xref: /titanic_41/usr/src/uts/common/vm/vm_as.c (revision 6e1f5caa9321646aa4212d48e32a0d241866d85d)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2010 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 /*	Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T	*/
27 /*	  All Rights Reserved  	*/
28 
29 /*
30  * University Copyright- Copyright (c) 1982, 1986, 1988
31  * The Regents of the University of California
32  * All Rights Reserved
33  *
34  * University Acknowledgment- Portions of this document are derived from
35  * software developed by the University of California, Berkeley, and its
36  * contributors.
37  */
38 
39 /*
40  * VM - address spaces.
41  */
42 
43 #include <sys/types.h>
44 #include <sys/t_lock.h>
45 #include <sys/param.h>
46 #include <sys/errno.h>
47 #include <sys/systm.h>
48 #include <sys/mman.h>
49 #include <sys/sysmacros.h>
50 #include <sys/cpuvar.h>
51 #include <sys/sysinfo.h>
52 #include <sys/kmem.h>
53 #include <sys/vnode.h>
54 #include <sys/vmsystm.h>
55 #include <sys/cmn_err.h>
56 #include <sys/debug.h>
57 #include <sys/tnf_probe.h>
58 #include <sys/vtrace.h>
59 
60 #include <vm/hat.h>
61 #include <vm/xhat.h>
62 #include <vm/as.h>
63 #include <vm/seg.h>
64 #include <vm/seg_vn.h>
65 #include <vm/seg_dev.h>
66 #include <vm/seg_kmem.h>
67 #include <vm/seg_map.h>
68 #include <vm/seg_spt.h>
69 #include <vm/page.h>
70 
71 clock_t deadlk_wait = 1; /* number of ticks to wait before retrying */
72 
73 static struct kmem_cache *as_cache;
74 
75 static void as_setwatchprot(struct as *, caddr_t, size_t, uint_t);
76 static void as_clearwatchprot(struct as *, caddr_t, size_t);
77 int as_map_locked(struct as *, caddr_t, size_t, int ((*)()), void *);
78 
79 
80 /*
81  * Verifying the segment lists is very time-consuming; it may not be
82  * desirable always to define VERIFY_SEGLIST when DEBUG is set.
83  */
84 #ifdef DEBUG
85 #define	VERIFY_SEGLIST
86 int do_as_verify = 0;
87 #endif
88 
89 /*
90  * Allocate a new callback data structure entry and fill in the events of
91  * interest, the address range of interest, and the callback argument.
92  * Link the entry on the as->a_callbacks list. A callback entry for the
93  * entire address space may be specified with vaddr = 0 and size = -1.
94  *
95  * CALLERS RESPONSIBILITY: If not calling from within the process context for
96  * the specified as, the caller must guarantee persistence of the specified as
97  * for the duration of this function (eg. pages being locked within the as
98  * will guarantee persistence).
99  */
100 int
101 as_add_callback(struct as *as, void (*cb_func)(), void *arg, uint_t events,
102 		caddr_t vaddr, size_t size, int sleepflag)
103 {
104 	struct as_callback 	*current_head, *cb;
105 	caddr_t 		saddr;
106 	size_t 			rsize;
107 
108 	/* callback function and an event are mandatory */
109 	if ((cb_func == NULL) || ((events & AS_ALL_EVENT) == 0))
110 		return (EINVAL);
111 
112 	/* Adding a callback after as_free has been called is not allowed */
113 	if (as == &kas)
114 		return (ENOMEM);
115 
116 	/*
117 	 * vaddr = 0 and size = -1 is used to indicate that the callback range
118 	 * is the entire address space so no rounding is done in that case.
119 	 */
120 	if (size != -1) {
121 		saddr = (caddr_t)((uintptr_t)vaddr & (uintptr_t)PAGEMASK);
122 		rsize = (((size_t)(vaddr + size) + PAGEOFFSET) & PAGEMASK) -
123 		    (size_t)saddr;
124 		/* check for wraparound */
125 		if (saddr + rsize < saddr)
126 			return (ENOMEM);
127 	} else {
128 		if (vaddr != 0)
129 			return (EINVAL);
130 		saddr = vaddr;
131 		rsize = size;
132 	}
133 
134 	/* Allocate and initialize a callback entry */
135 	cb = kmem_zalloc(sizeof (struct as_callback), sleepflag);
136 	if (cb == NULL)
137 		return (EAGAIN);
138 
139 	cb->ascb_func = cb_func;
140 	cb->ascb_arg = arg;
141 	cb->ascb_events = events;
142 	cb->ascb_saddr = saddr;
143 	cb->ascb_len = rsize;
144 
145 	/* Add the entry to the list */
146 	mutex_enter(&as->a_contents);
147 	current_head = as->a_callbacks;
148 	as->a_callbacks = cb;
149 	cb->ascb_next = current_head;
150 
151 	/*
152 	 * The call to this function may lose in a race with
153 	 * a pertinent event - eg. a thread does long term memory locking
154 	 * but before the callback is added another thread executes as_unmap.
155 	 * A broadcast here resolves that.
156 	 */
157 	if ((cb->ascb_events & AS_UNMAPWAIT_EVENT) && AS_ISUNMAPWAIT(as)) {
158 		AS_CLRUNMAPWAIT(as);
159 		cv_broadcast(&as->a_cv);
160 	}
161 
162 	mutex_exit(&as->a_contents);
163 	return (0);
164 }
165 
166 /*
167  * Search the callback list for an entry which pertains to arg.
168  *
169  * This is called from within the client upon completion of the callback.
170  * RETURN VALUES:
171  *	AS_CALLBACK_DELETED  (callback entry found and deleted)
172  *	AS_CALLBACK_NOTFOUND (no callback entry found - this is ok)
173  *	AS_CALLBACK_DELETE_DEFERRED (callback is in process, delete of this
174  *			entry will be made in as_do_callbacks)
175  *
176  * If as_delete_callback encounters a matching entry with AS_CALLBACK_CALLED
177  * set, it indicates that as_do_callbacks is processing this entry.  The
178  * AS_ALL_EVENT events are cleared in the entry, and a broadcast is made
179  * to unblock as_do_callbacks, in case it is blocked.
180  *
181  * CALLERS RESPONSIBILITY: If not calling from within the process context for
182  * the specified as, the caller must guarantee persistence of the specified as
183  * for the duration of this function (eg. pages being locked within the as
184  * will guarantee persistence).
185  */
186 uint_t
187 as_delete_callback(struct as *as, void *arg)
188 {
189 	struct as_callback **prevcb = &as->a_callbacks;
190 	struct as_callback *cb;
191 	uint_t rc = AS_CALLBACK_NOTFOUND;
192 
193 	mutex_enter(&as->a_contents);
194 	for (cb = as->a_callbacks; cb; prevcb = &cb->ascb_next, cb = *prevcb) {
195 		if (cb->ascb_arg != arg)
196 			continue;
197 
198 		/*
199 		 * If the events indicate AS_CALLBACK_CALLED, just clear
200 		 * AS_ALL_EVENT in the events field and wakeup the thread
201 		 * that may be waiting in as_do_callbacks.  as_do_callbacks
202 		 * will take care of removing this entry from the list.  In
203 		 * that case, return AS_CALLBACK_DELETE_DEFERRED.  Otherwise
204 		 * (AS_CALLBACK_CALLED not set), just remove it from the
205 		 * list, return the memory and return AS_CALLBACK_DELETED.
206 		 */
207 		if ((cb->ascb_events & AS_CALLBACK_CALLED) != 0) {
208 			/* leave AS_CALLBACK_CALLED */
209 			cb->ascb_events &= ~AS_ALL_EVENT;
210 			rc = AS_CALLBACK_DELETE_DEFERRED;
211 			cv_broadcast(&as->a_cv);
212 		} else {
213 			*prevcb = cb->ascb_next;
214 			kmem_free(cb, sizeof (struct as_callback));
215 			rc = AS_CALLBACK_DELETED;
216 		}
217 		break;
218 	}
219 	mutex_exit(&as->a_contents);
220 	return (rc);
221 }
222 
223 /*
224  * Searches the as callback list for a matching entry.
225  * Returns a pointer to the first matching callback, or NULL if
226  * nothing is found.
227  * This function never sleeps so it is ok to call it with more
228  * locks held but the (required) a_contents mutex.
229  *
230  * See also comment on as_do_callbacks below.
231  */
232 static struct as_callback *
233 as_find_callback(struct as *as, uint_t events, caddr_t event_addr,
234 			size_t event_len)
235 {
236 	struct as_callback	*cb;
237 
238 	ASSERT(MUTEX_HELD(&as->a_contents));
239 	for (cb = as->a_callbacks; cb != NULL; cb = cb->ascb_next) {
240 		/*
241 		 * If the callback has not already been called, then
242 		 * check if events or address range pertains.  An event_len
243 		 * of zero means do an unconditional callback.
244 		 */
245 		if (((cb->ascb_events & AS_CALLBACK_CALLED) != 0) ||
246 		    ((event_len != 0) && (((cb->ascb_events & events) == 0) ||
247 		    (event_addr + event_len < cb->ascb_saddr) ||
248 		    (event_addr > (cb->ascb_saddr + cb->ascb_len))))) {
249 			continue;
250 		}
251 		break;
252 	}
253 	return (cb);
254 }
255 
256 /*
257  * Executes a given callback and removes it from the callback list for
258  * this address space.
259  * This function may sleep so the caller must drop all locks except
260  * a_contents before calling this func.
261  *
262  * See also comments on as_do_callbacks below.
263  */
264 static void
265 as_execute_callback(struct as *as, struct as_callback *cb,
266 				uint_t events)
267 {
268 	struct as_callback **prevcb;
269 	void	*cb_arg;
270 
271 	ASSERT(MUTEX_HELD(&as->a_contents) && (cb->ascb_events & events));
272 	cb->ascb_events |= AS_CALLBACK_CALLED;
273 	mutex_exit(&as->a_contents);
274 	(*cb->ascb_func)(as, cb->ascb_arg, events);
275 	mutex_enter(&as->a_contents);
276 	/*
277 	 * the callback function is required to delete the callback
278 	 * when the callback function determines it is OK for
279 	 * this thread to continue. as_delete_callback will clear
280 	 * the AS_ALL_EVENT in the events field when it is deleted.
281 	 * If the callback function called as_delete_callback,
282 	 * events will already be cleared and there will be no blocking.
283 	 */
284 	while ((cb->ascb_events & events) != 0) {
285 		cv_wait(&as->a_cv, &as->a_contents);
286 	}
287 	/*
288 	 * This entry needs to be taken off the list. Normally, the
289 	 * callback func itself does that, but unfortunately the list
290 	 * may have changed while the callback was running because the
291 	 * a_contents mutex was dropped and someone else other than the
292 	 * callback func itself could have called as_delete_callback,
293 	 * so we have to search to find this entry again.  The entry
294 	 * must have AS_CALLBACK_CALLED, and have the same 'arg'.
295 	 */
296 	cb_arg = cb->ascb_arg;
297 	prevcb = &as->a_callbacks;
298 	for (cb = as->a_callbacks; cb != NULL;
299 	    prevcb = &cb->ascb_next, cb = *prevcb) {
300 		if (((cb->ascb_events & AS_CALLBACK_CALLED) == 0) ||
301 		    (cb_arg != cb->ascb_arg)) {
302 			continue;
303 		}
304 		*prevcb = cb->ascb_next;
305 		kmem_free(cb, sizeof (struct as_callback));
306 		break;
307 	}
308 }
309 
310 /*
311  * Check the callback list for a matching event and intersection of
312  * address range. If there is a match invoke the callback.  Skip an entry if:
313  *    - a callback is already in progress for this entry (AS_CALLBACK_CALLED)
314  *    - not event of interest
315  *    - not address range of interest
316  *
317  * An event_len of zero indicates a request for an unconditional callback
318  * (regardless of event), only the AS_CALLBACK_CALLED is checked.  The
319  * a_contents lock must be dropped before a callback, so only one callback
320  * can be done before returning. Return -1 (true) if a callback was
321  * executed and removed from the list, else return 0 (false).
322  *
323  * The logically separate parts, i.e. finding a matching callback and
324  * executing a given callback have been separated into two functions
325  * so that they can be called with different sets of locks held beyond
326  * the always-required a_contents. as_find_callback does not sleep so
327  * it is ok to call it if more locks than a_contents (i.e. the a_lock
328  * rwlock) are held. as_execute_callback on the other hand may sleep
329  * so all locks beyond a_contents must be dropped by the caller if one
330  * does not want to end comatose.
331  */
332 static int
333 as_do_callbacks(struct as *as, uint_t events, caddr_t event_addr,
334 			size_t event_len)
335 {
336 	struct as_callback *cb;
337 
338 	if ((cb = as_find_callback(as, events, event_addr, event_len))) {
339 		as_execute_callback(as, cb, events);
340 		return (-1);
341 	}
342 	return (0);
343 }
344 
345 /*
346  * Search for the segment containing addr. If a segment containing addr
347  * exists, that segment is returned.  If no such segment exists, and
348  * the list spans addresses greater than addr, then the first segment
349  * whose base is greater than addr is returned; otherwise, NULL is
350  * returned unless tail is true, in which case the last element of the
351  * list is returned.
352  *
353  * a_seglast is used to cache the last found segment for repeated
354  * searches to the same addr (which happens frequently).
355  */
356 struct seg *
357 as_findseg(struct as *as, caddr_t addr, int tail)
358 {
359 	struct seg *seg = as->a_seglast;
360 	avl_index_t where;
361 
362 	ASSERT(AS_LOCK_HELD(as, &as->a_lock));
363 
364 	if (seg != NULL &&
365 	    seg->s_base <= addr &&
366 	    addr < seg->s_base + seg->s_size)
367 		return (seg);
368 
369 	seg = avl_find(&as->a_segtree, &addr, &where);
370 	if (seg != NULL)
371 		return (as->a_seglast = seg);
372 
373 	seg = avl_nearest(&as->a_segtree, where, AVL_AFTER);
374 	if (seg == NULL && tail)
375 		seg = avl_last(&as->a_segtree);
376 	return (as->a_seglast = seg);
377 }
378 
379 #ifdef VERIFY_SEGLIST
380 /*
381  * verify that the linked list is coherent
382  */
383 static void
384 as_verify(struct as *as)
385 {
386 	struct seg *seg, *seglast, *p, *n;
387 	uint_t nsegs = 0;
388 
389 	if (do_as_verify == 0)
390 		return;
391 
392 	seglast = as->a_seglast;
393 
394 	for (seg = AS_SEGFIRST(as); seg != NULL; seg = AS_SEGNEXT(as, seg)) {
395 		ASSERT(seg->s_as == as);
396 		p = AS_SEGPREV(as, seg);
397 		n = AS_SEGNEXT(as, seg);
398 		ASSERT(p == NULL || p->s_as == as);
399 		ASSERT(p == NULL || p->s_base < seg->s_base);
400 		ASSERT(n == NULL || n->s_base > seg->s_base);
401 		ASSERT(n != NULL || seg == avl_last(&as->a_segtree));
402 		if (seg == seglast)
403 			seglast = NULL;
404 		nsegs++;
405 	}
406 	ASSERT(seglast == NULL);
407 	ASSERT(avl_numnodes(&as->a_segtree) == nsegs);
408 }
409 #endif /* VERIFY_SEGLIST */
410 
411 /*
412  * Add a new segment to the address space. The avl_find()
413  * may be expensive so we attempt to use last segment accessed
414  * in as_gap() as an insertion point.
415  */
416 int
417 as_addseg(struct as  *as, struct seg *newseg)
418 {
419 	struct seg *seg;
420 	caddr_t addr;
421 	caddr_t eaddr;
422 	avl_index_t where;
423 
424 	ASSERT(AS_WRITE_HELD(as, &as->a_lock));
425 
426 	as->a_updatedir = 1;	/* inform /proc */
427 	gethrestime(&as->a_updatetime);
428 
429 	if (as->a_lastgaphl != NULL) {
430 		struct seg *hseg = NULL;
431 		struct seg *lseg = NULL;
432 
433 		if (as->a_lastgaphl->s_base > newseg->s_base) {
434 			hseg = as->a_lastgaphl;
435 			lseg = AVL_PREV(&as->a_segtree, hseg);
436 		} else {
437 			lseg = as->a_lastgaphl;
438 			hseg = AVL_NEXT(&as->a_segtree, lseg);
439 		}
440 
441 		if (hseg && lseg && lseg->s_base < newseg->s_base &&
442 		    hseg->s_base > newseg->s_base) {
443 			avl_insert_here(&as->a_segtree, newseg, lseg,
444 			    AVL_AFTER);
445 			as->a_lastgaphl = NULL;
446 			as->a_seglast = newseg;
447 			return (0);
448 		}
449 		as->a_lastgaphl = NULL;
450 	}
451 
452 	addr = newseg->s_base;
453 	eaddr = addr + newseg->s_size;
454 again:
455 
456 	seg = avl_find(&as->a_segtree, &addr, &where);
457 
458 	if (seg == NULL)
459 		seg = avl_nearest(&as->a_segtree, where, AVL_AFTER);
460 
461 	if (seg == NULL)
462 		seg = avl_last(&as->a_segtree);
463 
464 	if (seg != NULL) {
465 		caddr_t base = seg->s_base;
466 
467 		/*
468 		 * If top of seg is below the requested address, then
469 		 * the insertion point is at the end of the linked list,
470 		 * and seg points to the tail of the list.  Otherwise,
471 		 * the insertion point is immediately before seg.
472 		 */
473 		if (base + seg->s_size > addr) {
474 			if (addr >= base || eaddr > base) {
475 #ifdef __sparc
476 				extern struct seg_ops segnf_ops;
477 
478 				/*
479 				 * no-fault segs must disappear if overlaid.
