1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2007 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 /* Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T */ 27 /* All Rights Reserved */ 28 29 /* 30 * University Copyright- Copyright (c) 1982, 1986, 1988 31 * The Regents of the University of California 32 * All Rights Reserved 33 * 34 * University Acknowledgment- Portions of this document are derived from 35 * software developed by the University of California, Berkeley, and its 36 * contributors. 37 */ 38 39 #pragma ident "%Z%%M% %I% %E% SMI" 40 41 /* 42 * VM - address spaces. 43 */ 44 45 #include <sys/types.h> 46 #include <sys/t_lock.h> 47 #include <sys/param.h> 48 #include <sys/errno.h> 49 #include <sys/systm.h> 50 #include <sys/mman.h> 51 #include <sys/sysmacros.h> 52 #include <sys/cpuvar.h> 53 #include <sys/sysinfo.h> 54 #include <sys/kmem.h> 55 #include <sys/vnode.h> 56 #include <sys/vmsystm.h> 57 #include <sys/cmn_err.h> 58 #include <sys/debug.h> 59 #include <sys/tnf_probe.h> 60 #include <sys/vtrace.h> 61 62 #include <vm/hat.h> 63 #include <vm/xhat.h> 64 #include <vm/as.h> 65 #include <vm/seg.h> 66 #include <vm/seg_vn.h> 67 #include <vm/seg_dev.h> 68 #include <vm/seg_kmem.h> 69 #include <vm/seg_map.h> 70 #include <vm/seg_spt.h> 71 #include <vm/page.h> 72 73 clock_t deadlk_wait = 1; /* number of ticks to wait before retrying */ 74 75 static struct kmem_cache *as_cache; 76 77 static void as_setwatchprot(struct as *, caddr_t, size_t, uint_t); 78 static void as_clearwatchprot(struct as *, caddr_t, size_t); 79 int as_map_locked(struct as *, caddr_t, size_t, int ((*)()), void *); 80 81 82 /* 83 * Verifying the segment lists is very time-consuming; it may not be 84 * desirable always to define VERIFY_SEGLIST when DEBUG is set. 85 */ 86 #ifdef DEBUG 87 #define VERIFY_SEGLIST 88 int do_as_verify = 0; 89 #endif 90 91 /* 92 * Allocate a new callback data structure entry and fill in the events of 93 * interest, the address range of interest, and the callback argument. 94 * Link the entry on the as->a_callbacks list. A callback entry for the 95 * entire address space may be specified with vaddr = 0 and size = -1. 96 * 97 * CALLERS RESPONSIBILITY: If not calling from within the process context for 98 * the specified as, the caller must guarantee persistence of the specified as 99 * for the duration of this function (eg. pages being locked within the as 100 * will guarantee persistence). 101 */ 102 int 103 as_add_callback(struct as *as, void (*cb_func)(), void *arg, uint_t events, 104 caddr_t vaddr, size_t size, int sleepflag) 105 { 106 struct as_callback *current_head, *cb; 107 caddr_t saddr; 108 size_t rsize; 109 110 /* callback function and an event are mandatory */ 111 if ((cb_func == NULL) || ((events & AS_ALL_EVENT) == 0)) 112 return (EINVAL); 113 114 /* Adding a callback after as_free has been called is not allowed */ 115 if (as == &kas) 116 return (ENOMEM); 117 118 /* 119 * vaddr = 0 and size = -1 is used to indicate that the callback range 120 * is the entire address space so no rounding is done in that case. 121 */ 122 if (size != -1) { 123 saddr = (caddr_t)((uintptr_t)vaddr & (uintptr_t)PAGEMASK); 124 rsize = (((size_t)(vaddr + size) + PAGEOFFSET) & PAGEMASK) - 125 (size_t)saddr; 126 /* check for wraparound */ 127 if (saddr + rsize < saddr) 128 return (ENOMEM); 129 } else { 130 if (vaddr != 0) 131 return (EINVAL); 132 saddr = vaddr; 133 rsize = size; 134 } 135 136 /* Allocate and initialize a callback entry */ 137 cb = kmem_zalloc(sizeof (struct as_callback), sleepflag); 138 if (cb == NULL) 139 return (EAGAIN); 140 141 cb->ascb_func = cb_func; 142 cb->ascb_arg = arg; 143 cb->ascb_events = events; 144 cb->ascb_saddr = saddr; 145 cb->ascb_len = rsize; 146 147 /* Add the entry to the list */ 148 mutex_enter(&as->a_contents); 149 current_head = as->a_callbacks; 150 as->a_callbacks = cb; 151 cb->ascb_next = current_head; 152 153 /* 154 * The call to this function may lose in a race with 155 * a pertinent event - eg. a thread does long term memory locking 156 * but before the callback is added another thread executes as_unmap. 157 * A broadcast here resolves that. 158 */ 159 if ((cb->ascb_events & AS_UNMAPWAIT_EVENT) && AS_ISUNMAPWAIT(as)) { 160 AS_CLRUNMAPWAIT(as); 161 cv_broadcast(&as->a_cv); 162 } 163 164 mutex_exit(&as->a_contents); 165 return (0); 166 } 167 168 /* 169 * Search the callback list for an entry which pertains to arg. 170 * 171 * This is called from within the client upon completion of the callback. 172 * RETURN VALUES: 173 * AS_CALLBACK_DELETED (callback entry found and deleted) 174 * AS_CALLBACK_NOTFOUND (no callback entry found - this is ok) 175 * AS_CALLBACK_DELETE_DEFERRED (callback is in process, delete of this 176 * entry will be made in as_do_callbacks) 177 * 178 * If as_delete_callback encounters a matching entry with AS_CALLBACK_CALLED 179 * set, it indicates that as_do_callbacks is processing this entry. The 180 * AS_ALL_EVENT events are cleared in the entry, and a broadcast is made 181 * to unblock as_do_callbacks, in case it is blocked. 182 * 183 * CALLERS RESPONSIBILITY: If not calling from within the process context for 184 * the specified as, the caller must guarantee persistence of the specified as 185 * for the duration of this function (eg. pages being locked within the as 186 * will guarantee persistence). 187 */ 188 uint_t 189 as_delete_callback(struct as *as, void *arg) 190 { 191 struct as_callback **prevcb = &as->a_callbacks; 192 struct as_callback *cb; 193 uint_t rc = AS_CALLBACK_NOTFOUND; 194 195 mutex_enter(&as->a_contents); 196 for (cb = as->a_callbacks; cb; prevcb = &cb->ascb_next, cb = *prevcb) { 197 if (cb->ascb_arg != arg) 198 continue; 199 200 /* 201 * If the events indicate AS_CALLBACK_CALLED, just clear 202 * AS_ALL_EVENT in the events field and wakeup the thread 203 * that may be waiting in as_do_callbacks. as_do_callbacks 204 * will take care of removing this entry from the list. In 205 * that case, return AS_CALLBACK_DELETE_DEFERRED. Otherwise 206 * (AS_CALLBACK_CALLED not set), just remove it from the 207 * list, return the memory and return AS_CALLBACK_DELETED. 208 */ 209 if ((cb->ascb_events & AS_CALLBACK_CALLED) != 0) { 210 /* leave AS_CALLBACK_CALLED */ 211 cb->ascb_events &= ~AS_ALL_EVENT; 212 rc = AS_CALLBACK_DELETE_DEFERRED; 213 cv_broadcast(&as->a_cv); 214 } else { 215 *prevcb = cb->ascb_next; 216 kmem_free(cb, sizeof (struct as_callback)); 217 rc = AS_CALLBACK_DELETED; 218 } 219 break; 220 } 221 mutex_exit(&as->a_contents); 222 return (rc); 223 } 224 225 /* 226 * Searches the as callback list for a matching entry. 227 * Returns a pointer to the first matching callback, or NULL if 228 * nothing is found. 229 * This function never sleeps so it is ok to call it with more 230 * locks held but the (required) a_contents mutex. 231 * 232 * See also comment on as_do_callbacks below. 233 */ 234 static struct as_callback * 235 as_find_callback(struct as *as, uint_t events, caddr_t event_addr, 236 size_t event_len) 237 { 238 struct as_callback *cb; 239 240 ASSERT(MUTEX_HELD(&as->a_contents)); 241 for (cb = as->a_callbacks; cb != NULL; cb = cb->ascb_next) { 242 /* 243 * If the callback has not already been called, then 244 * check if events or address range pertains. An event_len 245 * of zero means do an unconditional callback. 246 */ 247 if (((cb->ascb_events & AS_CALLBACK_CALLED) != 0) || 248 ((event_len != 0) && (((cb->ascb_events & events) == 0) || 249 (event_addr + event_len < cb->ascb_saddr) || 250 (event_addr > (cb->ascb_saddr + cb->ascb_len))))) { 251 continue; 252 } 253 break; 254 } 255 return (cb); 256 } 257 258 /* 259 * Executes a given callback and removes it from the callback list for 260 * this address space. 261 * This function may sleep so the caller must drop all locks except 262 * a_contents before calling this func. 263 * 264 * See also comments on as_do_callbacks below. 265 */ 266 static void 267 as_execute_callback(struct as *as, struct as_callback *cb, 268 uint_t events) 269 { 270 struct as_callback **prevcb; 271 void *cb_arg; 272 273 ASSERT(MUTEX_HELD(&as->a_contents) && (cb->ascb_events & events)); 274 cb->ascb_events |= AS_CALLBACK_CALLED; 275 mutex_exit(&as->a_contents); 276 (*cb->ascb_func)(as, cb->ascb_arg, events); 277 mutex_enter(&as->a_contents); 278 /* 279 * the callback function is required to delete the callback 280 * when the callback function determines it is OK for 281 * this thread to continue. as_delete_callback will clear 282 * the AS_ALL_EVENT in the events field when it is deleted. 283 * If the callback function called as_delete_callback, 284 * events will already be cleared and there will be no blocking. 285 */ 286 while ((cb->ascb_events & events) != 0) { 287 cv_wait(&as->a_cv, &as->a_contents); 288 } 289 /* 290 * This entry needs to be taken off the list. Normally, the 291 * callback func itself does that, but unfortunately the list 292 * may have changed while the callback was running because the 293 * a_contents mutex was dropped and someone else other than the 294 * callback func itself could have called as_delete_callback, 295 * so we have to search to find this entry again. The entry 296 * must have AS_CALLBACK_CALLED, and have the same 'arg'. 297 */ 298 cb_arg = cb->ascb_arg; 299 prevcb = &as->a_callbacks; 300 for (cb = as->a_callbacks; cb != NULL; 301 prevcb = &cb->ascb_next, cb = *prevcb) { 302 if (((cb->ascb_events & AS_CALLBACK_CALLED) == 0) || 303 (cb_arg != cb->ascb_arg)) { 304 continue; 305 } 306 *prevcb = cb->ascb_next; 307 kmem_free(cb, sizeof (struct as_callback)); 308 break; 309 } 310 } 311 312 /* 313 * Check the callback list for a matching event and intersection of 314 * address range. If there is a match invoke the callback. Skip an entry if: 315 * - a callback is already in progress for this entry (AS_CALLBACK_CALLED) 316 * - not event of interest 317 * - not address range of interest 318 * 319 * An event_len of zero indicates a request for an unconditional callback 320 * (regardless of event), only the AS_CALLBACK_CALLED is checked. The 321 * a_contents lock must be dropped before a callback, so only one callback 322 * can be done before returning. Return -1 (true) if a callback was 323 * executed and removed from the list, else return 0 (false). 324 * 325 * The logically separate parts, i.e. finding a matching callback and 326 * executing a given callback have been separated into two functions 327 * so that they can be called with different sets of locks held beyond 328 * the always-required a_contents. as_find_callback does not sleep so 329 * it is ok to call it if more locks than a_contents (i.e. the a_lock 330 * rwlock) are held. as_execute_callback on the other hand may sleep 331 * so all locks beyond a_contents must be dropped by the caller if one 332 * does not want to end comatose. 333 */ 334 static int 335 as_do_callbacks(struct as *as, uint_t events, caddr_t event_addr, 336 size_t event_len) 337 { 338 struct as_callback *cb; 339 340 if ((cb = as_find_callback(as, events, event_addr, event_len))) { 341 as_execute_callback(as, cb, events); 342 return (-1); 343 } 344 return (0); 345 } 346 347 /* 348 * Search for the segment containing addr. If a segment containing addr 349 * exists, that segment is returned. If no such segment exists, and 350 * the list spans addresses greater than addr, then the first segment 351 * whose base is greater than addr is returned; otherwise, NULL is 352 * returned unless tail is true, in which case the last element of the 353 * list is returned. 354 * 355 * a_seglast is used to cache the last found segment for repeated 356 * searches to the same addr (which happens frequently). 