can wait for 1918 * memory to become available. 1919 * 1920 * PG_PHYSCONTIG: Allocate physically contiguous pages. 1921 * (Not Supported) 1922 * 1923 * A doubly linked list of pages is returned to the caller. Each page 1924 * on the list has the "exclusive" (p_selock) lock and "iolock" (p_iolock) 1925 * lock. 1926 * 1927 * Unable to change the parameters to page_create() in a minor release, 1928 * we renamed page_create() to page_create_va(), changed all known calls 1929 * from page_create() to page_create_va(), and created this wrapper. 1930 * 1931 * Upon a major release, we should break compatibility by deleting this 1932 * wrapper, and replacing all the strings "page_create_va", with "page_create". 1933 * 1934 * NOTE: There is a copy of this interface as page_create_io() in 1935 * i86/vm/vm_machdep.c. Any bugs fixed here should be applied 1936 * there. 1937 */ 1938 page_t * 1939 page_create(vnode_t *vp, u_offset_t off, size_t bytes, uint_t flags) 1940 { 1941 caddr_t random_vaddr; 1942 struct seg kseg; 1943 1944 #ifdef DEBUG 1945 cmn_err(CE_WARN, "Using deprecated interface page_create: caller %p", 1946 (void *)caller()); 1947 #endif 1948 1949 random_vaddr = (caddr_t)(((uintptr_t)vp >> 7) ^ 1950 (uintptr_t)(off >> PAGESHIFT)); 1951 kseg.s_as = &kas; 1952 1953 return (page_create_va(vp, off, bytes, flags, &kseg, random_vaddr)); 1954 } 1955 1956 #ifdef DEBUG 1957 uint32_t pg_alloc_pgs_mtbf = 0; 1958 #endif 1959 1960 /* 1961 * Used for large page support. It will attempt to allocate 1962 * a large page(s) off the freelist. 1963 * 1964 * Returns non zero on failure. 1965 */ 1966 int 1967 page_alloc_pages(struct vnode *vp, struct seg *seg, caddr_t addr, 1968 page_t **basepp, page_t *ppa[], uint_t szc, int anypgsz) 1969 { 1970 pgcnt_t npgs, curnpgs, totpgs; 1971 size_t pgsz; 1972 page_t *pplist = NULL, *pp; 1973 int err = 0; 1974 lgrp_t *lgrp; 1975 1976 ASSERT(szc != 0 && szc <= (page_num_pagesizes() - 1)); 1977 1978 VM_STAT_ADD(alloc_pages[0]); 1979 1980 #ifdef DEBUG 1981 if (pg_alloc_pgs_mtbf && !(gethrtime() % pg_alloc_pgs_mtbf)) { 1982 return (ENOMEM); 1983 } 1984 #endif 1985 1986 pgsz = page_get_pagesize(szc); 1987 totpgs = curnpgs = npgs = pgsz >> PAGESHIFT; 1988 1989 ASSERT(((uintptr_t)addr & (pgsz - 1)) == 0); 1990 /* 1991 * One must be NULL but not both. 1992 * And one must be non NULL but not both. 1993 */ 1994 ASSERT(basepp != NULL || ppa != NULL); 1995 ASSERT(basepp == NULL || ppa == NULL); 1996 1997 (void) page_create_wait(npgs, PG_WAIT); 1998 1999 while (npgs && szc) { 2000 lgrp = lgrp_mem_choose(seg, addr, pgsz); 2001 pp = page_get_freelist(vp, 0, seg, addr, pgsz, 0, lgrp); 2002 if (pp != NULL) { 2003 VM_STAT_ADD(alloc_pages[1]); 2004 page_list_concat(&pplist, &pp); 2005 ASSERT(npgs >= curnpgs); 2006 npgs -= curnpgs; 2007 } else if (anypgsz) { 2008 VM_STAT_ADD(alloc_pages[2]); 2009 szc--; 2010 pgsz = page_get_pagesize(szc); 2011 curnpgs = pgsz >> PAGESHIFT; 2012 } else { 2013 VM_STAT_ADD(alloc_pages[3]); 2014 ASSERT(npgs == totpgs); 2015 page_create_putback(npgs); 2016 return (ENOMEM); 2017 } 2018 } 2019 if (szc == 0) { 2020 VM_STAT_ADD(alloc_pages[4]); 2021 ASSERT(npgs != 0); 2022 page_create_putback(npgs); 2023 err = ENOMEM; 2024 } else if (basepp != NULL) { 2025 ASSERT(npgs == 0); 2026 ASSERT(ppa == NULL); 2027 *basepp = pplist; 2028 } 2029 2030 npgs = totpgs - npgs; 2031 pp = pplist; 2032 2033 /* 2034 * Clear the free and age bits. Also if we were passed in a ppa then 2035 * fill it in with all the constituent pages from the large page. But 2036 * if we failed to allocate all the pages just free what we got. 2037 */ 2038 while (npgs != 0) { 2039 ASSERT(PP_ISFREE(pp)); 2040 ASSERT(PP_ISAGED(pp)); 2041 if (ppa != NULL || err != 0) { 2042 if (err == 0) { 2043 VM_STAT_ADD(alloc_pages[5]); 2044 PP_CLRFREE(pp); 2045 PP_CLRAGED(pp); 2046 page_sub(&pplist, pp); 2047 *ppa++ = pp; 2048 npgs--; 2049 } else { 2050 VM_STAT_ADD(alloc_pages[6]); 2051 ASSERT(pp->p_szc != 0); 2052 curnpgs = page_get_pagecnt(pp->p_szc); 2053 page_list_break(&pp, &pplist, curnpgs); 2054 page_list_add_pages(pp, 0); 2055 page_create_putback(curnpgs); 2056 ASSERT(npgs >= curnpgs); 2057 npgs -= curnpgs; 2058 } 2059 pp = pplist; 2060 } else { 2061 VM_STAT_ADD(alloc_pages[7]); 2062 PP_CLRFREE(pp); 2063 PP_CLRAGED(pp); 2064 pp = pp->p_next; 2065 npgs--; 2066 } 2067 } 2068 return (err); 2069 } 2070 2071 /* 2072 * Get a single large page off of the freelists, and set it up for use. 2073 * Number of bytes requested must be a supported page size. 2074 * 2075 * Note that this call may fail even if there is sufficient 2076 * memory available or PG_WAIT is set, so the caller must 2077 * be willing to fallback on page_create_va(), block and retry, 2078 * or fail the requester. 2079 */ 2080 page_t * 2081 page_create_va_large(vnode_t *vp, u_offset_t off, size_t bytes, uint_t flags, 2082 struct seg *seg, caddr_t vaddr, void *arg) 2083 { 2084 pgcnt_t npages, pcftotal; 2085 page_t *pp; 2086 page_t *rootpp; 2087 lgrp_t *lgrp; 2088 uint_t enough; 2089 uint_t pcf_index; 2090 uint_t i; 2091 struct pcf *p; 2092 struct pcf *q; 2093 lgrp_id_t *lgrpid = (lgrp_id_t *)arg; 2094 2095 ASSERT(vp != NULL); 2096 2097 ASSERT((flags & ~(PG_EXCL | PG_WAIT | 2098 PG_NORELOC | PG_PANIC | PG_PUSHPAGE)) == 0); 2099 /* but no others */ 2100 2101 ASSERT((flags & PG_EXCL) == PG_EXCL); 2102 2103 npages = btop(bytes); 2104 2105 if (!kcage_on || panicstr) { 2106 /* 2107 * Cage is OFF, or we are single threaded in 2108 * panic, so make everything a RELOC request. 2109 */ 2110 flags &= ~PG_NORELOC; 2111 } 2112 2113 /* 2114 * Make sure there's adequate physical memory available. 2115 * Note: PG_WAIT is ignored here. 2116 */ 2117 if (freemem <= throttlefree + npages) { 2118 VM_STAT_ADD(page_create_large_cnt[1]); 2119 return (NULL); 2120 } 2121 2122 /* 2123 * If cage is on, dampen draw from cage when available 2124 * cage space is low. 2125 */ 2126 if ((flags & (PG_NORELOC | PG_WAIT)) == (PG_NORELOC | PG_WAIT) && 2127 kcage_freemem < kcage_throttlefree + npages) { 2128 2129 /* 2130 * The cage is on, the caller wants PG_NORELOC 2131 * pages and available cage memory is very low. 2132 * Call kcage_create_throttle() to attempt to 2133 * control demand on the cage. 2134 */ 2135 if (kcage_create_throttle(npages, flags) == KCT_FAILURE) { 2136 VM_STAT_ADD(page_create_large_cnt[2]); 2137 return (NULL); 2138 } 2139 } 2140 2141 enough = 0; 2142 pcf_index = PCF_INDEX(); 2143 p = &pcf[pcf_index]; 2144 q = &pcf[PCF_FANOUT]; 2145 for (pcftotal = 0, i = 0; i < PCF_FANOUT; i++) { 2146 if (p->pcf_count > npages) { 2147 /* 2148 * a good one to try. 2149 */ 2150 mutex_enter(&p->pcf_lock); 2151 if (p->pcf_count > npages) { 2152 p->pcf_count -= (uint_t)npages; 2153 /* 2154 * freemem is not protected by any lock. 2155 * Thus, we cannot have any assertion 2156 * containing freemem here. 2157 */ 2158 freemem -= npages; 2159 enough = 1; 2160 mutex_exit(&p->pcf_lock); 2161 break; 2162 } 2163 mutex_exit(&p->pcf_lock); 2164 } 2165 pcftotal += p->pcf_count; 2166 p++; 2167 if (p >= q) { 2168 p = pcf; 2169 } 2170 } 2171 2172 if (!enough) { 2173 /* If there isn't enough memory available, give up. */ 2174 if (pcftotal < npages) { 2175 VM_STAT_ADD(page_create_large_cnt[3]); 2176 return (NULL); 2177 } 2178 2179 /* try to collect pages from several pcf bins */ 2180 for (p = pcf, pcftotal = 0, i = 0; i < PCF_FANOUT; i++) { 2181 mutex_enter(&p->pcf_lock); 2182 pcftotal += p->pcf_count; 2183 if (pcftotal >= npages) { 2184 /* 2185 * Wow! There are enough pages laying around 2186 * to satisfy the request. Do the accounting, 2187 * drop the locks we acquired, and go back. 2188 * 2189 * freemem is not protected by any lock. So, 2190 * we cannot have any assertion containing 2191 * freemem. 2192 */ 2193 pgcnt_t tpages = npages; 2194 freemem -= npages; 2195 while (p >= pcf) { 2196 if (p->pcf_count <= tpages) { 2197 tpages -= p->pcf_count; 2198 p->pcf_count = 0; 2199 } else { 2200 p->pcf_count -= (uint_t)tpages; 2201 tpages = 0; 2202 } 2203 mutex_exit(&p->pcf_lock); 2204 p--; 2205 } 2206 ASSERT(tpages == 0); 2207 break; 2208 } 2209 p++; 2210 } 2211 if (i == PCF_FANOUT) { 2212 /* failed to collect pages - release the locks */ 2213 while (--p >= pcf) { 2214 mutex_exit(&p->pcf_lock); 2215 } 2216 VM_STAT_ADD(page_create_large_cnt[4]); 2217 return (NULL); 2218 } 2219 } 2220 2221 /* 2222 * This is where this function behaves fundamentally differently 2223 * than page_create_va(); since we're intending to map the page 2224 * with a single TTE, we have to get it as a physically contiguous 2225 * hardware pagesize chunk. If we can't, we fail. 2226 */ 2227 if (lgrpid != NULL && *lgrpid >= 0 && *lgrpid <= lgrp_alloc_max && 2228 LGRP_EXISTS(lgrp_table[*lgrpid])) 2229 lgrp = lgrp_table[*lgrpid]; 2230 else 2231 lgrp = lgrp_mem_choose(seg, vaddr, bytes); 2232 2233 if ((rootpp = page_get_freelist(&kvp, off, seg, vaddr, 2234 bytes, flags & ~PG_MATCH_COLOR, lgrp)) == NULL) { 2235 page_create_putback(npages); 2236 VM_STAT_ADD(page_create_large_cnt[5]); 2237 return (NULL); 2238 } 2239 2240 /* 2241 * if we got the page with the wrong mtype give it back this is a 2242 * workaround for CR 6249718. When CR 6249718 is fixed we never get 2243 * inside "if" and the workaround becomes just a nop 2244 */ 2245 if (kcage_on && (flags & PG_NORELOC) && !PP_ISNORELOC(rootpp)) { 2246 page_list_add_pages(rootpp, 0); 2247 page_create_putback(npages); 2248 VM_STAT_ADD(page_create_large_cnt[6]); 2249 return (NULL); 2250 } 2251 2252 /* 2253 * If satisfying this request has left us with too little 2254 * memory, start the wheels turning to get some back. The 2255 * first clause of the test prevents waking up the pageout 2256 * daemon in situations where it would decide that there's 2257 * nothing to do. 2258 */ 2259 if (nscan < desscan && freemem < minfree) { 2260 TRACE_1(TR_FAC_VM, TR_PAGEOUT_CV_SIGNAL, 2261 "pageout_cv_signal:freemem %ld", freemem); 2262 cv_signal(&proc_pageout->p_cv); 2263 } 2264 2265 pp = rootpp; 2266 while (npages--) { 2267 ASSERT(PAGE_EXCL(pp)); 2268 ASSERT(pp->p_vnode == NULL); 2269 ASSERT(!hat_page_is_mapped(pp)); 2270 PP_CLRFREE(pp); 2271 PP_CLRAGED(pp); 2272 if (!page_hashin(pp, vp, off, NULL)) 2273 panic("page_create_large: hashin failed: page %p", 2274 (void *)pp); 2275 page_io_lock(pp); 2276 off += PAGESIZE; 2277 pp = pp->p_next; 2278 } 2279 2280 VM_STAT_ADD(page_create_large_cnt[0]); 2281 return (rootpp); 2282 } 2283 2284 page_t * 2285 page_create_va(vnode_t *vp, u_offset_t off, size_t bytes, uint_t flags, 2286 struct seg *seg, caddr_t vaddr) 2287 { 2288 page_t *plist = NULL; 2289 pgcnt_t npages; 2290 pgcnt_t found_on_free = 0; 2291 pgcnt_t pages_req; 2292 page_t *npp = NULL; 2293 uint_t enough; 2294 uint_t i; 2295 uint_t pcf_index; 2296 struct pcf *p; 2297 struct pcf *q; 2298 lgrp_t *lgrp; 2299 2300 TRACE_4(TR_FAC_VM, TR_PAGE_CREATE_START, 2301 "page_create_start:vp %p off %llx bytes %lu flags %x", 2302 vp, off, bytes, flags); 2303 2304 ASSERT(bytes != 0 && vp != NULL); 2305 2306 if ((flags & PG_EXCL) == 0 && (flags & PG_WAIT) == 0) { 2307 panic("page_create: invalid flags"); 2308 /*NOTREACHED*/ 2309 } 2310 ASSERT((flags & ~(PG_EXCL | PG_WAIT | 2311 PG_NORELOC | PG_PANIC | PG_PUSHPAGE)) == 0); 2312 /* but no others */ 2313 2314 pages_req = npages = btopr(bytes); 2315 /* 2316 * Try to see whether request is too large to *ever* be 2317 * satisfied, in order to prevent deadlock. We arbitrarily 2318 * decide to limit maximum size requests to max_page_get. 2319 */ 2320 if (npages >= max_page_get) { 2321 if ((flags & PG_WAIT) == 0) { 2322 TRACE_4(TR_FAC_VM, TR_PAGE_CREATE_TOOBIG, 2323 "page_create_toobig:vp %p off %llx npages " 2324 "%lu max_page_get %lu", 2325 vp, off, npages, max_page_get); 2326 return (NULL); 2327 } else { 2328 cmn_err(CE_WARN, 2329 "Request for too much kernel memory " 2330 "(%lu bytes), will hang forever", bytes); 2331 for (;;) 2332 delay(1000000000); 2333 } 2334 } 2335 2336 if (!kcage_on || panicstr) { 2337 /* 2338 * Cage is OFF, or we are single threaded in 2339 * panic, so make everything a RELOC request. 2340 */ 2341 flags &= ~PG_NORELOC; 2342 } 2343 2344 if (freemem <= throttlefree + npages) 2345 if (!page_create_throttle(npages, flags)) 2346 return (NULL); 2347 2348 /* 2349 * If cage is on, dampen draw from cage when available 2350 * cage space is low. 2351 */ 2352 if ((flags & PG_NORELOC) && 2353 kcage_freemem < kcage_throttlefree + npages) { 2354 2355 /* 2356 * The cage is on, the caller wants PG_NORELOC 2357 * pages and available cage memory is very low. 2358 * Call kcage_create_throttle() to attempt to 2359 * control demand on the cage. 2360 */ 2361 if (kcage_create_throttle(npages, flags) == KCT_FAILURE) 2362 return (NULL); 2363 } 2364 2365 VM_STAT_ADD(page_create_cnt[0]); 2366 2367 enough = 0; 2368 pcf_index = PCF_INDEX(); 2369 2370 p = &pcf[pcf_index]; 2371 q = &pcf[PCF_FANOUT]; 2372 for (i = 0; i < PCF_FANOUT; i++) { 2373 if (p->pcf_count > npages) { 2374 /* 2375 * a good one to try. 2376 */ 2377 mutex_enter(&p->pcf_lock); 2378 if (p->pcf_count > npages) { 2379 p->pcf_count -= (uint_t)npages; 2380 /* 2381 * freemem is not protected by any lock. 2382 * Thus, we cannot have any assertion 2383 * containing freemem here. 2384 */ 2385 freemem -= npages; 2386 enough = 1; 2387 mutex_exit(&p->pcf_lock); 2388 break; 2389 } 2390 mutex_exit(&p->pcf_lock); 2391 } 2392 p++; 2393 if (p >= q) { 2394 p = pcf; 2395 } 2396 } 2397 2398 if (!enough) { 2399 /* 2400 * Have to look harder. If npages is greater than 2401 * one, then we might have to coalecse the counters. 2402 * 2403 * Go wait. We come back having accounted 2404 * for the memory. 2405 */ 2406 VM_STAT_ADD(page_create_cnt[1]); 2407 if (!page_create_wait(npages, flags)) { 2408 VM_STAT_ADD(page_create_cnt[2]); 2409 return (NULL); 2410 } 2411 } 2412 2413 TRACE_2(TR_FAC_VM, TR_PAGE_CREATE_SUCCESS, 2414 "page_create_success:vp %p off %llx", vp, off); 2415 2416 /* 2417 * If satisfying this request has left us with too little 2418 * memory, start the wheels turning to get some back. The 2419 * first clause of the test prevents waking up the pageout 2420 * daemon in situations where it would decide that there's 2421 * nothing to do. 2422 */ 2423 if (nscan < desscan && freemem < minfree) { 2424 TRACE_1(TR_FAC_VM, TR_PAGEOUT_CV_SIGNAL, 2425 "pageout_cv_signal:freemem %ld", freemem); 2426 cv_signal(&proc_pageout->p_cv); 2427 } 2428 2429 /* 2430 * Loop around collecting the requested number of pages. 