1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2007 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 /* Copyright (c) 1983, 1984, 1985, 1986, 1987, 1988, 1989 AT&T */ 27 /* All Rights Reserved */ 28 29 /* 30 * University Copyright- Copyright (c) 1982, 1986, 1988 31 * The Regents of the University of California 32 * All Rights Reserved 33 * 34 * University Acknowledgment- Portions of this document are derived from 35 * software developed by the University of California, Berkeley, and its 36 * contributors. 37 */ 38 39 #pragma ident "%Z%%M% %I% %E% SMI" 40 41 /* 42 * VM - physical page management. 43 */ 44 45 #include <sys/types.h> 46 #include <sys/t_lock.h> 47 #include <sys/param.h> 48 #include <sys/systm.h> 49 #include <sys/errno.h> 50 #include <sys/time.h> 51 #include <sys/vnode.h> 52 #include <sys/vm.h> 53 #include <sys/vtrace.h> 54 #include <sys/swap.h> 55 #include <sys/cmn_err.h> 56 #include <sys/tuneable.h> 57 #include <sys/sysmacros.h> 58 #include <sys/cpuvar.h> 59 #include <sys/callb.h> 60 #include <sys/debug.h> 61 #include <sys/tnf_probe.h> 62 #include <sys/condvar_impl.h> 63 #include <sys/mem_config.h> 64 #include <sys/mem_cage.h> 65 #include <sys/kmem.h> 66 #include <sys/atomic.h> 67 #include <sys/strlog.h> 68 #include <sys/mman.h> 69 #include <sys/ontrap.h> 70 #include <sys/lgrp.h> 71 #include <sys/vfs.h> 72 73 #include <vm/hat.h> 74 #include <vm/anon.h> 75 #include <vm/page.h> 76 #include <vm/seg.h> 77 #include <vm/pvn.h> 78 #include <vm/seg_kmem.h> 79 #include <vm/vm_dep.h> 80 #include <sys/vm_usage.h> 81 #include <fs/fs_subr.h> 82 #include <sys/ddi.h> 83 #include <sys/modctl.h> 84 85 static int nopageage = 0; 86 87 static pgcnt_t max_page_get; /* max page_get request size in pages */ 88 pgcnt_t total_pages = 0; /* total number of pages (used by /proc) */ 89 90 /* 91 * freemem_lock protects all freemem variables: 92 * availrmem. Also this lock protects the globals which track the 93 * availrmem changes for accurate kernel footprint calculation. 94 * See below for an explanation of these 95 * globals. 96 */ 97 kmutex_t freemem_lock; 98 pgcnt_t availrmem; 99 pgcnt_t availrmem_initial; 100 101 /* 102 * These globals track availrmem changes to get a more accurate 103 * estimate of tke kernel size. Historically pp_kernel is used for 104 * kernel size and is based on availrmem. But availrmem is adjusted for 105 * locked pages in the system not just for kernel locked pages. 106 * These new counters will track the pages locked through segvn and 107 * by explicit user locking. 108 * 109 * segvn_pages_locked : This keeps track on a global basis how many pages 110 * are currently locked because of I/O. 111 * 112 * pages_locked : How many pages are locked becuase of user specified 113 * locking through mlock or plock. 114 * 115 * pages_useclaim,pages_claimed : These two variables track the 116 * cliam adjustments because of the protection changes on a segvn segment. 117 * 118 * All these globals are protected by the same lock which protects availrmem. 119 */ 120 pgcnt_t segvn_pages_locked; 121 pgcnt_t pages_locked; 122 pgcnt_t pages_useclaim; 123 pgcnt_t pages_claimed; 124 125 126 /* 127 * new_freemem_lock protects freemem, freemem_wait & freemem_cv. 128 */ 129 static kmutex_t new_freemem_lock; 130 static uint_t freemem_wait; /* someone waiting for freemem */ 131 static kcondvar_t freemem_cv; 132 133 /* 134 * The logical page free list is maintained as two lists, the 'free' 135 * and the 'cache' lists. 136 * The free list contains those pages that should be reused first. 137 * 138 * The implementation of the lists is machine dependent. 139 * page_get_freelist(), page_get_cachelist(), 140 * page_list_sub(), and page_list_add() 141 * form the interface to the machine dependent implementation. 142 * 143 * Pages with p_free set are on the cache list. 144 * Pages with p_free and p_age set are on the free list, 145 * 146 * A page may be locked while on either list. 147 */ 148 149 /* 150 * free list accounting stuff. 151 * 152 * 153 * Spread out the value for the number of pages on the 154 * page free and page cache lists. If there is just one 155 * value, then it must be under just one lock. 156 * The lock contention and cache traffic are a real bother. 157 * 158 * When we acquire and then drop a single pcf lock 159 * we can start in the middle of the array of pcf structures. 160 * If we acquire more than one pcf lock at a time, we need to 161 * start at the front to avoid deadlocking. 162 * 163 * pcf_count holds the number of pages in each pool. 164 * 165 * pcf_block is set when page_create_get_something() has asked the 166 * PSM page freelist and page cachelist routines without specifying 167 * a color and nothing came back. This is used to block anything 168 * else from moving pages from one list to the other while the 169 * lists are searched again. If a page is freeed while pcf_block is 170 * set, then pcf_reserve is incremented. pcgs_unblock() takes care 171 * of clearning pcf_block, doing the wakeups, etc. 172 */ 173 174 #if NCPU <= 4 175 #define PAD 2 176 #define PCF_FANOUT 4 177 static uint_t pcf_mask = PCF_FANOUT - 1; 178 #else 179 #define PAD 10 180 #ifdef sun4v 181 #define PCF_FANOUT 32 182 #else 183 #define PCF_FANOUT 128 184 #endif 185 static uint_t pcf_mask = PCF_FANOUT - 1; 186 #endif 187 188 struct pcf { 189 kmutex_t pcf_lock; /* protects the structure */ 190 uint_t pcf_count; /* page count */ 191 uint_t pcf_wait; /* number of waiters */ 192 uint_t pcf_block; /* pcgs flag to page_free() */ 193 uint_t pcf_reserve; /* pages freed after pcf_block set */ 194 uint_t pcf_fill[PAD]; /* to line up on the caches */ 195 }; 196 197 static struct pcf pcf[PCF_FANOUT]; 198 #define PCF_INDEX() ((CPU->cpu_id) & (pcf_mask)) 199 200 kmutex_t pcgs_lock; /* serializes page_create_get_ */ 201 kmutex_t pcgs_cagelock; /* serializes NOSLEEP cage allocs */ 202 kmutex_t pcgs_wait_lock; /* used for delay in pcgs */ 203 static kcondvar_t pcgs_cv; /* cv for delay in pcgs */ 204 205 #ifdef VM_STATS 206 207 /* 208 * No locks, but so what, they are only statistics. 209 */ 210 211 static struct page_tcnt { 212 int pc_free_cache; /* free's into cache list */ 213 int pc_free_dontneed; /* free's with dontneed */ 214 int pc_free_pageout; /* free's from pageout */ 215 int pc_free_free; /* free's into free list */ 216 int pc_free_pages; /* free's into large page free list */ 217 int pc_destroy_pages; /* large page destroy's */ 218 int pc_get_cache; /* get's from cache list */ 219 int pc_get_free; /* get's from free list */ 220 int pc_reclaim; /* reclaim's */ 221 int pc_abortfree; /* abort's of free pages */ 222 int pc_find_hit; /* find's that find page */ 223 int pc_find_miss; /* find's that don't find page */ 224 int pc_destroy_free; /* # of free pages destroyed */ 225 #define PC_HASH_CNT (4*PAGE_HASHAVELEN) 226 int pc_find_hashlen[PC_HASH_CNT+1]; 227 int pc_addclaim_pages; 228 int pc_subclaim_pages; 229 int pc_free_replacement_page[2]; 230 int pc_try_demote_pages[6]; 231 int pc_demote_pages[2]; 232 } pagecnt; 233 234 uint_t hashin_count; 235 uint_t hashin_not_held; 236 uint_t hashin_already; 237 238 uint_t hashout_count; 239 uint_t hashout_not_held; 240 241 uint_t page_create_count; 242 uint_t page_create_not_enough; 243 uint_t page_create_not_enough_again; 244 uint_t page_create_zero; 245 uint_t page_create_hashout; 246 uint_t page_create_page_lock_failed; 247 uint_t page_create_trylock_failed; 248 uint_t page_create_found_one; 249 uint_t page_create_hashin_failed; 250 uint_t page_create_dropped_phm; 251 252 uint_t page_create_new; 253 uint_t page_create_exists; 254 uint_t page_create_putbacks; 255 uint_t page_create_overshoot; 256 257 uint_t page_reclaim_zero; 258 uint_t page_reclaim_zero_locked; 259 260 uint_t page_rename_exists; 261 uint_t page_rename_count; 262 263 uint_t page_lookup_cnt[20]; 264 uint_t page_lookup_nowait_cnt[10]; 265 uint_t page_find_cnt; 266 uint_t page_exists_cnt; 267 uint_t page_exists_forreal_cnt; 268 uint_t page_lookup_dev_cnt; 269 uint_t get_cachelist_cnt; 270 uint_t page_create_cnt[10]; 271 uint_t alloc_pages[8]; 272 uint_t page_exphcontg[19]; 273 uint_t page_create_large_cnt[10]; 274 275 /* 276 * Collects statistics. 277 */ 278 #define PAGE_HASH_SEARCH(index, pp, vp, off) { \ 279 uint_t mylen = 0; \ 280 \ 281 for ((pp) = page_hash[(index)]; (pp); (pp) = (pp)->p_hash, mylen++) { \ 282 if ((pp)->p_vnode == (vp) && (pp)->p_offset == (off)) \ 283 break; \ 284 } \ 285 if ((pp) != NULL) \ 286 pagecnt.pc_find_hit++; \ 287 else \ 288 pagecnt.pc_find_miss++; \ 289 if (mylen > PC_HASH_CNT) \ 290 mylen = PC_HASH_CNT; \ 291 pagecnt.pc_find_hashlen[mylen]++; \ 292 } 293 294 #else /* VM_STATS */ 295 296 /* 297 * Don't collect statistics 298 */ 299 #define PAGE_HASH_SEARCH(index, pp, vp, off) { \ 300 for ((pp) = page_hash[(index)]; (pp); (pp) = (pp)->p_hash) { \ 301 if ((pp)->p_vnode == (vp) && (pp)->p_offset == (off)) \ 302 break; \ 303 } \ 304 } 305 306 #endif /* VM_STATS */ 307 308 309 310 #ifdef DEBUG 311 #define MEMSEG_SEARCH_STATS 312 #endif 313 314 #ifdef MEMSEG_SEARCH_STATS 315 struct memseg_stats { 316 uint_t nsearch; 317 uint_t nlastwon; 318 uint_t nhashwon; 319 uint_t nnotfound; 320 } memseg_stats; 321 322 #define MEMSEG_STAT_INCR(v) \ 323 atomic_add_32(&memseg_stats.v, 1) 324 #else 325 #define MEMSEG_STAT_INCR(x) 326 #endif 327 328 struct memseg *memsegs; /* list of memory segments */ 329 330 331 static void page_init_mem_config(void); 332 static int page_do_hashin(page_t *, vnode_t *, u_offset_t); 333 static void page_do_hashout(page_t *); 334 static void page_capture_init(); 335 int page_capture_take_action(page_t *, uint_t, void *); 336 337 static void page_demote_vp_pages(page_t *); 338 339 /* 340 * vm subsystem related initialization 341 */ 342 void 343 vm_init(void) 344 { 345 boolean_t callb_vm_cpr(void *, int); 346 347 (void) callb_add(callb_vm_cpr, 0, CB_CL_CPR_VM, "vm"); 348 page_init_mem_config(); 349 page_retire_init(); 350 vm_usage_init(); 351 page_capture_init(); 352 } 353 354 /* 355 * This function is called at startup and when memory is added or deleted. 356 */ 357 void 358 init_pages_pp_maximum() 359 { 360 static pgcnt_t p_min; 361 static pgcnt_t pages_pp_maximum_startup; 362 static pgcnt_t avrmem_delta; 363 static int init_done; 364 static int user_set; /* true if set in /etc/system */ 365 366 if (init_done == 0) { 367 368 /* If the user specified a value, save it */ 369 if (pages_pp_maximum != 0) { 370 user_set = 1; 371 pages_pp_maximum_startup = pages_pp_maximum; 372 } 373 374 /* 375 * Setting of pages_pp_maximum is based first time 376 * on the value of availrmem just after the start-up 377 * allocations. To preserve this relationship at run 378 * time, use a delta from availrmem_initial. 379 */ 380 ASSERT(availrmem_initial >= availrmem); 381 avrmem_delta = availrmem_initial - availrmem; 382 383 /* The allowable floor of pages_pp_maximum */ 384 p_min = tune.t_minarmem + 100; 385 386 /* Make sure we don't come through here again. */ 387 init_done = 1; 388 } 389 /* 390 * Determine pages_pp_maximum, the number of currently available 391 * pages (availrmem) that can't be `locked'. If not set by 392 * the user, we set it to 4% of the currently available memory 393 * plus 4MB. 394 * But we also insist that it be greater than tune.t_minarmem; 395 * otherwise a process could lock down a lot of memory, get swapped 396 * out, and never have enough to get swapped back in. 397 */ 398 if (user_set) 399 pages_pp_maximum = pages_pp_maximum_startup; 400 else 401 pages_pp_maximum = ((availrmem_initial - avrmem_delta) / 25) 402 + btop(4 * 1024 * 1024); 403 404 if (pages_pp_maximum <= p_min) { 405 pages_pp_maximum = p_min; 406 } 407 } 408 409 void 410 set_max_page_get(pgcnt_t target_total_pages) 411 { 412 max_page_get = target_total_pages / 2; 413 } 414 415 static pgcnt_t pending_delete; 416 417 /*ARGSUSED*/ 418 static void 419 page_mem_config_post_add( 420 void *arg, 421 pgcnt_t delta_pages) 422 { 423 set_max_page_get(total_pages - pending_delete); 424 init_pages_pp_maximum(); 425 } 426 427 /*ARGSUSED*/ 428 static int 429 page_mem_config_pre_del( 430 void *arg, 431 pgcnt_t delta_pages) 432 { 433 pgcnt_t nv; 434 435 nv = atomic_add_long_nv(&pending_delete, (spgcnt_t)delta_pages); 436 set_max_page_get(total_pages - nv); 437 return (0); 438 } 439 440 /*ARGSUSED*/ 441 static void 442 page_mem_config_post_del( 443 void *arg, 444 pgcnt_t delta_pages, 445 int cancelled) 446 { 447 pgcnt_t nv; 448 449 nv = atomic_add_long_nv(&pending_delete, -(spgcnt_t)delta_pages); 450 set_max_page_get(total_pages - nv); 451 if (!cancelled) 452 init_pages_pp_maximum(); 453 } 454 455 static kphysm_setup_vector_t page_mem_config_vec = { 456 KPHYSM_SETUP_VECTOR_VERSION, 457 page_mem_config_post_add, 458 page_mem_config_pre_del, 459 page_mem_config_post_del, 460 }; 461 462 static void 463 page_init_mem_config(void) 464 { 465 int ret; 466 467 ret = kphysm_setup_func_register(&page_mem_config_vec, (void *)NULL); 468 ASSERT(ret == 0); 469 } 470 471 /* 472 * Evenly spread out the PCF counters for large free pages 473 */ 474 static void 475 page_free_large_ctr(pgcnt_t npages) 476 { 477 static struct pcf *p = pcf; 478 pgcnt_t lump; 479 480 freemem += npages; 481 482 lump = roundup(npages, PCF_FANOUT) / PCF_FANOUT; 483 484 while (npages > 0) { 485 486 ASSERT(!p->pcf_block); 487 488 if (lump < npages) { 489 p->pcf_count += (uint_t)lump; 490 npages -= lump; 491 } else { 492 p->pcf_count += (uint_t)npages; 493 npages = 0; 494 } 495 496 ASSERT(!p->pcf_wait); 497 498 if (++p > &pcf[PCF_FANOUT - 1]) 499 p = pcf; 500 } 501 502 ASSERT(npages == 0); 503 } 504 505 /* 506 * Add a physical chunk of memory to the system freee lists during startup. 507 * Platform specific startup() allocates the memory for the page structs. 508 * 509 * num - number of page structures 510 * base - page number (pfn) to be associated with the first page. 511 * 512 * Since we are doing this during startup (ie. single threaded), we will 513 * use shortcut routines to avoid any locking overhead while putting all 514 * these pages on the freelists. 515 * 516 * NOTE: Any changes performed to page_free(), must also be performed to 517 * add_physmem() since this is how we initialize all page_t's at 518 * boot time. 519 */ 520 void 521 add_physmem( 522 page_t *pp, 523 pgcnt_t num, 524 pfn_t pnum) 525 { 526 page_t *root = NULL; 527 uint_t szc = page_num_pagesizes() - 1; 528 pgcnt_t large = page_get_pagecnt(szc); 529 pgcnt_t cnt = 0; 530 531 TRACE_2(TR_FAC_VM, TR_PAGE_INIT, 532 "add_physmem:pp %p num %lu", pp, num); 533 534 /* 535 * Arbitrarily limit the max page_get request 536 * to 1/2 of the page structs we have. 537 */ 538 total_pages += num; 539 set_max_page_get(total_pages); 540 541 PLCNT_MODIFY_MAX(pnum, (long)num); 542 543 /* 544 * The physical space for the pages array 545 * representing ram pages has already been 546 * allocated. Here we initialize each lock 547 * in the page structure, and put each on 548 * the free list 549 */ 550 for (; num; pp++, pnum++, num--) { 551 552 /* 553 * this needs to fill in the page number 554 * and do any other arch specific initialization 555 */ 556 add_physmem_cb(pp, pnum); 557 558 pp->p_lckcnt = 0; 559 pp->p_cowcnt = 0; 560 pp->p_slckcnt = 0; 561 562 /* 563 * Initialize the page lock as unlocked, since nobody 564 * can see or access this page yet. 565 */ 566 pp->p_selock = 0; 567 568 /* 569 * Initialize IO lock 570 */ 571 page_iolock_init(pp); 572 573 /* 574 * initialize other fields in the page_t 575 */ 576 PP_SETFREE(pp); 577 page_clr_all_props(pp); 578 PP_SETAGED(pp); 579 pp->p_offset = (u_offset_t)-1; 580 pp->p_next = pp; 581 pp->p_prev = pp; 582 583 /* 584 * Simple case: System doesn't support large pages. 585 */ 586 if (szc == 0) { 587 pp->p_szc = 0; 588 page_free_at_startup(pp); 589 continue; 590 } 591 592 /* 593 * Handle unaligned pages, we collect them up onto 594 * the root page until we have a full large page. 595 */ 596 if (!IS_P2ALIGNED(pnum, large)) { 597 598 /* 599 * If not in a large page, 600 * just free as small page. 601 */ 602 if (root == NULL) { 603 pp->p_szc = 0; 604 page_free_at_startup(pp); 605 continue; 606 } 607 608 /* 609 * Link a constituent page into the large page. 610 */ 611 pp->p_szc = szc; 612 page_list_concat(&root, &pp); 613 614 /* 615 * When large page is fully formed, free it. 616 */ 617 if (++cnt == large) { 618 page_free_large_ctr(cnt); 619 page_list_add_pages(root, PG_LIST_ISINIT); 620 root = NULL; 621 cnt = 0; 622 } 623 continue; 624 } 625 626 /* 627 * At this point we have a page number which 628 * is aligned. We assert that we aren't already 629 * in a different large page. 630 */ 631 ASSERT(IS_P2ALIGNED(pnum, large)); 632 ASSERT(root == NULL && cnt == 0); 633 634 /* 635 * If insufficient number of pages left to form 636 * a large page, just free the small page. 637 */ 638 if (num < large) { 639 pp->p_szc = 0; 640 page_free_at_startup(pp); 641 continue; 642 } 643 644 /* 645 * Otherwise start a new large page. 646 */ 647 pp->p_szc = szc; 648 cnt++; 649 root = pp; 650 } 651 ASSERT(root == NULL && cnt == 0); 652 } 653 654 /* 655 * Find a page representing the specified [vp, offset]. 656 * If we find the page but it is intransit coming in, 657 * it will have an "exclusive" lock and we wait for 658 * the i/o to complete. A page found on the free list 659 * is always reclaimed and then locked. On success, the page 660 * is locked, its data is valid and it isn't on the free 661 * list, while a NULL is returned if the page doesn't exist. 662 */ 663 page_t * 664 page_lookup(vnode_t *vp, u_offset_t off, se_t se) 665 { 666 return (page_lookup_create(vp, off, se, NULL, NULL, 0)); 667 } 668 669 /* 670 * Find a page representing the specified [vp, offset]. 671 * We either return the one we found or, if passed in, 672 * create one with identity of [vp, offset] of the 673 * pre-allocated page. If we find exsisting page but it is 674 * intransit coming in, it will have an "exclusive" lock 675 * and we wait for the i/o to complete. A page found on 676 * the free list is always reclaimed and then locked. 677 * On success, the page is locked, its data is valid and 678 * it isn't on the free list, while a NULL is returned 679 * if the page doesn't exist and newpp is NULL; 680 */ 681 page_t * 682 page_lookup_create( 683 vnode_t *vp, 684 u_offset_t off, 685 se_t se, 686 page_t *newpp, 687 spgcnt_t *nrelocp, 688 int flags) 689 { 690 page_t *pp; 691 kmutex_t *phm; 692 ulong_t index; 693 uint_t hash_locked; 694 uint_t es; 695 696 ASSERT(MUTEX_NOT_HELD(page_vnode_mutex(vp))); 697 VM_STAT_ADD(page_lookup_cnt[0]); 698 ASSERT(newpp ? PAGE_EXCL(newpp) : 1); 699 700 /* 701 * Acquire the appropriate page hash lock since 702 * we have to search the hash list. Pages that 703 * hash to this list can't change identity while 704 * this lock is held. 705 */ 706 hash_locked = 0; 707 index = PAGE_HASH_FUNC(vp, off); 708 phm = NULL; 709 top: 710 PAGE_HASH_SEARCH(index, pp, vp, off); 711 if (pp != NULL) { 712 VM_STAT_ADD(page_lookup_cnt[1]); 713 es = (newpp != NULL) ? 1 : 0; 714 es |= flags; 715 if (!hash_locked) { 716 VM_STAT_ADD(page_lookup_cnt[2]); 717 if (!page_try_reclaim_lock(pp, se, es)) { 718 /* 719 * On a miss, acquire the phm. Then 720 * next time, page_lock() will be called, 721 * causing a wait if the page is busy. 722 * just looping with page_trylock() would 723 * get pretty boring. 724 */ 725 VM_STAT_ADD(page_lookup_cnt[3]); 726 phm = PAGE_HASH_MUTEX(index); 727 mutex_enter(phm); 728 hash_locked = 1; 729 goto top; 730 } 731 } else { 732 VM_STAT_ADD(page_lookup_cnt[4]); 733 if (!page_lock_es(pp, se, phm, P_RECLAIM, es)) { 734 VM_STAT_ADD(page_lookup_cnt[5]); 735 goto top; 736 } 737 } 738 739 /* 740 * Since `pp' is locked it can not change identity now. 741 * Reconfirm we locked the correct page. 742 * 743 * Both the p_vnode and p_offset *must* be cast volatile 744 * to force a reload of their values: The PAGE_HASH_SEARCH 745 * macro will have stuffed p_vnode and p_offset into 746 * registers before calling page_trylock(); another thread, 747 * actually holding the hash lock, could have changed the 748 * page's identity in memory, but our registers would not 749 * be changed, fooling the reconfirmation. If the hash 750 * lock was held during the search, the casting would 751 * not be needed. 752 */ 753 VM_STAT_ADD(page_lookup_cnt[6]); 754 if (((volatile struct vnode *)(pp->p_vnode) != vp) || 755 ((volatile u_offset_t)(pp->p_offset) != off)) { 756 VM_STAT_ADD(page_lookup_cnt[7]); 757 if (hash_locked) { 758 panic("page_lookup_create: lost page %p", 759 (void *)pp); 760 /*NOTREACHED*/ 761 } 762 page_unlock(pp); 763 phm = PAGE_HASH_MUTEX(index); 764 mutex_enter(phm); 765 hash_locked = 1; 766 goto top; 767 } 768 769 /* 770 * If page_trylock() was called, then pp may still be on 771 * the cachelist (can't be on the free list, it would not 772 * have been found in the search). If it is on the 773 * cachelist it must be pulled now. To pull the page from 774 * the cachelist, it must be exclusively locked. 775 * 776 * The other big difference between page_trylock() and 777 * page_lock(), is that page_lock() will pull the 778 * page from whatever free list (the cache list in this 779 * case) the page is on. If page_trylock() was used 780 * above, then we have to do the reclaim ourselves. 781 */ 782 if ((!hash_locked) && (PP_ISFREE(pp))) { 783 ASSERT(PP_ISAGED(pp) == 0); 784 VM_STAT_ADD(page_lookup_cnt[8]); 785 786 /* 787 * page_relcaim will insure that we 788 * have this page exclusively 789 */ 790 791 if (!page_reclaim(pp, NULL)) { 792 /* 793 * Page_reclaim dropped whatever lock 794 * we held. 795 */ 796 VM_STAT_ADD(page_lookup_cnt[9]); 797 phm = PAGE_HASH_MUTEX(index); 798 mutex_enter(phm); 799 hash_locked = 1; 800 goto top; 801 } else if (se == SE_SHARED && newpp == NULL) { 802 VM_STAT_ADD(page_lookup_cnt[10]); 803 page_downgrade(pp); 804 } 805 } 806 807 if (hash_locked) { 808 mutex_exit(phm); 809 } 810 811 if (newpp != NULL && pp->p_szc < newpp->p_szc && 812 PAGE_EXCL(pp) && nrelocp != NULL) { 813 ASSERT(nrelocp != NULL); 814 (void) page_relocate(&pp, &newpp, 1, 1, nrelocp, 815 NULL); 816 if (*nrelocp > 0) { 817 VM_STAT_COND_ADD(*nrelocp == 1, 818 page_lookup_cnt[11]); 819 VM_STAT_COND_ADD(*nrelocp > 1, 820 page_lookup_cnt[12]); 821 pp = newpp; 822 se = SE_EXCL; 823 } else { 824 if (se == SE_SHARED) { 825 page_downgrade(pp); 826 } 827 VM_STAT_ADD(page_lookup_cnt[13]); 828 } 829 } else if (newpp != NULL && nrelocp != NULL) { 830 if (PAGE_EXCL(pp) && se == SE_SHARED) { 831 page_downgrade(pp); 832 } 833 VM_STAT_COND_ADD(pp->p_szc < newpp->p_szc, 834 page_lookup_cnt[14]); 835 VM_STAT_COND_ADD(pp->p_szc == newpp->p_szc, 836 page_lookup_cnt[15]); 837 VM_STAT_COND_ADD(pp->p_szc > newpp->p_szc, 838 page_lookup_cnt[16]); 839 } else if (newpp != NULL && PAGE_EXCL(pp)) { 840 se = SE_EXCL; 841 } 842 } else if (!hash_locked) { 843 VM_STAT_ADD(page_lookup_cnt[17]); 844 phm = PAGE_HASH_MUTEX(index); 845 mutex_enter(phm); 846 hash_locked = 1; 847 goto top; 848 } else if (newpp != NULL) { 849 /* 850 * If we have a preallocated page then 851 * insert it now and basically behave like 852 * page_create. 853 */ 854 VM_STAT_ADD(page_lookup_cnt[18]); 855 /* 856 * Since we hold the page hash mutex and 857 * just searched for this page, page_hashin 858 * had better not fail. If it does, that 859 * means some thread did not follow the 860 * page hash mutex rules. Panic now and 861 * get it over with. As usual, go down 862 * holding all the locks. 863 */ 864 ASSERT(MUTEX_HELD(phm)); 865 if (!page_hashin(newpp, vp, off, phm)) { 866 ASSERT(MUTEX_HELD(phm)); 867 panic("page_lookup_create: hashin failed %p %p %llx %p", 868 (void *)newpp, (void *)vp, off, (void *)phm); 869 /*NOTREACHED*/ 870 } 871 ASSERT(MUTEX_HELD(phm)); 872 mutex_exit(phm); 873 phm = NULL; 874 page_set_props(newpp, P_REF); 875 page_io_lock(newpp); 876 pp = newpp; 877 se = SE_EXCL; 878 } else { 879 VM_STAT_ADD(page_lookup_cnt[19]); 880 mutex_exit(phm); 881 } 882 883 ASSERT(pp ? PAGE_LOCKED_SE(pp, se) : 1); 884 885 ASSERT(pp ? ((PP_ISFREE(pp) == 0) && (PP_ISAGED(pp) == 0)) : 1); 886 887 return (pp); 888 } 889 890 /* 891 * Search the hash list for the page representing the 892 * specified [vp, offset] and return it locked. Skip 893 * free pages and pages that cannot be locked as requested. 894 * Used while attempting to kluster pages. 895 */ 896 page_t * 897 page_lookup_nowait(vnode_t *vp, u_offset_t off, se_t se) 898 { 899 page_t *pp; 900 kmutex_t *phm; 901 ulong_t index; 902 uint_t locked; 903 904 ASSERT(MUTEX_NOT_HELD(page_vnode_mutex(vp))); 905 VM_STAT_ADD(page_lookup_nowait_cnt[0]); 906 907 index = PAGE_HASH_FUNC(vp, off); 908 PAGE_HASH_SEARCH(index, pp, vp, off); 909 locked = 0; 910 if (pp == NULL) { 911 top: 912 VM_STAT_ADD(page_lookup_nowait_cnt[1]); 913 locked = 1; 914 phm = PAGE_HASH_MUTEX(index); 915 mutex_enter(phm); 916 PAGE_HASH_SEARCH(index, pp, vp, off); 917 } 918 919 if (pp == NULL || PP_ISFREE(pp)) { 920 VM_STAT_ADD(page_lookup_nowait_cnt[2]); 921 pp = NULL; 922 } else { 923 if (!page_trylock(pp, se)) { 924 VM_STAT_ADD(page_lookup_nowait_cnt[3]); 925 pp = NULL; 926 } else { 927 VM_STAT_ADD(page_lookup_nowait_cnt[4]); 928 /* 929 * See the comment in page_lookup() 930 */ 931 if (((volatile struct vnode *)(pp->p_vnode) != vp) || 932 ((u_offset_t)(pp->p_offset) != off)) { 933 VM_STAT_ADD(page_lookup_nowait_cnt[5]); 934 if (locked) { 935 panic("page_lookup_nowait %p", 936 (void *)pp); 937 /*NOTREACHED*/ 938 } 939 page_unlock(pp); 940 goto top; 941 } 942 if (PP_ISFREE(pp)) { 943 VM_STAT_ADD(page_lookup_nowait_cnt[6]); 944 page_unlock(pp); 945 pp = NULL; 946 } 947 } 948 } 949 if (locked) { 950 VM_STAT_ADD(page_lookup_nowait_cnt[7]); 951 mutex_exit(phm); 952 } 953 954 ASSERT(pp ? PAGE_LOCKED_SE(pp, se) : 1); 955 956 return (pp); 957 } 958 959 /* 960 * Search the hash list for a page with the specified [vp, off] 961 * that is known to exist and is already locked. This routine 962 * is typically used by segment SOFTUNLOCK routines. 