357 */ 358 struct seg * 359 as_findseg(struct as *as, caddr_t addr, int tail) 360 { 361 struct seg *seg = as->a_seglast; 362 avl_index_t where; 363 364 ASSERT(AS_LOCK_HELD(as, &as->a_lock)); 365 366 if (seg != NULL && 367 seg->s_base <= addr && 368 addr < seg->s_base + seg->s_size) 369 return (seg); 370 371 seg = avl_find(&as->a_segtree, &addr, &where); 372 if (seg != NULL) 373 return (as->a_seglast = seg); 374 375 seg = avl_nearest(&as->a_segtree, where, AVL_AFTER); 376 if (seg == NULL && tail) 377 seg = avl_last(&as->a_segtree); 378 return (as->a_seglast = seg); 379 } 380 381 #ifdef VERIFY_SEGLIST 382 /* 383 * verify that the linked list is coherent 384 */ 385 static void 386 as_verify(struct as *as) 387 { 388 struct seg *seg, *seglast, *p, *n; 389 uint_t nsegs = 0; 390 391 if (do_as_verify == 0) 392 return; 393 394 seglast = as->a_seglast; 395 396 for (seg = AS_SEGFIRST(as); seg != NULL; seg = AS_SEGNEXT(as, seg)) { 397 ASSERT(seg->s_as == as); 398 p = AS_SEGPREV(as, seg); 399 n = AS_SEGNEXT(as, seg); 400 ASSERT(p == NULL || p->s_as == as); 401 ASSERT(p == NULL || p->s_base < seg->s_base); 402 ASSERT(n == NULL || n->s_base > seg->s_base); 403 ASSERT(n != NULL || seg == avl_last(&as->a_segtree)); 404 if (seg == seglast) 405 seglast = NULL; 406 nsegs++; 407 } 408 ASSERT(seglast == NULL); 409 ASSERT(avl_numnodes(&as->a_segtree) == nsegs); 410 } 411 #endif /* VERIFY_SEGLIST */ 412 413 /* 414 * Add a new segment to the address space. The avl_find() 415 * may be expensive so we attempt to use last segment accessed 416 * in as_gap() as an insertion point. 417 */ 418 int 419 as_addseg(struct as *as, struct seg *newseg) 420 { 421 struct seg *seg; 422 caddr_t addr; 423 caddr_t eaddr; 424 avl_index_t where; 425 426 ASSERT(AS_WRITE_HELD(as, &as->a_lock)); 427 428 as->a_updatedir = 1; /* inform /proc */ 429 gethrestime(&as->a_updatetime); 430 431 if (as->a_lastgaphl != NULL) { 432 struct seg *hseg = NULL; 433 struct seg *lseg = NULL; 434 435 if (as->a_lastgaphl->s_base > newseg->s_base) { 436 hseg = as->a_lastgaphl; 437 lseg = AVL_PREV(&as->a_segtree, hseg); 438 } else { 439 lseg = as->a_lastgaphl; 440 hseg = AVL_NEXT(&as->a_segtree, lseg); 441 } 442 443 if (hseg && lseg && lseg->s_base < newseg->s_base && 444 hseg->s_base > newseg->s_base) { 445 avl_insert_here(&as->a_segtree, newseg, lseg, 446 AVL_AFTER); 447 as->a_lastgaphl = NULL; 448 as->a_seglast = newseg; 449 return (0); 450 } 451 as->a_lastgaphl = NULL; 452 } 453 454 addr = newseg->s_base; 455 eaddr = addr + newseg->s_size; 456 again: 457 458 seg = avl_find(&as->a_segtree, &addr, &where); 459 460 if (seg == NULL) 461 seg = avl_nearest(&as->a_segtree, where, AVL_AFTER); 462 463 if (seg == NULL) 464 seg = avl_last(&as->a_segtree); 465 466 if (seg != NULL) { 467 caddr_t base = seg->s_base; 468 469 /* 470 * If top of seg is below the requested address, then 471 * the insertion point is at the end of the linked list, 472 * and seg points to the tail of the list. Otherwise, 473 * the insertion point is immediately before seg. 474 */ 475 if (base + seg->s_size > addr) { 476 if (addr >= base || eaddr > base) { 477 #ifdef __sparc 478 extern struct seg_ops segnf_ops; 479 480 /* 481 * no-fault segs must disappear if overlaid. 482 * XXX need new segment type so 483 * we don't have to check s_ops 484 */ 485 if (seg->s_ops == &segnf_ops) { 486 seg_unmap(seg); 487 goto again; 488 } 489 #endif 490 return (-1); /* overlapping segment */ 491 } 492 } 493 } 494 as->a_seglast = newseg; 495 avl_insert(&as->a_segtree, newseg, where); 496 497 #ifdef VERIFY_SEGLIST 498 as_verify(as); 499 #endif 500 return (0); 501 } 502 503 struct seg * 504 as_removeseg(struct as *as, struct seg *seg) 505 { 506 avl_tree_t *t; 507 508 ASSERT(AS_WRITE_HELD(as, &as->a_lock)); 509 510 as->a_updatedir = 1; /* inform /proc */ 511 gethrestime(&as->a_updatetime); 512 513 if (seg == NULL) 514 return (NULL); 515 516 t = &as->a_segtree; 517 if (as->a_seglast == seg) 518 as->a_seglast = NULL; 519 as->a_lastgaphl = NULL; 520 521 /* 522 * if this segment is at an address higher than 523 * a_lastgap, set a_lastgap to the next segment (NULL if last segment) 524 */ 525 if (as->a_lastgap && 526 (seg == as->a_lastgap || seg->s_base > as->a_lastgap->s_base)) 527 as->a_lastgap = AVL_NEXT(t, seg); 528 529 /* 530 * remove the segment from the seg tree 531 */ 532 avl_remove(t, seg); 533 534 #ifdef VERIFY_SEGLIST 535 as_verify(as); 536 #endif 537 return (seg); 538 } 539 540 /* 541 * Find a segment containing addr. 542 */ 543 struct seg * 544 as_segat(struct as *as, caddr_t addr) 545 { 546 struct seg *seg = as->a_seglast; 547 548 ASSERT(AS_LOCK_HELD(as, &as->a_lock)); 549 550 if (seg != NULL && seg->s_base <= addr && 551 addr < seg->s_base + seg->s_size) 552 return (seg); 553 554 seg = avl_find(&as->a_segtree, &addr, NULL); 555 return (seg); 556 } 557 558 /* 559 * Serialize all searches for holes in an address space to 560 * prevent two or more threads from allocating the same virtual 561 * address range. The address space must not be "read/write" 562 * locked by the caller since we may block. 563 */ 564 void 565 as_rangelock(struct as *as) 566 { 567 mutex_enter(&as->a_contents); 568 while (AS_ISCLAIMGAP(as)) 569 cv_wait(&as->a_cv, &as->a_contents); 570 AS_SETCLAIMGAP(as); 571 mutex_exit(&as->a_contents); 572 } 573 574 /* 575 * Release hold on a_state & AS_CLAIMGAP and signal any other blocked threads. 576 */ 577 void 578 as_rangeunlock(struct as *as) 579 { 580 mutex_enter(&as->a_contents); 581 AS_CLRCLAIMGAP(as); 582 cv_signal(&as->a_cv); 583 mutex_exit(&as->a_contents); 584 } 585 586 /* 587 * compar segments (or just an address) by segment address range 588 */ 589 static int 590 as_segcompar(const void *x, const void *y) 591 { 592 struct seg *a = (struct seg *)x; 593 struct seg *b = (struct seg *)y; 594 595 if (a->s_base < b->s_base) 596 return (-1); 597 if (a->s_base >= b->s_base + b->s_size) 598 return (1); 599 return (0); 600 } 601 602 603 void 604 as_avlinit(struct as *as) 605 { 606 avl_create(&as->a_segtree, as_segcompar, sizeof (struct seg), 607 offsetof(struct seg, s_tree)); 608 avl_create(&as->a_wpage, wp_compare, sizeof (struct watched_page), 609 offsetof(struct watched_page, wp_link)); 610 } 611 612 /*ARGSUSED*/ 613 static int 614 as_constructor(void *buf, void *cdrarg, int kmflags) 615 { 616 struct as *as = buf; 617 618 mutex_init(&as->a_contents, NULL, MUTEX_DEFAULT, NULL); 619 cv_init(&as->a_cv, NULL, CV_DEFAULT, NULL); 620 rw_init(&as->a_lock, NULL, RW_DEFAULT, NULL); 621 as_avlinit(as); 622 return (0); 623 } 624 625 /*ARGSUSED1*/ 626 static void 627 as_destructor(void *buf, void *cdrarg) 628 { 629 struct as *as = buf; 630 631 avl_destroy(&as->a_segtree); 632 mutex_destroy(&as->a_contents); 633 cv_destroy(&as->a_cv); 634 rw_destroy(&as->a_lock); 635 } 636 637 void 638 as_init(void) 639 { 640 as_cache = kmem_cache_create("as_cache", sizeof (struct as), 0, 641 as_constructor, as_destructor, NULL, NULL, NULL, 0); 642 } 643 644 /* 645 * Allocate and initialize an address space data structure. 646 * We call hat_alloc to allow any machine dependent 647 * information in the hat structure to be initialized. 648 */ 649 struct as * 650 as_alloc(void) 651 { 652 struct as *as; 653 654 as = kmem_cache_alloc(as_cache, KM_SLEEP); 655 656 as->a_flags = 0; 657 as->a_vbits = 0; 658 as->a_hrm = NULL; 659 as->a_seglast = NULL; 660 as->a_size = 0; 661 as->a_updatedir = 0; 662 gethrestime(&as->a_updatetime); 663 as->a_objectdir = NULL; 664 as->a_sizedir = 0; 665 as->a_userlimit = (caddr_t)USERLIMIT; 666 as->a_lastgap = NULL; 667 as->a_lastgaphl = NULL; 668 as->a_callbacks = NULL; 669 670 AS_LOCK_ENTER(as, &as->a_lock, RW_WRITER); 671 as->a_hat = hat_alloc(as); /* create hat for default system mmu */ 672 AS_LOCK_EXIT(as, &as->a_lock); 673 674 as->a_xhat = NULL; 675 676 return (as); 677 } 678 679 /* 680 * Free an address space data structure. 681 * Need to free the hat first and then 682 * all the segments on this as and finally 683 * the space for the as struct itself. 684 */ 685 void 686 as_free(struct as *as) 687 { 688 struct hat *hat = as->a_hat; 689 struct seg *seg, *next; 690 int called = 0; 691 692 top: 693 /* 694 * Invoke ALL callbacks. as_do_callbacks will do one callback 695 * per call, and not return (-1) until the callback has completed. 696 * When as_do_callbacks returns zero, all callbacks have completed. 697 */ 698 mutex_enter(&as->a_contents); 699 while (as->a_callbacks && as_do_callbacks(as, AS_ALL_EVENT, 0, 0)); 700 701 /* This will prevent new XHATs from attaching to as */ 702 if (!called) 703 AS_SETBUSY(as); 704 mutex_exit(&as->a_contents); 705 AS_LOCK_ENTER(as, &as->a_lock, RW_WRITER); 706 707 if (!called) { 708 called = 1; 709 hat_free_start(hat); 710 if (as->a_xhat != NULL) 711 xhat_free_start_all(as); 712 } 713 for (seg = AS_SEGFIRST(as); seg != NULL; seg = next) { 714 int err; 715 716 next = AS_SEGNEXT(as, seg); 717 err = SEGOP_UNMAP(seg, seg->s_base, seg->s_size); 718 if (err == EAGAIN) { 719 mutex_enter(&as->a_contents); 720 if (as->a_callbacks) { 721 AS_LOCK_EXIT(as, &as->a_lock); 722 } else { 723 /* 724 * Memory is currently locked. Wait for a 725 * cv_signal that it has been unlocked, then 726 * try the operation again. 727 */ 728 if (AS_ISUNMAPWAIT(as) == 0) 729 cv_broadcast(&as->a_cv); 730 AS_SETUNMAPWAIT(as); 731 AS_LOCK_EXIT(as, &as->a_lock); 732 while (AS_ISUNMAPWAIT(as)) 733 cv_wait(&as->a_cv, &as->a_contents); 734 } 735 mutex_exit(&as->a_contents); 736 goto top; 737 } else { 738 /* 739 * We do not expect any other error return at this 740 * time. This is similar to an ASSERT in seg_unmap() 741 */ 742 ASSERT(err == 0); 743 } 744 } 745 hat_free_end(hat); 746 if (as->a_xhat != NULL) 747 xhat_free_end_all(as); 748 AS_LOCK_EXIT(as, &as->a_lock); 749 750 /* /proc stuff */ 751 ASSERT(avl_numnodes(&as->a_wpage) == 0); 752 if (as->a_objectdir) { 753 kmem_free(as->a_objectdir, as->a_sizedir * sizeof (vnode_t *)); 754 as->a_objectdir = NULL; 755 as->a_sizedir = 0; 756 } 757 758 /* 759 * Free the struct as back to kmem. Assert it has no segments. 760 */ 761 ASSERT(avl_numnodes(&as->a_segtree) == 0); 762 kmem_cache_free(as_cache, as); 763 } 764 765 int 766 as_dup(struct as *as, struct as **outas) 767 { 768 struct as *newas; 769 struct seg *seg, *newseg; 770 int error; 771 772 AS_LOCK_ENTER(as, &as->a_lock, RW_WRITER); 773 as_clearwatch(as); 774 newas = as_alloc(); 775 newas->a_userlimit = as->a_userlimit; 776 AS_LOCK_ENTER(newas, &newas->a_lock, RW_WRITER); 777 778 /* This will prevent new XHATs from attaching */ 779 mutex_enter(&as->a_contents); 780 AS_SETBUSY(as); 781 mutex_exit(&as->a_contents); 782 mutex_enter(&newas->a_contents); 783 AS_SETBUSY(newas); 784 mutex_exit(&newas->a_contents); 785 786 787 for (seg = AS_SEGFIRST(as); seg != NULL; seg = AS_SEGNEXT(as, seg)) { 788 789 if (seg->s_flags & S_PURGE) 790 continue; 791 792 newseg = seg_alloc(newas, seg->s_base, seg->s_size); 793 if (newseg == NULL) { 794 AS_LOCK_EXIT(newas, &newas->a_lock); 795 as_setwatch(as); 796 mutex_enter(&as->a_contents); 797 AS_CLRBUSY(as); 798 mutex_exit(&as->a_contents); 799 AS_LOCK_EXIT(as, &as->a_lock); 800 as_free(newas); 801 return (-1); 802 } 803 if ((error = SEGOP_DUP(seg, newseg)) != 0) { 804 /* 805 * We call seg_free() on the new seg 806 * because the segment is not set up 807 * completely; i.e. it has no ops. 808 */ 809 as_setwatch(as); 810 mutex_enter(&as->a_contents); 811 AS_CLRBUSY(as); 812 mutex_exit(&as->a_contents); 813 AS_LOCK_EXIT(as, &as->a_lock); 814 seg_free(newseg); 815 AS_LOCK_EXIT(newas, &newas->a_lock); 816 as_free(newas); 817 return (error); 818 } 819 newas->a_size += seg->s_size; 820 } 821 822 error = hat_dup(as->a_hat, newas->a_hat, NULL, 0, HAT_DUP_ALL); 823 if (as->a_xhat != NULL) 824 error |= xhat_dup_all(as, newas, NULL, 0, HAT_DUP_ALL); 825 826 mutex_enter(&newas->a_contents); 827 AS_CLRBUSY(newas); 828 mutex_exit(&newas->a_contents); 829 AS_LOCK_EXIT(newas, &newas->a_lock); 830 831 as_setwatch(as); 832 mutex_enter(&as->a_contents); 833 AS_CLRBUSY(as); 834 mutex_exit(&as->a_contents); 835 AS_LOCK_EXIT(as, &as->a_lock); 836 if (error != 0) { 837 as_free(newas); 838 return (error); 839 } 840 *outas = newas; 841 return (0); 842 } 843 844 /* 845 * Handle a ``fault'' at addr for size bytes. 