1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License, Version 1.0 only 6 * (the "License"). You may not use this file except in compliance 7 * with the License. 8 * 9 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 10 * or http://www.opensolaris.org/os/licensing. 11 * See the License for the specific language governing permissions 12 * and limitations under the License. 13 * 14 * When distributing Covered Code, include this CDDL HEADER in each 15 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 16 * If applicable, add the following below this CDDL HEADER, with the 17 * fields enclosed by brackets "[]" replaced with your own identifying 18 * information: Portions Copyright [yyyy] [name of copyright owner] 19 * 20 * CDDL HEADER END 21 */ 22 /* 23 * Copyright 2005 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 27 /* Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T */ 28 /* All Rights Reserved */ 29 30 /* 31 * University Copyright- Copyright (c) 1982, 1986, 1988 32 * The Regents of the University of California 33 * All Rights Reserved 34 * 35 * University Acknowledgment- Portions of this document are derived from 36 * software developed by the University of California, Berkeley, and its 37 * contributors. 38 */ 39 40 #pragma ident "%Z%%M% %I% %E% SMI" 41 42 /* 43 * VM - address spaces. 44 */ 45 46 #include <sys/types.h> 47 #include <sys/t_lock.h> 48 #include <sys/param.h> 49 #include <sys/errno.h> 50 #include <sys/systm.h> 51 #include <sys/mman.h> 52 #include <sys/sysmacros.h> 53 #include <sys/cpuvar.h> 54 #include <sys/sysinfo.h> 55 #include <sys/kmem.h> 56 #include <sys/vnode.h> 57 #include <sys/vmsystm.h> 58 #include <sys/cmn_err.h> 59 #include <sys/debug.h> 60 #include <sys/tnf_probe.h> 61 #include <sys/vtrace.h> 62 63 #include <vm/hat.h> 64 #include <vm/xhat.h> 65 #include <vm/as.h> 66 #include <vm/seg.h> 67 #include <vm/seg_vn.h> 68 #include <vm/seg_dev.h> 69 #include <vm/seg_kmem.h> 70 #include <vm/seg_map.h> 71 #include <vm/seg_spt.h> 72 #include <vm/page.h> 73 74 clock_t deadlk_wait = 1; /* number of ticks to wait before retrying */ 75 76 static struct kmem_cache *as_cache; 77 78 static void as_setwatchprot(struct as *, caddr_t, size_t, uint_t); 79 static void as_clearwatchprot(struct as *, caddr_t, size_t); 80 81 82 /* 83 * Verifying the segment lists is very time-consuming; it may not be 84 * desirable always to define VERIFY_SEGLIST when DEBUG is set. 85 */ 86 #ifdef DEBUG 87 #define VERIFY_SEGLIST 88 int do_as_verify = 0; 89 #endif 90 91 /* 92 * Allocate a new callback data structure entry and fill in the events of 93 * interest, the address range of interest, and the callback argument. 94 * Link the entry on the as->a_callbacks list. A callback entry for the 95 * entire address space may be specified with vaddr = 0 and size = -1. 96 * 97 * CALLERS RESPONSIBILITY: If not calling from within the process context for 98 * the specified as, the caller must guarantee persistence of the specified as 99 * for the duration of this function (eg. pages being locked within the as 100 * will guarantee persistence). 101 */ 102 int 103 as_add_callback(struct as *as, void (*cb_func)(), void *arg, uint_t events, 104 caddr_t vaddr, size_t size, int sleepflag) 105 { 106 struct as_callback *current_head, *cb; 107 caddr_t saddr; 108 size_t rsize; 109 110 /* callback function and an event are mandatory */ 111 if ((cb_func == NULL) || ((events & AS_ALL_EVENT) == 0)) 112 return (EINVAL); 113 114 /* Adding a callback after as_free has been called is not allowed */ 115 if (as == &kas) 116 return (ENOMEM); 117 118 /* 119 * vaddr = 0 and size = -1 is used to indicate that the callback range 120 * is the entire address space so no rounding is done in that case. 121 */ 122 if (size != -1) { 123 saddr = (caddr_t)((uintptr_t)vaddr & (uintptr_t)PAGEMASK); 124 rsize = (((size_t)(vaddr + size) + PAGEOFFSET) & PAGEMASK) - 125 (size_t)saddr; 126 /* check for wraparound */ 127 if (saddr + rsize < saddr) 128 return (ENOMEM); 129 } else { 130 if (vaddr != 0) 131 return (EINVAL); 132 saddr = vaddr; 133 rsize = size; 134 } 135 136 /* Allocate and initialize a callback entry */ 137 cb = kmem_zalloc(sizeof (struct as_callback), sleepflag); 138 if (cb == NULL) 139 return (EAGAIN); 140 141 cb->ascb_func = cb_func; 142 cb->ascb_arg = arg; 143 cb->ascb_events = events; 144 cb->ascb_saddr = saddr; 145 cb->ascb_len = rsize; 146 147 /* Add the entry to the list */ 148 mutex_enter(&as->a_contents); 149 current_head = as->a_callbacks; 150 as->a_callbacks = cb; 151 cb->ascb_next = current_head; 152 153 /* 154 * The call to this function may lose in a race with 155 * a pertinent event - eg. a thread does long term memory locking 156 * but before the callback is added another thread executes as_unmap. 157 * A broadcast here resolves that. 158 */ 159 if ((cb->ascb_events & AS_UNMAPWAIT_EVENT) && AS_ISUNMAPWAIT(as)) { 160 AS_CLRUNMAPWAIT(as); 161 cv_broadcast(&as->a_cv); 162 } 163 164 mutex_exit(&as->a_contents); 165 return (0); 166 } 167 168 /* 169 * Search the callback list for an entry which pertains to arg. 170 * 171 * This is called from within the client upon completion of the callback. 172 * RETURN VALUES: 173 * AS_CALLBACK_DELETED (callback entry found and deleted) 174 * AS_CALLBACK_NOTFOUND (no callback entry found - this is ok) 175 * AS_CALLBACK_DELETE_DEFERRED (callback is in process, delete of this 176 * entry will be made in as_do_callbacks) 177 * 178 * If as_delete_callback encounters a matching entry with AS_CALLBACK_CALLED 179 * set, it indicates that as_do_callbacks is processing this entry. The 180 * AS_ALL_EVENT events are cleared in the entry, and a broadcast is made 181 * to unblock as_do_callbacks, in case it is blocked. 182 * 183 * CALLERS RESPONSIBILITY: If not calling from within the process context for 184 * the specified as, the caller must guarantee persistence of the specified as 185 * for the duration of this function (eg. pages being locked within the as 186 * will guarantee persistence). 187 */ 188 uint_t 189 as_delete_callback(struct as *as, void *arg) 190 { 191 struct as_callback **prevcb = &as->a_callbacks; 192 struct as_callback *cb; 193 uint_t rc = AS_CALLBACK_NOTFOUND; 194 195 mutex_enter(&as->a_contents); 196 for (cb = as->a_callbacks; cb; prevcb = &cb->ascb_next, cb = *prevcb) { 197 if (cb->ascb_arg != arg) 198 continue; 199 200 /* 201 * If the events indicate AS_CALLBACK_CALLED, just clear 202 * AS_ALL_EVENT in the events field and wakeup the thread 203 * that may be waiting in as_do_callbacks. as_do_callbacks 204 * will take care of removing this entry from the list. In 205 * that case, return AS_CALLBACK_DELETE_DEFERRED. Otherwise 206 * (AS_CALLBACK_CALLED not set), just remove it from the 207 * list, return the memory and return AS_CALLBACK_DELETED. 208 */ 209 if ((cb->ascb_events & AS_CALLBACK_CALLED) != 0) { 210 /* leave AS_CALLBACK_CALLED */ 211 cb->ascb_events &= ~AS_ALL_EVENT; 212 rc = AS_CALLBACK_DELETE_DEFERRED; 213 cv_broadcast(&as->a_cv); 214 } else { 215 *prevcb = cb->ascb_next; 216 kmem_free(cb, sizeof (struct as_callback)); 217 rc = AS_CALLBACK_DELETED; 218 } 219 break; 220 } 221 mutex_exit(&as->a_contents); 222 return (rc); 223 } 224 225 /* 226 * Searches the as callback list for a matching entry. 227 * Returns a pointer to the first matching callback, or NULL if 228 * nothing is found. 229 * This function never sleeps so it is ok to call it with more 230 * locks held but the (required) a_contents mutex. 231 * 232 * See also comment on as_do_callbacks below. 233 */ 234 static struct as_callback * 235 as_find_callback(struct as *as, uint_t events, caddr_t event_addr, 236 size_t event_len) 237 { 238 struct as_callback *cb; 239 240 ASSERT(MUTEX_HELD(&as->a_contents)); 241 for (cb = as->a_callbacks; cb != NULL; cb = cb->ascb_next) { 242 /* 243 * If the callback has not already been called, then 244 * check if events or address range pertains. An event_len 245 * of zero means do an unconditional callback. 246 */ 247 if (((cb->ascb_events & AS_CALLBACK_CALLED) != 0) || 248 ((event_len != 0) && (((cb->ascb_events & events) == 0) || 249 (event_addr + event_len < cb->ascb_saddr) || 250 (event_addr > (cb->ascb_saddr + cb->ascb_len))))) { 251 continue; 252 } 253 break; 254 } 255 return (cb); 256 } 257 258 /* 259 * Executes a given callback and removes it from the callback list for 260 * this address space. 261 * This function may sleep so the caller must drop all locks except 262 * a_contents before calling this func. 263 * 264 * See also comments on as_do_callbacks below. 265 */ 266 static void 267 as_execute_callback(struct as *as, struct as_callback *cb, 268 uint_t events) 269 { 270 struct as_callback **prevcb; 271 void *cb_arg; 272 273 ASSERT(MUTEX_HELD(&as->a_contents) && (cb->ascb_events & events)); 274 cb->ascb_events |= AS_CALLBACK_CALLED; 275 mutex_exit(&as->a_contents); 276 (*cb->ascb_func)(as, cb->ascb_arg, events); 277 mutex_enter(&as->a_contents); 278 /* 279 * the callback function is required to delete the callback 280 * when the callback function determines it is OK for 281 * this thread to continue. as_delete_callback will clear 282 * the AS_ALL_EVENT in the events field when it is deleted. 283 * If the callback function called as_delete_callback, 284 * events will already be cleared and there will be no blocking. 285 */ 286 while ((cb->ascb_events & events) != 0) { 287 cv_wait(&as->a_cv, &as->a_contents); 288 } 289 /* 290 * This entry needs to be taken off the list. Normally, the 291 * callback func itself does that, but unfortunately the list 292 * may have changed while the callback was running because the 293 * a_contents mutex was dropped and someone else other than the 294 * callback func itself could have called as_delete_callback, 295 * so we have to search to find this entry again. The entry 296 * must have AS_CALLBACK_CALLED, and have the same 'arg'. 