963 */ 964 page_t * 965 page_find(vnode_t *vp, u_offset_t off) 966 { 967 page_t *pp; 968 kmutex_t *phm; 969 ulong_t index; 970 971 ASSERT(MUTEX_NOT_HELD(page_vnode_mutex(vp))); 972 VM_STAT_ADD(page_find_cnt); 973 974 index = PAGE_HASH_FUNC(vp, off); 975 phm = PAGE_HASH_MUTEX(index); 976 977 mutex_enter(phm); 978 PAGE_HASH_SEARCH(index, pp, vp, off); 979 mutex_exit(phm); 980 981 ASSERT(pp == NULL || PAGE_LOCKED(pp) || panicstr); 982 return (pp); 983 } 984 985 /* 986 * Determine whether a page with the specified [vp, off] 987 * currently exists in the system. Obviously this should 988 * only be considered as a hint since nothing prevents the 989 * page from disappearing or appearing immediately after 990 * the return from this routine. Subsequently, we don't 991 * even bother to lock the list. 992 */ 993 page_t * 994 page_exists(vnode_t *vp, u_offset_t off) 995 { 996 page_t *pp; 997 ulong_t index; 998 999 ASSERT(MUTEX_NOT_HELD(page_vnode_mutex(vp))); 1000 VM_STAT_ADD(page_exists_cnt); 1001 1002 index = PAGE_HASH_FUNC(vp, off); 1003 PAGE_HASH_SEARCH(index, pp, vp, off); 1004 1005 return (pp); 1006 } 1007 1008 /* 1009 * Determine if physically contiguous pages exist for [vp, off] - [vp, off + 1010 * page_size(szc)) range. if they exist and ppa is not NULL fill ppa array 1011 * with these pages locked SHARED. If necessary reclaim pages from 1012 * freelist. Return 1 if contiguous pages exist and 0 otherwise. 1013 * 1014 * If we fail to lock pages still return 1 if pages exist and contiguous. 1015 * But in this case return value is just a hint. ppa array won't be filled. 1016 * Caller should initialize ppa[0] as NULL to distinguish return value. 1017 * 1018 * Returns 0 if pages don't exist or not physically contiguous. 1019 * 1020 * This routine doesn't work for anonymous(swapfs) pages. 1021 */ 1022 int 1023 page_exists_physcontig(vnode_t *vp, u_offset_t off, uint_t szc, page_t *ppa[]) 1024 { 1025 pgcnt_t pages; 1026 pfn_t pfn; 1027 page_t *rootpp; 1028 pgcnt_t i; 1029 pgcnt_t j; 1030 u_offset_t save_off = off; 1031 ulong_t index; 1032 kmutex_t *phm; 1033 page_t *pp; 1034 uint_t pszc; 1035 int loopcnt = 0; 1036 1037 ASSERT(szc != 0); 1038 ASSERT(vp != NULL); 1039 ASSERT(!IS_SWAPFSVP(vp)); 1040 ASSERT(!VN_ISKAS(vp)); 1041 1042 again: 1043 if (++loopcnt > 3) { 1044 VM_STAT_ADD(page_exphcontg[0]); 1045 return (0); 1046 } 1047 1048 index = PAGE_HASH_FUNC(vp, off); 1049 phm = PAGE_HASH_MUTEX(index); 1050 1051 mutex_enter(phm); 1052 PAGE_HASH_SEARCH(index, pp, vp, off); 1053 mutex_exit(phm); 1054 1055 VM_STAT_ADD(page_exphcontg[1]); 1056 1057 if (pp == NULL) { 1058 VM_STAT_ADD(page_exphcontg[2]); 1059 return (0); 1060 } 1061 1062 pages = page_get_pagecnt(szc); 1063 rootpp = pp; 1064 pfn = rootpp->p_pagenum; 1065 1066 if ((pszc = pp->p_szc) >= szc && ppa != NULL) { 1067 VM_STAT_ADD(page_exphcontg[3]); 1068 if (!page_trylock(pp, SE_SHARED)) { 1069 VM_STAT_ADD(page_exphcontg[4]); 1070 return (1); 1071 } 1072 if (pp->p_szc != pszc || pp->p_vnode != vp || 1073 pp->p_offset != off) { 1074 VM_STAT_ADD(page_exphcontg[5]); 1075 page_unlock(pp); 1076 off = save_off; 1077 goto again; 1078 } 1079 /* 1080 * szc was non zero and vnode and offset matched after we 1081 * locked the page it means it can't become free on us. 1082 */ 1083 ASSERT(!PP_ISFREE(pp)); 1084 if (!IS_P2ALIGNED(pfn, pages)) { 1085 page_unlock(pp); 1086 return (0); 1087 } 1088 ppa[0] = pp; 1089 pp++; 1090 off += PAGESIZE; 1091 pfn++; 1092 for (i = 1; i < pages; i++, pp++, off += PAGESIZE, pfn++) { 1093 if (!page_trylock(pp, SE_SHARED)) { 1094 VM_STAT_ADD(page_exphcontg[6]); 1095 pp--; 1096 while (i-- > 0) { 1097 page_unlock(pp); 1098 pp--; 1099 } 1100 ppa[0] = NULL; 1101 return (1); 1102 } 1103 if (pp->p_szc != pszc) { 1104 VM_STAT_ADD(page_exphcontg[7]); 1105 page_unlock(pp); 1106 pp--; 1107 while (i-- > 0) { 1108 page_unlock(pp); 1109 pp--; 1110 } 1111 ppa[0] = NULL; 1112 off = save_off; 1113 goto again; 1114 } 1115 /* 1116 * szc the same as for previous already locked pages 1117 * with right identity. Since this page had correct 1118 * szc after we locked it can't get freed or destroyed 1119 * and therefore must have the expected identity. 1120 */ 1121 ASSERT(!PP_ISFREE(pp)); 1122 if (pp->p_vnode != vp || 1123 pp->p_offset != off) { 1124 panic("page_exists_physcontig: " 1125 "large page identity doesn't match"); 1126 } 1127 ppa[i] = pp; 1128 ASSERT(pp->p_pagenum == pfn); 1129 } 1130 VM_STAT_ADD(page_exphcontg[8]); 1131 ppa[pages] = NULL; 1132 return (1); 1133 } else if (pszc >= szc) { 1134 VM_STAT_ADD(page_exphcontg[9]); 1135 if (!IS_P2ALIGNED(pfn, pages)) { 1136 return (0); 1137 } 1138 return (1); 1139 } 1140 1141 if (!IS_P2ALIGNED(pfn, pages)) { 1142 VM_STAT_ADD(page_exphcontg[10]); 1143 return (0); 1144 } 1145 1146 if (page_numtomemseg_nolock(pfn) != 1147 page_numtomemseg_nolock(pfn + pages - 1)) { 1148 VM_STAT_ADD(page_exphcontg[11]); 1149 return (0); 1150 } 1151 1152 /* 1153 * We loop up 4 times across pages to promote page size. 1154 * We're extra cautious to promote page size atomically with respect 1155 * to everybody else. But we can probably optimize into 1 loop if 1156 * this becomes an issue. 1157 */ 1158 1159 for (i = 0; i < pages; i++, pp++, off += PAGESIZE, pfn++) { 1160 ASSERT(pp->p_pagenum == pfn); 1161 if (!page_trylock(pp, SE_EXCL)) { 1162 VM_STAT_ADD(page_exphcontg[12]); 1163 break; 1164 } 1165 if (pp->p_vnode != vp || 1166 pp->p_offset != off) { 1167 VM_STAT_ADD(page_exphcontg[13]); 1168 page_unlock(pp); 1169 break; 1170 } 1171 if (pp->p_szc >= szc) { 1172 ASSERT(i == 0); 1173 page_unlock(pp); 1174 off = save_off; 1175 goto again; 1176 } 1177 } 1178 1179 if (i != pages) { 1180 VM_STAT_ADD(page_exphcontg[14]); 1181 --pp; 1182 while (i-- > 0) { 1183 page_unlock(pp); 1184 --pp; 1185 } 1186 return (0); 1187 } 1188 1189 pp = rootpp; 1190 for (i = 0; i < pages; i++, pp++) { 1191 if (PP_ISFREE(pp)) { 1192 VM_STAT_ADD(page_exphcontg[15]); 1193 ASSERT(!PP_ISAGED(pp)); 1194 ASSERT(pp->p_szc == 0); 1195 if (!page_reclaim(pp, NULL)) { 1196 break; 1197 } 1198 } else { 1199 ASSERT(pp->p_szc < szc); 1200 VM_STAT_ADD(page_exphcontg[16]); 1201 (void) hat_pageunload(pp, HAT_FORCE_PGUNLOAD); 1202 } 1203 } 1204 if (i < pages) { 1205 VM_STAT_ADD(page_exphcontg[17]); 1206 /* 1207 * page_reclaim failed because we were out of memory. 1208 * drop the rest of the locks and return because this page 1209 * must be already reallocated anyway. 1210 */ 1211 pp = rootpp; 1212 for (j = 0; j < pages; j++, pp++) { 1213 if (j != i) { 1214 page_unlock(pp); 1215 } 1216 } 1217 return (0); 1218 } 1219 1220 off = save_off; 1221 pp = rootpp; 1222 for (i = 0; i < pages; i++, pp++, off += PAGESIZE) { 1223 ASSERT(PAGE_EXCL(pp)); 1224 ASSERT(!PP_ISFREE(pp)); 1225 ASSERT(!hat_page_is_mapped(pp)); 1226 ASSERT(pp->p_vnode == vp); 1227 ASSERT(pp->p_offset == off); 1228 pp->p_szc = szc; 1229 } 1230 pp = rootpp; 1231 for (i = 0; i < pages; i++, pp++) { 1232 if (ppa == NULL) { 1233 page_unlock(pp); 1234 } else { 1235 ppa[i] = pp; 1236 page_downgrade(ppa[i]); 1237 } 1238 } 1239 if (ppa != NULL) { 1240 ppa[pages] = NULL; 1241 } 1242 VM_STAT_ADD(page_exphcontg[18]); 1243 ASSERT(vp->v_pages != NULL); 1244 return (1); 1245 } 1246 1247 /* 1248 * Determine whether a page with the specified [vp, off] 1249 * currently exists in the system and if so return its 1250 * size code. Obviously this should only be considered as 1251 * a hint since nothing prevents the page from disappearing 1252 * or appearing immediately after the return from this routine. 1253 */ 1254 int 1255 page_exists_forreal(vnode_t *vp, u_offset_t off, uint_t *szc) 1256 { 1257 page_t *pp; 1258 kmutex_t *phm; 1259 ulong_t index; 1260 int rc = 0; 1261 1262 ASSERT(MUTEX_NOT_HELD(page_vnode_mutex(vp))); 1263 ASSERT(szc != NULL); 1264 VM_STAT_ADD(page_exists_forreal_cnt); 1265 1266 index = PAGE_HASH_FUNC(vp, off); 1267 phm = PAGE_HASH_MUTEX(index); 1268 1269 mutex_enter(phm); 1270 PAGE_HASH_SEARCH(index, pp, vp, off); 1271 if (pp != NULL) { 1272 *szc = pp->p_szc; 1273 rc = 1; 1274 } 1275 mutex_exit(phm); 1276 return (rc); 1277 } 1278 1279 /* wakeup threads waiting for pages in page_create_get_something() */ 1280 void 1281 wakeup_pcgs(void) 1282 { 1283 if (!CV_HAS_WAITERS(&pcgs_cv)) 1284 return; 1285 cv_broadcast(&pcgs_cv); 1286 } 1287 1288 /* 1289 * 'freemem' is used all over the kernel as an indication of how many 1290 * pages are free (either on the cache list or on the free page list) 1291 * in the system. In very few places is a really accurate 'freemem' 1292 * needed. To avoid contention of the lock protecting a the 1293 * single freemem, it was spread out into NCPU buckets. Set_freemem 1294 * sets freemem to the total of all NCPU buckets. It is called from 1295 * clock() on each TICK. 1296 */ 1297 void 1298 set_freemem() 1299 { 1300 struct pcf *p; 1301 ulong_t t; 1302 uint_t i; 1303 1304 t = 0; 1305 p = pcf; 1306 for (i = 0; i < PCF_FANOUT; i++) { 1307 t += p->pcf_count; 1308 p++; 1309 } 1310 freemem = t; 1311 1312 /* 1313 * Don't worry about grabbing mutex. It's not that 1314 * critical if we miss a tick or two. This is 1315 * where we wakeup possible delayers in 1316 * page_create_get_something(). 1317 */ 1318 wakeup_pcgs(); 1319 } 1320 1321 ulong_t 1322 get_freemem() 1323 { 1324 struct pcf *p; 1325 ulong_t t; 1326 uint_t i; 1327 1328 t = 0; 1329 p = pcf; 1330 for (i = 0; i < PCF_FANOUT; i++) { 1331 t += p->pcf_count; 1332 p++; 1333 } 1334 /* 1335 * We just calculated it, might as well set it. 1336 */ 1337 freemem = t; 1338 return (t); 1339 } 1340 1341 /* 1342 * Acquire all of the page cache & free (pcf) locks. 1343 */ 1344 void 1345 pcf_acquire_all() 1346 { 1347 struct pcf *p; 1348 uint_t i; 1349 1350 p = pcf; 1351 for (i = 0; i < PCF_FANOUT; i++) { 1352 mutex_enter(&p->pcf_lock); 1353 p++; 1354 } 1355 } 1356 1357 /* 1358 * Release all the pcf_locks. 1359 */ 1360 void 1361 pcf_release_all() 1362 { 1363 struct pcf *p; 1364 uint_t i; 1365 1366 p = pcf; 1367 for (i = 0; i < PCF_FANOUT; i++) { 1368 mutex_exit(&p->pcf_lock); 1369 p++; 1370 } 1371 } 1372 1373 /* 1374 * Inform the VM system that we need some pages freed up. 1375 * Calls must be symmetric, e.g.: 1376 * 1377 * page_needfree(100); 1378 * wait a bit; 1379 * page_needfree(-100); 1380 */ 1381 void 1382 page_needfree(spgcnt_t npages) 1383 { 1384 mutex_enter(&new_freemem_lock); 1385 needfree += npages; 1386 mutex_exit(&new_freemem_lock); 1387 } 1388 1389 /* 1390 * Throttle for page_create(): try to prevent freemem from dropping 1391 * below throttlefree. We can't provide a 100% guarantee because 1392 * KM_NOSLEEP allocations, page_reclaim(), and various other things 1393 * nibble away at the freelist. However, we can block all PG_WAIT 1394 * allocations until memory becomes available. The motivation is 1395 * that several things can fall apart when there's no free memory: 1396 * 1397 * (1) If pageout() needs memory to push a page, the system deadlocks. 1398 * 1399 * (2) By (broken) specification, timeout(9F) can neither fail nor 1400 * block, so it has no choice but to panic the system if it 1401 * cannot allocate a callout structure. 1402 * 1403 * (3) Like timeout(), ddi_set_callback() cannot fail and cannot block; 1404 * it panics if it cannot allocate a callback structure. 1405 * 1406 * (4) Untold numbers of third-party drivers have not yet been hardened 1407 * against KM_NOSLEEP and/or allocb() failures; they simply assume 1408 * success and panic the system with a data fault on failure. 1409 * (The long-term solution to this particular problem is to ship 1410 * hostile fault-injecting DEBUG kernels with the DDK.) 1411 * 1412 * It is theoretically impossible to guarantee success of non-blocking 1413 * allocations, but in practice, this throttle is very hard to break. 1414 */ 1415 static int 1416 page_create_throttle(pgcnt_t npages, int flags) 1417 { 1418 ulong_t fm; 1419 uint_t i; 1420 pgcnt_t tf; /* effective value of throttlefree */ 1421 1422 /* 1423 * Never deny pages when: 1424 * - it's a thread that cannot block [NOMEMWAIT()] 1425 * - the allocation cannot block and must not fail 1426 * - the allocation cannot block and is pageout dispensated 1427 */ 1428 if (NOMEMWAIT() || 1429 ((flags & (PG_WAIT | PG_PANIC)) == PG_PANIC) || 1430 ((flags & (PG_WAIT | PG_PUSHPAGE)) == PG_PUSHPAGE)) 1431 return (1); 1432 1433 /* 1434 * If the allocation can't block, we look favorably upon it 1435 * unless we're below pageout_reserve. In that case we fail 1436 * the allocation because we want to make sure there are a few 1437 * pages available for pageout. 1438 */ 1439 if ((flags & PG_WAIT) == 0) 1440 return (freemem >= npages + pageout_reserve); 1441 1442 /* Calculate the effective throttlefree value */ 1443 tf = throttlefree - 1444 ((flags & PG_PUSHPAGE) ? pageout_reserve : 0); 1445 1446 cv_signal(&proc_pageout->p_cv); 1447 1448 while (freemem < npages + tf) { 1449 pcf_acquire_all(); 1450 mutex_enter(&new_freemem_lock); 1451 fm = 0; 1452 for (i = 0; i < PCF_FANOUT; i++) { 1453 fm += pcf[i].pcf_count; 1454 pcf[i].pcf_wait++; 1455 mutex_exit(&pcf[i].pcf_lock); 1456 } 1457 freemem = fm; 1458 needfree += npages; 1459 freemem_wait++; 1460 cv_wait(&freemem_cv, &new_freemem_lock); 1461 freemem_wait--; 1462 needfree -= npages; 1463 mutex_exit(&new_freemem_lock); 1464 } 1465 return (1); 1466 } 1467 1468 /* 1469 * page_create_wait() is called to either coalecse pages from the 1470 * different pcf buckets or to wait because there simply are not 1471 * enough pages to satisfy the caller's request. 1472 * 1473 * Sadly, this is called from platform/vm/vm_machdep.c 1474 */ 1475 int 1476 page_create_wait(size_t npages, uint_t flags) 1477 { 1478 pgcnt_t total; 1479 uint_t i; 1480 struct pcf *p; 1481 1482 /* 1483 * Wait until there are enough free pages to satisfy our 1484 * entire request. 1485 * We set needfree += npages before prodding pageout, to make sure 1486 * it does real work when npages > lotsfree > freemem. 1487 */ 1488 VM_STAT_ADD(page_create_not_enough); 1489 1490 ASSERT(!kcage_on ? !(flags & PG_NORELOC) : 1); 1491 checkagain: 1492 if ((flags & PG_NORELOC) && 1493 kcage_freemem < kcage_throttlefree + npages) 1494 (void) kcage_create_throttle(npages, flags); 1495 1496 if (freemem < npages + throttlefree) 1497 if (!page_create_throttle(npages, flags)) 1498 return (0); 1499 1500 /* 1501 * Since page_create_va() looked at every 1502 * bucket, assume we are going to have to wait. 1503 * Get all of the pcf locks. 1504 */ 1505 total = 0; 1506 p = pcf; 1507 for (i = 0; i < PCF_FANOUT; i++) { 1508 mutex_enter(&p->pcf_lock); 1509 total += p->pcf_count; 1510 if (total >= npages) { 1511 /* 1512 * Wow! There are enough pages laying around 1513 * to satisfy the request. Do the accounting, 1514 * drop the locks we acquired, and go back. 1515 * 1516 * freemem is not protected by any lock. So, 1517 * we cannot have any assertion containing 1518 * freemem. 1519 */ 1520 freemem -= npages; 1521 1522 while (p >= pcf) { 1523 if (p->pcf_count <= npages) { 1524 npages -= p->pcf_count; 1525 p->pcf_count = 0; 1526 } else { 1527 p->pcf_count -= (uint_t)npages; 1528 npages = 0; 1529 } 1530 mutex_exit(&p->pcf_lock); 1531 p--; 1532 } 1533 ASSERT(npages == 0); 1534 return (1); 1535 } 1536 p++; 1537 } 1538 1539 /* 1540 * All of the pcf locks are held, there are not enough pages 1541 * to satisfy the request (npages < total). 1542 * Be sure to acquire the new_freemem_lock before dropping 1543 * the pcf locks. This prevents dropping wakeups in page_free(). 1544 * The order is always pcf_lock then new_freemem_lock. 1545 * 1546 * Since we hold all the pcf locks, it is a good time to set freemem. 1547 * 1548 * If the caller does not want to wait, return now. 1549 * Else turn the pageout daemon loose to find something 1550 * and wait till it does. 1551 * 1552 */ 1553 freemem = total; 1554 1555 if ((flags & PG_WAIT) == 0) { 1556 pcf_release_all(); 1557 1558 TRACE_2(TR_FAC_VM, TR_PAGE_CREATE_NOMEM, 1559 "page_create_nomem:npages %ld freemem %ld", npages, freemem); 1560 return (0); 1561 } 1562 1563 ASSERT(proc_pageout != NULL); 1564 cv_signal(&proc_pageout->p_cv); 1565 1566 TRACE_2(TR_FAC_VM, TR_PAGE_CREATE_SLEEP_START, 1567 "page_create_sleep_start: freemem %ld needfree %ld", 1568 freemem, needfree); 1569 1570 /* 1571 * We are going to wait. 1572 * We currently hold all of the pcf_locks, 1573 * get the new_freemem_lock (it protects freemem_wait), 1574 * before dropping the pcf_locks. 1575 */ 1576 mutex_enter(&new_freemem_lock); 1577 1578 p = pcf; 1579 for (i = 0; i < PCF_FANOUT; i++) { 1580 p->pcf_wait++; 1581 mutex_exit(&p->pcf_lock); 1582 p++; 1583 } 1584 1585 needfree += npages; 1586 freemem_wait++; 1587 1588 cv_wait(&freemem_cv, &new_freemem_lock); 1589 1590 freemem_wait--; 1591 needfree -= npages; 1592 1593 mutex_exit(&new_freemem_lock); 1594 1595 TRACE_2(TR_FAC_VM, TR_PAGE_CREATE_SLEEP_END, 1596 "page_create_sleep_end: freemem %ld needfree %ld", 1597 freemem, needfree); 1598 1599 VM_STAT_ADD(page_create_not_enough_again); 1600 goto checkagain; 1601 } 1602 1603 /* 1604 * A routine to do the opposite of page_create_wait(). 1605 */ 1606 void 1607 page_create_putback(spgcnt_t npages) 1608 { 1609 struct pcf *p; 1610 pgcnt_t lump; 1611 uint_t *which; 1612 1613 /* 1614 * When a contiguous lump is broken up, we have to 1615 * deal with lots of pages (min 64) so lets spread 1616 * the wealth around. 1617 */ 1618 lump = roundup(npages, PCF_FANOUT) / PCF_FANOUT; 1619 freemem += npages; 1620 1621 for (p = pcf; (npages > 0) && (p < &pcf[PCF_FANOUT]); p++) { 1622 which = &p->pcf_count; 1623 1624 mutex_enter(&p->pcf_lock); 1625 1626 if (p->pcf_block) { 1627 which = &p->pcf_reserve; 1628 } 1629 1630 if (lump < npages) { 1631 *which += (uint_t)lump; 1632 npages -= lump; 1633 } else { 1634 *which += (uint_t)npages; 1635 npages = 0; 1636 } 1637 1638 if (p->pcf_wait) { 1639 mutex_enter(&new_freemem_lock); 1640 /* 1641 * Check to see if some other thread 1642 * is actually waiting. Another bucket 1643 * may have woken it up by now. If there 1644 * are no waiters, then set our pcf_wait 1645 * count to zero to avoid coming in here 1646 * next time. 1647 */ 1648 if (freemem_wait) { 1649 if (npages > 1) { 1650 cv_broadcast(&freemem_cv); 1651 } else { 1652 cv_signal(&freemem_cv); 1653 } 1654 p->pcf_wait--; 1655 } else { 1656 p->pcf_wait = 0; 1657 } 1658 mutex_exit(&new_freemem_lock); 1659 } 1660 mutex_exit(&p->pcf_lock); 1661 } 1662 ASSERT(npages == 0); 1663 } 1664 1665 /* 1666 * A helper routine for page_create_get_something. 1667 * The indenting got to deep down there. 1668 * Unblock the pcf counters. Any pages freed after 1669 * pcf_block got set are moved to pcf_count and 1670 * wakeups (cv_broadcast() or cv_signal()) are done as needed. 1671 */ 1672 static void 1673 pcgs_unblock(void) 1674 { 1675 int i; 1676 struct pcf *p; 1677 1678 /* Update freemem while we're here. */ 1679 freemem = 0; 1680 p = pcf; 1681 for (i = 0; i < PCF_FANOUT; i++) { 1682 mutex_enter(&p->pcf_lock); 1683 ASSERT(p->pcf_count == 0); 1684 p->pcf_count = p->pcf_reserve; 1685 p->pcf_block = 0; 1686 freemem += p->pcf_count; 1687 if (p->pcf_wait) { 1688 mutex_enter(&new_freemem_lock); 1689 if (freemem_wait) { 1690 if (p->pcf_reserve > 1) { 1691 cv_broadcast(&freemem_cv); 1692 p->pcf_wait = 0; 1693 } else { 1694 cv_signal(&freemem_cv); 1695 p->pcf_wait--; 1696 } 1697 } else { 1698 p->pcf_wait = 0; 1699 } 1700 mutex_exit(&new_freemem_lock); 1701 } 1702 p->pcf_reserve = 0; 1703 mutex_exit(&p->pcf_lock); 1704 p++; 1705 } 1706 } 1707 1708 /* 1709 * Called from page_create_va() when both the cache and free lists 1710 * have been checked once. 1711 * 1712 * Either returns a page or panics since the accounting was done 1713 * way before we got here. 1714 * 1715 * We don't come here often, so leave the accounting on permanently. 1716 */ 1717 1718 #define MAX_PCGS 100 1719 1720 #ifdef DEBUG 1721 #define PCGS_TRIES 100 1722 #else /* DEBUG */ 1723 #define PCGS_TRIES 10 1724 #endif /* DEBUG */ 1725 1726 #ifdef VM_STATS 1727 uint_t pcgs_counts[PCGS_TRIES]; 1728 uint_t pcgs_too_many; 1729 uint_t pcgs_entered; 1730 uint_t pcgs_entered_noreloc; 1731 uint_t pcgs_locked; 1732 uint_t pcgs_cagelocked; 1733 #endif /* VM_STATS */ 1734 1735 static page_t * 1736 page_create_get_something(vnode_t *vp, u_offset_t off, struct seg *seg, 1737 caddr_t vaddr, uint_t flags) 1738 { 1739 uint_t count; 1740 page_t *pp; 1741 uint_t locked, i; 1742 struct pcf *p; 1743 lgrp_t *lgrp; 1744 int cagelocked = 0; 1745 1746 VM_STAT_ADD(pcgs_entered); 1747 1748 /* 1749 * Tap any reserve freelists: if we fail now, we'll die 1750 * since the page(s) we're looking for have already been 1751 * accounted for. 1752 */ 1753 flags |= PG_PANIC; 1754 1755 if ((flags & PG_NORELOC) != 0) { 1756 VM_STAT_ADD(pcgs_entered_noreloc); 1757 /* 1758 * Requests for free pages from critical threads 1759 * such as pageout still won't throttle here, but 1760 * we must try again, to give the cageout thread 1761 * another chance to catch up. Since we already 1762 * accounted for the pages, we had better get them 1763 * this time. 1764 * 1765 * N.B. All non-critical threads acquire the pcgs_cagelock 1766 * to serialize access to the freelists. This implements a 1767 * turnstile-type synchornization to avoid starvation of 1768 * critical requests for PG_NORELOC memory by non-critical 1769 * threads: all non-critical threads must acquire a 'ticket' 1770 * before passing through, which entails making sure 1771 * kcage_freemem won't fall below minfree prior to grabbing 1772 * pages from the freelists. 1773 */ 1774 if (kcage_create_throttle(1, flags) == KCT_NONCRIT) { 1775 mutex_enter(&pcgs_cagelock); 1776 cagelocked = 1; 1777 VM_STAT_ADD(pcgs_cagelocked); 1778 } 1779 } 1780 1781 /* 1782 * Time to get serious. 1783 * We failed to get a `correctly colored' page from both the 1784 * free and cache lists. 1785 * We escalate in stage. 1786 * 1787 * First try both lists without worring about color. 1788 * 1789 * Then, grab all page accounting locks (ie. pcf[]) and 1790 * steal any pages that they have and set the pcf_block flag to 1791 * stop deletions from the lists. This will help because 1792 * a page can get added to the free list while we are looking 1793 * at the cache list, then another page could be added to the cache 1794 * list allowing the page on the free list to be removed as we 1795 * move from looking at the cache list to the free list. This 1796 * could happen over and over. We would never find the page 1797 * we have accounted for. 1798 * 1799 * Noreloc pages are a subset of the global (relocatable) page pool. 1800 * They are not tracked separately in the pcf bins, so it is 1801 * impossible to know when doing pcf accounting if the available 1802 * page(s) are noreloc pages or not. When looking for a noreloc page 1803 * it is quite easy to end up here even if the global (relocatable) 1804 * page pool has plenty of free pages but the noreloc pool is empty. 1805 * 1806 * When the noreloc pool is empty (or low), additional noreloc pages 1807 * are created by converting pages from the global page pool. This 1808 * process will stall during pcf accounting if the pcf bins are 1809 * already locked. Such is the case when a noreloc allocation is 1810 * looping here in page_create_get_something waiting for more noreloc 1811 * pages to appear. 1812 * 1813 * Short of adding a new field to the pcf bins to accurately track 1814 * the number of free noreloc pages, we instead do not grab the 1815 * pcgs_lock, do not set the pcf blocks and do not timeout when 1816 * allocating a noreloc page. This allows noreloc allocations to 1817 * loop without blocking global page pool allocations. 1818 * 1819 * NOTE: the behaviour of page_create_get_something has not changed 1820 * for the case of global page pool allocations. 1821 */ 1822 1823 flags &= ~PG_MATCH_COLOR; 1824 locked = 0; 1825 #if defined(__i386) || defined(__amd64) 1826 /* 1827 * page_create_get_something may be called because 4g memory may be 1828 * depleted. Set flags to allow for relocation of base page below 1829 * 4g if necessary. 1830 */ 1831 if (physmax4g) 1832 flags |= (PGI_PGCPSZC0 | PGI_PGCPHIPRI); 1833 #endif 1834 1835 lgrp = lgrp_mem_choose(seg, vaddr, PAGESIZE); 1836 1837 for (count = 0; kcage_on || count < MAX_PCGS; count++) { 1838 pp = page_get_freelist(vp, off, seg, vaddr, PAGESIZE, 1839 flags, lgrp); 1840 if (pp == NULL) { 1841 pp = page_get_cachelist(vp, off, seg, vaddr, 1842 flags, lgrp); 1843 } 1844 if (pp == NULL) { 1845 /* 1846 * Serialize. Don't fight with other pcgs(). 1847 */ 1848 if (!locked && (!kcage_on || !(flags & PG_NORELOC))) { 1849 mutex_enter(&pcgs_lock); 1850 VM_STAT_ADD(pcgs_locked); 1851 locked = 1; 1852 p = pcf; 1853 for (i = 0; i < PCF_FANOUT; i++) { 1854 mutex_enter(&p->pcf_lock); 1855 ASSERT(p->pcf_block == 0); 1856 p->pcf_block = 1; 1857 p->pcf_reserve = p->pcf_count; 1858 p->pcf_count = 0; 1859 mutex_exit(&p->pcf_lock); 1860 p++; 1861 } 1862 freemem = 0; 1863 } 1864 1865 if (count) { 1866 /* 1867 * Since page_free() puts pages on 1868 * a list then accounts for it, we 1869 * just have to wait for page_free() 1870 * to unlock any page it was working 1871 * with. The page_lock()-page_reclaim() 1872 * path falls in the same boat. 1873 * 1874 * We don't need to check on the 1875 * PG_WAIT flag, we have already 1876 * accounted for the page we are 1877 * looking for in page_create_va(). 