846 */ 847 faultcode_t 848 as_fault(struct hat *hat, struct as *as, caddr_t addr, size_t size, 849 enum fault_type type, enum seg_rw rw) 850 { 851 struct seg *seg; 852 caddr_t raddr; /* rounded down addr */ 853 size_t rsize; /* rounded up size */ 854 size_t ssize; 855 faultcode_t res = 0; 856 caddr_t addrsav; 857 struct seg *segsav; 858 int as_lock_held; 859 klwp_t *lwp = ttolwp(curthread); 860 int is_xhat = 0; 861 int holding_wpage = 0; 862 extern struct seg_ops segdev_ops; 863 864 865 866 if (as->a_hat != hat) { 867 /* This must be an XHAT then */ 868 is_xhat = 1; 869 870 if ((type != F_INVAL) || (as == &kas)) 871 return (FC_NOSUPPORT); 872 } 873 874 retry: 875 if (!is_xhat) { 876 /* 877 * Indicate that the lwp is not to be stopped while waiting 878 * for a pagefault. This is to avoid deadlock while debugging 879 * a process via /proc over NFS (in particular). 880 */ 881 if (lwp != NULL) 882 lwp->lwp_nostop++; 883 884 /* 885 * same length must be used when we softlock and softunlock. 886 * We don't support softunlocking lengths less than 887 * the original length when there is largepage support. 888 * See seg_dev.c for more comments. 889 */ 890 switch (type) { 891 892 case F_SOFTLOCK: 893 CPU_STATS_ADD_K(vm, softlock, 1); 894 break; 895 896 case F_SOFTUNLOCK: 897 break; 898 899 case F_PROT: 900 CPU_STATS_ADD_K(vm, prot_fault, 1); 901 break; 902 903 case F_INVAL: 904 CPU_STATS_ENTER_K(); 905 CPU_STATS_ADDQ(CPU, vm, as_fault, 1); 906 if (as == &kas) 907 CPU_STATS_ADDQ(CPU, vm, kernel_asflt, 1); 908 CPU_STATS_EXIT_K(); 909 break; 910 } 911 } 912 913 /* Kernel probe */ 914 TNF_PROBE_3(address_fault, "vm pagefault", /* CSTYLED */, 915 tnf_opaque, address, addr, 916 tnf_fault_type, fault_type, type, 917 tnf_seg_access, access, rw); 918 919 raddr = (caddr_t)((uintptr_t)addr & (uintptr_t)PAGEMASK); 920 rsize = (((size_t)(addr + size) + PAGEOFFSET) & PAGEMASK) - 921 (size_t)raddr; 922 923 /* 924 * XXX -- Don't grab the as lock for segkmap. We should grab it for 925 * correctness, but then we could be stuck holding this lock for 926 * a LONG time if the fault needs to be resolved on a slow 927 * filesystem, and then no-one will be able to exec new commands, 928 * as exec'ing requires the write lock on the as. 929 */ 930 if (as == &kas && segkmap && segkmap->s_base <= raddr && 931 raddr + size < segkmap->s_base + segkmap->s_size) { 932 /* 933 * if (as==&kas), this can't be XHAT: we've already returned 934 * FC_NOSUPPORT. 935 */ 936 seg = segkmap; 937 as_lock_held = 0; 938 } else { 939 AS_LOCK_ENTER(as, &as->a_lock, RW_READER); 940 if (is_xhat && avl_numnodes(&as->a_wpage) != 0) { 941 /* 942 * Grab and hold the writers' lock on the as 943 * if the fault is to a watched page. 944 * This will keep CPUs from "peeking" at the 945 * address range while we're temporarily boosting 946 * the permissions for the XHAT device to 947 * resolve the fault in the segment layer. 948 * 949 * We could check whether faulted address 950 * is within a watched page and only then grab 951 * the writer lock, but this is simpler. 952 */ 953 AS_LOCK_EXIT(as, &as->a_lock); 954 AS_LOCK_ENTER(as, &as->a_lock, RW_WRITER); 955 } 956 957 seg = as_segat(as, raddr); 958 if (seg == NULL) { 959 AS_LOCK_EXIT(as, &as->a_lock); 960 if ((lwp != NULL) && (!is_xhat)) 961 lwp->lwp_nostop--; 962 return (FC_NOMAP); 963 } 964 965 as_lock_held = 1; 966 } 967 968 addrsav = raddr; 969 segsav = seg; 970 971 for (; rsize != 0; rsize -= ssize, raddr += ssize) { 972 if (raddr >= seg->s_base + seg->s_size) { 973 seg = AS_SEGNEXT(as, seg); 974 if (seg == NULL || raddr != seg->s_base) { 975 res = FC_NOMAP; 976 break; 977 } 978 } 979 if (raddr + rsize > seg->s_base + seg->s_size) 980 ssize = seg->s_base + seg->s_size - raddr; 981 else 982 ssize = rsize; 983 984 if (!is_xhat || (seg->s_ops != &segdev_ops)) { 985 986 if (is_xhat && avl_numnodes(&as->a_wpage) != 0 && 987 pr_is_watchpage_as(raddr, rw, as)) { 988 /* 989 * Handle watch pages. If we're faulting on a 990 * watched page from an X-hat, we have to 991 * restore the original permissions while we 992 * handle the fault. 993 */ 994 as_clearwatch(as); 995 holding_wpage = 1; 996 } 997 998 res = SEGOP_FAULT(hat, seg, raddr, ssize, type, rw); 999 1000 /* Restore watchpoints */ 1001 if (holding_wpage) { 1002 as_setwatch(as); 1003 holding_wpage = 0; 1004 } 1005 1006 if (res != 0) 1007 break; 1008 } else { 1009 /* XHAT does not support seg_dev */ 1010 res = FC_NOSUPPORT; 1011 break; 1012 } 1013 } 1014 1015 /* 1016 * If we were SOFTLOCKing and encountered a failure, 1017 * we must SOFTUNLOCK the range we already did. (Maybe we 1018 * should just panic if we are SOFTLOCKing or even SOFTUNLOCKing 1019 * right here...) 1020 */ 1021 if (res != 0 && type == F_SOFTLOCK) { 1022 for (seg = segsav; addrsav < raddr; addrsav += ssize) { 1023 if (addrsav >= seg->s_base + seg->s_size) 1024 seg = AS_SEGNEXT(as, seg); 1025 ASSERT(seg != NULL); 1026 /* 1027 * Now call the fault routine again to perform the 1028 * unlock using S_OTHER instead of the rw variable 1029 * since we never got a chance to touch the pages. 1030 */ 1031 if (raddr > seg->s_base + seg->s_size) 1032 ssize = seg->s_base + seg->s_size - addrsav; 1033 else 1034 ssize = raddr - addrsav; 1035 (void) SEGOP_FAULT(hat, seg, addrsav, ssize, 1036 F_SOFTUNLOCK, S_OTHER); 1037 } 1038 } 1039 if (as_lock_held) 1040 AS_LOCK_EXIT(as, &as->a_lock); 1041 if ((lwp != NULL) && (!is_xhat)) 1042 lwp->lwp_nostop--; 1043 1044 /* 1045 * If the lower levels returned EDEADLK for a fault, 1046 * It means that we should retry the fault. Let's wait 1047 * a bit also to let the deadlock causing condition clear. 1048 * This is part of a gross hack to work around a design flaw 1049 * in the ufs/sds logging code and should go away when the 1050 * logging code is re-designed to fix the problem. See bug 1051 * 4125102 for details of the problem. 1052 */ 1053 if (FC_ERRNO(res) == EDEADLK) { 1054 delay(deadlk_wait); 1055 res = 0; 1056 goto retry; 1057 } 1058 return (res); 1059 } 1060 1061 1062 1063 /* 1064 * Asynchronous ``fault'' at addr for size bytes. 1065 */ 1066 faultcode_t 1067 as_faulta(struct as *as, caddr_t addr, size_t size) 1068 { 1069 struct seg *seg; 1070 caddr_t raddr; /* rounded down addr */ 1071 size_t rsize; /* rounded up size */ 1072 faultcode_t res = 0; 1073 klwp_t *lwp = ttolwp(curthread); 1074 1075 retry: 1076 /* 1077 * Indicate that the lwp is not to be stopped while waiting 1078 * for a pagefault. This is to avoid deadlock while debugging 1079 * a process via /proc over NFS (in particular). 1080 */ 1081 if (lwp != NULL) 1082 lwp->lwp_nostop++; 1083 1084 raddr = (caddr_t)((uintptr_t)addr & (uintptr_t)PAGEMASK); 1085 rsize = (((size_t)(addr + size) + PAGEOFFSET) & PAGEMASK) - 1086 (size_t)raddr; 1087 1088 AS_LOCK_ENTER(as, &as->a_lock, RW_READER); 1089 seg = as_segat(as, raddr); 1090 if (seg == NULL) { 1091 AS_LOCK_EXIT(as, &as->a_lock); 1092 if (lwp != NULL) 1093 lwp->lwp_nostop--; 1094 return (FC_NOMAP); 1095 } 1096 1097 for (; rsize != 0; rsize -= PAGESIZE, raddr += PAGESIZE) { 1098 if (raddr >= seg->s_base + seg->s_size) { 1099 seg = AS_SEGNEXT(as, seg); 1100 if (seg == NULL || raddr != seg->s_base) { 1101 res = FC_NOMAP; 1102 break; 1103 } 1104 } 1105 res = SEGOP_FAULTA(seg, raddr); 1106 if (res != 0) 1107 break; 1108 } 1109 AS_LOCK_EXIT(as, &as->a_lock); 1110 if (lwp != NULL) 1111 lwp->lwp_nostop--; 1112 /* 1113 * If the lower levels returned EDEADLK for a fault, 1114 * It means that we should retry the fault. Let's wait 1115 * a bit also to let the deadlock causing condition clear. 1116 * This is part of a gross hack to work around a design flaw 1117 * in the ufs/sds logging code and should go away when the 1118 * logging code is re-designed to fix the problem. See bug 1119 * 4125102 for details of the problem. 1120 */ 1121 if (FC_ERRNO(res) == EDEADLK) { 1122 delay(deadlk_wait); 1123 res = 0; 1124 goto retry; 1125 } 1126 return (res); 1127 } 1128 1129 /* 1130 * Set the virtual mapping for the interval from [addr : addr + size) 1131 * in address space `as' to have the specified protection. 1132 * It is ok for the range to cross over several segments, 1133 * as long as they are contiguous. 1134 */ 1135 int 1136 as_setprot(struct as *as, caddr_t addr, size_t size, uint_t prot) 1137 { 1138 struct seg *seg; 1139 struct as_callback *cb; 1140 size_t ssize; 1141 caddr_t raddr; /* rounded down addr */ 1142 size_t rsize; /* rounded up size */ 1143 int error = 0, writer = 0; 1144 caddr_t saveraddr; 1145 size_t saversize; 1146 1147 setprot_top: 1148 raddr = (caddr_t)((uintptr_t)addr & (uintptr_t)PAGEMASK); 1149 rsize = (((size_t)(addr + size) + PAGEOFFSET) & PAGEMASK) - 1150 (size_t)raddr; 1151 1152 if (raddr + rsize < raddr) /* check for wraparound */ 1153 return (ENOMEM); 1154 1155 saveraddr = raddr; 1156 saversize = rsize; 1157 1158 /* 1159 * Normally we only lock the as as a reader. But 1160 * if due to setprot the segment driver needs to split 1161 * a segment it will return IE_RETRY. Therefore we re-aquire 1162 * the as lock as a writer so the segment driver can change 1163 * the seg list. Also the segment driver will return IE_RETRY 1164 * after it has changed the segment list so we therefore keep 1165 * locking as a writer. Since these opeartions should be rare 1166 * want to only lock as a writer when necessary. 1167 */ 1168 if (writer || avl_numnodes(&as->a_wpage) != 0) { 1169 AS_LOCK_ENTER(as, &as->a_lock, RW_WRITER); 1170 } else { 1171 AS_LOCK_ENTER(as, &as->a_lock, RW_READER); 1172 } 1173 1174 as_clearwatchprot(as, raddr, rsize); 1175 seg = as_segat(as, raddr); 1176 if (seg == NULL) { 1177 as_setwatch(as); 1178 AS_LOCK_EXIT(as, &as->a_lock); 1179 return (ENOMEM); 1180 } 1181 1182 for (; rsize != 0; rsize -= ssize, raddr += ssize) { 1183 if (raddr >= seg->s_base + seg->s_size) { 1184 seg = AS_SEGNEXT(as, seg); 1185 if (seg == NULL || raddr != seg->s_base) { 1186 error = ENOMEM; 1187 break; 1188 } 1189 } 1190 if ((raddr + rsize) > (seg->s_base + seg->s_size)) 1191 ssize = seg->s_base + seg->s_size - raddr; 1192 else 1193 ssize = rsize; 1194 error = SEGOP_SETPROT(seg, raddr, ssize, prot); 1195 1196 if (error == IE_NOMEM) { 1197 error = EAGAIN; 1198 break; 1199 } 1200 1201 if (error == IE_RETRY) { 1202 AS_LOCK_EXIT(as, &as->a_lock); 1203 writer = 1; 1204 goto setprot_top; 1205 } 1206 1207 if (error == EAGAIN) { 1208 /* 1209 * Make sure we have a_lock as writer. 1210 */ 1211 if (writer == 0) { 1212 AS_LOCK_EXIT(as, &as->a_lock); 1213 writer = 1; 1214 goto setprot_top; 1215 } 1216 1217 /* 1218 * Memory is currently locked. It must be unlocked 1219 * before this operation can succeed through a retry. 1220 * The possible reasons for locked memory and 1221 * corresponding strategies for unlocking are: 1222 * (1) Normal I/O 1223 * wait for a signal that the I/O operation 1224 * has completed and the memory is unlocked. 1225 * (2) Asynchronous I/O 1226 * The aio subsystem does not unlock pages when 1227 * the I/O is completed. Those pages are unlocked 1228 * when the application calls aiowait/aioerror. 1229 * So, to prevent blocking forever, cv_broadcast() 1230 * is done to wake up aio_cleanup_thread. 