2431 * Most of the time, we have to `create' a new page. With 2432 * this in mind, pull the page off the free list before 2433 * getting the hash lock. This will minimize the hash 2434 * lock hold time, nesting, and the like. If it turns 2435 * out we don't need the page, we put it back at the end. 2436 */ 2437 while (npages--) { 2438 page_t *pp; 2439 kmutex_t *phm = NULL; 2440 ulong_t index; 2441 2442 index = PAGE_HASH_FUNC(vp, off); 2443 top: 2444 ASSERT(phm == NULL); 2445 ASSERT(index == PAGE_HASH_FUNC(vp, off)); 2446 ASSERT(MUTEX_NOT_HELD(page_vnode_mutex(vp))); 2447 2448 if (npp == NULL) { 2449 /* 2450 * Try to get a page from the freelist (ie, 2451 * a page with no [vp, off] tag). If that 2452 * fails, use the cachelist. 2453 * 2454 * During the first attempt at both the free 2455 * and cache lists we try for the correct color. 2456 */ 2457 /* 2458 * XXXX-how do we deal with virtual indexed 2459 * caches and and colors? 2460 */ 2461 VM_STAT_ADD(page_create_cnt[4]); 2462 /* 2463 * Get lgroup to allocate next page of shared memory 2464 * from and use it to specify where to allocate 2465 * the physical memory 2466 */ 2467 lgrp = lgrp_mem_choose(seg, vaddr, PAGESIZE); 2468 npp = page_get_freelist(vp, off, seg, vaddr, PAGESIZE, 2469 flags | PG_MATCH_COLOR, lgrp); 2470 if (npp == NULL) { 2471 npp = page_get_cachelist(vp, off, seg, 2472 vaddr, flags | PG_MATCH_COLOR, lgrp); 2473 if (npp == NULL) { 2474 npp = page_create_get_something(vp, 2475 off, seg, vaddr, 2476 flags & ~PG_MATCH_COLOR); 2477 } 2478 2479 if (PP_ISAGED(npp) == 0) { 2480 /* 2481 * Since this page came from the 2482 * cachelist, we must destroy the 2483 * old vnode association. 2484 */ 2485 page_hashout(npp, NULL); 2486 } 2487 } 2488 } 2489 2490 /* 2491 * We own this page! 2492 */ 2493 ASSERT(PAGE_EXCL(npp)); 2494 ASSERT(npp->p_vnode == NULL); 2495 ASSERT(!hat_page_is_mapped(npp)); 2496 PP_CLRFREE(npp); 2497 PP_CLRAGED(npp); 2498 2499 /* 2500 * Here we have a page in our hot little mits and are 2501 * just waiting to stuff it on the appropriate lists. 2502 * Get the mutex and check to see if it really does 2503 * not exist. 2504 */ 2505 phm = PAGE_HASH_MUTEX(index); 2506 mutex_enter(phm); 2507 PAGE_HASH_SEARCH(index, pp, vp, off); 2508 if (pp == NULL) { 2509 VM_STAT_ADD(page_create_new); 2510 pp = npp; 2511 npp = NULL; 2512 if (!page_hashin(pp, vp, off, phm)) { 2513 /* 2514 * Since we hold the page hash mutex and 2515 * just searched for this page, page_hashin 2516 * had better not fail. If it does, that 2517 * means somethread did not follow the 2518 * page hash mutex rules. Panic now and 2519 * get it over with. As usual, go down 2520 * holding all the locks. 2521 */ 2522 ASSERT(MUTEX_HELD(phm)); 2523 panic("page_create: " 2524 "hashin failed %p %p %llx %p", 2525 (void *)pp, (void *)vp, off, (void *)phm); 2526 /*NOTREACHED*/ 2527 } 2528 ASSERT(MUTEX_HELD(phm)); 2529 mutex_exit(phm); 2530 phm = NULL; 2531 2532 /* 2533 * Hat layer locking need not be done to set 2534 * the following bits since the page is not hashed 2535 * and was on the free list (i.e., had no mappings). 2536 * 2537 * Set the reference bit to protect 2538 * against immediate pageout 2539 * 2540 * XXXmh modify freelist code to set reference 2541 * bit so we don't have to do it here. 2542 */ 2543 page_set_props(pp, P_REF); 2544 found_on_free++; 2545 } else { 2546 VM_STAT_ADD(page_create_exists); 2547 if (flags & PG_EXCL) { 2548 /* 2549 * Found an existing page, and the caller 2550 * wanted all new pages. Undo all of the work 2551 * we have done. 2552 */ 2553 mutex_exit(phm); 2554 phm = NULL; 2555 while (plist != NULL) { 2556 pp = plist; 2557 page_sub(&plist, pp); 2558 page_io_unlock(pp); 2559 /* large pages should not end up here */ 2560 ASSERT(pp->p_szc == 0); 2561 /*LINTED: constant in conditional ctx*/ 2562 VN_DISPOSE(pp, B_INVAL, 0, kcred); 2563 } 2564 VM_STAT_ADD(page_create_found_one); 2565 goto fail; 2566 } 2567 ASSERT(flags & PG_WAIT); 2568 if (!page_lock(pp, SE_EXCL, phm, P_NO_RECLAIM)) { 2569 /* 2570 * Start all over again if we blocked trying 2571 * to lock the page. 2572 */ 2573 mutex_exit(phm); 2574 VM_STAT_ADD(page_create_page_lock_failed); 2575 phm = NULL; 2576 goto top; 2577 } 2578 mutex_exit(phm); 2579 phm = NULL; 2580 2581 if (PP_ISFREE(pp)) { 2582 ASSERT(PP_ISAGED(pp) == 0); 2583 VM_STAT_ADD(pagecnt.pc_get_cache); 2584 page_list_sub(pp, PG_CACHE_LIST); 2585 PP_CLRFREE(pp); 2586 found_on_free++; 2587 } 2588 } 2589 2590 /* 2591 * Got a page! It is locked. Acquire the i/o 2592 * lock since we are going to use the p_next and 2593 * p_prev fields to link the requested pages together. 2594 */ 2595 page_io_lock(pp); 2596 page_add(&plist, pp); 2597 plist = plist->p_next; 2598 off += PAGESIZE; 2599 vaddr += PAGESIZE; 2600 } 2601 2602 ASSERT((flags & PG_EXCL) ? (found_on_free == pages_req) : 1); 2603 fail: 2604 if (npp != NULL) { 2605 /* 2606 * Did not need this page after all. 2607 * Put it back on the free list. 2608 */ 2609 VM_STAT_ADD(page_create_putbacks); 2610 PP_SETFREE(npp); 2611 PP_SETAGED(npp); 2612 npp->p_offset = (u_offset_t)-1; 2613 page_list_add(npp, PG_FREE_LIST | PG_LIST_TAIL); 2614 page_unlock(npp); 2615 2616 } 2617 2618 ASSERT(pages_req >= found_on_free); 2619 2620 { 2621 uint_t overshoot = (uint_t)(pages_req - found_on_free); 2622 2623 if (overshoot) { 2624 VM_STAT_ADD(page_create_overshoot); 2625 p = &pcf[pcf_index]; 2626 mutex_enter(&p->pcf_lock); 2627 if (p->pcf_block) { 2628 p->pcf_reserve += overshoot; 2629 } else { 2630 p->pcf_count += overshoot; 2631 if (p->pcf_wait) { 2632 mutex_enter(&new_freemem_lock); 2633 if (freemem_wait) { 2634 cv_signal(&freemem_cv); 2635 p->pcf_wait--; 2636 } else { 2637 p->pcf_wait = 0; 2638 } 2639 mutex_exit(&new_freemem_lock); 2640 } 2641 } 2642 mutex_exit(&p->pcf_lock); 2643 /* freemem is approximate, so this test OK */ 2644 if (!p->pcf_block) 2645 freemem += overshoot; 2646 } 2647 } 2648 2649 return (plist); 2650 } 2651 2652 /* 2653 * One or more constituent pages of this large page has been marked 2654 * toxic. Simply demote the large page to PAGESIZE pages and let 2655 * page_free() handle it. This routine should only be called by 2656 * large page free routines (page_free_pages() and page_destroy_pages(). 2657 * All pages are locked SE_EXCL and have already been marked free. 2658 */ 2659 static void 2660 page_free_toxic_pages(page_t *rootpp) 2661 { 2662 page_t *tpp; 2663 pgcnt_t i, pgcnt = page_get_pagecnt(rootpp->p_szc); 2664 uint_t szc = rootpp->p_szc; 2665 2666 for (i = 0, tpp = rootpp; i < pgcnt; i++, tpp = tpp->p_next) { 2667 ASSERT(tpp->p_szc == szc); 2668 ASSERT((PAGE_EXCL(tpp) && 2669 !page_iolock_assert(tpp)) || panicstr); 2670 tpp->p_szc = 0; 2671 } 2672 2673 while (rootpp != NULL) { 2674 tpp = rootpp; 2675 page_sub(&rootpp, tpp); 2676 ASSERT(PP_ISFREE(tpp)); 2677 PP_CLRFREE(tpp); 2678 page_free(tpp, 1); 2679 } 2680 } 2681 2682 /* 2683 * Put page on the "free" list. 2684 * The free list is really two lists maintained by 2685 * the PSM of whatever machine we happen to be on. 2686 */ 2687 void 2688 page_free(page_t *pp, int dontneed) 2689 { 2690 struct pcf *p; 2691 uint_t pcf_index; 2692 2693 ASSERT((PAGE_EXCL(pp) && 2694 !page_iolock_assert(pp)) || panicstr); 2695 2696 if (PP_ISFREE(pp)) { 2697 panic("page_free: page %p is free", (void *)pp); 2698 } 2699 2700 if (pp->p_szc != 0) { 2701 if (pp->p_vnode == NULL || IS_SWAPFSVP(pp->p_vnode) || 2702 pp->p_vnode == &kvp) { 2703 panic("page_free: anon or kernel " 2704 "or no vnode large page %p", (void *)pp); 2705 } 2706 page_demote_vp_pages(pp); 2707 ASSERT(pp->p_szc == 0); 2708 } 2709 2710 /* 2711 * The page_struct_lock need not be acquired to examine these 2712 * fields since the page has an "exclusive" lock. 2713 */ 2714 if (hat_page_is_mapped(pp) || pp->p_lckcnt != 0 || pp->p_cowcnt != 0) { 2715 panic("page_free pp=%p, pfn=%lx, lckcnt=%d, cowcnt=%d", 2716 pp, page_pptonum(pp), pp->p_lckcnt, pp->p_cowcnt); 2717 /*NOTREACHED*/ 2718 } 2719 2720 ASSERT(!hat_page_getshare(pp)); 2721 2722 PP_SETFREE(pp); 2723 ASSERT(pp->p_vnode == NULL || !IS_VMODSORT(pp->p_vnode) || 2724 !hat_ismod(pp)); 2725 page_clr_all_props(pp); 2726 ASSERT(!hat_page_getshare(pp)); 2727 2728 /* 2729 * Now we add the page to the head of the free list. 2730 * But if this page is associated with a paged vnode 2731 * then we adjust the head forward so that the page is 2732 * effectively at the end of the list. 2733 */ 2734 if (pp->p_vnode == NULL) { 2735 /* 2736 * Page has no identity, put it on the free list. 2737 */ 2738 PP_SETAGED(pp); 2739 pp->p_offset = (u_offset_t)-1; 2740 page_list_add(pp, PG_FREE_LIST | PG_LIST_TAIL); 2741 VM_STAT_ADD(pagecnt.pc_free_free); 2742 TRACE_1(TR_FAC_VM, TR_PAGE_FREE_FREE, 2743 "page_free_free:pp %p", pp); 2744 } else { 2745 PP_CLRAGED(pp); 2746 2747 if (!dontneed || nopageage) { 2748 /* move it to the tail of the list */ 2749 page_list_add(pp, PG_CACHE_LIST | PG_LIST_TAIL); 2750 2751 VM_STAT_ADD(pagecnt.pc_free_cache); 2752 TRACE_1(TR_FAC_VM, TR_PAGE_FREE_CACHE_TAIL, 2753 "page_free_cache_tail:pp %p", pp); 2754 } else { 2755 page_list_add(pp, PG_CACHE_LIST | PG_LIST_HEAD); 2756 2757 VM_STAT_ADD(pagecnt.pc_free_dontneed); 2758 TRACE_1(TR_FAC_VM, TR_PAGE_FREE_CACHE_HEAD, 2759 "page_free_cache_head:pp %p", pp); 2760 } 2761 } 2762 page_unlock(pp); 2763 2764 /* 2765 * Now do the `freemem' accounting. 2766 */ 2767 pcf_index = PCF_INDEX(); 2768 p = &pcf[pcf_index]; 2769 2770 mutex_enter(&p->pcf_lock); 2771 if (p->pcf_block) { 2772 p->pcf_reserve += 1; 2773 } else { 2774 p->pcf_count += 1; 2775 if (p->pcf_wait) { 2776 mutex_enter(&new_freemem_lock); 2777 /* 2778 * Check to see if some other thread 2779 * is actually waiting. Another bucket 2780 * may have woken it up by now. If there 2781 * are no waiters, then set our pcf_wait 2782 * count to zero to avoid coming in here 2783 * next time. Also, since only one page 2784 * was put on the free list, just wake 2785 * up one waiter. 2786 */ 2787 if (freemem_wait) { 2788 cv_signal(&freemem_cv); 2789 p->pcf_wait--; 2790 } else { 2791 p->pcf_wait = 0; 2792 } 2793 mutex_exit(&new_freemem_lock); 2794 } 2795 } 2796 mutex_exit(&p->pcf_lock); 2797 2798 /* freemem is approximate, so this test OK */ 2799 if (!p->pcf_block) 2800 freemem += 1; 2801 } 2802 2803 /* 2804 * Put page on the "free" list during intial startup. 2805 * This happens during initial single threaded execution. 2806 */ 2807 void 2808 page_free_at_startup(page_t *pp) 2809 { 2810 struct pcf *p; 2811 uint_t pcf_index; 2812 2813 page_list_add(pp, PG_FREE_LIST | PG_LIST_HEAD | PG_LIST_ISINIT); 2814 VM_STAT_ADD(pagecnt.pc_free_free); 2815 2816 /* 2817 * Now do the `freemem' accounting. 2818 */ 2819 pcf_index = PCF_INDEX(); 2820 p = &pcf[pcf_index]; 2821 2822 ASSERT(p->pcf_block == 0); 2823 ASSERT(p->pcf_wait == 0); 2824 p->pcf_count += 1; 2825 2826 /* freemem is approximate, so this is OK */ 2827 freemem += 1; 2828 } 2829 2830 void 2831 page_free_pages(page_t *pp) 2832 { 2833 page_t *tpp, *rootpp = NULL; 2834 pgcnt_t pgcnt = page_get_pagecnt(pp->p_szc); 2835 pgcnt_t i; 2836 uint_t szc = pp->p_szc; 2837 2838 VM_STAT_ADD(pagecnt.pc_free_pages); 2839 TRACE_1(TR_FAC_VM, TR_PAGE_FREE_FREE, 2840 "page_free_free:pp %p", pp); 2841 2842 ASSERT(pp->p_szc != 0 && pp->p_szc < page_num_pagesizes()); 2843 if ((page_pptonum(pp) & (pgcnt - 1)) != 0) { 2844 panic("page_free_pages: not root page %p", (void *)pp); 2845 /*NOTREACHED*/ 2846 } 2847 2848 for (i = 0, tpp = pp; i < pgcnt; i++, tpp++) { 2849 ASSERT((PAGE_EXCL(tpp) && 2850 !page_iolock_assert(tpp)) || panicstr); 2851 if (PP_ISFREE(tpp)) { 2852 panic("page_free_pages: page %p is free", (void *)tpp); 2853 /*NOTREACHED*/ 2854 } 2855 if (hat_page_is_mapped(tpp) || tpp->p_lckcnt != 0 || 2856 tpp->p_cowcnt != 0) { 2857 panic("page_free_pages %p", (void *)tpp); 2858 /*NOTREACHED*/ 2859 } 2860 2861 ASSERT(!hat_page_getshare(tpp)); 2862 ASSERT(tpp->p_vnode == NULL); 2863 ASSERT(tpp->p_szc == szc); 2864 2865 PP_SETFREE(tpp); 2866 page_clr_all_props(tpp); 2867 PP_SETAGED(tpp); 2868 tpp->p_offset = (u_offset_t)-1; 2869 ASSERT(tpp->p_next == tpp); 2870 ASSERT(tpp->p_prev == tpp); 2871 page_list_concat(&rootpp, &tpp); 2872 } 2873 ASSERT(rootpp == pp); 2874 2875 page_list_add_pages(rootpp, 0); 2876 page_create_putback(pgcnt); 2877 } 2878 2879 int free_pages = 1; 2880 2881 /* 2882 * This routine attempts to return pages to the cachelist via page_release(). 2883 * It does not *have* to be successful in all cases, since the pageout scanner 2884 * will catch any pages it misses. It does need to be fast and not introduce 2885 * too much overhead. 2886 * 2887 * If a page isn't found on the unlocked sweep of the page_hash bucket, we 2888 * don't lock and retry. This is ok, since the page scanner will eventually 2889 * find any page we miss in free_vp_pages(). 2890 */ 2891 void 2892 free_vp_pages(vnode_t *vp, u_offset_t off, size_t len) 2893 { 2894 page_t *pp; 2895 u_offset_t eoff; 2896 extern int swap_in_range(vnode_t *, u_offset_t, size_t); 2897 2898 eoff = off + len; 2899 2900 if (free_pages == 0) 2901 return; 2902 if (swap_in_range(vp, off, len)) 2903 return; 2904 2905 for (; off < eoff; off += PAGESIZE) { 2906 2907 /* 2908 * find the page using a fast, but inexact search. It'll be OK 2909 * if a few pages slip through the cracks here. 2910 */ 2911 pp = page_exists(vp, off); 2912 2913 /* 2914 * If we didn't find the page (it may not exist), the page 2915 * is free, looks still in use (shared), or we can't lock it, 2916 * just give up. 2917 */ 2918 if (pp == NULL || 2919 PP_ISFREE(pp) || 2920 page_share_cnt(pp) > 0 || 2921 !page_trylock(pp, SE_EXCL)) 2922 continue; 2923 2924 /* 2925 * Once we have locked pp, verify that it's still the 2926 * correct page and not already free 2927 */ 2928 ASSERT(PAGE_LOCKED_SE(pp, SE_EXCL)); 2929 if (pp->p_vnode != vp || pp->p_offset != off || PP_ISFREE(pp)) { 2930 page_unlock(pp); 2931 continue; 2932 } 2933 2934 /* 2935 * try to release the page... 2936 */ 2937 (void) page_release(pp, 1); 2938 } 2939 } 2940 2941 /* 2942 * Reclaim the given page from the free list. 2943 * Returns 1 on success or 0 on failure. 2944 * 2945 * The page is unlocked if it can't be reclaimed (when freemem == 0). 2946 * If `lock' is non-null, it will be dropped and re-acquired if 2947 * the routine must wait while freemem is 0. 