480 				 * XXX need new segment type so
481 				 * we don't have to check s_ops
482 				 */
483 				if (seg->s_ops == &segnf_ops) {
484 					seg_unmap(seg);
485 					goto again;
486 				}
487 #endif
488 				return (-1);	/* overlapping segment */
489 			}
490 		}
491 	}
492 	as->a_seglast = newseg;
493 	avl_insert(&as->a_segtree, newseg, where);
494 
495 #ifdef VERIFY_SEGLIST
496 	as_verify(as);
497 #endif
498 	return (0);
499 }
500 
501 struct seg *
502 as_removeseg(struct as *as, struct seg *seg)
503 {
504 	avl_tree_t *t;
505 
506 	ASSERT(AS_WRITE_HELD(as, &as->a_lock));
507 
508 	as->a_updatedir = 1;	/* inform /proc */
509 	gethrestime(&as->a_updatetime);
510 
511 	if (seg == NULL)
512 		return (NULL);
513 
514 	t = &as->a_segtree;
515 	if (as->a_seglast == seg)
516 		as->a_seglast = NULL;
517 	as->a_lastgaphl = NULL;
518 
519 	/*
520 	 * if this segment is at an address higher than
521 	 * a_lastgap, set a_lastgap to the next segment (NULL if last segment)
522 	 */
523 	if (as->a_lastgap &&
524 	    (seg == as->a_lastgap || seg->s_base > as->a_lastgap->s_base))
525 		as->a_lastgap = AVL_NEXT(t, seg);
526 
527 	/*
528 	 * remove the segment from the seg tree
529 	 */
530 	avl_remove(t, seg);
531 
532 #ifdef VERIFY_SEGLIST
533 	as_verify(as);
534 #endif
535 	return (seg);
536 }
537 
538 /*
539  * Find a segment containing addr.
540  */
541 struct seg *
542 as_segat(struct as *as, caddr_t addr)
543 {
544 	struct seg *seg = as->a_seglast;
545 
546 	ASSERT(AS_LOCK_HELD(as, &as->a_lock));
547 
548 	if (seg != NULL && seg->s_base <= addr &&
549 	    addr < seg->s_base + seg->s_size)
550 		return (seg);
551 
552 	seg = avl_find(&as->a_segtree, &addr, NULL);
553 	return (seg);
554 }
555 
556 /*
557  * Serialize all searches for holes in an address space to
558  * prevent two or more threads from allocating the same virtual
559  * address range.  The address space must not be "read/write"
560  * locked by the caller since we may block.
561  */
562 void
563 as_rangelock(struct as *as)
564 {
565 	mutex_enter(&as->a_contents);
566 	while (AS_ISCLAIMGAP(as))
567 		cv_wait(&as->a_cv, &as->a_contents);
568 	AS_SETCLAIMGAP(as);
569 	mutex_exit(&as->a_contents);
570 }
571 
572 /*
573  * Release hold on a_state & AS_CLAIMGAP and signal any other blocked threads.
574  */
575 void
576 as_rangeunlock(struct as *as)
577 {
578 	mutex_enter(&as->a_contents);
579 	AS_CLRCLAIMGAP(as);
580 	cv_signal(&as->a_cv);
581 	mutex_exit(&as->a_contents);
582 }
583 
584 /*
585  * compar segments (or just an address) by segment address range
586  */
587 static int
588 as_segcompar(const void *x, const void *y)
589 {
590 	struct seg *a = (struct seg *)x;
591 	struct seg *b = (struct seg *)y;
592 
593 	if (a->s_base < b->s_base)
594 		return (-1);
595 	if (a->s_base >= b->s_base + b->s_size)
596 		return (1);
597 	return (0);
598 }
599 
600 
601 void
602 as_avlinit(struct as *as)
603 {
604 	avl_create(&as->a_segtree, as_segcompar, sizeof (struct seg),
605 	    offsetof(struct seg, s_tree));
606 	avl_create(&as->a_wpage, wp_compare, sizeof (struct watched_page),
607 	    offsetof(struct watched_page, wp_link));
608 }
609 
610 /*ARGSUSED*/
611 static int
612 as_constructor(void *buf, void *cdrarg, int kmflags)
613 {
614 	struct as *as = buf;
615 
616 	mutex_init(&as->a_contents, NULL, MUTEX_DEFAULT, NULL);
617 	cv_init(&as->a_cv, NULL, CV_DEFAULT, NULL);
618 	rw_init(&as->a_lock, NULL, RW_DEFAULT, NULL);
619 	as_avlinit(as);
620 	return (0);
621 }
622 
623 /*ARGSUSED1*/
624 static void
625 as_destructor(void *buf, void *cdrarg)
626 {
627 	struct as *as = buf;
628 
629 	avl_destroy(&as->a_segtree);
630 	mutex_destroy(&as->a_contents);
631 	cv_destroy(&as->a_cv);
632 	rw_destroy(&as->a_lock);
633 }
634 
635 void
636 as_init(void)
637 {
638 	as_cache = kmem_cache_create("as_cache", sizeof (struct as), 0,
639 	    as_constructor, as_destructor, NULL, NULL, NULL, 0);
640 }
641 
642 /*
643  * Allocate and initialize an address space data structure.
644  * We call hat_alloc to allow any machine dependent
645  * information in the hat structure to be initialized.
646  */
647 struct as *
648 as_alloc(void)
649 {
650 	struct as *as;
651 
652 	as = kmem_cache_alloc(as_cache, KM_SLEEP);
653 
654 	as->a_flags		= 0;
655 	as->a_vbits		= 0;
656 	as->a_hrm		= NULL;
657 	as->a_seglast		= NULL;
658 	as->a_size		= 0;
659 	as->a_resvsize		= 0;
660 	as->a_updatedir		= 0;
661 	gethrestime(&as->a_updatetime);
662 	as->a_objectdir		= NULL;
663 	as->a_sizedir		= 0;
664 	as->a_userlimit		= (caddr_t)USERLIMIT;
665 	as->a_lastgap		= NULL;
666 	as->a_lastgaphl		= NULL;
667 	as->a_callbacks		= NULL;
668 
669 	AS_LOCK_ENTER(as, &as->a_lock, RW_WRITER);
670 	as->a_hat = hat_alloc(as);	/* create hat for default system mmu */
671 	AS_LOCK_EXIT(as, &as->a_lock);
672 
673 	as->a_xhat = NULL;
674 
675 	return (as);
676 }
677 
678 /*
679  * Free an address space data structure.
680  * Need to free the hat first and then
681  * all the segments on this as and finally
682  * the space for the as struct itself.
683  */
684 void
685 as_free(struct as *as)
686 {
687 	struct hat *hat = as->a_hat;
688 	struct seg *seg, *next;
689 	int called = 0;
690 
691 top:
692 	/*
693 	 * Invoke ALL callbacks. as_do_callbacks will do one callback
694 	 * per call, and not return (-1) until the callback has completed.
695 	 * When as_do_callbacks returns zero, all callbacks have completed.
696 	 */
697 	mutex_enter(&as->a_contents);
698 	while (as->a_callbacks && as_do_callbacks(as, AS_ALL_EVENT, 0, 0))
699 		;
700 
701 	/* This will prevent new XHATs from attaching to as */
702 	if (!called)
703 		AS_SETBUSY(as);
704 	mutex_exit(&as->a_contents);
705 	AS_LOCK_ENTER(as, &as->a_lock, RW_WRITER);
706 
707 	if (!called) {
708 		called = 1;
709 		hat_free_start(hat);
710 		if (as->a_xhat != NULL)
711 			xhat_free_start_all(as);
712 	}
713 	for (seg = AS_SEGFIRST(as); seg != NULL; seg = next) {
714 		int err;
715 
716 		next = AS_SEGNEXT(as, seg);
717 retry:
718 		err = SEGOP_UNMAP(seg, seg->s_base, seg->s_size);
719 		if (err == EAGAIN) {
720 			mutex_enter(&as->a_contents);
721 			if (as->a_callbacks) {
722 				AS_LOCK_EXIT(as, &as->a_lock);
723 			} else if (!AS_ISNOUNMAPWAIT(as)) {
724 				/*
725 				 * Memory is currently locked. Wait for a
726 				 * cv_signal that it has been unlocked, then
727 				 * try the operation again.
728 				 */
729 				if (AS_ISUNMAPWAIT(as) == 0)
730 					cv_broadcast(&as->a_cv);
731 				AS_SETUNMAPWAIT(as);
732 				AS_LOCK_EXIT(as, &as->a_lock);
733 				while (AS_ISUNMAPWAIT(as))
734 					cv_wait(&as->a_cv, &as->a_contents);
735 			} else {
736 				/*
737 				 * We may have raced with
738 				 * segvn_reclaim()/segspt_reclaim(). In this
739 				 * case clean nounmapwait flag and retry since
740 				 * softlockcnt in this segment may be already
741 				 * 0.  We don't drop as writer lock so our
742 				 * number of retries without sleeping should
743 				 * be very small. See segvn_reclaim() for
744 				 * more comments.
745 				 */
746 				AS_CLRNOUNMAPWAIT(as);
747 				mutex_exit(&as->a_contents);
748 				goto retry;
749 			}
750 			mutex_exit(&as->a_contents);
751 			goto top;
752 		} else {
753 			/*
754 			 * We do not expect any other error return at this
755 			 * time. This is similar to an ASSERT in seg_unmap()
756 			 */
757 			ASSERT(err == 0);
758 		}
759 	}
760 	hat_free_end(hat);
761 	if (as->a_xhat != NULL)
762 		xhat_free_end_all(as);
763 	AS_LOCK_EXIT(as, &as->a_lock);
764 
765 	/* /proc stuff */
766 	ASSERT(avl_numnodes(&as->a_wpage) == 0);
767 	if (as->a_objectdir) {
768 		kmem_free(as->a_objectdir, as->a_sizedir * sizeof (vnode_t *));
769 		as->a_objectdir = NULL;
770 		as->a_sizedir = 0;
771 	}
772 
773 	/*
774 	 * Free the struct as back to kmem.  Assert it has no segments.
775 	 */
776 	ASSERT(avl_numnodes(&as->a_segtree) == 0);
777 	kmem_cache_free(as_cache, as);
778 }
779 
780 int
781 as_dup(struct as *as, struct proc *forkedproc)
782 {
783 	struct as *newas;
784 	struct seg *seg, *newseg;
785 	size_t	purgesize = 0;
786 	int error;
787 
788 	AS_LOCK_ENTER(as, &as->a_lock, RW_WRITER);
789 	as_clearwatch(as);
790 	newas = as_alloc();
791 	newas->a_userlimit = as->a_userlimit;
792 	newas->a_proc = forkedproc;
793 
794 	AS_LOCK_ENTER(newas, &newas->a_lock, RW_WRITER);
795 
796 	/* This will prevent new XHATs from attaching */
797 	mutex_enter(&as->a_contents);
798 	AS_SETBUSY(as);
799 	mutex_exit(&as->a_contents);
800 	mutex_enter(&newas->a_contents);
801 	AS_SETBUSY(newas);
802 	mutex_exit(&newas->a_contents);
803 
804 	(void) hat_dup(as->a_hat, newas->a_hat, NULL, 0, HAT_DUP_SRD);
805 
806 	for (seg = AS_SEGFIRST(as); seg != NULL; seg = AS_SEGNEXT(as, seg)) {
807 
808 		if (seg->s_flags & S_PURGE) {
809 			purgesize += seg->s_size;
810 			continue;
811 		}
812 
813 		newseg = seg_alloc(newas, seg->s_base, seg->s_size);
814 		if (newseg == NULL) {
815 			AS_LOCK_EXIT(newas, &newas->a_lock);
816 			as_setwatch(as);
817 			mutex_enter(&as->a_contents);
818 			AS_CLRBUSY(as);
819 			mutex_exit(&as->a_contents);
820 			AS_LOCK_EXIT(as, &as->a_lock);
821 			as_free(newas);
822 			return (-1);
823 		}
824 		if ((error = SEGOP_DUP(seg, newseg)) != 0) {
825 			/*
826 			 * We call seg_free() on the new seg
827 			 * because the segment is not set up
828 			 * completely; i.e. it has no ops.
829 			 */
830 			as_setwatch(as);
831 			mutex_enter(&as->a_contents);
832 			AS_CLRBUSY(as);
833 			mutex_exit(&as->a_contents);
834 			AS_LOCK_EXIT(as, &as->a_lock);
835 			seg_free(newseg);
836 			AS_LOCK_EXIT(newas, &newas->a_lock);
837 			as_free(newas);
838 			return (error);
839 		}
840 		newas->a_size += seg->s_size;
841 	}
842 	newas->a_resvsize = as->a_resvsize - purgesize;
843 
844 	error = hat_dup(as->a_hat, newas->a_hat, NULL, 0, HAT_DUP_ALL);
845 	if (as->a_xhat != NULL)
846 		error |= xhat_dup_all(as, newas, NULL, 0, HAT_DUP_ALL);
847 
848 	mutex_enter(&newas->a_contents);
849 	AS_CLRBUSY(newas);
850 	mutex_exit(&newas->a_contents);
851 	AS_LOCK_EXIT(newas, &newas->a_lock);
852 
853 	as_setwatch(as);
854 	mutex_enter(&as->a_contents);
855 	AS_CLRBUSY(as);
856 	mutex_exit(&as->a_contents);
857 	AS_LOCK_EXIT(as, &as->a_lock);
858 	if (error != 0) {
859 		as_free(newas);
860 		return (error);
861 	}
862 	forkedproc->p_as = newas;
863 	return (0);
864 }
865 
866 /*
867  * Handle a ``fault'' at addr for size bytes.
868  */
869 faultcode_t
870 as_fault(struct hat *hat, struct as *as, caddr_t addr, size_t size,
871 	enum fault_type type, enum seg_rw rw)
872 {
873 	struct seg *seg;
874 	caddr_t raddr;			/* rounded down addr */
875 	size_t rsize;			/* rounded up size */
876 	size_t ssize;
877 	faultcode_t res = 0;
878 	caddr_t addrsav;
879 	struct seg *segsav;
880 	int as_lock_held;
881 	klwp_t *lwp = ttolwp(curthread);
882 	int is_xhat = 0;
883 	int holding_wpage = 0;
884 	extern struct seg_ops   segdev_ops;
885 
886 
887 
888 	if (as->a_hat != hat) {
889 		/* This must be an XHAT then */
890 		is_xhat = 1;
891 
892 		if ((type != F_INVAL) || (as == &kas))
893 			return (FC_NOSUPPORT);
894 	}
895 
896 retry:
897 	if (!is_xhat) {
898 		/*
899 		 * Indicate that the lwp is not to be stopped while waiting
900 		 * for a pagefault.  This is to avoid deadlock while debugging
901 		 * a process via /proc over NFS (in particular).
902 		 */
903 		if (lwp != NULL)
904 			lwp->lwp_nostop++;
905 
906 		/*
907 		 * same length must be used when we softlock and softunlock.
908 		 * We don't support softunlocking lengths less than
909 		 * the original length when there is largepage support.
910 		 * See seg_dev.c for more comments.
911 		 */
912 		switch (type) {
913 
914 		case F_SOFTLOCK:
915 			CPU_STATS_ADD_K(vm, softlock, 1);
916 			break;
917 
918 		case F_SOFTUNLOCK:
919 			break;
920 
921 		case F_PROT:
922 			CPU_STATS_ADD_K(vm, prot_fault, 1);
923 			break;
924 
925 		case F_INVAL:
926 			CPU_STATS_ENTER_K();
927 			CPU_STATS_ADDQ(CPU, vm, as_fault, 1);
928 			if (as == &kas)
929 				CPU_STATS_ADDQ(CPU, vm, kernel_asflt, 1);
930 			CPU_STATS_EXIT_K();
931 			break;
932 		}
933 	}
934 
935 	/* Kernel probe */
936 	TNF_PROBE_3(address_fault, "vm pagefault", /* CSTYLED */,
937 	    tnf_opaque,	address,	addr,
938 	    tnf_fault_type,	fault_type,	type,
939 	    tnf_seg_access,	access,		rw);
940 
941 	raddr = (caddr_t)((uintptr_t)addr & (uintptr_t)PAGEMASK);
942 	rsize = (((size_t)(addr + size) + PAGEOFFSET) & PAGEMASK) -
943 	    (size_t)raddr;
944 
945 	/*
946 	 * XXX -- Don't grab the as lock for segkmap. We should grab it for
947 	 * correctness, but then we could be stuck holding this lock for
948 	 * a LONG time if the fault needs to be resolved on a slow
949 	 * filesystem, and then no-one will be able to exec new commands,
950 	 * as exec'ing requires the write lock on the as.
951 	 */
952 	if (as == &kas && segkmap && segkmap->s_base <= raddr &&
953 	    raddr + size < segkmap->s_base + segkmap->s_size) {
954 		/*
955 		 * if (as==&kas), this can't be XHAT: we've already returned
956 		 * FC_NOSUPPORT.
957 		 */
958 		seg = segkmap;
959 		as_lock_held = 0;
960 	} else {
961 		AS_LOCK_ENTER(as, &as->a_lock, RW_READER);
962 		if (is_xhat && avl_numnodes(&as->a_wpage) != 0) {
963 			/*
964 			 * Grab and hold the writers' lock on the as
965 			 * if the fault is to a watched page.
966 			 * This will keep CPUs from "peeking" at the
967 			 * address range while we're temporarily boosting
968 			 * the permissions for the XHAT device to
969 			 * resolve the fault in the segment layer.
970 			 *
971 			 * We could check whether faulted address
972 			 * is within a watched page and only then grab
973 			 * the writer lock, but this is simpler.