1231 * Subsequently, segvn_reclaim will be called, and 1232 * that will do AS_CLRUNMAPWAIT() and wake us up. 1233 * (3) Long term page locking: 1234 * Drivers intending to have pages locked for a 1235 * period considerably longer than for normal I/O 1236 * (essentially forever) may have registered for a 1237 * callback so they may unlock these pages on 1238 * request. This is needed to allow this operation 1239 * to succeed. Each entry on the callback list is 1240 * examined. If the event or address range pertains 1241 * the callback is invoked (unless it already is in 1242 * progress). The a_contents lock must be dropped 1243 * before the callback, so only one callback can 1244 * be done at a time. Go to the top and do more 1245 * until zero is returned. If zero is returned, 1246 * either there were no callbacks for this event 1247 * or they were already in progress. 1248 */ 1249 mutex_enter(&as->a_contents); 1250 if (as->a_callbacks && 1251 (cb = as_find_callback(as, AS_SETPROT_EVENT, 1252 seg->s_base, seg->s_size))) { 1253 AS_LOCK_EXIT(as, &as->a_lock); 1254 as_execute_callback(as, cb, AS_SETPROT_EVENT); 1255 } else { 1256 if (AS_ISUNMAPWAIT(as) == 0) 1257 cv_broadcast(&as->a_cv); 1258 AS_SETUNMAPWAIT(as); 1259 AS_LOCK_EXIT(as, &as->a_lock); 1260 while (AS_ISUNMAPWAIT(as)) 1261 cv_wait(&as->a_cv, &as->a_contents); 1262 } 1263 mutex_exit(&as->a_contents); 1264 goto setprot_top; 1265 } else if (error != 0) 1266 break; 1267 } 1268 if (error != 0) { 1269 as_setwatch(as); 1270 } else { 1271 as_setwatchprot(as, saveraddr, saversize, prot); 1272 } 1273 AS_LOCK_EXIT(as, &as->a_lock); 1274 return (error); 1275 } 1276 1277 /* 1278 * Check to make sure that the interval [addr, addr + size) 1279 * in address space `as' has at least the specified protection. 1280 * It is ok for the range to cross over several segments, as long 1281 * as they are contiguous. 1282 */ 1283 int 1284 as_checkprot(struct as *as, caddr_t addr, size_t size, uint_t prot) 1285 { 1286 struct seg *seg; 1287 size_t ssize; 1288 caddr_t raddr; /* rounded down addr */ 1289 size_t rsize; /* rounded up size */ 1290 int error = 0; 1291 1292 raddr = (caddr_t)((uintptr_t)addr & (uintptr_t)PAGEMASK); 1293 rsize = (((size_t)(addr + size) + PAGEOFFSET) & PAGEMASK) - 1294 (size_t)raddr; 1295 1296 if (raddr + rsize < raddr) /* check for wraparound */ 1297 return (ENOMEM); 1298 1299 /* 1300 * This is ugly as sin... 1301 * Normally, we only acquire the address space readers lock. 1302 * However, if the address space has watchpoints present, 1303 * we must acquire the writer lock on the address space for 1304 * the benefit of as_clearwatchprot() and as_setwatchprot(). 1305 */ 1306 if (avl_numnodes(&as->a_wpage) != 0) 1307 AS_LOCK_ENTER(as, &as->a_lock, RW_WRITER); 1308 else 1309 AS_LOCK_ENTER(as, &as->a_lock, RW_READER); 1310 as_clearwatchprot(as, raddr, rsize); 1311 seg = as_segat(as, raddr); 1312 if (seg == NULL) { 1313 as_setwatch(as); 1314 AS_LOCK_EXIT(as, &as->a_lock); 1315 return (ENOMEM); 1316 } 1317 1318 for (; rsize != 0; rsize -= ssize, raddr += ssize) { 1319 if (raddr >= seg->s_base + seg->s_size) { 1320 seg = AS_SEGNEXT(as, seg); 1321 if (seg == NULL || raddr != seg->s_base) { 1322 error = ENOMEM; 1323 break; 1324 } 1325 } 1326 if ((raddr + rsize) > (seg->s_base + seg->s_size)) 1327 ssize = seg->s_base + seg->s_size - raddr; 1328 else 1329 ssize = rsize; 1330 1331 error = SEGOP_CHECKPROT(seg, raddr, ssize, prot); 1332 if (error != 0) 1333 break; 1334 } 1335 as_setwatch(as); 1336 AS_LOCK_EXIT(as, &as->a_lock); 1337 return (error); 1338 } 1339 1340 int 1341 as_unmap(struct as *as, caddr_t addr, size_t size) 1342 { 1343 struct seg *seg, *seg_next; 1344 struct as_callback *cb; 1345 caddr_t raddr, eaddr; 1346 size_t ssize; 1347 int err; 1348 1349 top: 1350 raddr = (caddr_t)((uintptr_t)addr & (uintptr_t)PAGEMASK); 1351 eaddr = (caddr_t)(((uintptr_t)(addr + size) + PAGEOFFSET) & 1352 (uintptr_t)PAGEMASK); 1353 1354 AS_LOCK_ENTER(as, &as->a_lock, RW_WRITER); 1355 1356 as->a_updatedir = 1; /* inform /proc */ 1357 gethrestime(&as->a_updatetime); 1358 1359 /* 1360 * Use as_findseg to find the first segment in the range, then 1361 * step through the segments in order, following s_next. 1362 */ 1363 as_clearwatchprot(as, raddr, eaddr - raddr); 1364 1365 for (seg = as_findseg(as, raddr, 0); seg != NULL; seg = seg_next) { 1366 if (eaddr <= seg->s_base) 1367 break; /* eaddr was in a gap; all done */ 1368 1369 /* this is implied by the test above */ 1370 ASSERT(raddr < eaddr); 1371 1372 if (raddr < seg->s_base) 1373 raddr = seg->s_base; /* raddr was in a gap */ 1374 1375 if (eaddr > (seg->s_base + seg->s_size)) 1376 ssize = seg->s_base + seg->s_size - raddr; 1377 else 1378 ssize = eaddr - raddr; 1379 1380 /* 1381 * Save next segment pointer since seg can be 1382 * destroyed during the segment unmap operation. 1383 */ 1384 seg_next = AS_SEGNEXT(as, seg); 1385 1386 err = SEGOP_UNMAP(seg, raddr, ssize); 1387 if (err == EAGAIN) { 1388 /* 1389 * Memory is currently locked. It must be unlocked 1390 * before this operation can succeed through a retry. 1391 * The possible reasons for locked memory and 1392 * corresponding strategies for unlocking are: 1393 * (1) Normal I/O 1394 * wait for a signal that the I/O operation 1395 * has completed and the memory is unlocked. 1396 * (2) Asynchronous I/O 1397 * The aio subsystem does not unlock pages when 1398 * the I/O is completed. Those pages are unlocked 1399 * when the application calls aiowait/aioerror. 1400 * So, to prevent blocking forever, cv_broadcast() 1401 * is done to wake up aio_cleanup_thread. 1402 * Subsequently, segvn_reclaim will be called, and 1403 * that will do AS_CLRUNMAPWAIT() and wake us up. 1404 * (3) Long term page locking: 1405 * Drivers intending to have pages locked for a 1406 * period considerably longer than for normal I/O 1407 * (essentially forever) may have registered for a 1408 * callback so they may unlock these pages on 1409 * request. This is needed to allow this operation 1410 * to succeed. Each entry on the callback list is 1411 * examined. If the event or address range pertains 1412 * the callback is invoked (unless it already is in 1413 * progress). The a_contents lock must be dropped 1414 * before the callback, so only one callback can 1415 * be done at a time. Go to the top and do more 1416 * until zero is returned. If zero is returned, 1417 * either there were no callbacks for this event 1418 * or they were already in progress. 1419 */ 1420 as_setwatch(as); 1421 mutex_enter(&as->a_contents); 1422 if (as->a_callbacks && 1423 (cb = as_find_callback(as, AS_UNMAP_EVENT, 1424 seg->s_base, seg->s_size))) { 1425 AS_LOCK_EXIT(as, &as->a_lock); 1426 as_execute_callback(as, cb, AS_UNMAP_EVENT); 1427 } else { 1428 if (AS_ISUNMAPWAIT(as) == 0) 1429 cv_broadcast(&as->a_cv); 1430 AS_SETUNMAPWAIT(as); 1431 AS_LOCK_EXIT(as, &as->a_lock); 1432 while (AS_ISUNMAPWAIT(as)) 1433 cv_wait(&as->a_cv, &as->a_contents); 1434 } 1435 mutex_exit(&as->a_contents); 1436 goto top; 1437 } else if (err == IE_RETRY) { 1438 as_setwatch(as); 1439 AS_LOCK_EXIT(as, &as->a_lock); 1440 goto top; 1441 } else if (err) { 1442 as_setwatch(as); 1443 AS_LOCK_EXIT(as, &as->a_lock); 1444 return (-1); 1445 } 1446 1447 as->a_size -= ssize; 1448 raddr += ssize; 1449 } 1450 AS_LOCK_EXIT(as, &as->a_lock); 1451 return (0); 1452 } 1453 1454 static int 1455 as_map_segvn_segs(struct as *as, caddr_t addr, size_t size, uint_t szcvec, 1456 int (*crfp)(), struct segvn_crargs *vn_a, int *segcreated) 1457 { 1458 uint_t szc; 1459 uint_t nszc; 1460 int error; 1461 caddr_t a; 1462 caddr_t eaddr; 1463 size_t segsize; 1464 struct seg *seg; 1465 size_t pgsz; 1466 int do_off = (vn_a->vp != NULL || vn_a->amp != NULL); 1467 uint_t save_szcvec; 1468 1469 ASSERT(AS_WRITE_HELD(as, &as->a_lock)); 1470 ASSERT(IS_P2ALIGNED(addr, PAGESIZE)); 1471 ASSERT(IS_P2ALIGNED(size, PAGESIZE)); 1472 ASSERT(vn_a->vp == NULL || vn_a->amp == NULL); 1473 if (!do_off) { 1474 vn_a->offset = 0; 1475 } 1476 1477 if (szcvec <= 1) { 1478 seg = seg_alloc(as, addr, size); 1479 if (seg == NULL) { 1480 return (ENOMEM); 1481 } 1482 vn_a->szc = 0; 1483 error = (*crfp)(seg, vn_a); 1484 if (error != 0) { 1485 seg_free(seg); 1486 } else { 1487 as->a_size += size; 1488 } 1489 return (error); 1490 } 1491 1492 eaddr = addr + size; 1493 save_szcvec = szcvec; 1494 szcvec >>= 1; 1495 szc = 0; 1496 nszc = 0; 1497 while (szcvec) { 1498 if ((szcvec & 0x1) == 0) { 1499 nszc++; 1500 szcvec >>= 1; 1501 continue; 1502 } 1503 nszc++; 1504 pgsz = page_get_pagesize(nszc); 1505 a = (caddr_t)P2ROUNDUP((uintptr_t)addr, pgsz); 1506 if (a != addr) { 1507 ASSERT(a < eaddr); 1508 segsize = a - addr; 1509 seg = seg_alloc(as, addr, segsize); 1510 if (seg == NULL) { 1511 return (ENOMEM); 1512 } 1513 vn_a->szc = szc; 1514 error = (*crfp)(seg, vn_a); 1515 if (error != 0) { 1516 seg_free(seg); 1517 return (error); 1518 } 1519 as->a_size += segsize; 1520 *segcreated = 1; 1521 if (do_off) { 1522 vn_a->offset += segsize; 1523 } 1524 addr = a; 1525 } 1526 szc = nszc; 1527 szcvec >>= 1; 1528 } 1529 1530 ASSERT(addr < eaddr); 1531 szcvec = save_szcvec | 1; /* add 8K pages */ 1532 while (szcvec) { 1533 a = (caddr_t)P2ALIGN((uintptr_t)eaddr, pgsz); 1534 ASSERT(a >= addr); 1535 if (a != addr) { 1536 segsize = a - addr; 1537 seg = seg_alloc(as, addr, segsize); 1538 if (seg == NULL) { 1539 return (ENOMEM); 1540 } 1541 vn_a->szc = szc; 1542 error = (*crfp)(seg, vn_a); 1543 if (error != 0) { 1544 seg_free(seg); 1545 return (error); 1546 } 1547 as->a_size += segsize; 1548 *segcreated = 1; 1549 if (do_off) { 1550 vn_a->offset += segsize; 1551 } 1552 addr = a; 1553 } 1554 szcvec &= ~(1 << szc); 1555 if (szcvec) { 1556 szc = highbit(szcvec) - 1; 1557 pgsz = page_get_pagesize(szc); 1558 } 1559 } 1560 ASSERT(addr == eaddr); 1561 1562 return (0); 1563 } 1564 1565 static int 1566 as_map_vnsegs(struct as *as, caddr_t addr, size_t size, 1567 int (*crfp)(), struct segvn_crargs *vn_a, int *segcreated) 1568 { 1569 uint_t mapflags = vn_a->flags & (MAP_TEXT | MAP_INITDATA); 1570 int type = (vn_a->type == MAP_SHARED) ? MAPPGSZC_SHM : MAPPGSZC_PRIVM; 1571 uint_t szcvec = map_pgszcvec(addr, size, (uintptr_t)addr, mapflags, 1572 type, 0); 1573 int error; 1574 struct seg *seg; 1575 struct vattr va; 1576 u_offset_t eoff; 1577 size_t save_size = 0; 1578 1579 ASSERT(AS_WRITE_HELD(as, &as->a_lock)); 1580 ASSERT(IS_P2ALIGNED(addr, PAGESIZE)); 1581 ASSERT(IS_P2ALIGNED(size, PAGESIZE)); 1582 ASSERT(vn_a->vp != NULL); 1583 ASSERT(vn_a->amp == NULL); 1584 1585 again: 1586 if (szcvec <= 1) { 1587 seg = seg_alloc(as, addr, size); 1588 if (seg == NULL) { 1589 return (ENOMEM); 1590 } 1591 vn_a->szc = 0; 1592 error = (*crfp)(seg, vn_a); 1593 if (error != 0) { 1594 seg_free(seg); 1595 } else { 1596 as->a_size += size; 1597 } 1598 return (error); 1599 } 1600 1601 va.va_mask = AT_SIZE; 1602 if (VOP_GETATTR(vn_a->vp, &va, ATTR_HINT, vn_a->cred) != 0) { 1603 szcvec = 0; 1604 goto again; 1605 } 1606 eoff = vn_a->offset & PAGEMASK; 1607 if (eoff >= va.va_size) { 1608 szcvec = 0; 1609 goto again; 1610 } 1611 eoff += size; 1612 if (btopr(va.va_size) < btopr(eoff)) { 1613 save_size = size; 1614 size = va.va_size - (vn_a->offset & PAGEMASK); 1615 size = P2ROUNDUP_TYPED(size, PAGESIZE, size_t); 1616 szcvec = map_pgszcvec(addr, size, (uintptr_t)addr, mapflags, 1617 type, 0); 1618 if (szcvec <= 1) { 1619 size = save_size; 1620 goto again; 1621 } 1622 } 1623 1624 error = as_map_segvn_segs(as, addr, size, szcvec, crfp, vn_a, 1625 segcreated); 1626 if (error != 0) { 1627 return (error); 1628 } 1629 if (save_size) { 1630 addr += size; 1631 size = save_size - size; 1632 szcvec = 0; 1633 goto again; 1634 } 1635 return (0); 1636 } 1637 1638 /* 1639 * as_map_ansegs: shared or private anonymous memory. Note that the flags 1640 * passed to map_pgszvec cannot be MAP_INITDATA, for anon. 1641 */ 1642 static int 1643 as_map_ansegs(struct as *as, caddr_t addr, size_t size, 1644 int (*crfp)(), struct segvn_crargs *vn_a, int *segcreated) 1645 { 1646 uint_t szcvec; 1647 uchar_t type; 1648 1649 ASSERT(vn_a->type == MAP_SHARED || vn_a->type == MAP_PRIVATE); 1650 if (vn_a->type == MAP_SHARED) { 1651 type = MAPPGSZC_SHM; 1652 } else if (vn_a->type == MAP_PRIVATE) { 1653 if (vn_a->szc == AS_MAP_HEAP) { 1654 type = MAPPGSZC_HEAP; 1655 } else if (vn_a->szc == AS_MAP_STACK) { 1656 type = MAPPGSZC_STACK; 1657 } else { 1658 type = MAPPGSZC_PRIVM; 1659 } 1660 } 1661 szcvec = map_pgszcvec(addr, size, vn_a->amp == NULL ? 