2948 * 2949 * As it turns out, boot_getpages() does this. It picks a page, 2950 * based on where OBP mapped in some address, gets its pfn, searches 2951 * the memsegs, locks the page, then pulls it off the free list! 2952 */ 2953 int 2954 page_reclaim(page_t *pp, kmutex_t *lock) 2955 { 2956 struct pcf *p; 2957 uint_t pcf_index; 2958 struct cpu *cpup; 2959 uint_t i; 2960 pgcnt_t npgs, need; 2961 pgcnt_t collected = 0; 2962 2963 ASSERT(lock != NULL ? MUTEX_HELD(lock) : 1); 2964 ASSERT(PAGE_EXCL(pp) && PP_ISFREE(pp)); 2965 2966 npgs = page_get_pagecnt(pp->p_szc); 2967 2968 /* 2969 * If `freemem' is 0, we cannot reclaim this page from the 2970 * freelist, so release every lock we might hold: the page, 2971 * and the `lock' before blocking. 2972 * 2973 * The only way `freemem' can become 0 while there are pages 2974 * marked free (have their p->p_free bit set) is when the 2975 * system is low on memory and doing a page_create(). In 2976 * order to guarantee that once page_create() starts acquiring 2977 * pages it will be able to get all that it needs since `freemem' 2978 * was decreased by the requested amount. So, we need to release 2979 * this page, and let page_create() have it. 2980 * 2981 * Since `freemem' being zero is not supposed to happen, just 2982 * use the usual hash stuff as a starting point. If that bucket 2983 * is empty, then assume the worst, and start at the beginning 2984 * of the pcf array. If we always start at the beginning 2985 * when acquiring more than one pcf lock, there won't be any 2986 * deadlock problems. 2987 */ 2988 2989 /* TODO: Do we need to test kcage_freemem if PG_NORELOC(pp)? */ 2990 2991 if (freemem <= throttlefree && !page_create_throttle(npgs, 0)) { 2992 pcf_acquire_all(); 2993 goto page_reclaim_nomem; 2994 } 2995 2996 pcf_index = PCF_INDEX(); 2997 p = &pcf[pcf_index]; 2998 mutex_enter(&p->pcf_lock); 2999 if (p->pcf_count >= npgs) { 3000 collected = npgs; 3001 p->pcf_count -= npgs; 3002 } 3003 mutex_exit(&p->pcf_lock); 3004 need = npgs - collected; 3005 3006 if (need > 0) { 3007 VM_STAT_ADD(page_reclaim_zero); 3008 /* 3009 * Check again. Its possible that some other thread 3010 * could have been right behind us, and added one 3011 * to a list somewhere. Acquire each of the pcf locks 3012 * until we find a page. 3013 */ 3014 p = pcf; 3015 for (i = 0; i < PCF_FANOUT; i++) { 3016 mutex_enter(&p->pcf_lock); 3017 if (p->pcf_count) { 3018 if (p->pcf_count >= need) { 3019 p->pcf_count -= need; 3020 collected += need; 3021 need = 0; 3022 break; 3023 } else if (p->pcf_count) { 3024 collected += p->pcf_count; 3025 need -= p->pcf_count; 3026 p->pcf_count = 0; 3027 } 3028 } 3029 p++; 3030 } 3031 3032 if (need > 0) { 3033 page_reclaim_nomem: 3034 /* 3035 * We really can't have page `pp'. 3036 * Time for the no-memory dance with 3037 * page_free(). This is just like 3038 * page_create_wait(). Plus the added 3039 * attraction of releasing whatever mutex 3040 * we held when we were called with in `lock'. 3041 * Page_unlock() will wakeup any thread 3042 * waiting around for this page. 3043 */ 3044 if (lock) { 3045 VM_STAT_ADD(page_reclaim_zero_locked); 3046 mutex_exit(lock); 3047 } 3048 page_unlock(pp); 3049 3050 /* 3051 * get this before we drop all the pcf locks. 3052 */ 3053 mutex_enter(&new_freemem_lock); 3054 3055 p = pcf; 3056 p->pcf_count += collected; 3057 for (i = 0; i < PCF_FANOUT; i++) { 3058 p->pcf_wait++; 3059 mutex_exit(&p->pcf_lock); 3060 p++; 3061 } 3062 3063 freemem_wait++; 3064 cv_wait(&freemem_cv, &new_freemem_lock); 3065 freemem_wait--; 3066 3067 mutex_exit(&new_freemem_lock); 3068 3069 if (lock) { 3070 mutex_enter(lock); 3071 } 3072 return (0); 3073 } 3074 3075 /* 3076 * We beat the PCF bins over the head until 3077 * we got the memory that we wanted. 3078 * The pcf accounting has been done, 3079 * though none of the pcf_wait flags have been set, 3080 * drop the locks and continue on. 3081 */ 3082 ASSERT(collected == npgs); 3083 while (p >= pcf) { 3084 mutex_exit(&p->pcf_lock); 3085 p--; 3086 } 3087 } 3088 3089 /* 3090 * freemem is not protected by any lock. Thus, we cannot 3091 * have any assertion containing freemem here. 3092 */ 3093 freemem -= npgs; 3094 3095 VM_STAT_ADD(pagecnt.pc_reclaim); 3096 if (PP_ISAGED(pp)) { 3097 if (npgs > 1) { 3098 page_list_sub_pages(pp, pp->p_szc); 3099 } else { 3100 page_list_sub(pp, PG_FREE_LIST); 3101 } 3102 TRACE_1(TR_FAC_VM, TR_PAGE_UNFREE_FREE, 3103 "page_reclaim_free:pp %p", pp); 3104 } else { 3105 ASSERT(npgs == 1); 3106 page_list_sub(pp, PG_CACHE_LIST); 3107 TRACE_1(TR_FAC_VM, TR_PAGE_UNFREE_CACHE, 3108 "page_reclaim_cache:pp %p", pp); 3109 } 3110 3111 /* 3112 * clear the p_free & p_age bits since this page is no longer 3113 * on the free list. Notice that there was a brief time where 3114 * a page is marked as free, but is not on the list. 3115 * 3116 * Set the reference bit to protect against immediate pageout. 3117 */ 3118 for (i = 0; i < npgs; i++, pp++) { 3119 PP_CLRFREE(pp); 3120 PP_CLRAGED(pp); 3121 page_set_props(pp, P_REF); 3122 } 3123 3124 CPU_STATS_ENTER_K(); 3125 cpup = CPU; /* get cpup now that CPU cannot change */ 3126 CPU_STATS_ADDQ(cpup, vm, pgrec, 1); 3127 CPU_STATS_ADDQ(cpup, vm, pgfrec, 1); 3128 CPU_STATS_EXIT_K(); 3129 3130 return (1); 3131 } 3132 3133 3134 3135 /* 3136 * Destroy identity of the page and put it back on 3137 * the page free list. Assumes that the caller has 3138 * acquired the "exclusive" lock on the page. 3139 */ 3140 void 3141 page_destroy(page_t *pp, int dontfree) 3142 { 3143 ASSERT((PAGE_EXCL(pp) && 3144 !page_iolock_assert(pp)) || panicstr); 3145 3146 if (pp->p_szc != 0) { 3147 if (pp->p_vnode == NULL || IS_SWAPFSVP(pp->p_vnode) || 3148 pp->p_vnode == &kvp) { 3149 panic("page_destroy: anon or kernel or no vnode " 3150 "large page %p", (void *)pp); 3151 } 3152 page_demote_vp_pages(pp); 3153 ASSERT(pp->p_szc == 0); 3154 } 3155 3156 TRACE_1(TR_FAC_VM, TR_PAGE_DESTROY, "page_destroy:pp %p", pp); 3157 3158 /* 3159 * Unload translations, if any, then hash out the 3160 * page to erase its identity. 3161 */ 3162 (void) hat_pageunload(pp, HAT_FORCE_PGUNLOAD); 3163 page_hashout(pp, NULL); 3164 3165 if (!dontfree) { 3166 /* 3167 * Acquire the "freemem_lock" for availrmem. 3168 * The page_struct_lock need not be acquired for lckcnt 3169 * and cowcnt since the page has an "exclusive" lock. 3170 */ 3171 if ((pp->p_lckcnt != 0) || (pp->p_cowcnt != 0)) { 3172 mutex_enter(&freemem_lock); 3173 if (pp->p_lckcnt != 0) { 3174 availrmem++; 3175 pp->p_lckcnt = 0; 3176 } 3177 if (pp->p_cowcnt != 0) { 3178 availrmem += pp->p_cowcnt; 3179 pp->p_cowcnt = 0; 3180 } 3181 mutex_exit(&freemem_lock); 3182 } 3183 /* 3184 * Put the page on the "free" list. 3185 */ 3186 page_free(pp, 0); 3187 } 3188 } 3189 3190 void 3191 page_destroy_pages(page_t *pp) 3192 { 3193 3194 page_t *tpp, *rootpp = NULL; 3195 pgcnt_t pgcnt = page_get_pagecnt(pp->p_szc); 3196 pgcnt_t i, pglcks = 0; 3197 uint_t szc = pp->p_szc; 3198 3199 ASSERT(pp->p_szc != 0 && pp->p_szc < page_num_pagesizes()); 3200 3201 VM_STAT_ADD(pagecnt.pc_destroy_pages); 3202 3203 TRACE_1(TR_FAC_VM, TR_PAGE_DESTROY, "page_destroy_pages:pp %p", pp); 3204 3205 if ((page_pptonum(pp) & (pgcnt - 1)) != 0) { 3206 panic("page_destroy_pages: not root page %p", (void *)pp); 3207 /*NOTREACHED*/ 3208 } 3209 3210 for (i = 0, tpp = pp; i < pgcnt; i++, tpp++) { 3211 ASSERT((PAGE_EXCL(tpp) && 3212 !page_iolock_assert(tpp)) || panicstr); 3213 (void) hat_pageunload(tpp, HAT_FORCE_PGUNLOAD); 3214 page_hashout(tpp, NULL); 3215 ASSERT(tpp->p_offset == (u_offset_t)-1); 3216 if (tpp->p_lckcnt != 0) { 3217 pglcks++; 3218 tpp->p_lckcnt = 0; 3219 } else if (tpp->p_cowcnt != 0) { 3220 pglcks += tpp->p_cowcnt; 3221 tpp->p_cowcnt = 0; 3222 } 3223 ASSERT(!hat_page_getshare(tpp)); 3224 ASSERT(tpp->p_vnode == NULL); 3225 ASSERT(tpp->p_szc == szc); 3226 3227 PP_SETFREE(tpp); 3228 page_clr_all_props(tpp); 3229 PP_SETAGED(tpp); 3230 ASSERT(tpp->p_next == tpp); 3231 ASSERT(tpp->p_prev == tpp); 3232 page_list_concat(&rootpp, &tpp); 3233 } 3234 3235 ASSERT(rootpp == pp); 3236 if (pglcks != 0) { 3237 mutex_enter(&freemem_lock); 3238 availrmem += pglcks; 3239 mutex_exit(&freemem_lock); 3240 } 3241 3242 page_list_add_pages(rootpp, 0); 3243 page_create_putback(pgcnt); 3244 } 3245 3246 /* 3247 * Similar to page_destroy(), but destroys pages which are 3248 * locked and known to be on the page free list. Since 3249 * the page is known to be free and locked, no one can access 3250 * it. 3251 * 3252 * Also, the number of free pages does not change. 3253 */ 3254 void 3255 page_destroy_free(page_t *pp) 3256 { 3257 ASSERT(PAGE_EXCL(pp)); 3258 ASSERT(PP_ISFREE(pp)); 3259 ASSERT(pp->p_vnode); 3260 ASSERT(hat_page_getattr(pp, P_MOD | P_REF | P_RO) == 0); 3261 ASSERT(!hat_page_is_mapped(pp)); 3262 ASSERT(PP_ISAGED(pp) == 0); 3263 ASSERT(pp->p_szc == 0); 3264 3265 VM_STAT_ADD(pagecnt.pc_destroy_free); 3266 page_list_sub(pp, PG_CACHE_LIST); 3267 3268 page_hashout(pp, NULL); 3269 ASSERT(pp->p_vnode == NULL); 3270 ASSERT(pp->p_offset == (u_offset_t)-1); 3271 ASSERT(pp->p_hash == NULL); 3272 3273 PP_SETAGED(pp); 3274 page_list_add(pp, PG_FREE_LIST | PG_LIST_TAIL); 3275 page_unlock(pp); 3276 3277 mutex_enter(&new_freemem_lock); 3278 if (freemem_wait) { 3279 cv_signal(&freemem_cv); 3280 } 3281 mutex_exit(&new_freemem_lock); 3282 } 3283 3284 /* 3285 * Rename the page "opp" to have an identity specified 3286 * by [vp, off]. If a page already exists with this name 3287 * it is locked and destroyed. Note that the page's 3288 * translations are not unloaded during the rename. 3289 * 3290 * This routine is used by the anon layer to "steal" the 3291 * original page and is not unlike destroying a page and 3292 * creating a new page using the same page frame. 3293 * 3294 * XXX -- Could deadlock if caller 1 tries to rename A to B while 3295 * caller 2 tries to rename B to A. 3296 */ 3297 void 3298 page_rename(page_t *opp, vnode_t *vp, u_offset_t off) 3299 { 3300 page_t *pp; 3301 int olckcnt = 0; 3302 int ocowcnt = 0; 3303 kmutex_t *phm; 3304 ulong_t index; 3305 3306 ASSERT(PAGE_EXCL(opp) && !page_iolock_assert(opp)); 3307 ASSERT(MUTEX_NOT_HELD(page_vnode_mutex(vp))); 3308 ASSERT(PP_ISFREE(opp) == 0); 3309 3310 VM_STAT_ADD(page_rename_count); 3311 3312 TRACE_3(TR_FAC_VM, TR_PAGE_RENAME, 3313 "page rename:pp %p vp %p off %llx", opp, vp, off); 3314 3315 /* 3316 * CacheFS may call page_rename for a large NFS page 3317 * when both CacheFS and NFS mount points are used 3318 * by applications. Demote this large page before 3319 * renaming it, to ensure that there are no "partial" 3320 * large pages left lying around. 3321 */ 3322 if (opp->p_szc != 0) { 3323 vnode_t *ovp = opp->p_vnode; 3324 ASSERT(ovp != NULL); 3325 ASSERT(!IS_SWAPFSVP(ovp)); 3326 ASSERT(ovp != &kvp); 3327 page_demote_vp_pages(opp); 3328 ASSERT(opp->p_szc == 0); 3329 } 3330 3331 page_hashout(opp, NULL); 3332 PP_CLRAGED(opp); 3333 3334 /* 3335 * Acquire the appropriate page hash lock, since 3336 * we're going to rename the page. 3337 */ 3338 index = PAGE_HASH_FUNC(vp, off); 3339 phm = PAGE_HASH_MUTEX(index); 3340 mutex_enter(phm); 3341 top: 3342 /* 3343 * Look for an existing page with this name and destroy it if found. 3344 * By holding the page hash lock all the way to the page_hashin() 3345 * call, we are assured that no page can be created with this 3346 * identity. In the case when the phm lock is dropped to undo any 3347 * hat layer mappings, the existing page is held with an "exclusive" 3348 * lock, again preventing another page from being created with 3349 * this identity. 3350 */ 3351 PAGE_HASH_SEARCH(index, pp, vp, off); 3352 if (pp != NULL) { 3353 VM_STAT_ADD(page_rename_exists); 3354 3355 /* 3356 * As it turns out, this is one of only two places where 3357 * page_lock() needs to hold the passed in lock in the 3358 * successful case. In all of the others, the lock could 3359 * be dropped as soon as the attempt is made to lock 3360 * the page. It is tempting to add yet another arguement, 3361 * PL_KEEP or PL_DROP, to let page_lock know what to do. 3362 */ 3363 if (!page_lock(pp, SE_EXCL, phm, P_RECLAIM)) { 3364 /* 3365 * Went to sleep because the page could not 3366 * be locked. We were woken up when the page 3367 * was unlocked, or when the page was destroyed. 3368 * In either case, `phm' was dropped while we 3369 * slept. Hence we should not just roar through 3370 * this loop. 3371 */ 3372 goto top; 3373 } 3374 3375 /* 3376 * If an existing page is a large page, then demote 3377 * it to ensure that no "partial" large pages are 3378 * "created" after page_rename. An existing page 3379 * can be a CacheFS page, and can't belong to swapfs. 3380 */ 3381 if (hat_page_is_mapped(pp)) { 3382 /* 3383 * Unload translations. Since we hold the 3384 * exclusive lock on this page, the page 3385 * can not be changed while we drop phm. 3386 * This is also not a lock protocol violation, 3387 * but rather the proper way to do things. 3388 */ 3389 mutex_exit(phm); 3390 (void) hat_pageunload(pp, HAT_FORCE_PGUNLOAD); 3391 if (pp->p_szc != 0) { 3392 ASSERT(!IS_SWAPFSVP(vp)); 3393 ASSERT(vp != &kvp); 3394 page_demote_vp_pages(pp); 3395 ASSERT(pp->p_szc == 0); 3396 } 3397 mutex_enter(phm); 3398 } else if (pp->p_szc != 0) { 3399 ASSERT(!IS_SWAPFSVP(vp)); 3400 ASSERT(vp != &kvp); 3401 mutex_exit(phm); 3402 page_demote_vp_pages(pp); 3403 ASSERT(pp->p_szc == 0); 3404 mutex_enter(phm); 3405 } 3406 page_hashout(pp, phm); 3407 } 3408 /* 3409 * Hash in the page with the new identity. 3410 */ 3411 if (!page_hashin(opp, vp, off, phm)) { 3412 /* 3413 * We were holding phm while we searched for [vp, off] 3414 * and only dropped phm if we found and locked a page. 3415 * If we can't create this page now, then some thing 3416 * is really broken. 3417 */ 3418 panic("page_rename: Can't hash in page: %p", (void *)pp); 3419 /*NOTREACHED*/ 3420 } 3421 3422 ASSERT(MUTEX_HELD(phm)); 3423 mutex_exit(phm); 3424 3425 /* 3426 * Now that we have dropped phm, lets get around to finishing up 3427 * with pp. 3428 */ 3429 if (pp != NULL) { 3430 ASSERT(!hat_page_is_mapped(pp)); 3431 /* for now large pages should not end up here */ 3432 ASSERT(pp->p_szc == 0); 3433 /* 3434 * Save the locks for transfer to the new page and then 3435 * clear them so page_free doesn't think they're important. 3436 * The page_struct_lock need not be acquired for lckcnt and 3437 * cowcnt since the page has an "exclusive" lock. 3438 */ 3439 olckcnt = pp->p_lckcnt; 3440 ocowcnt = pp->p_cowcnt; 3441 pp->p_lckcnt = pp->p_cowcnt = 0; 3442 3443 /* 3444 * Put the page on the "free" list after we drop 3445 * the lock. The less work under the lock the better. 