1878 * 1879 * We just wait a moment to let any 1880 * locked pages on the lists free up, 1881 * then continue around and try again. 1882 * 1883 * Will be awakened by set_freemem(). 1884 */ 1885 mutex_enter(&pcgs_wait_lock); 1886 cv_wait(&pcgs_cv, &pcgs_wait_lock); 1887 mutex_exit(&pcgs_wait_lock); 1888 } 1889 } else { 1890 #ifdef VM_STATS 1891 if (count >= PCGS_TRIES) { 1892 VM_STAT_ADD(pcgs_too_many); 1893 } else { 1894 VM_STAT_ADD(pcgs_counts[count]); 1895 } 1896 #endif 1897 if (locked) { 1898 pcgs_unblock(); 1899 mutex_exit(&pcgs_lock); 1900 } 1901 if (cagelocked) 1902 mutex_exit(&pcgs_cagelock); 1903 return (pp); 1904 } 1905 } 1906 /* 1907 * we go down holding the pcf locks. 1908 */ 1909 panic("no %spage found %d", 1910 ((flags & PG_NORELOC) ? "non-reloc " : ""), count); 1911 /*NOTREACHED*/ 1912 } 1913 1914 /* 1915 * Create enough pages for "bytes" worth of data starting at 1916 * "off" in "vp". 1917 * 1918 * Where flag must be one of: 1919 * 1920 * PG_EXCL: Exclusive create (fail if any page already 1921 * exists in the page cache) which does not 1922 * wait for memory to become available. 1923 * 1924 * PG_WAIT: Non-exclusive create which can wait for 1925 * memory to become available. 1926 * 1927 * PG_PHYSCONTIG: Allocate physically contiguous pages. 1928 * (Not Supported) 1929 * 1930 * A doubly linked list of pages is returned to the caller. Each page 1931 * on the list has the "exclusive" (p_selock) lock and "iolock" (p_iolock) 1932 * lock. 1933 * 1934 * Unable to change the parameters to page_create() in a minor release, 1935 * we renamed page_create() to page_create_va(), changed all known calls 1936 * from page_create() to page_create_va(), and created this wrapper. 1937 * 1938 * Upon a major release, we should break compatibility by deleting this 1939 * wrapper, and replacing all the strings "page_create_va", with "page_create". 1940 * 1941 * NOTE: There is a copy of this interface as page_create_io() in 1942 * i86/vm/vm_machdep.c. Any bugs fixed here should be applied 1943 * there. 1944 */ 1945 page_t * 1946 page_create(vnode_t *vp, u_offset_t off, size_t bytes, uint_t flags) 1947 { 1948 caddr_t random_vaddr; 1949 struct seg kseg; 1950 1951 #ifdef DEBUG 1952 cmn_err(CE_WARN, "Using deprecated interface page_create: caller %p", 1953 (void *)caller()); 1954 #endif 1955 1956 random_vaddr = (caddr_t)(((uintptr_t)vp >> 7) ^ 1957 (uintptr_t)(off >> PAGESHIFT)); 1958 kseg.s_as = &kas; 1959 1960 return (page_create_va(vp, off, bytes, flags, &kseg, random_vaddr)); 1961 } 1962 1963 #ifdef DEBUG 1964 uint32_t pg_alloc_pgs_mtbf = 0; 1965 #endif 1966 1967 /* 1968 * Used for large page support. It will attempt to allocate 1969 * a large page(s) off the freelist. 1970 * 1971 * Returns non zero on failure. 1972 */ 1973 int 1974 page_alloc_pages(struct vnode *vp, struct seg *seg, caddr_t addr, 1975 page_t **basepp, page_t *ppa[], uint_t szc, int anypgsz, int pgflags) 1976 { 1977 pgcnt_t npgs, curnpgs, totpgs; 1978 size_t pgsz; 1979 page_t *pplist = NULL, *pp; 1980 int err = 0; 1981 lgrp_t *lgrp; 1982 1983 ASSERT(szc != 0 && szc <= (page_num_pagesizes() - 1)); 1984 ASSERT(pgflags == 0 || pgflags == PG_LOCAL); 1985 1986 VM_STAT_ADD(alloc_pages[0]); 1987 1988 #ifdef DEBUG 1989 if (pg_alloc_pgs_mtbf && !(gethrtime() % pg_alloc_pgs_mtbf)) { 1990 return (ENOMEM); 1991 } 1992 #endif 1993 1994 pgsz = page_get_pagesize(szc); 1995 totpgs = curnpgs = npgs = pgsz >> PAGESHIFT; 1996 1997 ASSERT(((uintptr_t)addr & (pgsz - 1)) == 0); 1998 /* 1999 * One must be NULL but not both. 2000 * And one must be non NULL but not both. 2001 */ 2002 ASSERT(basepp != NULL || ppa != NULL); 2003 ASSERT(basepp == NULL || ppa == NULL); 2004 2005 (void) page_create_wait(npgs, PG_WAIT); 2006 2007 while (npgs && szc) { 2008 lgrp = lgrp_mem_choose(seg, addr, pgsz); 2009 if (pgflags == PG_LOCAL) { 2010 pp = page_get_freelist(vp, 0, seg, addr, pgsz, 2011 pgflags, lgrp); 2012 if (pp == NULL) { 2013 pp = page_get_freelist(vp, 0, seg, addr, pgsz, 2014 0, lgrp); 2015 } 2016 } else { 2017 pp = page_get_freelist(vp, 0, seg, addr, pgsz, 2018 0, lgrp); 2019 } 2020 if (pp != NULL) { 2021 VM_STAT_ADD(alloc_pages[1]); 2022 page_list_concat(&pplist, &pp); 2023 ASSERT(npgs >= curnpgs); 2024 npgs -= curnpgs; 2025 } else if (anypgsz) { 2026 VM_STAT_ADD(alloc_pages[2]); 2027 szc--; 2028 pgsz = page_get_pagesize(szc); 2029 curnpgs = pgsz >> PAGESHIFT; 2030 } else { 2031 VM_STAT_ADD(alloc_pages[3]); 2032 ASSERT(npgs == totpgs); 2033 page_create_putback(npgs); 2034 return (ENOMEM); 2035 } 2036 } 2037 if (szc == 0) { 2038 VM_STAT_ADD(alloc_pages[4]); 2039 ASSERT(npgs != 0); 2040 page_create_putback(npgs); 2041 err = ENOMEM; 2042 } else if (basepp != NULL) { 2043 ASSERT(npgs == 0); 2044 ASSERT(ppa == NULL); 2045 *basepp = pplist; 2046 } 2047 2048 npgs = totpgs - npgs; 2049 pp = pplist; 2050 2051 /* 2052 * Clear the free and age bits. Also if we were passed in a ppa then 2053 * fill it in with all the constituent pages from the large page. But 2054 * if we failed to allocate all the pages just free what we got. 2055 */ 2056 while (npgs != 0) { 2057 ASSERT(PP_ISFREE(pp)); 2058 ASSERT(PP_ISAGED(pp)); 2059 if (ppa != NULL || err != 0) { 2060 if (err == 0) { 2061 VM_STAT_ADD(alloc_pages[5]); 2062 PP_CLRFREE(pp); 2063 PP_CLRAGED(pp); 2064 page_sub(&pplist, pp); 2065 *ppa++ = pp; 2066 npgs--; 2067 } else { 2068 VM_STAT_ADD(alloc_pages[6]); 2069 ASSERT(pp->p_szc != 0); 2070 curnpgs = page_get_pagecnt(pp->p_szc); 2071 page_list_break(&pp, &pplist, curnpgs); 2072 page_list_add_pages(pp, 0); 2073 page_create_putback(curnpgs); 2074 ASSERT(npgs >= curnpgs); 2075 npgs -= curnpgs; 2076 } 2077 pp = pplist; 2078 } else { 2079 VM_STAT_ADD(alloc_pages[7]); 2080 PP_CLRFREE(pp); 2081 PP_CLRAGED(pp); 2082 pp = pp->p_next; 2083 npgs--; 2084 } 2085 } 2086 return (err); 2087 } 2088 2089 /* 2090 * Get a single large page off of the freelists, and set it up for use. 2091 * Number of bytes requested must be a supported page size. 2092 * 2093 * Note that this call may fail even if there is sufficient 2094 * memory available or PG_WAIT is set, so the caller must 2095 * be willing to fallback on page_create_va(), block and retry, 2096 * or fail the requester. 2097 */ 2098 page_t * 2099 page_create_va_large(vnode_t *vp, u_offset_t off, size_t bytes, uint_t flags, 2100 struct seg *seg, caddr_t vaddr, void *arg) 2101 { 2102 pgcnt_t npages, pcftotal; 2103 page_t *pp; 2104 page_t *rootpp; 2105 lgrp_t *lgrp; 2106 uint_t enough; 2107 uint_t pcf_index; 2108 uint_t i; 2109 struct pcf *p; 2110 struct pcf *q; 2111 lgrp_id_t *lgrpid = (lgrp_id_t *)arg; 2112 2113 ASSERT(vp != NULL); 2114 2115 ASSERT((flags & ~(PG_EXCL | PG_WAIT | 2116 PG_NORELOC | PG_PANIC | PG_PUSHPAGE)) == 0); 2117 /* but no others */ 2118 2119 ASSERT((flags & PG_EXCL) == PG_EXCL); 2120 2121 npages = btop(bytes); 2122 2123 if (!kcage_on || panicstr) { 2124 /* 2125 * Cage is OFF, or we are single threaded in 2126 * panic, so make everything a RELOC request. 2127 */ 2128 flags &= ~PG_NORELOC; 2129 } 2130 2131 /* 2132 * Make sure there's adequate physical memory available. 2133 * Note: PG_WAIT is ignored here. 2134 */ 2135 if (freemem <= throttlefree + npages) { 2136 VM_STAT_ADD(page_create_large_cnt[1]); 2137 return (NULL); 2138 } 2139 2140 /* 2141 * If cage is on, dampen draw from cage when available 2142 * cage space is low. 2143 */ 2144 if ((flags & (PG_NORELOC | PG_WAIT)) == (PG_NORELOC | PG_WAIT) && 2145 kcage_freemem < kcage_throttlefree + npages) { 2146 2147 /* 2148 * The cage is on, the caller wants PG_NORELOC 2149 * pages and available cage memory is very low. 2150 * Call kcage_create_throttle() to attempt to 2151 * control demand on the cage. 2152 */ 2153 if (kcage_create_throttle(npages, flags) == KCT_FAILURE) { 2154 VM_STAT_ADD(page_create_large_cnt[2]); 2155 return (NULL); 2156 } 2157 } 2158 2159 enough = 0; 2160 pcf_index = PCF_INDEX(); 2161 p = &pcf[pcf_index]; 2162 q = &pcf[PCF_FANOUT]; 2163 for (pcftotal = 0, i = 0; i < PCF_FANOUT; i++) { 2164 if (p->pcf_count > npages) { 2165 /* 2166 * a good one to try. 2167 */ 2168 mutex_enter(&p->pcf_lock); 2169 if (p->pcf_count > npages) { 2170 p->pcf_count -= (uint_t)npages; 2171 /* 2172 * freemem is not protected by any lock. 2173 * Thus, we cannot have any assertion 2174 * containing freemem here. 2175 */ 2176 freemem -= npages; 2177 enough = 1; 2178 mutex_exit(&p->pcf_lock); 2179 break; 2180 } 2181 mutex_exit(&p->pcf_lock); 2182 } 2183 pcftotal += p->pcf_count; 2184 p++; 2185 if (p >= q) { 2186 p = pcf; 2187 } 2188 } 2189 2190 if (!enough) { 2191 /* If there isn't enough memory available, give up. */ 2192 if (pcftotal < npages) { 2193 VM_STAT_ADD(page_create_large_cnt[3]); 2194 return (NULL); 2195 } 2196 2197 /* try to collect pages from several pcf bins */ 2198 for (p = pcf, pcftotal = 0, i = 0; i < PCF_FANOUT; i++) { 2199 mutex_enter(&p->pcf_lock); 2200 pcftotal += p->pcf_count; 2201 if (pcftotal >= npages) { 2202 /* 2203 * Wow! There are enough pages laying around 2204 * to satisfy the request. Do the accounting, 2205 * drop the locks we acquired, and go back. 2206 * 2207 * freemem is not protected by any lock. So, 2208 * we cannot have any assertion containing 2209 * freemem. 2210 */ 2211 pgcnt_t tpages = npages; 2212 freemem -= npages; 2213 while (p >= pcf) { 2214 if (p->pcf_count <= tpages) { 2215 tpages -= p->pcf_count; 2216 p->pcf_count = 0; 2217 } else { 2218 p->pcf_count -= (uint_t)tpages; 2219 tpages = 0; 2220 } 2221 mutex_exit(&p->pcf_lock); 2222 p--; 2223 } 2224 ASSERT(tpages == 0); 2225 break; 2226 } 2227 p++; 2228 } 2229 if (i == PCF_FANOUT) { 2230 /* failed to collect pages - release the locks */ 2231 while (--p >= pcf) { 2232 mutex_exit(&p->pcf_lock); 2233 } 2234 VM_STAT_ADD(page_create_large_cnt[4]); 2235 return (NULL); 2236 } 2237 } 2238 2239 /* 2240 * This is where this function behaves fundamentally differently 2241 * than page_create_va(); since we're intending to map the page 2242 * with a single TTE, we have to get it as a physically contiguous 2243 * hardware pagesize chunk. If we can't, we fail. 2244 */ 2245 if (lgrpid != NULL && *lgrpid >= 0 && *lgrpid <= lgrp_alloc_max && 2246 LGRP_EXISTS(lgrp_table[*lgrpid])) 2247 lgrp = lgrp_table[*lgrpid]; 2248 else 2249 lgrp = lgrp_mem_choose(seg, vaddr, bytes); 2250 2251 if ((rootpp = page_get_freelist(&kvp, off, seg, vaddr, 2252 bytes, flags & ~PG_MATCH_COLOR, lgrp)) == NULL) { 2253 page_create_putback(npages); 2254 VM_STAT_ADD(page_create_large_cnt[5]); 2255 return (NULL); 2256 } 2257 2258 /* 2259 * if we got the page with the wrong mtype give it back this is a 2260 * workaround for CR 6249718. When CR 6249718 is fixed we never get 2261 * inside "if" and the workaround becomes just a nop 2262 */ 2263 if (kcage_on && (flags & PG_NORELOC) && !PP_ISNORELOC(rootpp)) { 2264 page_list_add_pages(rootpp, 0); 2265 page_create_putback(npages); 2266 VM_STAT_ADD(page_create_large_cnt[6]); 2267 return (NULL); 2268 } 2269 2270 /* 2271 * If satisfying this request has left us with too little 2272 * memory, start the wheels turning to get some back. The 2273 * first clause of the test prevents waking up the pageout 2274 * daemon in situations where it would decide that there's 2275 * nothing to do. 2276 */ 2277 if (nscan < desscan && freemem < minfree) { 2278 TRACE_1(TR_FAC_VM, TR_PAGEOUT_CV_SIGNAL, 2279 "pageout_cv_signal:freemem %ld", freemem); 2280 cv_signal(&proc_pageout->p_cv); 2281 } 2282 2283 pp = rootpp; 2284 while (npages--) { 2285 ASSERT(PAGE_EXCL(pp)); 2286 ASSERT(pp->p_vnode == NULL); 2287 ASSERT(!hat_page_is_mapped(pp)); 2288 PP_CLRFREE(pp); 2289 PP_CLRAGED(pp); 2290 if (!page_hashin(pp, vp, off, NULL)) 2291 panic("page_create_large: hashin failed: page %p", 2292 (void *)pp); 2293 page_io_lock(pp); 2294 off += PAGESIZE; 2295 pp = pp->p_next; 2296 } 2297 2298 VM_STAT_ADD(page_create_large_cnt[0]); 2299 return (rootpp); 2300 } 2301 2302 page_t * 2303 page_create_va(vnode_t *vp, u_offset_t off, size_t bytes, uint_t flags, 2304 struct seg *seg, caddr_t vaddr) 2305 { 2306 page_t *plist = NULL; 2307 pgcnt_t npages; 2308 pgcnt_t found_on_free = 0; 2309 pgcnt_t pages_req; 2310 page_t *npp = NULL; 2311 uint_t enough; 2312 uint_t i; 2313 uint_t pcf_index; 2314 struct pcf *p; 2315 struct pcf *q; 2316 lgrp_t *lgrp; 2317 2318 TRACE_4(TR_FAC_VM, TR_PAGE_CREATE_START, 2319 "page_create_start:vp %p off %llx bytes %lu flags %x", 2320 vp, off, bytes, flags); 2321 2322 ASSERT(bytes != 0 && vp != NULL); 2323 2324 if ((flags & PG_EXCL) == 0 && (flags & PG_WAIT) == 0) { 2325 panic("page_create: invalid flags"); 2326 /*NOTREACHED*/ 2327 } 2328 ASSERT((flags & ~(PG_EXCL | PG_WAIT | 2329 PG_NORELOC | PG_PANIC | PG_PUSHPAGE)) == 0); 2330 /* but no others */ 2331 2332 pages_req = npages = btopr(bytes); 2333 /* 2334 * Try to see whether request is too large to *ever* be 2335 * satisfied, in order to prevent deadlock. We arbitrarily 2336 * decide to limit maximum size requests to max_page_get. 2337 */ 2338 if (npages >= max_page_get) { 2339 if ((flags & PG_WAIT) == 0) { 2340 TRACE_4(TR_FAC_VM, TR_PAGE_CREATE_TOOBIG, 2341 "page_create_toobig:vp %p off %llx npages " 2342 "%lu max_page_get %lu", 2343 vp, off, npages, max_page_get); 2344 return (NULL); 2345 } else { 2346 cmn_err(CE_WARN, 2347 "Request for too much kernel memory " 2348 "(%lu bytes), will hang forever", bytes); 2349 for (;;) 2350 delay(1000000000); 2351 } 2352 } 2353 2354 if (!kcage_on || panicstr) { 2355 /* 2356 * Cage is OFF, or we are single threaded in 2357 * panic, so make everything a RELOC request. 2358 */ 2359 flags &= ~PG_NORELOC; 2360 } 2361 2362 if (freemem <= throttlefree + npages) 2363 if (!page_create_throttle(npages, flags)) 2364 return (NULL); 2365 2366 /* 2367 * If cage is on, dampen draw from cage when available 2368 * cage space is low. 2369 */ 2370 if ((flags & PG_NORELOC) && 2371 kcage_freemem < kcage_throttlefree + npages) { 2372 2373 /* 2374 * The cage is on, the caller wants PG_NORELOC 2375 * pages and available cage memory is very low. 2376 * Call kcage_create_throttle() to attempt to 2377 * control demand on the cage. 2378 */ 2379 if (kcage_create_throttle(npages, flags) == KCT_FAILURE) 2380 return (NULL); 2381 } 2382 2383 VM_STAT_ADD(page_create_cnt[0]); 2384 2385 enough = 0; 2386 pcf_index = PCF_INDEX(); 2387 2388 p = &pcf[pcf_index]; 2389 q = &pcf[PCF_FANOUT]; 2390 for (i = 0; i < PCF_FANOUT; i++) { 2391 if (p->pcf_count > npages) { 2392 /* 2393 * a good one to try. 2394 */ 2395 mutex_enter(&p->pcf_lock); 2396 if (p->pcf_count > npages) { 2397 p->pcf_count -= (uint_t)npages; 2398 /* 2399 * freemem is not protected by any lock. 2400 * Thus, we cannot have any assertion 2401 * containing freemem here. 2402 */ 2403 freemem -= npages; 2404 enough = 1; 2405 mutex_exit(&p->pcf_lock); 2406 break; 2407 } 2408 mutex_exit(&p->pcf_lock); 2409 } 2410 p++; 2411 if (p >= q) { 2412 p = pcf; 2413 } 2414 } 2415 2416 if (!enough) { 2417 /* 2418 * Have to look harder. If npages is greater than 2419 * one, then we might have to coalecse the counters. 2420 * 2421 * Go wait. We come back having accounted 2422 * for the memory. 2423 */ 2424 VM_STAT_ADD(page_create_cnt[1]); 2425 if (!page_create_wait(npages, flags)) { 2426 VM_STAT_ADD(page_create_cnt[2]); 2427 return (NULL); 2428 } 2429 } 2430 2431 TRACE_2(TR_FAC_VM, TR_PAGE_CREATE_SUCCESS, 2432 "page_create_success:vp %p off %llx", vp, off); 2433 2434 /* 2435 * If satisfying this request has left us with too little 2436 * memory, start the wheels turning to get some back. The 2437 * first clause of the test prevents waking up the pageout 2438 * daemon in situations where it would decide that there's 2439 * nothing to do. 2440 */ 2441 if (nscan < desscan && freemem < minfree) { 2442 TRACE_1(TR_FAC_VM, TR_PAGEOUT_CV_SIGNAL, 2443 "pageout_cv_signal:freemem %ld", freemem); 2444 cv_signal(&proc_pageout->p_cv); 2445 } 2446 2447 /* 2448 * Loop around collecting the requested number of pages. 2449 * Most of the time, we have to `create' a new page. With 2450 * this in mind, pull the page off the free list before 2451 * getting the hash lock. This will minimize the hash 2452 * lock hold time, nesting, and the like. If it turns 2453 * out we don't need the page, we put it back at the end. 2454 */ 2455 while (npages--) { 2456 page_t *pp; 2457 kmutex_t *phm = NULL; 2458 ulong_t index; 2459 2460 index = PAGE_HASH_FUNC(vp, off); 2461 top: 2462 ASSERT(phm == NULL); 2463 ASSERT(index == PAGE_HASH_FUNC(vp, off)); 2464 ASSERT(MUTEX_NOT_HELD(page_vnode_mutex(vp))); 2465 2466 if (npp == NULL) { 2467 /* 2468 * Try to get a page from the freelist (ie, 2469 * a page with no [vp, off] tag). If that 2470 * fails, use the cachelist. 2471 * 2472 * During the first attempt at both the free 2473 * and cache lists we try for the correct color. 2474 */ 2475 /* 2476 * XXXX-how do we deal with virtual indexed 2477 * caches and and colors? 2478 */ 2479 VM_STAT_ADD(page_create_cnt[4]); 2480 /* 2481 * Get lgroup to allocate next page of shared memory 2482 * from and use it to specify where to allocate 2483 * the physical memory 2484 */ 2485 lgrp = lgrp_mem_choose(seg, vaddr, PAGESIZE); 2486 npp = page_get_freelist(vp, off, seg, vaddr, PAGESIZE, 2487 flags | PG_MATCH_COLOR, lgrp); 2488 if (npp == NULL) { 2489 npp = page_get_cachelist(vp, off, seg, 2490 vaddr, flags | PG_MATCH_COLOR, lgrp); 2491 if (npp == NULL) { 2492 npp = page_create_get_something(vp, 2493 off, seg, vaddr, 2494 flags & ~PG_MATCH_COLOR); 2495 } 2496 2497 if (PP_ISAGED(npp) == 0) { 2498 /* 2499 * Since this page came from the 2500 * cachelist, we must destroy the 2501 * old vnode association. 2502 */ 2503 page_hashout(npp, NULL); 2504 } 2505 } 2506 } 2507 2508 /* 2509 * We own this page! 2510 */ 2511 ASSERT(PAGE_EXCL(npp)); 2512 ASSERT(npp->p_vnode == NULL); 2513 ASSERT(!hat_page_is_mapped(npp)); 2514 PP_CLRFREE(npp); 2515 PP_CLRAGED(npp); 2516 2517 /* 2518 * Here we have a page in our hot little mits and are 2519 * just waiting to stuff it on the appropriate lists. 2520 * Get the mutex and check to see if it really does 2521 * not exist. 2522 */ 2523 phm = PAGE_HASH_MUTEX(index); 2524 mutex_enter(phm); 2525 PAGE_HASH_SEARCH(index, pp, vp, off); 2526 if (pp == NULL) { 2527 VM_STAT_ADD(page_create_new); 2528 pp = npp; 2529 npp = NULL; 2530 if (!page_hashin(pp, vp, off, phm)) { 2531 /* 2532 * Since we hold the page hash mutex and 2533 * just searched for this page, page_hashin 2534 * had better not fail. If it does, that 2535 * means somethread did not follow the 2536 * page hash mutex rules. Panic now and 2537 * get it over with. As usual, go down 2538 * holding all the locks. 2539 */ 2540 ASSERT(MUTEX_HELD(phm)); 2541 panic("page_create: " 2542 "hashin failed %p %p %llx %p", 2543 (void *)pp, (void *)vp, off, (void *)phm); 2544 /*NOTREACHED*/ 2545 } 2546 ASSERT(MUTEX_HELD(phm)); 2547 mutex_exit(phm); 2548 phm = NULL; 2549 2550 /* 2551 * Hat layer locking need not be done to set 2552 * the following bits since the page is not hashed 2553 * and was on the free list (i.e., had no mappings). 2554 * 2555 * Set the reference bit to protect 2556 * against immediate pageout 2557 * 2558 * XXXmh modify freelist code to set reference 2559 * bit so we don't have to do it here. 2560 */ 2561 page_set_props(pp, P_REF); 2562 found_on_free++; 2563 } else { 2564 VM_STAT_ADD(page_create_exists); 2565 if (flags & PG_EXCL) { 2566 /* 2567 * Found an existing page, and the caller 2568 * wanted all new pages. Undo all of the work 2569 * we have done. 2570 */ 2571 mutex_exit(phm); 2572 phm = NULL; 2573 while (plist != NULL) { 2574 pp = plist; 2575 page_sub(&plist, pp); 2576 page_io_unlock(pp); 2577 /* large pages should not end up here */ 2578 ASSERT(pp->p_szc == 0); 2579 /*LINTED: constant in conditional ctx*/ 2580 VN_DISPOSE(pp, B_INVAL, 0, kcred); 2581 } 2582 VM_STAT_ADD(page_create_found_one); 2583 goto fail; 2584 } 2585 ASSERT(flags & PG_WAIT); 2586 if (!page_lock(pp, SE_EXCL, phm, P_NO_RECLAIM)) { 2587 /* 2588 * Start all over again if we blocked trying 2589 * to lock the page. 2590 */ 2591 mutex_exit(phm); 2592 VM_STAT_ADD(page_create_page_lock_failed); 2593 phm = NULL; 2594 goto top; 2595 } 2596 mutex_exit(phm); 2597 phm = NULL; 2598 2599 if (PP_ISFREE(pp)) { 2600 ASSERT(PP_ISAGED(pp) == 0); 2601 VM_STAT_ADD(pagecnt.pc_get_cache); 2602 page_list_sub(pp, PG_CACHE_LIST); 2603 PP_CLRFREE(pp); 2604 found_on_free++; 2605 } 2606 } 2607 2608 /* 2609 * Got a page! It is locked. Acquire the i/o 2610 * lock since we are going to use the p_next and 2611 * p_prev fields to link the requested pages together. 2612 */ 2613 page_io_lock(pp); 2614 page_add(&plist, pp); 2615 plist = plist->p_next; 2616 off += PAGESIZE; 2617 vaddr += PAGESIZE; 2618 } 2619 2620 ASSERT((flags & PG_EXCL) ? (found_on_free == pages_req) : 1); 2621 fail: 2622 if (npp != NULL) { 2623 /* 2624 * Did not need this page after all. 2625 * Put it back on the free list. 2626 */ 2627 VM_STAT_ADD(page_create_putbacks); 2628 PP_SETFREE(npp); 2629 PP_SETAGED(npp); 2630 npp->p_offset = (u_offset_t)-1; 2631 page_list_add(npp, PG_FREE_LIST | PG_LIST_TAIL); 2632 page_unlock(npp); 2633 2634 } 2635 2636 ASSERT(pages_req >= found_on_free); 2637 2638 { 2639 uint_t overshoot = (uint_t)(pages_req - found_on_free); 2640 2641 if (overshoot) { 2642 VM_STAT_ADD(page_create_overshoot); 2643 p = &pcf[pcf_index]; 2644 mutex_enter(&p->pcf_lock); 2645 if (p->pcf_block) { 2646 p->pcf_reserve += overshoot; 2647 } else { 2648 p->pcf_count += overshoot; 2649 if (p->pcf_wait) { 2650 mutex_enter(&new_freemem_lock); 2651 if (freemem_wait) { 2652 cv_signal(&freemem_cv); 2653 p->pcf_wait--; 2654 } else { 2655 p->pcf_wait = 0; 2656 } 2657 mutex_exit(&new_freemem_lock); 2658 } 2659 } 2660 mutex_exit(&p->pcf_lock); 2661 /* freemem is approximate, so this test OK */ 2662 if (!p->pcf_block) 2663 freemem += overshoot; 2664 } 2665 } 2666 2667 return (plist); 2668 } 2669 2670 /* 2671 * One or more constituent pages of this large page has been marked 2672 * toxic. Simply demote the large page to PAGESIZE pages and let 2673 * page_free() handle it. This routine should only be called by 2674 * large page free routines (page_free_pages() and page_destroy_pages(). 2675 * All pages are locked SE_EXCL and have already been marked free. 2676 */ 2677 static void 2678 page_free_toxic_pages(page_t *rootpp) 2679 { 2680 page_t *tpp; 2681 pgcnt_t i, pgcnt = page_get_pagecnt(rootpp->p_szc); 2682 uint_t szc = rootpp->p_szc; 2683 2684 for (i = 0, tpp = rootpp; i < pgcnt; i++, tpp = tpp->p_next) { 2685 ASSERT(tpp->p_szc == szc); 2686 ASSERT((PAGE_EXCL(tpp) && 2687 !page_iolock_assert(tpp)) || panicstr); 2688 tpp->p_szc = 0; 2689 } 2690 2691 while (rootpp != NULL) { 2692 tpp = rootpp; 2693 page_sub(&rootpp, tpp); 2694 ASSERT(PP_ISFREE(tpp)); 2695 PP_CLRFREE(tpp); 2696 page_free(tpp, 1); 2697 } 2698 } 2699 2700 /* 2701 * Put page on the "free" list. 2702 * The free list is really two lists maintained by 2703 * the PSM of whatever machine we happen to be on. 2704 */ 2705 void 2706 page_free(page_t *pp, int dontneed) 2707 { 2708 struct pcf *p; 2709 uint_t pcf_index; 2710 2711 ASSERT((PAGE_EXCL(pp) && 2712 !page_iolock_assert(pp)) || panicstr); 2713 2714 if (PP_ISFREE(pp)) { 2715 panic("page_free: page %p is free", (void *)pp); 2716 } 2717 2718 if (pp->p_szc != 0) { 2719 if (pp->p_vnode == NULL || IS_SWAPFSVP(pp->p_vnode) || 2720 PP_ISKAS(pp)) { 2721 panic("page_free: anon or kernel " 2722 "or no vnode large page %p", (void *)pp); 2723 } 2724 page_demote_vp_pages(pp); 2725 ASSERT(pp->p_szc == 0); 2726 } 2727 2728 /* 2729 * The page_struct_lock need not be acquired to examine these 2730 * fields since the page has an "exclusive" lock. 2731 */ 2732 if (hat_page_is_mapped(pp) || pp->p_lckcnt != 0 || pp->p_cowcnt != 0 || 2733 pp->p_slckcnt != 0) { 2734 panic("page_free pp=%p, pfn=%lx, lckcnt=%d, cowcnt=%d " 2735 "slckcnt = %d", pp, page_pptonum(pp), pp->p_lckcnt, 2736 pp->p_cowcnt, pp->p_slckcnt); 2737 /*NOTREACHED*/ 2738 } 2739 2740 ASSERT(!hat_page_getshare(pp)); 2741 2742 PP_SETFREE(pp); 2743 ASSERT(pp->p_vnode == NULL || !IS_VMODSORT(pp->p_vnode) || 2744 !hat_ismod(pp)); 2745 page_clr_all_props(pp); 2746 ASSERT(!hat_page_getshare(pp)); 2747 2748 /* 2749 * Now we add the page to the head of the free list. 2750 * But if this page is associated with a paged vnode 2751 * then we adjust the head forward so that the page is 2752 * effectively at the end of the list. 2753 */ 2754 if (pp->p_vnode == NULL) { 2755 /* 2756 * Page has no identity, put it on the free list. 2757 */ 2758 PP_SETAGED(pp); 2759 pp->p_offset = (u_offset_t)-1; 2760 page_list_add(pp, PG_FREE_LIST | PG_LIST_TAIL); 2761 VM_STAT_ADD(pagecnt.pc_free_free); 2762 TRACE_1(TR_FAC_VM, TR_PAGE_FREE_FREE, 2763 "page_free_free:pp %p", pp); 2764 } else { 2765 PP_CLRAGED(pp); 2766 2767 if (!dontneed || nopageage) { 2768 /* move it to the tail of the list */ 2769 page_list_add(pp, PG_CACHE_LIST | PG_LIST_TAIL); 2770 2771 VM_STAT_ADD(pagecnt.pc_free_cache); 2772 TRACE_1(TR_FAC_VM, TR_PAGE_FREE_CACHE_TAIL, 2773 "page_free_cache_tail:pp %p", pp); 2774 } else { 2775 page_list_add(pp, PG_CACHE_LIST | PG_LIST_HEAD); 2776 2777 VM_STAT_ADD(pagecnt.pc_free_dontneed); 2778 TRACE_1(TR_FAC_VM, TR_PAGE_FREE_CACHE_HEAD, 2779 "page_free_cache_head:pp %p", pp); 2780 } 2781 } 2782 page_unlock(pp); 2783 2784 /* 2785 * Now do the `freemem' accounting. 2786 */ 2787 pcf_index = PCF_INDEX(); 2788 p = &pcf[pcf_index]; 2789 2790 mutex_enter(&p->pcf_lock); 2791 if (p->pcf_block) { 2792 p->pcf_reserve += 1; 2793 } else { 2794 p->pcf_count += 1; 2795 if (p->pcf_wait) { 2796 mutex_enter(&new_freemem_lock); 2797 /* 2798 * Check to see if some other thread 2799 * is actually waiting. Another bucket 2800 * may have woken it up by now. If there 2801 * are no waiters, then set our pcf_wait 2802 * count to zero to avoid coming in here 2803 * next time. Also, since only one page 2804 * was put on the free list, just wake 2805 * up one waiter. 