1662 (uintptr_t)addr : (uintptr_t)P2ROUNDUP(vn_a->offset, PAGESIZE), 1663 (vn_a->flags & MAP_TEXT), type, 0); 1664 ASSERT(AS_WRITE_HELD(as, &as->a_lock)); 1665 ASSERT(IS_P2ALIGNED(addr, PAGESIZE)); 1666 ASSERT(IS_P2ALIGNED(size, PAGESIZE)); 1667 ASSERT(vn_a->vp == NULL); 1668 1669 return (as_map_segvn_segs(as, addr, size, szcvec, 1670 crfp, vn_a, segcreated)); 1671 } 1672 1673 int 1674 as_map(struct as *as, caddr_t addr, size_t size, int (*crfp)(), void *argsp) 1675 { 1676 AS_LOCK_ENTER(as, &as->a_lock, RW_WRITER); 1677 return (as_map_locked(as, addr, size, crfp, argsp)); 1678 } 1679 1680 int 1681 as_map_locked(struct as *as, caddr_t addr, size_t size, int (*crfp)(), 1682 void *argsp) 1683 { 1684 struct seg *seg = NULL; 1685 caddr_t raddr; /* rounded down addr */ 1686 size_t rsize; /* rounded up size */ 1687 int error; 1688 int unmap = 0; 1689 struct proc *p = curproc; 1690 struct segvn_crargs crargs; 1691 1692 raddr = (caddr_t)((uintptr_t)addr & (uintptr_t)PAGEMASK); 1693 rsize = (((size_t)(addr + size) + PAGEOFFSET) & PAGEMASK) - 1694 (size_t)raddr; 1695 1696 /* 1697 * check for wrap around 1698 */ 1699 if ((raddr + rsize < raddr) || (as->a_size > (ULONG_MAX - size))) { 1700 AS_LOCK_EXIT(as, &as->a_lock); 1701 return (ENOMEM); 1702 } 1703 1704 as->a_updatedir = 1; /* inform /proc */ 1705 gethrestime(&as->a_updatetime); 1706 1707 if (as != &kas && as->a_size + rsize > (size_t)p->p_vmem_ctl) { 1708 AS_LOCK_EXIT(as, &as->a_lock); 1709 1710 (void) rctl_action(rctlproc_legacy[RLIMIT_VMEM], p->p_rctls, p, 1711 RCA_UNSAFE_ALL); 1712 1713 return (ENOMEM); 1714 } 1715 1716 if (AS_MAP_CHECK_VNODE_LPOOB(crfp, argsp)) { 1717 crargs = *(struct segvn_crargs *)argsp; 1718 error = as_map_vnsegs(as, raddr, rsize, crfp, &crargs, &unmap); 1719 if (error != 0) { 1720 AS_LOCK_EXIT(as, &as->a_lock); 1721 if (unmap) { 1722 (void) as_unmap(as, addr, size); 1723 } 1724 return (error); 1725 } 1726 } else if (AS_MAP_CHECK_ANON_LPOOB(crfp, argsp)) { 1727 crargs = *(struct segvn_crargs *)argsp; 1728 error = as_map_ansegs(as, raddr, rsize, crfp, &crargs, &unmap); 1729 if (error != 0) { 1730 AS_LOCK_EXIT(as, &as->a_lock); 1731 if (unmap) { 1732 (void) as_unmap(as, addr, size); 1733 } 1734 return (error); 1735 } 1736 } else { 1737 seg = seg_alloc(as, addr, size); 1738 if (seg == NULL) { 1739 AS_LOCK_EXIT(as, &as->a_lock); 1740 return (ENOMEM); 1741 } 1742 1743 error = (*crfp)(seg, argsp); 1744 if (error != 0) { 1745 seg_free(seg); 1746 AS_LOCK_EXIT(as, &as->a_lock); 1747 return (error); 1748 } 1749 /* 1750 * Add size now so as_unmap will work if as_ctl fails. 1751 */ 1752 as->a_size += rsize; 1753 } 1754 1755 as_setwatch(as); 1756 1757 /* 1758 * If the address space is locked, 1759 * establish memory locks for the new segment. 1760 */ 1761 mutex_enter(&as->a_contents); 1762 if (AS_ISPGLCK(as)) { 1763 mutex_exit(&as->a_contents); 1764 AS_LOCK_EXIT(as, &as->a_lock); 1765 error = as_ctl(as, addr, size, MC_LOCK, 0, 0, NULL, 0); 1766 if (error != 0) 1767 (void) as_unmap(as, addr, size); 1768 } else { 1769 mutex_exit(&as->a_contents); 1770 AS_LOCK_EXIT(as, &as->a_lock); 1771 } 1772 return (error); 1773 } 1774 1775 1776 /* 1777 * Delete all segments in the address space marked with S_PURGE. 1778 * This is currently used for Sparc V9 nofault ASI segments (seg_nf.c). 1779 * These segments are deleted as a first step before calls to as_gap(), so 1780 * that they don't affect mmap() or shmat(). 1781 */ 1782 void 1783 as_purge(struct as *as) 1784 { 1785 struct seg *seg; 1786 struct seg *next_seg; 1787 1788 /* 1789 * the setting of NEEDSPURGE is protect by as_rangelock(), so 1790 * no need to grab a_contents mutex for this check 1791 */ 1792 if ((as->a_flags & AS_NEEDSPURGE) == 0) 1793 return; 1794 1795 AS_LOCK_ENTER(as, &as->a_lock, RW_WRITER); 1796 next_seg = NULL; 1797 seg = AS_SEGFIRST(as); 1798 while (seg != NULL) { 1799 next_seg = AS_SEGNEXT(as, seg); 1800 if (seg->s_flags & S_PURGE) 1801 SEGOP_UNMAP(seg, seg->s_base, seg->s_size); 1802 seg = next_seg; 1803 } 1804 AS_LOCK_EXIT(as, &as->a_lock); 1805 1806 mutex_enter(&as->a_contents); 1807 as->a_flags &= ~AS_NEEDSPURGE; 1808 mutex_exit(&as->a_contents); 1809 } 1810 1811 /* 1812 * Find a hole of at least size minlen within [base, base + len). 1813 * 1814 * If flags specifies AH_HI, the hole will have the highest possible address 1815 * in the range. We use the as->a_lastgap field to figure out where to 1816 * start looking for a gap. 1817 * 1818 * Otherwise, the gap will have the lowest possible address. 1819 * 1820 * If flags specifies AH_CONTAIN, the hole will contain the address addr. 1821 * 1822 * If an adequate hole is found, base and len are set to reflect the part of 1823 * the hole that is within range, and 0 is returned, otherwise, 1824 * -1 is returned. 1825 * 1826 * NOTE: This routine is not correct when base+len overflows caddr_t. 1827 */ 1828 int 1829 as_gap(struct as *as, size_t minlen, caddr_t *basep, size_t *lenp, uint_t flags, 1830 caddr_t addr) 1831 { 1832 caddr_t lobound = *basep; 1833 caddr_t hibound = lobound + *lenp; 1834 struct seg *lseg, *hseg; 1835 caddr_t lo, hi; 1836 int forward; 1837 caddr_t save_base; 1838 size_t save_len; 1839 1840 save_base = *basep; 1841 save_len = *lenp; 1842 AS_LOCK_ENTER(as, &as->a_lock, RW_READER); 1843 if (AS_SEGFIRST(as) == NULL) { 1844 if (valid_va_range(basep, lenp, minlen, flags & AH_DIR)) { 1845 AS_LOCK_EXIT(as, &as->a_lock); 1846 return (0); 1847 } else { 1848 AS_LOCK_EXIT(as, &as->a_lock); 1849 *basep = save_base; 1850 *lenp = save_len; 1851 return (-1); 1852 } 1853 } 1854 1855 /* 1856 * Set up to iterate over all the inter-segment holes in the given 1857 * direction. lseg is NULL for the lowest-addressed hole and hseg is 1858 * NULL for the highest-addressed hole. If moving backwards, we reset 1859 * sseg to denote the highest-addressed segment. 1860 */ 1861 forward = (flags & AH_DIR) == AH_LO; 1862 if (forward) { 1863 hseg = as_findseg(as, lobound, 1); 1864 lseg = AS_SEGPREV(as, hseg); 1865 } else { 1866 1867 /* 1868 * If allocating at least as much as the last allocation, 1869 * use a_lastgap's base as a better estimate of hibound. 1870 */ 1871 if (as->a_lastgap && 1872 minlen >= as->a_lastgap->s_size && 1873 hibound >= as->a_lastgap->s_base) 1874 hibound = as->a_lastgap->s_base; 1875 1876 hseg = as_findseg(as, hibound, 1); 1877 if (hseg->s_base + hseg->s_size < hibound) { 1878 lseg = hseg; 1879 hseg = NULL; 1880 } else { 1881 lseg = AS_SEGPREV(as, hseg); 1882 } 1883 } 1884 1885 for (;;) { 1886 /* 1887 * Set lo and hi to the hole's boundaries. (We should really 1888 * use MAXADDR in place of hibound in the expression below, 1889 * but can't express it easily; using hibound in its place is 1890 * harmless.) 1891 */ 1892 lo = (lseg == NULL) ? 0 : lseg->s_base + lseg->s_size; 1893 hi = (hseg == NULL) ? hibound : hseg->s_base; 1894 /* 1895 * If the iteration has moved past the interval from lobound 1896 * to hibound it's pointless to continue. 1897 */ 1898 if ((forward && lo > hibound) || (!forward && hi < lobound)) 1899 break; 1900 else if (lo > hibound || hi < lobound) 1901 goto cont; 1902 /* 1903 * Candidate hole lies at least partially within the allowable 1904 * range. Restrict it to fall completely within that range, 1905 * i.e., to [max(lo, lobound), min(hi, hibound)]. 1906 */ 1907 if (lo < lobound) 1908 lo = lobound; 1909 if (hi > hibound) 1910 hi = hibound; 1911 /* 1912 * Verify that the candidate hole is big enough and meets 1913 * hardware constraints. 1914 */ 1915 *basep = lo; 1916 *lenp = hi - lo; 1917 if (valid_va_range(basep, lenp, minlen, 1918 forward ? AH_LO : AH_HI) && 1919 ((flags & AH_CONTAIN) == 0 || 1920 (*basep <= addr && *basep + *lenp > addr))) { 1921 if (!forward) 1922 as->a_lastgap = hseg; 1923 if (hseg != NULL) 1924 as->a_lastgaphl = hseg; 1925 else 1926 as->a_lastgaphl = lseg; 1927 AS_LOCK_EXIT(as, &as->a_lock); 1928 return (0); 1929 } 1930 cont: 1931 /* 1932 * Move to the next hole. 1933 */ 1934 if (forward) { 1935 lseg = hseg; 1936 if (lseg == NULL) 1937 break; 1938 hseg = AS_SEGNEXT(as, hseg); 1939 } else { 1940 hseg = lseg; 1941 if (hseg == NULL) 1942 break; 1943 lseg = AS_SEGPREV(as, lseg); 1944 } 1945 } 1946 *basep = save_base; 1947 *lenp = save_len; 1948 AS_LOCK_EXIT(as, &as->a_lock); 1949 return (-1); 1950 } 1951 1952 /* 1953 * Return the next range within [base, base + len) that is backed 1954 * with "real memory". Skip holes and non-seg_vn segments. 1955 * We're lazy and only return one segment at a time. 1956 */ 1957 int 1958 as_memory(struct as *as, caddr_t *basep, size_t *lenp) 1959 { 1960 extern struct seg_ops segspt_shmops; /* needs a header file */ 1961 struct seg *seg; 1962 caddr_t addr, eaddr; 1963 caddr_t segend; 1964 1965 AS_LOCK_ENTER(as, &as->a_lock, RW_READER); 1966 1967 addr = *basep; 1968 eaddr = addr + *lenp; 1969 1970 seg = as_findseg(as, addr, 0); 1971 if (seg != NULL) 1972 addr = MAX(seg->s_base, addr); 1973 1974 for (;;) { 1975 if (seg == NULL || addr >= eaddr || eaddr <= seg->s_base) { 1976 AS_LOCK_EXIT(as, &as->a_lock); 1977 return (EINVAL); 1978 } 1979 1980 if (seg->s_ops == &segvn_ops) { 1981 segend = seg->s_base + seg->s_size; 1982 break; 1983 } 1984 1985 /* 1986 * We do ISM by looking into the private data 1987 * to determine the real size of the segment. 1988 */ 1989 if (seg->s_ops == &segspt_shmops) { 1990 segend = seg->s_base + spt_realsize(seg); 1991 if (addr < segend) 1992 break; 1993 } 1994 1995 seg = AS_SEGNEXT(as, seg); 1996 1997 if (seg != NULL) 1998 addr = seg->s_base; 1999 } 2000 2001 *basep = addr; 2002 2003 if (segend > eaddr) 2004 *lenp = eaddr - addr; 2005 else 2006 *lenp = segend - addr; 2007 2008 AS_LOCK_EXIT(as, &as->a_lock); 2009 return (0); 2010 } 2011 2012 /* 2013 * Swap the pages associated with the address space as out to 2014 * secondary storage, returning the number of bytes actually 2015 * swapped. 2016 * 2017 * The value returned is intended to correlate well with the process's 2018 * memory requirements. Its usefulness for this purpose depends on 2019 * how well the segment-level routines do at returning accurate 2020 * information. 2021 */ 2022 size_t 2023 as_swapout(struct as *as) 2024 { 2025 struct seg *seg; 2026 size_t swpcnt = 0; 2027 2028 /* 2029 * Kernel-only processes have given up their address 2030 * spaces. Of course, we shouldn't be attempting to 2031 * swap out such processes in the first place... 2032 */ 2033 if (as == NULL) 2034 return (0); 2035 2036 AS_LOCK_ENTER(as, &as->a_lock, RW_READER); 2037 2038 /* Prevent XHATs from attaching */ 2039 mutex_enter(&as->a_contents); 2040 AS_SETBUSY(as); 2041 mutex_exit(&as->a_contents); 2042 2043 2044 /* 2045 * Free all mapping resources associated with the address 2046 * space. The segment-level swapout routines capitalize 2047 * on this unmapping by scavanging pages that have become 2048 * unmapped here. 2049 */ 2050 hat_swapout(as->a_hat); 2051 if (as->a_xhat != NULL) 2052 xhat_swapout_all(as); 2053 2054 mutex_enter(&as->a_contents); 2055 AS_CLRBUSY(as); 2056 mutex_exit(&as->a_contents); 2057 2058 /* 2059 * Call the swapout routines of all segments in the address 2060 * space to do the actual work, accumulating the amount of 2061 * space reclaimed. 