297 */ 298 cb_arg = cb->ascb_arg; 299 prevcb = &as->a_callbacks; 300 for (cb = as->a_callbacks; cb != NULL; 301 prevcb = &cb->ascb_next, cb = *prevcb) { 302 if (((cb->ascb_events & AS_CALLBACK_CALLED) == 0) || 303 (cb_arg != cb->ascb_arg)) { 304 continue; 305 } 306 *prevcb = cb->ascb_next; 307 kmem_free(cb, sizeof (struct as_callback)); 308 break; 309 } 310 } 311 312 /* 313 * Check the callback list for a matching event and intersection of 314 * address range. If there is a match invoke the callback. Skip an entry if: 315 * - a callback is already in progress for this entry (AS_CALLBACK_CALLED) 316 * - not event of interest 317 * - not address range of interest 318 * 319 * An event_len of zero indicates a request for an unconditional callback 320 * (regardless of event), only the AS_CALLBACK_CALLED is checked. The 321 * a_contents lock must be dropped before a callback, so only one callback 322 * can be done before returning. Return -1 (true) if a callback was 323 * executed and removed from the list, else return 0 (false). 324 * 325 * The logically separate parts, i.e. finding a matching callback and 326 * executing a given callback have been separated into two functions 327 * so that they can be called with different sets of locks held beyond 328 * the always-required a_contents. as_find_callback does not sleep so 329 * it is ok to call it if more locks than a_contents (i.e. the a_lock 330 * rwlock) are held. as_execute_callback on the other hand may sleep 331 * so all locks beyond a_contents must be dropped by the caller if one 332 * does not want to end comatose. 333 */ 334 static int 335 as_do_callbacks(struct as *as, uint_t events, caddr_t event_addr, 336 size_t event_len) 337 { 338 struct as_callback *cb; 339 340 if ((cb = as_find_callback(as, events, event_addr, event_len))) { 341 as_execute_callback(as, cb, events); 342 return (-1); 343 } 344 return (0); 345 } 346 347 /* 348 * Search for the segment containing addr. If a segment containing addr 349 * exists, that segment is returned. If no such segment exists, and 350 * the list spans addresses greater than addr, then the first segment 351 * whose base is greater than addr is returned; otherwise, NULL is 352 * returned unless tail is true, in which case the last element of the 353 * list is returned. 354 * 355 * a_seglast is used to cache the last found segment for repeated 356 * searches to the same addr (which happens frequently). 357 */ 358 struct seg * 359 as_findseg(struct as *as, caddr_t addr, int tail) 360 { 361 struct seg *seg = as->a_seglast; 362 avl_index_t where; 363 364 ASSERT(AS_LOCK_HELD(as, &as->a_lock)); 365 366 if (seg != NULL && 367 seg->s_base <= addr && 368 addr < seg->s_base + seg->s_size) 369 return (seg); 370 371 seg = avl_find(&as->a_segtree, &addr, &where); 372 if (seg != NULL) 373 return (as->a_seglast = seg); 374 375 seg = avl_nearest(&as->a_segtree, where, AVL_AFTER); 376 if (seg == NULL && tail) 377 seg = avl_last(&as->a_segtree); 378 return (as->a_seglast = seg); 379 } 380 381 #ifdef VERIFY_SEGLIST 382 /* 383 * verify that the linked list is coherent 384 */ 385 static void 386 as_verify(struct as *as) 387 { 388 struct seg *seg, *seglast, *p, *n; 389 uint_t nsegs = 0; 390 391 if (do_as_verify == 0) 392 return; 393 394 seglast = as->a_seglast; 395 396 for (seg = AS_SEGFIRST(as); seg != NULL; seg = AS_SEGNEXT(as, seg)) { 397 ASSERT(seg->s_as == as); 398 p = AS_SEGPREV(as, seg); 399 n = AS_SEGNEXT(as, seg); 400 ASSERT(p == NULL || p->s_as == as); 401 ASSERT(p == NULL || p->s_base < seg->s_base); 402 ASSERT(n == NULL || n->s_base > seg->s_base); 403 ASSERT(n != NULL || seg == avl_last(&as->a_segtree)); 404 if (seg == seglast) 405 seglast = NULL; 406 nsegs++; 407 } 408 ASSERT(seglast == NULL); 409 ASSERT(avl_numnodes(&as->a_segtree) == nsegs); 410 } 411 #endif /* VERIFY_SEGLIST */ 412 413 /* 414 * Add a new segment to the address space. The avl_find() 415 * may be expensive so we attempt to use last segment accessed 416 * in as_gap() as an insertion point. 417 */ 418 int 419 as_addseg(struct as *as, struct seg *newseg) 420 { 421 struct seg *seg; 422 caddr_t addr; 423 caddr_t eaddr; 424 avl_index_t where; 425 426 ASSERT(AS_WRITE_HELD(as, &as->a_lock)); 427 428 as->a_updatedir = 1; /* inform /proc */ 429 gethrestime(&as->a_updatetime); 430 431 if (as->a_lastgaphl != NULL) { 432 struct seg *hseg = NULL; 433 struct seg *lseg = NULL; 434 435 if (as->a_lastgaphl->s_base > newseg->s_base) { 436 hseg = as->a_lastgaphl; 437 lseg = AVL_PREV(&as->a_segtree, hseg); 438 } else { 439 lseg = as->a_lastgaphl; 440 hseg = AVL_NEXT(&as->a_segtree, lseg); 441 } 442 443 if (hseg && lseg && lseg->s_base < newseg->s_base && 444 hseg->s_base > newseg->s_base) { 445 avl_insert_here(&as->a_segtree, newseg, lseg, 446 AVL_AFTER); 447 as->a_lastgaphl = NULL; 448 as->a_seglast = newseg; 449 return (0); 450 } 451 as->a_lastgaphl = NULL; 452 } 453 454 addr = newseg->s_base; 455 eaddr = addr + newseg->s_size; 456 again: 457 458 seg = avl_find(&as->a_segtree, &addr, &where); 459 460 if (seg == NULL) 461 seg = avl_nearest(&as->a_segtree, where, AVL_AFTER); 462 463 if (seg == NULL) 464 seg = avl_last(&as->a_segtree); 465 466 if (seg != NULL) { 467 caddr_t base = seg->s_base; 468 469 /* 470 * If top of seg is below the requested address, then 471 * the insertion point is at the end of the linked list, 472 * and seg points to the tail of the list. Otherwise, 473 * the insertion point is immediately before seg. 474 */ 475 if (base + seg->s_size > addr) { 476 if (addr >= base || eaddr > base) { 477 #ifdef __sparc 478 extern struct seg_ops segnf_ops; 479 480 /* 481 * no-fault segs must disappear if overlaid. 482 * XXX need new segment type so 483 * we don't have to check s_ops 484 */ 485 if (seg->s_ops == &segnf_ops) { 486 seg_unmap(seg); 487 goto again; 488 } 489 #endif 490 return (-1); /* overlapping segment */ 491 } 492 } 493 } 494 as->a_seglast = newseg; 495 avl_insert(&as->a_segtree, newseg, where); 496 497 #ifdef VERIFY_SEGLIST 498 as_verify(as); 499 #endif 500 return (0); 501 } 502 503 struct seg * 504 as_removeseg(struct as *as, struct seg *seg) 505 { 506 avl_tree_t *t; 507 508 ASSERT(AS_WRITE_HELD(as, &as->a_lock)); 509 510 as->a_updatedir = 1; /* inform /proc */ 511 gethrestime(&as->a_updatetime); 512 513 if (seg == NULL) 514 return (NULL); 515 516 t = &as->a_segtree; 517 if (as->a_seglast == seg) 518 as->a_seglast = NULL; 519 as->a_lastgaphl = NULL; 520 521 /* 522 * if this segment is at an address higher than 523 * a_lastgap, set a_lastgap to the next segment (NULL if last segment) 524 */ 525 if (as->a_lastgap && 526 (seg == as->a_lastgap || seg->s_base > as->a_lastgap->s_base)) 527 as->a_lastgap = AVL_NEXT(t, seg); 528 529 /* 530 * remove the segment from the seg tree 531 */ 532 avl_remove(t, seg); 533 534 #ifdef VERIFY_SEGLIST 535 as_verify(as); 536 #endif 537 return (seg); 538 } 539 540 /* 541 * Find a segment containing addr. 542 */ 543 struct seg * 544 as_segat(struct as *as, caddr_t addr) 545 { 546 struct seg *seg = as->a_seglast; 547 548 ASSERT(AS_LOCK_HELD(as, &as->a_lock)); 549 550 if (seg != NULL && seg->s_base <= addr && 551 addr < seg->s_base + seg->s_size) 552 return (seg); 553 554 seg = avl_find(&as->a_segtree, &addr, NULL); 555 return (seg); 556 } 557 558 /* 559 * Serialize all searches for holes in an address space to 560 * prevent two or more threads from allocating the same virtual 561 * address range. The address space must not be "read/write" 562 * locked by the caller since we may block. 563 */ 564 void 565 as_rangelock(struct as *as) 566 { 567 mutex_enter(&as->a_contents); 568 while (AS_ISCLAIMGAP(as)) 569 cv_wait(&as->a_cv, &as->a_contents); 570 AS_SETCLAIMGAP(as); 571 mutex_exit(&as->a_contents); 572 } 573 574 /* 575 * Release hold on a_state & AS_CLAIMGAP and signal any other blocked threads. 576 */ 577 void 578 as_rangeunlock(struct as *as) 579 { 580 mutex_enter(&as->a_contents); 581 AS_CLRCLAIMGAP(as); 582 cv_signal(&as->a_cv); 583 mutex_exit(&as->a_contents); 584 } 585 586 /* 587 * compar segments (or just an address) by segment address range 588 */ 589 static int 590 as_segcompar(const void *x, const void *y) 591 { 592 struct seg *a = (struct seg *)x; 593 struct seg *b = (struct seg *)y; 594 595 if (a->s_base < b->s_base) 596 return (-1); 597 if (a->s_base >= b->s_base + b->s_size) 598 return (1); 599 return (0); 600 } 601 602 603 void 604 as_avlinit(struct as *as) 605 { 606 avl_create(&as->a_segtree, as_segcompar, sizeof (struct seg), 607 offsetof(struct seg, s_tree)); 608 avl_create(&as->a_wpage, wp_compare, sizeof (struct watched_page), 609 offsetof(struct watched_page, wp_link)); 610 } 611 612 /*ARGSUSED*/ 613 static int 614 as_constructor(void *buf, void *cdrarg, int kmflags) 615 { 616 struct as *as = buf; 617 618 mutex_init(&as->a_contents, NULL, MUTEX_DEFAULT, NULL); 619 cv_init(&as->a_cv, NULL, CV_DEFAULT, NULL); 620 rw_init(&as->a_lock, NULL, RW_DEFAULT, NULL); 621 as_avlinit(as); 622 return (0); 623 } 624 625 /*ARGSUSED1*/ 626 static void 627 as_destructor(void *buf, void *cdrarg) 628 { 629 struct as *as = buf; 630 631 avl_destroy(&as->a_segtree); 632 mutex_destroy(&as->a_contents); 633 cv_destroy(&as->a_cv); 634 rw_destroy(&as->a_lock); 635 } 636 637 void 638 as_init(void) 639 { 640 as_cache = kmem_cache_create("as_cache", sizeof (struct as), 0, 641 as_constructor, as_destructor, NULL, NULL, NULL, 0); 642 } 643 644 /* 645 * Allocate and initialize an address space data structure. 646 * We call hat_alloc to allow any machine dependent 647 * information in the hat structure to be initialized. 648 */ 649 struct as * 650 as_alloc(void) 651 { 652 struct as *as; 653 654 as = kmem_cache_alloc(as_cache, KM_SLEEP); 655 656 as->a_flags = 0; 657 as->a_vbits = 0; 658 as->a_hrm = NULL; 659 as->a_seglast = NULL; 660 as->a_size = 0; 661 as->a_updatedir = 0; 662 gethrestime(&as->a_updatetime); 663 as->a_objectdir = NULL; 664 as->a_sizedir = 0; 665 as->a_userlimit = (caddr_t)USERLIMIT; 666 as->a_lastgap = NULL; 667 as->a_lastgaphl = NULL; 668 as->a_callbacks = NULL; 669 670 AS_LOCK_ENTER(as, &as->a_lock, RW_WRITER); 671 as->a_hat = hat_alloc(as); /* create hat for default system mmu */ 672 AS_LOCK_EXIT(as, &as->a_lock); 673 674 as->a_xhat = NULL; 675 676 return (as); 677 } 678 679 /* 680 * Free an address space data structure. 681 * Need to free the hat first and then 682 * all the segments on this as and finally 683 * the space for the as struct itself. 