3446 */ 3447 /*LINTED: constant in conditional context*/ 3448 VN_DISPOSE(pp, B_FREE, 0, kcred); 3449 } 3450 3451 /* 3452 * Transfer the lock count from the old page (if any). 3453 * The page_struct_lock need not be acquired for lckcnt and 3454 * cowcnt since the page has an "exclusive" lock. 3455 */ 3456 opp->p_lckcnt += olckcnt; 3457 opp->p_cowcnt += ocowcnt; 3458 } 3459 3460 /* 3461 * low level routine to add page `pp' to the hash and vp chains for [vp, offset] 3462 * 3463 * Pages are normally inserted at the start of a vnode's v_pages list. 3464 * If the vnode is VMODSORT and the page is modified, it goes at the end. 3465 * This can happen when a modified page is relocated for DR. 3466 * 3467 * Returns 1 on success and 0 on failure. 3468 */ 3469 static int 3470 page_do_hashin(page_t *pp, vnode_t *vp, u_offset_t offset) 3471 { 3472 page_t **listp; 3473 page_t *tp; 3474 ulong_t index; 3475 3476 ASSERT(PAGE_EXCL(pp)); 3477 ASSERT(vp != NULL); 3478 ASSERT(MUTEX_HELD(page_vnode_mutex(vp))); 3479 3480 /* 3481 * Be sure to set these up before the page is inserted on the hash 3482 * list. As soon as the page is placed on the list some other 3483 * thread might get confused and wonder how this page could 3484 * possibly hash to this list. 3485 */ 3486 pp->p_vnode = vp; 3487 pp->p_offset = offset; 3488 3489 /* 3490 * record if this page is on a swap vnode 3491 */ 3492 if ((vp->v_flag & VISSWAP) != 0) 3493 PP_SETSWAP(pp); 3494 3495 index = PAGE_HASH_FUNC(vp, offset); 3496 ASSERT(MUTEX_HELD(PAGE_HASH_MUTEX(index))); 3497 listp = &page_hash[index]; 3498 3499 /* 3500 * If this page is already hashed in, fail this attempt to add it. 3501 */ 3502 for (tp = *listp; tp != NULL; tp = tp->p_hash) { 3503 if (tp->p_vnode == vp && tp->p_offset == offset) { 3504 pp->p_vnode = NULL; 3505 pp->p_offset = (u_offset_t)(-1); 3506 return (0); 3507 } 3508 } 3509 pp->p_hash = *listp; 3510 *listp = pp; 3511 3512 /* 3513 * Add the page to the vnode's list of pages 3514 */ 3515 if (vp->v_pages != NULL && IS_VMODSORT(vp) && hat_ismod(pp)) 3516 listp = &vp->v_pages->p_vpprev->p_vpnext; 3517 else 3518 listp = &vp->v_pages; 3519 3520 page_vpadd(listp, pp); 3521 3522 return (1); 3523 } 3524 3525 /* 3526 * Add page `pp' to both the hash and vp chains for [vp, offset]. 3527 * 3528 * Returns 1 on success and 0 on failure. 3529 * If hold is passed in, it is not dropped. 3530 */ 3531 int 3532 page_hashin(page_t *pp, vnode_t *vp, u_offset_t offset, kmutex_t *hold) 3533 { 3534 kmutex_t *phm = NULL; 3535 kmutex_t *vphm; 3536 int rc; 3537 3538 ASSERT(MUTEX_NOT_HELD(page_vnode_mutex(vp))); 3539 3540 TRACE_3(TR_FAC_VM, TR_PAGE_HASHIN, 3541 "page_hashin:pp %p vp %p offset %llx", 3542 pp, vp, offset); 3543 3544 VM_STAT_ADD(hashin_count); 3545 3546 if (hold != NULL) 3547 phm = hold; 3548 else { 3549 VM_STAT_ADD(hashin_not_held); 3550 phm = PAGE_HASH_MUTEX(PAGE_HASH_FUNC(vp, offset)); 3551 mutex_enter(phm); 3552 } 3553 3554 vphm = page_vnode_mutex(vp); 3555 mutex_enter(vphm); 3556 rc = page_do_hashin(pp, vp, offset); 3557 mutex_exit(vphm); 3558 if (hold == NULL) 3559 mutex_exit(phm); 3560 if (rc == 0) 3561 VM_STAT_ADD(hashin_already); 3562 return (rc); 3563 } 3564 3565 /* 3566 * Remove page ``pp'' from the hash and vp chains and remove vp association. 3567 * All mutexes must be held 3568 */ 3569 static void 3570 page_do_hashout(page_t *pp) 3571 { 3572 page_t **hpp; 3573 page_t *hp; 3574 vnode_t *vp = pp->p_vnode; 3575 3576 ASSERT(vp != NULL); 3577 ASSERT(MUTEX_HELD(page_vnode_mutex(vp))); 3578 3579 /* 3580 * First, take pp off of its hash chain. 3581 */ 3582 hpp = &page_hash[PAGE_HASH_FUNC(vp, pp->p_offset)]; 3583 3584 for (;;) { 3585 hp = *hpp; 3586 if (hp == pp) 3587 break; 3588 if (hp == NULL) { 3589 panic("page_do_hashout"); 3590 /*NOTREACHED*/ 3591 } 3592 hpp = &hp->p_hash; 3593 } 3594 *hpp = pp->p_hash; 3595 3596 /* 3597 * Now remove it from its associated vnode. 3598 */ 3599 if (vp->v_pages) 3600 page_vpsub(&vp->v_pages, pp); 3601 3602 pp->p_hash = NULL; 3603 page_clr_all_props(pp); 3604 PP_CLRSWAP(pp); 3605 pp->p_vnode = NULL; 3606 pp->p_offset = (u_offset_t)-1; 3607 } 3608 3609 /* 3610 * Remove page ``pp'' from the hash and vp chains and remove vp association. 3611 * 3612 * When `phm' is non-NULL it contains the address of the mutex protecting the 3613 * hash list pp is on. It is not dropped. 3614 */ 3615 void 3616 page_hashout(page_t *pp, kmutex_t *phm) 3617 { 3618 vnode_t *vp; 3619 ulong_t index; 3620 kmutex_t *nphm; 3621 kmutex_t *vphm; 3622 kmutex_t *sep; 3623 3624 ASSERT(phm != NULL ? MUTEX_HELD(phm) : 1); 3625 ASSERT(pp->p_vnode != NULL); 3626 ASSERT((PAGE_EXCL(pp) && !page_iolock_assert(pp)) || panicstr); 3627 ASSERT(MUTEX_NOT_HELD(page_vnode_mutex(pp->p_vnode))); 3628 3629 vp = pp->p_vnode; 3630 3631 TRACE_2(TR_FAC_VM, TR_PAGE_HASHOUT, 3632 "page_hashout:pp %p vp %p", pp, vp); 3633 3634 /* Kernel probe */ 3635 TNF_PROBE_2(page_unmap, "vm pagefault", /* CSTYLED */, 3636 tnf_opaque, vnode, vp, 3637 tnf_offset, offset, pp->p_offset); 3638 3639 /* 3640 * 3641 */ 3642 VM_STAT_ADD(hashout_count); 3643 index = PAGE_HASH_FUNC(vp, pp->p_offset); 3644 if (phm == NULL) { 3645 VM_STAT_ADD(hashout_not_held); 3646 nphm = PAGE_HASH_MUTEX(index); 3647 mutex_enter(nphm); 3648 } 3649 ASSERT(phm ? phm == PAGE_HASH_MUTEX(index) : 1); 3650 3651 3652 /* 3653 * grab page vnode mutex and remove it... 3654 */ 3655 vphm = page_vnode_mutex(vp); 3656 mutex_enter(vphm); 3657 3658 page_do_hashout(pp); 3659 3660 mutex_exit(vphm); 3661 if (phm == NULL) 3662 mutex_exit(nphm); 3663 3664 /* 3665 * Wake up processes waiting for this page. The page's 3666 * identity has been changed, and is probably not the 3667 * desired page any longer. 3668 */ 3669 sep = page_se_mutex(pp); 3670 mutex_enter(sep); 3671 pp->p_selock &= ~SE_EWANTED; 3672 if (CV_HAS_WAITERS(&pp->p_cv)) 3673 cv_broadcast(&pp->p_cv); 3674 mutex_exit(sep); 3675 } 3676 3677 /* 3678 * Add the page to the front of a linked list of pages 3679 * using the p_next & p_prev pointers for the list. 3680 * The caller is responsible for protecting the list pointers. 3681 */ 3682 void 3683 page_add(page_t **ppp, page_t *pp) 3684 { 3685 ASSERT(PAGE_EXCL(pp) || (PAGE_SHARED(pp) && page_iolock_assert(pp))); 3686 3687 page_add_common(ppp, pp); 3688 } 3689 3690 3691 3692 /* 3693 * Common code for page_add() and mach_page_add() 3694 */ 3695 void 3696 page_add_common(page_t **ppp, page_t *pp) 3697 { 3698 if (*ppp == NULL) { 3699 pp->p_next = pp->p_prev = pp; 3700 } else { 3701 pp->p_next = *ppp; 3702 pp->p_prev = (*ppp)->p_prev; 3703 (*ppp)->p_prev = pp; 3704 pp->p_prev->p_next = pp; 3705 } 3706 *ppp = pp; 3707 } 3708 3709 3710 /* 3711 * Remove this page from a linked list of pages 3712 * using the p_next & p_prev pointers for the list. 3713 * 3714 * The caller is responsible for protecting the list pointers. 3715 */ 3716 void 3717 page_sub(page_t **ppp, page_t *pp) 3718 { 3719 ASSERT((PP_ISFREE(pp)) ? 1 : 3720 (PAGE_EXCL(pp)) || (PAGE_SHARED(pp) && page_iolock_assert(pp))); 3721 3722 if (*ppp == NULL || pp == NULL) { 3723 panic("page_sub: bad arg(s): pp %p, *ppp %p", 3724 (void *)pp, (void *)(*ppp)); 3725 /*NOTREACHED*/ 3726 } 3727 3728 page_sub_common(ppp, pp); 3729 } 3730 3731 3732 /* 3733 * Common code for page_sub() and mach_page_sub() 3734 */ 3735 void 3736 page_sub_common(page_t **ppp, page_t *pp) 3737 { 3738 if (*ppp == pp) 3739 *ppp = pp->p_next; /* go to next page */ 3740 3741 if (*ppp == pp) 3742 *ppp = NULL; /* page list is gone */ 3743 else { 3744 pp->p_prev->p_next = pp->p_next; 3745 pp->p_next->p_prev = pp->p_prev; 3746 } 3747 pp->p_prev = pp->p_next = pp; /* make pp a list of one */ 3748 } 3749 3750 3751 /* 3752 * Break page list cppp into two lists with npages in the first list. 3753 * The tail is returned in nppp. 3754 */ 3755 void 3756 page_list_break(page_t **oppp, page_t **nppp, pgcnt_t npages) 3757 { 3758 page_t *s1pp = *oppp; 3759 page_t *s2pp; 3760 page_t *e1pp, *e2pp; 3761 long n = 0; 3762 3763 if (s1pp == NULL) { 3764 *nppp = NULL; 3765 return; 3766 } 3767 if (npages == 0) { 3768 *nppp = s1pp; 3769 *oppp = NULL; 3770 return; 3771 } 3772 for (n = 0, s2pp = *oppp; n < npages; n++) { 3773 s2pp = s2pp->p_next; 3774 } 3775 /* Fix head and tail of new lists */ 3776 e1pp = s2pp->p_prev; 3777 e2pp = s1pp->p_prev; 3778 s1pp->p_prev = e1pp; 3779 e1pp->p_next = s1pp; 3780 s2pp->p_prev = e2pp; 3781 e2pp->p_next = s2pp; 3782 3783 /* second list empty */ 3784 if (s2pp == s1pp) { 3785 *oppp = s1pp; 3786 *nppp = NULL; 3787 } else { 3788 *oppp = s1pp; 3789 *nppp = s2pp; 3790 } 3791 } 3792 3793 /* 3794 * Concatenate page list nppp onto the end of list ppp. 3795 */ 3796 void 3797 page_list_concat(page_t **ppp, page_t **nppp) 3798 { 3799 page_t *s1pp, *s2pp, *e1pp, *e2pp; 3800 3801 if (*nppp == NULL) { 3802 return; 3803 } 3804 if (*ppp == NULL) { 3805 *ppp = *nppp; 3806 return; 3807 } 3808 s1pp = *ppp; 3809 e1pp = s1pp->p_prev; 3810 s2pp = *nppp; 3811 e2pp = s2pp->p_prev; 3812 s1pp->p_prev = e2pp; 3813 e2pp->p_next = s1pp; 3814 e1pp->p_next = s2pp; 3815 s2pp->p_prev = e1pp; 3816 } 3817 3818 /* 3819 * return the next page in the page list 3820 */ 3821 page_t * 3822 page_list_next(page_t *pp) 3823 { 3824 return (pp->p_next); 3825 } 3826 3827 3828 /* 3829 * Add the page to the front of the linked list of pages 3830 * using p_vpnext/p_vpprev pointers for the list. 3831 * 3832 * The caller is responsible for protecting the lists. 3833 */ 3834 void 3835 page_vpadd(page_t **ppp, page_t *pp) 3836 { 3837 if (*ppp == NULL) { 3838 pp->p_vpnext = pp->p_vpprev = pp; 3839 } else { 3840 pp->p_vpnext = *ppp; 3841 pp->p_vpprev = (*ppp)->p_vpprev; 3842 (*ppp)->p_vpprev = pp; 3843 pp->p_vpprev->p_vpnext = pp; 3844 } 3845 *ppp = pp; 3846 } 3847 3848 /* 3849 * Remove this page from the linked list of pages 3850 * using p_vpnext/p_vpprev pointers for the list. 3851 * 3852 * The caller is responsible for protecting the lists. 3853 */ 3854 void 3855 page_vpsub(page_t **ppp, page_t *pp) 3856 { 3857 if (*ppp == NULL || pp == NULL) { 3858 panic("page_vpsub: bad arg(s): pp %p, *ppp %p", 3859 (void *)pp, (void *)(*ppp)); 3860 /*NOTREACHED*/ 3861 } 3862 3863 if (*ppp == pp) 3864 *ppp = pp->p_vpnext; /* go to next page */ 3865 3866 if (*ppp == pp) 3867 *ppp = NULL; /* page list is gone */ 3868 else { 3869 pp->p_vpprev->p_vpnext = pp->p_vpnext; 3870 pp->p_vpnext->p_vpprev = pp->p_vpprev; 3871 } 3872 pp->p_vpprev = pp->p_vpnext = pp; /* make pp a list of one */ 3873 } 3874 3875 /* 3876 * Lock a physical page into memory "long term". Used to support "lock 3877 * in memory" functions. Accepts the page to be locked, and a cow variable 3878 * to indicate whether a the lock will travel to the new page during 3879 * a potential copy-on-write. 3880 */ 3881 int 3882 page_pp_lock( 3883 page_t *pp, /* page to be locked */ 3884 int cow, /* cow lock */ 3885 int kernel) /* must succeed -- ignore checking */ 3886 { 3887 int r = 0; /* result -- assume failure */ 3888 3889 ASSERT(PAGE_LOCKED(pp)); 3890 3891 page_struct_lock(pp); 3892 /* 3893 * Acquire the "freemem_lock" for availrmem. 3894 */ 3895 if (cow) { 3896 mutex_enter(&freemem_lock); 3897 if ((availrmem > pages_pp_maximum) && 3898 (pp->p_cowcnt < (ushort_t)PAGE_LOCK_MAXIMUM)) { 3899 availrmem--; 3900 pages_locked++; 3901 mutex_exit(&freemem_lock); 3902 r = 1; 3903 if (++pp->p_cowcnt == (ushort_t)PAGE_LOCK_MAXIMUM) { 3904 cmn_err(CE_WARN, 3905 "COW lock limit reached on pfn 0x%lx", 3906 page_pptonum(pp)); 3907 } 3908 } else 3909 mutex_exit(&freemem_lock); 3910 } else { 3911 if (pp->p_lckcnt) { 3912 if (pp->p_lckcnt < (ushort_t)PAGE_LOCK_MAXIMUM) { 3913 r = 1; 3914 if (++pp->p_lckcnt == 3915 (ushort_t)PAGE_LOCK_MAXIMUM) { 3916 cmn_err(CE_WARN, "Page lock limit " 3917 "reached on pfn 0x%lx", 3918 page_pptonum(pp)); 3919 } 3920 } 3921 } else { 3922 if (kernel) { 3923 /* availrmem accounting done by caller */ 3924 ++pp->p_lckcnt; 3925 r = 1; 3926 } else { 3927 mutex_enter(&freemem_lock); 3928 if (availrmem > pages_pp_maximum) { 3929 availrmem--; 3930 pages_locked++; 3931 ++pp->p_lckcnt; 3932 r = 1; 3933 } 3934 mutex_exit(&freemem_lock); 3935 } 3936 } 3937 } 3938 page_struct_unlock(pp); 3939 return (r); 3940 } 3941 3942 /* 3943 * Decommit a lock on a physical page frame. Account for cow locks if 3944 * appropriate. 3945 */ 3946 void 3947 page_pp_unlock( 3948 page_t *pp, /* page to be unlocked */ 3949 int cow, /* expect cow lock */ 3950 int kernel) /* this was a kernel lock */ 3951 { 3952 ASSERT(PAGE_LOCKED(pp)); 3953 3954 page_struct_lock(pp); 3955 /* 3956 * Acquire the "freemem_lock" for availrmem. 3957 * If cowcnt or lcknt is already 0 do nothing; i.e., we 3958 * could be called to unlock even if nothing is locked. This could 3959 * happen if locked file pages were truncated (removing the lock) 3960 * and the file was grown again and new pages faulted in; the new 3961 * pages are unlocked but the segment still thinks they're locked. 3962 */ 3963 if (cow) { 3964 if (pp->p_cowcnt) { 3965 mutex_enter(&freemem_lock); 3966 pp->p_cowcnt--; 3967 availrmem++; 3968 pages_locked--; 3969 mutex_exit(&freemem_lock); 3970 } 3971 } else { 3972 if (pp->p_lckcnt && --pp->p_lckcnt == 0) { 3973 if (!kernel) { 3974 mutex_enter(&freemem_lock); 3975 availrmem++; 3976 pages_locked--; 3977 mutex_exit(&freemem_lock); 3978 } 3979 } 3980 } 3981 page_struct_unlock(pp); 3982 } 3983 3984 /* 3985 * This routine reserves availrmem for npages; 3986 * flags: KM_NOSLEEP or KM_SLEEP 3987 * returns 1 on success or 0 on failure 3988 */ 3989 int 3990 page_resv(pgcnt_t npages, uint_t flags) 3991 { 3992 mutex_enter(&freemem_lock); 3993 while (availrmem < tune.t_minarmem + npages) { 3994 if (flags & KM_NOSLEEP) { 3995 mutex_exit(&freemem_lock); 3996 return (0); 3997 } 3998 mutex_exit(&freemem_lock); 3999 page_needfree(npages); 4000 kmem_reap(); 4001 delay(hz >> 2); 4002 page_needfree(-(spgcnt_t)npages); 4003 mutex_enter(&freemem_lock); 4004 } 4005 availrmem -= npages; 4006 mutex_exit(&freemem_lock); 4007 return (1); 4008 } 4009 4010 /* 4011 * This routine unreserves availrmem for npages; 4012 */ 4013 void 4014 page_unresv(pgcnt_t npages) 4015 { 4016 mutex_enter(&freemem_lock); 4017 availrmem += npages; 4018 mutex_exit(&freemem_lock); 4019 } 4020 4021 /* 4022 * See Statement at the beginning of segvn_lockop() regarding 4023 * the way we handle cowcnts and lckcnts. 4024 * 4025 * Transfer cowcnt on 'opp' to cowcnt on 'npp' if the vpage 4026 * that breaks COW has PROT_WRITE. 