2062 */ 2063 for (seg = AS_SEGFIRST(as); seg != NULL; seg = AS_SEGNEXT(as, seg)) { 2064 struct seg_ops *ov = seg->s_ops; 2065 2066 /* 2067 * We have to check to see if the seg has 2068 * an ops vector because the seg may have 2069 * been in the middle of being set up when 2070 * the process was picked for swapout. 2071 */ 2072 if ((ov != NULL) && (ov->swapout != NULL)) 2073 swpcnt += SEGOP_SWAPOUT(seg); 2074 } 2075 AS_LOCK_EXIT(as, &as->a_lock); 2076 return (swpcnt); 2077 } 2078 2079 /* 2080 * Determine whether data from the mappings in interval [addr, addr + size) 2081 * are in the primary memory (core) cache. 2082 */ 2083 int 2084 as_incore(struct as *as, caddr_t addr, 2085 size_t size, char *vec, size_t *sizep) 2086 { 2087 struct seg *seg; 2088 size_t ssize; 2089 caddr_t raddr; /* rounded down addr */ 2090 size_t rsize; /* rounded up size */ 2091 size_t isize; /* iteration size */ 2092 int error = 0; /* result, assume success */ 2093 2094 *sizep = 0; 2095 raddr = (caddr_t)((uintptr_t)addr & (uintptr_t)PAGEMASK); 2096 rsize = ((((size_t)addr + size) + PAGEOFFSET) & PAGEMASK) - 2097 (size_t)raddr; 2098 2099 if (raddr + rsize < raddr) /* check for wraparound */ 2100 return (ENOMEM); 2101 2102 AS_LOCK_ENTER(as, &as->a_lock, RW_READER); 2103 seg = as_segat(as, raddr); 2104 if (seg == NULL) { 2105 AS_LOCK_EXIT(as, &as->a_lock); 2106 return (-1); 2107 } 2108 2109 for (; rsize != 0; rsize -= ssize, raddr += ssize) { 2110 if (raddr >= seg->s_base + seg->s_size) { 2111 seg = AS_SEGNEXT(as, seg); 2112 if (seg == NULL || raddr != seg->s_base) { 2113 error = -1; 2114 break; 2115 } 2116 } 2117 if ((raddr + rsize) > (seg->s_base + seg->s_size)) 2118 ssize = seg->s_base + seg->s_size - raddr; 2119 else 2120 ssize = rsize; 2121 *sizep += isize = SEGOP_INCORE(seg, raddr, ssize, vec); 2122 if (isize != ssize) { 2123 error = -1; 2124 break; 2125 } 2126 vec += btopr(ssize); 2127 } 2128 AS_LOCK_EXIT(as, &as->a_lock); 2129 return (error); 2130 } 2131 2132 static void 2133 as_segunlock(struct seg *seg, caddr_t addr, int attr, 2134 ulong_t *bitmap, size_t position, size_t npages) 2135 { 2136 caddr_t range_start; 2137 size_t pos1 = position; 2138 size_t pos2; 2139 size_t size; 2140 size_t end_pos = npages + position; 2141 2142 while (bt_range(bitmap, &pos1, &pos2, end_pos)) { 2143 size = ptob((pos2 - pos1)); 2144 range_start = (caddr_t)((uintptr_t)addr + 2145 ptob(pos1 - position)); 2146 2147 (void) SEGOP_LOCKOP(seg, range_start, size, attr, MC_UNLOCK, 2148 (ulong_t *)NULL, (size_t)NULL); 2149 pos1 = pos2; 2150 } 2151 } 2152 2153 static void 2154 as_unlockerr(struct as *as, int attr, ulong_t *mlock_map, 2155 caddr_t raddr, size_t rsize) 2156 { 2157 struct seg *seg = as_segat(as, raddr); 2158 size_t ssize; 2159 2160 while (rsize != 0) { 2161 if (raddr >= seg->s_base + seg->s_size) 2162 seg = AS_SEGNEXT(as, seg); 2163 2164 if ((raddr + rsize) > (seg->s_base + seg->s_size)) 2165 ssize = seg->s_base + seg->s_size - raddr; 2166 else 2167 ssize = rsize; 2168 2169 as_segunlock(seg, raddr, attr, mlock_map, 0, btopr(ssize)); 2170 2171 rsize -= ssize; 2172 raddr += ssize; 2173 } 2174 } 2175 2176 /* 2177 * Cache control operations over the interval [addr, addr + size) in 2178 * address space "as". 2179 */ 2180 /*ARGSUSED*/ 2181 int 2182 as_ctl(struct as *as, caddr_t addr, size_t size, int func, int attr, 2183 uintptr_t arg, ulong_t *lock_map, size_t pos) 2184 { 2185 struct seg *seg; /* working segment */ 2186 caddr_t raddr; /* rounded down addr */ 2187 caddr_t initraddr; /* saved initial rounded down addr */ 2188 size_t rsize; /* rounded up size */ 2189 size_t initrsize; /* saved initial rounded up size */ 2190 size_t ssize; /* size of seg */ 2191 int error = 0; /* result */ 2192 size_t mlock_size; /* size of bitmap */ 2193 ulong_t *mlock_map; /* pointer to bitmap used */ 2194 /* to represent the locked */ 2195 /* pages. */ 2196 retry: 2197 if (error == IE_RETRY) 2198 AS_LOCK_ENTER(as, &as->a_lock, RW_WRITER); 2199 else 2200 AS_LOCK_ENTER(as, &as->a_lock, RW_READER); 2201 2202 /* 2203 * If these are address space lock/unlock operations, loop over 2204 * all segments in the address space, as appropriate. 2205 */ 2206 if (func == MC_LOCKAS) { 2207 size_t npages, idx; 2208 size_t rlen = 0; /* rounded as length */ 2209 2210 idx = pos; 2211 2212 if (arg & MCL_FUTURE) { 2213 mutex_enter(&as->a_contents); 2214 AS_SETPGLCK(as); 2215 mutex_exit(&as->a_contents); 2216 } 2217 if ((arg & MCL_CURRENT) == 0) { 2218 AS_LOCK_EXIT(as, &as->a_lock); 2219 return (0); 2220 } 2221 2222 seg = AS_SEGFIRST(as); 2223 if (seg == NULL) { 2224 AS_LOCK_EXIT(as, &as->a_lock); 2225 return (0); 2226 } 2227 2228 do { 2229 raddr = (caddr_t)((uintptr_t)seg->s_base & 2230 (uintptr_t)PAGEMASK); 2231 rlen += (((uintptr_t)(seg->s_base + seg->s_size) + 2232 PAGEOFFSET) & PAGEMASK) - (uintptr_t)raddr; 2233 } while ((seg = AS_SEGNEXT(as, seg)) != NULL); 2234 2235 mlock_size = BT_BITOUL(btopr(rlen)); 2236 if ((mlock_map = (ulong_t *)kmem_zalloc(mlock_size * 2237 sizeof (ulong_t), KM_NOSLEEP)) == NULL) { 2238 AS_LOCK_EXIT(as, &as->a_lock); 2239 return (EAGAIN); 2240 } 2241 2242 for (seg = AS_SEGFIRST(as); seg; seg = AS_SEGNEXT(as, seg)) { 2243 error = SEGOP_LOCKOP(seg, seg->s_base, 2244 seg->s_size, attr, MC_LOCK, mlock_map, pos); 2245 if (error != 0) 2246 break; 2247 pos += seg_pages(seg); 2248 } 2249 2250 if (error) { 2251 for (seg = AS_SEGFIRST(as); seg != NULL; 2252 seg = AS_SEGNEXT(as, seg)) { 2253 2254 raddr = (caddr_t)((uintptr_t)seg->s_base & 2255 (uintptr_t)PAGEMASK); 2256 npages = seg_pages(seg); 2257 as_segunlock(seg, raddr, attr, mlock_map, 2258 idx, npages); 2259 idx += npages; 2260 } 2261 } 2262 2263 kmem_free(mlock_map, mlock_size * sizeof (ulong_t)); 2264 AS_LOCK_EXIT(as, &as->a_lock); 2265 goto lockerr; 2266 } else if (func == MC_UNLOCKAS) { 2267 mutex_enter(&as->a_contents); 2268 AS_CLRPGLCK(as); 2269 mutex_exit(&as->a_contents); 2270 2271 for (seg = AS_SEGFIRST(as); seg; seg = AS_SEGNEXT(as, seg)) { 2272 error = SEGOP_LOCKOP(seg, seg->s_base, 2273 seg->s_size, attr, MC_UNLOCK, NULL, 0); 2274 if (error != 0) 2275 break; 2276 } 2277 2278 AS_LOCK_EXIT(as, &as->a_lock); 2279 goto lockerr; 2280 } 2281 2282 /* 2283 * Normalize addresses and sizes. 2284 */ 2285 initraddr = raddr = (caddr_t)((uintptr_t)addr & (uintptr_t)PAGEMASK); 2286 initrsize = rsize = (((size_t)(addr + size) + PAGEOFFSET) & PAGEMASK) - 2287 (size_t)raddr; 2288 2289 if (raddr + rsize < raddr) { /* check for wraparound */ 2290 AS_LOCK_EXIT(as, &as->a_lock); 2291 return (ENOMEM); 2292 } 2293 2294 /* 2295 * Get initial segment. 2296 */ 2297 if ((seg = as_segat(as, raddr)) == NULL) { 2298 AS_LOCK_EXIT(as, &as->a_lock); 2299 return (ENOMEM); 2300 } 2301 2302 if (func == MC_LOCK) { 2303 mlock_size = BT_BITOUL(btopr(rsize)); 2304 if ((mlock_map = (ulong_t *)kmem_zalloc(mlock_size * 2305 sizeof (ulong_t), KM_NOSLEEP)) == NULL) { 2306 AS_LOCK_EXIT(as, &as->a_lock); 2307 return (EAGAIN); 2308 } 2309 } 2310 2311 /* 2312 * Loop over all segments. If a hole in the address range is 2313 * discovered, then fail. For each segment, perform the appropriate 2314 * control operation. 2315 */ 2316 while (rsize != 0) { 2317 2318 /* 2319 * Make sure there's no hole, calculate the portion 2320 * of the next segment to be operated over. 2321 */ 2322 if (raddr >= seg->s_base + seg->s_size) { 2323 seg = AS_SEGNEXT(as, seg); 2324 if (seg == NULL || raddr != seg->s_base) { 2325 if (func == MC_LOCK) { 2326 as_unlockerr(as, attr, mlock_map, 2327 initraddr, initrsize - rsize); 2328 kmem_free(mlock_map, 2329 mlock_size * sizeof (ulong_t)); 2330 } 2331 AS_LOCK_EXIT(as, &as->a_lock); 2332 return (ENOMEM); 2333 } 2334 } 2335 if ((raddr + rsize) > (seg->s_base + seg->s_size)) 2336 ssize = seg->s_base + seg->s_size - raddr; 2337 else 2338 ssize = rsize; 2339 2340 /* 2341 * Dispatch on specific function. 2342 */ 2343 switch (func) { 2344 2345 /* 2346 * Synchronize cached data from mappings with backing 2347 * objects. 2348 */ 2349 case MC_SYNC: 2350 if (error = SEGOP_SYNC(seg, raddr, ssize, 2351 attr, (uint_t)arg)) { 2352 AS_LOCK_EXIT(as, &as->a_lock); 2353 return (error); 2354 } 2355 break; 2356 2357 /* 2358 * Lock pages in memory. 2359 */ 2360 case MC_LOCK: 2361 if (error = SEGOP_LOCKOP(seg, raddr, ssize, 2362 attr, func, mlock_map, pos)) { 2363 as_unlockerr(as, attr, mlock_map, initraddr, 2364 initrsize - rsize + ssize); 2365 kmem_free(mlock_map, mlock_size * 2366 sizeof (ulong_t)); 2367 AS_LOCK_EXIT(as, &as->a_lock); 2368 goto lockerr; 2369 } 2370 break; 2371 2372 /* 2373 * Unlock mapped pages. 2374 */ 2375 case MC_UNLOCK: 2376 (void) SEGOP_LOCKOP(seg, raddr, ssize, attr, func, 2377 (ulong_t *)NULL, (size_t)NULL); 2378 break; 2379 2380 /* 2381 * Store VM advise for mapped pages in segment layer. 2382 */ 2383 case MC_ADVISE: 2384 error = SEGOP_ADVISE(seg, raddr, ssize, (uint_t)arg); 2385 2386 /* 2387 * Check for regular errors and special retry error 2388 */ 2389 if (error) { 2390 if (error == IE_RETRY) { 2391 /* 2392 * Need to acquire writers lock, so 2393 * have to drop readers lock and start 2394 * all over again 2395 */ 2396 AS_LOCK_EXIT(as, &as->a_lock); 2397 goto retry; 2398 } else if (error == IE_REATTACH) { 2399 /* 2400 * Find segment for current address 2401 * because current segment just got 2402 * split or concatenated 2403 */ 2404 seg = as_segat(as, raddr); 2405 if (seg == NULL) { 2406 AS_LOCK_EXIT(as, &as->a_lock); 2407 return (ENOMEM); 2408 } 2409 } else { 2410 /* 2411 * Regular error 2412 */ 2413 AS_LOCK_EXIT(as, &as->a_lock); 2414 return (error); 2415 } 2416 } 2417 break; 2418 2419 /* 2420 * Can't happen. 2421 */ 2422 default: 2423 panic("as_ctl: bad operation %d", func); 2424 /*NOTREACHED*/ 2425 } 2426 2427 rsize -= ssize; 2428 raddr += ssize; 2429 } 2430 2431 if (func == MC_LOCK) 2432 kmem_free(mlock_map, mlock_size * sizeof (ulong_t)); 2433 AS_LOCK_EXIT(as, &as->a_lock); 2434 return (0); 2435 lockerr: 2436 2437 /* 2438 * If the lower levels returned EDEADLK for a segment lockop, 2439 * it means that we should retry the operation. Let's wait 2440 * a bit also to let the deadlock causing condition clear. 2441 * This is part of a gross hack to work around a design flaw 2442 * in the ufs/sds logging code and should go away when the 2443 * logging code is re-designed to fix the problem. See bug 2444 * 4125102 for details of the problem. 2445 */ 2446 if (error == EDEADLK) { 2447 delay(deadlk_wait); 2448 error = 0; 2449 goto retry; 2450 } 2451 return (error); 2452 } 2453 2454 /* 2455 * Special code for exec to move the stack segment from its interim 2456 * place in the old address to the right place in the new address space. 2457 */ 2458 /*ARGSUSED*/ 2459 int 2460 as_exec(struct as *oas, caddr_t ostka, size_t stksz, 2461 struct as *nas, caddr_t nstka, uint_t hatflag) 2462 { 2463 struct seg *stkseg; 2464 2465 AS_LOCK_ENTER(oas, &oas->a_lock, RW_WRITER); 2466 stkseg = as_segat(oas, ostka); 2467 stkseg = as_removeseg(oas, stkseg); 2468 ASSERT(stkseg != NULL); 2469 ASSERT(stkseg->s_base == ostka && stkseg->s_size == stksz); 2470 stkseg->s_as = nas; 2471 stkseg->s_base = nstka; 2472 2473 /* 2474 * It's ok to lock the address space we are about to exec to. 2475 */ 2476 AS_LOCK_ENTER(nas, &nas->a_lock, RW_WRITER); 2477 ASSERT(avl_numnodes(&nas->a_wpage) == 0); 2478 nas->a_size += stkseg->s_size; 2479 oas->a_size -= stkseg->s_size; 2480 (void) as_addseg(nas, stkseg); 2481 AS_LOCK_EXIT(nas, &nas->a_lock); 2482 AS_LOCK_EXIT(oas, &oas->a_lock); 2483 return (0); 2484 } 2485 2486 static int 2487 f_decode(faultcode_t fault_err) 2488 { 2489 int error = 0; 2490 2491 switch (FC_CODE(fault_err)) { 2492 case FC_OBJERR: 2493 error = FC_ERRNO(fault_err); 2494 break; 2495 case FC_PROT: 2496 error = EACCES; 2497 break; 2498 default: 2499 error = EFAULT; 2500 break; 2501 } 2502 return (error); 2503 } 2504 2505 /* 2506 * lock pages in a given address space. Return shadow list. If 2507 * the list is NULL, the MMU mapping is also locked. 