xref: /titanic_41/usr/src/uts/common/vm/vm_anon.c (revision f33c1cdb6d38eb0715f03cf492f31c3d4d395c98)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 /*	Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T	*/
27 /*	  All Rights Reserved  	*/
28 
29 /*
30  * University Copyright- Copyright (c) 1982, 1986, 1988
31  * The Regents of the University of California
32  * All Rights Reserved
33  *
34  * University Acknowledgment- Portions of this document are derived from
35  * software developed by the University of California, Berkeley, and its
36  * contributors.
37  */
38 
39 /*
40  * VM - anonymous pages.
41  *
42  * This layer sits immediately above the vm_swap layer.  It manages
43  * physical pages that have no permanent identity in the file system
44  * name space, using the services of the vm_swap layer to allocate
45  * backing storage for these pages.  Since these pages have no external
46  * identity, they are discarded when the last reference is removed.
47  *
48  * An important function of this layer is to manage low-level sharing
49  * of pages that are logically distinct but that happen to be
50  * physically identical (e.g., the corresponding pages of the processes
51  * resulting from a fork before one process or the other changes their
52  * contents).  This pseudo-sharing is present only as an optimization
53  * and is not to be confused with true sharing in which multiple
54  * address spaces deliberately contain references to the same object;
55  * such sharing is managed at a higher level.
56  *
57  * The key data structure here is the anon struct, which contains a
58  * reference count for its associated physical page and a hint about
59  * the identity of that page.  Anon structs typically live in arrays,
60  * with an instance's position in its array determining where the
61  * corresponding backing storage is allocated; however, the swap_xlate()
62  * routine abstracts away this representation information so that the
63  * rest of the anon layer need not know it.  (See the swap layer for
64  * more details on anon struct layout.)
65  *
66  * In the future versions of the system, the association between an
67  * anon struct and its position on backing store will change so that
68  * we don't require backing store all anonymous pages in the system.
69  * This is important for consideration for large memory systems.
70  * We can also use this technique to delay binding physical locations
71  * to anonymous pages until pageout/swapout time where we can make
72  * smarter allocation decisions to improve anonymous klustering.
73  *
74  * Many of the routines defined here take a (struct anon **) argument,
75  * which allows the code at this level to manage anon pages directly,
76  * so that callers can regard anon structs as opaque objects and not be
77  * concerned with assigning or inspecting their contents.
78  *
79  * Clients of this layer refer to anon pages indirectly.  That is, they
80  * maintain arrays of pointers to anon structs rather than maintaining
81  * anon structs themselves.  The (struct anon **) arguments mentioned
82  * above are pointers to entries in these arrays.  It is these arrays
83  * that capture the mapping between offsets within a given segment and
84  * the corresponding anonymous backing storage address.
85  */
86 
87 #ifdef DEBUG
88 #define	ANON_DEBUG
89 #endif
90 
91 #include <sys/types.h>
92 #include <sys/t_lock.h>
93 #include <sys/param.h>
94 #include <sys/systm.h>
95 #include <sys/mman.h>
96 #include <sys/cred.h>
97 #include <sys/thread.h>
98 #include <sys/vnode.h>
99 #include <sys/cpuvar.h>
100 #include <sys/swap.h>
101 #include <sys/cmn_err.h>
102 #include <sys/vtrace.h>
103 #include <sys/kmem.h>
104 #include <sys/sysmacros.h>
105 #include <sys/bitmap.h>
106 #include <sys/vmsystm.h>
107 #include <sys/tuneable.h>
108 #include <sys/debug.h>
109 #include <sys/fs/swapnode.h>
110 #include <sys/tnf_probe.h>
111 #include <sys/lgrp.h>
112 #include <sys/policy.h>
113 #include <sys/condvar_impl.h>
114 #include <sys/mutex_impl.h>
115 #include <sys/rctl.h>
116 
117 #include <vm/as.h>
118 #include <vm/hat.h>
119 #include <vm/anon.h>
120 #include <vm/page.h>
121 #include <vm/vpage.h>
122 #include <vm/seg.h>
123 #include <vm/rm.h>
124 
125 #include <fs/fs_subr.h>
126 
127 struct vnode *anon_vp;
128 
129 int anon_debug;
130 
131 kmutex_t	anoninfo_lock;
132 struct		k_anoninfo k_anoninfo;
133 ani_free_t	ani_free_pool[ANI_MAX_POOL];
134 pad_mutex_t	anon_array_lock[ANON_LOCKSIZE];
135 kcondvar_t	anon_array_cv[ANON_LOCKSIZE];
136 
137 /*
138  * Global hash table for (vp, off) -> anon slot
139  */
140 extern	int swap_maxcontig;
141 size_t	anon_hash_size;
142 struct anon **anon_hash;
143 
144 static struct kmem_cache *anon_cache;
145 static struct kmem_cache *anonmap_cache;
146 
147 #ifdef VM_STATS
148 static struct anonvmstats_str {
149 	ulong_t getpages[30];
150 	ulong_t privatepages[10];
151 	ulong_t demotepages[9];
152 	ulong_t decrefpages[9];
153 	ulong_t	dupfillholes[4];
154 	ulong_t freepages[1];
155 } anonvmstats;
156 #endif /* VM_STATS */
157 
158 /*ARGSUSED*/
159 static int
160 anonmap_cache_constructor(void *buf, void *cdrarg, int kmflags)
161 {
162 	struct anon_map *amp = buf;
163 
164 	rw_init(&amp->a_rwlock, NULL, RW_DEFAULT, NULL);
165 	cv_init(&amp->a_purgecv, NULL, CV_DEFAULT, NULL);
166 	mutex_init(&amp->a_pmtx, NULL, MUTEX_DEFAULT, NULL);
167 	mutex_init(&amp->a_purgemtx, NULL, MUTEX_DEFAULT, NULL);
168 	return (0);
169 }
170 
171 /*ARGSUSED1*/
172 static void
173 anonmap_cache_destructor(void *buf, void *cdrarg)
174 {
175 	struct anon_map *amp = buf;
176 
177 	rw_destroy(&amp->a_rwlock);
178 	cv_destroy(&amp->a_purgecv);
179 	mutex_destroy(&amp->a_pmtx);
180 	mutex_destroy(&amp->a_purgemtx);
181 }
182 
183 kmutex_t	anonhash_lock[AH_LOCK_SIZE];
184 kmutex_t	anonpages_hash_lock[AH_LOCK_SIZE];
185 
186 void
187 anon_init(void)
188 {
189 	int i;
190 
191 	anon_hash_size = 1L << highbit(physmem / ANON_HASHAVELEN);
192 
193 	for (i = 0; i < AH_LOCK_SIZE; i++) {
194 		mutex_init(&anonhash_lock[i], NULL, MUTEX_DEFAULT, NULL);
195 		mutex_init(&anonpages_hash_lock[i], NULL, MUTEX_DEFAULT, NULL);
196 	}
197 
198 	for (i = 0; i < ANON_LOCKSIZE; i++) {
199 		mutex_init(&anon_array_lock[i].pad_mutex, NULL,
200 		    MUTEX_DEFAULT, NULL);
201 		cv_init(&anon_array_cv[i], NULL, CV_DEFAULT, NULL);
202 	}
203 
204 	anon_hash = (struct anon **)
205 	    kmem_zalloc(sizeof (struct anon *) * anon_hash_size, KM_SLEEP);
206 	anon_cache = kmem_cache_create("anon_cache", sizeof (struct anon),
207 	    AN_CACHE_ALIGN, NULL, NULL, NULL, NULL, NULL, 0);
208 	anonmap_cache = kmem_cache_create("anonmap_cache",
209 	    sizeof (struct anon_map), 0,
210 	    anonmap_cache_constructor, anonmap_cache_destructor, NULL,
211 	    NULL, NULL, 0);
212 	swap_maxcontig = (1024 * 1024) >> PAGESHIFT;	/* 1MB of pages */
213 
214 	anon_vp = vn_alloc(KM_SLEEP);
215 	vn_setops(anon_vp, swap_vnodeops);
216 	anon_vp->v_type = VREG;
217 	anon_vp->v_flag |= (VISSWAP|VISSWAPFS);
218 }
219 
220 /*
221  * Global anon slot hash table manipulation.