684 */ 685 void 686 as_free(struct as *as) 687 { 688 struct hat *hat = as->a_hat; 689 struct seg *seg, *next; 690 int called = 0; 691 692 top: 693 /* 694 * Invoke ALL callbacks. as_do_callbacks will do one callback 695 * per call, and not return (-1) until the callback has completed. 696 * When as_do_callbacks returns zero, all callbacks have completed. 697 */ 698 mutex_enter(&as->a_contents); 699 while (as->a_callbacks && as_do_callbacks(as, AS_ALL_EVENT, 0, 0)); 700 701 /* This will prevent new XHATs from attaching to as */ 702 if (!called) 703 AS_SETBUSY(as); 704 mutex_exit(&as->a_contents); 705 AS_LOCK_ENTER(as, &as->a_lock, RW_WRITER); 706 707 if (!called) { 708 called = 1; 709 hat_free_start(hat); 710 if (as->a_xhat != NULL) 711 xhat_free_start_all(as); 712 } 713 for (seg = AS_SEGFIRST(as); seg != NULL; seg = next) { 714 int err; 715 716 next = AS_SEGNEXT(as, seg); 717 err = SEGOP_UNMAP(seg, seg->s_base, seg->s_size); 718 if (err == EAGAIN) { 719 mutex_enter(&as->a_contents); 720 if (as->a_callbacks) { 721 AS_LOCK_EXIT(as, &as->a_lock); 722 } else { 723 /* 724 * Memory is currently locked. Wait for a 725 * cv_signal that it has been unlocked, then 726 * try the operation again. 727 */ 728 if (AS_ISUNMAPWAIT(as) == 0) 729 cv_broadcast(&as->a_cv); 730 AS_SETUNMAPWAIT(as); 731 AS_LOCK_EXIT(as, &as->a_lock); 732 while (AS_ISUNMAPWAIT(as)) 733 cv_wait(&as->a_cv, &as->a_contents); 734 } 735 mutex_exit(&as->a_contents); 736 goto top; 737 } else { 738 /* 739 * We do not expect any other error return at this 740 * time. This is similar to an ASSERT in seg_unmap() 741 */ 742 ASSERT(err == 0); 743 } 744 } 745 hat_free_end(hat); 746 if (as->a_xhat != NULL) 747 xhat_free_end_all(as); 748 AS_LOCK_EXIT(as, &as->a_lock); 749 750 /* /proc stuff */ 751 ASSERT(avl_numnodes(&as->a_wpage) == 0); 752 if (as->a_objectdir) { 753 kmem_free(as->a_objectdir, as->a_sizedir * sizeof (vnode_t *)); 754 as->a_objectdir = NULL; 755 as->a_sizedir = 0; 756 } 757 758 /* 759 * Free the struct as back to kmem. Assert it has no segments. 760 */ 761 ASSERT(avl_numnodes(&as->a_segtree) == 0); 762 kmem_cache_free(as_cache, as); 763 } 764 765 int 766 as_dup(struct as *as, struct as **outas) 767 { 768 struct as *newas; 769 struct seg *seg, *newseg; 770 int error; 771 772 AS_LOCK_ENTER(as, &as->a_lock, RW_WRITER); 773 as_clearwatch(as); 774 newas = as_alloc(); 775 newas->a_userlimit = as->a_userlimit; 776 AS_LOCK_ENTER(newas, &newas->a_lock, RW_WRITER); 777 778 /* This will prevent new XHATs from attaching */ 779 mutex_enter(&as->a_contents); 780 AS_SETBUSY(as); 781 mutex_exit(&as->a_contents); 782 mutex_enter(&newas->a_contents); 783 AS_SETBUSY(newas); 784 mutex_exit(&newas->a_contents); 785 786 787 for (seg = AS_SEGFIRST(as); seg != NULL; seg = AS_SEGNEXT(as, seg)) { 788 789 if (seg->s_flags & S_PURGE) 790 continue; 791 792 newseg = seg_alloc(newas, seg->s_base, seg->s_size); 793 if (newseg == NULL) { 794 AS_LOCK_EXIT(newas, &newas->a_lock); 795 as_setwatch(as); 796 mutex_enter(&as->a_contents); 797 AS_CLRBUSY(as); 798 mutex_exit(&as->a_contents); 799 AS_LOCK_EXIT(as, &as->a_lock); 800 as_free(newas); 801 return (-1); 802 } 803 if ((error = SEGOP_DUP(seg, newseg)) != 0) { 804 /* 805 * We call seg_free() on the new seg 806 * because the segment is not set up 807 * completely; i.e. it has no ops. 808 */ 809 as_setwatch(as); 810 mutex_enter(&as->a_contents); 811 AS_CLRBUSY(as); 812 mutex_exit(&as->a_contents); 813 AS_LOCK_EXIT(as, &as->a_lock); 814 seg_free(newseg); 815 AS_LOCK_EXIT(newas, &newas->a_lock); 816 as_free(newas); 817 return (error); 818 } 819 newas->a_size += seg->s_size; 820 } 821 822 error = hat_dup(as->a_hat, newas->a_hat, NULL, 0, HAT_DUP_ALL); 823 if (as->a_xhat != NULL) 824 error |= xhat_dup_all(as, newas, NULL, 0, HAT_DUP_ALL); 825 826 mutex_enter(&newas->a_contents); 827 AS_CLRBUSY(newas); 828 mutex_exit(&newas->a_contents); 829 AS_LOCK_EXIT(newas, &newas->a_lock); 830 831 as_setwatch(as); 832 mutex_enter(&as->a_contents); 833 AS_CLRBUSY(as); 834 mutex_exit(&as->a_contents); 835 AS_LOCK_EXIT(as, &as->a_lock); 836 if (error != 0) { 837 as_free(newas); 838 return (error); 839 } 840 *outas = newas; 841 return (0); 842 } 843 844 /* 845 * Handle a ``fault'' at addr for size bytes. 846 */ 847 faultcode_t 848 as_fault(struct hat *hat, struct as *as, caddr_t addr, size_t size, 849 enum fault_type type, enum seg_rw rw) 850 { 851 struct seg *seg; 852 caddr_t raddr; /* rounded down addr */ 853 size_t rsize; /* rounded up size */ 854 size_t ssize; 855 faultcode_t res = 0; 856 caddr_t addrsav; 857 struct seg *segsav; 858 int as_lock_held; 859 klwp_t *lwp = ttolwp(curthread); 860 int is_xhat = 0; 861 int holding_wpage = 0; 862 extern struct seg_ops segdev_ops; 863 864 865 866 if (as->a_hat != hat) { 867 /* This must be an XHAT then */ 868 is_xhat = 1; 869 870 if ((type != F_INVAL) || (as == &kas)) 871 return (FC_NOSUPPORT); 872 } 873 874 retry: 875 if (!is_xhat) { 876 /* 877 * Indicate that the lwp is not to be stopped while waiting 878 * for a pagefault. This is to avoid deadlock while debugging 879 * a process via /proc over NFS (in particular). 880 */ 881 if (lwp != NULL) { 882 lwp->lwp_nostop++; 883 lwp->lwp_nostop_r++; 884 } 885 886 /* 887 * same length must be used when we softlock and softunlock. 888 * We don't support softunlocking lengths less than 889 * the original length when there is largepage support. 890 * See seg_dev.c for more comments. 891 */ 892 switch (type) { 893 894 case F_SOFTLOCK: 895 CPU_STATS_ADD_K(vm, softlock, 1); 896 break; 897 898 case F_SOFTUNLOCK: 899 break; 900 901 case F_PROT: 902 CPU_STATS_ADD_K(vm, prot_fault, 1); 903 break; 904 905 case F_INVAL: 906 CPU_STATS_ENTER_K(); 907 CPU_STATS_ADDQ(CPU, vm, as_fault, 1); 908 if (as == &kas) 909 CPU_STATS_ADDQ(CPU, vm, kernel_asflt, 1); 910 CPU_STATS_EXIT_K(); 911 break; 912 } 913 } 914 915 /* Kernel probe */ 916 TNF_PROBE_3(address_fault, "vm pagefault", /* CSTYLED */, 917 tnf_opaque, address, addr, 918 tnf_fault_type, fault_type, type, 919 tnf_seg_access, access, rw); 920 921 raddr = (caddr_t)((uintptr_t)addr & (uintptr_t)PAGEMASK); 922 rsize = (((size_t)(addr + size) + PAGEOFFSET) & PAGEMASK) - 923 (size_t)raddr; 924 925 /* 926 * XXX -- Don't grab the as lock for segkmap. We should grab it for 927 * correctness, but then we could be stuck holding this lock for 928 * a LONG time if the fault needs to be resolved on a slow 929 * filesystem, and then no-one will be able to exec new commands, 930 * as exec'ing requires the write lock on the as. 931 */ 932 if (as == &kas && segkmap && segkmap->s_base <= raddr && 933 raddr + size < segkmap->s_base + segkmap->s_size) { 934 /* 935 * if (as==&kas), this can't be XHAT: we've already returned 936 * FC_NOSUPPORT. 937 */ 938 seg = segkmap; 939 as_lock_held = 0; 940 } else { 941 AS_LOCK_ENTER(as, &as->a_lock, RW_READER); 942 if (is_xhat && avl_numnodes(&as->a_wpage) != 0) { 943 /* 944 * Grab and hold the writers' lock on the as 945 * if the fault is to a watched page. 946 * This will keep CPUs from "peeking" at the 947 * address range while we're temporarily boosting 948 * the permissions for the XHAT device to 949 * resolve the fault in the segment layer. 950 * 951 * We could check whether faulted address 952 * is within a watched page and only then grab 953 * the writer lock, but this is simpler. 954 */ 955 AS_LOCK_EXIT(as, &as->a_lock); 956 AS_LOCK_ENTER(as, &as->a_lock, RW_WRITER); 957 } 958 959 seg = as_segat(as, raddr); 960 if (seg == NULL) { 961 AS_LOCK_EXIT(as, &as->a_lock); 962 if ((lwp != NULL) && (!is_xhat)) { 963 lwp->lwp_nostop--; 964 lwp->lwp_nostop_r--; 965 } 966 return (FC_NOMAP); 967 } 968 969 as_lock_held = 1; 970 } 971 972 addrsav = raddr; 973 segsav = seg; 974 975 for (; rsize != 0; rsize -= ssize, raddr += ssize) { 976 if (raddr >= seg->s_base + seg->s_size) { 977 seg = AS_SEGNEXT(as, seg); 978 if (seg == NULL || raddr != seg->s_base) { 979 res = FC_NOMAP; 980 break; 981 } 982 } 983 if (raddr + rsize > seg->s_base + seg->s_size) 984 ssize = seg->s_base + seg->s_size - raddr; 985 else 986 ssize = rsize; 987 988 if (!is_xhat || (seg->s_ops != &segdev_ops)) { 989 990 if (is_xhat && avl_numnodes(&as->a_wpage) != 0 && 991 pr_is_watchpage_as(raddr, rw, as)) { 992 /* 993 * Handle watch pages. If we're faulting on a 994 * watched page from an X-hat, we have to 995 * restore the original permissions while we 996 * handle the fault. 997 */ 998 as_clearwatch(as); 999 holding_wpage = 1; 1000 } 1001 1002 res = SEGOP_FAULT(hat, seg, raddr, ssize, type, rw); 1003 1004 /* Restore watchpoints */ 1005 if (holding_wpage) { 1006 as_setwatch(as); 1007 holding_wpage = 0; 1008 } 1009 1010 if (res != 0) 1011 break; 1012 } else { 1013 /* XHAT does not support seg_dev */ 1014 res = FC_NOSUPPORT; 1015 break; 1016 } 1017 } 1018 1019 /* 1020 * If we were SOFTLOCKing and encountered a failure, 1021 * we must SOFTUNLOCK the range we already did. (Maybe we 1022 * should just panic if we are SOFTLOCKing or even SOFTUNLOCKing 1023 * right here...) 1024 */ 1025 if (res != 0 && type == F_SOFTLOCK) { 1026 for (seg = segsav; addrsav < raddr; addrsav += ssize) { 1027 if (addrsav >= seg->s_base + seg->s_size) 1028 seg = AS_SEGNEXT(as, seg); 1029 ASSERT(seg != NULL); 1030 /* 1031 * Now call the fault routine again to perform the 1032 * unlock using S_OTHER instead of the rw variable 1033 * since we never got a chance to touch the pages. 1034 */ 1035 if (raddr > seg->s_base + seg->s_size) 1036 ssize = seg->s_base + seg->s_size - addrsav; 1037 else 1038 ssize = raddr - addrsav; 1039 (void) SEGOP_FAULT(hat, seg, addrsav, ssize, 1040 F_SOFTUNLOCK, S_OTHER); 1041 } 1042 } 1043 if (as_lock_held) 1044 AS_LOCK_EXIT(as, &as->a_lock); 1045 if ((lwp != NULL) && (!is_xhat)) { 1046 lwp->lwp_nostop--; 1047 lwp->lwp_nostop_r--; 1048 } 1049 /* 1050 * If the lower levels returned EDEADLK for a fault, 1051 * It means that we should retry the fault. Let's wait 1052 * a bit also to let the deadlock causing condition clear. 1053 * This is part of a gross hack to work around a design flaw 1054 * in the ufs/sds logging code and should go away when the 1055 * logging code is re-designed to fix the problem. See bug 1056 * 4125102 for details of the problem. 1057 */ 1058 if (FC_ERRNO(res) == EDEADLK) { 1059 delay(deadlk_wait); 1060 res = 0; 1061 goto retry; 1062 } 1063 return (res); 1064 } 1065 1066 1067 1068 /* 1069 * Asynchronous ``fault'' at addr for size bytes. 