4027 * 4028 * Note that, we may also break COW in case we are softlocking 4029 * on read access during physio; 4030 * in this softlock case, the vpage may not have PROT_WRITE. 4031 * So, we need to transfer lckcnt on 'opp' to lckcnt on 'npp' 4032 * if the vpage doesn't have PROT_WRITE. 4033 * 4034 * This routine is never called if we are stealing a page 4035 * in anon_private. 4036 * 4037 * The caller subtracted from availrmem for read only mapping. 4038 * if lckcnt is 1 increment availrmem. 4039 */ 4040 void 4041 page_pp_useclaim( 4042 page_t *opp, /* original page frame losing lock */ 4043 page_t *npp, /* new page frame gaining lock */ 4044 uint_t write_perm) /* set if vpage has PROT_WRITE */ 4045 { 4046 int payback = 0; 4047 4048 ASSERT(PAGE_LOCKED(opp)); 4049 ASSERT(PAGE_LOCKED(npp)); 4050 4051 page_struct_lock(opp); 4052 4053 ASSERT(npp->p_cowcnt == 0); 4054 ASSERT(npp->p_lckcnt == 0); 4055 4056 /* Don't use claim if nothing is locked (see page_pp_unlock above) */ 4057 if ((write_perm && opp->p_cowcnt != 0) || 4058 (!write_perm && opp->p_lckcnt != 0)) { 4059 4060 if (write_perm) { 4061 npp->p_cowcnt++; 4062 ASSERT(opp->p_cowcnt != 0); 4063 opp->p_cowcnt--; 4064 } else { 4065 4066 ASSERT(opp->p_lckcnt != 0); 4067 4068 /* 4069 * We didn't need availrmem decremented if p_lckcnt on 4070 * original page is 1. Here, we are unlocking 4071 * read-only copy belonging to original page and 4072 * are locking a copy belonging to new page. 4073 */ 4074 if (opp->p_lckcnt == 1) 4075 payback = 1; 4076 4077 npp->p_lckcnt++; 4078 opp->p_lckcnt--; 4079 } 4080 } 4081 if (payback) { 4082 mutex_enter(&freemem_lock); 4083 availrmem++; 4084 pages_useclaim--; 4085 mutex_exit(&freemem_lock); 4086 } 4087 page_struct_unlock(opp); 4088 } 4089 4090 /* 4091 * Simple claim adjust functions -- used to support changes in 4092 * claims due to changes in access permissions. Used by segvn_setprot(). 4093 */ 4094 int 4095 page_addclaim(page_t *pp) 4096 { 4097 int r = 0; /* result */ 4098 4099 ASSERT(PAGE_LOCKED(pp)); 4100 4101 page_struct_lock(pp); 4102 ASSERT(pp->p_lckcnt != 0); 4103 4104 if (pp->p_lckcnt == 1) { 4105 if (pp->p_cowcnt < (ushort_t)PAGE_LOCK_MAXIMUM) { 4106 --pp->p_lckcnt; 4107 r = 1; 4108 if (++pp->p_cowcnt == (ushort_t)PAGE_LOCK_MAXIMUM) { 4109 cmn_err(CE_WARN, 4110 "COW lock limit reached on pfn 0x%lx", 4111 page_pptonum(pp)); 4112 } 4113 } 4114 } else { 4115 mutex_enter(&freemem_lock); 4116 if ((availrmem > pages_pp_maximum) && 4117 (pp->p_cowcnt < (ushort_t)PAGE_LOCK_MAXIMUM)) { 4118 --availrmem; 4119 ++pages_claimed; 4120 mutex_exit(&freemem_lock); 4121 --pp->p_lckcnt; 4122 r = 1; 4123 if (++pp->p_cowcnt == (ushort_t)PAGE_LOCK_MAXIMUM) { 4124 cmn_err(CE_WARN, 4125 "COW lock limit reached on pfn 0x%lx", 4126 page_pptonum(pp)); 4127 } 4128 } else 4129 mutex_exit(&freemem_lock); 4130 } 4131 page_struct_unlock(pp); 4132 return (r); 4133 } 4134 4135 int 4136 page_subclaim(page_t *pp) 4137 { 4138 int r = 0; 4139 4140 ASSERT(PAGE_LOCKED(pp)); 4141 4142 page_struct_lock(pp); 4143 ASSERT(pp->p_cowcnt != 0); 4144 4145 if (pp->p_lckcnt) { 4146 if (pp->p_lckcnt < (ushort_t)PAGE_LOCK_MAXIMUM) { 4147 r = 1; 4148 /* 4149 * for availrmem 4150 */ 4151 mutex_enter(&freemem_lock); 4152 availrmem++; 4153 pages_claimed--; 4154 mutex_exit(&freemem_lock); 4155 4156 pp->p_cowcnt--; 4157 4158 if (++pp->p_lckcnt == (ushort_t)PAGE_LOCK_MAXIMUM) { 4159 cmn_err(CE_WARN, 4160 "Page lock limit reached on pfn 0x%lx", 4161 page_pptonum(pp)); 4162 } 4163 } 4164 } else { 4165 r = 1; 4166 pp->p_cowcnt--; 4167 pp->p_lckcnt++; 4168 } 4169 page_struct_unlock(pp); 4170 return (r); 4171 } 4172 4173 int 4174 page_addclaim_pages(page_t **ppa) 4175 { 4176 4177 pgcnt_t lckpgs = 0, pg_idx; 4178 4179 VM_STAT_ADD(pagecnt.pc_addclaim_pages); 4180 4181 mutex_enter(&page_llock); 4182 for (pg_idx = 0; ppa[pg_idx] != NULL; pg_idx++) { 4183 4184 ASSERT(PAGE_LOCKED(ppa[pg_idx])); 4185 ASSERT(ppa[pg_idx]->p_lckcnt != 0); 4186 if (ppa[pg_idx]->p_cowcnt == (ushort_t)PAGE_LOCK_MAXIMUM) { 4187 mutex_exit(&page_llock); 4188 return (0); 4189 } 4190 if (ppa[pg_idx]->p_lckcnt > 1) 4191 lckpgs++; 4192 } 4193 4194 if (lckpgs != 0) { 4195 mutex_enter(&freemem_lock); 4196 if (availrmem >= pages_pp_maximum + lckpgs) { 4197 availrmem -= lckpgs; 4198 pages_claimed += lckpgs; 4199 } else { 4200 mutex_exit(&freemem_lock); 4201 mutex_exit(&page_llock); 4202 return (0); 4203 } 4204 mutex_exit(&freemem_lock); 4205 } 4206 4207 for (pg_idx = 0; ppa[pg_idx] != NULL; pg_idx++) { 4208 ppa[pg_idx]->p_lckcnt--; 4209 ppa[pg_idx]->p_cowcnt++; 4210 } 4211 mutex_exit(&page_llock); 4212 return (1); 4213 } 4214 4215 int 4216 page_subclaim_pages(page_t **ppa) 4217 { 4218 pgcnt_t ulckpgs = 0, pg_idx; 4219 4220 VM_STAT_ADD(pagecnt.pc_subclaim_pages); 4221 4222 mutex_enter(&page_llock); 4223 for (pg_idx = 0; ppa[pg_idx] != NULL; pg_idx++) { 4224 4225 ASSERT(PAGE_LOCKED(ppa[pg_idx])); 4226 ASSERT(ppa[pg_idx]->p_cowcnt != 0); 4227 if (ppa[pg_idx]->p_lckcnt == (ushort_t)PAGE_LOCK_MAXIMUM) { 4228 mutex_exit(&page_llock); 4229 return (0); 4230 } 4231 if (ppa[pg_idx]->p_lckcnt != 0) 4232 ulckpgs++; 4233 } 4234 4235 if (ulckpgs != 0) { 4236 mutex_enter(&freemem_lock); 4237 availrmem += ulckpgs; 4238 pages_claimed -= ulckpgs; 4239 mutex_exit(&freemem_lock); 4240 } 4241 4242 for (pg_idx = 0; ppa[pg_idx] != NULL; pg_idx++) { 4243 ppa[pg_idx]->p_cowcnt--; 4244 ppa[pg_idx]->p_lckcnt++; 4245 4246 } 4247 mutex_exit(&page_llock); 4248 return (1); 4249 } 4250 4251 page_t * 4252 page_numtopp(pfn_t pfnum, se_t se) 4253 { 4254 page_t *pp; 4255 4256 retry: 4257 pp = page_numtopp_nolock(pfnum); 4258 if (pp == NULL) { 4259 return ((page_t *)NULL); 4260 } 4261 4262 /* 4263 * Acquire the appropriate lock on the page. 4264 */ 4265 while (!page_lock(pp, se, (kmutex_t *)NULL, P_RECLAIM)) { 4266 if (page_pptonum(pp) != pfnum) 4267 goto retry; 4268 continue; 4269 } 4270 4271 if (page_pptonum(pp) != pfnum) { 4272 page_unlock(pp); 4273 goto retry; 4274 } 4275 4276 return (pp); 4277 } 4278 4279 page_t * 4280 page_numtopp_noreclaim(pfn_t pfnum, se_t se) 4281 { 4282 page_t *pp; 4283 4284 retry: 4285 pp = page_numtopp_nolock(pfnum); 4286 if (pp == NULL) { 4287 return ((page_t *)NULL); 4288 } 4289 4290 /* 4291 * Acquire the appropriate lock on the page. 4292 */ 4293 while (!page_lock(pp, se, (kmutex_t *)NULL, P_NO_RECLAIM)) { 4294 if (page_pptonum(pp) != pfnum) 4295 goto retry; 4296 continue; 4297 } 4298 4299 if (page_pptonum(pp) != pfnum) { 4300 page_unlock(pp); 4301 goto retry; 4302 } 4303 4304 return (pp); 4305 } 4306 4307 /* 4308 * This routine is like page_numtopp, but will only return page structs 4309 * for pages which are ok for loading into hardware using the page struct. 4310 */ 4311 page_t * 4312 page_numtopp_nowait(pfn_t pfnum, se_t se) 4313 { 4314 page_t *pp; 4315 4316 retry: 4317 pp = page_numtopp_nolock(pfnum); 4318 if (pp == NULL) { 4319 return ((page_t *)NULL); 4320 } 4321 4322 /* 4323 * Try to acquire the appropriate lock on the page. 4324 */ 4325 if (PP_ISFREE(pp)) 4326 pp = NULL; 4327 else { 4328 if (!page_trylock(pp, se)) 4329 pp = NULL; 4330 else { 4331 if (page_pptonum(pp) != pfnum) { 4332 page_unlock(pp); 4333 goto retry; 4334 } 4335 if (PP_ISFREE(pp)) { 4336 page_unlock(pp); 4337 pp = NULL; 4338 } 4339 } 4340 } 4341 return (pp); 4342 } 4343 4344 /* 4345 * Returns a count of dirty pages that are in the process 4346 * of being written out. If 'cleanit' is set, try to push the page. 4347 */ 4348 pgcnt_t 4349 page_busy(int cleanit) 4350 { 4351 page_t *page0 = page_first(); 4352 page_t *pp = page0; 4353 pgcnt_t nppbusy = 0; 4354 u_offset_t off; 4355 4356 do { 4357 vnode_t *vp = pp->p_vnode; 4358 4359 /* 4360 * A page is a candidate for syncing if it is: 4361 * 4362 * (a) On neither the freelist nor the cachelist 4363 * (b) Hashed onto a vnode 4364 * (c) Not a kernel page 4365 * (d) Dirty 4366 * (e) Not part of a swapfile 4367 * (f) a page which belongs to a real vnode; eg has a non-null 4368 * v_vfsp pointer. 4369 * (g) Backed by a filesystem which doesn't have a 4370 * stubbed-out sync operation 4371 */ 4372 if (!PP_ISFREE(pp) && vp != NULL && vp != &kvp && 4373 hat_ismod(pp) && !IS_SWAPVP(vp) && vp->v_vfsp != NULL && 4374 vfs_can_sync(vp->v_vfsp)) { 4375 nppbusy++; 4376 vfs_syncprogress(); 4377 4378 if (!cleanit) 4379 continue; 4380 if (!page_trylock(pp, SE_EXCL)) 4381 continue; 4382 4383 if (PP_ISFREE(pp) || vp == NULL || IS_SWAPVP(vp) || 4384 pp->p_lckcnt != 0 || pp->p_cowcnt != 0 || 4385 !(hat_pagesync(pp, 4386 HAT_SYNC_DONTZERO | HAT_SYNC_STOPON_MOD) & P_MOD)) { 4387 page_unlock(pp); 4388 continue; 4389 } 4390 off = pp->p_offset; 4391 VN_HOLD(vp); 4392 page_unlock(pp); 4393 (void) VOP_PUTPAGE(vp, off, PAGESIZE, 4394 B_ASYNC | B_FREE, kcred); 4395 VN_RELE(vp); 4396 } 4397 } while ((pp = page_next(pp)) != page0); 4398 4399 return (nppbusy); 4400 } 4401 4402 void page_invalidate_pages(void); 4403 4404 /* 4405 * callback handler to vm sub-system 4406 * 4407 * callers make sure no recursive entries to this func. 4408 */ 4409 /*ARGSUSED*/ 4410 boolean_t 4411 callb_vm_cpr(void *arg, int code) 4412 { 4413 if (code == CB_CODE_CPR_CHKPT) 4414 page_invalidate_pages(); 4415 return (B_TRUE); 4416 } 4417 4418 /* 4419 * Invalidate all pages of the system. 4420 * It shouldn't be called until all user page activities are all stopped. 4421 */ 4422 void 4423 page_invalidate_pages() 4424 { 4425 page_t *pp; 4426 page_t *page0; 4427 pgcnt_t nbusypages; 4428 int retry = 0; 4429 const int MAXRETRIES = 4; 4430 #if defined(__sparc) 4431 extern struct vnode prom_ppages; 4432 #endif /* __sparc */ 4433 4434 top: 4435 /* 4436 * Flush dirty pages and destory the clean ones. 4437 */ 4438 nbusypages = 0; 4439 4440 pp = page0 = page_first(); 4441 do { 4442 struct vnode *vp; 4443 u_offset_t offset; 4444 int mod; 4445 4446 /* 4447 * skip the page if it has no vnode or the page associated 4448 * with the kernel vnode or prom allocated kernel mem. 4449 */ 4450 #if defined(__sparc) 4451 if ((vp = pp->p_vnode) == NULL || vp == &kvp || 4452 vp == &prom_ppages) 4453 #else /* x86 doesn't have prom or prom_ppage */ 4454 if ((vp = pp->p_vnode) == NULL || vp == &kvp) 4455 #endif /* __sparc */ 4456 continue; 4457 4458 /* 4459 * skip the page which is already free invalidated. 4460 */ 4461 if (PP_ISFREE(pp) && PP_ISAGED(pp)) 4462 continue; 4463 4464 /* 4465 * skip pages that are already locked or can't be "exclusively" 4466 * locked or are already free. After we lock the page, check 4467 * the free and age bits again to be sure it's not destroied 4468 * yet. 4469 * To achieve max. parallelization, we use page_trylock instead 4470 * of page_lock so that we don't get block on individual pages 4471 * while we have thousands of other pages to process. 4472 */ 4473 if (!page_trylock(pp, SE_EXCL)) { 4474 nbusypages++; 4475 continue; 4476 } else if (PP_ISFREE(pp)) { 4477 if (!PP_ISAGED(pp)) { 4478 page_destroy_free(pp); 4479 } else { 4480 page_unlock(pp); 4481 } 4482 continue; 4483 } 4484 /* 4485 * Is this page involved in some I/O? shared? 4486 * 4487 * The page_struct_lock need not be acquired to 4488 * examine these fields since the page has an 4489 * "exclusive" lock. 4490 */ 4491 if (pp->p_lckcnt != 0 || pp->p_cowcnt != 0) { 4492 page_unlock(pp); 4493 continue; 4494 } 4495 4496 if (vp->v_type == VCHR) { 4497 panic("vp->v_type == VCHR"); 4498 /*NOTREACHED*/ 4499 } 4500 4501 if (!page_try_demote_pages(pp)) { 4502 page_unlock(pp); 4503 continue; 4504 } 4505 4506 /* 4507 * Check the modified bit. Leave the bits alone in hardware 4508 * (they will be modified if we do the putpage). 4509 */ 4510 mod = (hat_pagesync(pp, HAT_SYNC_DONTZERO | HAT_SYNC_STOPON_MOD) 4511 & P_MOD); 4512 if (mod) { 4513 offset = pp->p_offset; 4514 /* 4515 * Hold the vnode before releasing the page lock 4516 * to prevent it from being freed and re-used by 4517 * some other thread. 4518 */ 4519 VN_HOLD(vp); 4520 page_unlock(pp); 4521 /* 4522 * No error return is checked here. Callers such as 4523 * cpr deals with the dirty pages at the dump time 4524 * if this putpage fails. 4525 */ 4526 (void) VOP_PUTPAGE(vp, offset, PAGESIZE, B_INVAL, 4527 kcred); 4528 VN_RELE(vp); 4529 } else { 4530 page_destroy(pp, 0); 4531 } 4532 } while ((pp = page_next(pp)) != page0); 4533 if (nbusypages && retry++ < MAXRETRIES) { 4534 delay(1); 4535 goto top; 4536 } 4537 } 4538 4539 /* 4540 * Replace the page "old" with the page "new" on the page hash and vnode lists 4541 * 4542 * the replacemnt must be done in place, ie the equivalent sequence: 4543 * 4544 * vp = old->p_vnode; 4545 * off = old->p_offset; 4546 * page_do_hashout(old) 4547 * page_do_hashin(new, vp, off) 4548 * 4549 * doesn't work, since 4550 * 1) if old is the only page on the vnode, the v_pages list has a window 4551 * where it looks empty. This will break file system assumptions. 4552 * and 4553 * 2) pvn_vplist_dirty() can't deal with pages moving on the v_pages list. 4554 */ 4555 static void 4556 page_do_relocate_hash(page_t *new, page_t *old) 4557 { 4558 page_t **hash_list; 4559 vnode_t *vp = old->p_vnode; 4560 kmutex_t *sep; 4561 4562 ASSERT(PAGE_EXCL(old)); 4563 ASSERT(PAGE_EXCL(new)); 4564 ASSERT(vp != NULL); 4565 ASSERT(MUTEX_HELD(page_vnode_mutex(vp))); 4566 ASSERT(MUTEX_HELD(PAGE_HASH_MUTEX(PAGE_HASH_FUNC(vp, old->p_offset)))); 4567 4568 /* 4569 * First find old page on the page hash list 4570 */ 4571 hash_list = &page_hash[PAGE_HASH_FUNC(vp, old->p_offset)]; 4572 4573 for (;;) { 4574 if (*hash_list == old) 4575 break; 4576 if (*hash_list == NULL) { 4577 panic("page_do_hashout"); 4578 /*NOTREACHED*/ 4579 } 4580 hash_list = &(*hash_list)->p_hash; 4581 } 4582 4583 /* 4584 * update new and replace old with new on the page hash list 4585 */ 4586 new->p_vnode = old->p_vnode; 4587 new->p_offset = old->p_offset; 4588 new->p_hash = old->p_hash; 4589 *hash_list = new; 4590 4591 if ((new->p_vnode->v_flag & VISSWAP) != 0) 4592 PP_SETSWAP(new); 4593 4594 /* 4595 * replace old with new on the vnode's page list 4596 */ 4597 if (old->p_vpnext == old) { 4598 new->p_vpnext = new; 4599 new->p_vpprev = new; 4600 } else { 4601 new->p_vpnext = old->p_vpnext; 4602 new->p_vpprev = old->p_vpprev; 4603 new->p_vpnext->p_vpprev = new; 4604 new->p_vpprev->p_vpnext = new; 4605 } 4606 if (vp->v_pages == old) 4607 vp->v_pages = new; 4608 4609 /* 4610 * clear out the old page 4611 */ 4612 old->p_hash = NULL; 4613 old->p_vpnext = NULL; 4614 old->p_vpprev = NULL; 4615 old->p_vnode = NULL; 4616 PP_CLRSWAP(old); 4617 old->p_offset = (u_offset_t)-1; 4618 page_clr_all_props(old); 4619 4620 /* 4621 * Wake up processes waiting for this page. The page's 4622 * identity has been changed, and is probably not the 4623 * desired page any longer. 