974 			 */
975 			AS_LOCK_EXIT(as, &as->a_lock);
976 			AS_LOCK_ENTER(as, &as->a_lock, RW_WRITER);
977 		}
978 
979 		seg = as_segat(as, raddr);
980 		if (seg == NULL) {
981 			AS_LOCK_EXIT(as, &as->a_lock);
982 			if ((lwp != NULL) && (!is_xhat))
983 				lwp->lwp_nostop--;
984 			return (FC_NOMAP);
985 		}
986 
987 		as_lock_held = 1;
988 	}
989 
990 	addrsav = raddr;
991 	segsav = seg;
992 
993 	for (; rsize != 0; rsize -= ssize, raddr += ssize) {
994 		if (raddr >= seg->s_base + seg->s_size) {
995 			seg = AS_SEGNEXT(as, seg);
996 			if (seg == NULL || raddr != seg->s_base) {
997 				res = FC_NOMAP;
998 				break;
999 			}
1000 		}
1001 		if (raddr + rsize > seg->s_base + seg->s_size)
1002 			ssize = seg->s_base + seg->s_size - raddr;
1003 		else
1004 			ssize = rsize;
1005 
1006 		if (!is_xhat || (seg->s_ops != &segdev_ops)) {
1007 
1008 			if (is_xhat && avl_numnodes(&as->a_wpage) != 0 &&
1009 			    pr_is_watchpage_as(raddr, rw, as)) {
1010 				/*
1011 				 * Handle watch pages.  If we're faulting on a
1012 				 * watched page from an X-hat, we have to
1013 				 * restore the original permissions while we
1014 				 * handle the fault.
1015 				 */
1016 				as_clearwatch(as);
1017 				holding_wpage = 1;
1018 			}
1019 
1020 			res = SEGOP_FAULT(hat, seg, raddr, ssize, type, rw);
1021 
1022 			/* Restore watchpoints */
1023 			if (holding_wpage) {
1024 				as_setwatch(as);
1025 				holding_wpage = 0;
1026 			}
1027 
1028 			if (res != 0)
1029 				break;
1030 		} else {
1031 			/* XHAT does not support seg_dev */
1032 			res = FC_NOSUPPORT;
1033 			break;
1034 		}
1035 	}
1036 
1037 	/*
1038 	 * If we were SOFTLOCKing and encountered a failure,
1039 	 * we must SOFTUNLOCK the range we already did. (Maybe we
1040 	 * should just panic if we are SOFTLOCKing or even SOFTUNLOCKing
1041 	 * right here...)
1042 	 */
1043 	if (res != 0 && type == F_SOFTLOCK) {
1044 		for (seg = segsav; addrsav < raddr; addrsav += ssize) {
1045 			if (addrsav >= seg->s_base + seg->s_size)
1046 				seg = AS_SEGNEXT(as, seg);
1047 			ASSERT(seg != NULL);
1048 			/*
1049 			 * Now call the fault routine again to perform the
1050 			 * unlock using S_OTHER instead of the rw variable
1051 			 * since we never got a chance to touch the pages.
1052 			 */
1053 			if (raddr > seg->s_base + seg->s_size)
1054 				ssize = seg->s_base + seg->s_size - addrsav;
1055 			else
1056 				ssize = raddr - addrsav;
1057 			(void) SEGOP_FAULT(hat, seg, addrsav, ssize,
1058 			    F_SOFTUNLOCK, S_OTHER);
1059 		}
1060 	}
1061 	if (as_lock_held)
1062 		AS_LOCK_EXIT(as, &as->a_lock);
1063 	if ((lwp != NULL) && (!is_xhat))
1064 		lwp->lwp_nostop--;
1065 
1066 	/*
1067 	 * If the lower levels returned EDEADLK for a fault,
1068 	 * It means that we should retry the fault.  Let's wait
1069 	 * a bit also to let the deadlock causing condition clear.
1070 	 * This is part of a gross hack to work around a design flaw
1071 	 * in the ufs/sds logging code and should go away when the
1072 	 * logging code is re-designed to fix the problem. See bug
1073 	 * 4125102 for details of the problem.
1074 	 */
1075 	if (FC_ERRNO(res) == EDEADLK) {
1076 		delay(deadlk_wait);
1077 		res = 0;
1078 		goto retry;
1079 	}
1080 	return (res);
1081 }
1082 
1083 
1084 
1085 /*
1086  * Asynchronous ``fault'' at addr for size bytes.
1087  */
1088 faultcode_t
1089 as_faulta(struct as *as, caddr_t addr, size_t size)
1090 {
1091 	struct seg *seg;
1092 	caddr_t raddr;			/* rounded down addr */
1093 	size_t rsize;			/* rounded up size */
1094 	faultcode_t res = 0;
1095 	klwp_t *lwp = ttolwp(curthread);
1096 
1097 retry:
1098 	/*
1099 	 * Indicate that the lwp is not to be stopped while waiting
1100 	 * for a pagefault.  This is to avoid deadlock while debugging
1101 	 * a process via /proc over NFS (in particular).
1102 	 */
1103 	if (lwp != NULL)
1104 		lwp->lwp_nostop++;
1105 
1106 	raddr = (caddr_t)((uintptr_t)addr & (uintptr_t)PAGEMASK);
1107 	rsize = (((size_t)(addr + size) + PAGEOFFSET) & PAGEMASK) -
1108 	    (size_t)raddr;
1109 
1110 	AS_LOCK_ENTER(as, &as->a_lock, RW_READER);
1111 	seg = as_segat(as, raddr);
1112 	if (seg == NULL) {
1113 		AS_LOCK_EXIT(as, &as->a_lock);
1114 		if (lwp != NULL)
1115 			lwp->lwp_nostop--;
1116 		return (FC_NOMAP);
1117 	}
1118 
1119 	for (; rsize != 0; rsize -= PAGESIZE, raddr += PAGESIZE) {
1120 		if (raddr >= seg->s_base + seg->s_size) {
1121 			seg = AS_SEGNEXT(as, seg);
1122 			if (seg == NULL || raddr != seg->s_base) {
1123 				res = FC_NOMAP;
1124 				break;
1125 			}
1126 		}
1127 		res = SEGOP_FAULTA(seg, raddr);
1128 		if (res != 0)
1129 			break;
1130 	}
1131 	AS_LOCK_EXIT(as, &as->a_lock);
1132 	if (lwp != NULL)
1133 		lwp->lwp_nostop--;
1134 	/*
1135 	 * If the lower levels returned EDEADLK for a fault,
1136 	 * It means that we should retry the fault.  Let's wait
1137 	 * a bit also to let the deadlock causing condition clear.
1138 	 * This is part of a gross hack to work around a design flaw
1139 	 * in the ufs/sds logging code and should go away when the
1140 	 * logging code is re-designed to fix the problem. See bug
1141 	 * 4125102 for details of the problem.
1142 	 */
1143 	if (FC_ERRNO(res) == EDEADLK) {
1144 		delay(deadlk_wait);
1145 		res = 0;
1146 		goto retry;
1147 	}
1148 	return (res);
1149 }
1150 
1151 /*
1152  * Set the virtual mapping for the interval from [addr : addr + size)
1153  * in address space `as' to have the specified protection.
1154  * It is ok for the range to cross over several segments,
1155  * as long as they are contiguous.
1156  */
1157 int
1158 as_setprot(struct as *as, caddr_t addr, size_t size, uint_t prot)
1159 {
1160 	struct seg *seg;
1161 	struct as_callback *cb;
1162 	size_t ssize;
1163 	caddr_t raddr;			/* rounded down addr */
1164 	size_t rsize;			/* rounded up size */
1165 	int error = 0, writer = 0;
1166 	caddr_t saveraddr;
1167 	size_t saversize;
1168 
1169 setprot_top:
1170 	raddr = (caddr_t)((uintptr_t)addr & (uintptr_t)PAGEMASK);
1171 	rsize = (((size_t)(addr + size) + PAGEOFFSET) & PAGEMASK) -
1172 	    (size_t)raddr;
1173 
1174 	if (raddr + rsize < raddr)		/* check for wraparound */
1175 		return (ENOMEM);
1176 
1177 	saveraddr = raddr;
1178 	saversize = rsize;
1179 
1180 	/*
1181 	 * Normally we only lock the as as a reader. But
1182 	 * if due to setprot the segment driver needs to split
1183 	 * a segment it will return IE_RETRY. Therefore we re-acquire
1184 	 * the as lock as a writer so the segment driver can change
1185 	 * the seg list. Also the segment driver will return IE_RETRY
1186 	 * after it has changed the segment list so we therefore keep
1187 	 * locking as a writer. Since these opeartions should be rare
1188 	 * want to only lock as a writer when necessary.
1189 	 */
1190 	if (writer || avl_numnodes(&as->a_wpage) != 0) {
1191 		AS_LOCK_ENTER(as, &as->a_lock, RW_WRITER);
1192 	} else {
1193 		AS_LOCK_ENTER(as, &as->a_lock, RW_READER);
1194 	}
1195 
1196 	as_clearwatchprot(as, raddr, rsize);
1197 	seg = as_segat(as, raddr);
1198 	if (seg == NULL) {
1199 		as_setwatch(as);
1200 		AS_LOCK_EXIT(as, &as->a_lock);
1201 		return (ENOMEM);
1202 	}
1203 
1204 	for (; rsize != 0; rsize -= ssize, raddr += ssize) {
1205 		if (raddr >= seg->s_base + seg->s_size) {
1206 			seg = AS_SEGNEXT(as, seg);
1207 			if (seg == NULL || raddr != seg->s_base) {
1208 				error = ENOMEM;
1209 				break;
1210 			}
1211 		}
1212 		if ((raddr + rsize) > (seg->s_base + seg->s_size))
1213 			ssize = seg->s_base + seg->s_size - raddr;
1214 		else
1215 			ssize = rsize;
1216 retry:
1217 		error = SEGOP_SETPROT(seg, raddr, ssize, prot);
1218 
1219 		if (error == IE_NOMEM) {
1220 			error = EAGAIN;
1221 			break;
1222 		}
1223 
1224 		if (error == IE_RETRY) {
1225 			AS_LOCK_EXIT(as, &as->a_lock);
1226 			writer = 1;
1227 			goto setprot_top;
1228 		}
1229 
1230 		if (error == EAGAIN) {
1231 			/*
1232 			 * Make sure we have a_lock as writer.
1233 			 */
1234 			if (writer == 0) {
1235 				AS_LOCK_EXIT(as, &as->a_lock);
1236 				writer = 1;
1237 				goto setprot_top;
1238 			}
1239 
1240 			/*
1241 			 * Memory is currently locked.  It must be unlocked
1242 			 * before this operation can succeed through a retry.
1243 			 * The possible reasons for locked memory and
1244 			 * corresponding strategies for unlocking are:
1245 			 * (1) Normal I/O
1246 			 *	wait for a signal that the I/O operation
1247 			 *	has completed and the memory is unlocked.
1248 			 * (2) Asynchronous I/O
1249 			 *	The aio subsystem does not unlock pages when
1250 			 *	the I/O is completed. Those pages are unlocked
1251 			 *	when the application calls aiowait/aioerror.
1252 			 *	So, to prevent blocking forever, cv_broadcast()
1253 			 *	is done to wake up aio_cleanup_thread.
1254 			 *	Subsequently, segvn_reclaim will be called, and
1255 			 *	that will do AS_CLRUNMAPWAIT() and wake us up.
1256 			 * (3) Long term page locking:
1257 			 *	Drivers intending to have pages locked for a
1258 			 *	period considerably longer than for normal I/O
1259 			 *	(essentially forever) may have registered for a
1260 			 *	callback so they may unlock these pages on
1261 			 *	request. This is needed to allow this operation
1262 			 *	to succeed. Each entry on the callback list is
1263 			 *	examined. If the event or address range pertains
1264 			 *	the callback is invoked (unless it already is in
1265 			 *	progress). The a_contents lock must be dropped
1266 			 *	before the callback, so only one callback can
1267 			 *	be done at a time. Go to the top and do more
1268 			 *	until zero is returned. If zero is returned,
1269 			 *	either there were no callbacks for this event
1270 			 *	or they were already in progress.
1271 			 */
1272 			mutex_enter(&as->a_contents);
1273 			if (as->a_callbacks &&
1274 			    (cb = as_find_callback(as, AS_SETPROT_EVENT,
1275 			    seg->s_base, seg->s_size))) {
1276 				AS_LOCK_EXIT(as, &as->a_lock);
1277 				as_execute_callback(as, cb, AS_SETPROT_EVENT);
1278 			} else if (!AS_ISNOUNMAPWAIT(as)) {
1279 				if (AS_ISUNMAPWAIT(as) == 0)
1280 					cv_broadcast(&as->a_cv);
1281 				AS_SETUNMAPWAIT(as);
1282 				AS_LOCK_EXIT(as, &as->a_lock);
1283 				while (AS_ISUNMAPWAIT(as))
1284 					cv_wait(&as->a_cv, &as->a_contents);
1285 			} else {
1286 				/*
1287 				 * We may have raced with
1288 				 * segvn_reclaim()/segspt_reclaim(). In this
1289 				 * case clean nounmapwait flag and retry since
1290 				 * softlockcnt in this segment may be already
1291 				 * 0.  We don't drop as writer lock so our
1292 				 * number of retries without sleeping should
1293 				 * be very small. See segvn_reclaim() for
1294 				 * more comments.
1295 				 */
1296 				AS_CLRNOUNMAPWAIT(as);
1297 				mutex_exit(&as->a_contents);
1298 				goto retry;
1299 			}
1300 			mutex_exit(&as->a_contents);
1301 			goto setprot_top;
1302 		} else if (error != 0)
1303 			break;
1304 	}
1305 	if (error != 0) {
1306 		as_setwatch(as);
1307 	} else {
1308 		as_setwatchprot(as, saveraddr, saversize, prot);
1309 	}
1310 	AS_LOCK_EXIT(as, &as->a_lock);
1311 	return (error);
1312 }
1313 
1314 /*
1315  * Check to make sure that the interval [addr, addr + size)
1316  * in address space `as' has at least the specified protection.
1317  * It is ok for the range to cross over several segments, as long
1318  * as they are contiguous.
1319  */
1320 int
1321 as_checkprot(struct as *as, caddr_t addr, size_t size, uint_t prot)
1322 {
1323 	struct seg *seg;
1324 	size_t ssize;
1325 	caddr_t raddr;			/* rounded down addr */
1326 	size_t rsize;			/* rounded up size */
1327 	int error = 0;
1328 
1329 	raddr = (caddr_t)((uintptr_t)addr & (uintptr_t)PAGEMASK);
1330 	rsize = (((size_t)(addr + size) + PAGEOFFSET) & PAGEMASK) -
1331 	    (size_t)raddr;
1332 
1333 	if (raddr + rsize < raddr)		/* check for wraparound */
1334 		return (ENOMEM);
1335 
1336 	/*
1337 	 * This is ugly as sin...
1338 	 * Normally, we only acquire the address space readers lock.
1339 	 * However, if the address space has watchpoints present,
1340 	 * we must acquire the writer lock on the address space for
1341 	 * the benefit of as_clearwatchprot() and as_setwatchprot().
1342 	 */
1343 	if (avl_numnodes(&as->a_wpage) != 0)
1344 		AS_LOCK_ENTER(as, &as->a_lock, RW_WRITER);
1345 	else
1346 		AS_LOCK_ENTER(as, &as->a_lock, RW_READER);
1347 	as_clearwatchprot(as, raddr, rsize);
1348 	seg = as_segat(as, raddr);
1349 	if (seg == NULL) {
1350 		as_setwatch(as);
1351 		AS_LOCK_EXIT(as, &as->a_lock);
1352 		return (ENOMEM);
1353 	}
1354 
1355 	for (; rsize != 0; rsize -= ssize, raddr += ssize) {
1356 		if (raddr >= seg->s_base + seg->s_size) {
1357 			seg = AS_SEGNEXT(as, seg);
1358 			if (seg == NULL || raddr != seg->s_base) {
1359 				error = ENOMEM;
1360 				break;
1361 			}
1362 		}
1363 		if ((raddr + rsize) > (seg->s_base + seg->s_size))
1364 			ssize = seg->s_base + seg->s_size - raddr;
1365 		else
1366 			ssize = rsize;
1367 
1368 		error = SEGOP_CHECKPROT(seg, raddr, ssize, prot);
1369 		if (error != 0)
1370 			break;
1371 	}
1372 	as_setwatch(as);
1373 	AS_LOCK_EXIT(as, &as->a_lock);
1374 	return (error);
1375 }
1376 
1377 int
1378 as_unmap(struct as *as, caddr_t addr, size_t size)
1379 {
1380 	struct seg *seg, *seg_next;
1381 	struct as_callback *cb;
1382 	caddr_t raddr, eaddr;
1383 	size_t ssize, rsize = 0;
1384 	int err;
1385 
1386 top:
1387 	raddr = (caddr_t)((uintptr_t)addr & (uintptr_t)PAGEMASK);
1388 	eaddr = (caddr_t)(((uintptr_t)(addr + size) + PAGEOFFSET) &
1389 	    (uintptr_t)PAGEMASK);
1390 
1391 	AS_LOCK_ENTER(as, &as->a_lock, RW_WRITER);
1392 
1393 	as->a_updatedir = 1;	/* inform /proc */
1394 	gethrestime(&as->a_updatetime);
1395 
1396 	/*
1397 	 * Use as_findseg to find the first segment in the range, then
1398 	 * step through the segments in order, following s_next.
1399 	 */
1400 	as_clearwatchprot(as, raddr, eaddr - raddr);
1401 
1402 	for (seg = as_findseg(as, raddr, 0); seg != NULL; seg = seg_next) {
1403 		if (eaddr <= seg->s_base)
1404 			break;		/* eaddr was in a gap; all done */
1405 
1406 		/* this is implied by the test above */
1407 		ASSERT(raddr < eaddr);
1408 
1409 		if (raddr < seg->s_base)
1410 			raddr = seg->s_base; 	/* raddr was in a gap */
1411 
1412 		if (eaddr > (seg->s_base + seg->s_size))
1413 			ssize = seg->s_base + seg->s_size - raddr;
1414 		else
1415 			ssize = eaddr - raddr;
1416 
1417 		/*
1418 		 * Save next segment pointer since seg can be
1419 		 * destroyed during the segment unmap operation.
1420 		 */
1421 		seg_next = AS_SEGNEXT(as, seg);
1422 
1423 		/*
1424 		 * We didn't count /dev/null mappings, so ignore them here.
1425 		 * We'll handle MAP_NORESERVE cases in segvn_unmap(). (Again,
1426 		 * we have to do this check here while we have seg.)