1070 */ 1071 faultcode_t 1072 as_faulta(struct as *as, caddr_t addr, size_t size) 1073 { 1074 struct seg *seg; 1075 caddr_t raddr; /* rounded down addr */ 1076 size_t rsize; /* rounded up size */ 1077 faultcode_t res = 0; 1078 klwp_t *lwp = ttolwp(curthread); 1079 1080 retry: 1081 /* 1082 * Indicate that the lwp is not to be stopped while waiting 1083 * for a pagefault. This is to avoid deadlock while debugging 1084 * a process via /proc over NFS (in particular). 1085 */ 1086 if (lwp != NULL) { 1087 lwp->lwp_nostop++; 1088 lwp->lwp_nostop_r++; 1089 } 1090 1091 raddr = (caddr_t)((uintptr_t)addr & (uintptr_t)PAGEMASK); 1092 rsize = (((size_t)(addr + size) + PAGEOFFSET) & PAGEMASK) - 1093 (size_t)raddr; 1094 1095 AS_LOCK_ENTER(as, &as->a_lock, RW_READER); 1096 seg = as_segat(as, raddr); 1097 if (seg == NULL) { 1098 AS_LOCK_EXIT(as, &as->a_lock); 1099 if (lwp != NULL) { 1100 lwp->lwp_nostop--; 1101 lwp->lwp_nostop_r--; 1102 } 1103 return (FC_NOMAP); 1104 } 1105 1106 for (; rsize != 0; rsize -= PAGESIZE, raddr += PAGESIZE) { 1107 if (raddr >= seg->s_base + seg->s_size) { 1108 seg = AS_SEGNEXT(as, seg); 1109 if (seg == NULL || raddr != seg->s_base) { 1110 res = FC_NOMAP; 1111 break; 1112 } 1113 } 1114 res = SEGOP_FAULTA(seg, raddr); 1115 if (res != 0) 1116 break; 1117 } 1118 AS_LOCK_EXIT(as, &as->a_lock); 1119 if (lwp != NULL) { 1120 lwp->lwp_nostop--; 1121 lwp->lwp_nostop_r--; 1122 } 1123 /* 1124 * If the lower levels returned EDEADLK for a fault, 1125 * It means that we should retry the fault. Let's wait 1126 * a bit also to let the deadlock causing condition clear. 1127 * This is part of a gross hack to work around a design flaw 1128 * in the ufs/sds logging code and should go away when the 1129 * logging code is re-designed to fix the problem. See bug 1130 * 4125102 for details of the problem. 1131 */ 1132 if (FC_ERRNO(res) == EDEADLK) { 1133 delay(deadlk_wait); 1134 res = 0; 1135 goto retry; 1136 } 1137 return (res); 1138 } 1139 1140 /* 1141 * Set the virtual mapping for the interval from [addr : addr + size) 1142 * in address space `as' to have the specified protection. 1143 * It is ok for the range to cross over several segments, 1144 * as long as they are contiguous. 1145 */ 1146 int 1147 as_setprot(struct as *as, caddr_t addr, size_t size, uint_t prot) 1148 { 1149 struct seg *seg; 1150 struct as_callback *cb; 1151 size_t ssize; 1152 caddr_t raddr; /* rounded down addr */ 1153 size_t rsize; /* rounded up size */ 1154 int error = 0, writer = 0; 1155 caddr_t saveraddr; 1156 size_t saversize; 1157 1158 setprot_top: 1159 raddr = (caddr_t)((uintptr_t)addr & (uintptr_t)PAGEMASK); 1160 rsize = (((size_t)(addr + size) + PAGEOFFSET) & PAGEMASK) - 1161 (size_t)raddr; 1162 1163 if (raddr + rsize < raddr) /* check for wraparound */ 1164 return (ENOMEM); 1165 1166 saveraddr = raddr; 1167 saversize = rsize; 1168 1169 /* 1170 * Normally we only lock the as as a reader. But 1171 * if due to setprot the segment driver needs to split 1172 * a segment it will return IE_RETRY. Therefore we re-aquire 1173 * the as lock as a writer so the segment driver can change 1174 * the seg list. Also the segment driver will return IE_RETRY 1175 * after it has changed the segment list so we therefore keep 1176 * locking as a writer. Since these opeartions should be rare 1177 * want to only lock as a writer when necessary. 1178 */ 1179 if (writer || avl_numnodes(&as->a_wpage) != 0) { 1180 AS_LOCK_ENTER(as, &as->a_lock, RW_WRITER); 1181 } else { 1182 AS_LOCK_ENTER(as, &as->a_lock, RW_READER); 1183 } 1184 1185 as_clearwatchprot(as, raddr, rsize); 1186 seg = as_segat(as, raddr); 1187 if (seg == NULL) { 1188 as_setwatch(as); 1189 AS_LOCK_EXIT(as, &as->a_lock); 1190 return (ENOMEM); 1191 } 1192 1193 for (; rsize != 0; rsize -= ssize, raddr += ssize) { 1194 if (raddr >= seg->s_base + seg->s_size) { 1195 seg = AS_SEGNEXT(as, seg); 1196 if (seg == NULL || raddr != seg->s_base) { 1197 error = ENOMEM; 1198 break; 1199 } 1200 } 1201 if ((raddr + rsize) > (seg->s_base + seg->s_size)) 1202 ssize = seg->s_base + seg->s_size - raddr; 1203 else 1204 ssize = rsize; 1205 error = SEGOP_SETPROT(seg, raddr, ssize, prot); 1206 1207 if (error == IE_NOMEM) { 1208 error = EAGAIN; 1209 break; 1210 } 1211 1212 if (error == IE_RETRY) { 1213 AS_LOCK_EXIT(as, &as->a_lock); 1214 writer = 1; 1215 goto setprot_top; 1216 } 1217 1218 if (error == EAGAIN) { 1219 /* 1220 * Make sure we have a_lock as writer. 1221 */ 1222 if (writer == 0) { 1223 AS_LOCK_EXIT(as, &as->a_lock); 1224 writer = 1; 1225 goto setprot_top; 1226 } 1227 1228 /* 1229 * Memory is currently locked. It must be unlocked 1230 * before this operation can succeed through a retry. 1231 * The possible reasons for locked memory and 1232 * corresponding strategies for unlocking are: 1233 * (1) Normal I/O 1234 * wait for a signal that the I/O operation 1235 * has completed and the memory is unlocked. 1236 * (2) Asynchronous I/O 1237 * The aio subsystem does not unlock pages when 1238 * the I/O is completed. Those pages are unlocked 1239 * when the application calls aiowait/aioerror. 1240 * So, to prevent blocking forever, cv_broadcast() 1241 * is done to wake up aio_cleanup_thread. 1242 * Subsequently, segvn_reclaim will be called, and 1243 * that will do AS_CLRUNMAPWAIT() and wake us up. 1244 * (3) Long term page locking: 1245 * Drivers intending to have pages locked for a 1246 * period considerably longer than for normal I/O 1247 * (essentially forever) may have registered for a 1248 * callback so they may unlock these pages on 1249 * request. This is needed to allow this operation 1250 * to succeed. Each entry on the callback list is 1251 * examined. If the event or address range pertains 1252 * the callback is invoked (unless it already is in 1253 * progress). The a_contents lock must be dropped 1254 * before the callback, so only one callback can 1255 * be done at a time. Go to the top and do more 1256 * until zero is returned. If zero is returned, 1257 * either there were no callbacks for this event 1258 * or they were already in progress. 1259 */ 1260 mutex_enter(&as->a_contents); 1261 if (as->a_callbacks && 1262 (cb = as_find_callback(as, AS_SETPROT_EVENT, 1263 seg->s_base, seg->s_size))) { 1264 AS_LOCK_EXIT(as, &as->a_lock); 1265 as_execute_callback(as, cb, AS_SETPROT_EVENT); 1266 } else { 1267 if (AS_ISUNMAPWAIT(as) == 0) 1268 cv_broadcast(&as->a_cv); 1269 AS_SETUNMAPWAIT(as); 1270 AS_LOCK_EXIT(as, &as->a_lock); 1271 while (AS_ISUNMAPWAIT(as)) 1272 cv_wait(&as->a_cv, &as->a_contents); 1273 } 1274 mutex_exit(&as->a_contents); 1275 goto setprot_top; 1276 } else if (error != 0) 1277 break; 1278 } 1279 if (error != 0) { 1280 as_setwatch(as); 1281 } else { 1282 as_setwatchprot(as, saveraddr, saversize, prot); 1283 } 1284 AS_LOCK_EXIT(as, &as->a_lock); 1285 return (error); 1286 } 1287 1288 /* 1289 * Check to make sure that the interval [addr, addr + size) 1290 * in address space `as' has at least the specified protection. 1291 * It is ok for the range to cross over several segments, as long 1292 * as they are contiguous. 1293 */ 1294 int 1295 as_checkprot(struct as *as, caddr_t addr, size_t size, uint_t prot) 1296 { 1297 struct seg *seg; 1298 size_t ssize; 1299 caddr_t raddr; /* rounded down addr */ 1300 size_t rsize; /* rounded up size */ 1301 int error = 0; 1302 1303 raddr = (caddr_t)((uintptr_t)addr & (uintptr_t)PAGEMASK); 1304 rsize = (((size_t)(addr + size) + PAGEOFFSET) & PAGEMASK) - 1305 (size_t)raddr; 1306 1307 if (raddr + rsize < raddr) /* check for wraparound */ 1308 return (ENOMEM); 1309 1310 /* 1311 * This is ugly as sin... 1312 * Normally, we only acquire the address space readers lock. 1313 * However, if the address space has watchpoints present, 1314 * we must acquire the writer lock on the address space for 1315 * the benefit of as_clearwatchprot() and as_setwatchprot(). 1316 */ 1317 if (avl_numnodes(&as->a_wpage) != 0) 1318 AS_LOCK_ENTER(as, &as->a_lock, RW_WRITER); 1319 else 1320 AS_LOCK_ENTER(as, &as->a_lock, RW_READER); 1321 as_clearwatchprot(as, raddr, rsize); 1322 seg = as_segat(as, raddr); 1323 if (seg == NULL) { 1324 as_setwatch(as); 1325 AS_LOCK_EXIT(as, &as->a_lock); 1326 return (ENOMEM); 1327 } 1328 1329 for (; rsize != 0; rsize -= ssize, raddr += ssize) { 1330 if (raddr >= seg->s_base + seg->s_size) { 1331 seg = AS_SEGNEXT(as, seg); 1332 if (seg == NULL || raddr != seg->s_base) { 1333 error = ENOMEM; 1334 break; 1335 } 1336 } 1337 if ((raddr + rsize) > (seg->s_base + seg->s_size)) 1338 ssize = seg->s_base + seg->s_size - raddr; 1339 else 1340 ssize = rsize; 1341 1342 error = SEGOP_CHECKPROT(seg, raddr, ssize, prot); 1343 if (error != 0) 1344 break; 1345 } 1346 as_setwatch(as); 1347 AS_LOCK_EXIT(as, &as->a_lock); 1348 return (error); 1349 } 1350 1351 int 1352 as_unmap(struct as *as, caddr_t addr, size_t size) 1353 { 1354 struct seg *seg, *seg_next; 1355 struct as_callback *cb; 1356 caddr_t raddr, eaddr; 1357 size_t ssize; 1358 int err; 1359 1360 top: 1361 raddr = (caddr_t)((uintptr_t)addr & (uintptr_t)PAGEMASK); 1362 eaddr = (caddr_t)(((uintptr_t)(addr + size) + PAGEOFFSET) & 1363 (uintptr_t)PAGEMASK); 1364 1365 AS_LOCK_ENTER(as, &as->a_lock, RW_WRITER); 1366 1367 as->a_updatedir = 1; /* inform /proc */ 1368 gethrestime(&as->a_updatetime); 1369 1370 /* 1371 * Use as_findseg to find the first segment in the range, then 1372 * step through the segments in order, following s_next. 1373 */ 1374 as_clearwatchprot(as, raddr, eaddr - raddr); 1375 1376 for (seg = as_findseg(as, raddr, 0); seg != NULL; seg = seg_next) { 1377 if (eaddr <= seg->s_base) 1378 break; /* eaddr was in a gap; all done */ 1379 1380 /* this is implied by the test above */ 1381 ASSERT(raddr < eaddr); 1382 1383 if (raddr < seg->s_base) 1384 raddr = seg->s_base; /* raddr was in a gap */ 1385 1386 if (eaddr > (seg->s_base + seg->s_size)) 1387 ssize = seg->s_base + seg->s_size - raddr; 1388 else 1389 ssize = eaddr - raddr; 1390 1391 /* 1392 * Save next segment pointer since seg can be 1393 * destroyed during the segment unmap operation. 1394 */ 1395 seg_next = AS_SEGNEXT(as, seg); 1396 1397 err = SEGOP_UNMAP(seg, raddr, ssize); 1398 if (err == EAGAIN) { 1399 /* 1400 * Memory is currently locked. It must be unlocked 1401 * before this operation can succeed through a retry. 