2806 */ 2807 if (freemem_wait) { 2808 cv_signal(&freemem_cv); 2809 p->pcf_wait--; 2810 } else { 2811 p->pcf_wait = 0; 2812 } 2813 mutex_exit(&new_freemem_lock); 2814 } 2815 } 2816 mutex_exit(&p->pcf_lock); 2817 2818 /* freemem is approximate, so this test OK */ 2819 if (!p->pcf_block) 2820 freemem += 1; 2821 } 2822 2823 /* 2824 * Put page on the "free" list during intial startup. 2825 * This happens during initial single threaded execution. 2826 */ 2827 void 2828 page_free_at_startup(page_t *pp) 2829 { 2830 struct pcf *p; 2831 uint_t pcf_index; 2832 2833 page_list_add(pp, PG_FREE_LIST | PG_LIST_HEAD | PG_LIST_ISINIT); 2834 VM_STAT_ADD(pagecnt.pc_free_free); 2835 2836 /* 2837 * Now do the `freemem' accounting. 2838 */ 2839 pcf_index = PCF_INDEX(); 2840 p = &pcf[pcf_index]; 2841 2842 ASSERT(p->pcf_block == 0); 2843 ASSERT(p->pcf_wait == 0); 2844 p->pcf_count += 1; 2845 2846 /* freemem is approximate, so this is OK */ 2847 freemem += 1; 2848 } 2849 2850 void 2851 page_free_pages(page_t *pp) 2852 { 2853 page_t *tpp, *rootpp = NULL; 2854 pgcnt_t pgcnt = page_get_pagecnt(pp->p_szc); 2855 pgcnt_t i; 2856 uint_t szc = pp->p_szc; 2857 2858 VM_STAT_ADD(pagecnt.pc_free_pages); 2859 TRACE_1(TR_FAC_VM, TR_PAGE_FREE_FREE, 2860 "page_free_free:pp %p", pp); 2861 2862 ASSERT(pp->p_szc != 0 && pp->p_szc < page_num_pagesizes()); 2863 if ((page_pptonum(pp) & (pgcnt - 1)) != 0) { 2864 panic("page_free_pages: not root page %p", (void *)pp); 2865 /*NOTREACHED*/ 2866 } 2867 2868 for (i = 0, tpp = pp; i < pgcnt; i++, tpp++) { 2869 ASSERT((PAGE_EXCL(tpp) && 2870 !page_iolock_assert(tpp)) || panicstr); 2871 if (PP_ISFREE(tpp)) { 2872 panic("page_free_pages: page %p is free", (void *)tpp); 2873 /*NOTREACHED*/ 2874 } 2875 if (hat_page_is_mapped(tpp) || tpp->p_lckcnt != 0 || 2876 tpp->p_cowcnt != 0 || tpp->p_slckcnt != 0) { 2877 panic("page_free_pages %p", (void *)tpp); 2878 /*NOTREACHED*/ 2879 } 2880 2881 ASSERT(!hat_page_getshare(tpp)); 2882 ASSERT(tpp->p_vnode == NULL); 2883 ASSERT(tpp->p_szc == szc); 2884 2885 PP_SETFREE(tpp); 2886 page_clr_all_props(tpp); 2887 PP_SETAGED(tpp); 2888 tpp->p_offset = (u_offset_t)-1; 2889 ASSERT(tpp->p_next == tpp); 2890 ASSERT(tpp->p_prev == tpp); 2891 page_list_concat(&rootpp, &tpp); 2892 } 2893 ASSERT(rootpp == pp); 2894 2895 page_list_add_pages(rootpp, 0); 2896 page_create_putback(pgcnt); 2897 } 2898 2899 int free_pages = 1; 2900 2901 /* 2902 * This routine attempts to return pages to the cachelist via page_release(). 2903 * It does not *have* to be successful in all cases, since the pageout scanner 2904 * will catch any pages it misses. It does need to be fast and not introduce 2905 * too much overhead. 2906 * 2907 * If a page isn't found on the unlocked sweep of the page_hash bucket, we 2908 * don't lock and retry. This is ok, since the page scanner will eventually 2909 * find any page we miss in free_vp_pages(). 2910 */ 2911 void 2912 free_vp_pages(vnode_t *vp, u_offset_t off, size_t len) 2913 { 2914 page_t *pp; 2915 u_offset_t eoff; 2916 extern int swap_in_range(vnode_t *, u_offset_t, size_t); 2917 2918 eoff = off + len; 2919 2920 if (free_pages == 0) 2921 return; 2922 if (swap_in_range(vp, off, len)) 2923 return; 2924 2925 for (; off < eoff; off += PAGESIZE) { 2926 2927 /* 2928 * find the page using a fast, but inexact search. It'll be OK 2929 * if a few pages slip through the cracks here. 2930 */ 2931 pp = page_exists(vp, off); 2932 2933 /* 2934 * If we didn't find the page (it may not exist), the page 2935 * is free, looks still in use (shared), or we can't lock it, 2936 * just give up. 2937 */ 2938 if (pp == NULL || 2939 PP_ISFREE(pp) || 2940 page_share_cnt(pp) > 0 || 2941 !page_trylock(pp, SE_EXCL)) 2942 continue; 2943 2944 /* 2945 * Once we have locked pp, verify that it's still the 2946 * correct page and not already free 2947 */ 2948 ASSERT(PAGE_LOCKED_SE(pp, SE_EXCL)); 2949 if (pp->p_vnode != vp || pp->p_offset != off || PP_ISFREE(pp)) { 2950 page_unlock(pp); 2951 continue; 2952 } 2953 2954 /* 2955 * try to release the page... 2956 */ 2957 (void) page_release(pp, 1); 2958 } 2959 } 2960 2961 /* 2962 * Reclaim the given page from the free list. 2963 * If pp is part of a large pages, only the given constituent page is reclaimed 2964 * and the large page it belonged to will be demoted. This can only happen 2965 * if the page is not on the cachelist. 2966 * 2967 * Returns 1 on success or 0 on failure. 2968 * 2969 * The page is unlocked if it can't be reclaimed (when freemem == 0). 2970 * If `lock' is non-null, it will be dropped and re-acquired if 2971 * the routine must wait while freemem is 0. 2972 * 2973 * As it turns out, boot_getpages() does this. It picks a page, 2974 * based on where OBP mapped in some address, gets its pfn, searches 2975 * the memsegs, locks the page, then pulls it off the free list! 2976 */ 2977 int 2978 page_reclaim(page_t *pp, kmutex_t *lock) 2979 { 2980 struct pcf *p; 2981 uint_t pcf_index; 2982 struct cpu *cpup; 2983 int enough; 2984 uint_t i; 2985 2986 ASSERT(lock != NULL ? MUTEX_HELD(lock) : 1); 2987 ASSERT(PAGE_EXCL(pp) && PP_ISFREE(pp)); 2988 2989 /* 2990 * If `freemem' is 0, we cannot reclaim this page from the 2991 * freelist, so release every lock we might hold: the page, 2992 * and the `lock' before blocking. 2993 * 2994 * The only way `freemem' can become 0 while there are pages 2995 * marked free (have their p->p_free bit set) is when the 2996 * system is low on memory and doing a page_create(). In 2997 * order to guarantee that once page_create() starts acquiring 2998 * pages it will be able to get all that it needs since `freemem' 2999 * was decreased by the requested amount. So, we need to release 3000 * this page, and let page_create() have it. 3001 * 3002 * Since `freemem' being zero is not supposed to happen, just 3003 * use the usual hash stuff as a starting point. If that bucket 3004 * is empty, then assume the worst, and start at the beginning 3005 * of the pcf array. If we always start at the beginning 3006 * when acquiring more than one pcf lock, there won't be any 3007 * deadlock problems. 3008 */ 3009 3010 /* TODO: Do we need to test kcage_freemem if PG_NORELOC(pp)? */ 3011 3012 if (freemem <= throttlefree && !page_create_throttle(1l, 0)) { 3013 pcf_acquire_all(); 3014 goto page_reclaim_nomem; 3015 } 3016 3017 enough = 0; 3018 pcf_index = PCF_INDEX(); 3019 p = &pcf[pcf_index]; 3020 mutex_enter(&p->pcf_lock); 3021 if (p->pcf_count >= 1) { 3022 enough = 1; 3023 p->pcf_count--; 3024 } 3025 mutex_exit(&p->pcf_lock); 3026 3027 if (!enough) { 3028 VM_STAT_ADD(page_reclaim_zero); 3029 /* 3030 * Check again. Its possible that some other thread 3031 * could have been right behind us, and added one 3032 * to a list somewhere. Acquire each of the pcf locks 3033 * until we find a page. 3034 */ 3035 p = pcf; 3036 for (i = 0; i < PCF_FANOUT; i++) { 3037 mutex_enter(&p->pcf_lock); 3038 if (p->pcf_count >= 1) { 3039 p->pcf_count -= 1; 3040 enough = 1; 3041 break; 3042 } 3043 p++; 3044 } 3045 3046 if (!enough) { 3047 page_reclaim_nomem: 3048 /* 3049 * We really can't have page `pp'. 3050 * Time for the no-memory dance with 3051 * page_free(). This is just like 3052 * page_create_wait(). Plus the added 3053 * attraction of releasing whatever mutex 3054 * we held when we were called with in `lock'. 3055 * Page_unlock() will wakeup any thread 3056 * waiting around for this page. 3057 */ 3058 if (lock) { 3059 VM_STAT_ADD(page_reclaim_zero_locked); 3060 mutex_exit(lock); 3061 } 3062 page_unlock(pp); 3063 3064 /* 3065 * get this before we drop all the pcf locks. 3066 */ 3067 mutex_enter(&new_freemem_lock); 3068 3069 p = pcf; 3070 for (i = 0; i < PCF_FANOUT; i++) { 3071 p->pcf_wait++; 3072 mutex_exit(&p->pcf_lock); 3073 p++; 3074 } 3075 3076 freemem_wait++; 3077 cv_wait(&freemem_cv, &new_freemem_lock); 3078 freemem_wait--; 3079 3080 mutex_exit(&new_freemem_lock); 3081 3082 if (lock) { 3083 mutex_enter(lock); 3084 } 3085 return (0); 3086 } 3087 3088 /* 3089 * The pcf accounting has been done, 3090 * though none of the pcf_wait flags have been set, 3091 * drop the locks and continue on. 3092 */ 3093 while (p >= pcf) { 3094 mutex_exit(&p->pcf_lock); 3095 p--; 3096 } 3097 } 3098 3099 /* 3100 * freemem is not protected by any lock. Thus, we cannot 3101 * have any assertion containing freemem here. 3102 */ 3103 freemem -= 1; 3104 3105 VM_STAT_ADD(pagecnt.pc_reclaim); 3106 3107 /* 3108 * page_list_sub will handle the case where pp is a large page. 3109 * It's possible that the page was promoted while on the freelist 3110 */ 3111 if (PP_ISAGED(pp)) { 3112 page_list_sub(pp, PG_FREE_LIST); 3113 TRACE_1(TR_FAC_VM, TR_PAGE_UNFREE_FREE, 3114 "page_reclaim_free:pp %p", pp); 3115 } else { 3116 page_list_sub(pp, PG_CACHE_LIST); 3117 TRACE_1(TR_FAC_VM, TR_PAGE_UNFREE_CACHE, 3118 "page_reclaim_cache:pp %p", pp); 3119 } 3120 3121 /* 3122 * clear the p_free & p_age bits since this page is no longer 3123 * on the free list. Notice that there was a brief time where 3124 * a page is marked as free, but is not on the list. 3125 * 3126 * Set the reference bit to protect against immediate pageout. 3127 */ 3128 PP_CLRFREE(pp); 3129 PP_CLRAGED(pp); 3130 page_set_props(pp, P_REF); 3131 3132 CPU_STATS_ENTER_K(); 3133 cpup = CPU; /* get cpup now that CPU cannot change */ 3134 CPU_STATS_ADDQ(cpup, vm, pgrec, 1); 3135 CPU_STATS_ADDQ(cpup, vm, pgfrec, 1); 3136 CPU_STATS_EXIT_K(); 3137 ASSERT(pp->p_szc == 0); 3138 3139 return (1); 3140 } 3141 3142 /* 3143 * Destroy identity of the page and put it back on 3144 * the page free list. Assumes that the caller has 3145 * acquired the "exclusive" lock on the page. 3146 */ 3147 void 3148 page_destroy(page_t *pp, int dontfree) 3149 { 3150 ASSERT((PAGE_EXCL(pp) && 3151 !page_iolock_assert(pp)) || panicstr); 3152 ASSERT(pp->p_slckcnt == 0 || panicstr); 3153 3154 if (pp->p_szc != 0) { 3155 if (pp->p_vnode == NULL || IS_SWAPFSVP(pp->p_vnode) || 3156 PP_ISKAS(pp)) { 3157 panic("page_destroy: anon or kernel or no vnode " 3158 "large page %p", (void *)pp); 3159 } 3160 page_demote_vp_pages(pp); 3161 ASSERT(pp->p_szc == 0); 3162 } 3163 3164 TRACE_1(TR_FAC_VM, TR_PAGE_DESTROY, "page_destroy:pp %p", pp); 3165 3166 /* 3167 * Unload translations, if any, then hash out the 3168 * page to erase its identity. 3169 */ 3170 (void) hat_pageunload(pp, HAT_FORCE_PGUNLOAD); 3171 page_hashout(pp, NULL); 3172 3173 if (!dontfree) { 3174 /* 3175 * Acquire the "freemem_lock" for availrmem. 3176 * The page_struct_lock need not be acquired for lckcnt 3177 * and cowcnt since the page has an "exclusive" lock. 3178 */ 3179 if ((pp->p_lckcnt != 0) || (pp->p_cowcnt != 0)) { 3180 mutex_enter(&freemem_lock); 3181 if (pp->p_lckcnt != 0) { 3182 availrmem++; 3183 pp->p_lckcnt = 0; 3184 } 3185 if (pp->p_cowcnt != 0) { 3186 availrmem += pp->p_cowcnt; 3187 pp->p_cowcnt = 0; 3188 } 3189 mutex_exit(&freemem_lock); 3190 } 3191 /* 3192 * Put the page on the "free" list. 3193 */ 3194 page_free(pp, 0); 3195 } 3196 } 3197 3198 void 3199 page_destroy_pages(page_t *pp) 3200 { 3201 3202 page_t *tpp, *rootpp = NULL; 3203 pgcnt_t pgcnt = page_get_pagecnt(pp->p_szc); 3204 pgcnt_t i, pglcks = 0; 3205 uint_t szc = pp->p_szc; 3206 3207 ASSERT(pp->p_szc != 0 && pp->p_szc < page_num_pagesizes()); 3208 3209 VM_STAT_ADD(pagecnt.pc_destroy_pages); 3210 3211 TRACE_1(TR_FAC_VM, TR_PAGE_DESTROY, "page_destroy_pages:pp %p", pp); 3212 3213 if ((page_pptonum(pp) & (pgcnt - 1)) != 0) { 3214 panic("page_destroy_pages: not root page %p", (void *)pp); 3215 /*NOTREACHED*/ 3216 } 3217 3218 for (i = 0, tpp = pp; i < pgcnt; i++, tpp++) { 3219 ASSERT((PAGE_EXCL(tpp) && 3220 !page_iolock_assert(tpp)) || panicstr); 3221 ASSERT(tpp->p_slckcnt == 0 || panicstr); 3222 (void) hat_pageunload(tpp, HAT_FORCE_PGUNLOAD); 3223 page_hashout(tpp, NULL); 3224 ASSERT(tpp->p_offset == (u_offset_t)-1); 3225 if (tpp->p_lckcnt != 0) { 3226 pglcks++; 3227 tpp->p_lckcnt = 0; 3228 } else if (tpp->p_cowcnt != 0) { 3229 pglcks += tpp->p_cowcnt; 3230 tpp->p_cowcnt = 0; 3231 } 3232 ASSERT(!hat_page_getshare(tpp)); 3233 ASSERT(tpp->p_vnode == NULL); 3234 ASSERT(tpp->p_szc == szc); 3235 3236 PP_SETFREE(tpp); 3237 page_clr_all_props(tpp); 3238 PP_SETAGED(tpp); 3239 ASSERT(tpp->p_next == tpp); 3240 ASSERT(tpp->p_prev == tpp); 3241 page_list_concat(&rootpp, &tpp); 3242 } 3243 3244 ASSERT(rootpp == pp); 3245 if (pglcks != 0) { 3246 mutex_enter(&freemem_lock); 3247 availrmem += pglcks; 3248 mutex_exit(&freemem_lock); 3249 } 3250 3251 page_list_add_pages(rootpp, 0); 3252 page_create_putback(pgcnt); 3253 } 3254 3255 /* 3256 * Similar to page_destroy(), but destroys pages which are 3257 * locked and known to be on the page free list. Since 3258 * the page is known to be free and locked, no one can access 3259 * it. 3260 * 3261 * Also, the number of free pages does not change. 3262 */ 3263 void 3264 page_destroy_free(page_t *pp) 3265 { 3266 ASSERT(PAGE_EXCL(pp)); 3267 ASSERT(PP_ISFREE(pp)); 3268 ASSERT(pp->p_vnode); 3269 ASSERT(hat_page_getattr(pp, P_MOD | P_REF | P_RO) == 0); 3270 ASSERT(!hat_page_is_mapped(pp)); 3271 ASSERT(PP_ISAGED(pp) == 0); 3272 ASSERT(pp->p_szc == 0); 3273 3274 VM_STAT_ADD(pagecnt.pc_destroy_free); 3275 page_list_sub(pp, PG_CACHE_LIST); 3276 3277 page_hashout(pp, NULL); 3278 ASSERT(pp->p_vnode == NULL); 3279 ASSERT(pp->p_offset == (u_offset_t)-1); 3280 ASSERT(pp->p_hash == NULL); 3281 3282 PP_SETAGED(pp); 3283 page_list_add(pp, PG_FREE_LIST | PG_LIST_TAIL); 3284 page_unlock(pp); 3285 3286 mutex_enter(&new_freemem_lock); 3287 if (freemem_wait) { 3288 cv_signal(&freemem_cv); 3289 } 3290 mutex_exit(&new_freemem_lock); 3291 } 3292 3293 /* 3294 * Rename the page "opp" to have an identity specified 3295 * by [vp, off]. If a page already exists with this name 3296 * it is locked and destroyed. Note that the page's 3297 * translations are not unloaded during the rename. 3298 * 3299 * This routine is used by the anon layer to "steal" the 3300 * original page and is not unlike destroying a page and 3301 * creating a new page using the same page frame. 3302 * 3303 * XXX -- Could deadlock if caller 1 tries to rename A to B while 3304 * caller 2 tries to rename B to A. 3305 */ 3306 void 3307 page_rename(page_t *opp, vnode_t *vp, u_offset_t off) 3308 { 3309 page_t *pp; 3310 int olckcnt = 0; 3311 int ocowcnt = 0; 3312 kmutex_t *phm; 3313 ulong_t index; 3314 3315 ASSERT(PAGE_EXCL(opp) && !page_iolock_assert(opp)); 3316 ASSERT(MUTEX_NOT_HELD(page_vnode_mutex(vp))); 3317 ASSERT(PP_ISFREE(opp) == 0); 3318 3319 VM_STAT_ADD(page_rename_count); 3320 3321 TRACE_3(TR_FAC_VM, TR_PAGE_RENAME, 3322 "page rename:pp %p vp %p off %llx", opp, vp, off); 3323 3324 /* 3325 * CacheFS may call page_rename for a large NFS page 3326 * when both CacheFS and NFS mount points are used 3327 * by applications. Demote this large page before 3328 * renaming it, to ensure that there are no "partial" 3329 * large pages left lying around. 3330 */ 3331 if (opp->p_szc != 0) { 3332 vnode_t *ovp = opp->p_vnode; 3333 ASSERT(ovp != NULL); 3334 ASSERT(!IS_SWAPFSVP(ovp)); 3335 ASSERT(!VN_ISKAS(ovp)); 3336 page_demote_vp_pages(opp); 3337 ASSERT(opp->p_szc == 0); 3338 } 3339 3340 page_hashout(opp, NULL); 3341 PP_CLRAGED(opp); 3342 3343 /* 3344 * Acquire the appropriate page hash lock, since 3345 * we're going to rename the page. 3346 */ 3347 index = PAGE_HASH_FUNC(vp, off); 3348 phm = PAGE_HASH_MUTEX(index); 3349 mutex_enter(phm); 3350 top: 3351 /* 3352 * Look for an existing page with this name and destroy it if found. 3353 * By holding the page hash lock all the way to the page_hashin() 3354 * call, we are assured that no page can be created with this 3355 * identity. In the case when the phm lock is dropped to undo any 3356 * hat layer mappings, the existing page is held with an "exclusive" 3357 * lock, again preventing another page from being created with 3358 * this identity. 3359 */ 3360 PAGE_HASH_SEARCH(index, pp, vp, off); 3361 if (pp != NULL) { 3362 VM_STAT_ADD(page_rename_exists); 3363 3364 /* 3365 * As it turns out, this is one of only two places where 3366 * page_lock() needs to hold the passed in lock in the 3367 * successful case. In all of the others, the lock could 3368 * be dropped as soon as the attempt is made to lock 3369 * the page. It is tempting to add yet another arguement, 3370 * PL_KEEP or PL_DROP, to let page_lock know what to do. 3371 */ 3372 if (!page_lock(pp, SE_EXCL, phm, P_RECLAIM)) { 3373 /* 3374 * Went to sleep because the page could not 3375 * be locked. We were woken up when the page 3376 * was unlocked, or when the page was destroyed. 3377 * In either case, `phm' was dropped while we 3378 * slept. Hence we should not just roar through 3379 * this loop. 3380 */ 3381 goto top; 3382 } 3383 3384 /* 3385 * If an existing page is a large page, then demote 3386 * it to ensure that no "partial" large pages are 3387 * "created" after page_rename. An existing page 3388 * can be a CacheFS page, and can't belong to swapfs. 3389 */ 3390 if (hat_page_is_mapped(pp)) { 3391 /* 3392 * Unload translations. Since we hold the 3393 * exclusive lock on this page, the page 3394 * can not be changed while we drop phm. 3395 * This is also not a lock protocol violation, 3396 * but rather the proper way to do things. 3397 */ 3398 mutex_exit(phm); 3399 (void) hat_pageunload(pp, HAT_FORCE_PGUNLOAD); 3400 if (pp->p_szc != 0) { 3401 ASSERT(!IS_SWAPFSVP(vp)); 3402 ASSERT(!VN_ISKAS(vp)); 3403 page_demote_vp_pages(pp); 3404 ASSERT(pp->p_szc == 0); 3405 } 3406 mutex_enter(phm); 3407 } else if (pp->p_szc != 0) { 3408 ASSERT(!IS_SWAPFSVP(vp)); 3409 ASSERT(!VN_ISKAS(vp)); 3410 mutex_exit(phm); 3411 page_demote_vp_pages(pp); 3412 ASSERT(pp->p_szc == 0); 3413 mutex_enter(phm); 3414 } 3415 page_hashout(pp, phm); 3416 } 3417 /* 3418 * Hash in the page with the new identity. 3419 */ 3420 if (!page_hashin(opp, vp, off, phm)) { 3421 /* 3422 * We were holding phm while we searched for [vp, off] 3423 * and only dropped phm if we found and locked a page. 3424 * If we can't create this page now, then some thing 3425 * is really broken. 3426 */ 3427 panic("page_rename: Can't hash in page: %p", (void *)pp); 3428 /*NOTREACHED*/ 3429 } 3430 3431 ASSERT(MUTEX_HELD(phm)); 3432 mutex_exit(phm); 3433 3434 /* 3435 * Now that we have dropped phm, lets get around to finishing up 3436 * with pp. 3437 */ 3438 if (pp != NULL) { 3439 ASSERT(!hat_page_is_mapped(pp)); 3440 /* for now large pages should not end up here */ 3441 ASSERT(pp->p_szc == 0); 3442 /* 3443 * Save the locks for transfer to the new page and then 3444 * clear them so page_free doesn't think they're important. 3445 * The page_struct_lock need not be acquired for lckcnt and 3446 * cowcnt since the page has an "exclusive" lock. 3447 */ 3448 olckcnt = pp->p_lckcnt; 3449 ocowcnt = pp->p_cowcnt; 3450 pp->p_lckcnt = pp->p_cowcnt = 0; 3451 3452 /* 3453 * Put the page on the "free" list after we drop 3454 * the lock. The less work under the lock the better. 3455 */ 3456 /*LINTED: constant in conditional context*/ 3457 VN_DISPOSE(pp, B_FREE, 0, kcred); 3458 } 3459 3460 /* 3461 * Transfer the lock count from the old page (if any). 3462 * The page_struct_lock need not be acquired for lckcnt and 3463 * cowcnt since the page has an "exclusive" lock. 3464 */ 3465 opp->p_lckcnt += olckcnt; 3466 opp->p_cowcnt += ocowcnt; 3467 } 3468 3469 /* 3470 * low level routine to add page `pp' to the hash and vp chains for [vp, offset] 3471 * 3472 * Pages are normally inserted at the start of a vnode's v_pages list. 3473 * If the vnode is VMODSORT and the page is modified, it goes at the end. 3474 * This can happen when a modified page is relocated for DR. 3475 * 3476 * Returns 1 on success and 0 on failure. 3477 */ 3478 static int 3479 page_do_hashin(page_t *pp, vnode_t *vp, u_offset_t offset) 3480 { 3481 page_t **listp; 3482 page_t *tp; 3483 ulong_t index; 3484 3485 ASSERT(PAGE_EXCL(pp)); 3486 ASSERT(vp != NULL); 3487 ASSERT(MUTEX_HELD(page_vnode_mutex(vp))); 3488 3489 /* 3490 * Be sure to set these up before the page is inserted on the hash 3491 * list. As soon as the page is placed on the list some other 3492 * thread might get confused and wonder how this page could 3493 * possibly hash to this list. 3494 */ 3495 pp->p_vnode = vp; 3496 pp->p_offset = offset; 3497 3498 /* 3499 * record if this page is on a swap vnode 3500 */ 3501 if ((vp->v_flag & VISSWAP) != 0) 3502 PP_SETSWAP(pp); 3503 3504 index = PAGE_HASH_FUNC(vp, offset); 3505 ASSERT(MUTEX_HELD(PAGE_HASH_MUTEX(index))); 3506 listp = &page_hash[index]; 3507 3508 /* 3509 * If this page is already hashed in, fail this attempt to add it. 3510 */ 3511 for (tp = *listp; tp != NULL; tp = tp->p_hash) { 3512 if (tp->p_vnode == vp && tp->p_offset == offset) { 3513 pp->p_vnode = NULL; 3514 pp->p_offset = (u_offset_t)(-1); 3515 return (0); 3516 } 3517 } 3518 pp->p_hash = *listp; 3519 *listp = pp; 3520 3521 /* 3522 * Add the page to the vnode's list of pages 3523 */ 3524 if (vp->v_pages != NULL && IS_VMODSORT(vp) && hat_ismod(pp)) 3525 listp = &vp->v_pages->p_vpprev->p_vpnext; 3526 else 3527 listp = &vp->v_pages; 3528 3529 page_vpadd(listp, pp); 3530 3531 return (1); 3532 } 3533 3534 /* 3535 * Add page `pp' to both the hash and vp chains for [vp, offset]. 3536 * 3537 * Returns 1 on success and 0 on failure. 3538 * If hold is passed in, it is not dropped. 3539 */ 3540 int 3541 page_hashin(page_t *pp, vnode_t *vp, u_offset_t offset, kmutex_t *hold) 3542 { 3543 kmutex_t *phm = NULL; 3544 kmutex_t *vphm; 3545 int rc; 3546 3547 ASSERT(MUTEX_NOT_HELD(page_vnode_mutex(vp))); 3548 3549 TRACE_3(TR_FAC_VM, TR_PAGE_HASHIN, 3550 "page_hashin:pp %p vp %p offset %llx", 3551 pp, vp, offset); 3552 3553 VM_STAT_ADD(hashin_count); 3554 3555 if (hold != NULL) 3556 phm = hold; 3557 else { 3558 VM_STAT_ADD(hashin_not_held); 3559 phm = PAGE_HASH_MUTEX(PAGE_HASH_FUNC(vp, offset)); 3560 mutex_enter(phm); 3561 } 3562 3563 vphm = page_vnode_mutex(vp); 3564 mutex_enter(vphm); 3565 rc = page_do_hashin(pp, vp, offset); 3566 mutex_exit(vphm); 3567 if (hold == NULL) 3568 mutex_exit(phm); 3569 if (rc == 0) 3570 VM_STAT_ADD(hashin_already); 3571 return (rc); 3572 } 3573 3574 /* 3575 * Remove page ``pp'' from the hash and vp chains and remove vp association. 3576 * All mutexes must be held 3577 */ 3578 static void 3579 page_do_hashout(page_t *pp) 3580 { 3581 page_t **hpp; 3582 page_t *hp; 3583 vnode_t *vp = pp->p_vnode; 3584 3585 ASSERT(vp != NULL); 3586 ASSERT(MUTEX_HELD(page_vnode_mutex(vp))); 3587 3588 /* 3589 * First, take pp off of its hash chain. 3590 */ 3591 hpp = &page_hash[PAGE_HASH_FUNC(vp, pp->p_offset)]; 3592 3593 for (;;) { 3594 hp = *hpp; 3595 if (hp == pp) 3596 break; 3597 if (hp == NULL) { 3598 panic("page_do_hashout"); 3599 /*NOTREACHED*/ 3600 } 3601 hpp = &hp->p_hash; 3602 } 3603 *hpp = pp->p_hash; 3604 3605 /* 3606 * Now remove it from its associated vnode. 3607 */ 3608 if (vp->v_pages) 3609 page_vpsub(&vp->v_pages, pp); 3610 3611 pp->p_hash = NULL; 3612 page_clr_all_props(pp); 3613 PP_CLRSWAP(pp); 3614 pp->p_vnode = NULL; 3615 pp->p_offset = (u_offset_t)-1; 3616 } 3617 3618 /* 3619 * Remove page ``pp'' from the hash and vp chains and remove vp association. 3620 * 3621 * When `phm' is non-NULL it contains the address of the mutex protecting the 3622 * hash list pp is on. It is not dropped. 3623 */ 3624 void 3625 page_hashout(page_t *pp, kmutex_t *phm) 3626 { 3627 vnode_t *vp; 3628 ulong_t index; 3629 kmutex_t *nphm; 3630 kmutex_t *vphm; 3631 kmutex_t *sep; 3632 3633 ASSERT(phm != NULL ? MUTEX_HELD(phm) : 1); 3634 ASSERT(pp->p_vnode != NULL); 3635 ASSERT((PAGE_EXCL(pp) && !page_iolock_assert(pp)) || panicstr); 3636 ASSERT(MUTEX_NOT_HELD(page_vnode_mutex(pp->p_vnode))); 3637 3638 vp = pp->p_vnode; 3639 3640 TRACE_2(TR_FAC_VM, TR_PAGE_HASHOUT, 3641 "page_hashout:pp %p vp %p", pp, vp); 3642 3643 /* Kernel probe */ 3644 TNF_PROBE_2(page_unmap, "vm pagefault", /* CSTYLED */, 3645 tnf_opaque, vnode, vp, 3646 tnf_offset, offset, pp->p_offset); 3647 3648 /* 3649 * 3650 */ 3651 VM_STAT_ADD(hashout_count); 3652 index = PAGE_HASH_FUNC(vp, pp->p_offset); 3653 if (phm == NULL) { 3654 VM_STAT_ADD(hashout_not_held); 3655 nphm = PAGE_HASH_MUTEX(index); 3656 mutex_enter(nphm); 3657 } 3658 ASSERT(phm ? phm == PAGE_HASH_MUTEX(index) : 1); 3659 3660 3661 /* 3662 * grab page vnode mutex and remove it... 3663 */ 3664 vphm = page_vnode_mutex(vp); 3665 mutex_enter(vphm); 3666 3667 page_do_hashout(pp); 3668 3669 mutex_exit(vphm); 3670 if (phm == NULL) 3671 mutex_exit(nphm); 3672 3673 /* 3674 * Wake up processes waiting for this page. The page's 3675 * identity has been changed, and is probably not the 3676 * desired page any longer. 3677 */ 3678 sep = page_se_mutex(pp); 3679 mutex_enter(sep); 3680 pp->p_selock &= ~SE_EWANTED; 3681 if (CV_HAS_WAITERS(&pp->p_cv)) 3682 cv_broadcast(&pp->p_cv); 3683 mutex_exit(sep); 3684 } 3685 3686 /* 3687 * Add the page to the front of a linked list of pages 3688 * using the p_next & p_prev pointers for the list. 3689 * The caller is responsible for protecting the list pointers. 3690 */ 3691 void 3692 page_add(page_t **ppp, page_t *pp) 3693 { 3694 ASSERT(PAGE_EXCL(pp) || (PAGE_SHARED(pp) && page_iolock_assert(pp))); 3695 3696 page_add_common(ppp, pp); 3697 } 3698 3699 3700 3701 /* 3702 * Common code for page_add() and mach_page_add() 3703 */ 3704 void 3705 page_add_common(page_t **ppp, page_t *pp) 3706 { 3707 if (*ppp == NULL) { 3708 pp->p_next = pp->p_prev = pp; 3709 } else { 3710 pp->p_next = *ppp; 3711 pp->p_prev = (*ppp)->p_prev; 3712 (*ppp)->p_prev = pp; 3713 pp->p_prev->p_next = pp; 3714 } 3715 *ppp = pp; 3716 } 3717 3718 3719 /* 3720 * Remove this page from a linked list of pages 3721 * using the p_next & p_prev pointers for the list. 3722 * 3723 * The caller is responsible for protecting the list pointers. 