1427 		 */
1428 		rsize = 0;
1429 		if (!SEG_IS_DEVNULL_MAPPING(seg) &&
1430 		    !SEG_IS_PARTIAL_RESV(seg))
1431 			rsize = ssize;
1432 
1433 retry:
1434 		err = SEGOP_UNMAP(seg, raddr, ssize);
1435 		if (err == EAGAIN) {
1436 			/*
1437 			 * Memory is currently locked.  It must be unlocked
1438 			 * before this operation can succeed through a retry.
1439 			 * The possible reasons for locked memory and
1440 			 * corresponding strategies for unlocking are:
1441 			 * (1) Normal I/O
1442 			 *	wait for a signal that the I/O operation
1443 			 *	has completed and the memory is unlocked.
1444 			 * (2) Asynchronous I/O
1445 			 *	The aio subsystem does not unlock pages when
1446 			 *	the I/O is completed. Those pages are unlocked
1447 			 *	when the application calls aiowait/aioerror.
1448 			 *	So, to prevent blocking forever, cv_broadcast()
1449 			 *	is done to wake up aio_cleanup_thread.
1450 			 *	Subsequently, segvn_reclaim will be called, and
1451 			 *	that will do AS_CLRUNMAPWAIT() and wake us up.
1452 			 * (3) Long term page locking:
1453 			 *	Drivers intending to have pages locked for a
1454 			 *	period considerably longer than for normal I/O
1455 			 *	(essentially forever) may have registered for a
1456 			 *	callback so they may unlock these pages on
1457 			 *	request. This is needed to allow this operation
1458 			 *	to succeed. Each entry on the callback list is
1459 			 *	examined. If the event or address range pertains
1460 			 *	the callback is invoked (unless it already is in
1461 			 *	progress). The a_contents lock must be dropped
1462 			 *	before the callback, so only one callback can
1463 			 *	be done at a time. Go to the top and do more
1464 			 *	until zero is returned. If zero is returned,
1465 			 *	either there were no callbacks for this event
1466 			 *	or they were already in progress.
1467 			 */
1468 			mutex_enter(&as->a_contents);
1469 			if (as->a_callbacks &&
1470 			    (cb = as_find_callback(as, AS_UNMAP_EVENT,
1471 			    seg->s_base, seg->s_size))) {
1472 				AS_LOCK_EXIT(as, &as->a_lock);
1473 				as_execute_callback(as, cb, AS_UNMAP_EVENT);
1474 			} else if (!AS_ISNOUNMAPWAIT(as)) {
1475 				if (AS_ISUNMAPWAIT(as) == 0)
1476 					cv_broadcast(&as->a_cv);
1477 				AS_SETUNMAPWAIT(as);
1478 				AS_LOCK_EXIT(as, &as->a_lock);
1479 				while (AS_ISUNMAPWAIT(as))
1480 					cv_wait(&as->a_cv, &as->a_contents);
1481 			} else {
1482 				/*
1483 				 * We may have raced with
1484 				 * segvn_reclaim()/segspt_reclaim(). In this
1485 				 * case clean nounmapwait flag and retry since
1486 				 * softlockcnt in this segment may be already
1487 				 * 0.  We don't drop as writer lock so our
1488 				 * number of retries without sleeping should
1489 				 * be very small. See segvn_reclaim() for
1490 				 * more comments.
1491 				 */
1492 				AS_CLRNOUNMAPWAIT(as);
1493 				mutex_exit(&as->a_contents);
1494 				goto retry;
1495 			}
1496 			mutex_exit(&as->a_contents);
1497 			goto top;
1498 		} else if (err == IE_RETRY) {
1499 			AS_LOCK_EXIT(as, &as->a_lock);
1500 			goto top;
1501 		} else if (err) {
1502 			as_setwatch(as);
1503 			AS_LOCK_EXIT(as, &as->a_lock);
1504 			return (-1);
1505 		}
1506 
1507 		as->a_size -= ssize;
1508 		if (rsize)
1509 			as->a_resvsize -= rsize;
1510 		raddr += ssize;
1511 	}
1512 	AS_LOCK_EXIT(as, &as->a_lock);
1513 	return (0);
1514 }
1515 
1516 static int
1517 as_map_segvn_segs(struct as *as, caddr_t addr, size_t size, uint_t szcvec,
1518     int (*crfp)(), struct segvn_crargs *vn_a, int *segcreated)
1519 {
1520 	uint_t szc;
1521 	uint_t nszc;
1522 	int error;
1523 	caddr_t a;
1524 	caddr_t eaddr;
1525 	size_t segsize;
1526 	struct seg *seg;
1527 	size_t pgsz;
1528 	int do_off = (vn_a->vp != NULL || vn_a->amp != NULL);
1529 	uint_t save_szcvec;
1530 
1531 	ASSERT(AS_WRITE_HELD(as, &as->a_lock));
1532 	ASSERT(IS_P2ALIGNED(addr, PAGESIZE));
1533 	ASSERT(IS_P2ALIGNED(size, PAGESIZE));
1534 	ASSERT(vn_a->vp == NULL || vn_a->amp == NULL);
1535 	if (!do_off) {
1536 		vn_a->offset = 0;
1537 	}
1538 
1539 	if (szcvec <= 1) {
1540 		seg = seg_alloc(as, addr, size);
1541 		if (seg == NULL) {
1542 			return (ENOMEM);
1543 		}
1544 		vn_a->szc = 0;
1545 		error = (*crfp)(seg, vn_a);
1546 		if (error != 0) {
1547 			seg_free(seg);
1548 		} else {
1549 			as->a_size += size;
1550 			as->a_resvsize += size;
1551 		}
1552 		return (error);
1553 	}
1554 
1555 	eaddr = addr + size;
1556 	save_szcvec = szcvec;
1557 	szcvec >>= 1;
1558 	szc = 0;
1559 	nszc = 0;
1560 	while (szcvec) {
1561 		if ((szcvec & 0x1) == 0) {
1562 			nszc++;
1563 			szcvec >>= 1;
1564 			continue;
1565 		}
1566 		nszc++;
1567 		pgsz = page_get_pagesize(nszc);
1568 		a = (caddr_t)P2ROUNDUP((uintptr_t)addr, pgsz);
1569 		if (a != addr) {
1570 			ASSERT(a < eaddr);
1571 			segsize = a - addr;
1572 			seg = seg_alloc(as, addr, segsize);
1573 			if (seg == NULL) {
1574 				return (ENOMEM);
1575 			}
1576 			vn_a->szc = szc;
1577 			error = (*crfp)(seg, vn_a);
1578 			if (error != 0) {
1579 				seg_free(seg);
1580 				return (error);
1581 			}
1582 			as->a_size += segsize;
1583 			as->a_resvsize += segsize;
1584 			*segcreated = 1;
1585 			if (do_off) {
1586 				vn_a->offset += segsize;
1587 			}
1588 			addr = a;
1589 		}
1590 		szc = nszc;
1591 		szcvec >>= 1;
1592 	}
1593 
1594 	ASSERT(addr < eaddr);
1595 	szcvec = save_szcvec | 1; /* add 8K pages */
1596 	while (szcvec) {
1597 		a = (caddr_t)P2ALIGN((uintptr_t)eaddr, pgsz);
1598 		ASSERT(a >= addr);
1599 		if (a != addr) {
1600 			segsize = a - addr;
1601 			seg = seg_alloc(as, addr, segsize);
1602 			if (seg == NULL) {
1603 				return (ENOMEM);
1604 			}
1605 			vn_a->szc = szc;
1606 			error = (*crfp)(seg, vn_a);
1607 			if (error != 0) {
1608 				seg_free(seg);
1609 				return (error);
1610 			}
1611 			as->a_size += segsize;
1612 			as->a_resvsize += segsize;
1613 			*segcreated = 1;
1614 			if (do_off) {
1615 				vn_a->offset += segsize;
1616 			}
1617 			addr = a;
1618 		}
1619 		szcvec &= ~(1 << szc);
1620 		if (szcvec) {
1621 			szc = highbit(szcvec) - 1;
1622 			pgsz = page_get_pagesize(szc);
1623 		}
1624 	}
1625 	ASSERT(addr == eaddr);
1626 
1627 	return (0);
1628 }
1629 
1630 static int
1631 as_map_vnsegs(struct as *as, caddr_t addr, size_t size,
1632     int (*crfp)(), struct segvn_crargs *vn_a, int *segcreated)
1633 {
1634 	uint_t mapflags = vn_a->flags & (MAP_TEXT | MAP_INITDATA);
1635 	int type = (vn_a->type == MAP_SHARED) ? MAPPGSZC_SHM : MAPPGSZC_PRIVM;
1636 	uint_t szcvec = map_pgszcvec(addr, size, (uintptr_t)addr, mapflags,
1637 	    type, 0);
1638 	int error;
1639 	struct seg *seg;
1640 	struct vattr va;
1641 	u_offset_t eoff;
1642 	size_t save_size = 0;
1643 	extern size_t textrepl_size_thresh;
1644 
1645 	ASSERT(AS_WRITE_HELD(as, &as->a_lock));
1646 	ASSERT(IS_P2ALIGNED(addr, PAGESIZE));
1647 	ASSERT(IS_P2ALIGNED(size, PAGESIZE));
1648 	ASSERT(vn_a->vp != NULL);
1649 	ASSERT(vn_a->amp == NULL);
1650 
1651 again:
1652 	if (szcvec <= 1) {
1653 		seg = seg_alloc(as, addr, size);
1654 		if (seg == NULL) {
1655 			return (ENOMEM);
1656 		}
1657 		vn_a->szc = 0;
1658 		error = (*crfp)(seg, vn_a);
1659 		if (error != 0) {
1660 			seg_free(seg);
1661 		} else {
1662 			as->a_size += size;
1663 			as->a_resvsize += size;
1664 		}
1665 		return (error);
1666 	}
1667 
1668 	va.va_mask = AT_SIZE;
1669 	if (VOP_GETATTR(vn_a->vp, &va, ATTR_HINT, vn_a->cred, NULL) != 0) {
1670 		szcvec = 0;
1671 		goto again;
1672 	}
1673 	eoff = vn_a->offset & PAGEMASK;
1674 	if (eoff >= va.va_size) {
1675 		szcvec = 0;
1676 		goto again;
1677 	}
1678 	eoff += size;
1679 	if (btopr(va.va_size) < btopr(eoff)) {
1680 		save_size = size;
1681 		size = va.va_size - (vn_a->offset & PAGEMASK);
1682 		size = P2ROUNDUP_TYPED(size, PAGESIZE, size_t);
1683 		szcvec = map_pgszcvec(addr, size, (uintptr_t)addr, mapflags,
1684 		    type, 0);
1685 		if (szcvec <= 1) {
1686 			size = save_size;
1687 			goto again;
1688 		}
1689 	}
1690 
1691 	if (size > textrepl_size_thresh) {
1692 		vn_a->flags |= _MAP_TEXTREPL;
1693 	}
1694 	error = as_map_segvn_segs(as, addr, size, szcvec, crfp, vn_a,
1695 	    segcreated);
1696 	if (error != 0) {
1697 		return (error);
1698 	}
1699 	if (save_size) {
1700 		addr += size;
1701 		size = save_size - size;
1702 		szcvec = 0;
1703 		goto again;
1704 	}
1705 	return (0);
1706 }
1707 
1708 /*
1709  * as_map_ansegs: shared or private anonymous memory.  Note that the flags
1710  * passed to map_pgszvec cannot be MAP_INITDATA, for anon.
1711  */
1712 static int
1713 as_map_ansegs(struct as *as, caddr_t addr, size_t size,
1714     int (*crfp)(), struct segvn_crargs *vn_a, int *segcreated)
1715 {
1716 	uint_t szcvec;
1717 	uchar_t type;
1718 
1719 	ASSERT(vn_a->type == MAP_SHARED || vn_a->type == MAP_PRIVATE);
1720 	if (vn_a->type == MAP_SHARED) {
1721 		type = MAPPGSZC_SHM;
1722 	} else if (vn_a->type == MAP_PRIVATE) {
1723 		if (vn_a->szc == AS_MAP_HEAP) {
1724 			type = MAPPGSZC_HEAP;
1725 		} else if (vn_a->szc == AS_MAP_STACK) {
1726 			type = MAPPGSZC_STACK;
1727 		} else {
1728 			type = MAPPGSZC_PRIVM;
1729 		}
1730 	}
1731 	szcvec = map_pgszcvec(addr, size, vn_a->amp == NULL ?
1732 	    (uintptr_t)addr : (uintptr_t)P2ROUNDUP(vn_a->offset, PAGESIZE),
1733 	    (vn_a->flags & MAP_TEXT), type, 0);
1734 	ASSERT(AS_WRITE_HELD(as, &as->a_lock));
1735 	ASSERT(IS_P2ALIGNED(addr, PAGESIZE));
1736 	ASSERT(IS_P2ALIGNED(size, PAGESIZE));
1737 	ASSERT(vn_a->vp == NULL);
1738 
1739 	return (as_map_segvn_segs(as, addr, size, szcvec,
1740 	    crfp, vn_a, segcreated));
1741 }
1742 
1743 int
1744 as_map(struct as *as, caddr_t addr, size_t size, int (*crfp)(), void *argsp)
1745 {
1746 	AS_LOCK_ENTER(as, &as->a_lock, RW_WRITER);
1747 	return (as_map_locked(as, addr, size, crfp, argsp));
1748 }
1749 
1750 int
1751 as_map_locked(struct as *as, caddr_t addr, size_t size, int (*crfp)(),
1752 		void *argsp)
1753 {
1754 	struct seg *seg = NULL;
1755 	caddr_t raddr;			/* rounded down addr */
1756 	size_t rsize;			/* rounded up size */
1757 	int error;
1758 	int unmap = 0;
1759 	struct proc *p = curproc;
1760 	struct segvn_crargs crargs;
1761 
1762 	raddr = (caddr_t)((uintptr_t)addr & (uintptr_t)PAGEMASK);
1763 	rsize = (((size_t)(addr + size) + PAGEOFFSET) & PAGEMASK) -
1764 	    (size_t)raddr;
1765 
1766 	/*
1767 	 * check for wrap around
1768 	 */
1769 	if ((raddr + rsize < raddr) || (as->a_size > (ULONG_MAX - size))) {
1770 		AS_LOCK_EXIT(as, &as->a_lock);
1771 		return (ENOMEM);
1772 	}
1773 
1774 	as->a_updatedir = 1;	/* inform /proc */
1775 	gethrestime(&as->a_updatetime);
1776 
1777 	if (as != &kas && as->a_size + rsize > (size_t)p->p_vmem_ctl) {
1778 		AS_LOCK_EXIT(as, &as->a_lock);
1779 
1780 		(void) rctl_action(rctlproc_legacy[RLIMIT_VMEM], p->p_rctls, p,
1781 		    RCA_UNSAFE_ALL);
1782 
1783 		return (ENOMEM);
1784 	}
1785 
1786 	if (AS_MAP_CHECK_VNODE_LPOOB(crfp, argsp)) {
1787 		crargs = *(struct segvn_crargs *)argsp;
1788 		error = as_map_vnsegs(as, raddr, rsize, crfp, &crargs, &unmap);
1789 		if (error != 0) {
1790 			AS_LOCK_EXIT(as, &as->a_lock);
1791 			if (unmap) {
1792 				(void) as_unmap(as, addr, size);
1793 			}
1794 			return (error);
1795 		}
1796 	} else if (AS_MAP_CHECK_ANON_LPOOB(crfp, argsp)) {
1797 		crargs = *(struct segvn_crargs *)argsp;
1798 		error = as_map_ansegs(as, raddr, rsize, crfp, &crargs, &unmap);
1799 		if (error != 0) {
1800 			AS_LOCK_EXIT(as, &as->a_lock);
1801 			if (unmap) {
1802 				(void) as_unmap(as, addr, size);
1803 			}
1804 			return (error);
1805 		}
1806 	} else {
1807 		seg = seg_alloc(as, addr, size);
1808 		if (seg == NULL) {
1809 			AS_LOCK_EXIT(as, &as->a_lock);
1810 			return (ENOMEM);
1811 		}
1812 
1813 		error = (*crfp)(seg, argsp);
1814 		if (error != 0) {
1815 			seg_free(seg);
1816 			AS_LOCK_EXIT(as, &as->a_lock);
1817 			return (error);
1818 		}
1819 		/*
1820 		 * Add size now so as_unmap will work if as_ctl fails.
1821 		 */
1822 		as->a_size += rsize;
1823 		as->a_resvsize += rsize;
1824 	}
1825 
1826 	as_setwatch(as);
1827 
1828 	/*
1829 	 * If the address space is locked,
1830 	 * establish memory locks for the new segment.
1831 	 */
1832 	mutex_enter(&as->a_contents);
1833 	if (AS_ISPGLCK(as)) {
1834 		mutex_exit(&as->a_contents);
1835 		AS_LOCK_EXIT(as, &as->a_lock);
1836 		error = as_ctl(as, addr, size, MC_LOCK, 0, 0, NULL, 0);
1837 		if (error != 0)
1838 			(void) as_unmap(as, addr, size);
1839 	} else {
1840 		mutex_exit(&as->a_contents);
1841 		AS_LOCK_EXIT(as, &as->a_lock);
1842 	}
1843 	return (error);
1844 }
1845 
1846 
1847 /*
1848  * Delete all segments in the address space marked with S_PURGE.
1849  * This is currently used for Sparc V9 nofault ASI segments (seg_nf.c).
1850  * These segments are deleted as a first step before calls to as_gap(), so
1851  * that they don't affect mmap() or shmat().