4624 */ 4625 sep = page_se_mutex(old); 4626 mutex_enter(sep); 4627 old->p_selock &= ~SE_EWANTED; 4628 if (CV_HAS_WAITERS(&old->p_cv)) 4629 cv_broadcast(&old->p_cv); 4630 mutex_exit(sep); 4631 } 4632 4633 /* 4634 * This function moves the identity of page "pp_old" to page "pp_new". 4635 * Both pages must be locked on entry. "pp_new" is free, has no identity, 4636 * and need not be hashed out from anywhere. 4637 */ 4638 void 4639 page_relocate_hash(page_t *pp_new, page_t *pp_old) 4640 { 4641 vnode_t *vp = pp_old->p_vnode; 4642 u_offset_t off = pp_old->p_offset; 4643 kmutex_t *phm, *vphm; 4644 4645 /* 4646 * Rehash two pages 4647 */ 4648 ASSERT(PAGE_EXCL(pp_old)); 4649 ASSERT(PAGE_EXCL(pp_new)); 4650 ASSERT(vp != NULL); 4651 ASSERT(pp_new->p_vnode == NULL); 4652 4653 /* 4654 * hashout then hashin while holding the mutexes 4655 */ 4656 phm = PAGE_HASH_MUTEX(PAGE_HASH_FUNC(vp, off)); 4657 mutex_enter(phm); 4658 vphm = page_vnode_mutex(vp); 4659 mutex_enter(vphm); 4660 4661 page_do_relocate_hash(pp_new, pp_old); 4662 4663 mutex_exit(vphm); 4664 mutex_exit(phm); 4665 4666 /* 4667 * The page_struct_lock need not be acquired for lckcnt and 4668 * cowcnt since the page has an "exclusive" lock. 4669 */ 4670 ASSERT(pp_new->p_lckcnt == 0); 4671 ASSERT(pp_new->p_cowcnt == 0); 4672 pp_new->p_lckcnt = pp_old->p_lckcnt; 4673 pp_new->p_cowcnt = pp_old->p_cowcnt; 4674 pp_old->p_lckcnt = pp_old->p_cowcnt = 0; 4675 4676 /* The following comment preserved from page_flip(). */ 4677 /* XXX - Do we need to protect fsdata? */ 4678 pp_new->p_fsdata = pp_old->p_fsdata; 4679 } 4680 4681 /* 4682 * Helper routine used to lock all remaining members of a 4683 * large page. The caller is responsible for passing in a locked 4684 * pp. If pp is a large page, then it succeeds in locking all the 4685 * remaining constituent pages or it returns with only the 4686 * original page locked. 4687 * 4688 * Returns 1 on success, 0 on failure. 4689 * 4690 * If success is returned this routine gurantees p_szc for all constituent 4691 * pages of a large page pp belongs to can't change. To achieve this we 4692 * recheck szc of pp after locking all constituent pages and retry if szc 4693 * changed (it could only decrease). Since hat_page_demote() needs an EXCL 4694 * lock on one of constituent pages it can't be running after all constituent 4695 * pages are locked. hat_page_demote() with a lock on a constituent page 4696 * outside of this large page (i.e. pp belonged to a larger large page) is 4697 * already done with all constituent pages of pp since the root's p_szc is 4698 * changed last. Thefore no need to synchronize with hat_page_demote() that 4699 * locked a constituent page outside of pp's current large page. 4700 */ 4701 #ifdef DEBUG 4702 uint32_t gpg_trylock_mtbf = 0; 4703 #endif 4704 4705 int 4706 group_page_trylock(page_t *pp, se_t se) 4707 { 4708 page_t *tpp; 4709 pgcnt_t npgs, i, j; 4710 uint_t pszc = pp->p_szc; 4711 4712 #ifdef DEBUG 4713 if (gpg_trylock_mtbf && !(gethrtime() % gpg_trylock_mtbf)) { 4714 return (0); 4715 } 4716 #endif 4717 4718 if (pp != PP_GROUPLEADER(pp, pszc)) { 4719 return (0); 4720 } 4721 4722 retry: 4723 ASSERT(PAGE_LOCKED_SE(pp, se)); 4724 ASSERT(!PP_ISFREE(pp)); 4725 if (pszc == 0) { 4726 return (1); 4727 } 4728 npgs = page_get_pagecnt(pszc); 4729 tpp = pp + 1; 4730 for (i = 1; i < npgs; i++, tpp++) { 4731 if (!page_trylock(tpp, se)) { 4732 tpp = pp + 1; 4733 for (j = 1; j < i; j++, tpp++) { 4734 page_unlock(tpp); 4735 } 4736 return (0); 4737 } 4738 } 4739 if (pp->p_szc != pszc) { 4740 ASSERT(pp->p_szc < pszc); 4741 ASSERT(pp->p_vnode != NULL && pp->p_vnode != &kvp && 4742 !IS_SWAPFSVP(pp->p_vnode)); 4743 tpp = pp + 1; 4744 for (i = 1; i < npgs; i++, tpp++) { 4745 page_unlock(tpp); 4746 } 4747 pszc = pp->p_szc; 4748 goto retry; 4749 } 4750 return (1); 4751 } 4752 4753 void 4754 group_page_unlock(page_t *pp) 4755 { 4756 page_t *tpp; 4757 pgcnt_t npgs, i; 4758 4759 ASSERT(PAGE_LOCKED(pp)); 4760 ASSERT(!PP_ISFREE(pp)); 4761 ASSERT(pp == PP_PAGEROOT(pp)); 4762 npgs = page_get_pagecnt(pp->p_szc); 4763 for (i = 1, tpp = pp + 1; i < npgs; i++, tpp++) { 4764 page_unlock(tpp); 4765 } 4766 } 4767 4768 /* 4769 * returns 4770 * 0 : on success and *nrelocp is number of relocated PAGESIZE pages 4771 * ERANGE : this is not a base page 4772 * EBUSY : failure to get locks on the page/pages 4773 * ENOMEM : failure to obtain replacement pages 4774 * EAGAIN : OBP has not yet completed its boot-time handoff to the kernel 4775 * 4776 * Return with all constituent members of target and replacement 4777 * SE_EXCL locked. It is the callers responsibility to drop the 4778 * locks. 4779 */ 4780 int 4781 do_page_relocate( 4782 page_t **target, 4783 page_t **replacement, 4784 int grouplock, 4785 spgcnt_t *nrelocp, 4786 lgrp_t *lgrp) 4787 { 4788 #ifdef DEBUG 4789 page_t *first_repl; 4790 #endif /* DEBUG */ 4791 page_t *repl; 4792 page_t *targ; 4793 page_t *pl = NULL; 4794 uint_t ppattr; 4795 pfn_t pfn, repl_pfn; 4796 uint_t szc; 4797 spgcnt_t npgs, i; 4798 int repl_contig = 0; 4799 uint_t flags = 0; 4800 spgcnt_t dofree = 0; 4801 4802 *nrelocp = 0; 4803 4804 #if defined(__sparc) 4805 /* 4806 * We need to wait till OBP has completed 4807 * its boot-time handoff of its resources to the kernel 4808 * before we allow page relocation 4809 */ 4810 if (page_relocate_ready == 0) { 4811 return (EAGAIN); 4812 } 4813 #endif 4814 4815 /* 4816 * If this is not a base page, 4817 * just return with 0x0 pages relocated. 4818 */ 4819 targ = *target; 4820 ASSERT(PAGE_EXCL(targ)); 4821 ASSERT(!PP_ISFREE(targ)); 4822 szc = targ->p_szc; 4823 ASSERT(szc < mmu_page_sizes); 4824 VM_STAT_ADD(vmm_vmstats.ppr_reloc[szc]); 4825 pfn = targ->p_pagenum; 4826 if (pfn != PFN_BASE(pfn, szc)) { 4827 VM_STAT_ADD(vmm_vmstats.ppr_relocnoroot[szc]); 4828 return (ERANGE); 4829 } 4830 4831 if ((repl = *replacement) != NULL && repl->p_szc >= szc) { 4832 repl_pfn = repl->p_pagenum; 4833 if (repl_pfn != PFN_BASE(repl_pfn, szc)) { 4834 VM_STAT_ADD(vmm_vmstats.ppr_reloc_replnoroot[szc]); 4835 return (ERANGE); 4836 } 4837 repl_contig = 1; 4838 } 4839 4840 /* 4841 * We must lock all members of this large page or we cannot 4842 * relocate any part of it. 4843 */ 4844 if (grouplock != 0 && !group_page_trylock(targ, SE_EXCL)) { 4845 VM_STAT_ADD(vmm_vmstats.ppr_relocnolock[targ->p_szc]); 4846 return (EBUSY); 4847 } 4848 4849 /* 4850 * reread szc it could have been decreased before 4851 * group_page_trylock() was done. 4852 */ 4853 szc = targ->p_szc; 4854 ASSERT(szc < mmu_page_sizes); 4855 VM_STAT_ADD(vmm_vmstats.ppr_reloc[szc]); 4856 ASSERT(pfn == PFN_BASE(pfn, szc)); 4857 4858 npgs = page_get_pagecnt(targ->p_szc); 4859 4860 if (repl == NULL) { 4861 dofree = npgs; /* Size of target page in MMU pages */ 4862 if (!page_create_wait(dofree, 0)) { 4863 if (grouplock != 0) { 4864 group_page_unlock(targ); 4865 } 4866 VM_STAT_ADD(vmm_vmstats.ppr_relocnomem[szc]); 4867 return (ENOMEM); 4868 } 4869 4870 /* 4871 * seg kmem pages require that the target and replacement 4872 * page be the same pagesize. 4873 */ 4874 flags = (targ->p_vnode == &kvp) ? PGR_SAMESZC : 0; 4875 repl = page_get_replacement_page(targ, lgrp, flags); 4876 if (repl == NULL) { 4877 if (grouplock != 0) { 4878 group_page_unlock(targ); 4879 } 4880 page_create_putback(dofree); 4881 VM_STAT_ADD(vmm_vmstats.ppr_relocnomem[szc]); 4882 return (ENOMEM); 4883 } 4884 } 4885 #ifdef DEBUG 4886 else { 4887 ASSERT(PAGE_LOCKED(repl)); 4888 } 4889 #endif /* DEBUG */ 4890 4891 #if defined(__sparc) 4892 /* 4893 * Let hat_page_relocate() complete the relocation if it's kernel page 4894 */ 4895 if (targ->p_vnode == &kvp) { 4896 *replacement = repl; 4897 if (hat_page_relocate(target, replacement, nrelocp) != 0) { 4898 if (grouplock != 0) { 4899 group_page_unlock(targ); 4900 } 4901 if (dofree) { 4902 *replacement = NULL; 4903 page_free_replacement_page(repl); 4904 page_create_putback(dofree); 4905 } 4906 VM_STAT_ADD(vmm_vmstats.ppr_krelocfail[szc]); 4907 return (EAGAIN); 4908 } 4909 VM_STAT_ADD(vmm_vmstats.ppr_relocok[szc]); 4910 return (0); 4911 } 4912 #else 4913 #if defined(lint) 4914 dofree = dofree; 4915 #endif 4916 #endif 4917 4918 #ifdef DEBUG 4919 first_repl = repl; 4920 #endif /* DEBUG */ 4921 4922 for (i = 0; i < npgs; i++) { 4923 ASSERT(PAGE_EXCL(targ)); 4924 4925 (void) hat_pageunload(targ, HAT_FORCE_PGUNLOAD); 4926 4927 ASSERT(hat_page_getshare(targ) == 0); 4928 ASSERT(!PP_ISFREE(targ)); 4929 ASSERT(targ->p_pagenum == (pfn + i)); 4930 ASSERT(repl_contig == 0 || 4931 repl->p_pagenum == (repl_pfn + i)); 4932 4933 /* 4934 * Copy the page contents and attributes then 4935 * relocate the page in the page hash. 4936 */ 4937 ppcopy(targ, repl); 4938 ppattr = hat_page_getattr(targ, (P_MOD | P_REF | P_RO)); 4939 page_clr_all_props(repl); 4940 page_set_props(repl, ppattr); 4941 page_relocate_hash(repl, targ); 4942 4943 ASSERT(hat_page_getshare(targ) == 0); 4944 ASSERT(hat_page_getshare(repl) == 0); 4945 /* 4946 * Now clear the props on targ, after the 4947 * page_relocate_hash(), they no longer 4948 * have any meaning. 4949 */ 4950 page_clr_all_props(targ); 4951 ASSERT(targ->p_next == targ); 4952 ASSERT(targ->p_prev == targ); 4953 page_list_concat(&pl, &targ); 4954 4955 targ++; 4956 if (repl_contig != 0) { 4957 repl++; 4958 } else { 4959 repl = repl->p_next; 4960 } 4961 } 4962 /* assert that we have come full circle with repl */ 4963 ASSERT(repl_contig == 1 || first_repl == repl); 4964 4965 *target = pl; 4966 if (*replacement == NULL) { 4967 ASSERT(first_repl == repl); 4968 *replacement = repl; 4969 } 4970 VM_STAT_ADD(vmm_vmstats.ppr_relocok[szc]); 4971 *nrelocp = npgs; 4972 return (0); 4973 } 4974 /* 4975 * On success returns 0 and *nrelocp the number of PAGESIZE pages relocated. 4976 */ 4977 int 4978 page_relocate( 4979 page_t **target, 4980 page_t **replacement, 4981 int grouplock, 4982 int freetarget, 4983 spgcnt_t *nrelocp, 4984 lgrp_t *lgrp) 4985 { 4986 spgcnt_t ret; 4987 4988 /* do_page_relocate returns 0 on success or errno value */ 4989 ret = do_page_relocate(target, replacement, grouplock, nrelocp, lgrp); 4990 4991 if (ret != 0 || freetarget == 0) { 4992 return (ret); 4993 } 4994 if (*nrelocp == 1) { 4995 ASSERT(*target != NULL); 4996 page_free(*target, 1); 4997 } else { 4998 page_t *tpp = *target; 4999 uint_t szc = tpp->p_szc; 5000 pgcnt_t npgs = page_get_pagecnt(szc); 5001 ASSERT(npgs > 1); 5002 ASSERT(szc != 0); 5003 do { 5004 ASSERT(PAGE_EXCL(tpp)); 5005 ASSERT(!hat_page_is_mapped(tpp)); 5006 ASSERT(tpp->p_szc == szc); 5007 PP_SETFREE(tpp); 5008 PP_SETAGED(tpp); 5009 npgs--; 5010 } while ((tpp = tpp->p_next) != *target); 5011 ASSERT(npgs == 0); 5012 page_list_add_pages(*target, 0); 5013 npgs = page_get_pagecnt(szc); 5014 page_create_putback(npgs); 5015 } 5016 return (ret); 5017 } 5018 5019 /* 5020 * it is up to the caller to deal with pcf accounting. 5021 */ 5022 void 5023 page_free_replacement_page(page_t *pplist) 5024 { 5025 page_t *pp; 5026 5027 while (pplist != NULL) { 5028 /* 5029 * pp_targ is a linked list. 5030 */ 5031 pp = pplist; 5032 if (pp->p_szc == 0) { 5033 page_sub(&pplist, pp); 5034 page_clr_all_props(pp); 5035 PP_SETFREE(pp); 5036 PP_SETAGED(pp); 5037 page_list_add(pp, PG_FREE_LIST | PG_LIST_TAIL); 5038 page_unlock(pp); 5039 VM_STAT_ADD(pagecnt.pc_free_replacement_page[0]); 5040 } else { 5041 spgcnt_t curnpgs = page_get_pagecnt(pp->p_szc); 5042 page_t *tpp; 5043 page_list_break(&pp, &pplist, curnpgs); 5044 tpp = pp; 5045 do { 5046 ASSERT(PAGE_EXCL(tpp)); 5047 ASSERT(!hat_page_is_mapped(tpp)); 5048 page_clr_all_props(pp); 5049 PP_SETFREE(tpp); 5050 PP_SETAGED(tpp); 5051 } while ((tpp = tpp->p_next) != pp); 5052 page_list_add_pages(pp, 0); 5053 VM_STAT_ADD(pagecnt.pc_free_replacement_page[1]); 5054 } 5055 } 5056 } 5057 5058 /* 5059 * Relocate target to non-relocatable replacement page. 5060 */ 5061 int 5062 page_relocate_cage(page_t **target, page_t **replacement) 5063 { 5064 page_t *tpp, *rpp; 5065 spgcnt_t pgcnt, npgs; 5066 int result; 5067 5068 tpp = *target; 5069 5070 ASSERT(PAGE_EXCL(tpp)); 5071 ASSERT(tpp->p_szc == 0); 5072 5073 pgcnt = btop(page_get_pagesize(tpp->p_szc)); 5074 5075 do { 5076 (void) page_create_wait(pgcnt, PG_WAIT | PG_NORELOC); 5077 rpp = page_get_replacement_page(tpp, NULL, PGR_NORELOC); 5078 if (rpp == NULL) { 5079 page_create_putback(pgcnt); 5080 kcage_cageout_wakeup(); 5081 } 5082 } while (rpp == NULL); 5083 5084 ASSERT(PP_ISNORELOC(rpp)); 5085 5086 result = page_relocate(&tpp, &rpp, 0, 1, &npgs, NULL); 5087 5088 if (result == 0) { 5089 *replacement = rpp; 5090 if (pgcnt != npgs) 5091 panic("page_relocate_cage: partial relocation"); 5092 } 5093 5094 return (result); 5095 } 5096 5097 /* 5098 * Release the page lock on a page, place on cachelist 5099 * tail if no longer mapped. Caller can let us know if 5100 * the page is known to be clean. 5101 */ 5102 int 5103 page_release(page_t *pp, int checkmod) 5104 { 5105 int status; 5106 5107 ASSERT(PAGE_LOCKED(pp) && !PP_ISFREE(pp) && 5108 (pp->p_vnode != NULL)); 5109 5110 if (!hat_page_is_mapped(pp) && !IS_SWAPVP(pp->p_vnode) && 5111 ((PAGE_SHARED(pp) && page_tryupgrade(pp)) || PAGE_EXCL(pp)) && 5112 pp->p_lckcnt == 0 && pp->p_cowcnt == 0 && 5113 !hat_page_is_mapped(pp)) { 5114 5115 /* 5116 * If page is modified, unlock it 5117 * 5118 * (p_nrm & P_MOD) bit has the latest stuff because: 5119 * (1) We found that this page doesn't have any mappings 5120 * _after_ holding SE_EXCL and 5121 * (2) We didn't drop SE_EXCL lock after the check in (1) 5122 */ 5123 if (checkmod && hat_ismod(pp)) { 5124 page_unlock(pp); 5125 status = PGREL_MOD; 5126 } else { 5127 /*LINTED: constant in conditional context*/ 5128 VN_DISPOSE(pp, B_FREE, 0, kcred); 5129 status = PGREL_CLEAN; 5130 } 5131 } else { 5132 page_unlock(pp); 5133 status = PGREL_NOTREL; 5134 } 5135 return (status); 5136 } 5137 5138 /* 5139 * Given a constituent page, try to demote the large page on the freelist. 5140 * 5141 * Returns nonzero if the page could be demoted successfully. Returns with 5142 * the constituent page still locked. 