3724 */ 3725 void 3726 page_sub(page_t **ppp, page_t *pp) 3727 { 3728 ASSERT((PP_ISFREE(pp)) ? 1 : 3729 (PAGE_EXCL(pp)) || (PAGE_SHARED(pp) && page_iolock_assert(pp))); 3730 3731 if (*ppp == NULL || pp == NULL) { 3732 panic("page_sub: bad arg(s): pp %p, *ppp %p", 3733 (void *)pp, (void *)(*ppp)); 3734 /*NOTREACHED*/ 3735 } 3736 3737 page_sub_common(ppp, pp); 3738 } 3739 3740 3741 /* 3742 * Common code for page_sub() and mach_page_sub() 3743 */ 3744 void 3745 page_sub_common(page_t **ppp, page_t *pp) 3746 { 3747 if (*ppp == pp) 3748 *ppp = pp->p_next; /* go to next page */ 3749 3750 if (*ppp == pp) 3751 *ppp = NULL; /* page list is gone */ 3752 else { 3753 pp->p_prev->p_next = pp->p_next; 3754 pp->p_next->p_prev = pp->p_prev; 3755 } 3756 pp->p_prev = pp->p_next = pp; /* make pp a list of one */ 3757 } 3758 3759 3760 /* 3761 * Break page list cppp into two lists with npages in the first list. 3762 * The tail is returned in nppp. 3763 */ 3764 void 3765 page_list_break(page_t **oppp, page_t **nppp, pgcnt_t npages) 3766 { 3767 page_t *s1pp = *oppp; 3768 page_t *s2pp; 3769 page_t *e1pp, *e2pp; 3770 long n = 0; 3771 3772 if (s1pp == NULL) { 3773 *nppp = NULL; 3774 return; 3775 } 3776 if (npages == 0) { 3777 *nppp = s1pp; 3778 *oppp = NULL; 3779 return; 3780 } 3781 for (n = 0, s2pp = *oppp; n < npages; n++) { 3782 s2pp = s2pp->p_next; 3783 } 3784 /* Fix head and tail of new lists */ 3785 e1pp = s2pp->p_prev; 3786 e2pp = s1pp->p_prev; 3787 s1pp->p_prev = e1pp; 3788 e1pp->p_next = s1pp; 3789 s2pp->p_prev = e2pp; 3790 e2pp->p_next = s2pp; 3791 3792 /* second list empty */ 3793 if (s2pp == s1pp) { 3794 *oppp = s1pp; 3795 *nppp = NULL; 3796 } else { 3797 *oppp = s1pp; 3798 *nppp = s2pp; 3799 } 3800 } 3801 3802 /* 3803 * Concatenate page list nppp onto the end of list ppp. 3804 */ 3805 void 3806 page_list_concat(page_t **ppp, page_t **nppp) 3807 { 3808 page_t *s1pp, *s2pp, *e1pp, *e2pp; 3809 3810 if (*nppp == NULL) { 3811 return; 3812 } 3813 if (*ppp == NULL) { 3814 *ppp = *nppp; 3815 return; 3816 } 3817 s1pp = *ppp; 3818 e1pp = s1pp->p_prev; 3819 s2pp = *nppp; 3820 e2pp = s2pp->p_prev; 3821 s1pp->p_prev = e2pp; 3822 e2pp->p_next = s1pp; 3823 e1pp->p_next = s2pp; 3824 s2pp->p_prev = e1pp; 3825 } 3826 3827 /* 3828 * return the next page in the page list 3829 */ 3830 page_t * 3831 page_list_next(page_t *pp) 3832 { 3833 return (pp->p_next); 3834 } 3835 3836 3837 /* 3838 * Add the page to the front of the linked list of pages 3839 * using p_vpnext/p_vpprev pointers for the list. 3840 * 3841 * The caller is responsible for protecting the lists. 3842 */ 3843 void 3844 page_vpadd(page_t **ppp, page_t *pp) 3845 { 3846 if (*ppp == NULL) { 3847 pp->p_vpnext = pp->p_vpprev = pp; 3848 } else { 3849 pp->p_vpnext = *ppp; 3850 pp->p_vpprev = (*ppp)->p_vpprev; 3851 (*ppp)->p_vpprev = pp; 3852 pp->p_vpprev->p_vpnext = pp; 3853 } 3854 *ppp = pp; 3855 } 3856 3857 /* 3858 * Remove this page from the linked list of pages 3859 * using p_vpnext/p_vpprev pointers for the list. 3860 * 3861 * The caller is responsible for protecting the lists. 3862 */ 3863 void 3864 page_vpsub(page_t **ppp, page_t *pp) 3865 { 3866 if (*ppp == NULL || pp == NULL) { 3867 panic("page_vpsub: bad arg(s): pp %p, *ppp %p", 3868 (void *)pp, (void *)(*ppp)); 3869 /*NOTREACHED*/ 3870 } 3871 3872 if (*ppp == pp) 3873 *ppp = pp->p_vpnext; /* go to next page */ 3874 3875 if (*ppp == pp) 3876 *ppp = NULL; /* page list is gone */ 3877 else { 3878 pp->p_vpprev->p_vpnext = pp->p_vpnext; 3879 pp->p_vpnext->p_vpprev = pp->p_vpprev; 3880 } 3881 pp->p_vpprev = pp->p_vpnext = pp; /* make pp a list of one */ 3882 } 3883 3884 /* 3885 * Lock a physical page into memory "long term". Used to support "lock 3886 * in memory" functions. Accepts the page to be locked, and a cow variable 3887 * to indicate whether a the lock will travel to the new page during 3888 * a potential copy-on-write. 3889 */ 3890 int 3891 page_pp_lock( 3892 page_t *pp, /* page to be locked */ 3893 int cow, /* cow lock */ 3894 int kernel) /* must succeed -- ignore checking */ 3895 { 3896 int r = 0; /* result -- assume failure */ 3897 3898 ASSERT(PAGE_LOCKED(pp)); 3899 3900 page_struct_lock(pp); 3901 /* 3902 * Acquire the "freemem_lock" for availrmem. 3903 */ 3904 if (cow) { 3905 mutex_enter(&freemem_lock); 3906 if ((availrmem > pages_pp_maximum) && 3907 (pp->p_cowcnt < (ushort_t)PAGE_LOCK_MAXIMUM)) { 3908 availrmem--; 3909 pages_locked++; 3910 mutex_exit(&freemem_lock); 3911 r = 1; 3912 if (++pp->p_cowcnt == (ushort_t)PAGE_LOCK_MAXIMUM) { 3913 cmn_err(CE_WARN, 3914 "COW lock limit reached on pfn 0x%lx", 3915 page_pptonum(pp)); 3916 } 3917 } else 3918 mutex_exit(&freemem_lock); 3919 } else { 3920 if (pp->p_lckcnt) { 3921 if (pp->p_lckcnt < (ushort_t)PAGE_LOCK_MAXIMUM) { 3922 r = 1; 3923 if (++pp->p_lckcnt == 3924 (ushort_t)PAGE_LOCK_MAXIMUM) { 3925 cmn_err(CE_WARN, "Page lock limit " 3926 "reached on pfn 0x%lx", 3927 page_pptonum(pp)); 3928 } 3929 } 3930 } else { 3931 if (kernel) { 3932 /* availrmem accounting done by caller */ 3933 ++pp->p_lckcnt; 3934 r = 1; 3935 } else { 3936 mutex_enter(&freemem_lock); 3937 if (availrmem > pages_pp_maximum) { 3938 availrmem--; 3939 pages_locked++; 3940 ++pp->p_lckcnt; 3941 r = 1; 3942 } 3943 mutex_exit(&freemem_lock); 3944 } 3945 } 3946 } 3947 page_struct_unlock(pp); 3948 return (r); 3949 } 3950 3951 /* 3952 * Decommit a lock on a physical page frame. Account for cow locks if 3953 * appropriate. 3954 */ 3955 void 3956 page_pp_unlock( 3957 page_t *pp, /* page to be unlocked */ 3958 int cow, /* expect cow lock */ 3959 int kernel) /* this was a kernel lock */ 3960 { 3961 ASSERT(PAGE_LOCKED(pp)); 3962 3963 page_struct_lock(pp); 3964 /* 3965 * Acquire the "freemem_lock" for availrmem. 3966 * If cowcnt or lcknt is already 0 do nothing; i.e., we 3967 * could be called to unlock even if nothing is locked. This could 3968 * happen if locked file pages were truncated (removing the lock) 3969 * and the file was grown again and new pages faulted in; the new 3970 * pages are unlocked but the segment still thinks they're locked. 3971 */ 3972 if (cow) { 3973 if (pp->p_cowcnt) { 3974 mutex_enter(&freemem_lock); 3975 pp->p_cowcnt--; 3976 availrmem++; 3977 pages_locked--; 3978 mutex_exit(&freemem_lock); 3979 } 3980 } else { 3981 if (pp->p_lckcnt && --pp->p_lckcnt == 0) { 3982 if (!kernel) { 3983 mutex_enter(&freemem_lock); 3984 availrmem++; 3985 pages_locked--; 3986 mutex_exit(&freemem_lock); 3987 } 3988 } 3989 } 3990 page_struct_unlock(pp); 3991 } 3992 3993 /* 3994 * This routine reserves availrmem for npages; 3995 * flags: KM_NOSLEEP or KM_SLEEP 3996 * returns 1 on success or 0 on failure 3997 */ 3998 int 3999 page_resv(pgcnt_t npages, uint_t flags) 4000 { 4001 mutex_enter(&freemem_lock); 4002 while (availrmem < tune.t_minarmem + npages) { 4003 if (flags & KM_NOSLEEP) { 4004 mutex_exit(&freemem_lock); 4005 return (0); 4006 } 4007 mutex_exit(&freemem_lock); 4008 page_needfree(npages); 4009 kmem_reap(); 4010 delay(hz >> 2); 4011 page_needfree(-(spgcnt_t)npages); 4012 mutex_enter(&freemem_lock); 4013 } 4014 availrmem -= npages; 4015 mutex_exit(&freemem_lock); 4016 return (1); 4017 } 4018 4019 /* 4020 * This routine unreserves availrmem for npages; 4021 */ 4022 void 4023 page_unresv(pgcnt_t npages) 4024 { 4025 mutex_enter(&freemem_lock); 4026 availrmem += npages; 4027 mutex_exit(&freemem_lock); 4028 } 4029 4030 /* 4031 * See Statement at the beginning of segvn_lockop() regarding 4032 * the way we handle cowcnts and lckcnts. 4033 * 4034 * Transfer cowcnt on 'opp' to cowcnt on 'npp' if the vpage 4035 * that breaks COW has PROT_WRITE. 4036 * 4037 * Note that, we may also break COW in case we are softlocking 4038 * on read access during physio; 4039 * in this softlock case, the vpage may not have PROT_WRITE. 4040 * So, we need to transfer lckcnt on 'opp' to lckcnt on 'npp' 4041 * if the vpage doesn't have PROT_WRITE. 4042 * 4043 * This routine is never called if we are stealing a page 4044 * in anon_private. 4045 * 4046 * The caller subtracted from availrmem for read only mapping. 4047 * if lckcnt is 1 increment availrmem. 4048 */ 4049 void 4050 page_pp_useclaim( 4051 page_t *opp, /* original page frame losing lock */ 4052 page_t *npp, /* new page frame gaining lock */ 4053 uint_t write_perm) /* set if vpage has PROT_WRITE */ 4054 { 4055 int payback = 0; 4056 4057 ASSERT(PAGE_LOCKED(opp)); 4058 ASSERT(PAGE_LOCKED(npp)); 4059 4060 page_struct_lock(opp); 4061 4062 ASSERT(npp->p_cowcnt == 0); 4063 ASSERT(npp->p_lckcnt == 0); 4064 4065 /* Don't use claim if nothing is locked (see page_pp_unlock above) */ 4066 if ((write_perm && opp->p_cowcnt != 0) || 4067 (!write_perm && opp->p_lckcnt != 0)) { 4068 4069 if (write_perm) { 4070 npp->p_cowcnt++; 4071 ASSERT(opp->p_cowcnt != 0); 4072 opp->p_cowcnt--; 4073 } else { 4074 4075 ASSERT(opp->p_lckcnt != 0); 4076 4077 /* 4078 * We didn't need availrmem decremented if p_lckcnt on 4079 * original page is 1. Here, we are unlocking 4080 * read-only copy belonging to original page and 4081 * are locking a copy belonging to new page. 4082 */ 4083 if (opp->p_lckcnt == 1) 4084 payback = 1; 4085 4086 npp->p_lckcnt++; 4087 opp->p_lckcnt--; 4088 } 4089 } 4090 if (payback) { 4091 mutex_enter(&freemem_lock); 4092 availrmem++; 4093 pages_useclaim--; 4094 mutex_exit(&freemem_lock); 4095 } 4096 page_struct_unlock(opp); 4097 } 4098 4099 /* 4100 * Simple claim adjust functions -- used to support changes in 4101 * claims due to changes in access permissions. Used by segvn_setprot(). 4102 */ 4103 int 4104 page_addclaim(page_t *pp) 4105 { 4106 int r = 0; /* result */ 4107 4108 ASSERT(PAGE_LOCKED(pp)); 4109 4110 page_struct_lock(pp); 4111 ASSERT(pp->p_lckcnt != 0); 4112 4113 if (pp->p_lckcnt == 1) { 4114 if (pp->p_cowcnt < (ushort_t)PAGE_LOCK_MAXIMUM) { 4115 --pp->p_lckcnt; 4116 r = 1; 4117 if (++pp->p_cowcnt == (ushort_t)PAGE_LOCK_MAXIMUM) { 4118 cmn_err(CE_WARN, 4119 "COW lock limit reached on pfn 0x%lx", 4120 page_pptonum(pp)); 4121 } 4122 } 4123 } else { 4124 mutex_enter(&freemem_lock); 4125 if ((availrmem > pages_pp_maximum) && 4126 (pp->p_cowcnt < (ushort_t)PAGE_LOCK_MAXIMUM)) { 4127 --availrmem; 4128 ++pages_claimed; 4129 mutex_exit(&freemem_lock); 4130 --pp->p_lckcnt; 4131 r = 1; 4132 if (++pp->p_cowcnt == (ushort_t)PAGE_LOCK_MAXIMUM) { 4133 cmn_err(CE_WARN, 4134 "COW lock limit reached on pfn 0x%lx", 4135 page_pptonum(pp)); 4136 } 4137 } else 4138 mutex_exit(&freemem_lock); 4139 } 4140 page_struct_unlock(pp); 4141 return (r); 4142 } 4143 4144 int 4145 page_subclaim(page_t *pp) 4146 { 4147 int r = 0; 4148 4149 ASSERT(PAGE_LOCKED(pp)); 4150 4151 page_struct_lock(pp); 4152 ASSERT(pp->p_cowcnt != 0); 4153 4154 if (pp->p_lckcnt) { 4155 if (pp->p_lckcnt < (ushort_t)PAGE_LOCK_MAXIMUM) { 4156 r = 1; 4157 /* 4158 * for availrmem 4159 */ 4160 mutex_enter(&freemem_lock); 4161 availrmem++; 4162 pages_claimed--; 4163 mutex_exit(&freemem_lock); 4164 4165 pp->p_cowcnt--; 4166 4167 if (++pp->p_lckcnt == (ushort_t)PAGE_LOCK_MAXIMUM) { 4168 cmn_err(CE_WARN, 4169 "Page lock limit reached on pfn 0x%lx", 4170 page_pptonum(pp)); 4171 } 4172 } 4173 } else { 4174 r = 1; 4175 pp->p_cowcnt--; 4176 pp->p_lckcnt++; 4177 } 4178 page_struct_unlock(pp); 4179 return (r); 4180 } 4181 4182 int 4183 page_addclaim_pages(page_t **ppa) 4184 { 4185 4186 pgcnt_t lckpgs = 0, pg_idx; 4187 4188 VM_STAT_ADD(pagecnt.pc_addclaim_pages); 4189 4190 mutex_enter(&page_llock); 4191 for (pg_idx = 0; ppa[pg_idx] != NULL; pg_idx++) { 4192 4193 ASSERT(PAGE_LOCKED(ppa[pg_idx])); 4194 ASSERT(ppa[pg_idx]->p_lckcnt != 0); 4195 if (ppa[pg_idx]->p_cowcnt == (ushort_t)PAGE_LOCK_MAXIMUM) { 4196 mutex_exit(&page_llock); 4197 return (0); 4198 } 4199 if (ppa[pg_idx]->p_lckcnt > 1) 4200 lckpgs++; 4201 } 4202 4203 if (lckpgs != 0) { 4204 mutex_enter(&freemem_lock); 4205 if (availrmem >= pages_pp_maximum + lckpgs) { 4206 availrmem -= lckpgs; 4207 pages_claimed += lckpgs; 4208 } else { 4209 mutex_exit(&freemem_lock); 4210 mutex_exit(&page_llock); 4211 return (0); 4212 } 4213 mutex_exit(&freemem_lock); 4214 } 4215 4216 for (pg_idx = 0; ppa[pg_idx] != NULL; pg_idx++) { 4217 ppa[pg_idx]->p_lckcnt--; 4218 ppa[pg_idx]->p_cowcnt++; 4219 } 4220 mutex_exit(&page_llock); 4221 return (1); 4222 } 4223 4224 int 4225 page_subclaim_pages(page_t **ppa) 4226 { 4227 pgcnt_t ulckpgs = 0, pg_idx; 4228 4229 VM_STAT_ADD(pagecnt.pc_subclaim_pages); 4230 4231 mutex_enter(&page_llock); 4232 for (pg_idx = 0; ppa[pg_idx] != NULL; pg_idx++) { 4233 4234 ASSERT(PAGE_LOCKED(ppa[pg_idx])); 4235 ASSERT(ppa[pg_idx]->p_cowcnt != 0); 4236 if (ppa[pg_idx]->p_lckcnt == (ushort_t)PAGE_LOCK_MAXIMUM) { 4237 mutex_exit(&page_llock); 4238 return (0); 4239 } 4240 if (ppa[pg_idx]->p_lckcnt != 0) 4241 ulckpgs++; 4242 } 4243 4244 if (ulckpgs != 0) { 4245 mutex_enter(&freemem_lock); 4246 availrmem += ulckpgs; 4247 pages_claimed -= ulckpgs; 4248 mutex_exit(&freemem_lock); 4249 } 4250 4251 for (pg_idx = 0; ppa[pg_idx] != NULL; pg_idx++) { 4252 ppa[pg_idx]->p_cowcnt--; 4253 ppa[pg_idx]->p_lckcnt++; 4254 4255 } 4256 mutex_exit(&page_llock); 4257 return (1); 4258 } 4259 4260 page_t * 4261 page_numtopp(pfn_t pfnum, se_t se) 4262 { 4263 page_t *pp; 4264 4265 retry: 4266 pp = page_numtopp_nolock(pfnum); 4267 if (pp == NULL) { 4268 return ((page_t *)NULL); 4269 } 4270 4271 /* 4272 * Acquire the appropriate lock on the page. 4273 */ 4274 while (!page_lock(pp, se, (kmutex_t *)NULL, P_RECLAIM)) { 4275 if (page_pptonum(pp) != pfnum) 4276 goto retry; 4277 continue; 4278 } 4279 4280 if (page_pptonum(pp) != pfnum) { 4281 page_unlock(pp); 4282 goto retry; 4283 } 4284 4285 return (pp); 4286 } 4287 4288 page_t * 4289 page_numtopp_noreclaim(pfn_t pfnum, se_t se) 4290 { 4291 page_t *pp; 4292 4293 retry: 4294 pp = page_numtopp_nolock(pfnum); 4295 if (pp == NULL) { 4296 return ((page_t *)NULL); 4297 } 4298 4299 /* 4300 * Acquire the appropriate lock on the page. 4301 */ 4302 while (!page_lock(pp, se, (kmutex_t *)NULL, P_NO_RECLAIM)) { 4303 if (page_pptonum(pp) != pfnum) 4304 goto retry; 4305 continue; 4306 } 4307 4308 if (page_pptonum(pp) != pfnum) { 4309 page_unlock(pp); 4310 goto retry; 4311 } 4312 4313 return (pp); 4314 } 4315 4316 /* 4317 * This routine is like page_numtopp, but will only return page structs 4318 * for pages which are ok for loading into hardware using the page struct. 4319 */ 4320 page_t * 4321 page_numtopp_nowait(pfn_t pfnum, se_t se) 4322 { 4323 page_t *pp; 4324 4325 retry: 4326 pp = page_numtopp_nolock(pfnum); 4327 if (pp == NULL) { 4328 return ((page_t *)NULL); 4329 } 4330 4331 /* 4332 * Try to acquire the appropriate lock on the page. 4333 */ 4334 if (PP_ISFREE(pp)) 4335 pp = NULL; 4336 else { 4337 if (!page_trylock(pp, se)) 4338 pp = NULL; 4339 else { 4340 if (page_pptonum(pp) != pfnum) { 4341 page_unlock(pp); 4342 goto retry; 4343 } 4344 if (PP_ISFREE(pp)) { 4345 page_unlock(pp); 4346 pp = NULL; 4347 } 4348 } 4349 } 4350 return (pp); 4351 } 4352 4353 /* 4354 * Returns a count of dirty pages that are in the process 4355 * of being written out. If 'cleanit' is set, try to push the page. 4356 */ 4357 pgcnt_t 4358 page_busy(int cleanit) 4359 { 4360 page_t *page0 = page_first(); 4361 page_t *pp = page0; 4362 pgcnt_t nppbusy = 0; 4363 u_offset_t off; 4364 4365 do { 4366 vnode_t *vp = pp->p_vnode; 4367 4368 /* 4369 * A page is a candidate for syncing if it is: 4370 * 4371 * (a) On neither the freelist nor the cachelist 4372 * (b) Hashed onto a vnode 4373 * (c) Not a kernel page 4374 * (d) Dirty 4375 * (e) Not part of a swapfile 4376 * (f) a page which belongs to a real vnode; eg has a non-null 4377 * v_vfsp pointer. 4378 * (g) Backed by a filesystem which doesn't have a 4379 * stubbed-out sync operation 4380 */ 4381 if (!PP_ISFREE(pp) && vp != NULL && !VN_ISKAS(vp) && 4382 hat_ismod(pp) && !IS_SWAPVP(vp) && vp->v_vfsp != NULL && 4383 vfs_can_sync(vp->v_vfsp)) { 4384 nppbusy++; 4385 vfs_syncprogress(); 4386 4387 if (!cleanit) 4388 continue; 4389 if (!page_trylock(pp, SE_EXCL)) 4390 continue; 4391 4392 if (PP_ISFREE(pp) || vp == NULL || IS_SWAPVP(vp) || 4393 pp->p_lckcnt != 0 || pp->p_cowcnt != 0 || 4394 !(hat_pagesync(pp, 4395 HAT_SYNC_DONTZERO | HAT_SYNC_STOPON_MOD) & P_MOD)) { 4396 page_unlock(pp); 4397 continue; 4398 } 4399 off = pp->p_offset; 4400 VN_HOLD(vp); 4401 page_unlock(pp); 4402 (void) VOP_PUTPAGE(vp, off, PAGESIZE, 4403 B_ASYNC | B_FREE, kcred); 4404 VN_RELE(vp); 4405 } 4406 } while ((pp = page_next(pp)) != page0); 4407 4408 return (nppbusy); 4409 } 4410 4411 void page_invalidate_pages(void); 4412 4413 /* 4414 * callback handler to vm sub-system 4415 * 4416 * callers make sure no recursive entries to this func. 4417 */ 4418 /*ARGSUSED*/ 4419 boolean_t 4420 callb_vm_cpr(void *arg, int code) 4421 { 4422 if (code == CB_CODE_CPR_CHKPT) 4423 page_invalidate_pages(); 4424 return (B_TRUE); 4425 } 4426 4427 /* 4428 * Invalidate all pages of the system. 4429 * It shouldn't be called until all user page activities are all stopped. 4430 */ 4431 void 4432 page_invalidate_pages() 4433 { 4434 page_t *pp; 4435 page_t *page0; 4436 pgcnt_t nbusypages; 4437 int retry = 0; 4438 const int MAXRETRIES = 4; 4439 #if defined(__sparc) 4440 extern struct vnode prom_ppages; 4441 #endif /* __sparc */ 4442 4443 top: 4444 /* 4445 * Flush dirty pages and destroy the clean ones. 4446 */ 4447 nbusypages = 0; 4448 4449 pp = page0 = page_first(); 4450 do { 4451 struct vnode *vp; 4452 u_offset_t offset; 4453 int mod; 4454 4455 /* 4456 * skip the page if it has no vnode or the page associated 4457 * with the kernel vnode or prom allocated kernel mem. 4458 */ 4459 #if defined(__sparc) 4460 if ((vp = pp->p_vnode) == NULL || VN_ISKAS(vp) || 4461 vp == &prom_ppages) 4462 #else /* x86 doesn't have prom or prom_ppage */ 4463 if ((vp = pp->p_vnode) == NULL || VN_ISKAS(vp)) 4464 #endif /* __sparc */ 4465 continue; 4466 4467 /* 4468 * skip the page which is already free invalidated. 4469 */ 4470 if (PP_ISFREE(pp) && PP_ISAGED(pp)) 4471 continue; 4472 4473 /* 4474 * skip pages that are already locked or can't be "exclusively" 4475 * locked or are already free. After we lock the page, check 4476 * the free and age bits again to be sure it's not destroied 4477 * yet. 4478 * To achieve max. parallelization, we use page_trylock instead 4479 * of page_lock so that we don't get block on individual pages 4480 * while we have thousands of other pages to process. 4481 */ 4482 if (!page_trylock(pp, SE_EXCL)) { 4483 nbusypages++; 4484 continue; 4485 } else if (PP_ISFREE(pp)) { 4486 if (!PP_ISAGED(pp)) { 4487 page_destroy_free(pp); 4488 } else { 4489 page_unlock(pp); 4490 } 4491 continue; 4492 } 4493 /* 4494 * Is this page involved in some I/O? shared? 4495 * 4496 * The page_struct_lock need not be acquired to 4497 * examine these fields since the page has an 4498 * "exclusive" lock. 4499 */ 4500 if (pp->p_lckcnt != 0 || pp->p_cowcnt != 0) { 4501 page_unlock(pp); 4502 continue; 4503 } 4504 4505 if (vp->v_type == VCHR) { 4506 panic("vp->v_type == VCHR"); 4507 /*NOTREACHED*/ 4508 } 4509 4510 if (!page_try_demote_pages(pp)) { 4511 page_unlock(pp); 4512 continue; 4513 } 4514 4515 /* 4516 * Check the modified bit. Leave the bits alone in hardware 4517 * (they will be modified if we do the putpage). 4518 */ 4519 mod = (hat_pagesync(pp, HAT_SYNC_DONTZERO | HAT_SYNC_STOPON_MOD) 4520 & P_MOD); 4521 if (mod) { 4522 offset = pp->p_offset; 4523 /* 4524 * Hold the vnode before releasing the page lock 4525 * to prevent it from being freed and re-used by 4526 * some other thread. 4527 */ 4528 VN_HOLD(vp); 4529 page_unlock(pp); 4530 /* 4531 * No error return is checked here. Callers such as 4532 * cpr deals with the dirty pages at the dump time 4533 * if this putpage fails. 4534 */ 4535 (void) VOP_PUTPAGE(vp, offset, PAGESIZE, B_INVAL, 4536 kcred); 4537 VN_RELE(vp); 4538 } else { 4539 page_destroy(pp, 0); 4540 } 4541 } while ((pp = page_next(pp)) != page0); 4542 if (nbusypages && retry++ < MAXRETRIES) { 4543 delay(1); 4544 goto top; 4545 } 4546 } 4547 4548 /* 4549 * Replace the page "old" with the page "new" on the page hash and vnode lists 4550 * 4551 * the replacemnt must be done in place, ie the equivalent sequence: 4552 * 4553 * vp = old->p_vnode; 4554 * off = old->p_offset; 4555 * page_do_hashout(old) 4556 * page_do_hashin(new, vp, off) 4557 * 4558 * doesn't work, since 4559 * 1) if old is the only page on the vnode, the v_pages list has a window 4560 * where it looks empty. This will break file system assumptions. 4561 * and 4562 * 2) pvn_vplist_dirty() can't deal with pages moving on the v_pages list. 4563 */ 4564 static void 4565 page_do_relocate_hash(page_t *new, page_t *old) 4566 { 4567 page_t **hash_list; 4568 vnode_t *vp = old->p_vnode; 4569 kmutex_t *sep; 4570 4571 ASSERT(PAGE_EXCL(old)); 4572 ASSERT(PAGE_EXCL(new)); 4573 ASSERT(vp != NULL); 4574 ASSERT(MUTEX_HELD(page_vnode_mutex(vp))); 4575 ASSERT(MUTEX_HELD(PAGE_HASH_MUTEX(PAGE_HASH_FUNC(vp, old->p_offset)))); 4576 4577 /* 4578 * First find old page on the page hash list 4579 */ 4580 hash_list = &page_hash[PAGE_HASH_FUNC(vp, old->p_offset)]; 4581 4582 for (;;) { 4583 if (*hash_list == old) 4584 break; 4585 if (*hash_list == NULL) { 4586 panic("page_do_hashout"); 4587 /*NOTREACHED*/ 4588 } 4589 hash_list = &(*hash_list)->p_hash; 4590 } 4591 4592 /* 4593 * update new and replace old with new on the page hash list 4594 */ 4595 new->p_vnode = old->p_vnode; 4596 new->p_offset = old->p_offset; 4597 new->p_hash = old->p_hash; 4598 *hash_list = new; 4599 4600 if ((new->p_vnode->v_flag & VISSWAP) != 0) 4601 PP_SETSWAP(new); 4602 4603 /* 4604 * replace old with new on the vnode's page list 4605 */ 4606 if (old->p_vpnext == old) { 4607 new->p_vpnext = new; 4608 new->p_vpprev = new; 4609 } else { 4610 new->p_vpnext = old->p_vpnext; 4611 new->p_vpprev = old->p_vpprev; 4612 new->p_vpnext->p_vpprev = new; 4613 new->p_vpprev->p_vpnext = new; 4614 } 4615 if (vp->v_pages == old) 4616 vp->v_pages = new; 4617 4618 /* 4619 * clear out the old page 4620 */ 4621 old->p_hash = NULL; 4622 old->p_vpnext = NULL; 4623 old->p_vpprev = NULL; 4624 old->p_vnode = NULL; 4625 PP_CLRSWAP(old); 4626 old->p_offset = (u_offset_t)-1; 4627 page_clr_all_props(old); 4628 4629 /* 4630 * Wake up processes waiting for this page. The page's 4631 * identity has been changed, and is probably not the 4632 * desired page any longer. 4633 */ 4634 sep = page_se_mutex(old); 4635 mutex_enter(sep); 4636 old->p_selock &= ~SE_EWANTED; 4637 if (CV_HAS_WAITERS(&old->p_cv)) 4638 cv_broadcast(&old->p_cv); 4639 mutex_exit(sep); 4640 } 4641 4642 /* 4643 * This function moves the identity of page "pp_old" to page "pp_new". 4644 * Both pages must be locked on entry. "pp_new" is free, has no identity, 4645 * and need not be hashed out from anywhere. 4646 */ 4647 void 4648 page_relocate_hash(page_t *pp_new, page_t *pp_old) 4649 { 4650 vnode_t *vp = pp_old->p_vnode; 4651 u_offset_t off = pp_old->p_offset; 4652 kmutex_t *phm, *vphm; 4653 4654 /* 4655 * Rehash two pages 4656 */ 4657 ASSERT(PAGE_EXCL(pp_old)); 4658 ASSERT(PAGE_EXCL(pp_new)); 4659 ASSERT(vp != NULL); 4660 ASSERT(pp_new->p_vnode == NULL); 4661 4662 /* 4663 * hashout then hashin while holding the mutexes 4664 */ 4665 phm = PAGE_HASH_MUTEX(PAGE_HASH_FUNC(vp, off)); 4666 mutex_enter(phm); 4667 vphm = page_vnode_mutex(vp); 4668 mutex_enter(vphm); 4669 4670 page_do_relocate_hash(pp_new, pp_old); 4671 4672 mutex_exit(vphm); 4673 mutex_exit(phm); 4674 4675 /* 4676 * The page_struct_lock need not be acquired for lckcnt and 4677 * cowcnt since the page has an "exclusive" lock. 4678 */ 4679 ASSERT(pp_new->p_lckcnt == 0); 4680 ASSERT(pp_new->p_cowcnt == 0); 4681 pp_new->p_lckcnt = pp_old->p_lckcnt; 4682 pp_new->p_cowcnt = pp_old->p_cowcnt; 4683 pp_old->p_lckcnt = pp_old->p_cowcnt = 0; 4684 4685 /* The following comment preserved from page_flip(). */ 4686 /* XXX - Do we need to protect fsdata? */ 4687 pp_new->p_fsdata = pp_old->p_fsdata; 4688 } 4689 4690 /* 4691 * Helper routine used to lock all remaining members of a 4692 * large page. The caller is responsible for passing in a locked 4693 * pp. If pp is a large page, then it succeeds in locking all the 4694 * remaining constituent pages or it returns with only the 4695 * original page locked. 4696 * 4697 * Returns 1 on success, 0 on failure. 4698 * 4699 * If success is returned this routine gurantees p_szc for all constituent 4700 * pages of a large page pp belongs to can't change. To achieve this we 4701 * recheck szc of pp after locking all constituent pages and retry if szc 4702 * changed (it could only decrease). Since hat_page_demote() needs an EXCL 4703 * lock on one of constituent pages it can't be running after all constituent 4704 * pages are locked. hat_page_demote() with a lock on a constituent page 4705 * outside of this large page (i.e. pp belonged to a larger large page) is 4706 * already done with all constituent pages of pp since the root's p_szc is 4707 * changed last. Thefore no need to synchronize with hat_page_demote() that 4708 * locked a constituent page outside of pp's current large page. 4709 */ 4710 #ifdef DEBUG 4711 uint32_t gpg_trylock_mtbf = 0; 4712 #endif 4713 4714 int 4715 group_page_trylock(page_t *pp, se_t se) 4716 { 4717 page_t *tpp; 4718 pgcnt_t npgs, i, j; 4719 uint_t pszc = pp->p_szc; 4720 4721 #ifdef DEBUG 4722 if (gpg_trylock_mtbf && !