1852  */
1853 void
1854 as_purge(struct as *as)
1855 {
1856 	struct seg *seg;
1857 	struct seg *next_seg;
1858 
1859 	/*
1860 	 * the setting of NEEDSPURGE is protect by as_rangelock(), so
1861 	 * no need to grab a_contents mutex for this check
1862 	 */
1863 	if ((as->a_flags & AS_NEEDSPURGE) == 0)
1864 		return;
1865 
1866 	AS_LOCK_ENTER(as, &as->a_lock, RW_WRITER);
1867 	next_seg = NULL;
1868 	seg = AS_SEGFIRST(as);
1869 	while (seg != NULL) {
1870 		next_seg = AS_SEGNEXT(as, seg);
1871 		if (seg->s_flags & S_PURGE)
1872 			SEGOP_UNMAP(seg, seg->s_base, seg->s_size);
1873 		seg = next_seg;
1874 	}
1875 	AS_LOCK_EXIT(as, &as->a_lock);
1876 
1877 	mutex_enter(&as->a_contents);
1878 	as->a_flags &= ~AS_NEEDSPURGE;
1879 	mutex_exit(&as->a_contents);
1880 }
1881 
1882 /*
1883  * Find a hole within [*basep, *basep + *lenp), which contains a mappable
1884  * range of addresses at least "minlen" long, where the base of the range is
1885  * at "off" phase from an "align" boundary and there is space for a
1886  * "redzone"-sized redzone on eithe rside of the range.  Thus,
1887  * if align was 4M and off was 16k, the user wants a hole which will start
1888  * 16k into a 4M page.
1889  *
1890  * If flags specifies AH_HI, the hole will have the highest possible address
1891  * in the range.  We use the as->a_lastgap field to figure out where to
1892  * start looking for a gap.
1893  *
1894  * Otherwise, the gap will have the lowest possible address.
1895  *
1896  * If flags specifies AH_CONTAIN, the hole will contain the address addr.
1897  *
1898  * If an adequate hole is found, *basep and *lenp are set to reflect the part of
1899  * the hole that is within range, and 0 is returned. On failure, -1 is returned.
1900  *
1901  * NOTE: This routine is not correct when base+len overflows caddr_t.
1902  */
1903 int
1904 as_gap_aligned(struct as *as, size_t minlen, caddr_t *basep, size_t *lenp,
1905     uint_t flags, caddr_t addr, size_t align, size_t redzone, size_t off)
1906 {
1907 	caddr_t lobound = *basep;
1908 	caddr_t hibound = lobound + *lenp;
1909 	struct seg *lseg, *hseg;
1910 	caddr_t lo, hi;
1911 	int forward;
1912 	caddr_t save_base;
1913 	size_t save_len;
1914 	size_t save_minlen;
1915 	size_t save_redzone;
1916 	int fast_path = 1;
1917 
1918 	save_base = *basep;
1919 	save_len = *lenp;
1920 	save_minlen = minlen;
1921 	save_redzone = redzone;
1922 
1923 	/*
1924 	 * For the first pass/fast_path, just add align and redzone into
1925 	 * minlen since if we get an allocation, we can guarantee that it
1926 	 * will fit the alignment and redzone requested.
1927 	 * This increases the chance that hibound will be adjusted to
1928 	 * a_lastgap->s_base which will likely allow us to find an
1929 	 * acceptable hole in the address space quicker.
1930 	 * If we can't find a hole with this fast_path, then we look for
1931 	 * smaller holes in which the alignment and offset may allow
1932 	 * the allocation to fit.
1933 	 */
1934 	minlen += align;
1935 	minlen += 2 * redzone;
1936 	redzone = 0;
1937 
1938 	AS_LOCK_ENTER(as, &as->a_lock, RW_READER);
1939 	if (AS_SEGFIRST(as) == NULL) {
1940 		if (valid_va_range_aligned(basep, lenp, minlen, flags & AH_DIR,
1941 		    align, redzone, off)) {
1942 			AS_LOCK_EXIT(as, &as->a_lock);
1943 			return (0);
1944 		} else {
1945 			AS_LOCK_EXIT(as, &as->a_lock);
1946 			*basep = save_base;
1947 			*lenp = save_len;
1948 			return (-1);
1949 		}
1950 	}
1951 
1952 retry:
1953 	/*
1954 	 * Set up to iterate over all the inter-segment holes in the given
1955 	 * direction.  lseg is NULL for the lowest-addressed hole and hseg is
1956 	 * NULL for the highest-addressed hole.  If moving backwards, we reset
1957 	 * sseg to denote the highest-addressed segment.
1958 	 */
1959 	forward = (flags & AH_DIR) == AH_LO;
1960 	if (forward) {
1961 		hseg = as_findseg(as, lobound, 1);
1962 		lseg = AS_SEGPREV(as, hseg);
1963 	} else {
1964 
1965 		/*
1966 		 * If allocating at least as much as the last allocation,
1967 		 * use a_lastgap's base as a better estimate of hibound.
1968 		 */
1969 		if (as->a_lastgap &&
1970 		    minlen >= as->a_lastgap->s_size &&
1971 		    hibound >= as->a_lastgap->s_base)
1972 			hibound = as->a_lastgap->s_base;
1973 
1974 		hseg = as_findseg(as, hibound, 1);
1975 		if (hseg->s_base + hseg->s_size < hibound) {
1976 			lseg = hseg;
1977 			hseg = NULL;
1978 		} else {
1979 			lseg = AS_SEGPREV(as, hseg);
1980 		}
1981 	}
1982 
1983 	for (;;) {
1984 		/*
1985 		 * Set lo and hi to the hole's boundaries.  (We should really
1986 		 * use MAXADDR in place of hibound in the expression below,
1987 		 * but can't express it easily; using hibound in its place is
1988 		 * harmless.)
1989 		 */
1990 		lo = (lseg == NULL) ? 0 : lseg->s_base + lseg->s_size;
1991 		hi = (hseg == NULL) ? hibound : hseg->s_base;
1992 		/*
1993 		 * If the iteration has moved past the interval from lobound
1994 		 * to hibound it's pointless to continue.
1995 		 */
1996 		if ((forward && lo > hibound) || (!forward && hi < lobound))
1997 			break;
1998 		else if (lo > hibound || hi < lobound)
1999 			goto cont;
2000 		/*
2001 		 * Candidate hole lies at least partially within the allowable
2002 		 * range.  Restrict it to fall completely within that range,
2003 		 * i.e., to [max(lo, lobound), min(hi, hibound)].
2004 		 */
2005 		if (lo < lobound)
2006 			lo = lobound;
2007 		if (hi > hibound)
2008 			hi = hibound;
2009 		/*
2010 		 * Verify that the candidate hole is big enough and meets
2011 		 * hardware constraints.  If the hole is too small, no need
2012 		 * to do the further checks since they will fail.
2013 		 */
2014 		*basep = lo;
2015 		*lenp = hi - lo;
2016 		if (*lenp >= minlen && valid_va_range_aligned(basep, lenp,
2017 		    minlen, forward ? AH_LO : AH_HI, align, redzone, off) &&
2018 		    ((flags & AH_CONTAIN) == 0 ||
2019 		    (*basep <= addr && *basep + *lenp > addr))) {
2020 			if (!forward)
2021 				as->a_lastgap = hseg;
2022 			if (hseg != NULL)
2023 				as->a_lastgaphl = hseg;
2024 			else
2025 				as->a_lastgaphl = lseg;
2026 			AS_LOCK_EXIT(as, &as->a_lock);
2027 			return (0);
2028 		}
2029 	cont:
2030 		/*
2031 		 * Move to the next hole.
2032 		 */
2033 		if (forward) {
2034 			lseg = hseg;
2035 			if (lseg == NULL)
2036 				break;
2037 			hseg = AS_SEGNEXT(as, hseg);
2038 		} else {
2039 			hseg = lseg;
2040 			if (hseg == NULL)
2041 				break;
2042 			lseg = AS_SEGPREV(as, lseg);
2043 		}
2044 	}
2045 	if (fast_path && (align != 0 || save_redzone != 0)) {
2046 		fast_path = 0;
2047 		minlen = save_minlen;
2048 		redzone = save_redzone;
2049 		goto retry;
2050 	}
2051 	*basep = save_base;
2052 	*lenp = save_len;
2053 	AS_LOCK_EXIT(as, &as->a_lock);
2054 	return (-1);
2055 }
2056 
2057 /*
2058  * Find a hole of at least size minlen within [*basep, *basep + *lenp).
2059  *
2060  * If flags specifies AH_HI, the hole will have the highest possible address
2061  * in the range.  We use the as->a_lastgap field to figure out where to
2062  * start looking for a gap.
2063  *
2064  * Otherwise, the gap will have the lowest possible address.
2065  *
2066  * If flags specifies AH_CONTAIN, the hole will contain the address addr.
2067  *
2068  * If an adequate hole is found, base and len are set to reflect the part of
2069  * the hole that is within range, and 0 is returned, otherwise,
2070  * -1 is returned.
2071  *
2072  * NOTE: This routine is not correct when base+len overflows caddr_t.
2073  */
2074 int
2075 as_gap(struct as *as, size_t minlen, caddr_t *basep, size_t *lenp, uint_t flags,
2076     caddr_t addr)
2077 {
2078 
2079 	return (as_gap_aligned(as, minlen, basep, lenp, flags, addr, 0, 0, 0));
2080 }
2081 
2082 /*
2083  * Return the next range within [base, base + len) that is backed
2084  * with "real memory".  Skip holes and non-seg_vn segments.
2085  * We're lazy and only return one segment at a time.
2086  */
2087 int
2088 as_memory(struct as *as, caddr_t *basep, size_t *lenp)
2089 {
2090 	extern struct seg_ops segspt_shmops;	/* needs a header file */
2091 	struct seg *seg;
2092 	caddr_t addr, eaddr;
2093 	caddr_t segend;
2094 
2095 	AS_LOCK_ENTER(as, &as->a_lock, RW_READER);
2096 
2097 	addr = *basep;
2098 	eaddr = addr + *lenp;
2099 
2100 	seg = as_findseg(as, addr, 0);
2101 	if (seg != NULL)
2102 		addr = MAX(seg->s_base, addr);
2103 
2104 	for (;;) {
2105 		if (seg == NULL || addr >= eaddr || eaddr <= seg->s_base) {
2106 			AS_LOCK_EXIT(as, &as->a_lock);
2107 			return (EINVAL);
2108 		}
2109 
2110 		if (seg->s_ops == &segvn_ops) {
2111 			segend = seg->s_base + seg->s_size;
2112 			break;
2113 		}
2114 
2115 		/*
2116 		 * We do ISM by looking into the private data
2117 		 * to determine the real size of the segment.
2118 		 */
2119 		if (seg->s_ops == &segspt_shmops) {
2120 			segend = seg->s_base + spt_realsize(seg);
2121 			if (addr < segend)
2122 				break;
2123 		}
2124 
2125 		seg = AS_SEGNEXT(as, seg);
2126 
2127 		if (seg != NULL)
2128 			addr = seg->s_base;
2129 	}
2130 
2131 	*basep = addr;
2132 
2133 	if (segend > eaddr)
2134 		*lenp = eaddr - addr;
2135 	else
2136 		*lenp = segend - addr;
2137 
2138 	AS_LOCK_EXIT(as, &as->a_lock);
2139 	return (0);
2140 }
2141 
2142 /*
2143  * Swap the pages associated with the address space as out to
2144  * secondary storage, returning the number of bytes actually
2145  * swapped.
2146  *
2147  * The value returned is intended to correlate well with the process's
2148  * memory requirements.  Its usefulness for this purpose depends on
2149  * how well the segment-level routines do at returning accurate
2150  * information.
2151  */
2152 size_t
2153 as_swapout(struct as *as)
2154 {
2155 	struct seg *seg;
2156 	size_t swpcnt = 0;
2157 
2158 	/*
2159 	 * Kernel-only processes have given up their address
2160 	 * spaces.  Of course, we shouldn't be attempting to
2161 	 * swap out such processes in the first place...
2162 	 */
2163 	if (as == NULL)
2164 		return (0);
2165 
2166 	AS_LOCK_ENTER(as, &as->a_lock, RW_READER);
2167 
2168 	/* Prevent XHATs from attaching */
2169 	mutex_enter(&as->a_contents);
2170 	AS_SETBUSY(as);
2171 	mutex_exit(&as->a_contents);
2172 
2173 
2174 	/*
2175 	 * Free all mapping resources associated with the address
2176 	 * space.  The segment-level swapout routines capitalize
2177 	 * on this unmapping by scavanging pages that have become
2178 	 * unmapped here.
2179 	 */
2180 	hat_swapout(as->a_hat);
2181 	if (as->a_xhat != NULL)
2182 		xhat_swapout_all(as);
2183 
2184 	mutex_enter(&as->a_contents);
2185 	AS_CLRBUSY(as);
2186 	mutex_exit(&as->a_contents);
2187 
2188 	/*
2189 	 * Call the swapout routines of all segments in the address
2190 	 * space to do the actual work, accumulating the amount of
2191 	 * space reclaimed.
2192 	 */
2193 	for (seg = AS_SEGFIRST(as); seg != NULL; seg = AS_SEGNEXT(as, seg)) {
2194 		struct seg_ops *ov = seg->s_ops;
2195 
2196 		/*
2197 		 * We have to check to see if the seg has
2198 		 * an ops vector because the seg may have
2199 		 * been in the middle of being set up when
2200 		 * the process was picked for swapout.
2201 		 */
2202 		if ((ov != NULL) && (ov->swapout != NULL))
2203 			swpcnt += SEGOP_SWAPOUT(seg);
2204 	}
2205 	AS_LOCK_EXIT(as, &as->a_lock);
2206 	return (swpcnt);
2207 }
2208 
2209 /*
2210  * Determine whether data from the mappings in interval [addr, addr + size)
2211  * are in the primary memory (core) cache.
2212  */
2213 int
2214 as_incore(struct as *as, caddr_t addr,
2215     size_t size, char *vec, size_t *sizep)
2216 {
2217 	struct seg *seg;
2218 	size_t ssize;
2219 	caddr_t raddr;		/* rounded down addr */
2220 	size_t rsize;		/* rounded up size */
2221 	size_t isize;			/* iteration size */
2222 	int error = 0;		/* result, assume success */
2223 
2224 	*sizep = 0;
2225 	raddr = (caddr_t)((uintptr_t)addr & (uintptr_t)PAGEMASK);
2226 	rsize = ((((size_t)addr + size) + PAGEOFFSET) & PAGEMASK) -
2227 	    (size_t)raddr;
2228 
2229 	if (raddr + rsize < raddr)		/* check for wraparound */
2230 		return (ENOMEM);
2231 
2232 	AS_LOCK_ENTER(as, &as->a_lock, RW_READER);
2233 	seg = as_segat(as, raddr);
2234 	if (seg == NULL) {
2235 		AS_LOCK_EXIT(as, &as->a_lock);
2236 		return (-1);
2237 	}
2238 
2239 	for (; rsize != 0; rsize -= ssize, raddr += ssize) {
2240 		if (raddr >= seg->s_base + seg->s_size) {
2241 			seg = AS_SEGNEXT(as, seg);
2242 			if (seg == NULL || raddr != seg->s_base) {
2243 				error = -1;
2244 				break;
2245 			}
2246 		}
2247 		if ((raddr + rsize) > (seg->s_base + seg->s_size))
2248 			ssize = seg->s_base + seg->s_size - raddr;
2249 		else
2250 			ssize = rsize;
2251 		*sizep += isize = SEGOP_INCORE(seg, raddr, ssize, vec);
2252 		if (isize != ssize) {
2253 			error = -1;
2254 			break;
2255 		}
2256 		vec += btopr(ssize);
2257 	}
2258 	AS_LOCK_EXIT(as, &as->a_lock);
2259 	return (error);
2260 }
2261 
2262 static void
2263 as_segunlock(struct seg *seg, caddr_t addr, int attr,
2264 	ulong_t *bitmap, size_t position, size_t npages)
2265 {
2266 	caddr_t	range_start;
2267 	size_t	pos1 = position;
2268 	size_t	pos2;
2269 	size_t	size;
2270 	size_t  end_pos = npages + position;
2271 
2272 	while (bt_range(bitmap, &pos1, &pos2, end_pos)) {
2273 		size = ptob((pos2 - pos1));
2274 		range_start = (caddr_t)((uintptr_t)addr +
2275 		    ptob(pos1 - position));
2276 
2277 		(void) SEGOP_LOCKOP(seg, range_start, size, attr, MC_UNLOCK,
2278 		    (ulong_t *)NULL, (size_t)NULL);
2279 		pos1 = pos2;
2280 	}
2281 }
2282 
2283 static void
2284 as_unlockerr(struct as *as, int attr, ulong_t *mlock_map,
2285 	caddr_t raddr, size_t rsize)
2286 {
2287 	struct seg *seg = as_segat(as, raddr);
2288 	size_t ssize;
2289 
2290 	while (rsize != 0) {
2291 		if (raddr >= seg->s_base + seg->s_size)
2292 			seg = AS_SEGNEXT(as, seg);
2293 
2294 		if ((raddr + rsize) > (seg->s_base + seg->s_size))
2295 			ssize = seg->s_base + seg->s_size - raddr;
2296 		else
2297 			ssize = rsize;
2298 
2299 		as_segunlock(seg, raddr, attr, mlock_map, 0, btopr(ssize));
2300 
2301 		rsize -= ssize;
2302 		raddr += ssize;
2303 	}
2304 }
2305 
2306 /*
2307  * Cache control operations over the interval [addr, addr + size) in
2308  * address space "as".
2309  */
2310 /*ARGSUSED*/
2311 int
2312 as_ctl(struct as *as, caddr_t addr, size_t size, int func, int attr,
2313     uintptr_t arg, ulong_t *lock_map, size_t pos)
2314 {
2315 	struct seg *seg;	/* working segment */
2316 	caddr_t raddr;		/* rounded down addr */
2317 	caddr_t initraddr;	/* saved initial rounded down addr */
2318 	size_t rsize;		/* rounded up size */
2319 	size_t initrsize;	/* saved initial rounded up size */
2320 	size_t ssize;		/* size of seg */
2321 	int error = 0;			/* result */
2322 	size_t mlock_size;	/* size of bitmap */
2323 	ulong_t *mlock_map;	/* pointer to bitmap used */
2324 				/* to represent the locked */
2325 				/* pages. */
2326 retry:
2327 	if (error == IE_RETRY)
2328 		AS_LOCK_ENTER(as, &as->a_lock, RW_WRITER);
2329 	else
2330 		AS_LOCK_ENTER(as, &as->a_lock, RW_READER);
2331 
2332 	/*
2333 	 * If these are address space lock/unlock operations, loop over
2334 	 * all segments in the address space, as appropriate.