222  */
223 
224 static void
225 anon_addhash(struct anon *ap)
226 {
227 	int index;
228 
229 	ASSERT(MUTEX_HELD(&anonhash_lock[AH_LOCK(ap->an_vp, ap->an_off)]));
230 	index = ANON_HASH(ap->an_vp, ap->an_off);
231 	ap->an_hash = anon_hash[index];
232 	anon_hash[index] = ap;
233 }
234 
235 static void
236 anon_rmhash(struct anon *ap)
237 {
238 	struct anon **app;
239 
240 	ASSERT(MUTEX_HELD(&anonhash_lock[AH_LOCK(ap->an_vp, ap->an_off)]));
241 
242 	for (app = &anon_hash[ANON_HASH(ap->an_vp, ap->an_off)];
243 	    *app; app = &((*app)->an_hash)) {
244 		if (*app == ap) {
245 			*app = ap->an_hash;
246 			break;
247 		}
248 	}
249 }
250 
251 /*
252  * The anon array interfaces. Functions allocating,
253  * freeing array of pointers, and returning/setting
254  * entries in the array of pointers for a given offset.
255  *
256  * Create the list of pointers
257  */
258 struct anon_hdr *
259 anon_create(pgcnt_t npages, int flags)
260 {
261 	struct anon_hdr *ahp;
262 	ulong_t nchunks;
263 	int kmemflags = (flags & ANON_NOSLEEP) ? KM_NOSLEEP : KM_SLEEP;
264 
265 	if ((ahp = kmem_zalloc(sizeof (struct anon_hdr), kmemflags)) == NULL) {
266 		return (NULL);
267 	}
268 
269 	mutex_init(&ahp->serial_lock, NULL, MUTEX_DEFAULT, NULL);
270 	/*
271 	 * Single level case.
272 	 */
273 	ahp->size = npages;
274 	if (npages <= ANON_CHUNK_SIZE || (flags & ANON_ALLOC_FORCE)) {
275 
276 		if (flags & ANON_ALLOC_FORCE)
277 			ahp->flags |= ANON_ALLOC_FORCE;
278 
279 		ahp->array_chunk = kmem_zalloc(
280 		    ahp->size * sizeof (struct anon *), kmemflags);
281 
282 		if (ahp->array_chunk == NULL) {
283 			kmem_free(ahp, sizeof (struct anon_hdr));
284 			return (NULL);
285 		}
286 	} else {
287 		/*
288 		 * 2 Level case.
289 		 * anon hdr size needs to be rounded off  to be a multiple
290 		 * of ANON_CHUNK_SIZE. This is important as various anon
291 		 * related functions depend on this.
292 		 * NOTE -
293 		 * anon_grow()  makes anon hdr size a multiple of
294 		 * ANON_CHUNK_SIZE.
295 		 * amp size is <= anon hdr size.
296 		 * anon_index + seg_pgs <= anon hdr size.
297 		 */
298 		ahp->size = P2ROUNDUP(npages, ANON_CHUNK_SIZE);
299 		nchunks = ahp->size >> ANON_CHUNK_SHIFT;
300 
301 		ahp->array_chunk = kmem_zalloc(nchunks * sizeof (ulong_t *),
302 		    kmemflags);
303 
304 		if (ahp->array_chunk == NULL) {
305 			kmem_free(ahp, sizeof (struct anon_hdr));
306 			return (NULL);
307 		}
308 	}
309 	return (ahp);
310 }
311 
312 /*
313  * Free the array of pointers
314  */
315 void
316 anon_release(struct anon_hdr *ahp, pgcnt_t npages)
317 {
318 	ulong_t i;
319 	void **ppp;
320 	ulong_t nchunks;
321 
322 	ASSERT(npages <= ahp->size);
323 
324 	/*
325 	 * Single level case.
326 	 */
327 	if (npages <= ANON_CHUNK_SIZE || (ahp->flags & ANON_ALLOC_FORCE)) {
328 		kmem_free(ahp->array_chunk, ahp->size * sizeof (struct anon *));
329 	} else {
330 		/*
331 		 * 2 level case.
332 		 */
333 		nchunks = ahp->size >> ANON_CHUNK_SHIFT;
334 		for (i = 0; i < nchunks; i++) {
335 			ppp = &ahp->array_chunk[i];
336 			if (*ppp != NULL)
337 				kmem_free(*ppp, PAGESIZE);
338 		}
339 		kmem_free(ahp->array_chunk, nchunks * sizeof (ulong_t *));
340 	}
341 	mutex_destroy(&ahp->serial_lock);
342 	kmem_free(ahp, sizeof (struct anon_hdr));
343 }
344 
345 /*
346  * Return the pointer from the list for a
347  * specified anon index.
348  */
349 struct anon *
350 anon_get_ptr(struct anon_hdr *ahp, ulong_t an_idx)
351 {
352 	struct anon **app;
353 
354 	ASSERT(an_idx < ahp->size);
355 
356 	/*
357 	 * Single level case.
358 	 */
359 	if ((ahp->size <= ANON_CHUNK_SIZE) || (ahp->flags & ANON_ALLOC_FORCE)) {
360 		return ((struct anon *)
361 		    ((uintptr_t)ahp->array_chunk[an_idx] & ANON_PTRMASK));
362 	} else {
363 
364 		/*
365 		 * 2 level case.
366 		 */
367 		app = ahp->array_chunk[an_idx >> ANON_CHUNK_SHIFT];
368 		if (app) {
369 			return ((struct anon *)
370 			    ((uintptr_t)app[an_idx & ANON_CHUNK_OFF] &
371 			    ANON_PTRMASK));
372 		} else {
373 			return (NULL);
374 		}
375 	}
376 }
377 
378 /*
379  * Return the anon pointer for the first valid entry in the anon list,
380  * starting from the given index.
381  */
382 struct anon *
383 anon_get_next_ptr(struct anon_hdr *ahp, ulong_t *index)
384 {
385 	struct anon *ap;
386 	struct anon **app;
387 	ulong_t chunkoff;
388 	ulong_t i;
389 	ulong_t j;
390 	pgcnt_t size;
391 
392 	i = *index;
393 	size = ahp->size;
394 
395 	ASSERT(i < size);
396 
397 	if ((size <= ANON_CHUNK_SIZE) || (ahp->flags & ANON_ALLOC_FORCE)) {
398 		/*
399 		 * 1 level case
400 		 */
401 		while (i < size) {
402 			ap = (struct anon *)
403 			    ((uintptr_t)ahp->array_chunk[i] & ANON_PTRMASK);
404 			if (ap) {
405 				*index = i;
406 				return (ap);
407 			}
408 			i++;
409 		}
410 	} else {
411 		/*
412 		 * 2 level case
413 		 */
414 		chunkoff = i & ANON_CHUNK_OFF;
415 		while (i < size) {
416 			app = ahp->array_chunk[i >> ANON_CHUNK_SHIFT];
417 			if (app)
418 				for (j = chunkoff; j < ANON_CHUNK_SIZE; j++) {
419 					ap = (struct anon *)
420 					    ((uintptr_t)app[j] & ANON_PTRMASK);
421 					if (ap) {
422 						*index = i + (j - chunkoff);
423 						return (ap);
424 					}
425 				}
426 			chunkoff = 0;
427 			i = (i + ANON_CHUNK_SIZE) & ~ANON_CHUNK_OFF;
428 		}
429 	}
430 	*index = size;
431 	return (NULL);
432 }
433 
434 /*
435  * Set list entry with a given pointer for a specified offset
436  */
437 int
438 anon_set_ptr(struct anon_hdr *ahp, ulong_t an_idx, struct anon *ap, int flags)
439 {
440 	void		**ppp;
441 	struct anon	**app;
442 	int kmemflags = (flags & ANON_NOSLEEP) ? KM_NOSLEEP : KM_SLEEP;
443 	uintptr_t	*ap_addr;
444 
445 	ASSERT(an_idx < ahp->size);
446 
447 	/*
448 	 * Single level case.
449 	 */
450 	if (ahp->size <= ANON_CHUNK_SIZE || (ahp->flags & ANON_ALLOC_FORCE)) {
451 		ap_addr = (uintptr_t *)&ahp->array_chunk[an_idx];
452 	} else {
453 
454 		/*
455 		 * 2 level case.