1402 * The possible reasons for locked memory and 1403 * corresponding strategies for unlocking are: 1404 * (1) Normal I/O 1405 * wait for a signal that the I/O operation 1406 * has completed and the memory is unlocked. 1407 * (2) Asynchronous I/O 1408 * The aio subsystem does not unlock pages when 1409 * the I/O is completed. Those pages are unlocked 1410 * when the application calls aiowait/aioerror. 1411 * So, to prevent blocking forever, cv_broadcast() 1412 * is done to wake up aio_cleanup_thread. 1413 * Subsequently, segvn_reclaim will be called, and 1414 * that will do AS_CLRUNMAPWAIT() and wake us up. 1415 * (3) Long term page locking: 1416 * Drivers intending to have pages locked for a 1417 * period considerably longer than for normal I/O 1418 * (essentially forever) may have registered for a 1419 * callback so they may unlock these pages on 1420 * request. This is needed to allow this operation 1421 * to succeed. Each entry on the callback list is 1422 * examined. If the event or address range pertains 1423 * the callback is invoked (unless it already is in 1424 * progress). The a_contents lock must be dropped 1425 * before the callback, so only one callback can 1426 * be done at a time. Go to the top and do more 1427 * until zero is returned. If zero is returned, 1428 * either there were no callbacks for this event 1429 * or they were already in progress. 1430 */ 1431 as_setwatch(as); 1432 mutex_enter(&as->a_contents); 1433 if (as->a_callbacks && 1434 (cb = as_find_callback(as, AS_UNMAP_EVENT, 1435 seg->s_base, seg->s_size))) { 1436 AS_LOCK_EXIT(as, &as->a_lock); 1437 as_execute_callback(as, cb, AS_UNMAP_EVENT); 1438 } else { 1439 if (AS_ISUNMAPWAIT(as) == 0) 1440 cv_broadcast(&as->a_cv); 1441 AS_SETUNMAPWAIT(as); 1442 AS_LOCK_EXIT(as, &as->a_lock); 1443 while (AS_ISUNMAPWAIT(as)) 1444 cv_wait(&as->a_cv, &as->a_contents); 1445 } 1446 mutex_exit(&as->a_contents); 1447 goto top; 1448 } else if (err == IE_RETRY) { 1449 as_setwatch(as); 1450 AS_LOCK_EXIT(as, &as->a_lock); 1451 goto top; 1452 } else if (err) { 1453 as_setwatch(as); 1454 AS_LOCK_EXIT(as, &as->a_lock); 1455 return (-1); 1456 } 1457 1458 as->a_size -= ssize; 1459 raddr += ssize; 1460 } 1461 AS_LOCK_EXIT(as, &as->a_lock); 1462 return (0); 1463 } 1464 1465 static int 1466 as_map_vnsegs(struct as *as, caddr_t addr, size_t size, 1467 int (*crfp)(), struct segvn_crargs *vn_a, int *segcreated) 1468 { 1469 int text = vn_a->flags & MAP_TEXT; 1470 uint_t szcvec = map_execseg_pgszcvec(text, addr, size); 1471 uint_t szc; 1472 uint_t nszc; 1473 int error; 1474 caddr_t a; 1475 caddr_t eaddr; 1476 size_t segsize; 1477 struct seg *seg; 1478 uint_t save_szcvec; 1479 size_t pgsz; 1480 struct vattr va; 1481 u_offset_t eoff; 1482 size_t save_size = 0; 1483 1484 ASSERT(AS_WRITE_HELD(as, &as->a_lock)); 1485 ASSERT(IS_P2ALIGNED(addr, PAGESIZE)); 1486 ASSERT(IS_P2ALIGNED(size, PAGESIZE)); 1487 ASSERT(vn_a->vp != NULL); 1488 ASSERT(vn_a->amp == NULL); 1489 1490 again: 1491 if (szcvec <= 1) { 1492 seg = seg_alloc(as, addr, size); 1493 if (seg == NULL) { 1494 return (ENOMEM); 1495 } 1496 vn_a->szc = 0; 1497 error = (*crfp)(seg, vn_a); 1498 if (error != 0) { 1499 seg_free(seg); 1500 } 1501 return (error); 1502 } 1503 1504 va.va_mask = AT_SIZE; 1505 if (VOP_GETATTR(vn_a->vp, &va, ATTR_HINT, vn_a->cred) != 0) { 1506 szcvec = 0; 1507 goto again; 1508 } 1509 eoff = vn_a->offset & PAGEMASK; 1510 if (eoff >= va.va_size) { 1511 szcvec = 0; 1512 goto again; 1513 } 1514 eoff += size; 1515 if (btopr(va.va_size) < btopr(eoff)) { 1516 save_size = size; 1517 size = va.va_size - (vn_a->offset & PAGEMASK); 1518 size = P2ROUNDUP_TYPED(size, PAGESIZE, size_t); 1519 szcvec = map_execseg_pgszcvec(text, addr, size); 1520 if (szcvec <= 1) { 1521 size = save_size; 1522 goto again; 1523 } 1524 } 1525 1526 eaddr = addr + size; 1527 save_szcvec = szcvec; 1528 szcvec >>= 1; 1529 szc = 0; 1530 nszc = 0; 1531 while (szcvec) { 1532 if ((szcvec & 0x1) == 0) { 1533 nszc++; 1534 szcvec >>= 1; 1535 continue; 1536 } 1537 nszc++; 1538 pgsz = page_get_pagesize(nszc); 1539 a = (caddr_t)P2ROUNDUP((uintptr_t)addr, pgsz); 1540 if (a != addr) { 1541 ASSERT(a < eaddr); 1542 segsize = a - addr; 1543 seg = seg_alloc(as, addr, segsize); 1544 if (seg == NULL) { 1545 return (ENOMEM); 1546 } 1547 vn_a->szc = szc; 1548 error = (*crfp)(seg, vn_a); 1549 if (error != 0) { 1550 seg_free(seg); 1551 return (error); 1552 } 1553 *segcreated = 1; 1554 vn_a->offset += segsize; 1555 addr = a; 1556 } 1557 szc = nszc; 1558 szcvec >>= 1; 1559 } 1560 1561 ASSERT(addr < eaddr); 1562 szcvec = save_szcvec | 1; /* add 8K pages */ 1563 while (szcvec) { 1564 a = (caddr_t)P2ALIGN((uintptr_t)eaddr, pgsz); 1565 ASSERT(a >= addr); 1566 if (a != addr) { 1567 segsize = a - addr; 1568 seg = seg_alloc(as, addr, segsize); 1569 if (seg == NULL) { 1570 return (ENOMEM); 1571 } 1572 vn_a->szc = szc; 1573 error = (*crfp)(seg, vn_a); 1574 if (error != 0) { 1575 seg_free(seg); 1576 return (error); 1577 } 1578 *segcreated = 1; 1579 vn_a->offset += segsize; 1580 addr = a; 1581 } 1582 szcvec &= ~(1 << szc); 1583 if (szcvec) { 1584 szc = highbit(szcvec) - 1; 1585 pgsz = page_get_pagesize(szc); 1586 } 1587 } 1588 ASSERT(addr == eaddr); 1589 1590 if (save_size) { 1591 size = save_size - size; 1592 goto again; 1593 } 1594 1595 return (0); 1596 } 1597 1598 int 1599 as_map(struct as *as, caddr_t addr, size_t size, int (*crfp)(), void *argsp) 1600 { 1601 struct seg *seg = NULL; 1602 caddr_t raddr; /* rounded down addr */ 1603 size_t rsize; /* rounded up size */ 1604 int error; 1605 struct proc *p = curproc; 1606 1607 raddr = (caddr_t)((uintptr_t)addr & (uintptr_t)PAGEMASK); 1608 rsize = (((size_t)(addr + size) + PAGEOFFSET) & PAGEMASK) - 1609 (size_t)raddr; 1610 1611 AS_LOCK_ENTER(as, &as->a_lock, RW_WRITER); 1612 1613 /* 1614 * check for wrap around 1615 */ 1616 if ((raddr + rsize < raddr) || (as->a_size > (ULONG_MAX - size))) { 1617 AS_LOCK_EXIT(as, &as->a_lock); 1618 return (ENOMEM); 1619 } 1620 1621 as->a_updatedir = 1; /* inform /proc */ 1622 gethrestime(&as->a_updatetime); 1623 1624 if (as != &kas && as->a_size + rsize > (size_t)p->p_vmem_ctl) { 1625 AS_LOCK_EXIT(as, &as->a_lock); 1626 1627 (void) rctl_action(rctlproc_legacy[RLIMIT_VMEM], p->p_rctls, p, 1628 RCA_UNSAFE_ALL); 1629 1630 return (ENOMEM); 1631 } 1632 1633 if (AS_MAP_VNSEGS_USELPGS(crfp, argsp)) { 1634 int unmap = 0; 1635 error = as_map_vnsegs(as, raddr, rsize, crfp, 1636 (struct segvn_crargs *)argsp, &unmap); 1637 if (error != 0) { 1638 AS_LOCK_EXIT(as, &as->a_lock); 1639 if (unmap) { 1640 (void) as_unmap(as, addr, size); 1641 } 1642 return (error); 1643 } 1644 } else { 1645 seg = seg_alloc(as, addr, size); 1646 if (seg == NULL) { 1647 AS_LOCK_EXIT(as, &as->a_lock); 1648 return (ENOMEM); 1649 } 1650 1651 error = (*crfp)(seg, argsp); 1652 if (error != 0) { 1653 seg_free(seg); 1654 AS_LOCK_EXIT(as, &as->a_lock); 1655 return (error); 1656 } 1657 } 1658 1659 /* 1660 * Add size now so as_unmap will work if as_ctl fails. 1661 */ 1662 as->a_size += rsize; 1663 1664 as_setwatch(as); 1665 1666 /* 1667 * If the address space is locked, 1668 * establish memory locks for the new segment. 1669 */ 1670 mutex_enter(&as->a_contents); 1671 if (AS_ISPGLCK(as)) { 1672 mutex_exit(&as->a_contents); 1673 AS_LOCK_EXIT(as, &as->a_lock); 1674 error = as_ctl(as, addr, size, MC_LOCK, 0, 0, NULL, 0); 1675 if (error != 0) 1676 (void) as_unmap(as, addr, size); 1677 } else { 1678 mutex_exit(&as->a_contents); 1679 AS_LOCK_EXIT(as, &as->a_lock); 1680 } 1681 return (error); 1682 } 1683 1684 1685 /* 1686 * Delete all segments in the address space marked with S_PURGE. 1687 * This is currently used for Sparc V9 nofault ASI segments (seg_nf.c). 1688 * These segments are deleted as a first step before calls to as_gap(), so 1689 * that they don't affect mmap() or shmat(). 1690 */ 1691 void 1692 as_purge(struct as *as) 1693 { 1694 struct seg *seg; 1695 struct seg *next_seg; 1696 1697 /* 1698 * the setting of NEEDSPURGE is protect by as_rangelock(), so 1699 * no need to grab a_contents mutex for this check 1700 */ 1701 if ((as->a_flags & AS_NEEDSPURGE) == 0) 1702 return; 1703 1704 AS_LOCK_ENTER(as, &as->a_lock, RW_WRITER); 1705 next_seg = NULL; 1706 seg = AS_SEGFIRST(as); 1707 while (seg != NULL) { 1708 next_seg = AS_SEGNEXT(as, seg); 1709 if (seg->s_flags & S_PURGE) 1710 SEGOP_UNMAP(seg, seg->s_base, seg->s_size); 1711 seg = next_seg; 1712 } 1713 AS_LOCK_EXIT(as, &as->a_lock); 1714 1715 mutex_enter(&as->a_contents); 1716 as->a_flags &= ~AS_NEEDSPURGE; 1717 mutex_exit(&as->a_contents); 1718 } 1719 1720 /* 1721 * Find a hole of at least size minlen within [base, base + len). 1722 * 1723 * If flags specifies AH_HI, the hole will have the highest possible address 1724 * in the range. We use the as->a_lastgap field to figure out where to 1725 * start looking for a gap. 1726 * 1727 * Otherwise, the gap will have the lowest possible address. 1728 * 1729 * If flags specifies AH_CONTAIN, the hole will contain the address addr. 1730 * 1731 * If an adequate hole is found, base and len are set to reflect the part of 1732 * the hole that is within range, and 0 is returned, otherwise, 1733 * -1 is returned. 1734 * 1735 * NOTE: This routine is not correct when base+len overflows caddr_t. 1736 */ 1737 int 1738 as_gap(struct as *as, size_t minlen, caddr_t *basep, size_t *lenp, uint_t flags, 1739 caddr_t addr) 1740 { 1741 caddr_t lobound = *basep; 1742 caddr_t hibound = lobound + *lenp; 1743 struct seg *lseg, *hseg; 1744 caddr_t lo, hi; 1745 int forward; 1746 caddr_t save_base; 1747 size_t save_len; 1748 1749 save_base = *basep; 1750 save_len = *lenp; 1751 AS_LOCK_ENTER(as, &as->a_lock, RW_READER); 1752 if (AS_SEGFIRST(as) == NULL) { 1753 if (valid_va_range(basep, lenp, minlen, flags & AH_DIR)) { 1754 AS_LOCK_EXIT(as, &as->a_lock); 1755 return (0); 1756 } else { 1757 AS_LOCK_EXIT(as, &as->a_lock); 1758 *basep = save_base; 1759 *lenp = save_len; 1760 return (-1); 1761 } 1762 } 1763 1764 /* 1765 * Set up to iterate over all the inter-segment holes in the given 1766 * direction. lseg is NULL for the lowest-addressed hole and hseg is 1767 * NULL for the highest-addressed hole. If moving backwards, we reset 1768 * sseg to denote the highest-addressed segment. 