2335 	 */
2336 	if (func == MC_LOCKAS) {
2337 		size_t npages, idx;
2338 		size_t rlen = 0;	/* rounded as length */
2339 
2340 		idx = pos;
2341 
2342 		if (arg & MCL_FUTURE) {
2343 			mutex_enter(&as->a_contents);
2344 			AS_SETPGLCK(as);
2345 			mutex_exit(&as->a_contents);
2346 		}
2347 		if ((arg & MCL_CURRENT) == 0) {
2348 			AS_LOCK_EXIT(as, &as->a_lock);
2349 			return (0);
2350 		}
2351 
2352 		seg = AS_SEGFIRST(as);
2353 		if (seg == NULL) {
2354 			AS_LOCK_EXIT(as, &as->a_lock);
2355 			return (0);
2356 		}
2357 
2358 		do {
2359 			raddr = (caddr_t)((uintptr_t)seg->s_base &
2360 			    (uintptr_t)PAGEMASK);
2361 			rlen += (((uintptr_t)(seg->s_base + seg->s_size) +
2362 			    PAGEOFFSET) & PAGEMASK) - (uintptr_t)raddr;
2363 		} while ((seg = AS_SEGNEXT(as, seg)) != NULL);
2364 
2365 		mlock_size = BT_BITOUL(btopr(rlen));
2366 		if ((mlock_map = (ulong_t *)kmem_zalloc(mlock_size *
2367 		    sizeof (ulong_t), KM_NOSLEEP)) == NULL) {
2368 				AS_LOCK_EXIT(as, &as->a_lock);
2369 				return (EAGAIN);
2370 		}
2371 
2372 		for (seg = AS_SEGFIRST(as); seg; seg = AS_SEGNEXT(as, seg)) {
2373 			error = SEGOP_LOCKOP(seg, seg->s_base,
2374 			    seg->s_size, attr, MC_LOCK, mlock_map, pos);
2375 			if (error != 0)
2376 				break;
2377 			pos += seg_pages(seg);
2378 		}
2379 
2380 		if (error) {
2381 			for (seg = AS_SEGFIRST(as); seg != NULL;
2382 			    seg = AS_SEGNEXT(as, seg)) {
2383 
2384 				raddr = (caddr_t)((uintptr_t)seg->s_base &
2385 				    (uintptr_t)PAGEMASK);
2386 				npages = seg_pages(seg);
2387 				as_segunlock(seg, raddr, attr, mlock_map,
2388 				    idx, npages);
2389 				idx += npages;
2390 			}
2391 		}
2392 
2393 		kmem_free(mlock_map, mlock_size * sizeof (ulong_t));
2394 		AS_LOCK_EXIT(as, &as->a_lock);
2395 		goto lockerr;
2396 	} else if (func == MC_UNLOCKAS) {
2397 		mutex_enter(&as->a_contents);
2398 		AS_CLRPGLCK(as);
2399 		mutex_exit(&as->a_contents);
2400 
2401 		for (seg = AS_SEGFIRST(as); seg; seg = AS_SEGNEXT(as, seg)) {
2402 			error = SEGOP_LOCKOP(seg, seg->s_base,
2403 			    seg->s_size, attr, MC_UNLOCK, NULL, 0);
2404 			if (error != 0)
2405 				break;
2406 		}
2407 
2408 		AS_LOCK_EXIT(as, &as->a_lock);
2409 		goto lockerr;
2410 	}
2411 
2412 	/*
2413 	 * Normalize addresses and sizes.
2414 	 */
2415 	initraddr = raddr = (caddr_t)((uintptr_t)addr & (uintptr_t)PAGEMASK);
2416 	initrsize = rsize = (((size_t)(addr + size) + PAGEOFFSET) & PAGEMASK) -
2417 	    (size_t)raddr;
2418 
2419 	if (raddr + rsize < raddr) {		/* check for wraparound */
2420 		AS_LOCK_EXIT(as, &as->a_lock);
2421 		return (ENOMEM);
2422 	}
2423 
2424 	/*
2425 	 * Get initial segment.
2426 	 */
2427 	if ((seg = as_segat(as, raddr)) == NULL) {
2428 		AS_LOCK_EXIT(as, &as->a_lock);
2429 		return (ENOMEM);
2430 	}
2431 
2432 	if (func == MC_LOCK) {
2433 		mlock_size = BT_BITOUL(btopr(rsize));
2434 		if ((mlock_map = (ulong_t *)kmem_zalloc(mlock_size *
2435 		    sizeof (ulong_t), KM_NOSLEEP)) == NULL) {
2436 				AS_LOCK_EXIT(as, &as->a_lock);
2437 				return (EAGAIN);
2438 		}
2439 	}
2440 
2441 	/*
2442 	 * Loop over all segments.  If a hole in the address range is
2443 	 * discovered, then fail.  For each segment, perform the appropriate
2444 	 * control operation.
2445 	 */
2446 	while (rsize != 0) {
2447 
2448 		/*
2449 		 * Make sure there's no hole, calculate the portion
2450 		 * of the next segment to be operated over.
2451 		 */
2452 		if (raddr >= seg->s_base + seg->s_size) {
2453 			seg = AS_SEGNEXT(as, seg);
2454 			if (seg == NULL || raddr != seg->s_base) {
2455 				if (func == MC_LOCK) {
2456 					as_unlockerr(as, attr, mlock_map,
2457 					    initraddr, initrsize - rsize);
2458 					kmem_free(mlock_map,
2459 					    mlock_size * sizeof (ulong_t));
2460 				}
2461 				AS_LOCK_EXIT(as, &as->a_lock);
2462 				return (ENOMEM);
2463 			}
2464 		}
2465 		if ((raddr + rsize) > (seg->s_base + seg->s_size))
2466 			ssize = seg->s_base + seg->s_size - raddr;
2467 		else
2468 			ssize = rsize;
2469 
2470 		/*
2471 		 * Dispatch on specific function.
2472 		 */
2473 		switch (func) {
2474 
2475 		/*
2476 		 * Synchronize cached data from mappings with backing
2477 		 * objects.
2478 		 */
2479 		case MC_SYNC:
2480 			if (error = SEGOP_SYNC(seg, raddr, ssize,
2481 			    attr, (uint_t)arg)) {
2482 				AS_LOCK_EXIT(as, &as->a_lock);
2483 				return (error);
2484 			}
2485 			break;
2486 
2487 		/*
2488 		 * Lock pages in memory.
2489 		 */
2490 		case MC_LOCK:
2491 			if (error = SEGOP_LOCKOP(seg, raddr, ssize,
2492 			    attr, func, mlock_map, pos)) {
2493 				as_unlockerr(as, attr, mlock_map, initraddr,
2494 				    initrsize - rsize + ssize);
2495 				kmem_free(mlock_map, mlock_size *
2496 				    sizeof (ulong_t));
2497 				AS_LOCK_EXIT(as, &as->a_lock);
2498 				goto lockerr;
2499 			}
2500 			break;
2501 
2502 		/*
2503 		 * Unlock mapped pages.
2504 		 */
2505 		case MC_UNLOCK:
2506 			(void) SEGOP_LOCKOP(seg, raddr, ssize, attr, func,
2507 			    (ulong_t *)NULL, (size_t)NULL);
2508 			break;
2509 
2510 		/*
2511 		 * Store VM advise for mapped pages in segment layer.
2512 		 */
2513 		case MC_ADVISE:
2514 			error = SEGOP_ADVISE(seg, raddr, ssize, (uint_t)arg);
2515 
2516 			/*
2517 			 * Check for regular errors and special retry error
2518 			 */
2519 			if (error) {
2520 				if (error == IE_RETRY) {
2521 					/*
2522 					 * Need to acquire writers lock, so
2523 					 * have to drop readers lock and start
2524 					 * all over again
2525 					 */
2526 					AS_LOCK_EXIT(as, &as->a_lock);
2527 					goto retry;
2528 				} else if (error == IE_REATTACH) {
2529 					/*
2530 					 * Find segment for current address
2531 					 * because current segment just got
2532 					 * split or concatenated
2533 					 */
2534 					seg = as_segat(as, raddr);
2535 					if (seg == NULL) {
2536 						AS_LOCK_EXIT(as, &as->a_lock);
2537 						return (ENOMEM);
2538 					}
2539 				} else {
2540 					/*
2541 					 * Regular error
2542 					 */
2543 					AS_LOCK_EXIT(as, &as->a_lock);
2544 					return (error);
2545 				}
2546 			}
2547 			break;
2548 
2549 		/*
2550 		 * Can't happen.
2551 		 */
2552 		default:
2553 			panic("as_ctl: bad operation %d", func);
2554 			/*NOTREACHED*/
2555 		}
2556 
2557 		rsize -= ssize;
2558 		raddr += ssize;
2559 	}
2560 
2561 	if (func == MC_LOCK)
2562 		kmem_free(mlock_map, mlock_size * sizeof (ulong_t));
2563 	AS_LOCK_EXIT(as, &as->a_lock);
2564 	return (0);
2565 lockerr:
2566 
2567 	/*
2568 	 * If the lower levels returned EDEADLK for a segment lockop,
2569 	 * it means that we should retry the operation.  Let's wait
2570 	 * a bit also to let the deadlock causing condition clear.
2571 	 * This is part of a gross hack to work around a design flaw
2572 	 * in the ufs/sds logging code and should go away when the
2573 	 * logging code is re-designed to fix the problem. See bug
2574 	 * 4125102 for details of the problem.
2575 	 */
2576 	if (error == EDEADLK) {
2577 		delay(deadlk_wait);
2578 		error = 0;
2579 		goto retry;
2580 	}
2581 	return (error);
2582 }
2583 
2584 int
2585 fc_decode(faultcode_t fault_err)
2586 {
2587 	int error = 0;
2588 
2589 	switch (FC_CODE(fault_err)) {
2590 	case FC_OBJERR:
2591 		error = FC_ERRNO(fault_err);
2592 		break;
2593 	case FC_PROT:
2594 		error = EACCES;
2595 		break;
2596 	default:
2597 		error = EFAULT;
2598 		break;
2599 	}
2600 	return (error);
2601 }
2602 
2603 /*
2604  * Pagelock pages from a range that spans more than 1 segment.  Obtain shadow
2605  * lists from each segment and copy them to one contiguous shadow list (plist)
2606  * as expected by the caller.  Save pointers to per segment shadow lists at
2607  * the tail of plist so that they can be used during as_pageunlock().
2608  */
2609 static int
2610 as_pagelock_segs(struct as *as, struct seg *seg, struct page ***ppp,
2611     caddr_t addr, size_t size, enum seg_rw rw)
2612 {
2613 	caddr_t sv_addr = addr;
2614 	size_t sv_size = size;
2615 	struct seg *sv_seg = seg;
2616 	ulong_t segcnt = 1;
2617 	ulong_t cnt;
2618 	size_t ssize;
2619 	pgcnt_t npages = btop(size);
2620 	page_t **plist;
2621 	page_t **pl;
2622 	int error;
2623 	caddr_t eaddr;
2624 	faultcode_t fault_err = 0;
2625 	pgcnt_t pl_off;
2626 	extern struct seg_ops segspt_shmops;
2627 
2628 	ASSERT(AS_LOCK_HELD(as, &as->a_lock));
2629 	ASSERT(seg != NULL);
2630 	ASSERT(addr >= seg->s_base && addr < seg->s_base + seg->s_size);
2631 	ASSERT(addr + size > seg->s_base + seg->s_size);
2632 	ASSERT(IS_P2ALIGNED(size, PAGESIZE));
2633 	ASSERT(IS_P2ALIGNED(addr, PAGESIZE));
2634 
2635 	/*
2636 	 * Count the number of segments covered by the range we are about to
2637 	 * lock. The segment count is used to size the shadow list we return
2638 	 * back to the caller.
2639 	 */
2640 	for (; size != 0; size -= ssize, addr += ssize) {
2641 		if (addr >= seg->s_base + seg->s_size) {
2642 
2643 			seg = AS_SEGNEXT(as, seg);
2644 			if (seg == NULL || addr != seg->s_base) {
2645 				AS_LOCK_EXIT(as, &as->a_lock);
2646 				return (EFAULT);
2647 			}
2648 			/*
2649 			 * Do a quick check if subsequent segments
2650 			 * will most likely support pagelock.
2651 			 */
2652 			if (seg->s_ops == &segvn_ops) {
2653 				vnode_t *vp;
2654 
2655 				if (SEGOP_GETVP(seg, addr, &vp) != 0 ||
2656 				    vp != NULL) {
2657 					AS_LOCK_EXIT(as, &as->a_lock);
2658 					goto slow;
2659 				}
2660 			} else if (seg->s_ops != &segspt_shmops) {
2661 				AS_LOCK_EXIT(as, &as->a_lock);
2662 				goto slow;
2663 			}
2664 			segcnt++;
2665 		}
2666 		if (addr + size > seg->s_base + seg->s_size) {
2667 			ssize = seg->s_base + seg->s_size - addr;
2668 		} else {
2669 			ssize = size;
2670 		}
2671 	}
2672 	ASSERT(segcnt > 1);
2673 
2674 	plist = kmem_zalloc((npages + segcnt) * sizeof (page_t *), KM_SLEEP);
2675 
2676 	addr = sv_addr;
2677 	size = sv_size;
2678 	seg = sv_seg;
2679 
2680 	for (cnt = 0, pl_off = 0; size != 0; size -= ssize, addr += ssize) {
2681 		if (addr >= seg->s_base + seg->s_size) {
2682 			seg = AS_SEGNEXT(as, seg);
2683 			ASSERT(seg != NULL && addr == seg->s_base);
2684 			cnt++;
2685 			ASSERT(cnt < segcnt);
2686 		}
2687 		if (addr + size > seg->s_base + seg->s_size) {
2688 			ssize = seg->s_base + seg->s_size - addr;
2689 		} else {
2690 			ssize = size;
2691 		}
2692 		pl = &plist[npages + cnt];
2693 		error = SEGOP_PAGELOCK(seg, addr, ssize, (page_t ***)pl,
2694 		    L_PAGELOCK, rw);
2695 		if (error) {
2696 			break;
2697 		}
2698 		ASSERT(plist[npages + cnt] != NULL);
2699 		ASSERT(pl_off + btop(ssize) <= npages);
2700 		bcopy(plist[npages + cnt], &plist[pl_off],
2701 		    btop(ssize) * sizeof (page_t *));
2702 		pl_off += btop(ssize);
2703 	}
2704 
2705 	if (size == 0) {
2706 		AS_LOCK_EXIT(as, &as->a_lock);
2707 		ASSERT(cnt == segcnt - 1);
2708 		*ppp = plist;
2709 		return (0);
2710 	}
2711 
2712 	/*
2713 	 * one of pagelock calls failed. The error type is in error variable.
2714 	 * Unlock what we've locked so far and retry with F_SOFTLOCK if error
2715 	 * type is either EFAULT or ENOTSUP. Otherwise just return the error
2716 	 * back to the caller.
2717 	 */
2718 
2719 	eaddr = addr;
2720 	seg = sv_seg;
2721 
2722 	for (cnt = 0, addr = sv_addr; addr < eaddr; addr += ssize) {
2723 		if (addr >= seg->s_base + seg->s_size) {
2724 			seg = AS_SEGNEXT(as, seg);
2725 			ASSERT(seg != NULL && addr == seg->s_base);
2726 			cnt++;
2727 			ASSERT(cnt < segcnt);
2728 		}
2729 		if (eaddr > seg->s_base + seg->s_size) {
2730 			ssize = seg->s_base + seg->s_size - addr;
2731 		} else {
2732 			ssize = eaddr - addr;
2733 		}
2734 		pl = &plist[npages + cnt];
2735 		ASSERT(*pl != NULL);
2736 		(void) SEGOP_PAGELOCK(seg, addr, ssize, (page_t ***)pl,
2737 		    L_PAGEUNLOCK, rw);
2738 	}
2739 
2740 	AS_LOCK_EXIT(as, &as->a_lock);
2741 
2742 	kmem_free(plist, (npages + segcnt) * sizeof (page_t *));
2743 
2744 	if (error != ENOTSUP && error != EFAULT) {
2745 		return (error);
2746 	}
2747 
2748 slow:
2749 	/*
2750 	 * If we are here because pagelock failed due to the need to cow fault
2751 	 * in the pages we want to lock F_SOFTLOCK will do this job and in
2752 	 * next as_pagelock() call for this address range pagelock will
2753 	 * hopefully succeed.
2754 	 */
2755 	fault_err = as_fault(as->a_hat, as, sv_addr, sv_size, F_SOFTLOCK, rw);
2756 	if (fault_err != 0) {
2757 		return (fc_decode(fault_err));
2758 	}
2759 	*ppp = NULL;
2760 
2761 	return (0);
2762 }
2763 
2764 /*
2765  * lock pages in a given address space. Return shadow list. If
2766  * the list is NULL, the MMU mapping is also locked.
2767  */
2768 int
2769 as_pagelock(struct as *as, struct page ***ppp, caddr_t addr,
2770     size_t size, enum seg_rw rw)
2771 {
2772 	size_t rsize;
2773 	caddr_t raddr;
2774 	faultcode_t fault_err;
2775 	struct seg *seg;
2776 	int err;
2777 
2778 	TRACE_2(TR_FAC_PHYSIO, TR_PHYSIO_AS_LOCK_START,
2779 	    "as_pagelock_start: addr %p size %ld", addr, size);
2780 
2781 	raddr = (caddr_t)((uintptr_t)addr & (uintptr_t)PAGEMASK);
2782 	rsize = (((size_t)(addr + size) + PAGEOFFSET) & PAGEMASK) -
2783 	    (size_t)raddr;
2784 
2785 	/*
2786 	 * if the request crosses two segments let
2787 	 * as_fault handle it.