456 		 */
457 		ppp = &ahp->array_chunk[an_idx >> ANON_CHUNK_SHIFT];
458 
459 		ASSERT(ppp != NULL);
460 		if (*ppp == NULL) {
461 			mutex_enter(&ahp->serial_lock);
462 			ppp = &ahp->array_chunk[an_idx >> ANON_CHUNK_SHIFT];
463 			if (*ppp == NULL) {
464 				*ppp = kmem_zalloc(PAGESIZE, kmemflags);
465 				if (*ppp == NULL) {
466 					mutex_exit(&ahp->serial_lock);
467 					return (ENOMEM);
468 				}
469 			}
470 			mutex_exit(&ahp->serial_lock);
471 		}
472 		app = *ppp;
473 		ap_addr = (uintptr_t *)&app[an_idx & ANON_CHUNK_OFF];
474 	}
475 	*ap_addr = (*ap_addr & ~ANON_PTRMASK) | (uintptr_t)ap;
476 	return (0);
477 }
478 
479 /*
480  * Copy anon array into a given new anon array
481  */
482 int
483 anon_copy_ptr(struct anon_hdr *sahp, ulong_t s_idx,
484 	struct anon_hdr *dahp, ulong_t d_idx,
485 	pgcnt_t npages, int flags)
486 {
487 	void **sapp, **dapp;
488 	void *ap;
489 	int kmemflags = (flags & ANON_NOSLEEP) ? KM_NOSLEEP : KM_SLEEP;
490 
491 	ASSERT((s_idx < sahp->size) && (d_idx < dahp->size));
492 	ASSERT((npages <= sahp->size) && (npages <= dahp->size));
493 
494 	/*
495 	 * Both arrays are 1 level.
496 	 */
497 	if (((sahp->size <= ANON_CHUNK_SIZE) &&
498 	    (dahp->size <= ANON_CHUNK_SIZE)) ||
499 	    ((sahp->flags & ANON_ALLOC_FORCE) &&
500 	    (dahp->flags & ANON_ALLOC_FORCE))) {
501 
502 		bcopy(&sahp->array_chunk[s_idx], &dahp->array_chunk[d_idx],
503 		    npages * sizeof (struct anon *));
504 		return (0);
505 	}
506 
507 	/*
508 	 * Both arrays are 2 levels.
509 	 */
510 	if (sahp->size > ANON_CHUNK_SIZE &&
511 	    dahp->size > ANON_CHUNK_SIZE &&
512 	    ((sahp->flags & ANON_ALLOC_FORCE) == 0) &&
513 	    ((dahp->flags & ANON_ALLOC_FORCE) == 0)) {
514 
515 		ulong_t sapidx, dapidx;
516 		ulong_t *sap, *dap;
517 		ulong_t chknp;
518 
519 		while (npages != 0) {
520 
521 			sapidx = s_idx & ANON_CHUNK_OFF;
522 			dapidx = d_idx & ANON_CHUNK_OFF;
523 			chknp = ANON_CHUNK_SIZE - MAX(sapidx, dapidx);
524 			if (chknp > npages)
525 				chknp = npages;
526 
527 			sapp = &sahp->array_chunk[s_idx >> ANON_CHUNK_SHIFT];
528 			if ((sap = *sapp) != NULL) {
529 				dapp = &dahp->array_chunk[d_idx
530 				    >> ANON_CHUNK_SHIFT];
531 				if ((dap = *dapp) == NULL) {
532 					*dapp = kmem_zalloc(PAGESIZE,
533 					    kmemflags);
534 					if ((dap = *dapp) == NULL)
535 						return (ENOMEM);
536 				}
537 				bcopy((sap + sapidx), (dap + dapidx),
538 				    chknp << ANON_PTRSHIFT);
539 			}
540 			s_idx += chknp;
541 			d_idx += chknp;
542 			npages -= chknp;
543 		}
544 		return (0);
545 	}
546 
547 	/*
548 	 * At least one of the arrays is 2 level.
549 	 */
550 	while (npages--) {
551 		if ((ap = anon_get_ptr(sahp, s_idx)) != NULL) {
552 			ASSERT(!ANON_ISBUSY(anon_get_slot(sahp, s_idx)));
553 			if (anon_set_ptr(dahp, d_idx, ap, flags) == ENOMEM)
554 					return (ENOMEM);
555 		}
556 		s_idx++;
557 		d_idx++;
558 	}
559 	return (0);
560 }
561 
562 
563 /*
564  * ANON_INITBUF is a convenience macro for anon_grow() below. It
565  * takes a buffer dst, which is at least as large as buffer src. It
566  * does a bcopy from src into dst, and then bzeros the extra bytes
567  * of dst. If tail is set, the data in src is tail aligned within
568  * dst instead of head aligned.
569  */
570 
571 #define	ANON_INITBUF(src, srclen, dst, dstsize, tail)			      \
572 	if (tail) {							      \
573 		bzero((dst), (dstsize) - (srclen));			      \
574 		bcopy((src), (char *)(dst) + (dstsize) - (srclen), (srclen)); \
575 	} else {							      \
576 		bcopy((src), (dst), (srclen));				      \
577 		bzero((char *)(dst) + (srclen), (dstsize) - (srclen));	      \
578 	}
579 
580 #define	ANON_1_LEVEL_INC	(ANON_CHUNK_SIZE / 8)
581 #define	ANON_2_LEVEL_INC	(ANON_1_LEVEL_INC * ANON_CHUNK_SIZE)
582 
583 /*
584  * anon_grow() is used to efficiently extend an existing anon array.
585  * startidx_p points to the index into the anon array of the first page
586  * that is in use. oldseg_pgs is the number of pages in use, starting at
587  * *startidx_p. newpages is the number of additional pages desired.
588  *
589  * If startidx_p == NULL, startidx is taken to be 0 and cannot be changed.
590  *
591  * The growth is done by creating a new top level of the anon array,
592  * and (if the array is 2-level) reusing the existing second level arrays.
593  *
594  * flags can be used to specify ANON_NOSLEEP and ANON_GROWDOWN.
595  *
596  * Returns the new number of pages in the anon array.
597  */
598 pgcnt_t
599 anon_grow(struct anon_hdr *ahp, ulong_t *startidx_p, pgcnt_t oldseg_pgs,
600     pgcnt_t newseg_pgs, int flags)
601 {
602 	ulong_t startidx = startidx_p ? *startidx_p : 0;
603 	pgcnt_t oldamp_pgs = ahp->size, newamp_pgs;
604 	pgcnt_t oelems, nelems, totpages;
605 	void **level1;
606 	int kmemflags = (flags & ANON_NOSLEEP) ? KM_NOSLEEP : KM_SLEEP;
607 	int growdown = (flags & ANON_GROWDOWN);
608 	size_t newarrsz, oldarrsz;
609 	void *level2;
610 
611 	ASSERT(!(startidx_p == NULL && growdown));
612 	ASSERT(startidx + oldseg_pgs <= ahp->size);
613 
614 	/*
615 	 * Determine the total number of pages needed in the new
616 	 * anon array. If growing down, totpages is all pages from
617 	 * startidx through the end of the array, plus <newseg_pgs>
618 	 * pages. If growing up, keep all pages from page 0 through
619 	 * the last page currently in use, plus <newseg_pgs> pages.
620 	 */
621 	if (growdown)
622 		totpages = oldamp_pgs - startidx + newseg_pgs;
623 	else
624 		totpages = startidx + oldseg_pgs + newseg_pgs;
625 
626 	/* If the array is already large enough, just return. */
627 
628 	if (oldamp_pgs >= totpages) {
629 		if (growdown)
630 			*startidx_p = oldamp_pgs - totpages;
631 		return (oldamp_pgs);
632 	}
633 
634 	/*
635 	 * oldamp_pgs/newamp_pgs are the total numbers of pages represented
636 	 * by the corresponding arrays.
637 	 * oelems/nelems are the number of pointers in the top level arrays
638 	 * which may be either level 1 or level 2.
639 	 * Will the new anon array be one level or two levels?