(gethrtime() % gpg_trylock_mtbf)) { 4723 return (0); 4724 } 4725 #endif 4726 4727 if (pp != PP_GROUPLEADER(pp, pszc)) { 4728 return (0); 4729 } 4730 4731 retry: 4732 ASSERT(PAGE_LOCKED_SE(pp, se)); 4733 ASSERT(!PP_ISFREE(pp)); 4734 if (pszc == 0) { 4735 return (1); 4736 } 4737 npgs = page_get_pagecnt(pszc); 4738 tpp = pp + 1; 4739 for (i = 1; i < npgs; i++, tpp++) { 4740 if (!page_trylock(tpp, se)) { 4741 tpp = pp + 1; 4742 for (j = 1; j < i; j++, tpp++) { 4743 page_unlock(tpp); 4744 } 4745 return (0); 4746 } 4747 } 4748 if (pp->p_szc != pszc) { 4749 ASSERT(pp->p_szc < pszc); 4750 ASSERT(pp->p_vnode != NULL && !PP_ISKAS(pp) && 4751 !IS_SWAPFSVP(pp->p_vnode)); 4752 tpp = pp + 1; 4753 for (i = 1; i < npgs; i++, tpp++) { 4754 page_unlock(tpp); 4755 } 4756 pszc = pp->p_szc; 4757 goto retry; 4758 } 4759 return (1); 4760 } 4761 4762 void 4763 group_page_unlock(page_t *pp) 4764 { 4765 page_t *tpp; 4766 pgcnt_t npgs, i; 4767 4768 ASSERT(PAGE_LOCKED(pp)); 4769 ASSERT(!PP_ISFREE(pp)); 4770 ASSERT(pp == PP_PAGEROOT(pp)); 4771 npgs = page_get_pagecnt(pp->p_szc); 4772 for (i = 1, tpp = pp + 1; i < npgs; i++, tpp++) { 4773 page_unlock(tpp); 4774 } 4775 } 4776 4777 /* 4778 * returns 4779 * 0 : on success and *nrelocp is number of relocated PAGESIZE pages 4780 * ERANGE : this is not a base page 4781 * EBUSY : failure to get locks on the page/pages 4782 * ENOMEM : failure to obtain replacement pages 4783 * EAGAIN : OBP has not yet completed its boot-time handoff to the kernel 4784 * EIO : An error occurred while trying to copy the page data 4785 * 4786 * Return with all constituent members of target and replacement 4787 * SE_EXCL locked. It is the callers responsibility to drop the 4788 * locks. 4789 */ 4790 int 4791 do_page_relocate( 4792 page_t **target, 4793 page_t **replacement, 4794 int grouplock, 4795 spgcnt_t *nrelocp, 4796 lgrp_t *lgrp) 4797 { 4798 page_t *first_repl; 4799 page_t *repl; 4800 page_t *targ; 4801 page_t *pl = NULL; 4802 uint_t ppattr; 4803 pfn_t pfn, repl_pfn; 4804 uint_t szc; 4805 spgcnt_t npgs, i; 4806 int repl_contig = 0; 4807 uint_t flags = 0; 4808 spgcnt_t dofree = 0; 4809 4810 *nrelocp = 0; 4811 4812 #if defined(__sparc) 4813 /* 4814 * We need to wait till OBP has completed 4815 * its boot-time handoff of its resources to the kernel 4816 * before we allow page relocation 4817 */ 4818 if (page_relocate_ready == 0) { 4819 return (EAGAIN); 4820 } 4821 #endif 4822 4823 /* 4824 * If this is not a base page, 4825 * just return with 0x0 pages relocated. 4826 */ 4827 targ = *target; 4828 ASSERT(PAGE_EXCL(targ)); 4829 ASSERT(!PP_ISFREE(targ)); 4830 szc = targ->p_szc; 4831 ASSERT(szc < mmu_page_sizes); 4832 VM_STAT_ADD(vmm_vmstats.ppr_reloc[szc]); 4833 pfn = targ->p_pagenum; 4834 if (pfn != PFN_BASE(pfn, szc)) { 4835 VM_STAT_ADD(vmm_vmstats.ppr_relocnoroot[szc]); 4836 return (ERANGE); 4837 } 4838 4839 if ((repl = *replacement) != NULL && repl->p_szc >= szc) { 4840 repl_pfn = repl->p_pagenum; 4841 if (repl_pfn != PFN_BASE(repl_pfn, szc)) { 4842 VM_STAT_ADD(vmm_vmstats.ppr_reloc_replnoroot[szc]); 4843 return (ERANGE); 4844 } 4845 repl_contig = 1; 4846 } 4847 4848 /* 4849 * We must lock all members of this large page or we cannot 4850 * relocate any part of it. 4851 */ 4852 if (grouplock != 0 && !group_page_trylock(targ, SE_EXCL)) { 4853 VM_STAT_ADD(vmm_vmstats.ppr_relocnolock[targ->p_szc]); 4854 return (EBUSY); 4855 } 4856 4857 /* 4858 * reread szc it could have been decreased before 4859 * group_page_trylock() was done. 4860 */ 4861 szc = targ->p_szc; 4862 ASSERT(szc < mmu_page_sizes); 4863 VM_STAT_ADD(vmm_vmstats.ppr_reloc[szc]); 4864 ASSERT(pfn == PFN_BASE(pfn, szc)); 4865 4866 npgs = page_get_pagecnt(targ->p_szc); 4867 4868 if (repl == NULL) { 4869 dofree = npgs; /* Size of target page in MMU pages */ 4870 if (!page_create_wait(dofree, 0)) { 4871 if (grouplock != 0) { 4872 group_page_unlock(targ); 4873 } 4874 VM_STAT_ADD(vmm_vmstats.ppr_relocnomem[szc]); 4875 return (ENOMEM); 4876 } 4877 4878 /* 4879 * seg kmem pages require that the target and replacement 4880 * page be the same pagesize. 4881 */ 4882 flags = (VN_ISKAS(targ->p_vnode)) ? PGR_SAMESZC : 0; 4883 repl = page_get_replacement_page(targ, lgrp, flags); 4884 if (repl == NULL) { 4885 if (grouplock != 0) { 4886 group_page_unlock(targ); 4887 } 4888 page_create_putback(dofree); 4889 VM_STAT_ADD(vmm_vmstats.ppr_relocnomem[szc]); 4890 return (ENOMEM); 4891 } 4892 } 4893 #ifdef DEBUG 4894 else { 4895 ASSERT(PAGE_LOCKED(repl)); 4896 } 4897 #endif /* DEBUG */ 4898 4899 #if defined(__sparc) 4900 /* 4901 * Let hat_page_relocate() complete the relocation if it's kernel page 4902 */ 4903 if (VN_ISKAS(targ->p_vnode)) { 4904 *replacement = repl; 4905 if (hat_page_relocate(target, replacement, nrelocp) != 0) { 4906 if (grouplock != 0) { 4907 group_page_unlock(targ); 4908 } 4909 if (dofree) { 4910 *replacement = NULL; 4911 page_free_replacement_page(repl); 4912 page_create_putback(dofree); 4913 } 4914 VM_STAT_ADD(vmm_vmstats.ppr_krelocfail[szc]); 4915 return (EAGAIN); 4916 } 4917 VM_STAT_ADD(vmm_vmstats.ppr_relocok[szc]); 4918 return (0); 4919 } 4920 #else 4921 #if defined(lint) 4922 dofree = dofree; 4923 #endif 4924 #endif 4925 4926 first_repl = repl; 4927 4928 for (i = 0; i < npgs; i++) { 4929 ASSERT(PAGE_EXCL(targ)); 4930 ASSERT(targ->p_slckcnt == 0); 4931 ASSERT(repl->p_slckcnt == 0); 4932 4933 (void) hat_pageunload(targ, HAT_FORCE_PGUNLOAD); 4934 4935 ASSERT(hat_page_getshare(targ) == 0); 4936 ASSERT(!PP_ISFREE(targ)); 4937 ASSERT(targ->p_pagenum == (pfn + i)); 4938 ASSERT(repl_contig == 0 || 4939 repl->p_pagenum == (repl_pfn + i)); 4940 4941 /* 4942 * Copy the page contents and attributes then 4943 * relocate the page in the page hash. 4944 */ 4945 if (ppcopy(targ, repl) == 0) { 4946 targ = *target; 4947 repl = first_repl; 4948 VM_STAT_ADD(vmm_vmstats.ppr_copyfail); 4949 if (grouplock != 0) { 4950 group_page_unlock(targ); 4951 } 4952 if (dofree) { 4953 *replacement = NULL; 4954 page_free_replacement_page(repl); 4955 page_create_putback(dofree); 4956 } 4957 return (EIO); 4958 } 4959 4960 targ++; 4961 if (repl_contig != 0) { 4962 repl++; 4963 } else { 4964 repl = repl->p_next; 4965 } 4966 } 4967 4968 repl = first_repl; 4969 targ = *target; 4970 4971 for (i = 0; i < npgs; i++) { 4972 ppattr = hat_page_getattr(targ, (P_MOD | P_REF | P_RO)); 4973 page_clr_all_props(repl); 4974 page_set_props(repl, ppattr); 4975 page_relocate_hash(repl, targ); 4976 4977 ASSERT(hat_page_getshare(targ) == 0); 4978 ASSERT(hat_page_getshare(repl) == 0); 4979 /* 4980 * Now clear the props on targ, after the 4981 * page_relocate_hash(), they no longer 4982 * have any meaning. 4983 */ 4984 page_clr_all_props(targ); 4985 ASSERT(targ->p_next == targ); 4986 ASSERT(targ->p_prev == targ); 4987 page_list_concat(&pl, &targ); 4988 4989 targ++; 4990 if (repl_contig != 0) { 4991 repl++; 4992 } else { 4993 repl = repl->p_next; 4994 } 4995 } 4996 /* assert that we have come full circle with repl */ 4997 ASSERT(repl_contig == 1 || first_repl == repl); 4998 4999 *target = pl; 5000 if (*replacement == NULL) { 5001 ASSERT(first_repl == repl); 5002 *replacement = repl; 5003 } 5004 VM_STAT_ADD(vmm_vmstats.ppr_relocok[szc]); 5005 *nrelocp = npgs; 5006 return (0); 5007 } 5008 /* 5009 * On success returns 0 and *nrelocp the number of PAGESIZE pages relocated. 5010 */ 5011 int 5012 page_relocate( 5013 page_t **target, 5014 page_t **replacement, 5015 int grouplock, 5016 int freetarget, 5017 spgcnt_t *nrelocp, 5018 lgrp_t *lgrp) 5019 { 5020 spgcnt_t ret; 5021 5022 /* do_page_relocate returns 0 on success or errno value */ 5023 ret = do_page_relocate(target, replacement, grouplock, nrelocp, lgrp); 5024 5025 if (ret != 0 || freetarget == 0) { 5026 return (ret); 5027 } 5028 if (*nrelocp == 1) { 5029 ASSERT(*target != NULL); 5030 page_free(*target, 1); 5031 } else { 5032 page_t *tpp = *target; 5033 uint_t szc = tpp->p_szc; 5034 pgcnt_t npgs = page_get_pagecnt(szc); 5035 ASSERT(npgs > 1); 5036 ASSERT(szc != 0); 5037 do { 5038 ASSERT(PAGE_EXCL(tpp)); 5039 ASSERT(!hat_page_is_mapped(tpp)); 5040 ASSERT(tpp->p_szc == szc); 5041 PP_SETFREE(tpp); 5042 PP_SETAGED(tpp); 5043 npgs--; 5044 } while ((tpp = tpp->p_next) != *target); 5045 ASSERT(npgs == 0); 5046 page_list_add_pages(*target, 0); 5047 npgs = page_get_pagecnt(szc); 5048 page_create_putback(npgs); 5049 } 5050 return (ret); 5051 } 5052 5053 /* 5054 * it is up to the caller to deal with pcf accounting. 5055 */ 5056 void 5057 page_free_replacement_page(page_t *pplist) 5058 { 5059 page_t *pp; 5060 5061 while (pplist != NULL) { 5062 /* 5063 * pp_targ is a linked list. 5064 */ 5065 pp = pplist; 5066 if (pp->p_szc == 0) { 5067 page_sub(&pplist, pp); 5068 page_clr_all_props(pp); 5069 PP_SETFREE(pp); 5070 PP_SETAGED(pp); 5071 page_list_add(pp, PG_FREE_LIST | PG_LIST_TAIL); 5072 page_unlock(pp); 5073 VM_STAT_ADD(pagecnt.pc_free_replacement_page[0]); 5074 } else { 5075 spgcnt_t curnpgs = page_get_pagecnt(pp->p_szc); 5076 page_t *tpp; 5077 page_list_break(&pp, &pplist, curnpgs); 5078 tpp = pp; 5079 do { 5080 ASSERT(PAGE_EXCL(tpp)); 5081 ASSERT(!hat_page_is_mapped(tpp)); 5082 page_clr_all_props(pp); 5083 PP_SETFREE(tpp); 5084 PP_SETAGED(tpp); 5085 } while ((tpp = tpp->p_next) != pp); 5086 page_list_add_pages(pp, 0); 5087 VM_STAT_ADD(pagecnt.pc_free_replacement_page[1]); 5088 } 5089 } 5090 } 5091 5092 /* 5093 * Relocate target to non-relocatable replacement page. 5094 */ 5095 int 5096 page_relocate_cage(page_t **target, page_t **replacement) 5097 { 5098 page_t *tpp, *rpp; 5099 spgcnt_t pgcnt, npgs; 5100 int result; 5101 5102 tpp = *target; 5103 5104 ASSERT(PAGE_EXCL(tpp)); 5105 ASSERT(tpp->p_szc == 0); 5106 5107 pgcnt = btop(page_get_pagesize(tpp->p_szc)); 5108 5109 do { 5110 (void) page_create_wait(pgcnt, PG_WAIT | PG_NORELOC); 5111 rpp = page_get_replacement_page(tpp, NULL, PGR_NORELOC); 5112 if (rpp == NULL) { 5113 page_create_putback(pgcnt); 5114 kcage_cageout_wakeup(); 5115 } 5116 } while (rpp == NULL); 5117 5118 ASSERT(PP_ISNORELOC(rpp)); 5119 5120 result = page_relocate(&tpp, &rpp, 0, 1, &npgs, NULL); 5121 5122 if (result == 0) { 5123 *replacement = rpp; 5124 if (pgcnt != npgs) 5125 panic("page_relocate_cage: partial relocation"); 5126 } 5127 5128 return (result); 5129 } 5130 5131 /* 5132 * Release the page lock on a page, place on cachelist 5133 * tail if no longer mapped. Caller can let us know if 5134 * the page is known to be clean. 5135 */ 5136 int 5137 page_release(page_t *pp, int checkmod) 5138 { 5139 int status; 5140 5141 ASSERT(PAGE_LOCKED(pp) && !PP_ISFREE(pp) && 5142 (pp->p_vnode != NULL)); 5143 5144 if (!hat_page_is_mapped(pp) && !IS_SWAPVP(pp->p_vnode) && 5145 ((PAGE_SHARED(pp) && page_tryupgrade(pp)) || PAGE_EXCL(pp)) && 5146 pp->p_lckcnt == 0 && pp->p_cowcnt == 0 && 5147 !hat_page_is_mapped(pp)) { 5148 5149 /* 5150 * If page is modified, unlock it 5151 * 5152 * (p_nrm & P_MOD) bit has the latest stuff because: 5153 * (1) We found that this page doesn't have any mappings 5154 * _after_ holding SE_EXCL and 5155 * (2) We didn't drop SE_EXCL lock after the check in (1) 5156 */ 5157 if (checkmod && hat_ismod(pp)) { 5158 page_unlock(pp); 5159 status = PGREL_MOD; 5160 } else { 5161 /*LINTED: constant in conditional context*/ 5162 VN_DISPOSE(pp, B_FREE, 0, kcred); 5163 status = PGREL_CLEAN; 5164 } 5165 } else { 5166 page_unlock(pp); 5167 status = PGREL_NOTREL; 5168 } 5169 return (status); 5170 } 5171 5172 /* 5173 * Given a constituent page, try to demote the large page on the freelist. 5174 * 5175 * Returns nonzero if the page could be demoted successfully. Returns with 5176 * the constituent page still locked. 5177 */ 5178 int 5179 page_try_demote_free_pages(page_t *pp) 5180 { 5181 page_t *rootpp = pp; 5182 pfn_t pfn = page_pptonum(pp); 5183 spgcnt_t npgs; 5184 uint_t szc = pp->p_szc; 5185 5186 ASSERT(PP_ISFREE(pp)); 5187 ASSERT(PAGE_EXCL(pp)); 5188 5189 /* 5190 * Adjust rootpp and lock it, if `pp' is not the base 5191 * constituent page. 5192 */ 5193 npgs = page_get_pagecnt(pp->p_szc); 5194 if (npgs == 1) { 5195 return (0); 5196 } 5197 5198 if (!IS_P2ALIGNED(pfn, npgs)) { 5199 pfn = P2ALIGN(pfn, npgs); 5200 rootpp = page_numtopp_nolock(pfn); 5201 } 5202 5203 if (pp != rootpp && !page_trylock(rootpp, SE_EXCL)) { 5204 return (0); 5205 } 5206 5207 if (rootpp->p_szc != szc) { 5208 if (pp != rootpp) 5209 page_unlock(rootpp); 5210 return (0); 5211 } 5212 5213 page_demote_free_pages(rootpp); 5214 5215 if (pp != rootpp) 5216 page_unlock(rootpp); 5217 5218 ASSERT(PP_ISFREE(pp)); 5219 ASSERT(PAGE_EXCL(pp)); 5220 return (1); 5221 } 5222 5223 /* 5224 * Given a constituent page, try to demote the large page. 5225 * 5226 * Returns nonzero if the page could be demoted successfully. Returns with 5227 * the constituent page still locked. 5228 */ 5229 int 5230 page_try_demote_pages(page_t *pp) 5231 { 5232 page_t *tpp, *rootpp = pp; 5233 pfn_t pfn = page_pptonum(pp); 5234 spgcnt_t i, npgs; 5235 uint_t szc = pp->p_szc; 5236 vnode_t *vp = pp->p_vnode; 5237 5238 ASSERT(PAGE_EXCL(pp)); 5239 5240 VM_STAT_ADD(pagecnt.pc_try_demote_pages[0]); 5241 5242 if (pp->p_szc == 0) { 5243 VM_STAT_ADD(pagecnt.pc_try_demote_pages[1]); 5244 return (1); 5245 } 5246 5247 if (vp != NULL && !IS_SWAPFSVP(vp) && !VN_ISKAS(vp)) { 5248 VM_STAT_ADD(pagecnt.pc_try_demote_pages[2]); 5249 page_demote_vp_pages(pp); 5250 ASSERT(pp->p_szc == 0); 5251 return (1); 5252 } 5253 5254 /* 5255 * Adjust rootpp if passed in is not the base 5256 * constituent page. 5257 */ 5258 npgs = page_get_pagecnt(pp->p_szc); 5259 ASSERT(npgs > 1); 5260 if (!IS_P2ALIGNED(pfn, npgs)) { 5261 pfn = P2ALIGN(pfn, npgs); 5262 rootpp = page_numtopp_nolock(pfn); 5263 VM_STAT_ADD(pagecnt.pc_try_demote_pages[3]); 5264 ASSERT(rootpp->p_vnode != NULL); 5265 ASSERT(rootpp->p_szc == szc); 5266 } 5267 5268 /* 5269 * We can't demote kernel pages since we can't hat_unload() 5270 * the mappings. 5271 */ 5272 if (VN_ISKAS(rootpp->p_vnode)) 5273 return (0); 5274 5275 /* 5276 * Attempt to lock all constituent pages except the page passed 5277 * in since it's already locked. 5278 */ 5279 for (tpp = rootpp, i = 0; i < npgs; i++, tpp++) { 5280 ASSERT(!PP_ISFREE(tpp)); 5281 ASSERT(tpp->p_vnode != NULL); 5282 5283 if (tpp != pp && !page_trylock(tpp, SE_EXCL)) 5284 break; 5285 ASSERT(tpp->p_szc == rootpp->p_szc); 5286 ASSERT(page_pptonum(tpp) == page_pptonum(rootpp) + i); 5287 } 5288 5289 /* 5290 * If we failed to lock them all then unlock what we have 5291 * locked so far and bail. 5292 */ 5293 if (i < npgs) { 5294 tpp = rootpp; 5295 while (i-- > 0) { 5296 if (tpp != pp) 5297 page_unlock(tpp); 5298 tpp++; 5299 } 5300 VM_STAT_ADD(pagecnt.pc_try_demote_pages[4]); 5301 return (0); 5302 } 5303 5304 for (tpp = rootpp, i = 0; i < npgs; i++, tpp++) { 5305 ASSERT(PAGE_EXCL(tpp)); 5306 ASSERT(tpp->p_slckcnt == 0); 5307 (void) hat_pageunload(tpp, HAT_FORCE_PGUNLOAD); 5308 tpp->p_szc = 0; 5309 } 5310 5311 /* 5312 * Unlock all pages except the page passed in. 5313 */ 5314 for (tpp = rootpp, i = 0; i < npgs; i++, tpp++) { 5315 ASSERT(!hat_page_is_mapped(tpp)); 5316 if (tpp != pp) 5317 page_unlock(tpp); 5318 } 5319 5320 VM_STAT_ADD(pagecnt.pc_try_demote_pages[5]); 5321 return (1); 5322 } 5323 5324 /* 5325 * Called by page_free() and page_destroy() to demote the page size code 5326 * (p_szc) to 0 (since we can't just put a single PAGESIZE page with non zero 5327 * p_szc on free list, neither can we just clear p_szc of a single page_t 5328 * within a large page since it will break other code that relies on p_szc 5329 * being the same for all page_t's of a large page). Anonymous pages should 5330 * never end up here because anon_map_getpages() cannot deal with p_szc 5331 * changes after a single constituent page is locked. While anonymous or 5332 * kernel large pages are demoted or freed the entire large page at a time 5333 * with all constituent pages locked EXCL for the file system pages we 5334 * have to be able to demote a large page (i.e. decrease all constituent pages 5335 * p_szc) with only just an EXCL lock on one of constituent pages. The reason 5336 * we can easily deal with anonymous page demotion the entire large page at a 5337 * time is that those operation originate at address space level and concern 5338 * the entire large page region with actual demotion only done when pages are 5339 * not shared with any other processes (therefore we can always get EXCL lock 5340 * on all anonymous constituent pages after clearing segment page 5341 * cache). However file system pages can be truncated or invalidated at a 5342 * PAGESIZE level from the file system side and end up in page_free() or 5343 * page_destroy() (we also allow only part of the large page to be SOFTLOCKed 5344 * and therfore pageout should be able to demote a large page by EXCL locking 5345 * any constituent page that is not under SOFTLOCK). In those cases we cannot 5346 * rely on being able to lock EXCL all constituent pages. 5347 * 5348 * To prevent szc changes on file system pages one has to lock all constituent 5349 * pages at least SHARED (or call page_szc_lock()). The only subsystem that 5350 * doesn't rely on locking all constituent pages (or using page_szc_lock()) to 5351 * prevent szc changes is hat layer that uses its own page level mlist 5352 * locks. hat assumes that szc doesn't change after mlist lock for a page is 5353 * taken. Therefore we need to change szc under hat level locks if we only 5354 * have an EXCL lock on a single constituent page and hat still references any 5355 * of constituent pages. (Note we can't "ignore" hat layer by simply 5356 * hat_pageunload() all constituent pages without having EXCL locks on all of 5357 * constituent pages). We use hat_page_demote() call to safely demote szc of 5358 * all constituent pages under hat locks when we only have an EXCL lock on one 5359 * of constituent pages. 5360 * 5361 * This routine calls page_szc_lock() before calling hat_page_demote() to 5362 * allow segvn in one special case not to lock all constituent pages SHARED 5363 * before calling hat_memload_array() that relies on p_szc not changeing even 5364 * before hat level mlist lock is taken. In that case segvn uses 5365 * page_szc_lock() to prevent hat_page_demote() changeing p_szc values. 5366 * 5367 * Anonymous or kernel page demotion still has to lock all pages exclusively 5368 * and do hat_pageunload() on all constituent pages before demoting the page 5369 * therefore there's no need for anonymous or kernel page demotion to use 5370 * hat_page_demote() mechanism. 5371 * 5372 * hat_page_demote() removes all large mappings that map pp and then decreases 5373 * p_szc starting from the last constituent page of the large page. By working 5374 * from the tail of a large page in pfn decreasing order allows one looking at 5375 * the root page to know that hat_page_demote() is done for root's szc area. 5376 * e.g. if a root page has szc 1 one knows it only has to lock all constituent 5377 * pages within szc 1 area to prevent szc changes because hat_page_demote() 5378 * that started on this page when it had szc > 1 is done for this szc 1 area. 5379 * 5380 * We are guranteed that all constituent pages of pp's large page belong to 5381 * the same vnode with the consecutive offsets increasing in the direction of 5382 * the pfn i.e. the identity of constituent pages can't change until their 5383 * p_szc is decreased. Therefore it's safe for hat_page_demote() to remove 5384 * large mappings to pp even though we don't lock any constituent page except 5385 * pp (i.e. we won't unload e.g. kernel locked page). 5386 */ 5387 static void 5388 page_demote_vp_pages(page_t *pp) 5389 { 5390 kmutex_t *mtx; 5391 5392 ASSERT(PAGE_EXCL(pp)); 5393 ASSERT(!PP_ISFREE(pp)); 5394 ASSERT(pp->p_vnode != NULL); 5395 ASSERT(!IS_SWAPFSVP(pp->p_vnode)); 5396 ASSERT(!PP_ISKAS(pp)); 5397 5398 VM_STAT_ADD(pagecnt.pc_demote_pages[0]); 5399 5400 mtx = page_szc_lock(pp); 5401 if (mtx != NULL) { 5402 hat_page_demote(pp); 5403 mutex_exit(mtx); 5404 } 5405 ASSERT(pp->p_szc == 0); 5406 } 5407 5408 /* 5409 * Mark any existing pages for migration in the given range 5410 */ 5411 void 5412 page_mark_migrate(struct seg *seg, caddr_t addr, size_t len, 5413 struct anon_map *amp, ulong_t anon_index, vnode_t *vp, 5414 u_offset_t vnoff, int rflag) 5415 { 5416 struct anon *ap; 5417 vnode_t *curvp; 5418 lgrp_t *from; 5419 pgcnt_t i; 5420 pgcnt_t nlocked; 5421 u_offset_t off; 5422 pfn_t pfn; 5423 size_t pgsz; 5424 size_t segpgsz; 5425 pgcnt_t pages; 5426 uint_t pszc; 5427 page_t **ppa; 5428 pgcnt_t ppa_nentries; 5429 page_t *pp; 5430 caddr_t va; 5431 ulong_t an_idx; 5432 anon_sync_obj_t cookie; 5433 5434 ASSERT(seg->s_as && AS_LOCK_HELD(seg->s_as, &seg->s_as->a_lock)); 5435 5436 /* 5437 * Don't do anything if don't need to do lgroup optimizations 5438 * on this system 5439 */ 5440 if (!lgrp_optimizations()) 5441 return; 5442 5443 /* 5444 * Align address and length to (potentially large) page boundary 5445 */ 5446 segpgsz = page_get_pagesize(seg->s_szc); 5447 addr = (caddr_t)P2ALIGN((uintptr_t)addr, segpgsz); 5448 if (rflag) 5449 len = P2ROUNDUP(len, segpgsz); 5450 5451 /* 5452 * Allocate page array to accomodate largest page size 5453 */ 5454 pgsz = page_get_pagesize(page_num_pagesizes() - 1); 5455 ppa_nentries = btop(pgsz); 5456 ppa = kmem_zalloc(ppa_nentries * sizeof (page_t *), KM_SLEEP); 5457 5458 /* 5459 * Do one (large) page at a time 5460 */ 5461 va = addr; 5462 while (va < addr + len) { 5463 /* 5464 * Lookup (root) page for vnode and offset corresponding to 5465 * this virtual address 5466 * Try anonmap first since there may be copy-on-write 5467 * pages, but initialize vnode pointer and offset using 5468 * vnode arguments just in case there isn't an amp. 5469 */ 5470 curvp = vp; 5471 off = vnoff + va - seg->s_base; 5472 if (amp) { 5473 ANON_LOCK_ENTER(&->a_rwlock, RW_READER); 5474 an_idx = anon_index + seg_page(seg, va); 5475 anon_array_enter(amp, an_idx, &cookie); 5476 ap = anon_get_ptr(amp->ahp, an_idx); 5477 if (ap) 5478 swap_xlate(ap, &curvp, &off); 5479 anon_array_exit(&cookie); 5480 ANON_LOCK_EXIT(&->a_rwlock); 5481 } 5482 5483 pp = NULL; 5484 if (curvp) 5485 pp = page_lookup(curvp, off, SE_SHARED); 5486 5487 /* 5488 * If there isn't a page at this virtual address, 5489 * skip to next page 5490 */ 5491 if (pp == NULL) { 5492 va += PAGESIZE; 5493 continue; 5494 } 5495 5496 /* 5497 * Figure out which lgroup this page is in for kstats 5498 */ 5499 pfn = page_pptonum(pp); 5500 from = lgrp_pfn_to_lgrp(pfn); 5501 5502 /* 5503 * Get page size, and round up and skip to next page boundary 5504 * if unaligned address 5505 */ 5506 pszc = pp->p_szc; 5507 pgsz = page_get_pagesize(pszc); 5508 pages = btop(pgsz); 5509 if (!IS_P2ALIGNED(va, pgsz) || 5510 !IS_P2ALIGNED(pfn, pages) || 5511 pgsz > segpgsz) { 5512 pgsz = MIN(pgsz, segpgsz); 5513 page_unlock(pp); 5514 i = btop(P2END((uintptr_t)va, pgsz) - 5515 (uintptr_t)va); 5516 va = (caddr_t)P2END((uintptr_t)va, pgsz); 5517 lgrp_stat_add(from->lgrp_id, LGRP_PMM_FAIL_PGS, i); 5518 continue; 5519 } 5520 5521 /* 5522 * Upgrade to exclusive lock on page 5523 */ 5524 if (!page_tryupgrade(pp)) { 5525 page_unlock(pp); 5526 va += pgsz; 5527 lgrp_stat_add(from->lgrp_id, LGRP_PMM_FAIL_PGS, 5528 btop(pgsz)); 5529 continue; 5530 } 5531 5532 /* 5533 * Remember pages locked exclusively and how many 5534 */ 5535 ppa[0] = pp; 5536 nlocked = 1; 5537 5538 /* 5539 * Lock constituent pages if this is large page 5540 */ 5541 if (pages > 1) { 5542 /* 5543 * Lock all constituents except root page, since it 5544 * should be locked already. 5545 */ 5546 for (i = 1; i < pages; i++) { 5547 pp++; 5548 if (!page_trylock(pp, SE_EXCL)) { 5549 break; 5550 } 5551 if (PP_ISFREE(pp) || 5552 pp->p_szc != pszc) { 5553 /* 5554 * hat_page_demote() raced in with us. 5555 */ 5556 ASSERT(!IS_SWAPFSVP(curvp)); 5557 page_unlock(pp); 5558 break; 5559 } 5560 ppa[nlocked] = pp; 5561 nlocked++; 5562 } 5563 } 5564 5565 /* 5566 * If all constituent pages couldn't be locked, 5567 * unlock pages locked so far and skip to next page. 5568 */ 5569 if (nlocked != pages) { 5570 for (i = 0; i < nlocked; i++) 5571 page_unlock(ppa[i]); 5572 va += pgsz; 5573 lgrp_stat_add(from->lgrp_id, LGRP_PMM_FAIL_PGS, 5574 btop(pgsz)); 5575 continue; 5576 } 5577 5578 /* 5579 * hat_page_demote() can no longer happen 5580 * since last cons page had the right p_szc after 5581 * all cons pages were locked. all cons pages 5582 * should now have the same p_szc. 5583 */ 5584 5585 /* 5586 * All constituent pages locked successfully, so mark 5587 * large page for migration and unload the mappings of 5588 * constituent pages, so a fault will occur on any part of the 5589 * large page 5590 */ 5591 PP_SETMIGRATE(ppa[0]); 5592 for (i = 0; i < nlocked; i++) { 5593 pp = ppa[i]; 5594 (void) hat_pageunload(pp, HAT_FORCE_PGUNLOAD); 5595 ASSERT(hat_page_getshare(pp) == 0); 5596 page_unlock(pp); 5597 } 5598 lgrp_stat_add(from->lgrp_id, LGRP_PMM_PGS, nlocked); 5599 5600 va += pgsz; 5601 } 5602 kmem_free(ppa, ppa_nentries * sizeof (page_t *)); 5603 } 5604 5605 /* 5606 * Migrate any pages that have been marked for migration in the given range 5607 */ 5608 void 5609 page_migrate( 5610 struct seg *seg, 5611 caddr_t addr, 5612 page_t **ppa, 5613 pgcnt_t npages) 5614 { 5615 lgrp_t *from; 5616 lgrp_t *to; 5617 page_t *newpp; 5618 page_t *pp; 5619 pfn_t pfn; 5620 size_t pgsz; 5621 spgcnt_t page_cnt; 5622 spgcnt_t i; 5623 uint_t pszc; 5624 5625 ASSERT(seg->s_as && AS_LOCK_HELD(seg->s_as, &seg->s_as->a_lock)); 5626 5627 while (npages > 0) { 5628 pp = *ppa; 5629 pszc = pp->p_szc; 5630 pgsz = page_get_pagesize(pszc); 5631 page_cnt = btop(pgsz); 5632 5633 /* 5634 * Check to see whether this page is marked for migration 5635 * 5636 * Assume that root page of large page is marked for 5637 * migration and none of the other constituent pages 5638 * are marked. This really simplifies clearing the 5639 * migrate bit by not having to clear it from each 5640 * constituent page. 5641 * 5642 * note we don't want to relocate an entire large page if 5643 * someone is only using one subpage. 