2788 	 */
2789 	AS_LOCK_ENTER(as, &as->a_lock, RW_READER);
2790 
2791 	seg = as_segat(as, raddr);
2792 	if (seg == NULL) {
2793 		AS_LOCK_EXIT(as, &as->a_lock);
2794 		return (EFAULT);
2795 	}
2796 	ASSERT(raddr >= seg->s_base && raddr < seg->s_base + seg->s_size);
2797 	if (raddr + rsize > seg->s_base + seg->s_size) {
2798 		return (as_pagelock_segs(as, seg, ppp, raddr, rsize, rw));
2799 	}
2800 	if (raddr + rsize <= raddr) {
2801 		AS_LOCK_EXIT(as, &as->a_lock);
2802 		return (EFAULT);
2803 	}
2804 
2805 	TRACE_2(TR_FAC_PHYSIO, TR_PHYSIO_SEG_LOCK_START,
2806 	    "seg_lock_1_start: raddr %p rsize %ld", raddr, rsize);
2807 
2808 	/*
2809 	 * try to lock pages and pass back shadow list
2810 	 */
2811 	err = SEGOP_PAGELOCK(seg, raddr, rsize, ppp, L_PAGELOCK, rw);
2812 
2813 	TRACE_0(TR_FAC_PHYSIO, TR_PHYSIO_SEG_LOCK_END, "seg_lock_1_end");
2814 
2815 	AS_LOCK_EXIT(as, &as->a_lock);
2816 
2817 	if (err == 0 || (err != ENOTSUP && err != EFAULT)) {
2818 		return (err);
2819 	}
2820 
2821 	/*
2822 	 * Use F_SOFTLOCK to lock the pages because pagelock failed either due
2823 	 * to no pagelock support for this segment or pages need to be cow
2824 	 * faulted in. If fault is needed F_SOFTLOCK will do this job for
2825 	 * this as_pagelock() call and in the next as_pagelock() call for the
2826 	 * same address range pagelock call will hopefull succeed.
2827 	 */
2828 	fault_err = as_fault(as->a_hat, as, addr, size, F_SOFTLOCK, rw);
2829 	if (fault_err != 0) {
2830 		return (fc_decode(fault_err));
2831 	}
2832 	*ppp = NULL;
2833 
2834 	TRACE_0(TR_FAC_PHYSIO, TR_PHYSIO_AS_LOCK_END, "as_pagelock_end");
2835 	return (0);
2836 }
2837 
2838 /*
2839  * unlock pages locked by as_pagelock_segs().  Retrieve per segment shadow
2840  * lists from the end of plist and call pageunlock interface for each segment.
2841  * Drop as lock and free plist.
2842  */
2843 static void
2844 as_pageunlock_segs(struct as *as, struct seg *seg, caddr_t addr, size_t size,
2845     struct page **plist, enum seg_rw rw)
2846 {
2847 	ulong_t cnt;
2848 	caddr_t eaddr = addr + size;
2849 	pgcnt_t npages = btop(size);
2850 	size_t ssize;
2851 	page_t **pl;
2852 
2853 	ASSERT(AS_LOCK_HELD(as, &as->a_lock));
2854 	ASSERT(seg != NULL);
2855 	ASSERT(addr >= seg->s_base && addr < seg->s_base + seg->s_size);
2856 	ASSERT(addr + size > seg->s_base + seg->s_size);
2857 	ASSERT(IS_P2ALIGNED(size, PAGESIZE));
2858 	ASSERT(IS_P2ALIGNED(addr, PAGESIZE));
2859 	ASSERT(plist != NULL);
2860 
2861 	for (cnt = 0; addr < eaddr; addr += ssize) {
2862 		if (addr >= seg->s_base + seg->s_size) {
2863 			seg = AS_SEGNEXT(as, seg);
2864 			ASSERT(seg != NULL && addr == seg->s_base);
2865 			cnt++;
2866 		}
2867 		if (eaddr > seg->s_base + seg->s_size) {
2868 			ssize = seg->s_base + seg->s_size - addr;
2869 		} else {
2870 			ssize = eaddr - addr;
2871 		}
2872 		pl = &plist[npages + cnt];
2873 		ASSERT(*pl != NULL);
2874 		(void) SEGOP_PAGELOCK(seg, addr, ssize, (page_t ***)pl,
2875 		    L_PAGEUNLOCK, rw);
2876 	}
2877 	ASSERT(cnt > 0);
2878 	AS_LOCK_EXIT(as, &as->a_lock);
2879 
2880 	cnt++;
2881 	kmem_free(plist, (npages + cnt) * sizeof (page_t *));
2882 }
2883 
2884 /*
2885  * unlock pages in a given address range
2886  */
2887 void
2888 as_pageunlock(struct as *as, struct page **pp, caddr_t addr, size_t size,
2889     enum seg_rw rw)
2890 {
2891 	struct seg *seg;
2892 	size_t rsize;
2893 	caddr_t raddr;
2894 
2895 	TRACE_2(TR_FAC_PHYSIO, TR_PHYSIO_AS_UNLOCK_START,
2896 	    "as_pageunlock_start: addr %p size %ld", addr, size);
2897 
2898 	/*
2899 	 * if the shadow list is NULL, as_pagelock was
2900 	 * falling back to as_fault
2901 	 */
2902 	if (pp == NULL) {
2903 		(void) as_fault(as->a_hat, as, addr, size, F_SOFTUNLOCK, rw);
2904 		return;
2905 	}
2906 
2907 	raddr = (caddr_t)((uintptr_t)addr & (uintptr_t)PAGEMASK);
2908 	rsize = (((size_t)(addr + size) + PAGEOFFSET) & PAGEMASK) -
2909 	    (size_t)raddr;
2910 
2911 	AS_LOCK_ENTER(as, &as->a_lock, RW_READER);
2912 	seg = as_segat(as, raddr);
2913 	ASSERT(seg != NULL);
2914 
2915 	TRACE_2(TR_FAC_PHYSIO, TR_PHYSIO_SEG_UNLOCK_START,
2916 	    "seg_unlock_start: raddr %p rsize %ld", raddr, rsize);
2917 
2918 	ASSERT(raddr >= seg->s_base && raddr < seg->s_base + seg->s_size);
2919 	if (raddr + rsize <= seg->s_base + seg->s_size) {
2920 		SEGOP_PAGELOCK(seg, raddr, rsize, &pp, L_PAGEUNLOCK, rw);
2921 	} else {
2922 		as_pageunlock_segs(as, seg, raddr, rsize, pp, rw);
2923 		return;
2924 	}
2925 	AS_LOCK_EXIT(as, &as->a_lock);
2926 	TRACE_0(TR_FAC_PHYSIO, TR_PHYSIO_AS_UNLOCK_END, "as_pageunlock_end");
2927 }
2928 
2929 int
2930 as_setpagesize(struct as *as, caddr_t addr, size_t size, uint_t szc,
2931     boolean_t wait)
2932 {
2933 	struct seg *seg;
2934 	size_t ssize;
2935 	caddr_t raddr;			/* rounded down addr */
2936 	size_t rsize;			/* rounded up size */
2937 	int error = 0;
2938 	size_t pgsz = page_get_pagesize(szc);
2939 
2940 setpgsz_top:
2941 	if (!IS_P2ALIGNED(addr, pgsz) || !IS_P2ALIGNED(size, pgsz)) {
2942 		return (EINVAL);
2943 	}
2944 
2945 	raddr = addr;
2946 	rsize = size;
2947 
2948 	if (raddr + rsize < raddr)		/* check for wraparound */
2949 		return (ENOMEM);
2950 
2951 	AS_LOCK_ENTER(as, &as->a_lock, RW_WRITER);
2952 	as_clearwatchprot(as, raddr, rsize);
2953 	seg = as_segat(as, raddr);
2954 	if (seg == NULL) {
2955 		as_setwatch(as);
2956 		AS_LOCK_EXIT(as, &as->a_lock);
2957 		return (ENOMEM);
2958 	}
2959 
2960 	for (; rsize != 0; rsize -= ssize, raddr += ssize) {
2961 		if (raddr >= seg->s_base + seg->s_size) {
2962 			seg = AS_SEGNEXT(as, seg);
2963 			if (seg == NULL || raddr != seg->s_base) {
2964 				error = ENOMEM;
2965 				break;
2966 			}
2967 		}
2968 		if ((raddr + rsize) > (seg->s_base + seg->s_size)) {
2969 			ssize = seg->s_base + seg->s_size - raddr;
2970 		} else {
2971 			ssize = rsize;
2972 		}
2973 
2974 retry:
2975 		error = SEGOP_SETPAGESIZE(seg, raddr, ssize, szc);
2976 
2977 		if (error == IE_NOMEM) {
2978 			error = EAGAIN;
2979 			break;
2980 		}
2981 
2982 		if (error == IE_RETRY) {
2983 			AS_LOCK_EXIT(as, &as->a_lock);
2984 			goto setpgsz_top;
2985 		}
2986 
2987 		if (error == ENOTSUP) {
2988 			error = EINVAL;
2989 			break;
2990 		}
2991 
2992 		if (wait && (error == EAGAIN)) {
2993 			/*
2994 			 * Memory is currently locked.  It must be unlocked
2995 			 * before this operation can succeed through a retry.
2996 			 * The possible reasons for locked memory and
2997 			 * corresponding strategies for unlocking are:
2998 			 * (1) Normal I/O
2999 			 *	wait for a signal that the I/O operation
3000 			 *	has completed and the memory is unlocked.
3001 			 * (2) Asynchronous I/O
3002 			 *	The aio subsystem does not unlock pages when
3003 			 *	the I/O is completed. Those pages are unlocked
3004 			 *	when the application calls aiowait/aioerror.
3005 			 *	So, to prevent blocking forever, cv_broadcast()
3006 			 *	is done to wake up aio_cleanup_thread.
3007 			 *	Subsequently, segvn_reclaim will be called, and
3008 			 *	that will do AS_CLRUNMAPWAIT() and wake us up.
3009 			 * (3) Long term page locking:
3010 			 *	This is not relevant for as_setpagesize()
3011 			 *	because we cannot change the page size for
3012 			 *	driver memory. The attempt to do so will
3013 			 *	fail with a different error than EAGAIN so
3014 			 *	there's no need to trigger as callbacks like
3015 			 *	as_unmap, as_setprot or as_free would do.
3016 			 */
3017 			mutex_enter(&as->a_contents);
3018 			if (!AS_ISNOUNMAPWAIT(as)) {
3019 				if (AS_ISUNMAPWAIT(as) == 0) {
3020 					cv_broadcast(&as->a_cv);
3021 				}
3022 				AS_SETUNMAPWAIT(as);
3023 				AS_LOCK_EXIT(as, &as->a_lock);
3024 				while (AS_ISUNMAPWAIT(as)) {
3025 					cv_wait(&as->a_cv, &as->a_contents);
3026 				}
3027 			} else {
3028 				/*
3029 				 * We may have raced with
3030 				 * segvn_reclaim()/segspt_reclaim(). In this
3031 				 * case clean nounmapwait flag and retry since
3032 				 * softlockcnt in this segment may be already
3033 				 * 0.  We don't drop as writer lock so our
3034 				 * number of retries without sleeping should
3035 				 * be very small. See segvn_reclaim() for
3036 				 * more comments.
3037 				 */
3038 				AS_CLRNOUNMAPWAIT(as);
3039 				mutex_exit(&as->a_contents);
3040 				goto retry;
3041 			}
3042 			mutex_exit(&as->a_contents);
3043 			goto setpgsz_top;
3044 		} else if (error != 0) {
3045 			break;
3046 		}
3047 	}
3048 	as_setwatch(as);
3049 	AS_LOCK_EXIT(as, &as->a_lock);
3050 	return (error);
3051 }
3052 
3053 /*
3054  * as_iset3_default_lpsize() just calls SEGOP_SETPAGESIZE() on all segments
3055  * in its chunk where s_szc is less than the szc we want to set.
3056  */
3057 static int
3058 as_iset3_default_lpsize(struct as *as, caddr_t raddr, size_t rsize, uint_t szc,
3059     int *retry)
3060 {
3061 	struct seg *seg;
3062 	size_t ssize;
3063 	int error;
3064 
3065 	ASSERT(AS_WRITE_HELD(as, &as->a_lock));
3066 
3067 	seg = as_segat(as, raddr);
3068 	if (seg == NULL) {
3069 		panic("as_iset3_default_lpsize: no seg");
3070 	}
3071 
3072 	for (; rsize != 0; rsize -= ssize, raddr += ssize) {
3073 		if (raddr >= seg->s_base + seg->s_size) {
3074 			seg = AS_SEGNEXT(as, seg);
3075 			if (seg == NULL || raddr != seg->s_base) {
3076 				panic("as_iset3_default_lpsize: as changed");
3077 			}
3078 		}
3079 		if ((raddr + rsize) > (seg->s_base + seg->s_size)) {
3080 			ssize = seg->s_base + seg->s_size - raddr;
3081 		} else {
3082 			ssize = rsize;
3083 		}
3084 
3085 		if (szc > seg->s_szc) {
3086 			error = SEGOP_SETPAGESIZE(seg, raddr, ssize, szc);
3087 			/* Only retry on EINVAL segments that have no vnode. */
3088 			if (error == EINVAL) {
3089 				vnode_t *vp = NULL;
3090 				if ((SEGOP_GETTYPE(seg, raddr) & MAP_SHARED) &&
3091 				    (SEGOP_GETVP(seg, raddr, &vp) != 0 ||
3092 				    vp == NULL)) {
3093 					*retry = 1;
3094 				} else {
3095 					*retry = 0;
3096 				}
3097 			}
3098 			if (error) {
3099 				return (error);
3100 			}
3101 		}
3102 	}
3103 	return (0);
3104 }
3105 
3106 /*
3107  * as_iset2_default_lpsize() calls as_iset3_default_lpsize() to set the
3108  * pagesize on each segment in its range, but if any fails with EINVAL,
3109  * then it reduces the pagesizes to the next size in the bitmap and
3110  * retries as_iset3_default_lpsize(). The reason why the code retries
3111  * smaller allowed sizes on EINVAL is because (a) the anon offset may not
3112  * match the bigger sizes, and (b) it's hard to get this offset (to begin
3113  * with) to pass to map_pgszcvec().
3114  */
3115 static int
3116 as_iset2_default_lpsize(struct as *as, caddr_t addr, size_t size, uint_t szc,
3117     uint_t szcvec)
3118 {
3119 	int error;
3120 	int retry;
3121 
3122 	ASSERT(AS_WRITE_HELD(as, &as->a_lock));
3123 
3124 	for (;;) {
3125 		error = as_iset3_default_lpsize(as, addr, size, szc, &retry);
3126 		if (error == EINVAL && retry) {
3127 			szcvec &= ~(1 << szc);
3128 			if (szcvec <= 1) {
3129 				return (EINVAL);
3130 			}
3131 			szc = highbit(szcvec) - 1;
3132 		} else {
3133 			return (error);
3134 		}
3135 	}
3136 }
3137 
3138 /*
3139  * as_iset1_default_lpsize() breaks its chunk into areas where existing
3140  * segments have a smaller szc than we want to set. For each such area,
3141  * it calls as_iset2_default_lpsize()
3142  */
3143 static int
3144 as_iset1_default_lpsize(struct as *as, caddr_t raddr, size_t rsize, uint_t szc,
3145     uint_t szcvec)
3146 {
3147 	struct seg *seg;
3148 	size_t ssize;
3149 	caddr_t setaddr = raddr;
3150 	size_t setsize = 0;
3151 	int set;
3152 	int error;
3153 
3154 	ASSERT(AS_WRITE_HELD(as, &as->a_lock));
3155 
3156 	seg = as_segat(as, raddr);
3157 	if (seg == NULL) {
3158 		panic("as_iset1_default_lpsize: no seg");
3159 	}
3160 	if (seg->s_szc < szc) {
3161 		set = 1;
3162 	} else {
3163 		set = 0;
3164 	}
3165 
3166 	for (; rsize != 0; rsize -= ssize, raddr += ssize, setsize += ssize) {
3167 		if (raddr >= seg->s_base + seg->s_size) {
3168 			seg = AS_SEGNEXT(as, seg);
3169 			if (seg == NULL || raddr != seg->s_base) {
3170 				panic("as_iset1_default_lpsize: as changed");
3171 			}
3172 			if (seg->s_szc >= szc && set) {
3173 				ASSERT(setsize != 0);
3174 				error = as_iset2_default_lpsize(as,
3175 				    setaddr, setsize, szc, szcvec);
3176 				if (error) {
3177 					return (error);
3178 				}
3179 				set = 0;
3180 			} else if (seg->s_szc < szc && !set) {
3181 				setaddr = raddr;
3182 				setsize = 0;
3183 				set = 1;
3184 			}
3185 		}
3186 		if ((raddr + rsize) > (seg->s_base + seg->s_size)) {
3187 			ssize = seg->s_base + seg->s_size - raddr;
3188 		} else {
3189 			ssize = rsize;
3190 		}
3191 	}
3192 	error = 0;
3193 	if (set) {
3194 		ASSERT(setsize != 0);
3195 		error = as_iset2_default_lpsize(as, setaddr, setsize,
3196 		    szc, szcvec);
3197 	}
3198 	return (error);
3199 }
3200 
3201 /*
3202  * as_iset_default_lpsize() breaks its chunk according to the size code bitmap
3203  * returned by map_pgszcvec() (similar to as_map_segvn_segs()), and passes each
3204  * chunk to as_iset1_default_lpsize().