640 	 */
641 	if (totpages <= ANON_CHUNK_SIZE || (ahp->flags & ANON_ALLOC_FORCE)) {
642 		newamp_pgs = P2ROUNDUP(totpages, ANON_1_LEVEL_INC);
643 		oelems = oldamp_pgs;
644 		nelems = newamp_pgs;
645 	} else {
646 		newamp_pgs = P2ROUNDUP(totpages, ANON_2_LEVEL_INC);
647 		oelems = (oldamp_pgs + ANON_CHUNK_OFF) >> ANON_CHUNK_SHIFT;
648 		nelems = newamp_pgs >> ANON_CHUNK_SHIFT;
649 	}
650 
651 	newarrsz = nelems * sizeof (void *);
652 	level1 = kmem_alloc(newarrsz, kmemflags);
653 	if (level1 == NULL)
654 		return (0);
655 
656 	/* Are we converting from a one level to a two level anon array? */
657 
658 	if (newamp_pgs > ANON_CHUNK_SIZE && oldamp_pgs <= ANON_CHUNK_SIZE &&
659 	    !(ahp->flags & ANON_ALLOC_FORCE)) {
660 
661 		/*
662 		 * Yes, we're converting to a two level. Reuse old level 1
663 		 * as new level 2 if it is exactly PAGESIZE. Otherwise
664 		 * alloc a new level 2 and copy the old level 1 data into it.
665 		 */
666 		if (oldamp_pgs == ANON_CHUNK_SIZE) {
667 			level2 = (void *)ahp->array_chunk;
668 		} else {
669 			level2 = kmem_alloc(PAGESIZE, kmemflags);
670 			if (level2 == NULL) {
671 				kmem_free(level1, newarrsz);
672 				return (0);
673 			}
674 			oldarrsz = oldamp_pgs * sizeof (void *);
675 
676 			ANON_INITBUF(ahp->array_chunk, oldarrsz,
677 			    level2, PAGESIZE, growdown);
678 			kmem_free(ahp->array_chunk, oldarrsz);
679 		}
680 		bzero(level1, newarrsz);
681 		if (growdown)
682 			level1[nelems - 1] = level2;
683 		else
684 			level1[0] = level2;
685 	} else {
686 		oldarrsz = oelems * sizeof (void *);
687 
688 		ANON_INITBUF(ahp->array_chunk, oldarrsz,
689 		    level1, newarrsz, growdown);
690 		kmem_free(ahp->array_chunk, oldarrsz);
691 	}
692 
693 	ahp->array_chunk = level1;
694 	ahp->size = newamp_pgs;
695 	if (growdown)
696 		*startidx_p = newamp_pgs - totpages;
697 
698 	return (newamp_pgs);
699 }
700 
701 
702 /*
703  * Called from clock handler to sync ani_free value.
704  */
705 
706 void
707 set_anoninfo(void)
708 {
709 	int	ix;
710 	pgcnt_t	total = 0;
711 
712 	for (ix = 0; ix < ANI_MAX_POOL; ix++) {
713 		total += ani_free_pool[ix].ani_count;
714 	}
715 	k_anoninfo.ani_free = total;
716 }
717 
718 /*
719  * Reserve anon space.
720  *
721  * It's no longer simply a matter of incrementing ani_resv to
722  * reserve swap space, we need to check memory-based as well
723  * as disk-backed (physical) swap.  The following algorithm
724  * is used:
725  * 	Check the space on physical swap
726  * 		i.e. amount needed < ani_max - ani_phys_resv
727  * 	If we are swapping on swapfs check
728  *		amount needed < (availrmem - swapfs_minfree)
729  * Since the algorithm to check for the quantity of swap space is
730  * almost the same as that for reserving it, we'll just use anon_resvmem
731  * with a flag to decrement availrmem.
732  *
733  * Return non-zero on success.
734  */
735 int
736 anon_resvmem(size_t size, boolean_t takemem, zone_t *zone, int tryhard)
737 {
738 	pgcnt_t npages = btopr(size);
739 	pgcnt_t mswap_pages = 0;
740 	pgcnt_t pswap_pages = 0;
741 	proc_t *p = curproc;
742 
743 	if (zone != NULL && takemem) {
744 		/* test zone.max-swap resource control */
745 		mutex_enter(&p->p_lock);
746 		if (rctl_incr_swap(p, zone, ptob(npages)) != 0) {
747 			mutex_exit(&p->p_lock);
748 			return (0);
749 		}
750 		mutex_exit(&p->p_lock);
751 	}
752 	mutex_enter(&anoninfo_lock);
753 
754 	/*
755 	 * pswap_pages is the number of pages we can take from
756 	 * physical (i.e. disk-backed) swap.
757 	 */
758 	ASSERT(k_anoninfo.ani_max >= k_anoninfo.ani_phys_resv);
759 	pswap_pages = k_anoninfo.ani_max - k_anoninfo.ani_phys_resv;
760 
761 	ANON_PRINT(A_RESV,
762 	    ("anon_resvmem: npages %lu takemem %u pswap %lu caller %p\n",
763 	    npages, takemem, pswap_pages, (void *)caller()));
764 
765 	if (npages <= pswap_pages) {
766 		/*
767 		 * we have enough space on a physical swap
768 		 */
769 		if (takemem)
770 			k_anoninfo.ani_phys_resv += npages;
771 		mutex_exit(&anoninfo_lock);
772 		return (1);
773 	} else if (pswap_pages != 0) {
774 		/*
775 		 * we have some space on a physical swap
776 		 */
777 		if (takemem) {
778 			/*
779 			 * use up remainder of phys swap
780 			 */
781 			k_anoninfo.ani_phys_resv += pswap_pages;
782 			ASSERT(k_anoninfo.ani_phys_resv == k_anoninfo.ani_max);
783 		}
784 	}
785 	/*
786 	 * since (npages > pswap_pages) we need mem swap
787 	 * mswap_pages is the number of pages needed from availrmem
788 	 */
789 	ASSERT(npages > pswap_pages);
790 	mswap_pages = npages - pswap_pages;
791 
792 	ANON_PRINT(A_RESV, ("anon_resvmem: need %ld pages from memory\n",
793 	    mswap_pages));
794 
795 	/*
796 	 * priv processes can reserve memory as swap as long as availrmem
797 	 * remains greater than swapfs_minfree; in the case of non-priv
798 	 * processes, memory can be reserved as swap only if availrmem
799 	 * doesn't fall below (swapfs_minfree + swapfs_reserve). Thus,
800 	 * swapfs_reserve amount of memswap is not available to non-priv
801 	 * processes. This protects daemons such as automounter dying
802 	 * as a result of application processes eating away almost entire
803 	 * membased swap. This safeguard becomes useless if apps are run
804 	 * with root access.
805 	 *
806 	 * swapfs_reserve is minimum of 4Mb or 1/16 of physmem.
807 	 *
808 	 */
809 	if (tryhard) {
810 		pgcnt_t floor_pages;
811 
812 		if (secpolicy_resource_anon_mem(CRED())) {
813 			floor_pages = swapfs_minfree;
814 		} else {
815 			floor_pages = swapfs_minfree + swapfs_reserve;
816 		}
817 
818 		mutex_exit(&anoninfo_lock);
819 		(void) page_reclaim_mem(mswap_pages, floor_pages, 0);
820 		mutex_enter(&anoninfo_lock);
821 	}
822 
823 	mutex_enter(&freemem_lock);
824 	if (availrmem > (swapfs_minfree + swapfs_reserve + mswap_pages) ||
825 	    (availrmem > (swapfs_minfree + mswap_pages) &&
826 	    secpolicy_resource(CRED()) == 0)) {
827 
828 		if (takemem) {
829 			/*
830 			 * Take the memory from the rest of the system.
831 			 */
832 			availrmem -= mswap_pages;
833 			mutex_exit(&freemem_lock);
834 			k_anoninfo.ani_mem_resv += mswap_pages;
835 			ANI_ADD(mswap_pages);
836 			ANON_PRINT((A_RESV | A_MRESV),
837 			    ("anon_resvmem: took %ld pages of availrmem\n",
838 			    mswap_pages));
839 		} else {
840 			mutex_exit(&freemem_lock);
841 		}
842 
843 		ASSERT(k_anoninfo.ani_max >= k_anoninfo.ani_phys_resv);
844 		mutex_exit(&anoninfo_lock);
845 		return (1);
846 	} else {
847 		/*
848 		 * Fail if not enough memory
849 		 */
850 		if (takemem) {
851 			k_anoninfo.ani_phys_resv -= pswap_pages;
852 		}
853 
854 		mutex_exit(&freemem_lock);
855 		mutex_exit(&anoninfo_lock);
856 		ANON_PRINT(A_RESV,
857 		    ("anon_resvmem: not enough space from swapfs\n"));
858 		if (zone != NULL && takemem)
859 			rctl_decr_swap(zone, ptob(npages));
860 		return (0);
861 	}
862 }
863 
864 /*
865  * Give back an anon reservation.