5644 */ 5645 if (npages < page_cnt) 5646 break; 5647 5648 /* 5649 * Is it marked for migration? 5650 */ 5651 if (!PP_ISMIGRATE(pp)) 5652 goto next; 5653 5654 /* 5655 * Determine lgroups that page is being migrated between 5656 */ 5657 pfn = page_pptonum(pp); 5658 if (!IS_P2ALIGNED(pfn, page_cnt)) { 5659 break; 5660 } 5661 from = lgrp_pfn_to_lgrp(pfn); 5662 to = lgrp_mem_choose(seg, addr, pgsz); 5663 5664 /* 5665 * Check to see whether we are trying to migrate page to lgroup 5666 * where it is allocated already 5667 */ 5668 if (to == from) { 5669 PP_CLRMIGRATE(pp); 5670 goto next; 5671 } 5672 5673 /* 5674 * Need to get exclusive lock's to migrate 5675 */ 5676 for (i = 0; i < page_cnt; i++) { 5677 ASSERT(PAGE_LOCKED(ppa[i])); 5678 if (page_pptonum(ppa[i]) != pfn + i || 5679 ppa[i]->p_szc != pszc) { 5680 break; 5681 } 5682 if (!page_tryupgrade(ppa[i])) { 5683 lgrp_stat_add(from->lgrp_id, 5684 LGRP_PM_FAIL_LOCK_PGS, 5685 page_cnt); 5686 break; 5687 } 5688 } 5689 if (i != page_cnt) { 5690 while (--i != -1) { 5691 page_downgrade(ppa[i]); 5692 } 5693 goto next; 5694 } 5695 5696 (void) page_create_wait(page_cnt, PG_WAIT); 5697 newpp = page_get_replacement_page(pp, to, PGR_SAMESZC); 5698 if (newpp == NULL) { 5699 page_create_putback(page_cnt); 5700 for (i = 0; i < page_cnt; i++) { 5701 page_downgrade(ppa[i]); 5702 } 5703 lgrp_stat_add(to->lgrp_id, LGRP_PM_FAIL_ALLOC_PGS, 5704 page_cnt); 5705 goto next; 5706 } 5707 ASSERT(newpp->p_szc == pszc); 5708 /* 5709 * Clear migrate bit and relocate page 5710 */ 5711 PP_CLRMIGRATE(pp); 5712 if (page_relocate(&pp, &newpp, 0, 1, &page_cnt, to)) { 5713 panic("page_migrate: page_relocate failed"); 5714 } 5715 ASSERT(page_cnt * PAGESIZE == pgsz); 5716 5717 /* 5718 * Keep stats for number of pages migrated from and to 5719 * each lgroup 5720 */ 5721 lgrp_stat_add(from->lgrp_id, LGRP_PM_SRC_PGS, page_cnt); 5722 lgrp_stat_add(to->lgrp_id, LGRP_PM_DEST_PGS, page_cnt); 5723 /* 5724 * update the page_t array we were passed in and 5725 * unlink constituent pages of a large page. 5726 */ 5727 for (i = 0; i < page_cnt; ++i, ++pp) { 5728 ASSERT(PAGE_EXCL(newpp)); 5729 ASSERT(newpp->p_szc == pszc); 5730 ppa[i] = newpp; 5731 pp = newpp; 5732 page_sub(&newpp, pp); 5733 page_downgrade(pp); 5734 } 5735 ASSERT(newpp == NULL); 5736 next: 5737 addr += pgsz; 5738 ppa += page_cnt; 5739 npages -= page_cnt; 5740 } 5741 } 5742 5743 ulong_t mem_waiters = 0; 5744 ulong_t max_count = 20; 5745 #define MAX_DELAY 0x1ff 5746 5747 /* 5748 * Check if enough memory is available to proceed. 5749 * Depending on system configuration and how much memory is 5750 * reserved for swap we need to check against two variables. 5751 * e.g. on systems with little physical swap availrmem can be 5752 * more reliable indicator of how much memory is available. 5753 * On systems with large phys swap freemem can be better indicator. 5754 * If freemem drops below threshold level don't return an error 5755 * immediately but wake up pageout to free memory and block. 5756 * This is done number of times. If pageout is not able to free 5757 * memory within certain time return an error. 5758 * The same applies for availrmem but kmem_reap is used to 5759 * free memory. 5760 */ 5761 int 5762 page_mem_avail(pgcnt_t npages) 5763 { 5764 ulong_t count; 5765 5766 #if defined(__i386) 5767 if (freemem > desfree + npages && 5768 availrmem > swapfs_reserve + npages && 5769 btop(vmem_size(heap_arena, VMEM_FREE)) > tune.t_minarmem + 5770 npages) 5771 return (1); 5772 #else 5773 if (freemem > desfree + npages && 5774 availrmem > swapfs_reserve + npages) 5775 return (1); 5776 #endif 5777 5778 count = max_count; 5779 atomic_add_long(&mem_waiters, 1); 5780 5781 while (freemem < desfree + npages && --count) { 5782 cv_signal(&proc_pageout->p_cv); 5783 if (delay_sig(hz + (mem_waiters & MAX_DELAY))) { 5784 atomic_add_long(&mem_waiters, -1); 5785 return (0); 5786 } 5787 } 5788 if (count == 0) { 5789 atomic_add_long(&mem_waiters, -1); 5790 return (0); 5791 } 5792 5793 count = max_count; 5794 while (availrmem < swapfs_reserve + npages && --count) { 5795 kmem_reap(); 5796 if (delay_sig(hz + (mem_waiters & MAX_DELAY))) { 5797 atomic_add_long(&mem_waiters, -1); 5798 return (0); 5799 } 5800 } 5801 atomic_add_long(&mem_waiters, -1); 5802 if (count == 0) 5803 return (0); 5804 5805 #if defined(__i386) 5806 if (btop(vmem_size(heap_arena, VMEM_FREE)) < 5807 tune.t_minarmem + npages) 5808 return (0); 5809 #endif 5810 return (1); 5811 } 5812 5813 #define MAX_CNT 60 /* max num of iterations */ 5814 /* 5815 * Reclaim/reserve availrmem for npages. 5816 * If there is not enough memory start reaping seg, kmem caches. 5817 * Start pageout scanner (via page_needfree()). 5818 * Exit after ~ MAX_CNT s regardless of how much memory has been released. 5819 * Note: There is no guarantee that any availrmem will be freed as 5820 * this memory typically is locked (kernel heap) or reserved for swap. 5821 * Also due to memory fragmentation kmem allocator may not be able 5822 * to free any memory (single user allocated buffer will prevent 5823 * freeing slab or a page). 5824 */ 5825 int 5826 page_reclaim_mem(pgcnt_t npages, pgcnt_t epages, int adjust) 5827 { 5828 int i = 0; 5829 int ret = 0; 5830 pgcnt_t deficit; 5831 pgcnt_t old_availrmem; 5832 5833 mutex_enter(&freemem_lock); 5834 old_availrmem = availrmem - 1; 5835 while ((availrmem < tune.t_minarmem + npages + epages) && 5836 (old_availrmem < availrmem) && (i++ < MAX_CNT)) { 5837 old_availrmem = availrmem; 5838 deficit = tune.t_minarmem + npages + epages - availrmem; 5839 mutex_exit(&freemem_lock); 5840 page_needfree(deficit); 5841 seg_preap(); 5842 kmem_reap(); 5843 delay(hz); 5844 page_needfree(-(spgcnt_t)deficit); 5845 mutex_enter(&freemem_lock); 5846 } 5847 5848 if (adjust && (availrmem >= tune.t_minarmem + npages + epages)) { 5849 availrmem -= npages; 5850 ret = 1; 5851 } 5852 5853 mutex_exit(&freemem_lock); 5854 5855 return (ret); 5856 } 5857 5858 /* 5859 * Search the memory segments to locate the desired page. Within a 5860 * segment, pages increase linearly with one page structure per 5861 * physical page frame (size PAGESIZE). The search begins 5862 * with the segment that was accessed last, to take advantage of locality. 5863 * If the hint misses, we start from the beginning of the sorted memseg list 5864 */ 5865 5866 5867 /* 5868 * Some data structures for pfn to pp lookup. 5869 */ 5870 ulong_t mhash_per_slot; 5871 struct memseg *memseg_hash[N_MEM_SLOTS]; 5872 5873 page_t * 5874 page_numtopp_nolock(pfn_t pfnum) 5875 { 5876 struct memseg *seg; 5877 page_t *pp; 5878 vm_cpu_data_t *vc = CPU->cpu_vm_data; 5879 5880 ASSERT(vc != NULL); 5881 5882 MEMSEG_STAT_INCR(nsearch); 5883 5884 /* Try last winner first */ 5885 if (((seg = vc->vc_pnum_memseg) != NULL) && 5886 (pfnum >= seg->pages_base) && (pfnum < seg->pages_end)) { 5887 MEMSEG_STAT_INCR(nlastwon); 5888 pp = seg->pages + (pfnum - seg->pages_base); 5889 if (pp->p_pagenum == pfnum) 5890 return ((page_t *)pp); 5891 } 5892 5893 /* Else Try hash */ 5894 if (((seg = memseg_hash[MEMSEG_PFN_HASH(pfnum)]) != NULL) && 5895 (pfnum >= seg->pages_base) && (pfnum < seg->pages_end)) { 5896 MEMSEG_STAT_INCR(nhashwon); 5897 vc->vc_pnum_memseg = seg; 5898 pp = seg->pages + (pfnum - seg->pages_base); 5899 if (pp->p_pagenum == pfnum) 5900 return ((page_t *)pp); 5901 } 5902 5903 /* Else Brute force */ 5904 for (seg = memsegs; seg != NULL; seg = seg->next) { 5905 if (pfnum >= seg->pages_base && pfnum < seg->pages_end) { 5906 vc->vc_pnum_memseg = seg; 5907 pp = seg->pages + (pfnum - seg->pages_base); 5908 return ((page_t *)pp); 5909 } 5910 } 5911 vc->vc_pnum_memseg = NULL; 5912 MEMSEG_STAT_INCR(nnotfound); 5913 return ((page_t *)NULL); 5914 5915 } 5916 5917 struct memseg * 5918 page_numtomemseg_nolock(pfn_t pfnum) 5919 { 5920 struct memseg *seg; 5921 page_t *pp; 5922 5923 /* Try hash */ 5924 if (((seg = memseg_hash[MEMSEG_PFN_HASH(pfnum)]) != NULL) && 5925 (pfnum >= seg->pages_base) && (pfnum < seg->pages_end)) { 5926 pp = seg->pages + (pfnum - seg->pages_base); 5927 if (pp->p_pagenum == pfnum) 5928 return (seg); 5929 } 5930 5931 /* Else Brute force */ 5932 for (seg = memsegs; seg != NULL; seg = seg->next) { 5933 if (pfnum >= seg->pages_base && pfnum < seg->pages_end) { 5934 return (seg); 5935 } 5936 } 5937 return ((struct memseg *)NULL); 5938 } 5939 5940 /* 5941 * Given a page and a count return the page struct that is 5942 * n structs away from the current one in the global page 5943 * list. 5944 * 5945 * This function wraps to the first page upon 5946 * reaching the end of the memseg list. 5947 */ 5948 page_t * 5949 page_nextn(page_t *pp, ulong_t n) 5950 { 5951 struct memseg *seg; 5952 page_t *ppn; 5953 vm_cpu_data_t *vc = (vm_cpu_data_t *)CPU->cpu_vm_data; 5954 5955 ASSERT(vc != NULL); 5956 5957 if (((seg = vc->vc_pnext_memseg) == NULL) || 5958 (seg->pages_base == seg->pages_end) || 5959 !(pp >= seg->pages && pp < seg->epages)) { 5960 5961 for (seg = memsegs; seg; seg = seg->next) { 5962 if (pp >= seg->pages && pp < seg->epages) 5963 break; 5964 } 5965 5966 if (seg == NULL) { 5967 /* Memory delete got in, return something valid. */ 5968 /* TODO: fix me. */ 5969 seg = memsegs; 5970 pp = seg->pages; 5971 } 5972 } 5973 5974 /* check for wraparound - possible if n is large */ 5975 while ((ppn = (pp + n)) >= seg->epages || ppn < pp) { 5976 n -= seg->epages - pp; 5977 seg = seg->next; 5978 if (seg == NULL) 5979 seg = memsegs; 5980 pp = seg->pages; 5981 } 5982 vc->vc_pnext_memseg = seg; 5983 return (ppn); 5984 } 5985 5986 /* 5987 * Initialize for a loop using page_next_scan_large(). 5988 */ 5989 page_t * 5990 page_next_scan_init(void **cookie) 5991 { 5992 ASSERT(cookie != NULL); 5993 *cookie = (void *)memsegs; 5994 return ((page_t *)memsegs->pages); 5995 } 5996 5997 /* 5998 * Return the next page in a scan of page_t's, assuming we want 5999 * to skip over sub-pages within larger page sizes. 6000 * 6001 * The cookie is used to keep track of the current memseg. 6002 */ 6003 page_t * 6004 page_next_scan_large( 6005 page_t *pp, 6006 ulong_t *n, 6007 void **cookie) 6008 { 6009 struct memseg *seg = (struct memseg *)*cookie; 6010 page_t *new_pp; 6011 ulong_t cnt; 6012 pfn_t pfn; 6013 6014 6015 /* 6016 * get the count of page_t's to skip based on the page size 6017 */ 6018 ASSERT(pp != NULL); 6019 if (pp->p_szc == 0) { 6020 cnt = 1; 6021 } else { 6022 pfn = page_pptonum(pp); 6023 cnt = page_get_pagecnt(pp->p_szc); 6024 cnt -= pfn & (cnt - 1); 6025 } 6026 *n += cnt; 6027 new_pp = pp + cnt; 6028 6029 /* 6030 * Catch if we went past the end of the current memory segment. If so, 6031 * just move to the next segment with pages. 6032 */ 6033 if (new_pp >= seg->epages) { 6034 do { 6035 seg = seg->next; 6036 if (seg == NULL) 6037 seg = memsegs; 6038 } while (seg->pages == seg->epages); 6039 new_pp = seg->pages; 6040 *cookie = (void *)seg; 6041 } 6042 6043 return (new_pp); 6044 } 6045 6046 6047 /* 6048 * Returns next page in list. Note: this function wraps 6049 * to the first page in the list upon reaching the end 6050 * of the list. Callers should be aware of this fact. 6051 */ 6052 6053 /* We should change this be a #define */ 6054 6055 page_t * 6056 page_next(page_t *pp) 6057 { 6058 return (page_nextn(pp, 1)); 6059 } 6060 6061 page_t * 6062 page_first() 6063 { 6064 return ((page_t *)memsegs->pages); 6065 } 6066 6067 6068 /* 6069 * This routine is called at boot with the initial memory configuration 6070 * and when memory is added or removed. 6071 */ 6072 void 6073 build_pfn_hash() 6074 { 6075 pfn_t cur; 6076 pgcnt_t index; 6077 struct memseg *pseg; 6078 int i; 6079 6080 /* 6081 * Clear memseg_hash array. 6082 * Since memory add/delete is designed to operate concurrently 6083 * with normal operation, the hash rebuild must be able to run 6084 * concurrently with page_numtopp_nolock(). To support this 6085 * functionality, assignments to memseg_hash array members must 6086 * be done atomically. 6087 * 6088 * NOTE: bzero() does not currently guarantee this for kernel 6089 * threads, and cannot be used here. 6090 */ 6091 for (i = 0; i < N_MEM_SLOTS; i++) 6092 memseg_hash[i] = NULL; 6093 6094 hat_kpm_mseghash_clear(N_MEM_SLOTS); 6095 6096 /* 6097 * Physmax is the last valid pfn. 6098 */ 6099 mhash_per_slot = (physmax + 1) >> MEM_HASH_SHIFT; 6100 for (pseg = memsegs; pseg != NULL; pseg = pseg->next) { 6101 index = MEMSEG_PFN_HASH(pseg->pages_base); 6102 cur = pseg->pages_base; 6103 do { 6104 if (index >= N_MEM_SLOTS) 6105 index = MEMSEG_PFN_HASH(cur); 6106 6107 if (memseg_hash[index] == NULL || 6108 memseg_hash[index]->pages_base > pseg->pages_base) { 6109 memseg_hash[index] = pseg; 6110 hat_kpm_mseghash_update(index, pseg); 6111 } 6112 cur += mhash_per_slot; 6113 index++; 6114 } while (cur < pseg->pages_end); 6115 } 6116 } 6117 6118 /* 6119 * Return the pagenum for the pp 6120 */ 6121 pfn_t 6122 page_pptonum(page_t *pp) 6123 { 6124 return (pp->p_pagenum); 6125 } 6126 6127 /* 6128 * interface to the referenced and modified etc bits 6129 * in the PSM part of the page struct 6130 * when no locking is desired. 6131 */ 6132 void 6133 page_set_props(page_t *pp, uint_t flags) 6134 { 6135 ASSERT((flags & ~(P_MOD | P_REF | P_RO)) == 0); 6136 pp->p_nrm |= (uchar_t)flags; 6137 } 6138 6139 void 6140 page_clr_all_props(page_t *pp) 6141 { 6142 pp->p_nrm = 0; 6143 } 6144 6145 /* 6146 * Clear p_lckcnt and p_cowcnt, adjusting freemem if required. 6147 */ 6148 int 6149 page_clear_lck_cow(page_t *pp, int adjust) 6150 { 6151 int f_amount; 6152 6153 ASSERT(PAGE_EXCL(pp)); 6154 6155 /* 6156 * The page_struct_lock need not be acquired here since 6157 * we require the caller hold the page exclusively locked. 6158 */ 6159 f_amount = 0; 6160 if (pp->p_lckcnt) { 6161 f_amount = 1; 6162 pp->p_lckcnt = 0; 6163 } 6164 if (pp->p_cowcnt) { 6165 f_amount += pp->p_cowcnt; 6166 pp->p_cowcnt = 0; 6167 } 6168 6169 if (adjust && f_amount) { 6170 mutex_enter(&freemem_lock); 6171 availrmem += f_amount; 6172 mutex_exit(&freemem_lock); 6173 } 6174 6175 return (f_amount); 6176 } 6177 6178 /* 6179 * The following functions is called from free_vp_pages() 6180 * for an inexact estimate of a newly free'd page... 6181 */ 6182 ulong_t 6183 page_share_cnt(page_t *pp) 6184 { 6185 return (hat_page_getshare(pp)); 6186 } 6187 6188 int 6189 page_isshared(page_t *pp) 6190 { 6191 return (hat_page_checkshare(pp, 1)); 6192 } 6193 6194 int 6195 page_isfree(page_t *pp) 6196 { 6197 return (PP_ISFREE(pp)); 6198 } 6199 6200 int 6201 page_isref(page_t *pp) 6202 { 6203 return (hat_page_getattr(pp, P_REF)); 6204 } 6205 6206 int 6207 page_ismod(page_t *pp) 6208 { 6209 return (hat_page_getattr(pp, P_MOD)); 6210 } 6211 6212 /* 6213 * The following code all currently relates to the page capture logic: 6214 * 6215 * This logic is used for cases where there is a desire to claim a certain 6216 * physical page in the system for the caller. As it may not be possible 6217 * to capture the page immediately, the p_toxic bits are used in the page 6218 * structure to indicate that someone wants to capture this page. When the 6219 * page gets unlocked, the toxic flag will be noted and an attempt to capture 6220 * the page will be made. If it is successful, the original callers callback 6221 * will be called with the page to do with it what they please. 6222 * 6223 * There is also an async thread which wakes up to attempt to capture 6224 * pages occasionally which have the capture bit set. All of the pages which 6225 * need to be captured asynchronously have been inserted into the 6226 * page_capture_hash and thus this thread walks that hash list. Items in the 6227 * hash have an expiration time so this thread handles that as well by removing 6228 * the item from the hash if it has expired. 6229 * 6230 * Some important things to note are: 6231 * - if the PR_CAPTURE bit is set on a page, then the page is in the 6232 * page_capture_hash. The page_capture_hash_head.pchh_mutex is needed 6233 * to set and clear this bit, and while the lock is held is the only time 6234 * you can add or remove an entry from the hash. 6235 * - the PR_CAPTURE bit can only be set and cleared while holding the 6236 * page_capture_hash_head.pchh_mutex 6237 * - the t_flag field of the thread struct is used with the T_CAPTURING 6238 * flag to prevent recursion while dealing with large pages. 6239 * - pages which need to be retired never expire on the page_capture_hash. 6240 */ 6241 6242 static void page_capture_thread(void); 6243 static kthread_t *pc_thread_id; 6244 kcondvar_t pc_cv; 6245 static kmutex_t pc_thread_mutex; 6246 static clock_t pc_thread_shortwait; 6247 static clock_t pc_thread_longwait; 6248 static int pc_thread_ism_retry; 6249 6250 struct page_capture_callback pc_cb[PC_NUM_CALLBACKS]; 6251 6252 /* Note that this is a circular linked list */ 6253 typedef struct page_capture_hash_bucket { 6254 page_t *pp; 6255 uint_t szc; 6256 uint_t flags; 6257 clock_t expires; /* lbolt at which this request expires. */ 6258 void *datap; /* Cached data passed in for callback */ 6259 struct page_capture_hash_bucket *next; 6260 struct page_capture_hash_bucket *prev; 6261 } page_capture_hash_bucket_t; 6262 6263 /* 6264 * Each hash bucket will have it's own mutex and two lists which are: 6265 * active (0): represents requests which have not been processed by 6266 * the page_capture async thread yet. 6267 * walked (1): represents requests which have been processed by the 6268 * page_capture async thread within it's given walk of this bucket. 6269 * 6270 * These are all needed so that we can synchronize all async page_capture 6271 * events. When the async thread moves to a new bucket, it will append the 6272 * walked list to the active list and walk each item one at a time, moving it 6273 * from the active list to the walked list. Thus if there is an async request 6274 * outstanding for a given page, it will always be in one of the two lists. 6275 * New requests will always be added to the active list. 6276 * If we were not able to capture a page before the request expired, we'd free 6277 * up the request structure which would indicate to page_capture that there is 6278 * no longer a need for the given page, and clear the PR_CAPTURE flag if 6279 * possible. 6280 */ 6281 typedef struct page_capture_hash_head { 6282 kmutex_t pchh_mutex; 6283 uint_t num_pages; 6284 page_capture_hash_bucket_t lists[2]; /* sentinel nodes */ 6285 } page_capture_hash_head_t; 6286 6287 #ifdef DEBUG 6288 #define NUM_PAGE_CAPTURE_BUCKETS 4 6289 #else 6290 #define NUM_PAGE_CAPTURE_BUCKETS 64 6291 #endif 6292 6293 page_capture_hash_head_t page_capture_hash[NUM_PAGE_CAPTURE_BUCKETS]; 6294 6295 /* for now use a very simple hash based upon the size of a page struct */ 6296 #define PAGE_CAPTURE_HASH(pp) \ 6297 ((int)(((uintptr_t)pp >> 7) & (NUM_PAGE_CAPTURE_BUCKETS - 1))) 6298 6299 extern pgcnt_t swapfs_minfree; 6300 6301 int page_trycapture(page_t *pp, uint_t szc, uint_t flags, void *datap); 6302 6303 /* 6304 * a callback function is required for page capture requests. 6305 */ 6306 void 6307 page_capture_register_callback(uint_t index, clock_t duration, 6308 int (*cb_func)(page_t *, void *, uint_t)) 6309 { 6310 ASSERT(pc_cb[index].cb_active == 0); 6311 ASSERT(cb_func != NULL); 6312 rw_enter(&pc_cb[index].cb_rwlock, RW_WRITER); 6313 pc_cb[index].duration = duration; 6314 pc_cb[index].cb_func = cb_func; 6315 pc_cb[index].cb_active = 1; 6316 rw_exit(&pc_cb[index].cb_rwlock); 6317 } 6318 6319 void 6320 page_capture_unregister_callback(uint_t index) 6321 { 6322 int i, j; 6323 struct page_capture_hash_bucket *bp1; 6324 struct page_capture_hash_bucket *bp2; 6325 struct page_capture_hash_bucket *head = NULL; 6326 uint_t flags = (1 << index); 6327 6328 rw_enter(&pc_cb[index].cb_rwlock, RW_WRITER); 6329 ASSERT(pc_cb[index].cb_active == 1); 6330 pc_cb[index].duration = 0; /* Paranoia */ 6331 pc_cb[index].cb_func = NULL; /* Paranoia */ 6332 pc_cb[index].cb_active = 0; 6333 rw_exit(&pc_cb[index].cb_rwlock); 6334 6335 /* 6336 * Just move all the entries to a private list which we can walk 6337 * through without the need to hold any locks. 6338 * No more requests can get added to the hash lists for this consumer 6339 * as the cb_active field for the callback has been cleared. 6340 */ 6341 for (i = 0; i < NUM_PAGE_CAPTURE_BUCKETS; i++) { 6342 mutex_enter(&page_capture_hash[i].pchh_mutex); 6343 for (j = 0; j < 2; j++) { 6344 bp1 = page_capture_hash[i].lists[j].next; 6345 /* walk through all but first (sentinel) element */ 6346 while (bp1 != &page_capture_hash[i].lists[j]) { 6347 bp2 = bp1; 6348 if (bp2->flags & flags) { 6349 bp1 = bp2->next; 6350 bp1->prev = bp2->prev; 6351 bp2->prev->next = bp1; 6352 bp2->next = head; 6353 head = bp2; 6354 /* 6355 * Clear the PR_CAPTURE bit as we 6356 * hold appropriate locks here. 6357 */ 6358 page_clrtoxic(head->pp, PR_CAPTURE); 6359 page_capture_hash[i].num_pages--; 6360 continue; 6361 } 6362 bp1 = bp1->next; 6363 } 6364 } 6365 mutex_exit(&page_capture_hash[i].pchh_mutex); 6366 } 6367 6368 while (head != NULL) { 6369 bp1 = head; 6370 head = head->next; 6371 kmem_free(bp1, sizeof (*bp1)); 6372 } 6373 } 6374 6375 6376 /* 6377 * Find pp in the active list and move it to the walked list if it 6378 * exists. 6379 * Note that most often pp should be at the front of the active list 6380 * as it is currently used and thus there is no other sort of optimization 6381 * being done here as this is a linked list data structure. 6382 * Returns 1 on successful move or 0 if page could not be found. 6383 */ 6384 static int 6385 page_capture_move_to_walked(page_t *pp) 6386 { 6387 page_capture_hash_bucket_t *bp; 6388 int index; 6389 6390 index = PAGE_CAPTURE_HASH(pp); 6391 6392 mutex_enter(&page_capture_hash[index].pchh_mutex); 6393 bp = page_capture_hash[index].lists[0].next; 6394 while (bp != &page_capture_hash[index].lists[0]) { 6395 if (bp->pp == pp) { 6396 /* Remove from old list */ 6397 bp->next->prev = bp->prev; 6398 bp->prev->next = bp->next; 6399 6400 /* Add to new list */ 6401 bp->next = page_capture_hash[index].lists[1].next; 6402 bp->prev = &page_capture_hash[index].lists[1]; 6403 page_capture_hash[index].lists[1].next = bp; 6404 bp->next->prev = bp; 6405 mutex_exit(&page_capture_hash[index].pchh_mutex); 6406 6407 return (1); 6408 } 6409 bp = bp->next; 6410 } 6411 mutex_exit(&page_capture_hash[index].pchh_mutex); 6412 return (0); 6413 } 6414 6415 /* 6416 * Add a new entry to the page capture hash. The only case where a new 6417 * entry is not added is when the page capture consumer is no longer registered. 6418 * In this case, we'll silently not add the page to the hash. We know that 6419 * page retire will always be registered for the case where we are currently 6420 * unretiring a page and thus there are no conflicts. 6421 */ 6422 static void 6423 page_capture_add_hash(page_t *pp, uint_t szc, uint_t flags, void *datap) 6424 { 6425 page_capture_hash_bucket_t *bp1; 6426 page_capture_hash_bucket_t *bp2; 6427 int index; 6428 int cb_index; 6429 int i; 6430 #ifdef DEBUG 6431 page_capture_hash_bucket_t *tp1; 6432 int l; 6433 #endif 6434 6435 ASSERT(!(flags & CAPTURE_ASYNC)); 6436 6437 bp1 = kmem_alloc(sizeof (struct page_capture_hash_bucket), KM_SLEEP); 6438 6439 bp1->pp = pp; 6440 bp1->szc = szc; 6441 bp1->flags = flags; 6442 bp1->datap = datap; 6443 6444 for (cb_index = 0; cb_index < PC_NUM_CALLBACKS; cb_index++) { 6445 if ((flags >> cb_index) & 1) { 6446 break; 6447 } 6448 } 6449 6450 ASSERT(cb_index != PC_NUM_CALLBACKS); 6451 6452 rw_enter(&pc_cb[cb_index].cb_rwlock, RW_READER); 6453 if (pc_cb[cb_index].cb_active) { 6454 if (pc_cb[cb_index].duration == -1) { 6455 bp1->expires = (clock_t)-1; 6456 } else { 6457 bp1->expires = lbolt + pc_cb[cb_index].duration; 6458 } 6459 } else { 6460 /* There's no callback registered so don't add to the hash */ 6461 rw_exit(&pc_cb[cb_index].cb_rwlock); 6462 kmem_free(bp1, sizeof (*bp1)); 6463 return; 6464 } 6465 6466 index = PAGE_CAPTURE_HASH(pp); 6467 6468 /* 6469 * Only allow capture flag to be modified under this mutex. 6470 * Prevents multiple entries for same page getting added. 6471 */ 6472 mutex_enter(&page_capture_hash[index].pchh_mutex); 6473 6474 /* 6475 * if not already on the hash, set capture bit and add to the hash 6476 */ 6477 if (!(pp->p_toxic & PR_CAPTURE)) { 6478 #ifdef DEBUG 6479 /* Check for duplicate entries */ 6480 for (l = 0; l < 2; l++) { 6481 tp1 = page_capture_hash[index].lists[l].next; 6482 while (tp1 != &page_capture_hash[index].lists[l]) { 6483 if (tp1->pp == pp) { 6484 panic("page pp 0x%p already on hash " 6485 "at 0x%p\n", pp, tp1); 6486 } 6487 tp1 = tp1->next; 6488 } 6489 } 6490 6491 #endif 6492 page_settoxic(pp, PR_CAPTURE); 6493 bp1->next = page_capture_hash[index].lists[0].next; 6494 bp1->prev = &page_capture_hash[index].lists[0]; 6495 bp1->next->prev = bp1; 6496 page_capture_hash[index].lists[0].next = bp1; 6497 page_capture_hash[index].num_pages++; 6498 if (flags & CAPTURE_RETIRE) { 6499 page_retire_incr_pend_count(); 6500 } 6501 mutex_exit(&page_capture_hash[index].pchh_mutex); 6502 rw_exit(&pc_cb[cb_index].cb_rwlock); 6503 cv_signal(&pc_cv); 6504 return; 6505 } 6506 6507 /* 6508 * A page retire request will replace any other request. 6509 * A second physmem request which is for a different process than 6510 * the currently registered one will be dropped as there is 6511 * no way to hold the private data for both calls. 6512 * In the future, once there are more callers, this will have to 6513 * be worked out better as there needs to be private storage for 6514 * at least each type of caller (maybe have datap be an array of 6515 * *void's so that we can index based upon callers index). 