2508 */ 2509 int 2510 as_pagelock(struct as *as, struct page ***ppp, caddr_t addr, 2511 size_t size, enum seg_rw rw) 2512 { 2513 size_t rsize; 2514 caddr_t base; 2515 caddr_t raddr; 2516 faultcode_t fault_err; 2517 struct seg *seg; 2518 int res; 2519 int prefaulted = 0; 2520 2521 TRACE_2(TR_FAC_PHYSIO, TR_PHYSIO_AS_LOCK_START, 2522 "as_pagelock_start: addr %p size %ld", addr, size); 2523 2524 raddr = (caddr_t)((uintptr_t)addr & (uintptr_t)PAGEMASK); 2525 rsize = (((size_t)(addr + size) + PAGEOFFSET) & PAGEMASK) - 2526 (size_t)raddr; 2527 top: 2528 /* 2529 * if the request crosses two segments let 2530 * as_fault handle it. 2531 */ 2532 AS_LOCK_ENTER(as, &as->a_lock, RW_READER); 2533 seg = as_findseg(as, addr, 0); 2534 if ((seg == NULL) || ((base = seg->s_base) > addr) || 2535 (addr + size) > base + seg->s_size) { 2536 AS_LOCK_EXIT(as, &as->a_lock); 2537 goto slow; 2538 } 2539 2540 TRACE_2(TR_FAC_PHYSIO, TR_PHYSIO_SEG_LOCK_START, 2541 "seg_lock_1_start: raddr %p rsize %ld", raddr, rsize); 2542 2543 /* 2544 * try to lock pages and pass back shadow list 2545 */ 2546 res = SEGOP_PAGELOCK(seg, raddr, rsize, ppp, L_PAGELOCK, rw); 2547 2548 TRACE_0(TR_FAC_PHYSIO, TR_PHYSIO_SEG_LOCK_END, "seg_lock_1_end"); 2549 AS_LOCK_EXIT(as, &as->a_lock); 2550 if (res == 0) { 2551 return (0); 2552 } else if (res == ENOTSUP || prefaulted) { 2553 /* 2554 * (1) segment driver doesn't support PAGELOCK fastpath, or 2555 * (2) we've already tried fast path unsuccessfully after 2556 * faulting in the addr range below; system might be 2557 * thrashing or there may not be enough availrmem. 2558 */ 2559 goto slow; 2560 } 2561 2562 TRACE_2(TR_FAC_PHYSIO, TR_PHYSIO_AS_FAULT_START, 2563 "as_fault_start: addr %p size %ld", addr, size); 2564 2565 /* 2566 * we might get here because of some COW fault or non 2567 * existing page. Let as_fault deal with it. Just load 2568 * the page, don't lock the MMU mapping. 2569 */ 2570 fault_err = as_fault(as->a_hat, as, addr, size, F_INVAL, rw); 2571 if (fault_err != 0) { 2572 return (f_decode(fault_err)); 2573 } 2574 2575 prefaulted = 1; 2576 2577 /* 2578 * try fast path again; since we've dropped a_lock, 2579 * we need to try the dance from the start to see if 2580 * the addr range is still valid. 2581 */ 2582 goto top; 2583 slow: 2584 /* 2585 * load the page and lock the MMU mapping. 2586 */ 2587 fault_err = as_fault(as->a_hat, as, addr, size, F_SOFTLOCK, rw); 2588 if (fault_err != 0) { 2589 return (f_decode(fault_err)); 2590 } 2591 *ppp = NULL; 2592 2593 TRACE_0(TR_FAC_PHYSIO, TR_PHYSIO_AS_LOCK_END, "as_pagelock_end"); 2594 return (0); 2595 } 2596 2597 /* 2598 * unlock pages in a given address range 2599 */ 2600 void 2601 as_pageunlock(struct as *as, struct page **pp, caddr_t addr, size_t size, 2602 enum seg_rw rw) 2603 { 2604 struct seg *seg; 2605 size_t rsize; 2606 caddr_t raddr; 2607 2608 TRACE_2(TR_FAC_PHYSIO, TR_PHYSIO_AS_UNLOCK_START, 2609 "as_pageunlock_start: addr %p size %ld", addr, size); 2610 2611 /* 2612 * if the shadow list is NULL, as_pagelock was 2613 * falling back to as_fault 2614 */ 2615 if (pp == NULL) { 2616 (void) as_fault(as->a_hat, as, addr, size, F_SOFTUNLOCK, rw); 2617 return; 2618 } 2619 raddr = (caddr_t)((uintptr_t)addr & (uintptr_t)PAGEMASK); 2620 rsize = (((size_t)(addr + size) + PAGEOFFSET) & PAGEMASK) - 2621 (size_t)raddr; 2622 AS_LOCK_ENTER(as, &as->a_lock, RW_READER); 2623 seg = as_findseg(as, addr, 0); 2624 ASSERT(seg); 2625 TRACE_2(TR_FAC_PHYSIO, TR_PHYSIO_SEG_UNLOCK_START, 2626 "seg_unlock_start: raddr %p rsize %ld", raddr, rsize); 2627 SEGOP_PAGELOCK(seg, raddr, rsize, &pp, L_PAGEUNLOCK, rw); 2628 AS_LOCK_EXIT(as, &as->a_lock); 2629 TRACE_0(TR_FAC_PHYSIO, TR_PHYSIO_AS_UNLOCK_END, "as_pageunlock_end"); 2630 } 2631 2632 /* 2633 * reclaim cached pages in a given address range 2634 */ 2635 void 2636 as_pagereclaim(struct as *as, struct page **pp, caddr_t addr, 2637 size_t size, enum seg_rw rw) 2638 { 2639 struct seg *seg; 2640 size_t rsize; 2641 caddr_t raddr; 2642 2643 ASSERT(AS_READ_HELD(as, &as->a_lock)); 2644 ASSERT(pp != NULL); 2645 2646 raddr = (caddr_t)((uintptr_t)addr & (uintptr_t)PAGEMASK); 2647 rsize = (((size_t)(addr + size) + PAGEOFFSET) & PAGEMASK) - 2648 (size_t)raddr; 2649 seg = as_findseg(as, addr, 0); 2650 ASSERT(seg); 2651 SEGOP_PAGELOCK(seg, raddr, rsize, &pp, L_PAGERECLAIM, rw); 2652 } 2653 2654 #define MAXPAGEFLIP 4 2655 #define MAXPAGEFLIPSIZ MAXPAGEFLIP*PAGESIZE 2656 2657 int 2658 as_setpagesize(struct as *as, caddr_t addr, size_t size, uint_t szc, 2659 boolean_t wait) 2660 { 2661 struct seg *seg; 2662 size_t ssize; 2663 caddr_t raddr; /* rounded down addr */ 2664 size_t rsize; /* rounded up size */ 2665 int error = 0; 2666 size_t pgsz = page_get_pagesize(szc); 2667 2668 setpgsz_top: 2669 if (!IS_P2ALIGNED(addr, pgsz) || !IS_P2ALIGNED(size, pgsz)) { 2670 return (EINVAL); 2671 } 2672 2673 raddr = addr; 2674 rsize = size; 2675 2676 if (raddr + rsize < raddr) /* check for wraparound */ 2677 return (ENOMEM); 2678 2679 AS_LOCK_ENTER(as, &as->a_lock, RW_WRITER); 2680 as_clearwatchprot(as, raddr, rsize); 2681 seg = as_segat(as, raddr); 2682 if (seg == NULL) { 2683 as_setwatch(as); 2684 AS_LOCK_EXIT(as, &as->a_lock); 2685 return (ENOMEM); 2686 } 2687 2688 for (; rsize != 0; rsize -= ssize, raddr += ssize) { 2689 if (raddr >= seg->s_base + seg->s_size) { 2690 seg = AS_SEGNEXT(as, seg); 2691 if (seg == NULL || raddr != seg->s_base) { 2692 error = ENOMEM; 2693 break; 2694 } 2695 } 2696 if ((raddr + rsize) > (seg->s_base + seg->s_size)) { 2697 ssize = seg->s_base + seg->s_size - raddr; 2698 } else { 2699 ssize = rsize; 2700 } 2701 2702 error = SEGOP_SETPAGESIZE(seg, raddr, ssize, szc); 2703 2704 if (error == IE_NOMEM) { 2705 error = EAGAIN; 2706 break; 2707 } 2708 2709 if (error == IE_RETRY) { 2710 AS_LOCK_EXIT(as, &as->a_lock); 2711 goto setpgsz_top; 2712 } 2713 2714 if (error == ENOTSUP) { 2715 error = EINVAL; 2716 break; 2717 } 2718 2719 if (wait && (error == EAGAIN)) { 2720 /* 2721 * Memory is currently locked. It must be unlocked 2722 * before this operation can succeed through a retry. 2723 * The possible reasons for locked memory and 2724 * corresponding strategies for unlocking are: 2725 * (1) Normal I/O 2726 * wait for a signal that the I/O operation 2727 * has completed and the memory is unlocked. 2728 * (2) Asynchronous I/O 2729 * The aio subsystem does not unlock pages when 2730 * the I/O is completed. Those pages are unlocked 2731 * when the application calls aiowait/aioerror. 2732 * So, to prevent blocking forever, cv_broadcast() 2733 * is done to wake up aio_cleanup_thread. 2734 * Subsequently, segvn_reclaim will be called, and 2735 * that will do AS_CLRUNMAPWAIT() and wake us up. 2736 * (3) Long term page locking: 2737 * This is not relevant for as_setpagesize() 2738 * because we cannot change the page size for 2739 * driver memory. The attempt to do so will 2740 * fail with a different error than EAGAIN so 2741 * there's no need to trigger as callbacks like 2742 * as_unmap, as_setprot or as_free would do. 2743 */ 2744 mutex_enter(&as->a_contents); 2745 if (AS_ISUNMAPWAIT(as) == 0) { 2746 cv_broadcast(&as->a_cv); 2747 } 2748 AS_SETUNMAPWAIT(as); 2749 AS_LOCK_EXIT(as, &as->a_lock); 2750 while (AS_ISUNMAPWAIT(as)) { 2751 cv_wait(&as->a_cv, &as->a_contents); 2752 } 2753 mutex_exit(&as->a_contents); 2754 goto setpgsz_top; 2755 } else if (error != 0) { 2756 break; 2757 } 2758 } 2759 as_setwatch(as); 2760 AS_LOCK_EXIT(as, &as->a_lock); 2761 return (error); 2762 } 2763 2764 /* 2765 * as_iset3_default_lpsize() just calls SEGOP_SETPAGESIZE() on all segments 2766 * in its chunk where s_szc is less than the szc we want to set. 2767 */ 2768 static int 2769 as_iset3_default_lpsize(struct as *as, caddr_t raddr, size_t rsize, uint_t szc, 2770 int *retry) 2771 { 2772 struct seg *seg; 2773 size_t ssize; 2774 int error; 2775 2776 seg = as_segat(as, raddr); 2777 if (seg == NULL) { 2778 panic("as_iset3_default_lpsize: no seg"); 2779 } 2780 2781 for (; rsize != 0; rsize -= ssize, raddr += ssize) { 2782 if (raddr >= seg->s_base + seg->s_size) { 2783 seg = AS_SEGNEXT(as, seg); 2784 if (seg == NULL || raddr != seg->s_base) { 2785 panic("as_iset3_default_lpsize: as changed"); 2786 } 2787 } 2788 if ((raddr + rsize) > (seg->s_base + seg->s_size)) { 2789 ssize = seg->s_base + seg->s_size - raddr; 2790 } else { 2791 ssize = rsize; 2792 } 2793 2794 if (szc > seg->s_szc) { 2795 error = SEGOP_SETPAGESIZE(seg, raddr, ssize, szc); 2796 /* Only retry on EINVAL segments that have no vnode. */ 2797 if (error == EINVAL) { 2798 vnode_t *vp = NULL; 2799 if ((SEGOP_GETTYPE(seg, raddr) & MAP_SHARED) && 2800 (SEGOP_GETVP(seg, raddr, &vp) != 0 || 2801 vp == NULL)) { 2802 *retry = 1; 2803 } else { 2804 *retry = 0; 2805 } 2806 } 2807 if (error) { 2808 return (error); 2809 } 2810 } 2811 } 2812 return (0); 2813 } 2814 2815 /* 2816 * as_iset2_default_lpsize() calls as_iset3_default_lpsize() to set the 2817 * pagesize on each segment in its range, but if any fails with EINVAL, 2818 * then it reduces the pagesizes to the next size in the bitmap and 2819 * retries as_iset3_default_lpsize(). The reason why the code retries 2820 * smaller allowed sizes on EINVAL is because (a) the anon offset may not 2821 * match the bigger sizes, and (b) it's hard to get this offset (to begin 2822 * with) to pass to map_pgszcvec(). 2823 */ 2824 static int 2825 as_iset2_default_lpsize(struct as *as, caddr_t addr, size_t size, uint_t szc, 2826 uint_t szcvec) 2827 { 2828 int error; 2829 int retry; 2830 2831 for (;;) { 2832 error = as_iset3_default_lpsize(as, addr, size, szc, &retry); 2833 if (error == EINVAL && retry) { 2834 szcvec &= ~(1 << szc); 2835 if (szcvec <= 1) { 2836 return (EINVAL); 2837 } 2838 szc = highbit(szcvec) - 1; 2839 } else { 2840 return (error); 2841 } 2842 } 2843 } 2844 2845 /* 2846 * as_iset1_default_lpsize() breaks its chunk into areas where existing 2847 * segments have a smaller szc than we want to set. For each such area, 2848 * it calls as_iset2_default_lpsize() 2849 */ 2850 static int 2851 as_iset1_default_lpsize(struct as *as, caddr_t raddr, size_t rsize, uint_t szc, 2852 uint_t szcvec) 2853 { 2854 struct seg *seg; 2855 size_t ssize; 2856 caddr_t setaddr = raddr; 2857 size_t setsize = 0; 2858 int set; 2859 int error; 2860 2861 ASSERT(AS_WRITE_HELD(as, &as->a_lock)); 2862 2863 seg = as_segat(as, raddr); 2864 if (seg == NULL) { 2865 panic("as_iset1_default_lpsize: no seg"); 2866 } 2867 if (seg->s_szc < szc) { 2868 set = 1; 2869 } else { 2870 set = 0; 2871 } 2872 2873 for (; rsize != 0; rsize -= ssize, raddr += ssize, setsize += ssize) { 2874 if (raddr >= seg->s_base + seg->s_size) { 2875 seg = AS_SEGNEXT(as, seg); 2876 if (seg == NULL || raddr != seg->s_base) { 2877 panic("as_iset1_default_lpsize: as changed"); 2878 } 2879 if (seg->s_szc >= szc && set) { 2880 ASSERT(setsize != 0); 2881 error = as_iset2_default_lpsize(as, 2882 setaddr, setsize, szc, szcvec); 2883 if (error) { 2884 return (error); 2885 } 2886 set = 0; 2887 } else if (seg->s_szc < szc && !set) { 2888 setaddr = raddr; 2889 setsize = 0; 2890 set = 1; 2891 } 2892 } 2893 if ((raddr + rsize) > (seg->s_base + seg->s_size)) { 2894 ssize = seg->s_base + seg->s_size - raddr; 2895 } else { 2896 ssize = rsize; 2897 } 2898 } 2899 error = 0; 2900 if (set) { 2901 ASSERT(setsize != 0); 2902 error = as_iset2_default_lpsize(as, setaddr, setsize, 2903 szc, szcvec); 2904 } 2905 return (error); 2906 } 2907 2908 /* 2909 * as_iset_default_lpsize() breaks its chunk according to the size code bitmap 2910 * returned by map_pgszcvec() (similar to as_map_segvn_segs()), and passes each 2911 * chunk to as_iset1_default_lpsize(). 