866  */
867 void
868 anon_unresvmem(size_t size, zone_t *zone)
869 {
870 	pgcnt_t npages = btopr(size);
871 	spgcnt_t mem_free_pages = 0;
872 	pgcnt_t phys_free_slots;
873 #ifdef	ANON_DEBUG
874 	pgcnt_t mem_resv;
875 #endif
876 	if (zone != NULL)
877 		rctl_decr_swap(zone, ptob(npages));
878 
879 	mutex_enter(&anoninfo_lock);
880 
881 	ASSERT(k_anoninfo.ani_mem_resv >= k_anoninfo.ani_locked_swap);
882 
883 	/*
884 	 * If some of this reservation belonged to swapfs
885 	 * give it back to availrmem.
886 	 * ani_mem_resv is the amount of availrmem swapfs has reserved.
887 	 * but some of that memory could be locked by segspt so we can only
888 	 * return non locked ani_mem_resv back to availrmem
889 	 */
890 	if (k_anoninfo.ani_mem_resv > k_anoninfo.ani_locked_swap) {
891 		ANON_PRINT((A_RESV | A_MRESV),
892 		    ("anon_unresv: growing availrmem by %ld pages\n",
893 		    MIN(k_anoninfo.ani_mem_resv, npages)));
894 
895 		mem_free_pages = MIN((spgcnt_t)(k_anoninfo.ani_mem_resv -
896 		    k_anoninfo.ani_locked_swap), npages);
897 		mutex_enter(&freemem_lock);
898 		availrmem += mem_free_pages;
899 		mutex_exit(&freemem_lock);
900 		k_anoninfo.ani_mem_resv -= mem_free_pages;
901 
902 		ANI_ADD(-mem_free_pages);
903 	}
904 	/*
905 	 * The remainder of the pages is returned to phys swap
906 	 */
907 	ASSERT(npages >= mem_free_pages);
908 	phys_free_slots = npages - mem_free_pages;
909 
910 	if (phys_free_slots) {
911 		k_anoninfo.ani_phys_resv -= phys_free_slots;
912 	}
913 
914 #ifdef	ANON_DEBUG
915 	mem_resv = k_anoninfo.ani_mem_resv;
916 #endif
917 
918 	ASSERT(k_anoninfo.ani_mem_resv >= k_anoninfo.ani_locked_swap);
919 	ASSERT(k_anoninfo.ani_max >= k_anoninfo.ani_phys_resv);
920 
921 	mutex_exit(&anoninfo_lock);
922 
923 	ANON_PRINT(A_RESV, ("anon_unresv: %lu, tot %lu, caller %p\n",
924 	    npages, mem_resv, (void *)caller()));
925 }
926 
927 /*
928  * Allocate an anon slot and return it with the lock held.
929  */
930 struct anon *
931 anon_alloc(struct vnode *vp, anoff_t off)
932 {
933 	struct anon	*ap;
934 	kmutex_t	*ahm;
935 
936 	ap = kmem_cache_alloc(anon_cache, KM_SLEEP);
937 	if (vp == NULL) {
938 		swap_alloc(ap);
939 	} else {
940 		ap->an_vp = vp;
941 		ap->an_off = off;
942 	}
943 	ap->an_refcnt = 1;
944 	ap->an_pvp = NULL;
945 	ap->an_poff = 0;
946 	ahm = &anonhash_lock[AH_LOCK(ap->an_vp, ap->an_off)];
947 	mutex_enter(ahm);
948 	anon_addhash(ap);
949 	mutex_exit(ahm);
950 	ANI_ADD(-1);
951 	ANON_PRINT(A_ANON, ("anon_alloc: returning ap %p, vp %p\n",
952 	    (void *)ap, (ap ? (void *)ap->an_vp : NULL)));
953 	return (ap);
954 }
955 
956 /*
957  * Called for pages locked in memory via softlock/pagelock/mlock to make sure
958  * such pages don't consume any physical swap resources needed for swapping
959  * unlocked pages.
960  */
961 void
962 anon_swap_free(struct anon *ap, page_t *pp)
963 {
964 	kmutex_t *ahm;
965 
966 	ASSERT(ap != NULL);
967 	ASSERT(pp != NULL);
968 	ASSERT(PAGE_LOCKED(pp));
969 	ASSERT(pp->p_vnode != NULL);
970 	ASSERT(IS_SWAPFSVP(pp->p_vnode));
971 	ASSERT(ap->an_refcnt != 0);
972 	ASSERT(pp->p_vnode == ap->an_vp);
973 	ASSERT(pp->p_offset == ap->an_off);
974 
975 	if (ap->an_pvp == NULL)
976 		return;
977 
978 	page_io_lock(pp);
979 	ahm = &anonhash_lock[AH_LOCK(ap->an_vp, ap->an_off)];
980 	mutex_enter(ahm);
981 
982 	ASSERT(ap->an_refcnt != 0);
983 	ASSERT(pp->p_vnode == ap->an_vp);
984 	ASSERT(pp->p_offset == ap->an_off);
985 
986 	if (ap->an_pvp != NULL) {
987 		swap_phys_free(ap->an_pvp, ap->an_poff, PAGESIZE);
988 		ap->an_pvp = NULL;
989 		ap->an_poff = 0;
990 		mutex_exit(ahm);
991 		hat_setmod(pp);
992 	} else {
993 		mutex_exit(ahm);
994 	}
995 	page_io_unlock(pp);
996 }
997 
998 /*
999  * Decrement the reference count of an anon page.
1000  * If reference count goes to zero, free it and
1001  * its associated page (if any).
1002  */
1003 void
1004 anon_decref(struct anon *ap)
1005 {
1006 	page_t *pp;
1007 	struct vnode *vp;
1008 	anoff_t off;
1009 	kmutex_t *ahm;
1010 
1011 	ahm = &anonhash_lock[AH_LOCK(ap->an_vp, ap->an_off)];
1012 	mutex_enter(ahm);
1013 	ASSERT(ap->an_refcnt != 0);
1014 	if (ap->an_refcnt == 0)
1015 		panic("anon_decref: slot count 0");
1016 	if (--ap->an_refcnt == 0) {
1017 		swap_xlate(ap, &vp, &off);
1018 		anon_rmhash(ap);
1019 		if (ap->an_pvp != NULL)
1020 			swap_phys_free(ap->an_pvp, ap->an_poff, PAGESIZE);
1021 		mutex_exit(ahm);
1022 
1023 		/*
1024 		 * If there is a page for this anon slot we will need to
1025 		 * call VN_DISPOSE to get rid of the vp association and
1026 		 * put the page back on the free list as really free.
1027 		 * Acquire the "exclusive" lock to ensure that any
1028 		 * pending i/o always completes before the swap slot
1029 		 * is freed.
1030 		 */
1031 		pp = page_lookup(vp, (u_offset_t)off, SE_EXCL);
1032 		if (pp != NULL) {
1033 			/*LINTED: constant in conditional context */
1034 			VN_DISPOSE(pp, B_INVAL, 0, kcred);
1035 		}
1036 		ANON_PRINT(A_ANON, ("anon_decref: free ap %p, vp %p\n",
1037 		    (void *)ap, (void *)ap->an_vp));
1038 
1039 		kmem_cache_free(anon_cache, ap);
1040 
1041 		ANI_ADD(1);
1042 	} else {
1043 		mutex_exit(ahm);
1044 	}
1045 }
1046 
1047 
1048 /*
1049  * check an_refcnt of the root anon slot (anon_index argument is aligned at
1050  * seg->s_szc level) to determine whether COW processing is required.
1051  * anonpages_hash_lock[] held on the root ap ensures that if root's
1052  * refcnt is 1 all other refcnt's are 1 as well (and they can't increase
1053  * later since this process can't fork while its AS lock is held).
1054  *
1055  * returns 1 if the root anon slot has a refcnt > 1 otherwise returns 0.