1769 */ 1770 forward = (flags & AH_DIR) == AH_LO; 1771 if (forward) { 1772 hseg = as_findseg(as, lobound, 1); 1773 lseg = AS_SEGPREV(as, hseg); 1774 } else { 1775 1776 /* 1777 * If allocating at least as much as the last allocation, 1778 * use a_lastgap's base as a better estimate of hibound. 1779 */ 1780 if (as->a_lastgap && 1781 minlen >= as->a_lastgap->s_size && 1782 hibound >= as->a_lastgap->s_base) 1783 hibound = as->a_lastgap->s_base; 1784 1785 hseg = as_findseg(as, hibound, 1); 1786 if (hseg->s_base + hseg->s_size < hibound) { 1787 lseg = hseg; 1788 hseg = NULL; 1789 } else { 1790 lseg = AS_SEGPREV(as, hseg); 1791 } 1792 } 1793 1794 for (;;) { 1795 /* 1796 * Set lo and hi to the hole's boundaries. (We should really 1797 * use MAXADDR in place of hibound in the expression below, 1798 * but can't express it easily; using hibound in its place is 1799 * harmless.) 1800 */ 1801 lo = (lseg == NULL) ? 0 : lseg->s_base + lseg->s_size; 1802 hi = (hseg == NULL) ? hibound : hseg->s_base; 1803 /* 1804 * If the iteration has moved past the interval from lobound 1805 * to hibound it's pointless to continue. 1806 */ 1807 if ((forward && lo > hibound) || (!forward && hi < lobound)) 1808 break; 1809 else if (lo > hibound || hi < lobound) 1810 goto cont; 1811 /* 1812 * Candidate hole lies at least partially within the allowable 1813 * range. Restrict it to fall completely within that range, 1814 * i.e., to [max(lo, lobound), min(hi, hibound)]. 1815 */ 1816 if (lo < lobound) 1817 lo = lobound; 1818 if (hi > hibound) 1819 hi = hibound; 1820 /* 1821 * Verify that the candidate hole is big enough and meets 1822 * hardware constraints. 1823 */ 1824 *basep = lo; 1825 *lenp = hi - lo; 1826 if (valid_va_range(basep, lenp, minlen, 1827 forward ? AH_LO : AH_HI) && 1828 ((flags & AH_CONTAIN) == 0 || 1829 (*basep <= addr && *basep + *lenp > addr))) { 1830 if (!forward) 1831 as->a_lastgap = hseg; 1832 if (hseg != NULL) 1833 as->a_lastgaphl = hseg; 1834 else 1835 as->a_lastgaphl = lseg; 1836 AS_LOCK_EXIT(as, &as->a_lock); 1837 return (0); 1838 } 1839 cont: 1840 /* 1841 * Move to the next hole. 1842 */ 1843 if (forward) { 1844 lseg = hseg; 1845 if (lseg == NULL) 1846 break; 1847 hseg = AS_SEGNEXT(as, hseg); 1848 } else { 1849 hseg = lseg; 1850 if (hseg == NULL) 1851 break; 1852 lseg = AS_SEGPREV(as, lseg); 1853 } 1854 } 1855 *basep = save_base; 1856 *lenp = save_len; 1857 AS_LOCK_EXIT(as, &as->a_lock); 1858 return (-1); 1859 } 1860 1861 /* 1862 * Return the next range within [base, base + len) that is backed 1863 * with "real memory". Skip holes and non-seg_vn segments. 1864 * We're lazy and only return one segment at a time. 1865 */ 1866 int 1867 as_memory(struct as *as, caddr_t *basep, size_t *lenp) 1868 { 1869 extern struct seg_ops segspt_shmops; /* needs a header file */ 1870 struct seg *seg; 1871 caddr_t addr, eaddr; 1872 caddr_t segend; 1873 1874 AS_LOCK_ENTER(as, &as->a_lock, RW_READER); 1875 1876 addr = *basep; 1877 eaddr = addr + *lenp; 1878 1879 seg = as_findseg(as, addr, 0); 1880 if (seg != NULL) 1881 addr = MAX(seg->s_base, addr); 1882 1883 for (;;) { 1884 if (seg == NULL || addr >= eaddr || eaddr <= seg->s_base) { 1885 AS_LOCK_EXIT(as, &as->a_lock); 1886 return (EINVAL); 1887 } 1888 1889 if (seg->s_ops == &segvn_ops) { 1890 segend = seg->s_base + seg->s_size; 1891 break; 1892 } 1893 1894 /* 1895 * We do ISM by looking into the private data 1896 * to determine the real size of the segment. 1897 */ 1898 if (seg->s_ops == &segspt_shmops) { 1899 segend = seg->s_base + spt_realsize(seg); 1900 if (addr < segend) 1901 break; 1902 } 1903 1904 seg = AS_SEGNEXT(as, seg); 1905 1906 if (seg != NULL) 1907 addr = seg->s_base; 1908 } 1909 1910 *basep = addr; 1911 1912 if (segend > eaddr) 1913 *lenp = eaddr - addr; 1914 else 1915 *lenp = segend - addr; 1916 1917 AS_LOCK_EXIT(as, &as->a_lock); 1918 return (0); 1919 } 1920 1921 /* 1922 * Swap the pages associated with the address space as out to 1923 * secondary storage, returning the number of bytes actually 1924 * swapped. 1925 * 1926 * The value returned is intended to correlate well with the process's 1927 * memory requirements. Its usefulness for this purpose depends on 1928 * how well the segment-level routines do at returning accurate 1929 * information. 1930 */ 1931 size_t 1932 as_swapout(struct as *as) 1933 { 1934 struct seg *seg; 1935 size_t swpcnt = 0; 1936 1937 /* 1938 * Kernel-only processes have given up their address 1939 * spaces. Of course, we shouldn't be attempting to 1940 * swap out such processes in the first place... 1941 */ 1942 if (as == NULL) 1943 return (0); 1944 1945 AS_LOCK_ENTER(as, &as->a_lock, RW_READER); 1946 1947 /* Prevent XHATs from attaching */ 1948 mutex_enter(&as->a_contents); 1949 AS_SETBUSY(as); 1950 mutex_exit(&as->a_contents); 1951 1952 1953 /* 1954 * Free all mapping resources associated with the address 1955 * space. The segment-level swapout routines capitalize 1956 * on this unmapping by scavanging pages that have become 1957 * unmapped here. 1958 */ 1959 hat_swapout(as->a_hat); 1960 if (as->a_xhat != NULL) 1961 xhat_swapout_all(as); 1962 1963 mutex_enter(&as->a_contents); 1964 AS_CLRBUSY(as); 1965 mutex_exit(&as->a_contents); 1966 1967 /* 1968 * Call the swapout routines of all segments in the address 1969 * space to do the actual work, accumulating the amount of 1970 * space reclaimed. 1971 */ 1972 for (seg = AS_SEGFIRST(as); seg != NULL; seg = AS_SEGNEXT(as, seg)) { 1973 struct seg_ops *ov = seg->s_ops; 1974 1975 /* 1976 * We have to check to see if the seg has 1977 * an ops vector because the seg may have 1978 * been in the middle of being set up when 1979 * the process was picked for swapout. 1980 */ 1981 if ((ov != NULL) && (ov->swapout != NULL)) 1982 swpcnt += SEGOP_SWAPOUT(seg); 1983 } 1984 AS_LOCK_EXIT(as, &as->a_lock); 1985 return (swpcnt); 1986 } 1987 1988 /* 1989 * Determine whether data from the mappings in interval [addr, addr + size) 1990 * are in the primary memory (core) cache. 1991 */ 1992 int 1993 as_incore(struct as *as, caddr_t addr, 1994 size_t size, char *vec, size_t *sizep) 1995 { 1996 struct seg *seg; 1997 size_t ssize; 1998 caddr_t raddr; /* rounded down addr */ 1999 size_t rsize; /* rounded up size */ 2000 size_t isize; /* iteration size */ 2001 int error = 0; /* result, assume success */ 2002 2003 *sizep = 0; 2004 raddr = (caddr_t)((uintptr_t)addr & (uintptr_t)PAGEMASK); 2005 rsize = ((((size_t)addr + size) + PAGEOFFSET) & PAGEMASK) - 2006 (size_t)raddr; 2007 2008 if (raddr + rsize < raddr) /* check for wraparound */ 2009 return (ENOMEM); 2010 2011 AS_LOCK_ENTER(as, &as->a_lock, RW_READER); 2012 seg = as_segat(as, raddr); 2013 if (seg == NULL) { 2014 AS_LOCK_EXIT(as, &as->a_lock); 2015 return (-1); 2016 } 2017 2018 for (; rsize != 0; rsize -= ssize, raddr += ssize) { 2019 if (raddr >= seg->s_base + seg->s_size) { 2020 seg = AS_SEGNEXT(as, seg); 2021 if (seg == NULL || raddr != seg->s_base) { 2022 error = -1; 2023 break; 2024 } 2025 } 2026 if ((raddr + rsize) > (seg->s_base + seg->s_size)) 2027 ssize = seg->s_base + seg->s_size - raddr; 2028 else 2029 ssize = rsize; 2030 *sizep += isize = SEGOP_INCORE(seg, raddr, ssize, vec); 2031 if (isize != ssize) { 2032 error = -1; 2033 break; 2034 } 2035 vec += btopr(ssize); 2036 } 2037 AS_LOCK_EXIT(as, &as->a_lock); 2038 return (error); 2039 } 2040 2041 static void 2042 as_segunlock(struct seg *seg, caddr_t addr, int attr, 2043 ulong_t *bitmap, size_t position, size_t npages) 2044 { 2045 caddr_t range_start; 2046 size_t pos1 = position; 2047 size_t pos2; 2048 size_t size; 2049 size_t end_pos = npages + position; 2050 2051 while (bt_range(bitmap, &pos1, &pos2, end_pos)) { 2052 size = ptob((pos2 - pos1)); 2053 range_start = (caddr_t)((uintptr_t)addr + 2054 ptob(pos1 - position)); 2055 2056 (void) SEGOP_LOCKOP(seg, range_start, size, attr, MC_UNLOCK, 2057 (ulong_t *)NULL, (size_t)NULL); 2058 pos1 = pos2; 2059 } 2060 } 2061 2062 static void 2063 as_unlockerr(struct as *as, int attr, ulong_t *mlock_map, 2064 caddr_t raddr, size_t rsize) 2065 { 2066 struct seg *seg = as_segat(as, raddr); 2067 size_t ssize; 2068 2069 while (rsize != 0) { 2070 if (raddr >= seg->s_base + seg->s_size) 2071 seg = AS_SEGNEXT(as, seg); 2072 2073 if ((raddr + rsize) > (seg->s_base + seg->s_size)) 2074 ssize = seg->s_base + seg->s_size - raddr; 2075 else 2076 ssize = rsize; 2077 2078 as_segunlock(seg, raddr, attr, mlock_map, 0, btopr(ssize)); 2079 2080 rsize -= ssize; 2081 raddr += ssize; 2082 } 2083 } 2084 2085 /* 2086 * Cache control operations over the interval [addr, addr + size) in 2087 * address space "as". 2088 */ 2089 /*ARGSUSED*/ 2090 int 2091 as_ctl(struct as *as, caddr_t addr, size_t size, int func, int attr, 2092 uintptr_t arg, ulong_t *lock_map, size_t pos) 2093 { 2094 struct seg *seg; /* working segment */ 2095 caddr_t raddr; /* rounded down addr */ 2096 caddr_t initraddr; /* saved initial rounded down addr */ 2097 size_t rsize; /* rounded up size */ 2098 size_t initrsize; /* saved initial rounded up size */ 2099 size_t ssize; /* size of seg */ 2100 int error = 0; /* result */ 2101 size_t mlock_size; /* size of bitmap */ 2102 ulong_t *mlock_map; /* pointer to bitmap used */ 2103 /* to represent the locked */ 2104 /* pages. */ 2105 retry: 2106 if (error == IE_RETRY) 2107 AS_LOCK_ENTER(as, &as->a_lock, RW_WRITER); 2108 else 2109 AS_LOCK_ENTER(as, &as->a_lock, RW_READER); 2110 2111 /* 2112 * If these are address space lock/unlock operations, loop over 2113 * all segments in the address space, as appropriate. 