2912 */ 2913 static int 2914 as_iset_default_lpsize(struct as *as, caddr_t addr, size_t size, int flags, 2915 int type) 2916 { 2917 int rtype = (type & MAP_SHARED) ? MAPPGSZC_SHM : MAPPGSZC_PRIVM; 2918 uint_t szcvec = map_pgszcvec(addr, size, (uintptr_t)addr, 2919 flags, rtype, 1); 2920 uint_t szc; 2921 uint_t nszc; 2922 int error; 2923 caddr_t a; 2924 caddr_t eaddr; 2925 size_t segsize; 2926 size_t pgsz; 2927 uint_t save_szcvec; 2928 2929 ASSERT(AS_WRITE_HELD(as, &as->a_lock)); 2930 ASSERT(IS_P2ALIGNED(addr, PAGESIZE)); 2931 ASSERT(IS_P2ALIGNED(size, PAGESIZE)); 2932 2933 szcvec &= ~1; 2934 if (szcvec <= 1) { /* skip if base page size */ 2935 return (0); 2936 } 2937 2938 /* Get the pagesize of the first larger page size. */ 2939 szc = lowbit(szcvec) - 1; 2940 pgsz = page_get_pagesize(szc); 2941 eaddr = addr + size; 2942 addr = (caddr_t)P2ROUNDUP((uintptr_t)addr, pgsz); 2943 eaddr = (caddr_t)P2ALIGN((uintptr_t)eaddr, pgsz); 2944 2945 save_szcvec = szcvec; 2946 szcvec >>= (szc + 1); 2947 nszc = szc; 2948 while (szcvec) { 2949 if ((szcvec & 0x1) == 0) { 2950 nszc++; 2951 szcvec >>= 1; 2952 continue; 2953 } 2954 nszc++; 2955 pgsz = page_get_pagesize(nszc); 2956 a = (caddr_t)P2ROUNDUP((uintptr_t)addr, pgsz); 2957 if (a != addr) { 2958 ASSERT(szc > 0); 2959 ASSERT(a < eaddr); 2960 segsize = a - addr; 2961 error = as_iset1_default_lpsize(as, addr, segsize, szc, 2962 save_szcvec); 2963 if (error) { 2964 return (error); 2965 } 2966 addr = a; 2967 } 2968 szc = nszc; 2969 szcvec >>= 1; 2970 } 2971 2972 ASSERT(addr < eaddr); 2973 szcvec = save_szcvec; 2974 while (szcvec) { 2975 a = (caddr_t)P2ALIGN((uintptr_t)eaddr, pgsz); 2976 ASSERT(a >= addr); 2977 if (a != addr) { 2978 ASSERT(szc > 0); 2979 segsize = a - addr; 2980 error = as_iset1_default_lpsize(as, addr, segsize, szc, 2981 save_szcvec); 2982 if (error) { 2983 return (error); 2984 } 2985 addr = a; 2986 } 2987 szcvec &= ~(1 << szc); 2988 if (szcvec) { 2989 szc = highbit(szcvec) - 1; 2990 pgsz = page_get_pagesize(szc); 2991 } 2992 } 2993 ASSERT(addr == eaddr); 2994 2995 return (0); 2996 } 2997 2998 /* 2999 * Set the default large page size for the range. Called via memcntl with 3000 * page size set to 0. as_set_default_lpsize breaks the range down into 3001 * chunks with the same type/flags, ignores-non segvn segments, and passes 3002 * each chunk to as_iset_default_lpsize(). 3003 */ 3004 int 3005 as_set_default_lpsize(struct as *as, caddr_t addr, size_t size) 3006 { 3007 struct seg *seg; 3008 caddr_t raddr; 3009 size_t rsize; 3010 size_t ssize; 3011 int rtype, rflags; 3012 int stype, sflags; 3013 int error; 3014 caddr_t setaddr; 3015 size_t setsize; 3016 int segvn; 3017 3018 if (size == 0) 3019 return (0); 3020 3021 AS_LOCK_ENTER(as, &as->a_lock, RW_WRITER); 3022 again: 3023 error = 0; 3024 3025 raddr = (caddr_t)((uintptr_t)addr & (uintptr_t)PAGEMASK); 3026 rsize = (((size_t)(addr + size) + PAGEOFFSET) & PAGEMASK) - 3027 (size_t)raddr; 3028 3029 if (raddr + rsize < raddr) { /* check for wraparound */ 3030 AS_LOCK_EXIT(as, &as->a_lock); 3031 return (ENOMEM); 3032 } 3033 as_clearwatchprot(as, raddr, rsize); 3034 seg = as_segat(as, raddr); 3035 if (seg == NULL) { 3036 as_setwatch(as); 3037 AS_LOCK_EXIT(as, &as->a_lock); 3038 return (ENOMEM); 3039 } 3040 if (seg->s_ops == &segvn_ops) { 3041 rtype = SEGOP_GETTYPE(seg, addr); 3042 rflags = rtype & (MAP_TEXT | MAP_INITDATA); 3043 rtype = rtype & (MAP_SHARED | MAP_PRIVATE); 3044 segvn = 1; 3045 } else { 3046 segvn = 0; 3047 } 3048 setaddr = raddr; 3049 setsize = 0; 3050 3051 for (; rsize != 0; rsize -= ssize, raddr += ssize, setsize += ssize) { 3052 if (raddr >= (seg->s_base + seg->s_size)) { 3053 seg = AS_SEGNEXT(as, seg); 3054 if (seg == NULL || raddr != seg->s_base) { 3055 error = ENOMEM; 3056 break; 3057 } 3058 if (seg->s_ops == &segvn_ops) { 3059 stype = SEGOP_GETTYPE(seg, raddr); 3060 sflags = stype & (MAP_TEXT | MAP_INITDATA); 3061 stype &= (MAP_SHARED | MAP_PRIVATE); 3062 if (segvn && (rflags != sflags || 3063 rtype != stype)) { 3064 /* 3065 * The next segment is also segvn but 3066 * has different flags and/or type. 3067 */ 3068 ASSERT(setsize != 0); 3069 error = as_iset_default_lpsize(as, 3070 setaddr, setsize, rflags, rtype); 3071 if (error) { 3072 break; 3073 } 3074 rflags = sflags; 3075 rtype = stype; 3076 setaddr = raddr; 3077 setsize = 0; 3078 } else if (!segvn) { 3079 rflags = sflags; 3080 rtype = stype; 3081 setaddr = raddr; 3082 setsize = 0; 3083 segvn = 1; 3084 } 3085 } else if (segvn) { 3086 /* The next segment is not segvn. */ 3087 ASSERT(setsize != 0); 3088 error = as_iset_default_lpsize(as, 3089 setaddr, setsize, rflags, rtype); 3090 if (error) { 3091 break; 3092 } 3093 segvn = 0; 3094 } 3095 } 3096 if ((raddr + rsize) > (seg->s_base + seg->s_size)) { 3097 ssize = seg->s_base + seg->s_size - raddr; 3098 } else { 3099 ssize = rsize; 3100 } 3101 } 3102 if (error == 0 && segvn) { 3103 /* The last chunk when rsize == 0. */ 3104 ASSERT(setsize != 0); 3105 error = as_iset_default_lpsize(as, setaddr, setsize, 3106 rflags, rtype); 3107 } 3108 3109 if (error == IE_RETRY) { 3110 goto again; 3111 } else if (error == IE_NOMEM) { 3112 error = EAGAIN; 3113 } else if (error == ENOTSUP) { 3114 error = EINVAL; 3115 } else if (error == EAGAIN) { 3116 mutex_enter(&as->a_contents); 3117 if (AS_ISUNMAPWAIT(as) == 0) { 3118 cv_broadcast(&as->a_cv); 3119 } 3120 AS_SETUNMAPWAIT(as); 3121 AS_LOCK_EXIT(as, &as->a_lock); 3122 while (AS_ISUNMAPWAIT(as)) { 3123 cv_wait(&as->a_cv, &as->a_contents); 3124 } 3125 mutex_exit(&as->a_contents); 3126 AS_LOCK_ENTER(as, &as->a_lock, RW_WRITER); 3127 goto again; 3128 } 3129 3130 as_setwatch(as); 3131 AS_LOCK_EXIT(as, &as->a_lock); 3132 return (error); 3133 } 3134 3135 /* 3136 * Setup all of the uninitialized watched pages that we can. 3137 */ 3138 void 3139 as_setwatch(struct as *as) 3140 { 3141 struct watched_page *pwp; 3142 struct seg *seg; 3143 caddr_t vaddr; 3144 uint_t prot; 3145 int err, retrycnt; 3146 3147 if (avl_numnodes(&as->a_wpage) == 0) 3148 return; 3149 3150 ASSERT(AS_WRITE_HELD(as, &as->a_lock)); 3151 3152 for (pwp = avl_first(&as->a_wpage); pwp != NULL; 3153 pwp = AVL_NEXT(&as->a_wpage, pwp)) { 3154 retrycnt = 0; 3155 retry: 3156 vaddr = pwp->wp_vaddr; 3157 if (pwp->wp_oprot != 0 || /* already set up */ 3158 (seg = as_segat(as, vaddr)) == NULL || 3159 SEGOP_GETPROT(seg, vaddr, 0, &prot) != 0) 3160 continue; 3161 3162 pwp->wp_oprot = prot; 3163 if (pwp->wp_read) 3164 prot &= ~(PROT_READ|PROT_WRITE|PROT_EXEC); 3165 if (pwp->wp_write) 3166 prot &= ~PROT_WRITE; 3167 if (pwp->wp_exec) 3168 prot &= ~(PROT_READ|PROT_WRITE|PROT_EXEC); 3169 if (!(pwp->wp_flags & WP_NOWATCH) && prot != pwp->wp_oprot) { 3170 err = SEGOP_SETPROT(seg, vaddr, PAGESIZE, prot); 3171 if (err == IE_RETRY) { 3172 pwp->wp_oprot = 0; 3173 ASSERT(retrycnt == 0); 3174 retrycnt++; 3175 goto retry; 3176 } 3177 } 3178 pwp->wp_prot = prot; 3179 } 3180 } 3181 3182 /* 3183 * Clear all of the watched pages in the address space. 3184 */ 3185 void 3186 as_clearwatch(struct as *as) 3187 { 3188 struct watched_page *pwp; 3189 struct seg *seg; 3190 caddr_t vaddr; 3191 uint_t prot; 3192 int err, retrycnt; 3193 3194 if (avl_numnodes(&as->a_wpage) == 0) 3195 return; 3196 3197 ASSERT(AS_WRITE_HELD(as, &as->a_lock)); 3198 3199 for (pwp = avl_first(&as->a_wpage); pwp != NULL; 3200 pwp = AVL_NEXT(&as->a_wpage, pwp)) { 3201 retrycnt = 0; 3202 retry: 3203 vaddr = pwp->wp_vaddr; 3204 if (pwp->wp_oprot == 0 || /* not set up */ 3205 (seg = as_segat(as, vaddr)) == NULL) 3206 continue; 3207 3208 if ((prot = pwp->wp_oprot) != pwp->wp_prot) { 3209 err = SEGOP_SETPROT(seg, vaddr, PAGESIZE, prot); 3210 if (err == IE_RETRY) { 3211 ASSERT(retrycnt == 0); 3212 retrycnt++; 3213 goto retry; 3214 } 3215 } 3216 pwp->wp_oprot = 0; 3217 pwp->wp_prot = 0; 3218 } 3219 } 3220 3221 /* 3222 * Force a new setup for all the watched pages in the range. 3223 */ 3224 static void 3225 as_setwatchprot(struct as *as, caddr_t addr, size_t size, uint_t prot) 3226 { 3227 struct watched_page *pwp; 3228 struct watched_page tpw; 3229 caddr_t eaddr = addr + size; 3230 caddr_t vaddr; 3231 struct seg *seg; 3232 int err, retrycnt; 3233 uint_t wprot; 3234 avl_index_t where; 3235 3236 if (avl_numnodes(&as->a_wpage) == 0) 3237 return; 3238 3239 ASSERT(AS_WRITE_HELD(as, &as->a_lock)); 3240 3241 tpw.wp_vaddr = (caddr_t)((uintptr_t)addr & (uintptr_t)PAGEMASK); 3242 if ((pwp = avl_find(&as->a_wpage, &tpw, &where)) == NULL) 3243 pwp = avl_nearest(&as->a_wpage, where, AVL_AFTER); 3244 3245 while (pwp != NULL && pwp->wp_vaddr < eaddr) { 3246 retrycnt = 0; 3247 vaddr = pwp->wp_vaddr; 3248 3249 wprot = prot; 3250 if (pwp->wp_read) 3251 wprot &= ~(PROT_READ|PROT_WRITE|PROT_EXEC); 3252 if (pwp->wp_write) 3253 wprot &= ~PROT_WRITE; 3254 if (pwp->wp_exec) 3255 wprot &= ~(PROT_READ|PROT_WRITE|PROT_EXEC); 3256 if (!(pwp->wp_flags & WP_NOWATCH) && wprot != pwp->wp_oprot) { 3257 retry: 3258 seg = as_segat(as, vaddr); 3259 if (seg == NULL) { 3260 panic("as_setwatchprot: no seg"); 3261 /*NOTREACHED*/ 3262 } 3263 err = SEGOP_SETPROT(seg, vaddr, PAGESIZE, wprot); 3264 if (err == IE_RETRY) { 3265 ASSERT(retrycnt == 0); 3266 retrycnt++; 3267 goto retry; 3268 } 3269 } 3270 pwp->wp_oprot = prot; 3271 pwp->wp_prot = wprot; 3272 3273 pwp = AVL_NEXT(&as->a_wpage, pwp); 3274 } 3275 } 3276 3277 /* 3278 * Clear all of the watched pages in the range. 3279 */ 3280 static void 3281 as_clearwatchprot(struct as *as, caddr_t addr, size_t size) 3282 { 3283 caddr_t eaddr = addr + size; 3284 struct watched_page *pwp; 3285 struct watched_page tpw; 3286 uint_t prot; 3287 struct seg *seg; 3288 int err, retrycnt; 3289 avl_index_t where; 3290 3291 if (avl_numnodes(&as->a_wpage) == 0) 3292 return; 3293 3294 tpw.wp_vaddr = (caddr_t)((uintptr_t)addr & (uintptr_t)PAGEMASK); 3295 if ((pwp = avl_find(&as->a_wpage, &tpw, &where)) == NULL) 3296 pwp = avl_nearest(&as->a_wpage, where, AVL_AFTER); 3297 3298 ASSERT(AS_WRITE_HELD(as, &as->a_lock)); 3299 3300 while (pwp != NULL && pwp->wp_vaddr < eaddr) { 3301 3302 if ((prot = pwp->wp_oprot) != 0) { 3303 retrycnt = 0; 3304 3305 if (prot != pwp->wp_prot) { 3306 retry: 3307 seg = as_segat(as, pwp->wp_vaddr); 3308 if (seg == NULL) 3309 continue; 3310 err = SEGOP_SETPROT(seg, pwp->wp_vaddr, 3311 PAGESIZE, prot); 3312 if (err == IE_RETRY) { 3313 ASSERT(retrycnt == 0); 3314 retrycnt++; 3315 goto retry; 3316 3317 } 3318 } 3319 pwp->wp_oprot = 0; 3320 pwp->wp_prot = 0; 3321 } 3322 3323 pwp = AVL_NEXT(&as->a_wpage, pwp); 3324 } 3325 } 3326 3327 void 3328 as_signal_proc(struct as *as, k_siginfo_t *siginfo) 3329 { 3330 struct proc *p; 3331 3332 mutex_enter(&pidlock); 3333 for (p = practive; p; p = p->p_next) { 3334 if (p->p_as == as) { 3335 mutex_enter(&p->p_lock); 3336 if (p->p_as == as) 3337 sigaddq(p, NULL, siginfo, KM_NOSLEEP); 3338 mutex_exit(&p->p_lock); 3339 } 3340 } 3341 mutex_exit(&pidlock); 3342 } 3343 3344 /* 3345 * return memory object ID 3346 */ 3347 int 3348 as_getmemid(struct as *as, caddr_t addr, memid_t *memidp) 3349 { 3350 struct seg *seg; 3351 int sts; 3352 3353 AS_LOCK_ENTER(as, &as->a_lock, RW_READER); 3354 seg = as_segat(as, addr); 3355 if (seg == NULL) { 3356 AS_LOCK_EXIT(as, &as->a_lock); 3357 return (EFAULT); 3358 } 3359 /* 3360 * catch old drivers which may not support getmemid 3361 */ 3362 if (seg->s_ops->getmemid == NULL) { 3363 AS_LOCK_EXIT(as, &as->a_lock); 3364 return (ENODEV); 3365 } 3366 3367 sts = SEGOP_GETMEMID(seg, addr, memidp); 3368 3369 AS_LOCK_EXIT(as, &as->a_lock); 3370 return (sts); 3371 } 3372