1056  */
1057 int
1058 anon_szcshare(struct anon_hdr *ahp, ulong_t anon_index)
1059 {
1060 	struct anon	*ap;
1061 	kmutex_t	*ahmpages = NULL;
1062 
1063 	ap = anon_get_ptr(ahp, anon_index);
1064 	if (ap == NULL)
1065 		return (0);
1066 
1067 	ahmpages = &anonpages_hash_lock[AH_LOCK(ap->an_vp, ap->an_off)];
1068 	mutex_enter(ahmpages);
1069 	ASSERT(ap->an_refcnt >= 1);
1070 	if (ap->an_refcnt == 1) {
1071 		mutex_exit(ahmpages);
1072 		return (0);
1073 	}
1074 	mutex_exit(ahmpages);
1075 	return (1);
1076 }
1077 /*
1078  * Check 'nslots' anon slots for refcnt > 1.
1079  *
1080  * returns 1 if any of the 'nslots' anon slots has a refcnt > 1 otherwise
1081  * returns 0.
1082  */
1083 static int
1084 anon_share(struct anon_hdr *ahp, ulong_t anon_index, pgcnt_t nslots)
1085 {
1086 	struct anon *ap;
1087 
1088 	while (nslots-- > 0) {
1089 		if ((ap = anon_get_ptr(ahp, anon_index)) != NULL &&
1090 		    ap->an_refcnt > 1)
1091 			return (1);
1092 		anon_index++;
1093 	}
1094 
1095 	return (0);
1096 }
1097 
1098 static void
1099 anon_decref_pages(
1100 	struct anon_hdr *ahp,
1101 	ulong_t an_idx,
1102 	uint_t szc)
1103 {
1104 	struct anon *ap = anon_get_ptr(ahp, an_idx);
1105 	kmutex_t *ahmpages = NULL;
1106 	page_t *pp;
1107 	pgcnt_t pgcnt = page_get_pagecnt(szc);
1108 	pgcnt_t i;
1109 	struct vnode *vp;
1110 	anoff_t   off;
1111 	kmutex_t *ahm;
1112 #ifdef DEBUG
1113 	int refcnt = 1;
1114 #endif
1115 
1116 	ASSERT(szc != 0);
1117 	ASSERT(IS_P2ALIGNED(pgcnt, pgcnt));
1118 	ASSERT(IS_P2ALIGNED(an_idx, pgcnt));
1119 	ASSERT(an_idx < ahp->size);
1120 
1121 	if (ahp->size - an_idx < pgcnt) {
1122 		/*
1123 		 * In case of shared mappings total anon map size may not be
1124 		 * the largest page size aligned.
1125 		 */
1126 		pgcnt = ahp->size - an_idx;
1127 	}
1128 
1129 	VM_STAT_ADD(anonvmstats.decrefpages[0]);
1130 
1131 	if (ap != NULL) {
1132 		ahmpages = &anonpages_hash_lock[AH_LOCK(ap->an_vp, ap->an_off)];
1133 		mutex_enter(ahmpages);
1134 		ASSERT((refcnt = ap->an_refcnt) != 0);
1135 		VM_STAT_ADD(anonvmstats.decrefpages[1]);
1136 		if (ap->an_refcnt == 1) {
1137 			VM_STAT_ADD(anonvmstats.decrefpages[2]);
1138 			ASSERT(!anon_share(ahp, an_idx, pgcnt));
1139 			mutex_exit(ahmpages);
1140 			ahmpages = NULL;
1141 		}
1142 	}
1143 
1144 	i = 0;
1145 	while (i < pgcnt) {
1146 		if ((ap = anon_get_ptr(ahp, an_idx + i)) == NULL) {
1147 			ASSERT(refcnt == 1 && ahmpages == NULL);
1148 			i++;
1149 			continue;
1150 		}
1151 		ASSERT(ap->an_refcnt == refcnt);
1152 		ASSERT(ahmpages != NULL || ap->an_refcnt == 1);
1153 		ASSERT(ahmpages == NULL || ap->an_refcnt > 1);
1154 
1155 		if (ahmpages == NULL) {
1156 			swap_xlate(ap, &vp, &off);
1157 			pp = page_lookup(vp, (u_offset_t)off, SE_EXCL);
1158 			if (pp == NULL || pp->p_szc == 0) {
1159 				VM_STAT_ADD(anonvmstats.decrefpages[3]);
1160 				ahm = &anonhash_lock[AH_LOCK(ap->an_vp,
1161 				    ap->an_off)];
1162 				(void) anon_set_ptr(ahp, an_idx + i, NULL,
1163 				    ANON_SLEEP);
1164 				mutex_enter(ahm);
1165 				ap->an_refcnt--;
1166 				ASSERT(ap->an_refcnt == 0);
1167 				anon_rmhash(ap);
1168 				if (ap->an_pvp)
1169 					swap_phys_free(ap->an_pvp, ap->an_poff,
1170 					    PAGESIZE);
1171 				mutex_exit(ahm);
1172 				if (pp == NULL) {
1173 					pp = page_lookup(vp, (u_offset_t)off,
1174 					    SE_EXCL);
1175 					ASSERT(pp == NULL || pp->p_szc == 0);
1176 				}
1177 				if (pp != NULL) {
1178 					VM_STAT_ADD(anonvmstats.decrefpages[4]);
1179 					/*LINTED*/
1180 					VN_DISPOSE(pp, B_INVAL, 0, kcred);
1181 				}
1182 				kmem_cache_free(anon_cache, ap);
1183 				ANI_ADD(1);
1184 				i++;
1185 			} else {
1186 				pgcnt_t j;
1187 				pgcnt_t curpgcnt =
1188 				    page_get_pagecnt(pp->p_szc);
1189 				size_t ppasize = curpgcnt * sizeof (page_t *);
1190 				page_t **ppa = kmem_alloc(ppasize, KM_SLEEP);
1191 				int dispose = 0;
1192 
1193 				VM_STAT_ADD(anonvmstats.decrefpages[5]);
1194 
1195 				ASSERT(pp->p_szc <= szc);
1196 				ASSERT(IS_P2ALIGNED(curpgcnt, curpgcnt));
1197 				ASSERT(IS_P2ALIGNED(i, curpgcnt));
1198 				ASSERT(i + curpgcnt <= pgcnt);
1199 				ASSERT(!(page_pptonum(pp) & (curpgcnt - 1)));
1200 				ppa[0] = pp;
1201 				for (j = i + 1; j < i + curpgcnt; j++) {
1202 					ap = anon_get_ptr(ahp, an_idx + j);
1203 					ASSERT(ap != NULL &&
1204 					    ap->an_refcnt == 1);
1205 					swap_xlate(ap, &vp, &off);
1206 					pp = page_lookup(vp, (u_offset_t)off,
1207 					    SE_EXCL);
1208 					if (pp == NULL)
1209 						panic("anon_decref_pages: "
1210 						    "no page");
1211 
1212 					(void) hat_pageunload(pp,
1213 					    HAT_FORCE_PGUNLOAD);
1214 					ASSERT(pp->p_szc == ppa[0]->p_szc);
1215 					ASSERT(page_pptonum(pp) - 1 ==
1216 					    page_pptonum(ppa[j - i - 1]));
1217 					ppa[j - i] = pp;
1218 					if (ap->an_pvp != NULL &&
1219 					    !vn_matchopval(ap->an_pvp,
1220 					    VOPNAME_DISPOSE,
1221 					    (fs_generic_func_p)fs_dispose))
1222 						dispose = 1;
1223 				}
1224 				for (j = i; j < i + curpgcnt; j++) {
1225 					ap = anon_get_ptr(ahp, an_idx + j);
1226 					ASSERT(ap != NULL &&
1227 					    ap->an_refcnt == 1);
1228 					ahm = &anonhash_lock[AH_LOCK(ap->an_vp,
1229 					    ap->an_off)];
1230 					(void) anon_set_ptr(ahp, an_idx + j,
1231 					    NULL, ANON_SLEEP);
1232 					mutex_enter(ahm);
1233 					ap->an_refcnt--;
1234 					ASSERT(ap->an_refcnt == 0);
1235 					anon_rmhash(ap);
1236 					if (ap->an_pvp)
1237 						swap_phys_free(ap->an_pvp,
1238 						    ap->an_poff, PAGESIZE);
1239 					mutex_exit(ahm);
1240 					kmem_cache_free(anon_cache, ap);
1241 					ANI_ADD(1);
1242 				}
1243 				if (!dispose) {
1244 					VM_STAT_ADD(anonvmstats.decrefpages[6]);
1245 					page_destroy_pages(ppa[0]);
1246 				} else {
1247 					VM_STAT_ADD(anonvmstats.decrefpages[7]);
1248 					for (j = 0; j < curpgcnt; j++) {
1249 						ASSERT(PAGE_EXCL(ppa[j]));
1250 						ppa[j]->p_szc = 0;
1251 					}
1252 					for (j = 0; j < curpgcnt; j++) {
1253 						ASSERT(!hat_page_is_mapped(
1254 						    ppa[j]));
1255 						/*LINTED*/
1256 						VN_DISPOSE(ppa[j], B_INVAL, 0,
1257 						    kcred);
1258 					}
1259 				}
1260 				kmem_free(ppa, ppasize);
1261 				i += curpgcnt;
1262 			}
1263 		} else {
1264 			VM_STAT_ADD(anonvmstats.decrefpages[8]);
1265 			(void) anon_set_ptr(ahp, an_idx + i, NULL, ANON_SLEEP);
1266 			ahm = &anonhash_lock[AH_LOCK(ap->an_vp, ap->an_off)];
1267 			mutex_enter(ahm);
1268 			ap->an_refcnt--;
1269 			mutex_exit(ahm);
1270 			i++;
1271 		}
1272 	}
1273 
1274 	if (ahmpages != NULL) {
1275 		mutex_exit(ahmpages);
1276 	}
1277 }
1278 
1279 /*
1280  * Duplicate references to size bytes worth of anon pages.