3205  */
3206 static int
3207 as_iset_default_lpsize(struct as *as, caddr_t addr, size_t size, int flags,
3208     int type)
3209 {
3210 	int rtype = (type & MAP_SHARED) ? MAPPGSZC_SHM : MAPPGSZC_PRIVM;
3211 	uint_t szcvec = map_pgszcvec(addr, size, (uintptr_t)addr,
3212 	    flags, rtype, 1);
3213 	uint_t szc;
3214 	uint_t nszc;
3215 	int error;
3216 	caddr_t a;
3217 	caddr_t eaddr;
3218 	size_t segsize;
3219 	size_t pgsz;
3220 	uint_t save_szcvec;
3221 
3222 	ASSERT(AS_WRITE_HELD(as, &as->a_lock));
3223 	ASSERT(IS_P2ALIGNED(addr, PAGESIZE));
3224 	ASSERT(IS_P2ALIGNED(size, PAGESIZE));
3225 
3226 	szcvec &= ~1;
3227 	if (szcvec <= 1) {	/* skip if base page size */
3228 		return (0);
3229 	}
3230 
3231 	/* Get the pagesize of the first larger page size. */
3232 	szc = lowbit(szcvec) - 1;
3233 	pgsz = page_get_pagesize(szc);
3234 	eaddr = addr + size;
3235 	addr = (caddr_t)P2ROUNDUP((uintptr_t)addr, pgsz);
3236 	eaddr = (caddr_t)P2ALIGN((uintptr_t)eaddr, pgsz);
3237 
3238 	save_szcvec = szcvec;
3239 	szcvec >>= (szc + 1);
3240 	nszc = szc;
3241 	while (szcvec) {
3242 		if ((szcvec & 0x1) == 0) {
3243 			nszc++;
3244 			szcvec >>= 1;
3245 			continue;
3246 		}
3247 		nszc++;
3248 		pgsz = page_get_pagesize(nszc);
3249 		a = (caddr_t)P2ROUNDUP((uintptr_t)addr, pgsz);
3250 		if (a != addr) {
3251 			ASSERT(szc > 0);
3252 			ASSERT(a < eaddr);
3253 			segsize = a - addr;
3254 			error = as_iset1_default_lpsize(as, addr, segsize, szc,
3255 			    save_szcvec);
3256 			if (error) {
3257 				return (error);
3258 			}
3259 			addr = a;
3260 		}
3261 		szc = nszc;
3262 		szcvec >>= 1;
3263 	}
3264 
3265 	ASSERT(addr < eaddr);
3266 	szcvec = save_szcvec;
3267 	while (szcvec) {
3268 		a = (caddr_t)P2ALIGN((uintptr_t)eaddr, pgsz);
3269 		ASSERT(a >= addr);
3270 		if (a != addr) {
3271 			ASSERT(szc > 0);
3272 			segsize = a - addr;
3273 			error = as_iset1_default_lpsize(as, addr, segsize, szc,
3274 			    save_szcvec);
3275 			if (error) {
3276 				return (error);
3277 			}
3278 			addr = a;
3279 		}
3280 		szcvec &= ~(1 << szc);
3281 		if (szcvec) {
3282 			szc = highbit(szcvec) - 1;
3283 			pgsz = page_get_pagesize(szc);
3284 		}
3285 	}
3286 	ASSERT(addr == eaddr);
3287 
3288 	return (0);
3289 }
3290 
3291 /*
3292  * Set the default large page size for the range. Called via memcntl with
3293  * page size set to 0. as_set_default_lpsize breaks the range down into
3294  * chunks with the same type/flags, ignores-non segvn segments, and passes
3295  * each chunk to as_iset_default_lpsize().
3296  */
3297 int
3298 as_set_default_lpsize(struct as *as, caddr_t addr, size_t size)
3299 {
3300 	struct seg *seg;
3301 	caddr_t raddr;
3302 	size_t rsize;
3303 	size_t ssize;
3304 	int rtype, rflags;
3305 	int stype, sflags;
3306 	int error;
3307 	caddr_t	setaddr;
3308 	size_t setsize;
3309 	int segvn;
3310 
3311 	if (size == 0)
3312 		return (0);
3313 
3314 	AS_LOCK_ENTER(as, &as->a_lock, RW_WRITER);
3315 again:
3316 	error = 0;
3317 
3318 	raddr = (caddr_t)((uintptr_t)addr & (uintptr_t)PAGEMASK);
3319 	rsize = (((size_t)(addr + size) + PAGEOFFSET) & PAGEMASK) -
3320 	    (size_t)raddr;
3321 
3322 	if (raddr + rsize < raddr) {		/* check for wraparound */
3323 		AS_LOCK_EXIT(as, &as->a_lock);
3324 		return (ENOMEM);
3325 	}
3326 	as_clearwatchprot(as, raddr, rsize);
3327 	seg = as_segat(as, raddr);
3328 	if (seg == NULL) {
3329 		as_setwatch(as);
3330 		AS_LOCK_EXIT(as, &as->a_lock);
3331 		return (ENOMEM);
3332 	}
3333 	if (seg->s_ops == &segvn_ops) {
3334 		rtype = SEGOP_GETTYPE(seg, addr);
3335 		rflags = rtype & (MAP_TEXT | MAP_INITDATA);
3336 		rtype = rtype & (MAP_SHARED | MAP_PRIVATE);
3337 		segvn = 1;
3338 	} else {
3339 		segvn = 0;
3340 	}
3341 	setaddr = raddr;
3342 	setsize = 0;
3343 
3344 	for (; rsize != 0; rsize -= ssize, raddr += ssize, setsize += ssize) {
3345 		if (raddr >= (seg->s_base + seg->s_size)) {
3346 			seg = AS_SEGNEXT(as, seg);
3347 			if (seg == NULL || raddr != seg->s_base) {
3348 				error = ENOMEM;
3349 				break;
3350 			}
3351 			if (seg->s_ops == &segvn_ops) {
3352 				stype = SEGOP_GETTYPE(seg, raddr);
3353 				sflags = stype & (MAP_TEXT | MAP_INITDATA);
3354 				stype &= (MAP_SHARED | MAP_PRIVATE);
3355 				if (segvn && (rflags != sflags ||
3356 				    rtype != stype)) {
3357 					/*
3358 					 * The next segment is also segvn but
3359 					 * has different flags and/or type.
3360 					 */
3361 					ASSERT(setsize != 0);
3362 					error = as_iset_default_lpsize(as,
3363 					    setaddr, setsize, rflags, rtype);
3364 					if (error) {
3365 						break;
3366 					}
3367 					rflags = sflags;
3368 					rtype = stype;
3369 					setaddr = raddr;
3370 					setsize = 0;
3371 				} else if (!segvn) {
3372 					rflags = sflags;
3373 					rtype = stype;
3374 					setaddr = raddr;
3375 					setsize = 0;
3376 					segvn = 1;
3377 				}
3378 			} else if (segvn) {
3379 				/* The next segment is not segvn. */
3380 				ASSERT(setsize != 0);
3381 				error = as_iset_default_lpsize(as,
3382 				    setaddr, setsize, rflags, rtype);
3383 				if (error) {
3384 					break;
3385 				}
3386 				segvn = 0;
3387 			}
3388 		}
3389 		if ((raddr + rsize) > (seg->s_base + seg->s_size)) {
3390 			ssize = seg->s_base + seg->s_size - raddr;
3391 		} else {
3392 			ssize = rsize;
3393 		}
3394 	}
3395 	if (error == 0 && segvn) {
3396 		/* The last chunk when rsize == 0. */
3397 		ASSERT(setsize != 0);
3398 		error = as_iset_default_lpsize(as, setaddr, setsize,
3399 		    rflags, rtype);
3400 	}
3401 
3402 	if (error == IE_RETRY) {
3403 		goto again;
3404 	} else if (error == IE_NOMEM) {
3405 		error = EAGAIN;
3406 	} else if (error == ENOTSUP) {
3407 		error = EINVAL;
3408 	} else if (error == EAGAIN) {
3409 		mutex_enter(&as->a_contents);
3410 		if (!AS_ISNOUNMAPWAIT(as)) {
3411 			if (AS_ISUNMAPWAIT(as) == 0) {
3412 				cv_broadcast(&as->a_cv);
3413 			}
3414 			AS_SETUNMAPWAIT(as);
3415 			AS_LOCK_EXIT(as, &as->a_lock);
3416 			while (AS_ISUNMAPWAIT(as)) {
3417 				cv_wait(&as->a_cv, &as->a_contents);
3418 			}
3419 			mutex_exit(&as->a_contents);
3420 			AS_LOCK_ENTER(as, &as->a_lock, RW_WRITER);
3421 		} else {
3422 			/*
3423 			 * We may have raced with
3424 			 * segvn_reclaim()/segspt_reclaim(). In this case
3425 			 * clean nounmapwait flag and retry since softlockcnt
3426 			 * in this segment may be already 0.  We don't drop as
3427 			 * writer lock so our number of retries without
3428 			 * sleeping should be very small. See segvn_reclaim()
3429 			 * for more comments.
3430 			 */
3431 			AS_CLRNOUNMAPWAIT(as);
3432 			mutex_exit(&as->a_contents);
3433 		}
3434 		goto again;
3435 	}
3436 
3437 	as_setwatch(as);
3438 	AS_LOCK_EXIT(as, &as->a_lock);
3439 	return (error);
3440 }
3441 
3442 /*
3443  * Setup all of the uninitialized watched pages that we can.
3444  */
3445 void
3446 as_setwatch(struct as *as)
3447 {
3448 	struct watched_page *pwp;
3449 	struct seg *seg;
3450 	caddr_t vaddr;
3451 	uint_t prot;
3452 	int  err, retrycnt;
3453 
3454 	if (avl_numnodes(&as->a_wpage) == 0)
3455 		return;
3456 
3457 	ASSERT(AS_WRITE_HELD(as, &as->a_lock));
3458 
3459 	for (pwp = avl_first(&as->a_wpage); pwp != NULL;
3460 	    pwp = AVL_NEXT(&as->a_wpage, pwp)) {
3461 		retrycnt = 0;
3462 	retry:
3463 		vaddr = pwp->wp_vaddr;
3464 		if (pwp->wp_oprot != 0 ||	/* already set up */
3465 		    (seg = as_segat(as, vaddr)) == NULL ||
3466 		    SEGOP_GETPROT(seg, vaddr, 0, &prot) != 0)
3467 			continue;
3468 
3469 		pwp->wp_oprot = prot;
3470 		if (pwp->wp_read)
3471 			prot &= ~(PROT_READ|PROT_WRITE|PROT_EXEC);
3472 		if (pwp->wp_write)
3473 			prot &= ~PROT_WRITE;
3474 		if (pwp->wp_exec)
3475 			prot &= ~(PROT_READ|PROT_WRITE|PROT_EXEC);
3476 		if (!(pwp->wp_flags & WP_NOWATCH) && prot != pwp->wp_oprot) {
3477 			err = SEGOP_SETPROT(seg, vaddr, PAGESIZE, prot);
3478 			if (err == IE_RETRY) {
3479 				pwp->wp_oprot = 0;
3480 				ASSERT(retrycnt == 0);
3481 				retrycnt++;
3482 				goto retry;
3483 			}
3484 		}
3485 		pwp->wp_prot = prot;
3486 	}
3487 }
3488 
3489 /*
3490  * Clear all of the watched pages in the address space.
3491  */
3492 void
3493 as_clearwatch(struct as *as)
3494 {
3495 	struct watched_page *pwp;
3496 	struct seg *seg;
3497 	caddr_t vaddr;
3498 	uint_t prot;
3499 	int err, retrycnt;
3500 
3501 	if (avl_numnodes(&as->a_wpage) == 0)
3502 		return;
3503 
3504 	ASSERT(AS_WRITE_HELD(as, &as->a_lock));
3505 
3506 	for (pwp = avl_first(&as->a_wpage); pwp != NULL;
3507 	    pwp = AVL_NEXT(&as->a_wpage, pwp)) {
3508 		retrycnt = 0;
3509 	retry:
3510 		vaddr = pwp->wp_vaddr;
3511 		if (pwp->wp_oprot == 0 ||	/* not set up */
3512 		    (seg = as_segat(as, vaddr)) == NULL)
3513 			continue;
3514 
3515 		if ((prot = pwp->wp_oprot) != pwp->wp_prot) {
3516 			err = SEGOP_SETPROT(seg, vaddr, PAGESIZE, prot);
3517 			if (err == IE_RETRY) {
3518 				ASSERT(retrycnt == 0);
3519 				retrycnt++;
3520 				goto retry;
3521 			}
3522 		}
3523 		pwp->wp_oprot = 0;
3524 		pwp->wp_prot = 0;
3525 	}
3526 }
3527 
3528 /*
3529  * Force a new setup for all the watched pages in the range.
3530  */
3531 static void
3532 as_setwatchprot(struct as *as, caddr_t addr, size_t size, uint_t prot)
3533 {
3534 	struct watched_page *pwp;
3535 	struct watched_page tpw;
3536 	caddr_t eaddr = addr + size;
3537 	caddr_t vaddr;
3538 	struct seg *seg;
3539 	int err, retrycnt;
3540 	uint_t	wprot;
3541 	avl_index_t where;
3542 
3543 	if (avl_numnodes(&as->a_wpage) == 0)
3544 		return;
3545 
3546 	ASSERT(AS_WRITE_HELD(as, &as->a_lock));
3547 
3548 	tpw.wp_vaddr = (caddr_t)((uintptr_t)addr & (uintptr_t)PAGEMASK);
3549 	if ((pwp = avl_find(&as->a_wpage, &tpw, &where)) == NULL)
3550 		pwp = avl_nearest(&as->a_wpage, where, AVL_AFTER);
3551 
3552 	while (pwp != NULL && pwp->wp_vaddr < eaddr) {
3553 		retrycnt = 0;
3554 		vaddr = pwp->wp_vaddr;
3555 
3556 		wprot = prot;
3557 		if (pwp->wp_read)
3558 			wprot &= ~(PROT_READ|PROT_WRITE|PROT_EXEC);
3559 		if (pwp->wp_write)
3560 			wprot &= ~PROT_WRITE;
3561 		if (pwp->wp_exec)
3562 			wprot &= ~(PROT_READ|PROT_WRITE|PROT_EXEC);
3563 		if (!(pwp->wp_flags & WP_NOWATCH) && wprot != pwp->wp_oprot) {
3564 		retry:
3565 			seg = as_segat(as, vaddr);
3566 			if (seg == NULL) {
3567 				panic("as_setwatchprot: no seg");
3568 				/*NOTREACHED*/
3569 			}
3570 			err = SEGOP_SETPROT(seg, vaddr, PAGESIZE, wprot);
3571 			if (err == IE_RETRY) {
3572 				ASSERT(retrycnt == 0);
3573 				retrycnt++;
3574 				goto retry;
3575 			}
3576 		}
3577 		pwp->wp_oprot = prot;
3578 		pwp->wp_prot = wprot;
3579 
3580 		pwp = AVL_NEXT(&as->a_wpage, pwp);
3581 	}
3582 }
3583 
3584 /*
3585  * Clear all of the watched pages in the range.
3586  */
3587 static void
3588 as_clearwatchprot(struct as *as, caddr_t addr, size_t size)
3589 {
3590 	caddr_t eaddr = addr + size;
3591 	struct watched_page *pwp;
3592 	struct watched_page tpw;
3593 	uint_t prot;
3594 	struct seg *seg;
3595 	int err, retrycnt;
3596 	avl_index_t where;
3597 
3598 	if (avl_numnodes(&as->a_wpage) == 0)
3599 		return;
3600 
3601 	tpw.wp_vaddr = (caddr_t)((uintptr_t)addr & (uintptr_t)PAGEMASK);
3602 	if ((pwp = avl_find(&as->a_wpage, &tpw, &where)) == NULL)
3603 		pwp = avl_nearest(&as->a_wpage, where, AVL_AFTER);
3604 
3605 	ASSERT(AS_WRITE_HELD(as, &as->a_lock));
3606 
3607 	while (pwp != NULL && pwp->wp_vaddr < eaddr) {
3608 
3609 		if ((prot = pwp->wp_oprot) != 0) {
3610 			retrycnt = 0;
3611 
3612 			if (prot != pwp->wp_prot) {
3613 			retry:
3614 				seg = as_segat(as, pwp->wp_vaddr);
3615 				if (seg == NULL)
3616 					continue;
3617 				err = SEGOP_SETPROT(seg, pwp->wp_vaddr,
3618 				    PAGESIZE, prot);
3619 				if (err == IE_RETRY) {
3620 					ASSERT(retrycnt == 0);
3621 					retrycnt++;
3622 					goto retry;
3623 
3624 				}
3625 			}
3626 			pwp->wp_oprot = 0;
3627 			pwp->wp_prot = 0;
3628 		}
3629 
3630 		pwp = AVL_NEXT(&as->a_wpage, pwp);
3631 	}
3632 }
3633 
3634 void
3635 as_signal_proc(struct as *as, k_siginfo_t *siginfo)
3636 {
3637 	struct proc *p;
3638 
3639 	mutex_enter(&pidlock);
3640 	for (p = practive; p; p = p->p_next) {
3641 		if (p->p_as == as) {
3642 			mutex_enter(&p->p_lock);
3643 			if (p->p_as == as)
3644 				sigaddq(p, NULL, siginfo, KM_NOSLEEP);
3645 			mutex_exit(&p->p_lock);
3646 		}
3647 	}
3648 	mutex_exit(&pidlock);
3649 }
3650 
3651 /*
3652  * return memory object ID
3653  */
3654 int
3655 as_getmemid(struct as *as, caddr_t addr, memid_t *memidp)
3656 {
3657 	struct seg	*seg;
3658 	int		sts;
3659 
3660 	AS_LOCK_ENTER(as, &as->a_lock, RW_READER);
3661 	seg = as_segat(as, addr);
3662 	if (seg == NULL) {
3663 		AS_LOCK_EXIT(as, &as->a_lock);
3664 		return (EFAULT);
3665 	}
3666 	/*
3667 	 * catch old drivers which may not support getmemid
3668 	 */
3669 	if (seg->s_ops->getmemid == NULL) {
3670 		AS_LOCK_EXIT(as, &as->a_lock);
3671 		return (ENODEV);
3672 	}
3673 
3674 	sts = SEGOP_GETMEMID(seg, addr, memidp);
3675 
3676 	AS_LOCK_EXIT(as, &as->a_lock);
3677 	return (sts);
3678 }
3679