5143 */ 5144 int 5145 page_try_demote_free_pages(page_t *pp) 5146 { 5147 page_t *rootpp = pp; 5148 pfn_t pfn = page_pptonum(pp); 5149 spgcnt_t npgs; 5150 uint_t szc = pp->p_szc; 5151 5152 ASSERT(PP_ISFREE(pp)); 5153 ASSERT(PAGE_EXCL(pp)); 5154 5155 /* 5156 * Adjust rootpp and lock it, if `pp' is not the base 5157 * constituent page. 5158 */ 5159 npgs = page_get_pagecnt(pp->p_szc); 5160 if (npgs == 1) { 5161 return (0); 5162 } 5163 5164 if (!IS_P2ALIGNED(pfn, npgs)) { 5165 pfn = P2ALIGN(pfn, npgs); 5166 rootpp = page_numtopp_nolock(pfn); 5167 } 5168 5169 if (pp != rootpp && !page_trylock(rootpp, SE_EXCL)) { 5170 return (0); 5171 } 5172 5173 if (rootpp->p_szc != szc) { 5174 if (pp != rootpp) 5175 page_unlock(rootpp); 5176 return (0); 5177 } 5178 5179 page_demote_free_pages(rootpp); 5180 5181 if (pp != rootpp) 5182 page_unlock(rootpp); 5183 5184 ASSERT(PP_ISFREE(pp)); 5185 ASSERT(PAGE_EXCL(pp)); 5186 return (1); 5187 } 5188 5189 /* 5190 * Given a constituent page, try to demote the large page. 5191 * 5192 * Returns nonzero if the page could be demoted successfully. Returns with 5193 * the constituent page still locked. 5194 */ 5195 int 5196 page_try_demote_pages(page_t *pp) 5197 { 5198 page_t *tpp, *rootpp = pp; 5199 pfn_t pfn = page_pptonum(pp); 5200 spgcnt_t i, npgs; 5201 uint_t szc = pp->p_szc; 5202 vnode_t *vp = pp->p_vnode; 5203 5204 ASSERT(PAGE_EXCL(pp)); 5205 5206 VM_STAT_ADD(pagecnt.pc_try_demote_pages[0]); 5207 5208 if (pp->p_szc == 0) { 5209 VM_STAT_ADD(pagecnt.pc_try_demote_pages[1]); 5210 return (1); 5211 } 5212 5213 if (vp != NULL && !IS_SWAPFSVP(vp) && vp != &kvp) { 5214 VM_STAT_ADD(pagecnt.pc_try_demote_pages[2]); 5215 page_demote_vp_pages(pp); 5216 ASSERT(pp->p_szc == 0); 5217 return (1); 5218 } 5219 5220 /* 5221 * Adjust rootpp if passed in is not the base 5222 * constituent page. 5223 */ 5224 npgs = page_get_pagecnt(pp->p_szc); 5225 ASSERT(npgs > 1); 5226 if (!IS_P2ALIGNED(pfn, npgs)) { 5227 pfn = P2ALIGN(pfn, npgs); 5228 rootpp = page_numtopp_nolock(pfn); 5229 VM_STAT_ADD(pagecnt.pc_try_demote_pages[3]); 5230 ASSERT(rootpp->p_vnode != NULL); 5231 ASSERT(rootpp->p_szc == szc); 5232 } 5233 5234 /* 5235 * We can't demote kernel pages since we can't hat_unload() 5236 * the mappings. 5237 */ 5238 if (rootpp->p_vnode == &kvp) 5239 return (0); 5240 5241 /* 5242 * Attempt to lock all constituent pages except the page passed 5243 * in since it's already locked. 5244 */ 5245 for (tpp = rootpp, i = 0; i < npgs; i++, tpp++) { 5246 ASSERT(!PP_ISFREE(tpp)); 5247 ASSERT(tpp->p_vnode != NULL); 5248 5249 if (tpp != pp && !page_trylock(tpp, SE_EXCL)) 5250 break; 5251 ASSERT(tpp->p_szc == rootpp->p_szc); 5252 ASSERT(page_pptonum(tpp) == page_pptonum(rootpp) + i); 5253 } 5254 5255 /* 5256 * If we failed to lock them all then unlock what we have 5257 * locked so far and bail. 5258 */ 5259 if (i < npgs) { 5260 tpp = rootpp; 5261 while (i-- > 0) { 5262 if (tpp != pp) 5263 page_unlock(tpp); 5264 tpp++; 5265 } 5266 VM_STAT_ADD(pagecnt.pc_try_demote_pages[4]); 5267 return (0); 5268 } 5269 5270 for (tpp = rootpp, i = 0; i < npgs; i++, tpp++) { 5271 ASSERT(PAGE_EXCL(tpp)); 5272 (void) hat_pageunload(tpp, HAT_FORCE_PGUNLOAD); 5273 tpp->p_szc = 0; 5274 } 5275 5276 /* 5277 * Unlock all pages except the page passed in. 5278 */ 5279 for (tpp = rootpp, i = 0; i < npgs; i++, tpp++) { 5280 ASSERT(!hat_page_is_mapped(tpp)); 5281 if (tpp != pp) 5282 page_unlock(tpp); 5283 } 5284 5285 VM_STAT_ADD(pagecnt.pc_try_demote_pages[5]); 5286 return (1); 5287 } 5288 5289 /* 5290 * Called by page_free() and page_destroy() to demote the page size code 5291 * (p_szc) to 0 (since we can't just put a single PAGESIZE page with non zero 5292 * p_szc on free list, neither can we just clear p_szc of a single page_t 5293 * within a large page since it will break other code that relies on p_szc 5294 * being the same for all page_t's of a large page). Anonymous pages should 5295 * never end up here because anon_map_getpages() cannot deal with p_szc 5296 * changes after a single constituent page is locked. While anonymous or 5297 * kernel large pages are demoted or freed the entire large page at a time 5298 * with all constituent pages locked EXCL for the file system pages we 5299 * have to be able to demote a large page (i.e. decrease all constituent pages 5300 * p_szc) with only just an EXCL lock on one of constituent pages. The reason 5301 * we can easily deal with anonymous page demotion the entire large page at a 5302 * time is that those operation originate at address space level and concern 5303 * the entire large page region with actual demotion only done when pages are 5304 * not shared with any other processes (therefore we can always get EXCL lock 5305 * on all anonymous constituent pages after clearing segment page 5306 * cache). However file system pages can be truncated or invalidated at a 5307 * PAGESIZE level from the file system side and end up in page_free() or 5308 * page_destroy() (we also allow only part of the large page to be SOFTLOCKed 5309 * and therfore pageout should be able to demote a large page by EXCL locking 5310 * any constituent page that is not under SOFTLOCK). In those cases we cannot 5311 * rely on being able to lock EXCL all constituent pages. 5312 * 5313 * To prevent szc changes on file system pages one has to lock all constituent 5314 * pages at least SHARED (or call page_szc_lock()). The only subsystem that 5315 * doesn't rely on locking all constituent pages (or using page_szc_lock()) to 5316 * prevent szc changes is hat layer that uses its own page level mlist 5317 * locks. hat assumes that szc doesn't change after mlist lock for a page is 5318 * taken. Therefore we need to change szc under hat level locks if we only 5319 * have an EXCL lock on a single constituent page and hat still references any 5320 * of constituent pages. (Note we can't "ignore" hat layer by simply 5321 * hat_pageunload() all constituent pages without having EXCL locks on all of 5322 * constituent pages). We use hat_page_demote() call to safely demote szc of 5323 * all constituent pages under hat locks when we only have an EXCL lock on one 5324 * of constituent pages. 5325 * 5326 * This routine calls page_szc_lock() before calling hat_page_demote() to 5327 * allow segvn in one special case not to lock all constituent pages SHARED 5328 * before calling hat_memload_array() that relies on p_szc not changeing even 5329 * before hat level mlist lock is taken. In that case segvn uses 5330 * page_szc_lock() to prevent hat_page_demote() changeing p_szc values. 5331 * 5332 * Anonymous or kernel page demotion still has to lock all pages exclusively 5333 * and do hat_pageunload() on all constituent pages before demoting the page 5334 * therefore there's no need for anonymous or kernel page demotion to use 5335 * hat_page_demote() mechanism. 5336 * 5337 * hat_page_demote() removes all large mappings that map pp and then decreases 5338 * p_szc starting from the last constituent page of the large page. By working 5339 * from the tail of a large page in pfn decreasing order allows one looking at 5340 * the root page to know that hat_page_demote() is done for root's szc area. 5341 * e.g. if a root page has szc 1 one knows it only has to lock all constituent 5342 * pages within szc 1 area to prevent szc changes because hat_page_demote() 5343 * that started on this page when it had szc > 1 is done for this szc 1 area. 5344 * 5345 * We are guranteed that all constituent pages of pp's large page belong to 5346 * the same vnode with the consecutive offsets increasing in the direction of 5347 * the pfn i.e. the identity of constituent pages can't change until their 5348 * p_szc is decreased. Therefore it's safe for hat_page_demote() to remove 5349 * large mappings to pp even though we don't lock any constituent page except 5350 * pp (i.e. we won't unload e.g. kernel locked page). 5351 */ 5352 static void 5353 page_demote_vp_pages(page_t *pp) 5354 { 5355 kmutex_t *mtx; 5356 5357 ASSERT(PAGE_EXCL(pp)); 5358 ASSERT(!PP_ISFREE(pp)); 5359 ASSERT(pp->p_vnode != NULL); 5360 ASSERT(!IS_SWAPFSVP(pp->p_vnode)); 5361 ASSERT(pp->p_vnode != &kvp); 5362 5363 VM_STAT_ADD(pagecnt.pc_demote_pages[0]); 5364 5365 mtx = page_szc_lock(pp); 5366 if (mtx != NULL) { 5367 hat_page_demote(pp); 5368 mutex_exit(mtx); 5369 } 5370 ASSERT(pp->p_szc == 0); 5371 } 5372 5373 /* 5374 * Mark any existing pages for migration in the given range 5375 */ 5376 void 5377 page_mark_migrate(struct seg *seg, caddr_t addr, size_t len, 5378 struct anon_map *amp, ulong_t anon_index, vnode_t *vp, 5379 u_offset_t vnoff, int rflag) 5380 { 5381 struct anon *ap; 5382 vnode_t *curvp; 5383 lgrp_t *from; 5384 pgcnt_t i; 5385 pgcnt_t nlocked; 5386 u_offset_t off; 5387 pfn_t pfn; 5388 size_t pgsz; 5389 size_t segpgsz; 5390 pgcnt_t pages; 5391 uint_t pszc; 5392 page_t **ppa; 5393 pgcnt_t ppa_nentries; 5394 page_t *pp; 5395 caddr_t va; 5396 ulong_t an_idx; 5397 anon_sync_obj_t cookie; 5398 5399 ASSERT(seg->s_as && AS_LOCK_HELD(seg->s_as, &seg->s_as->a_lock)); 5400 5401 /* 5402 * Don't do anything if don't need to do lgroup optimizations 5403 * on this system 5404 */ 5405 if (!lgrp_optimizations()) 5406 return; 5407 5408 /* 5409 * Align address and length to (potentially large) page boundary 5410 */ 5411 segpgsz = page_get_pagesize(seg->s_szc); 5412 addr = (caddr_t)P2ALIGN((uintptr_t)addr, segpgsz); 5413 if (rflag) 5414 len = P2ROUNDUP(len, segpgsz); 5415 5416 /* 5417 * Allocate page array to accomodate largest page size 5418 */ 5419 pgsz = page_get_pagesize(page_num_pagesizes() - 1); 5420 ppa_nentries = btop(pgsz); 5421 ppa = kmem_zalloc(ppa_nentries * sizeof (page_t *), KM_SLEEP); 5422 5423 /* 5424 * Do one (large) page at a time 5425 */ 5426 va = addr; 5427 while (va < addr + len) { 5428 /* 5429 * Lookup (root) page for vnode and offset corresponding to 5430 * this virtual address 5431 * Try anonmap first since there may be copy-on-write 5432 * pages, but initialize vnode pointer and offset using 5433 * vnode arguments just in case there isn't an amp. 5434 */ 5435 curvp = vp; 5436 off = vnoff + va - seg->s_base; 5437 if (amp) { 5438 ANON_LOCK_ENTER(&->a_rwlock, RW_READER); 5439 an_idx = anon_index + seg_page(seg, va); 5440 anon_array_enter(amp, an_idx, &cookie); 5441 ap = anon_get_ptr(amp->ahp, an_idx); 5442 if (ap) 5443 swap_xlate(ap, &curvp, &off); 5444 anon_array_exit(&cookie); 5445 ANON_LOCK_EXIT(&->a_rwlock); 5446 } 5447 5448 pp = NULL; 5449 if (curvp) 5450 pp = page_lookup(curvp, off, SE_SHARED); 5451 5452 /* 5453 * If there isn't a page at this virtual address, 5454 * skip to next page 5455 */ 5456 if (pp == NULL) { 5457 va += PAGESIZE; 5458 continue; 5459 } 5460 5461 /* 5462 * Figure out which lgroup this page is in for kstats 5463 */ 5464 pfn = page_pptonum(pp); 5465 from = lgrp_pfn_to_lgrp(pfn); 5466 5467 /* 5468 * Get page size, and round up and skip to next page boundary 5469 * if unaligned address 5470 */ 5471 pszc = pp->p_szc; 5472 pgsz = page_get_pagesize(pszc); 5473 pages = btop(pgsz); 5474 if (!IS_P2ALIGNED(va, pgsz) || 5475 !IS_P2ALIGNED(pfn, pages) || 5476 pgsz > segpgsz) { 5477 pgsz = MIN(pgsz, segpgsz); 5478 page_unlock(pp); 5479 i = btop(P2END((uintptr_t)va, pgsz) - 5480 (uintptr_t)va); 5481 va = (caddr_t)P2END((uintptr_t)va, pgsz); 5482 lgrp_stat_add(from->lgrp_id, LGRP_PMM_FAIL_PGS, i); 5483 continue; 5484 } 5485 5486 /* 5487 * Upgrade to exclusive lock on page 5488 */ 5489 if (!page_tryupgrade(pp)) { 5490 page_unlock(pp); 5491 va += pgsz; 5492 lgrp_stat_add(from->lgrp_id, LGRP_PMM_FAIL_PGS, 5493 btop(pgsz)); 5494 continue; 5495 } 5496 5497 /* 5498 * Remember pages locked exclusively and how many 5499 */ 5500 ppa[0] = pp; 5501 nlocked = 1; 5502 5503 /* 5504 * Lock constituent pages if this is large page 5505 */ 5506 if (pages > 1) { 5507 /* 5508 * Lock all constituents except root page, since it 5509 * should be locked already. 5510 */ 5511 for (i = 1; i < pages; i++) { 5512 pp++; 5513 if (!page_trylock(pp, SE_EXCL)) { 5514 break; 5515 } 5516 if (PP_ISFREE(pp) || 5517 pp->p_szc != pszc) { 5518 /* 5519 * hat_page_demote() raced in with us. 5520 */ 5521 ASSERT(!IS_SWAPFSVP(curvp)); 5522 page_unlock(pp); 5523 break; 5524 } 5525 ppa[nlocked] = pp; 5526 nlocked++; 5527 } 5528 } 5529 5530 /* 5531 * If all constituent pages couldn't be locked, 5532 * unlock pages locked so far and skip to next page. 5533 */ 5534 if (nlocked != pages) { 5535 for (i = 0; i < nlocked; i++) 5536 page_unlock(ppa[i]); 5537 va += pgsz; 5538 lgrp_stat_add(from->lgrp_id, LGRP_PMM_FAIL_PGS, 5539 btop(pgsz)); 5540 continue; 5541 } 5542 5543 /* 5544 * hat_page_demote() can no longer happen 5545 * since last cons page had the right p_szc after 5546 * all cons pages were locked. all cons pages 5547 * should now have the same p_szc. 5548 */ 5549 5550 /* 5551 * All constituent pages locked successfully, so mark 5552 * large page for migration and unload the mappings of 5553 * constituent pages, so a fault will occur on any part of the 5554 * large page 5555 */ 5556 PP_SETMIGRATE(ppa[0]); 5557 for (i = 0; i < nlocked; i++) { 5558 pp = ppa[i]; 5559 (void) hat_pageunload(pp, HAT_FORCE_PGUNLOAD); 5560 ASSERT(hat_page_getshare(pp) == 0); 5561 page_unlock(pp); 5562 } 5563 lgrp_stat_add(from->lgrp_id, LGRP_PMM_PGS, nlocked); 5564 5565 va += pgsz; 5566 } 5567 kmem_free(ppa, ppa_nentries * sizeof (page_t *)); 5568 } 5569 5570 /* 5571 * Migrate any pages that have been marked for migration in the given range 5572 */ 5573 void 5574 page_migrate( 5575 struct seg *seg, 5576 caddr_t addr, 5577 page_t **ppa, 5578 pgcnt_t npages) 5579 { 5580 lgrp_t *from; 5581 lgrp_t *to; 5582 page_t *newpp; 5583 page_t *pp; 5584 pfn_t pfn; 5585 size_t pgsz; 5586 spgcnt_t page_cnt; 5587 spgcnt_t i; 5588 uint_t pszc; 5589 5590 ASSERT(seg->s_as && AS_LOCK_HELD(seg->s_as, &seg->s_as->a_lock)); 5591 5592 while (npages > 0) { 5593 pp = *ppa; 5594 pszc = pp->p_szc; 5595 pgsz = page_get_pagesize(pszc); 5596 page_cnt = btop(pgsz); 5597 5598 /* 5599 * Check to see whether this page is marked for migration 5600 * 5601 * Assume that root page of large page is marked for 5602 * migration and none of the other constituent pages 5603 * are marked. This really simplifies clearing the 5604 * migrate bit by not having to clear it from each 5605 * constituent page. 5606 * 5607 * note we don't want to relocate an entire large page if 5608 * someone is only using one subpage. 5609 */ 5610 if (npages < page_cnt) 5611 break; 5612 5613 /* 5614 * Is it marked for migration? 