1281  * Used when duplicating a segment that contains private anon pages.
1282  * This code assumes that procedure calling this one has already used
1283  * hat_chgprot() to disable write access to the range of addresses that
1284  * that *old actually refers to.
1285  */
1286 void
1287 anon_dup(struct anon_hdr *old, ulong_t old_idx, struct anon_hdr *new,
1288 			ulong_t new_idx, size_t size)
1289 {
1290 	spgcnt_t npages;
1291 	kmutex_t *ahm;
1292 	struct anon *ap;
1293 	ulong_t off;
1294 	ulong_t index;
1295 
1296 	npages = btopr(size);
1297 	while (npages > 0) {
1298 		index = old_idx;
1299 		if ((ap = anon_get_next_ptr(old, &index)) == NULL)
1300 			break;
1301 
1302 		ASSERT(!ANON_ISBUSY(anon_get_slot(old, index)));
1303 		off = index - old_idx;
1304 		npages -= off;
1305 		if (npages <= 0)
1306 			break;
1307 
1308 		(void) anon_set_ptr(new, new_idx + off, ap, ANON_SLEEP);
1309 		ahm = &anonhash_lock[AH_LOCK(ap->an_vp, ap->an_off)];
1310 
1311 		mutex_enter(ahm);
1312 		ap->an_refcnt++;
1313 		mutex_exit(ahm);
1314 
1315 		off++;
1316 		new_idx += off;
1317 		old_idx += off;
1318 		npages--;
1319 	}
1320 }
1321 
1322 /*
1323  * Just like anon_dup but also guarantees there are no holes (unallocated anon
1324  * slots) within any large page region. That means if a large page region is
1325  * empty in the old array it will skip it. If there are 1 or more valid slots
1326  * in the large page region of the old array it will make sure to fill in any
1327  * unallocated ones and also copy them to the new array. If noalloc is 1 large
1328  * page region should either have no valid anon slots or all slots should be
1329  * valid.
1330  */
1331 void
1332 anon_dup_fill_holes(
1333 	struct anon_hdr *old,
1334 	ulong_t old_idx,
1335 	struct anon_hdr *new,
1336 	ulong_t new_idx,
1337 	size_t size,
1338 	uint_t szc,
1339 	int noalloc)
1340 {
1341 	struct anon	*ap;
1342 	spgcnt_t	npages;
1343 	kmutex_t	*ahm, *ahmpages = NULL;
1344 	pgcnt_t		pgcnt, i;
1345 	ulong_t		index, off;
1346 #ifdef DEBUG
1347 	int		refcnt;
1348 #endif
1349 
1350 	ASSERT(szc != 0);
1351 	pgcnt = page_get_pagecnt(szc);
1352 	ASSERT(IS_P2ALIGNED(pgcnt, pgcnt));
1353 	npages = btopr(size);
1354 	ASSERT(IS_P2ALIGNED(npages, pgcnt));
1355 	ASSERT(IS_P2ALIGNED(old_idx, pgcnt));
1356 
1357 	VM_STAT_ADD(anonvmstats.dupfillholes[0]);
1358 
1359 	while (npages > 0) {
1360 		index = old_idx;
1361 
1362 		/*
1363 		 * Find the next valid slot.
1364 		 */
1365 		if (anon_get_next_ptr(old, &index) == NULL)
1366 			break;
1367 
1368 		ASSERT(!ANON_ISBUSY(anon_get_slot(old, index)));
1369 		/*
1370 		 * Now backup index to the beginning of the
1371 		 * current large page region of the old array.
1372 		 */
1373 		index = P2ALIGN(index, pgcnt);
1374 		off = index - old_idx;
1375 		ASSERT(IS_P2ALIGNED(off, pgcnt));
1376 		npages -= off;
1377 		if (npages <= 0)
1378 			break;
1379 
1380 		/*
1381 		 * Fill and copy a large page regions worth
1382 		 * of anon slots.
1383 		 */
1384 		for (i = 0; i < pgcnt; i++) {
1385 			if ((ap = anon_get_ptr(old, index + i)) == NULL) {
1386 				if (noalloc) {
1387 					panic("anon_dup_fill_holes: "
1388 					    "empty anon slot\n");
1389 				}
1390 				VM_STAT_ADD(anonvmstats.dupfillholes[1]);
1391 				ap = anon_alloc(NULL, 0);
1392 				(void) anon_set_ptr(old, index + i, ap,
1393 				    ANON_SLEEP);
1394 			} else if (i == 0) {
1395 				/*
1396 				 * make the increment of all refcnts of all
1397 				 * anon slots of a large page appear atomic by
1398 				 * getting an anonpages_hash_lock for the
1399 				 * first anon slot of a large page.
1400 				 */
1401 				int hash = AH_LOCK(ap->an_vp, ap->an_off);
1402 
1403 				VM_STAT_ADD(anonvmstats.dupfillholes[2]);
1404 
1405 				ahmpages = &anonpages_hash_lock[hash];
1406 				mutex_enter(ahmpages);
1407 				/*LINTED*/
1408 				ASSERT(refcnt = ap->an_refcnt);
1409 
1410 				VM_STAT_COND_ADD(ap->an_refcnt > 1,
1411 				    anonvmstats.dupfillholes[3]);
1412 			}
1413 			(void) anon_set_ptr(new, new_idx + off + i, ap,
1414 			    ANON_SLEEP);
1415 			ahm = &anonhash_lock[AH_LOCK(ap->an_vp, ap->an_off)];
1416 			mutex_enter(ahm);
1417 			ASSERT(ahmpages != NULL || ap->an_refcnt == 1);
1418 			ASSERT(i == 0 || ahmpages == NULL ||
1419 			    refcnt == ap->an_refcnt);
1420 			ap->an_refcnt++;
1421 			mutex_exit(ahm);
1422 		}
1423 		if (ahmpages != NULL) {
1424 			mutex_exit(ahmpages);
1425 			ahmpages = NULL;
1426 		}
1427 		off += pgcnt;
1428 		new_idx += off;
1429 		old_idx += off;
1430 		npages -= pgcnt;
1431 	}
1432 }
1433 
1434 /*
1435  * Used when a segment with a vnode changes szc. similarly to
1436  * anon_dup_fill_holes() makes sure each large page region either has no anon
1437  * slots or all of them. but new slots are created by COWing the file
1438  * pages. on entrance no anon slots should be shared.