6516 */ 6517 6518 /* walk hash list to update expire time */ 6519 for (i = 0; i < 2; i++) { 6520 bp2 = page_capture_hash[index].lists[i].next; 6521 while (bp2 != &page_capture_hash[index].lists[i]) { 6522 if (bp2->pp == pp) { 6523 if (flags & CAPTURE_RETIRE) { 6524 if (!(bp2->flags & CAPTURE_RETIRE)) { 6525 page_retire_incr_pend_count(); 6526 bp2->flags = flags; 6527 bp2->expires = bp1->expires; 6528 bp2->datap = datap; 6529 } 6530 } else { 6531 ASSERT(flags & CAPTURE_PHYSMEM); 6532 if (!(bp2->flags & CAPTURE_RETIRE) && 6533 (datap == bp2->datap)) { 6534 bp2->expires = bp1->expires; 6535 } 6536 } 6537 mutex_exit(&page_capture_hash[index]. 6538 pchh_mutex); 6539 rw_exit(&pc_cb[cb_index].cb_rwlock); 6540 kmem_free(bp1, sizeof (*bp1)); 6541 return; 6542 } 6543 bp2 = bp2->next; 6544 } 6545 } 6546 6547 /* 6548 * the PR_CAPTURE flag is protected by the page_capture_hash mutexes 6549 * and thus it either has to be set or not set and can't change 6550 * while holding the mutex above. 6551 */ 6552 panic("page_capture_add_hash, PR_CAPTURE flag set on pp %p\n", pp); 6553 } 6554 6555 /* 6556 * We have a page in our hands, lets try and make it ours by turning 6557 * it into a clean page like it had just come off the freelists. 6558 * 6559 * Returns 0 on success, with the page still EXCL locked. 6560 * On failure, the page will be unlocked, and returns EAGAIN 6561 */ 6562 static int 6563 page_capture_clean_page(page_t *pp) 6564 { 6565 page_t *newpp; 6566 int skip_unlock = 0; 6567 spgcnt_t count; 6568 page_t *tpp; 6569 int ret = 0; 6570 int extra; 6571 6572 ASSERT(PAGE_EXCL(pp)); 6573 ASSERT(!PP_RETIRED(pp)); 6574 ASSERT(curthread->t_flag & T_CAPTURING); 6575 6576 if (PP_ISFREE(pp)) { 6577 if (!page_reclaim(pp, NULL)) { 6578 skip_unlock = 1; 6579 ret = EAGAIN; 6580 goto cleanup; 6581 } 6582 ASSERT(pp->p_szc == 0); 6583 if (pp->p_vnode != NULL) { 6584 /* 6585 * Since this page came from the 6586 * cachelist, we must destroy the 6587 * old vnode association. 6588 */ 6589 page_hashout(pp, NULL); 6590 } 6591 goto cleanup; 6592 } 6593 6594 /* 6595 * If we know page_relocate will fail, skip it 6596 * It could still fail due to a UE on another page but we 6597 * can't do anything about that. 6598 */ 6599 if (pp->p_toxic & PR_UE) { 6600 goto skip_relocate; 6601 } 6602 6603 /* 6604 * It's possible that pages can not have a vnode as fsflush comes 6605 * through and cleans up these pages. It's ugly but that's how it is. 6606 */ 6607 if (pp->p_vnode == NULL) { 6608 goto skip_relocate; 6609 } 6610 6611 /* 6612 * Page was not free, so lets try to relocate it. 6613 * page_relocate only works with root pages, so if this is not a root 6614 * page, we need to demote it to try and relocate it. 6615 * Unfortunately this is the best we can do right now. 6616 */ 6617 newpp = NULL; 6618 if ((pp->p_szc > 0) && (pp != PP_PAGEROOT(pp))) { 6619 if (page_try_demote_pages(pp) == 0) { 6620 ret = EAGAIN; 6621 goto cleanup; 6622 } 6623 } 6624 ret = page_relocate(&pp, &newpp, 1, 0, &count, NULL); 6625 if (ret == 0) { 6626 page_t *npp; 6627 /* unlock the new page(s) */ 6628 while (count-- > 0) { 6629 ASSERT(newpp != NULL); 6630 npp = newpp; 6631 page_sub(&newpp, npp); 6632 page_unlock(npp); 6633 } 6634 ASSERT(newpp == NULL); 6635 /* 6636 * Check to see if the page we have is too large. 6637 * If so, demote it freeing up the extra pages. 6638 */ 6639 if (pp->p_szc > 0) { 6640 /* For now demote extra pages to szc == 0 */ 6641 extra = page_get_pagecnt(pp->p_szc) - 1; 6642 while (extra > 0) { 6643 tpp = pp->p_next; 6644 page_sub(&pp, tpp); 6645 tpp->p_szc = 0; 6646 page_free(tpp, 1); 6647 extra--; 6648 } 6649 /* Make sure to set our page to szc 0 as well */ 6650 ASSERT(pp->p_next == pp && pp->p_prev == pp); 6651 pp->p_szc = 0; 6652 } 6653 goto cleanup; 6654 } else if (ret == EIO) { 6655 ret = EAGAIN; 6656 goto cleanup; 6657 } else { 6658 /* 6659 * Need to reset return type as we failed to relocate the page 6660 * but that does not mean that some of the next steps will not 6661 * work. 6662 */ 6663 ret = 0; 6664 } 6665 6666 skip_relocate: 6667 6668 if (pp->p_szc > 0) { 6669 if (page_try_demote_pages(pp) == 0) { 6670 ret = EAGAIN; 6671 goto cleanup; 6672 } 6673 } 6674 6675 ASSERT(pp->p_szc == 0); 6676 6677 if (hat_ismod(pp)) { 6678 ret = EAGAIN; 6679 goto cleanup; 6680 } 6681 if (PP_ISKAS(pp)) { 6682 ret = EAGAIN; 6683 goto cleanup; 6684 } 6685 if (pp->p_lckcnt || pp->p_cowcnt) { 6686 ret = EAGAIN; 6687 goto cleanup; 6688 } 6689 6690 (void) hat_pageunload(pp, HAT_FORCE_PGUNLOAD); 6691 ASSERT(!hat_page_is_mapped(pp)); 6692 6693 if (hat_ismod(pp)) { 6694 /* 6695 * This is a semi-odd case as the page is now modified but not 6696 * mapped as we just unloaded the mappings above. 6697 */ 6698 ret = EAGAIN; 6699 goto cleanup; 6700 } 6701 if (pp->p_vnode != NULL) { 6702 page_hashout(pp, NULL); 6703 } 6704 6705 /* 6706 * At this point, the page should be in a clean state and 6707 * we can do whatever we want with it. 6708 */ 6709 6710 cleanup: 6711 if (ret != 0) { 6712 if (!skip_unlock) { 6713 page_unlock(pp); 6714 } 6715 } else { 6716 ASSERT(pp->p_szc == 0); 6717 ASSERT(PAGE_EXCL(pp)); 6718 6719 pp->p_next = pp; 6720 pp->p_prev = pp; 6721 } 6722 return (ret); 6723 } 6724 6725 /* 6726 * Various callers of page_trycapture() can have different restrictions upon 6727 * what memory they have access to. 6728 * Returns 0 on success, with the following error codes on failure: 6729 * EPERM - The requested page is long term locked, and thus repeated 6730 * requests to capture this page will likely fail. 6731 * ENOMEM - There was not enough free memory in the system to safely 6732 * map the requested page. 6733 * ENOENT - The requested page was inside the kernel cage, and the 6734 * PHYSMEM_CAGE flag was not set. 6735 */ 6736 int 6737 page_capture_pre_checks(page_t *pp, uint_t flags) 6738 { 6739 #if defined(__sparc) 6740 extern struct vnode prom_ppages; 6741 #endif /* __sparc */ 6742 6743 ASSERT(pp != NULL); 6744 6745 /* only physmem currently has restrictions */ 6746 if (!(flags & CAPTURE_PHYSMEM)) { 6747 return (0); 6748 } 6749 6750 #if defined(__sparc) 6751 if (pp->p_vnode == &prom_ppages) { 6752 return (EPERM); 6753 } 6754 6755 if (PP_ISNORELOC(pp) && !(flags & CAPTURE_GET_CAGE)) { 6756 return (ENOENT); 6757 } 6758 6759 if (PP_ISNORELOCKERNEL(pp)) { 6760 return (EPERM); 6761 } 6762 #else 6763 if (PP_ISKAS(pp)) { 6764 return (EPERM); 6765 } 6766 #endif /* __sparc */ 6767 6768 if (availrmem < swapfs_minfree) { 6769 /* 6770 * We won't try to capture this page as we are 6771 * running low on memory. 6772 */ 6773 return (ENOMEM); 6774 } 6775 return (0); 6776 } 6777 6778 /* 6779 * Once we have a page in our mits, go ahead and complete the capture 6780 * operation. 6781 * Returns 1 on failure where page is no longer needed 6782 * Returns 0 on success 6783 * Returns -1 if there was a transient failure. 6784 * Failure cases must release the SE_EXCL lock on pp (usually via page_free). 6785 */ 6786 int 6787 page_capture_take_action(page_t *pp, uint_t flags, void *datap) 6788 { 6789 int cb_index; 6790 int ret = 0; 6791 page_capture_hash_bucket_t *bp1; 6792 page_capture_hash_bucket_t *bp2; 6793 int index; 6794 int found = 0; 6795 int i; 6796 6797 ASSERT(PAGE_EXCL(pp)); 6798 ASSERT(curthread->t_flag & T_CAPTURING); 6799 6800 for (cb_index = 0; cb_index < PC_NUM_CALLBACKS; cb_index++) { 6801 if ((flags >> cb_index) & 1) { 6802 break; 6803 } 6804 } 6805 ASSERT(cb_index < PC_NUM_CALLBACKS); 6806 6807 /* 6808 * Remove the entry from the page_capture hash, but don't free it yet 6809 * as we may need to put it back. 6810 * Since we own the page at this point in time, we should find it 6811 * in the hash if this is an ASYNC call. If we don't it's likely 6812 * that the page_capture_async() thread decided that this request 6813 * had expired, in which case we just continue on. 6814 */ 6815 if (flags & CAPTURE_ASYNC) { 6816 6817 index = PAGE_CAPTURE_HASH(pp); 6818 6819 mutex_enter(&page_capture_hash[index].pchh_mutex); 6820 for (i = 0; i < 2 && !found; i++) { 6821 bp1 = page_capture_hash[index].lists[i].next; 6822 while (bp1 != &page_capture_hash[index].lists[i]) { 6823 if (bp1->pp == pp) { 6824 bp1->next->prev = bp1->prev; 6825 bp1->prev->next = bp1->next; 6826 page_capture_hash[index].num_pages--; 6827 page_clrtoxic(pp, PR_CAPTURE); 6828 found = 1; 6829 break; 6830 } 6831 bp1 = bp1->next; 6832 } 6833 } 6834 mutex_exit(&page_capture_hash[index].pchh_mutex); 6835 } 6836 6837 /* Synchronize with the unregister func. */ 6838 rw_enter(&pc_cb[cb_index].cb_rwlock, RW_READER); 6839 if (!pc_cb[cb_index].cb_active) { 6840 page_free(pp, 1); 6841 rw_exit(&pc_cb[cb_index].cb_rwlock); 6842 if (found) { 6843 kmem_free(bp1, sizeof (*bp1)); 6844 } 6845 return (1); 6846 } 6847 6848 /* 6849 * We need to remove the entry from the page capture hash and turn off 6850 * the PR_CAPTURE bit before calling the callback. We'll need to cache 6851 * the entry here, and then based upon the return value, cleanup 6852 * appropriately or re-add it to the hash, making sure that someone else 6853 * hasn't already done so. 6854 * It should be rare for the callback to fail and thus it's ok for 6855 * the failure path to be a bit complicated as the success path is 6856 * cleaner and the locking rules are easier to follow. 6857 */ 6858 6859 ret = pc_cb[cb_index].cb_func(pp, datap, flags); 6860 6861 rw_exit(&pc_cb[cb_index].cb_rwlock); 6862 6863 /* 6864 * If this was an ASYNC request, we need to cleanup the hash if the 6865 * callback was successful or if the request was no longer valid. 6866 * For non-ASYNC requests, we return failure to map and the caller 6867 * will take care of adding the request to the hash. 6868 * Note also that the callback itself is responsible for the page 6869 * at this point in time in terms of locking ... The most common 6870 * case for the failure path should just be a page_free. 6871 */ 6872 if (ret >= 0) { 6873 if (found) { 6874 if (bp1->flags & CAPTURE_RETIRE) { 6875 page_retire_decr_pend_count(); 6876 } 6877 kmem_free(bp1, sizeof (*bp1)); 6878 } 6879 return (ret); 6880 } 6881 if (!found) { 6882 return (ret); 6883 } 6884 6885 ASSERT(flags & CAPTURE_ASYNC); 6886 6887 /* 6888 * Check for expiration time first as we can just free it up if it's 6889 * expired. 6890 */ 6891 if (lbolt > bp1->expires && bp1->expires != -1) { 6892 kmem_free(bp1, sizeof (*bp1)); 6893 return (ret); 6894 } 6895 6896 /* 6897 * The callback failed and there used to be an entry in the hash for 6898 * this page, so we need to add it back to the hash. 6899 */ 6900 mutex_enter(&page_capture_hash[index].pchh_mutex); 6901 if (!(pp->p_toxic & PR_CAPTURE)) { 6902 /* just add bp1 back to head of walked list */ 6903 page_settoxic(pp, PR_CAPTURE); 6904 bp1->next = page_capture_hash[index].lists[1].next; 6905 bp1->prev = &page_capture_hash[index].lists[1]; 6906 bp1->next->prev = bp1; 6907 page_capture_hash[index].lists[1].next = bp1; 6908 page_capture_hash[index].num_pages++; 6909 mutex_exit(&page_capture_hash[index].pchh_mutex); 6910 return (ret); 6911 } 6912 6913 /* 6914 * Otherwise there was a new capture request added to list 6915 * Need to make sure that our original data is represented if 6916 * appropriate. 6917 */ 6918 for (i = 0; i < 2; i++) { 6919 bp2 = page_capture_hash[index].lists[i].next; 6920 while (bp2 != &page_capture_hash[index].lists[i]) { 6921 if (bp2->pp == pp) { 6922 if (bp1->flags & CAPTURE_RETIRE) { 6923 if (!(bp2->flags & CAPTURE_RETIRE)) { 6924 bp2->szc = bp1->szc; 6925 bp2->flags = bp1->flags; 6926 bp2->expires = bp1->expires; 6927 bp2->datap = bp1->datap; 6928 } 6929 } else { 6930 ASSERT(bp1->flags & CAPTURE_PHYSMEM); 6931 if (!(bp2->flags & CAPTURE_RETIRE)) { 6932 bp2->szc = bp1->szc; 6933 bp2->flags = bp1->flags; 6934 bp2->expires = bp1->expires; 6935 bp2->datap = bp1->datap; 6936 } 6937 } 6938 mutex_exit(&page_capture_hash[index]. 6939 pchh_mutex); 6940 kmem_free(bp1, sizeof (*bp1)); 6941 return (ret); 6942 } 6943 bp2 = bp2->next; 6944 } 6945 } 6946 panic("PR_CAPTURE set but not on hash for pp 0x%p\n", pp); 6947 /*NOTREACHED*/ 6948 } 6949 6950 /* 6951 * Try to capture the given page for the caller specified in the flags 6952 * parameter. The page will either be captured and handed over to the 6953 * appropriate callback, or will be queued up in the page capture hash 6954 * to be captured asynchronously. 6955 * If the current request is due to an async capture, the page must be 6956 * exclusively locked before calling this function. 6957 * Currently szc must be 0 but in the future this should be expandable to 6958 * other page sizes. 6959 * Returns 0 on success, with the following error codes on failure: 6960 * EPERM - The requested page is long term locked, and thus repeated 6961 * requests to capture this page will likely fail. 6962 * ENOMEM - There was not enough free memory in the system to safely 6963 * map the requested page. 6964 * ENOENT - The requested page was inside the kernel cage, and the 6965 * CAPTURE_GET_CAGE flag was not set. 6966 * EAGAIN - The requested page could not be capturead at this point in 6967 * time but future requests will likely work. 6968 * EBUSY - The requested page is retired and the CAPTURE_GET_RETIRED flag 6969 * was not set. 6970 */ 6971 int 6972 page_itrycapture(page_t *pp, uint_t szc, uint_t flags, void *datap) 6973 { 6974 int ret; 6975 int cb_index; 6976 6977 if (flags & CAPTURE_ASYNC) { 6978 ASSERT(PAGE_EXCL(pp)); 6979 goto async; 6980 } 6981 6982 /* Make sure there's enough availrmem ... */ 6983 ret = page_capture_pre_checks(pp, flags); 6984 if (ret != 0) { 6985 return (ret); 6986 } 6987 6988 if (!page_trylock(pp, SE_EXCL)) { 6989 for (cb_index = 0; cb_index < PC_NUM_CALLBACKS; cb_index++) { 6990 if ((flags >> cb_index) & 1) { 6991 break; 6992 } 6993 } 6994 ASSERT(cb_index < PC_NUM_CALLBACKS); 6995 ret = EAGAIN; 6996 /* Special case for retired pages */ 6997 if (PP_RETIRED(pp)) { 6998 if (flags & CAPTURE_GET_RETIRED) { 6999 if (!page_unretire_pp(pp, PR_UNR_TEMP)) { 7000 /* 7001 * Need to set capture bit and add to 7002 * hash so that the page will be 7003 * retired when freed. 7004 */ 7005 page_capture_add_hash(pp, szc, 7006 CAPTURE_RETIRE, NULL); 7007 ret = 0; 7008 goto own_page; 7009 } 7010 } else { 7011 return (EBUSY); 7012 } 7013 } 7014 page_capture_add_hash(pp, szc, flags, datap); 7015 return (ret); 7016 } 7017 7018 async: 7019 ASSERT(PAGE_EXCL(pp)); 7020 7021 /* Need to check for physmem async requests that availrmem is sane */ 7022 if ((flags & (CAPTURE_ASYNC | CAPTURE_PHYSMEM)) == 7023 (CAPTURE_ASYNC | CAPTURE_PHYSMEM) && 7024 (availrmem < swapfs_minfree)) { 7025 page_unlock(pp); 7026 return (ENOMEM); 7027 } 7028 7029 ret = page_capture_clean_page(pp); 7030 7031 if (ret != 0) { 7032 /* We failed to get the page, so lets add it to the hash */ 7033 if (!(flags & CAPTURE_ASYNC)) { 7034 page_capture_add_hash(pp, szc, flags, datap); 7035 } 7036 return (ret); 7037 } 7038 7039 own_page: 7040 ASSERT(PAGE_EXCL(pp)); 7041 ASSERT(pp->p_szc == 0); 7042 7043 /* Call the callback */ 7044 ret = page_capture_take_action(pp, flags, datap); 7045 7046 if (ret == 0) { 7047 return (0); 7048 } 7049 7050 /* 7051 * Note that in the failure cases from page_capture_take_action, the 7052 * EXCL lock will have already been dropped. 7053 */ 7054 if ((ret == -1) && (!(flags & CAPTURE_ASYNC))) { 7055 page_capture_add_hash(pp, szc, flags, datap); 7056 } 7057 return (EAGAIN); 7058 } 7059 7060 int 7061 page_trycapture(page_t *pp, uint_t szc, uint_t flags, void *datap) 7062 { 7063 int ret; 7064 7065 curthread->t_flag |= T_CAPTURING; 7066 ret = page_itrycapture(pp, szc, flags, datap); 7067 curthread->t_flag &= ~T_CAPTURING; /* xor works as we know its set */ 7068 return (ret); 7069 } 7070 7071 /* 7072 * When unlocking a page which has the PR_CAPTURE bit set, this routine 7073 * gets called to try and capture the page. 7074 */ 7075 void 7076 page_unlock_capture(page_t *pp) 7077 { 7078 page_capture_hash_bucket_t *bp; 7079 int index; 7080 int i; 7081 uint_t szc; 7082 uint_t flags = 0; 7083 void *datap; 7084 kmutex_t *mp; 7085 extern vnode_t retired_pages; 7086 7087 /* 7088 * We need to protect against a possible deadlock here where we own 7089 * the vnode page hash mutex and want to acquire it again as there 7090 * are locations in the code, where we unlock a page while holding 7091 * the mutex which can lead to the page being captured and eventually 7092 * end up here. As we may be hashing out the old page and hashing into 7093 * the retire vnode, we need to make sure we don't own them. 7094 * Other callbacks who do hash operations also need to make sure that 7095 * before they hashin to a vnode that they do not currently own the 7096 * vphm mutex otherwise there will be a panic. 7097 */ 7098 if (mutex_owned(page_vnode_mutex(&retired_pages))) { 7099 page_unlock_nocapture(pp); 7100 return; 7101 } 7102 if (pp->p_vnode != NULL && mutex_owned(page_vnode_mutex(pp->p_vnode))) { 7103 page_unlock_nocapture(pp); 7104 return; 7105 } 7106 7107 index = PAGE_CAPTURE_HASH(pp); 7108 7109 mp = &page_capture_hash[index].pchh_mutex; 7110 mutex_enter(mp); 7111 for (i = 0; i < 2; i++) { 7112 bp = page_capture_hash[index].lists[i].next; 7113 while (bp != &page_capture_hash[index].lists[i]) { 7114 if (bp->pp == pp) { 7115 szc = bp->szc; 7116 flags = bp->flags | CAPTURE_ASYNC; 7117 datap = bp->datap; 7118 mutex_exit(mp); 7119 (void) page_trycapture(pp, szc, flags, datap); 7120 return; 7121 } 7122 bp = bp->next; 7123 } 7124 } 7125 7126 /* Failed to find page in hash so clear flags and unlock it. */ 7127 page_clrtoxic(pp, PR_CAPTURE); 7128 page_unlock(pp); 7129 7130 mutex_exit(mp); 7131 } 7132 7133 void 7134 page_capture_init() 7135 { 7136 int i; 7137 for (i = 0; i < NUM_PAGE_CAPTURE_BUCKETS; i++) { 7138 page_capture_hash[i].lists[0].next = 7139 &page_capture_hash[i].lists[0]; 7140 page_capture_hash[i].lists[0].prev = 7141 &page_capture_hash[i].lists[0]; 7142 page_capture_hash[i].lists[1].next = 7143 &page_capture_hash[i].lists[1]; 7144 page_capture_hash[i].lists[1].prev = 7145 &page_capture_hash[i].lists[1]; 7146 } 7147 7148 pc_thread_shortwait = 23 * hz; 7149 pc_thread_longwait = 1201 * hz; 7150 pc_thread_ism_retry = 3; 7151 mutex_init(&pc_thread_mutex, NULL, MUTEX_DEFAULT, NULL); 7152 cv_init(&pc_cv, NULL, CV_DEFAULT, NULL); 7153 pc_thread_id = thread_create(NULL, 0, page_capture_thread, NULL, 0, &p0, 7154 TS_RUN, minclsyspri); 7155 } 7156 7157 /* 7158 * It is necessary to scrub any failing pages prior to reboot in order to 7159 * prevent a latent error trap from occurring on the next boot. 7160 */ 7161 void 7162 page_retire_mdboot() 7163 { 7164 page_t *pp; 7165 int i, j; 7166 page_capture_hash_bucket_t *bp; 7167 7168 /* walk lists looking for pages to scrub */ 7169 for (i = 0; i < NUM_PAGE_CAPTURE_BUCKETS; i++) { 7170 if (page_capture_hash[i].num_pages == 0) 7171 continue; 7172 7173 mutex_enter(&page_capture_hash[i].pchh_mutex); 7174 7175 for (j = 0; j < 2; j++) { 7176 bp = page_capture_hash[i].lists[j].next; 7177 while (bp != &page_capture_hash[i].lists[j]) { 7178 pp = bp->pp; 7179 if (!PP_ISKAS(pp) && PP_TOXIC(pp)) { 7180 pp->p_selock = -1; /* pacify ASSERTs */ 7181 PP_CLRFREE(pp); 7182 pagescrub(pp, 0, PAGESIZE); 7183 pp->p_selock = 0; 7184 } 7185 bp = bp->next; 7186 } 7187 } 7188 mutex_exit(&page_capture_hash[i].pchh_mutex); 7189 } 7190 } 7191 7192 /* 7193 * Walk the page_capture_hash trying to capture pages and also cleanup old 7194 * entries which have expired. 7195 */ 7196 void 7197 page_capture_async() 7198 { 7199 page_t *pp; 7200 int i; 7201 int ret; 7202 page_capture_hash_bucket_t *bp1, *bp2; 7203 uint_t szc; 7204 uint_t flags; 7205 void *datap; 7206 7207 /* If there are outstanding pages to be captured, get to work */ 7208 for (i = 0; i < NUM_PAGE_CAPTURE_BUCKETS; i++) { 7209 if (page_capture_hash[i].num_pages == 0) 7210 continue; 7211 /* Append list 1 to list 0 and then walk through list 0 */ 7212 mutex_enter(&page_capture_hash[i].pchh_mutex); 7213 bp1 = &page_capture_hash[i].lists[1]; 7214 bp2 = bp1->next; 7215 if (bp1 != bp2) { 7216 bp1->prev->next = page_capture_hash[i].lists[0].next; 7217 bp2->prev = &page_capture_hash[i].lists[0]; 7218 page_capture_hash[i].lists[0].next->prev = bp1->prev; 7219 page_capture_hash[i].lists[0].next = bp2; 7220 bp1->next = bp1; 7221 bp1->prev = bp1; 7222 } 7223 7224 /* list[1] will be empty now */ 7225 7226 bp1 = page_capture_hash[i].lists[0].next; 7227 while (bp1 != &page_capture_hash[i].lists[0]) { 7228 /* Check expiration time */ 7229 if ((lbolt > bp1->expires && bp1->expires != -1) || 7230 page_deleted(bp1->pp)) { 7231 page_capture_hash[i].lists[0].next = bp1->next; 7232 bp1->next->prev = 7233 &page_capture_hash[i].lists[0]; 7234 page_capture_hash[i].num_pages--; 7235 7236 /* 7237 * We can safely remove the PR_CAPTURE bit 7238 * without holding the EXCL lock on the page 7239 * as the PR_CAPTURE bit requres that the 7240 * page_capture_hash[].pchh_mutex be held 7241 * to modify it. 7242 */ 7243 page_clrtoxic(bp1->pp, PR_CAPTURE); 7244 mutex_exit(&page_capture_hash[i].pchh_mutex); 7245 kmem_free(bp1, sizeof (*bp1)); 7246 mutex_enter(&page_capture_hash[i].pchh_mutex); 7247 bp1 = page_capture_hash[i].lists[0].next; 7248 continue; 7249 } 7250 pp = bp1->pp; 7251 szc = bp1->szc; 7252 flags = bp1->flags; 7253 datap = bp1->datap; 7254 mutex_exit(&page_capture_hash[i].pchh_mutex); 7255 if (page_trylock(pp, SE_EXCL)) { 7256 ret = page_trycapture(pp, szc, 7257 flags | CAPTURE_ASYNC, datap); 7258 } else { 7259 ret = 1; /* move to walked hash */ 7260 } 7261 7262 if (ret != 0) { 7263 /* Move to walked hash */ 7264 (void) page_capture_move_to_walked(pp); 7265 } 7266 mutex_enter(&page_capture_hash[i].pchh_mutex); 7267 bp1 = page_capture_hash[i].lists[0].next; 7268 } 7269 7270 mutex_exit(&page_capture_hash[i].pchh_mutex); 7271 } 7272 } 7273 7274 /* 7275 * This function is called by the page_capture_thread, and is needed in 7276 * in order to initiate aio cleanup, so that pages used in aio 7277 * will be unlocked and subsequently retired by page_capture_thread. 7278 */ 7279 static int 7280 do_aio_cleanup(void) 7281 { 7282 proc_t *procp; 7283 int (*aio_cleanup_dr_delete_memory)(proc_t *); 7284 int cleaned = 0; 7285 7286 if (modload("sys", "kaio") == -1) { 7287 cmn_err(CE_WARN, "do_aio_cleanup: cannot load kaio"); 7288 return (0); 7289 } 7290 /* 7291 * We use the aio_cleanup_dr_delete_memory function to 7292 * initiate the actual clean up; this function will wake 7293 * up the per-process aio_cleanup_thread. 7294 */ 7295 aio_cleanup_dr_delete_memory = (int (*)(proc_t *)) 7296 modgetsymvalue("aio_cleanup_dr_delete_memory", 0); 7297 if (aio_cleanup_dr_delete_memory == NULL) { 7298 cmn_err(CE_WARN, 7299 "aio_cleanup_dr_delete_memory not found in kaio"); 7300 return (0); 7301 } 7302 mutex_enter(&pidlock); 7303 for (procp = practive; (procp != NULL); procp = procp->p_next) { 7304 mutex_enter(&procp->p_lock); 7305 if (procp->p_aio != NULL) { 7306 /* cleanup proc's outstanding kaio */ 7307 cleaned += (*aio_cleanup_dr_delete_memory)(procp); 7308 } 7309 mutex_exit(&procp->p_lock); 7310 } 7311 mutex_exit(&pidlock); 7312 return (cleaned); 7313 } 7314 7315 /* 7316 * helper function for page_capture_thread 7317 */ 7318 static void 7319 page_capture_handle_outstanding(void) 7320 { 7321 extern size_t spt_used; 7322 int ntry; 7323 7324 if (!page_retire_pend_count()) { 7325 /* 7326 * Do we really want to be this aggressive 7327 * for things other than page_retire? 7328 * Maybe have a counter for each callback 7329 * type to guide how aggressive we should 7330 * be here. Thus if there's at least one 7331 * page for page_retire we go ahead and reap 7332 * like this. 7333 */ 7334 kmem_reap(); 7335 seg_preap(); 7336 page_capture_async(); 7337 } else { 7338 /* 7339 * There are pages pending retirement, so 7340 * we reap prior to attempting to capture. 7341 */ 7342 kmem_reap(); 7343 /* 7344 * When ISM is in use, we need to disable and 7345 * purge the seg_pcache, and initiate aio 7346 * cleanup in order to release page locks and 7347 * subsquently retire pages in need of 7348 * retirement. 7349 */ 7350 if (spt_used) { 7351 /* disable and purge seg_pcache */ 7352 (void) seg_p_disable(); 7353 for (ntry = 0; ntry < pc_thread_ism_retry; ntry++) { 7354 if (!page_retire_pend_count()) 7355 break; 7356 if (do_aio_cleanup()) { 7357 /* 7358 * allow the apps cleanup threads 7359 * to run 7360 */ 7361 delay(pc_thread_shortwait); 7362 } 7363 page_capture_async(); 7364 } 7365 /* reenable seg_pcache */ 7366 seg_p_enable(); 7367 } else { 7368 seg_preap(); 7369 page_capture_async(); 7370 } 7371 } 7372 } 7373 7374 /* 7375 * The page_capture_thread loops forever, looking to see if there are 7376 * pages still waiting to be captured. 7377 */ 7378 static void 7379 page_capture_thread(void) 7380 { 7381 callb_cpr_t c; 7382 int outstanding; 7383 int i; 7384 7385 CALLB_CPR_INIT(&c, &pc_thread_mutex, callb_generic_cpr, "page_capture"); 7386 7387 mutex_enter(&pc_thread_mutex); 7388 for (;;) { 7389 outstanding = 0; 7390 for (i = 0; i < NUM_PAGE_CAPTURE_BUCKETS; i++) 7391 outstanding += page_capture_hash[i].num_pages; 7392 if (outstanding) { 7393 page_capture_handle_outstanding(); 7394 CALLB_CPR_SAFE_BEGIN(&c); 7395 (void) cv_timedwait(&pc_cv, &pc_thread_mutex, 7396 lbolt + pc_thread_shortwait); 7397 CALLB_CPR_SAFE_END(&c, &pc_thread_mutex); 7398 } else { 7399 CALLB_CPR_SAFE_BEGIN(&c); 7400 (void) cv_timedwait(&pc_cv, &pc_thread_mutex, 7401 lbolt + pc_thread_longwait); 7402 CALLB_CPR_SAFE_END(&c, &pc_thread_mutex); 7403 } 7404 } 7405 /*NOTREACHED*/ 7406 } 7407