2114 */ 2115 if (func == MC_LOCKAS) { 2116 size_t npages, idx; 2117 size_t rlen = 0; /* rounded as length */ 2118 2119 idx = pos; 2120 2121 if (arg & MCL_FUTURE) { 2122 mutex_enter(&as->a_contents); 2123 AS_SETPGLCK(as); 2124 mutex_exit(&as->a_contents); 2125 } 2126 if ((arg & MCL_CURRENT) == 0) { 2127 AS_LOCK_EXIT(as, &as->a_lock); 2128 return (0); 2129 } 2130 2131 seg = AS_SEGFIRST(as); 2132 if (seg == NULL) { 2133 AS_LOCK_EXIT(as, &as->a_lock); 2134 return (0); 2135 } 2136 2137 do { 2138 raddr = (caddr_t)((uintptr_t)seg->s_base & 2139 (uintptr_t)PAGEMASK); 2140 rlen += (((uintptr_t)(seg->s_base + seg->s_size) + 2141 PAGEOFFSET) & PAGEMASK) - (uintptr_t)raddr; 2142 } while ((seg = AS_SEGNEXT(as, seg)) != NULL); 2143 2144 mlock_size = BT_BITOUL(btopr(rlen)); 2145 if ((mlock_map = (ulong_t *)kmem_zalloc(mlock_size * 2146 sizeof (ulong_t), KM_NOSLEEP)) == NULL) { 2147 AS_LOCK_EXIT(as, &as->a_lock); 2148 return (EAGAIN); 2149 } 2150 2151 for (seg = AS_SEGFIRST(as); seg; seg = AS_SEGNEXT(as, seg)) { 2152 error = SEGOP_LOCKOP(seg, seg->s_base, 2153 seg->s_size, attr, MC_LOCK, mlock_map, pos); 2154 if (error != 0) 2155 break; 2156 pos += seg_pages(seg); 2157 } 2158 2159 if (error) { 2160 for (seg = AS_SEGFIRST(as); seg != NULL; 2161 seg = AS_SEGNEXT(as, seg)) { 2162 2163 raddr = (caddr_t)((uintptr_t)seg->s_base & 2164 (uintptr_t)PAGEMASK); 2165 npages = seg_pages(seg); 2166 as_segunlock(seg, raddr, attr, mlock_map, 2167 idx, npages); 2168 idx += npages; 2169 } 2170 } 2171 2172 kmem_free(mlock_map, mlock_size * sizeof (ulong_t)); 2173 AS_LOCK_EXIT(as, &as->a_lock); 2174 goto lockerr; 2175 } else if (func == MC_UNLOCKAS) { 2176 mutex_enter(&as->a_contents); 2177 AS_CLRPGLCK(as); 2178 mutex_exit(&as->a_contents); 2179 2180 for (seg = AS_SEGFIRST(as); seg; seg = AS_SEGNEXT(as, seg)) { 2181 error = SEGOP_LOCKOP(seg, seg->s_base, 2182 seg->s_size, attr, MC_UNLOCK, NULL, 0); 2183 if (error != 0) 2184 break; 2185 } 2186 2187 AS_LOCK_EXIT(as, &as->a_lock); 2188 goto lockerr; 2189 } 2190 2191 /* 2192 * Normalize addresses and sizes. 2193 */ 2194 initraddr = raddr = (caddr_t)((uintptr_t)addr & (uintptr_t)PAGEMASK); 2195 initrsize = rsize = (((size_t)(addr + size) + PAGEOFFSET) & PAGEMASK) - 2196 (size_t)raddr; 2197 2198 if (raddr + rsize < raddr) { /* check for wraparound */ 2199 AS_LOCK_EXIT(as, &as->a_lock); 2200 return (ENOMEM); 2201 } 2202 2203 /* 2204 * Get initial segment. 2205 */ 2206 if ((seg = as_segat(as, raddr)) == NULL) { 2207 AS_LOCK_EXIT(as, &as->a_lock); 2208 return (ENOMEM); 2209 } 2210 2211 if (func == MC_LOCK) { 2212 mlock_size = BT_BITOUL(btopr(rsize)); 2213 if ((mlock_map = (ulong_t *)kmem_zalloc(mlock_size * 2214 sizeof (ulong_t), KM_NOSLEEP)) == NULL) { 2215 AS_LOCK_EXIT(as, &as->a_lock); 2216 return (EAGAIN); 2217 } 2218 } 2219 2220 /* 2221 * Loop over all segments. If a hole in the address range is 2222 * discovered, then fail. For each segment, perform the appropriate 2223 * control operation. 2224 */ 2225 while (rsize != 0) { 2226 2227 /* 2228 * Make sure there's no hole, calculate the portion 2229 * of the next segment to be operated over. 2230 */ 2231 if (raddr >= seg->s_base + seg->s_size) { 2232 seg = AS_SEGNEXT(as, seg); 2233 if (seg == NULL || raddr != seg->s_base) { 2234 if (func == MC_LOCK) { 2235 as_unlockerr(as, attr, mlock_map, 2236 initraddr, initrsize - rsize); 2237 kmem_free(mlock_map, 2238 mlock_size * sizeof (ulong_t)); 2239 } 2240 AS_LOCK_EXIT(as, &as->a_lock); 2241 return (ENOMEM); 2242 } 2243 } 2244 if ((raddr + rsize) > (seg->s_base + seg->s_size)) 2245 ssize = seg->s_base + seg->s_size - raddr; 2246 else 2247 ssize = rsize; 2248 2249 /* 2250 * Dispatch on specific function. 2251 */ 2252 switch (func) { 2253 2254 /* 2255 * Synchronize cached data from mappings with backing 2256 * objects. 2257 */ 2258 case MC_SYNC: 2259 if (error = SEGOP_SYNC(seg, raddr, ssize, 2260 attr, (uint_t)arg)) { 2261 AS_LOCK_EXIT(as, &as->a_lock); 2262 return (error); 2263 } 2264 break; 2265 2266 /* 2267 * Lock pages in memory. 2268 */ 2269 case MC_LOCK: 2270 if (error = SEGOP_LOCKOP(seg, raddr, ssize, 2271 attr, func, mlock_map, pos)) { 2272 as_unlockerr(as, attr, mlock_map, initraddr, 2273 initrsize - rsize + ssize); 2274 kmem_free(mlock_map, mlock_size * 2275 sizeof (ulong_t)); 2276 AS_LOCK_EXIT(as, &as->a_lock); 2277 goto lockerr; 2278 } 2279 break; 2280 2281 /* 2282 * Unlock mapped pages. 2283 */ 2284 case MC_UNLOCK: 2285 (void) SEGOP_LOCKOP(seg, raddr, ssize, attr, func, 2286 (ulong_t *)NULL, (size_t)NULL); 2287 break; 2288 2289 /* 2290 * Store VM advise for mapped pages in segment layer. 2291 */ 2292 case MC_ADVISE: 2293 error = SEGOP_ADVISE(seg, raddr, ssize, (uint_t)arg); 2294 2295 /* 2296 * Check for regular errors and special retry error 2297 */ 2298 if (error) { 2299 if (error == IE_RETRY) { 2300 /* 2301 * Need to acquire writers lock, so 2302 * have to drop readers lock and start 2303 * all over again 2304 */ 2305 AS_LOCK_EXIT(as, &as->a_lock); 2306 goto retry; 2307 } else if (error == IE_REATTACH) { 2308 /* 2309 * Find segment for current address 2310 * because current segment just got 2311 * split or concatenated 2312 */ 2313 seg = as_segat(as, raddr); 2314 if (seg == NULL) { 2315 AS_LOCK_EXIT(as, &as->a_lock); 2316 return (ENOMEM); 2317 } 2318 } else { 2319 /* 2320 * Regular error 2321 */ 2322 AS_LOCK_EXIT(as, &as->a_lock); 2323 return (error); 2324 } 2325 } 2326 break; 2327 2328 /* 2329 * Can't happen. 2330 */ 2331 default: 2332 panic("as_ctl: bad operation %d", func); 2333 /*NOTREACHED*/ 2334 } 2335 2336 rsize -= ssize; 2337 raddr += ssize; 2338 } 2339 2340 if (func == MC_LOCK) 2341 kmem_free(mlock_map, mlock_size * sizeof (ulong_t)); 2342 AS_LOCK_EXIT(as, &as->a_lock); 2343 return (0); 2344 lockerr: 2345 2346 /* 2347 * If the lower levels returned EDEADLK for a segment lockop, 2348 * it means that we should retry the operation. Let's wait 2349 * a bit also to let the deadlock causing condition clear. 2350 * This is part of a gross hack to work around a design flaw 2351 * in the ufs/sds logging code and should go away when the 2352 * logging code is re-designed to fix the problem. See bug 2353 * 4125102 for details of the problem. 2354 */ 2355 if (error == EDEADLK) { 2356 delay(deadlk_wait); 2357 error = 0; 2358 goto retry; 2359 } 2360 return (error); 2361 } 2362 2363 /* 2364 * Special code for exec to move the stack segment from its interim 2365 * place in the old address to the right place in the new address space. 2366 */ 2367 /*ARGSUSED*/ 2368 int 2369 as_exec(struct as *oas, caddr_t ostka, size_t stksz, 2370 struct as *nas, caddr_t nstka, uint_t hatflag) 2371 { 2372 struct seg *stkseg; 2373 2374 AS_LOCK_ENTER(oas, &oas->a_lock, RW_WRITER); 2375 stkseg = as_segat(oas, ostka); 2376 stkseg = as_removeseg(oas, stkseg); 2377 ASSERT(stkseg != NULL); 2378 ASSERT(stkseg->s_base == ostka && stkseg->s_size == stksz); 2379 stkseg->s_as = nas; 2380 stkseg->s_base = nstka; 2381 2382 /* 2383 * It's ok to lock the address space we are about to exec to. 2384 */ 2385 AS_LOCK_ENTER(nas, &nas->a_lock, RW_WRITER); 2386 ASSERT(avl_numnodes(&nas->a_wpage) == 0); 2387 nas->a_size += stkseg->s_size; 2388 oas->a_size -= stkseg->s_size; 2389 (void) as_addseg(nas, stkseg); 2390 AS_LOCK_EXIT(nas, &nas->a_lock); 2391 AS_LOCK_EXIT(oas, &oas->a_lock); 2392 return (0); 2393 } 2394 2395 static int 2396 f_decode(faultcode_t fault_err) 2397 { 2398 int error = 0; 2399 2400 switch (FC_CODE(fault_err)) { 2401 case FC_OBJERR: 2402 error = FC_ERRNO(fault_err); 2403 break; 2404 case FC_PROT: 2405 error = EACCES; 2406 break; 2407 default: 2408 error = EFAULT; 2409 break; 2410 } 2411 return (error); 2412 } 2413 2414 /* 2415 * lock pages in a given address space. Return shadow list. If 2416 * the list is NULL, the MMU mapping is also locked. 2417 */ 2418 int 2419 as_pagelock(struct as *as, struct page ***ppp, caddr_t addr, 2420 size_t size, enum seg_rw rw) 2421 { 2422 size_t rsize; 2423 caddr_t base; 2424 caddr_t raddr; 2425 faultcode_t fault_err; 2426 struct seg *seg; 2427 int res; 2428 int prefaulted = 0; 2429 2430 TRACE_2(TR_FAC_PHYSIO, TR_PHYSIO_AS_LOCK_START, 2431 "as_pagelock_start: addr %p size %ld", addr, size); 2432 2433 raddr = (caddr_t)((uintptr_t)addr & (uintptr_t)PAGEMASK); 2434 rsize = (((size_t)(addr + size) + PAGEOFFSET) & PAGEMASK) - 2435 (size_t)raddr; 2436 top: 2437 /* 2438 * if the request crosses two segments let 2439 * as_fault handle it. 2440 */ 2441 AS_LOCK_ENTER(as, &as->a_lock, RW_READER); 2442 seg = as_findseg(as, addr, 0); 2443 if ((seg == NULL) || ((base = seg->s_base) > addr) || 2444 (addr + size) > base + seg->s_size) { 2445 AS_LOCK_EXIT(as, &as->a_lock); 2446 goto slow; 2447 } 2448 2449 TRACE_2(TR_FAC_PHYSIO, TR_PHYSIO_SEG_LOCK_START, 2450 "seg_lock_1_start: raddr %p rsize %ld", raddr, rsize); 2451 2452 /* 2453 * try to lock pages and pass back shadow list 2454 */ 2455 res = SEGOP_PAGELOCK(seg, raddr, rsize, ppp, L_PAGELOCK, rw); 2456 2457 TRACE_0(TR_FAC_PHYSIO, TR_PHYSIO_SEG_LOCK_END, "seg_lock_1_end"); 2458 AS_LOCK_EXIT(as, &as->a_lock); 2459 if (res == 0) { 2460 return (0); 2461 } else if (res == ENOTSUP || prefaulted) { 2462 /* 2463 * (1) segment driver doesn't support PAGELOCK fastpath, or 2464 * (2) we've already tried fast path unsuccessfully after 2465 * faulting in the addr range below; system might be 2466 * thrashing or there may not be enough availrmem. 2467 */ 2468 goto slow; 2469 } 2470 2471 TRACE_2(TR_FAC_PHYSIO, TR_PHYSIO_AS_FAULT_START, 2472 "as_fault_start: addr %p size %ld", addr, size); 2473 2474 /* 2475 * we might get here because of some COW fault or non 2476 * existing page. Let as_fault deal with it. Just load 2477 * the page, don't lock the MMU mapping. 2478 */ 2479 fault_err = as_fault(as->a_hat, as, addr, size, F_INVAL, rw); 2480 if (fault_err != 0) { 2481 return (f_decode(fault_err)); 2482 } 2483 2484 prefaulted = 1; 2485 2486 /* 2487 * try fast path again; since we've dropped a_lock, 2488 * we need to try the dance from the start to see if 2489 * the addr range is still valid. 2490 */ 2491 goto top; 2492 slow: 2493 /* 2494 * load the page and lock the MMU mapping. 