5615 */ 5616 if (!PP_ISMIGRATE(pp)) 5617 goto next; 5618 5619 /* 5620 * Determine lgroups that page is being migrated between 5621 */ 5622 pfn = page_pptonum(pp); 5623 if (!IS_P2ALIGNED(pfn, page_cnt)) { 5624 break; 5625 } 5626 from = lgrp_pfn_to_lgrp(pfn); 5627 to = lgrp_mem_choose(seg, addr, pgsz); 5628 5629 /* 5630 * Check to see whether we are trying to migrate page to lgroup 5631 * where it is allocated already 5632 */ 5633 if (to == from) { 5634 PP_CLRMIGRATE(pp); 5635 goto next; 5636 } 5637 5638 /* 5639 * Need to get exclusive lock's to migrate 5640 */ 5641 for (i = 0; i < page_cnt; i++) { 5642 ASSERT(PAGE_LOCKED(ppa[i])); 5643 if (page_pptonum(ppa[i]) != pfn + i || 5644 ppa[i]->p_szc != pszc) { 5645 break; 5646 } 5647 if (!page_tryupgrade(ppa[i])) { 5648 lgrp_stat_add(from->lgrp_id, 5649 LGRP_PM_FAIL_LOCK_PGS, 5650 page_cnt); 5651 break; 5652 } 5653 } 5654 if (i != page_cnt) { 5655 while (--i != -1) { 5656 page_downgrade(ppa[i]); 5657 } 5658 goto next; 5659 } 5660 5661 (void) page_create_wait(page_cnt, PG_WAIT); 5662 newpp = page_get_replacement_page(pp, to, PGR_SAMESZC); 5663 if (newpp == NULL) { 5664 page_create_putback(page_cnt); 5665 for (i = 0; i < page_cnt; i++) { 5666 page_downgrade(ppa[i]); 5667 } 5668 lgrp_stat_add(to->lgrp_id, LGRP_PM_FAIL_ALLOC_PGS, 5669 page_cnt); 5670 goto next; 5671 } 5672 ASSERT(newpp->p_szc == pszc); 5673 /* 5674 * Clear migrate bit and relocate page 5675 */ 5676 PP_CLRMIGRATE(pp); 5677 if (page_relocate(&pp, &newpp, 0, 1, &page_cnt, to)) { 5678 panic("page_migrate: page_relocate failed"); 5679 } 5680 ASSERT(page_cnt * PAGESIZE == pgsz); 5681 5682 /* 5683 * Keep stats for number of pages migrated from and to 5684 * each lgroup 5685 */ 5686 lgrp_stat_add(from->lgrp_id, LGRP_PM_SRC_PGS, page_cnt); 5687 lgrp_stat_add(to->lgrp_id, LGRP_PM_DEST_PGS, page_cnt); 5688 /* 5689 * update the page_t array we were passed in and 5690 * unlink constituent pages of a large page. 5691 */ 5692 for (i = 0; i < page_cnt; ++i, ++pp) { 5693 ASSERT(PAGE_EXCL(newpp)); 5694 ASSERT(newpp->p_szc == pszc); 5695 ppa[i] = newpp; 5696 pp = newpp; 5697 page_sub(&newpp, pp); 5698 page_downgrade(pp); 5699 } 5700 ASSERT(newpp == NULL); 5701 next: 5702 addr += pgsz; 5703 ppa += page_cnt; 5704 npages -= page_cnt; 5705 } 5706 } 5707 5708 ulong_t mem_waiters = 0; 5709 ulong_t max_count = 20; 5710 #define MAX_DELAY 0x1ff 5711 5712 /* 5713 * Check if enough memory is available to proceed. 5714 * Depending on system configuration and how much memory is 5715 * reserved for swap we need to check against two variables. 5716 * e.g. on systems with little physical swap availrmem can be 5717 * more reliable indicator of how much memory is available. 5718 * On systems with large phys swap freemem can be better indicator. 5719 * If freemem drops below threshold level don't return an error 5720 * immediately but wake up pageout to free memory and block. 5721 * This is done number of times. If pageout is not able to free 5722 * memory within certain time return an error. 5723 * The same applies for availrmem but kmem_reap is used to 5724 * free memory. 5725 */ 5726 int 5727 page_mem_avail(pgcnt_t npages) 5728 { 5729 ulong_t count; 5730 5731 #if defined(__i386) 5732 if (freemem > desfree + npages && 5733 availrmem > swapfs_reserve + npages && 5734 btop(vmem_size(heap_arena, VMEM_FREE)) > tune.t_minarmem + 5735 npages) 5736 return (1); 5737 #else 5738 if (freemem > desfree + npages && 5739 availrmem > swapfs_reserve + npages) 5740 return (1); 5741 #endif 5742 5743 count = max_count; 5744 atomic_add_long(&mem_waiters, 1); 5745 5746 while (freemem < desfree + npages && --count) { 5747 cv_signal(&proc_pageout->p_cv); 5748 if (delay_sig(hz + (mem_waiters & MAX_DELAY))) { 5749 atomic_add_long(&mem_waiters, -1); 5750 return (0); 5751 } 5752 } 5753 if (count == 0) { 5754 atomic_add_long(&mem_waiters, -1); 5755 return (0); 5756 } 5757 5758 count = max_count; 5759 while (availrmem < swapfs_reserve + npages && --count) { 5760 kmem_reap(); 5761 if (delay_sig(hz + (mem_waiters & MAX_DELAY))) { 5762 atomic_add_long(&mem_waiters, -1); 5763 return (0); 5764 } 5765 } 5766 atomic_add_long(&mem_waiters, -1); 5767 if (count == 0) 5768 return (0); 5769 5770 #if defined(__i386) 5771 if (btop(vmem_size(heap_arena, VMEM_FREE)) < 5772 tune.t_minarmem + npages) 5773 return (0); 5774 #endif 5775 return (1); 5776 } 5777 5778 #define MAX_CNT 60 /* max num of iterations */ 5779 /* 5780 * Reclaim/reserve availrmem for npages. 5781 * If there is not enough memory start reaping seg, kmem caches. 5782 * Start pageout scanner (via page_needfree()). 5783 * Exit after ~ MAX_CNT s regardless of how much memory has been released. 5784 * Note: There is no guarantee that any availrmem will be freed as 5785 * this memory typically is locked (kernel heap) or reserved for swap. 5786 * Also due to memory fragmentation kmem allocator may not be able 5787 * to free any memory (single user allocated buffer will prevent 5788 * freeing slab or a page). 5789 */ 5790 int 5791 page_reclaim_mem(pgcnt_t npages, pgcnt_t epages, int adjust) 5792 { 5793 int i = 0; 5794 int ret = 0; 5795 pgcnt_t deficit; 5796 pgcnt_t old_availrmem; 5797 5798 mutex_enter(&freemem_lock); 5799 old_availrmem = availrmem - 1; 5800 while ((availrmem < tune.t_minarmem + npages + epages) && 5801 (old_availrmem < availrmem) && (i++ < MAX_CNT)) { 5802 old_availrmem = availrmem; 5803 deficit = tune.t_minarmem + npages + epages - availrmem; 5804 mutex_exit(&freemem_lock); 5805 page_needfree(deficit); 5806 seg_preap(); 5807 kmem_reap(); 5808 delay(hz); 5809 page_needfree(-(spgcnt_t)deficit); 5810 mutex_enter(&freemem_lock); 5811 } 5812 5813 if (adjust && (availrmem >= tune.t_minarmem + npages + epages)) { 5814 availrmem -= npages; 5815 ret = 1; 5816 } 5817 5818 mutex_exit(&freemem_lock); 5819 5820 return (ret); 5821 } 5822 5823 /* 5824 * Search the memory segments to locate the desired page. Within a 5825 * segment, pages increase linearly with one page structure per 5826 * physical page frame (size PAGESIZE). The search begins 5827 * with the segment that was accessed last, to take advantage of locality. 5828 * If the hint misses, we start from the beginning of the sorted memseg list 5829 */ 5830 5831 5832 /* 5833 * Some data structures for pfn to pp lookup. 5834 */ 5835 ulong_t mhash_per_slot; 5836 struct memseg *memseg_hash[N_MEM_SLOTS]; 5837 5838 page_t * 5839 page_numtopp_nolock(pfn_t pfnum) 5840 { 5841 struct memseg *seg; 5842 page_t *pp; 5843 vm_cpu_data_t *vc = CPU->cpu_vm_data; 5844 5845 ASSERT(vc != NULL); 5846 5847 MEMSEG_STAT_INCR(nsearch); 5848 5849 /* Try last winner first */ 5850 if (((seg = vc->vc_pnum_memseg) != NULL) && 5851 (pfnum >= seg->pages_base) && (pfnum < seg->pages_end)) { 5852 MEMSEG_STAT_INCR(nlastwon); 5853 pp = seg->pages + (pfnum - seg->pages_base); 5854 if (pp->p_pagenum == pfnum) 5855 return ((page_t *)pp); 5856 } 5857 5858 /* Else Try hash */ 5859 if (((seg = memseg_hash[MEMSEG_PFN_HASH(pfnum)]) != NULL) && 5860 (pfnum >= seg->pages_base) && (pfnum < seg->pages_end)) { 5861 MEMSEG_STAT_INCR(nhashwon); 5862 vc->vc_pnum_memseg = seg; 5863 pp = seg->pages + (pfnum - seg->pages_base); 5864 if (pp->p_pagenum == pfnum) 5865 return ((page_t *)pp); 5866 } 5867 5868 /* Else Brute force */ 5869 for (seg = memsegs; seg != NULL; seg = seg->next) { 5870 if (pfnum >= seg->pages_base && pfnum < seg->pages_end) { 5871 vc->vc_pnum_memseg = seg; 5872 pp = seg->pages + (pfnum - seg->pages_base); 5873 return ((page_t *)pp); 5874 } 5875 } 5876 vc->vc_pnum_memseg = NULL; 5877 MEMSEG_STAT_INCR(nnotfound); 5878 return ((page_t *)NULL); 5879 5880 } 5881 5882 struct memseg * 5883 page_numtomemseg_nolock(pfn_t pfnum) 5884 { 5885 struct memseg *seg; 5886 page_t *pp; 5887 5888 /* Try hash */ 5889 if (((seg = memseg_hash[MEMSEG_PFN_HASH(pfnum)]) != NULL) && 5890 (pfnum >= seg->pages_base) && (pfnum < seg->pages_end)) { 5891 pp = seg->pages + (pfnum - seg->pages_base); 5892 if (pp->p_pagenum == pfnum) 5893 return (seg); 5894 } 5895 5896 /* Else Brute force */ 5897 for (seg = memsegs; seg != NULL; seg = seg->next) { 5898 if (pfnum >= seg->pages_base && pfnum < seg->pages_end) { 5899 return (seg); 5900 } 5901 } 5902 return ((struct memseg *)NULL); 5903 } 5904 5905 /* 5906 * Given a page and a count return the page struct that is 5907 * n structs away from the current one in the global page 5908 * list. 5909 * 5910 * This function wraps to the first page upon 5911 * reaching the end of the memseg list. 5912 */ 5913 page_t * 5914 page_nextn(page_t *pp, ulong_t n) 5915 { 5916 struct memseg *seg; 5917 page_t *ppn; 5918 vm_cpu_data_t *vc = (vm_cpu_data_t *)CPU->cpu_vm_data; 5919 5920 ASSERT(vc != NULL); 5921 5922 if (((seg = vc->vc_pnext_memseg) == NULL) || 5923 (seg->pages_base == seg->pages_end) || 5924 !(pp >= seg->pages && pp < seg->epages)) { 5925 5926 for (seg = memsegs; seg; seg = seg->next) { 5927 if (pp >= seg->pages && pp < seg->epages) 5928 break; 5929 } 5930 5931 if (seg == NULL) { 5932 /* Memory delete got in, return something valid. */ 5933 /* TODO: fix me. */ 5934 seg = memsegs; 5935 pp = seg->pages; 5936 } 5937 } 5938 5939 /* check for wraparound - possible if n is large */ 5940 while ((ppn = (pp + n)) >= seg->epages || ppn < pp) { 5941 n -= seg->epages - pp; 5942 seg = seg->next; 5943 if (seg == NULL) 5944 seg = memsegs; 5945 pp = seg->pages; 5946 } 5947 vc->vc_pnext_memseg = seg; 5948 return (ppn); 5949 } 5950 5951 /* 5952 * Initialize for a loop using page_next_scan_large(). 5953 */ 5954 page_t * 5955 page_next_scan_init(void **cookie) 5956 { 5957 ASSERT(cookie != NULL); 5958 *cookie = (void *)memsegs; 5959 return ((page_t *)memsegs->pages); 5960 } 5961 5962 /* 5963 * Return the next page in a scan of page_t's, assuming we want 5964 * to skip over sub-pages within larger page sizes. 5965 * 5966 * The cookie is used to keep track of the current memseg. 5967 */ 5968 page_t * 5969 page_next_scan_large( 5970 page_t *pp, 5971 ulong_t *n, 5972 void **cookie) 5973 { 5974 struct memseg *seg = (struct memseg *)*cookie; 5975 page_t *new_pp; 5976 ulong_t cnt; 5977 pfn_t pfn; 5978 5979 5980 /* 5981 * get the count of page_t's to skip based on the page size 5982 */ 5983 ASSERT(pp != NULL); 5984 if (pp->p_szc == 0) { 5985 cnt = 1; 5986 } else { 5987 pfn = page_pptonum(pp); 5988 cnt = page_get_pagecnt(pp->p_szc); 5989 cnt -= pfn & (cnt - 1); 5990 } 5991 *n += cnt; 5992 new_pp = pp + cnt; 5993 5994 /* 5995 * Catch if we went past the end of the current memory segment. If so, 5996 * just move to the next segment with pages. 5997 */ 5998 if (new_pp >= seg->epages) { 5999 do { 6000 seg = seg->next; 6001 if (seg == NULL) 6002 seg = memsegs; 6003 } while (seg->pages == seg->epages); 6004 new_pp = seg->pages; 6005 *cookie = (void *)seg; 6006 } 6007 6008 return (new_pp); 6009 } 6010 6011 6012 /* 6013 * Returns next page in list. Note: this function wraps 6014 * to the first page in the list upon reaching the end 6015 * of the list. Callers should be aware of this fact. 6016 */ 6017 6018 /* We should change this be a #define */ 6019 6020 page_t * 6021 page_next(page_t *pp) 6022 { 6023 return (page_nextn(pp, 1)); 6024 } 6025 6026 page_t * 6027 page_first() 6028 { 6029 return ((page_t *)memsegs->pages); 6030 } 6031 6032 6033 /* 6034 * This routine is called at boot with the initial memory configuration 6035 * and when memory is added or removed. 6036 */ 6037 void 6038 build_pfn_hash() 6039 { 6040 pfn_t cur; 6041 pgcnt_t index; 6042 struct memseg *pseg; 6043 int i; 6044 6045 /* 6046 * Clear memseg_hash array. 6047 * Since memory add/delete is designed to operate concurrently 6048 * with normal operation, the hash rebuild must be able to run 6049 * concurrently with page_numtopp_nolock(). To support this 6050 * functionality, assignments to memseg_hash array members must 6051 * be done atomically. 6052 * 6053 * NOTE: bzero() does not currently guarantee this for kernel 6054 * threads, and cannot be used here. 6055 */ 6056 for (i = 0; i < N_MEM_SLOTS; i++) 6057 memseg_hash[i] = NULL; 6058 6059 hat_kpm_mseghash_clear(N_MEM_SLOTS); 6060 6061 /* 6062 * Physmax is the last valid pfn. 6063 */ 6064 mhash_per_slot = (physmax + 1) >> MEM_HASH_SHIFT; 6065 for (pseg = memsegs; pseg != NULL; pseg = pseg->next) { 6066 index = MEMSEG_PFN_HASH(pseg->pages_base); 6067 cur = pseg->pages_base; 6068 do { 6069 if (index >= N_MEM_SLOTS) 6070 index = MEMSEG_PFN_HASH(cur); 6071 6072 if (memseg_hash[index] == NULL || 6073 memseg_hash[index]->pages_base > pseg->pages_base) { 6074 memseg_hash[index] = pseg; 6075 hat_kpm_mseghash_update(index, pseg); 6076 } 6077 cur += mhash_per_slot; 6078 index++; 6079 } while (cur < pseg->pages_end); 6080 } 6081 } 6082 6083 /* 6084 * Return the pagenum for the pp 6085 */ 6086 pfn_t 6087 page_pptonum(page_t *pp) 6088 { 6089 return (pp->p_pagenum); 6090 } 6091 6092 /* 6093 * interface to the referenced and modified etc bits 6094 * in the PSM part of the page struct 6095 * when no locking is desired. 6096 */ 6097 void 6098 page_set_props(page_t *pp, uint_t flags) 6099 { 6100 ASSERT((flags & ~(P_MOD | P_REF | P_RO)) == 0); 6101 pp->p_nrm |= (uchar_t)flags; 6102 } 6103 6104 void 6105 page_clr_all_props(page_t *pp) 6106 { 6107 pp->p_nrm = 0; 6108 } 6109 6110 /* 6111 * Clear p_lckcnt and p_cowcnt, adjusting freemem if required. 6112 */ 6113 int 6114 page_clear_lck_cow(page_t *pp, int adjust) 6115 { 6116 int f_amount; 6117 6118 ASSERT(PAGE_EXCL(pp)); 6119 6120 /* 6121 * The page_struct_lock need not be acquired here since 6122 * we require the caller hold the page exclusively locked. 6123 */ 6124 f_amount = 0; 6125 if (pp->p_lckcnt) { 6126 f_amount = 1; 6127 pp->p_lckcnt = 0; 6128 } 6129 if (pp->p_cowcnt) { 6130 f_amount += pp->p_cowcnt; 6131 pp->p_cowcnt = 0; 6132 } 6133 6134 if (adjust && f_amount) { 6135 mutex_enter(&freemem_lock); 6136 availrmem += f_amount; 6137 mutex_exit(&freemem_lock); 6138 } 6139 6140 return (f_amount); 6141 } 6142 6143 /* 6144 * The following functions is called from free_vp_pages() 6145 * for an inexact estimate of a newly free'd page... 6146 */ 6147 ulong_t 6148 page_share_cnt(page_t *pp) 6149 { 6150 return (hat_page_getshare(pp)); 6151 } 6152 6153 int 6154 page_isshared(page_t *pp) 6155 { 6156 return (hat_page_getshare(pp) > 1); 6157 } 6158 6159 int 6160 page_isfree(page_t *pp) 6161 { 6162 return (PP_ISFREE(pp)); 6163 } 6164 6165 int 6166 page_isref(page_t *pp) 6167 { 6168 return (hat_page_getattr(pp, P_REF)); 6169 } 6170 6171 int 6172 page_ismod(page_t *pp) 6173 { 6174 return (hat_page_getattr(pp, P_MOD)); 6175 } 6176