2495 */ 2496 fault_err = as_fault(as->a_hat, as, addr, size, F_SOFTLOCK, rw); 2497 if (fault_err != 0) { 2498 return (f_decode(fault_err)); 2499 } 2500 *ppp = NULL; 2501 2502 TRACE_0(TR_FAC_PHYSIO, TR_PHYSIO_AS_LOCK_END, "as_pagelock_end"); 2503 return (0); 2504 } 2505 2506 /* 2507 * unlock pages in a given address range 2508 */ 2509 void 2510 as_pageunlock(struct as *as, struct page **pp, caddr_t addr, size_t size, 2511 enum seg_rw rw) 2512 { 2513 struct seg *seg; 2514 size_t rsize; 2515 caddr_t raddr; 2516 2517 TRACE_2(TR_FAC_PHYSIO, TR_PHYSIO_AS_UNLOCK_START, 2518 "as_pageunlock_start: addr %p size %ld", addr, size); 2519 2520 /* 2521 * if the shadow list is NULL, as_pagelock was 2522 * falling back to as_fault 2523 */ 2524 if (pp == NULL) { 2525 (void) as_fault(as->a_hat, as, addr, size, F_SOFTUNLOCK, rw); 2526 return; 2527 } 2528 raddr = (caddr_t)((uintptr_t)addr & (uintptr_t)PAGEMASK); 2529 rsize = (((size_t)(addr + size) + PAGEOFFSET) & PAGEMASK) - 2530 (size_t)raddr; 2531 AS_LOCK_ENTER(as, &as->a_lock, RW_READER); 2532 seg = as_findseg(as, addr, 0); 2533 ASSERT(seg); 2534 TRACE_2(TR_FAC_PHYSIO, TR_PHYSIO_SEG_UNLOCK_START, 2535 "seg_unlock_start: raddr %p rsize %ld", raddr, rsize); 2536 SEGOP_PAGELOCK(seg, raddr, rsize, &pp, L_PAGEUNLOCK, rw); 2537 AS_LOCK_EXIT(as, &as->a_lock); 2538 TRACE_0(TR_FAC_PHYSIO, TR_PHYSIO_AS_UNLOCK_END, "as_pageunlock_end"); 2539 } 2540 2541 /* 2542 * reclaim cached pages in a given address range 2543 */ 2544 void 2545 as_pagereclaim(struct as *as, struct page **pp, caddr_t addr, 2546 size_t size, enum seg_rw rw) 2547 { 2548 struct seg *seg; 2549 size_t rsize; 2550 caddr_t raddr; 2551 2552 ASSERT(AS_READ_HELD(as, &as->a_lock)); 2553 ASSERT(pp != NULL); 2554 2555 raddr = (caddr_t)((uintptr_t)addr & (uintptr_t)PAGEMASK); 2556 rsize = (((size_t)(addr + size) + PAGEOFFSET) & PAGEMASK) - 2557 (size_t)raddr; 2558 seg = as_findseg(as, addr, 0); 2559 ASSERT(seg); 2560 SEGOP_PAGELOCK(seg, raddr, rsize, &pp, L_PAGERECLAIM, rw); 2561 } 2562 2563 #define MAXPAGEFLIP 4 2564 #define MAXPAGEFLIPSIZ MAXPAGEFLIP*PAGESIZE 2565 2566 int 2567 as_setpagesize(struct as *as, caddr_t addr, size_t size, uint_t szc, 2568 boolean_t wait) 2569 { 2570 struct seg *seg; 2571 size_t ssize; 2572 caddr_t raddr; /* rounded down addr */ 2573 size_t rsize; /* rounded up size */ 2574 int error = 0; 2575 size_t pgsz = page_get_pagesize(szc); 2576 2577 setpgsz_top: 2578 if (!IS_P2ALIGNED(addr, pgsz) || !IS_P2ALIGNED(size, pgsz)) { 2579 return (EINVAL); 2580 } 2581 2582 raddr = addr; 2583 rsize = size; 2584 2585 if (raddr + rsize < raddr) /* check for wraparound */ 2586 return (ENOMEM); 2587 2588 AS_LOCK_ENTER(as, &as->a_lock, RW_WRITER); 2589 as_clearwatchprot(as, raddr, rsize); 2590 seg = as_segat(as, raddr); 2591 if (seg == NULL) { 2592 as_setwatch(as); 2593 AS_LOCK_EXIT(as, &as->a_lock); 2594 return (ENOMEM); 2595 } 2596 2597 for (; rsize != 0; rsize -= ssize, raddr += ssize) { 2598 if (raddr >= seg->s_base + seg->s_size) { 2599 seg = AS_SEGNEXT(as, seg); 2600 if (seg == NULL || raddr != seg->s_base) { 2601 error = ENOMEM; 2602 break; 2603 } 2604 } 2605 if ((raddr + rsize) > (seg->s_base + seg->s_size)) { 2606 ssize = seg->s_base + seg->s_size - raddr; 2607 } else { 2608 ssize = rsize; 2609 } 2610 2611 error = SEGOP_SETPAGESIZE(seg, raddr, ssize, szc); 2612 2613 if (error == IE_NOMEM) { 2614 error = EAGAIN; 2615 break; 2616 } 2617 2618 if (error == IE_RETRY) { 2619 AS_LOCK_EXIT(as, &as->a_lock); 2620 goto setpgsz_top; 2621 } 2622 2623 if (error == ENOTSUP) { 2624 error = EINVAL; 2625 break; 2626 } 2627 2628 if (wait && (error == EAGAIN)) { 2629 /* 2630 * Memory is currently locked. It must be unlocked 2631 * before this operation can succeed through a retry. 2632 * The possible reasons for locked memory and 2633 * corresponding strategies for unlocking are: 2634 * (1) Normal I/O 2635 * wait for a signal that the I/O operation 2636 * has completed and the memory is unlocked. 2637 * (2) Asynchronous I/O 2638 * The aio subsystem does not unlock pages when 2639 * the I/O is completed. Those pages are unlocked 2640 * when the application calls aiowait/aioerror. 2641 * So, to prevent blocking forever, cv_broadcast() 2642 * is done to wake up aio_cleanup_thread. 2643 * Subsequently, segvn_reclaim will be called, and 2644 * that will do AS_CLRUNMAPWAIT() and wake us up. 2645 * (3) Long term page locking: 2646 * This is not relevant for as_setpagesize() 2647 * because we cannot change the page size for 2648 * driver memory. The attempt to do so will 2649 * fail with a different error than EAGAIN so 2650 * there's no need to trigger as callbacks like 2651 * as_unmap, as_setprot or as_free would do. 2652 */ 2653 mutex_enter(&as->a_contents); 2654 if (AS_ISUNMAPWAIT(as) == 0) { 2655 cv_broadcast(&as->a_cv); 2656 } 2657 AS_SETUNMAPWAIT(as); 2658 AS_LOCK_EXIT(as, &as->a_lock); 2659 while (AS_ISUNMAPWAIT(as)) { 2660 cv_wait(&as->a_cv, &as->a_contents); 2661 } 2662 mutex_exit(&as->a_contents); 2663 goto setpgsz_top; 2664 } else if (error != 0) { 2665 break; 2666 } 2667 } 2668 as_setwatch(as); 2669 AS_LOCK_EXIT(as, &as->a_lock); 2670 return (error); 2671 } 2672 2673 /* 2674 * Setup all of the uninitialized watched pages that we can. 2675 */ 2676 void 2677 as_setwatch(struct as *as) 2678 { 2679 struct watched_page *pwp; 2680 struct seg *seg; 2681 caddr_t vaddr; 2682 uint_t prot; 2683 int err, retrycnt; 2684 2685 if (avl_numnodes(&as->a_wpage) == 0) 2686 return; 2687 2688 ASSERT(AS_WRITE_HELD(as, &as->a_lock)); 2689 2690 for (pwp = avl_first(&as->a_wpage); pwp != NULL; 2691 pwp = AVL_NEXT(&as->a_wpage, pwp)) { 2692 retrycnt = 0; 2693 retry: 2694 vaddr = pwp->wp_vaddr; 2695 if (pwp->wp_oprot != 0 || /* already set up */ 2696 (seg = as_segat(as, vaddr)) == NULL || 2697 SEGOP_GETPROT(seg, vaddr, 0, &prot) != 0) 2698 continue; 2699 2700 pwp->wp_oprot = prot; 2701 if (pwp->wp_read) 2702 prot &= ~(PROT_READ|PROT_WRITE|PROT_EXEC); 2703 if (pwp->wp_write) 2704 prot &= ~PROT_WRITE; 2705 if (pwp->wp_exec) 2706 prot &= ~(PROT_READ|PROT_WRITE|PROT_EXEC); 2707 if (!(pwp->wp_flags & WP_NOWATCH) && prot != pwp->wp_oprot) { 2708 err = SEGOP_SETPROT(seg, vaddr, PAGESIZE, prot); 2709 if (err == IE_RETRY) { 2710 pwp->wp_oprot = 0; 2711 ASSERT(retrycnt == 0); 2712 retrycnt++; 2713 goto retry; 2714 } 2715 } 2716 pwp->wp_prot = prot; 2717 } 2718 } 2719 2720 /* 2721 * Clear all of the watched pages in the address space. 2722 */ 2723 void 2724 as_clearwatch(struct as *as) 2725 { 2726 struct watched_page *pwp; 2727 struct seg *seg; 2728 caddr_t vaddr; 2729 uint_t prot; 2730 int err, retrycnt; 2731 2732 if (avl_numnodes(&as->a_wpage) == 0) 2733 return; 2734 2735 ASSERT(AS_WRITE_HELD(as, &as->a_lock)); 2736 2737 for (pwp = avl_first(&as->a_wpage); pwp != NULL; 2738 pwp = AVL_NEXT(&as->a_wpage, pwp)) { 2739 retrycnt = 0; 2740 retry: 2741 vaddr = pwp->wp_vaddr; 2742 if (pwp->wp_oprot == 0 || /* not set up */ 2743 (seg = as_segat(as, vaddr)) == NULL) 2744 continue; 2745 2746 if ((prot = pwp->wp_oprot) != pwp->wp_prot) { 2747 err = SEGOP_SETPROT(seg, vaddr, PAGESIZE, prot); 2748 if (err == IE_RETRY) { 2749 ASSERT(retrycnt == 0); 2750 retrycnt++; 2751 goto retry; 2752 } 2753 } 2754 pwp->wp_oprot = 0; 2755 pwp->wp_prot = 0; 2756 } 2757 } 2758 2759 /* 2760 * Force a new setup for all the watched pages in the range. 2761 */ 2762 static void 2763 as_setwatchprot(struct as *as, caddr_t addr, size_t size, uint_t prot) 2764 { 2765 struct watched_page *pwp; 2766 struct watched_page tpw; 2767 caddr_t eaddr = addr + size; 2768 caddr_t vaddr; 2769 struct seg *seg; 2770 int err, retrycnt; 2771 uint_t wprot; 2772 avl_index_t where; 2773 2774 if (avl_numnodes(&as->a_wpage) == 0) 2775 return; 2776 2777 ASSERT(AS_WRITE_HELD(as, &as->a_lock)); 2778 2779 tpw.wp_vaddr = (caddr_t)((uintptr_t)addr & (uintptr_t)PAGEMASK); 2780 if ((pwp = avl_find(&as->a_wpage, &tpw, &where)) == NULL) 2781 pwp = avl_nearest(&as->a_wpage, where, AVL_AFTER); 2782 2783 while (pwp != NULL && pwp->wp_vaddr < eaddr) { 2784 retrycnt = 0; 2785 vaddr = pwp->wp_vaddr; 2786 2787 wprot = prot; 2788 if (pwp->wp_read) 2789 wprot &= ~(PROT_READ|PROT_WRITE|PROT_EXEC); 2790 if (pwp->wp_write) 2791 wprot &= ~PROT_WRITE; 2792 if (pwp->wp_exec) 2793 wprot &= ~(PROT_READ|PROT_WRITE|PROT_EXEC); 2794 if (!(pwp->wp_flags & WP_NOWATCH) && wprot != pwp->wp_oprot) { 2795 retry: 2796 seg = as_segat(as, vaddr); 2797 if (seg == NULL) { 2798 panic("as_setwatchprot: no seg"); 2799 /*NOTREACHED*/ 2800 } 2801 err = SEGOP_SETPROT(seg, vaddr, PAGESIZE, wprot); 2802 if (err == IE_RETRY) { 2803 ASSERT(retrycnt == 0); 2804 retrycnt++; 2805 goto retry; 2806 } 2807 } 2808 pwp->wp_oprot = prot; 2809 pwp->wp_prot = wprot; 2810 2811 pwp = AVL_NEXT(&as->a_wpage, pwp); 2812 } 2813 } 2814 2815 /* 2816 * Clear all of the watched pages in the range. 2817 */ 2818 static void 2819 as_clearwatchprot(struct as *as, caddr_t addr, size_t size) 2820 { 2821 caddr_t eaddr = addr + size; 2822 struct watched_page *pwp; 2823 struct watched_page tpw; 2824 uint_t prot; 2825 struct seg *seg; 2826 int err, retrycnt; 2827 avl_index_t where; 2828 2829 if (avl_numnodes(&as->a_wpage) == 0) 2830 return; 2831 2832 tpw.wp_vaddr = (caddr_t)((uintptr_t)addr & (uintptr_t)PAGEMASK); 2833 if ((pwp = avl_find(&as->a_wpage, &tpw, &where)) == NULL) 2834 pwp = avl_nearest(&as->a_wpage, where, AVL_AFTER); 2835 2836 ASSERT(AS_WRITE_HELD(as, &as->a_lock)); 2837 2838 while (pwp != NULL && pwp->wp_vaddr < eaddr) { 2839 ASSERT(addr >= pwp->wp_vaddr); 2840 2841 if ((prot = pwp->wp_oprot) != 0) { 2842 retrycnt = 0; 2843 2844 if (prot != pwp->wp_prot) { 2845 retry: 2846 seg = as_segat(as, pwp->wp_vaddr); 2847 if (seg == NULL) 2848 continue; 2849 err = SEGOP_SETPROT(seg, pwp->wp_vaddr, 2850 PAGESIZE, prot); 2851 if (err == IE_RETRY) { 2852 ASSERT(retrycnt == 0); 2853 retrycnt++; 2854 goto retry; 2855 2856 } 2857 } 2858 pwp->wp_oprot = 0; 2859 pwp->wp_prot = 0; 2860 } 2861 2862 pwp = AVL_NEXT(&as->a_wpage, pwp); 2863 } 2864 } 2865 2866 void 2867 as_signal_proc(struct as *as, k_siginfo_t *siginfo) 2868 { 2869 struct proc *p; 2870 2871 mutex_enter(&pidlock); 2872 for (p = practive; p; p = p->p_next) { 2873 if (p->p_as == as) { 2874 mutex_enter(&p->p_lock); 2875 if (p->p_as == as) 2876 sigaddq(p, NULL, siginfo, KM_NOSLEEP); 2877 mutex_exit(&p->p_lock); 2878 } 2879 } 2880 mutex_exit(&pidlock); 2881 } 2882 2883 /* 2884 * return memory object ID 2885 */ 2886 int 2887 as_getmemid(struct as *as, caddr_t addr, memid_t *memidp) 2888 { 2889 struct seg *seg; 2890 int sts; 2891 2892 AS_LOCK_ENTER(as, &as->a_lock, RW_READER); 2893 seg = as_segat(as, addr); 2894 if (seg == NULL) { 2895 AS_LOCK_EXIT(as, &as->a_lock); 2896 return (EFAULT); 2897 } 2898 /* 2899 * catch old drivers which may not support getmemid 2900 */ 2901 if (seg->s_ops->getmemid == NULL) { 2902 AS_LOCK_EXIT(as, &as->a_lock); 2903 return (ENODEV); 2904 } 2905 2906 sts = SEGOP_GETMEMID(seg, addr, memidp); 2907 2908 AS_LOCK_EXIT(as, &as->a_lock); 2909 return (sts); 2910 } 2911