1439  */
1440 int
1441 anon_fill_cow_holes(
1442 	struct seg *seg,
1443 	caddr_t addr,
1444 	struct anon_hdr *ahp,
1445 	ulong_t an_idx,
1446 	struct vnode *vp,
1447 	u_offset_t vp_off,
1448 	size_t size,
1449 	uint_t szc,
1450 	uint_t prot,
1451 	struct vpage vpage[],
1452 	struct cred *cred)
1453 {
1454 	struct anon	*ap;
1455 	spgcnt_t	npages;
1456 	pgcnt_t		pgcnt, i;
1457 	ulong_t		index, off;
1458 	int		err = 0;
1459 	int		pageflags = 0;
1460 
1461 	ASSERT(szc != 0);
1462 	pgcnt = page_get_pagecnt(szc);
1463 	ASSERT(IS_P2ALIGNED(pgcnt, pgcnt));
1464 	npages = btopr(size);
1465 	ASSERT(IS_P2ALIGNED(npages, pgcnt));
1466 	ASSERT(IS_P2ALIGNED(an_idx, pgcnt));
1467 
1468 	while (npages > 0) {
1469 		index = an_idx;
1470 
1471 		/*
1472 		 * Find the next valid slot.
1473 		 */
1474 		if (anon_get_next_ptr(ahp, &index) == NULL) {
1475 			break;
1476 		}
1477 
1478 		ASSERT(!ANON_ISBUSY(anon_get_slot(ahp, index)));
1479 		/*
1480 		 * Now backup index to the beginning of the
1481 		 * current large page region of the anon array.
1482 		 */
1483 		index = P2ALIGN(index, pgcnt);
1484 		off = index - an_idx;
1485 		ASSERT(IS_P2ALIGNED(off, pgcnt));
1486 		npages -= off;
1487 		if (npages <= 0)
1488 			break;
1489 		an_idx += off;
1490 		vp_off += ptob(off);
1491 		addr += ptob(off);
1492 		if (vpage != NULL) {
1493 			vpage += off;
1494 		}
1495 
1496 		for (i = 0; i < pgcnt; i++, an_idx++, vp_off += PAGESIZE) {
1497 			if ((ap = anon_get_ptr(ahp, an_idx)) == NULL) {
1498 				page_t *pl[1 + 1];
1499 				page_t *pp;
1500 
1501 				err = VOP_GETPAGE(vp, vp_off, PAGESIZE, NULL,
1502 				    pl, PAGESIZE, seg, addr, S_READ, cred,
1503 				    NULL);
1504 				if (err) {
1505 					break;
1506 				}
1507 				if (vpage != NULL) {
1508 					prot = VPP_PROT(vpage);
1509 					pageflags = VPP_ISPPLOCK(vpage) ?
1510 					    LOCK_PAGE : 0;
1511 				}
1512 				pp = anon_private(&ap, seg, addr, prot, pl[0],
1513 				    pageflags, cred);
1514 				if (pp == NULL) {
1515 					err = ENOMEM;
1516 					break;
1517 				}
1518 				(void) anon_set_ptr(ahp, an_idx, ap,
1519 				    ANON_SLEEP);
1520 				page_unlock(pp);
1521 			}
1522 			ASSERT(ap->an_refcnt == 1);
1523 			addr += PAGESIZE;
1524 			if (vpage != NULL) {
1525 				vpage++;
1526 			}
1527 		}
1528 		npages -= pgcnt;
1529 	}
1530 
1531 	return (err);
1532 }
1533 
1534 /*
1535  * Free a group of "size" anon pages, size in bytes,
1536  * and clear out the pointers to the anon entries.
1537  */
1538 void
1539 anon_free(struct anon_hdr *ahp, ulong_t index, size_t size)
1540 {
1541 	spgcnt_t npages;
1542 	struct anon *ap;
1543 	ulong_t old;
1544 
1545 	npages = btopr(size);
1546 
1547 	while (npages > 0) {
1548 		old = index;
1549 		if ((ap = anon_get_next_ptr(ahp, &index)) == NULL)
1550 			break;
1551 
1552 		ASSERT(!ANON_ISBUSY(anon_get_slot(ahp, index)));
1553 		npages -= index - old;
1554 		if (npages <= 0)
1555 			break;
1556 
1557 		(void) anon_set_ptr(ahp, index, NULL, ANON_SLEEP);
1558 		anon_decref(ap);
1559 		/*
1560 		 * Bump index and decrement page count
1561 		 */
1562 		index++;
1563 		npages--;
1564 	}
1565 }
1566 
1567 void
1568 anon_free_pages(
1569 	struct anon_hdr *ahp,
1570 	ulong_t an_idx,
1571 	size_t size,
1572 	uint_t szc)
1573 {
1574 	spgcnt_t	npages;
1575 	pgcnt_t		pgcnt;
1576 	ulong_t		index, off;
1577 
1578 	ASSERT(szc != 0);
1579 	pgcnt = page_get_pagecnt(szc);
1580 	ASSERT(IS_P2ALIGNED(pgcnt, pgcnt));
1581 	npages = btopr(size);
1582 	ASSERT(IS_P2ALIGNED(npages, pgcnt));
1583 	ASSERT(IS_P2ALIGNED(an_idx, pgcnt));
1584 	ASSERT(an_idx < ahp->size);
1585 
1586 	VM_STAT_ADD(anonvmstats.freepages[0]);
1587 
1588 	while (npages > 0) {
1589 		index = an_idx;
1590 
1591 		/*
1592 		 * Find the next valid slot.
1593 		 */
1594 		if (anon_get_next_ptr(ahp, &index) == NULL)
1595 			break;
1596 
1597 		ASSERT(!ANON_ISBUSY(anon_get_slot(ahp, index)));
1598 		/*
1599 		 * Now backup index to the beginning of the
1600 		 * current large page region of the old array.
1601 		 */
1602 		index = P2ALIGN(index, pgcnt);
1603 		off = index - an_idx;
1604 		ASSERT(IS_P2ALIGNED(off, pgcnt));
1605 		npages -= off;
1606 		if (npages <= 0)
1607 			break;
1608 
1609 		anon_decref_pages(ahp, index, szc);
1610 
1611 		off += pgcnt;
1612 		an_idx += off;
1613 		npages -= pgcnt;
1614 	}
1615 }
1616 
1617 /*
1618  * Make anonymous pages discardable
1619  */
1620 void
1621 anon_disclaim(struct anon_map *amp, ulong_t index, size_t size)
1622 {
1623 	spgcnt_t npages = btopr(size);
1624 	struct anon *ap;
1625 	struct vnode *vp;
1626 	anoff_t off;
1627 	page_t *pp, *root_pp;
1628 	kmutex_t *ahm;
1629 	pgcnt_t pgcnt;
1630 	ulong_t old_idx, idx, i;
1631 	struct anon_hdr *ahp = amp->ahp;
1632 	anon_sync_obj_t cookie;
1633 
1634 	ASSERT(RW_READ_HELD(&amp->a_rwlock));
1635 	pgcnt = 1;
1636 	for (; npages > 0; index = (pgcnt == 1) ? index + 1 :
1637 	    P2ROUNDUP(index + 1, pgcnt), npages -= pgcnt) {
1638 
1639 		/*
1640 		 * get anon pointer and index for the first valid entry
1641 		 * in the anon list, starting from "index"
1642 		 */
1643 		old_idx = index;
1644 		if ((ap = anon_get_next_ptr(ahp, &index)) == NULL)
1645 			break;
1646 
1647 		/*
1648 		 * decrement npages by number of NULL anon slots we skipped
1649 		 */
1650 		npages -= index - old_idx;
1651 		if (npages <= 0)
1652 			break;
1653 
1654 		anon_array_enter(amp, index, &cookie);
1655 		ap = anon_get_ptr(ahp, index);
1656 		ASSERT(ap != NULL);
1657 
1658 		/*
1659 		 * Get anonymous page and try to lock it SE_EXCL;
1660 		 * if we couldn't grab the lock we skip to next page.
1661 		 */
1662 		swap_xlate(ap, &vp, &off);
1663 		pp = page_lookup_nowait(vp, (u_offset_t)off, SE_EXCL);
1664 		if (pp == NULL) {
1665 			segadvstat.MADV_FREE_miss.value.ul++;
1666 			pgcnt = 1;
1667 			anon_array_exit(&cookie);
1668 			continue;
1669 		}
1670 		pgcnt = page_get_pagecnt(pp->p_szc);
1671 
1672 		/*
1673 		 * we cannot free a page which is permanently locked.
1674 		 * The page_struct_lock need not be acquired to examine
1675 		 * these fields since the page has an "exclusive" lock.
1676 		 */
1677 		if (pp->p_lckcnt != 0 || pp->p_cowcnt != 0) {
1678 			page_unlock(pp);
1679 			segadvstat.MADV_FREE_miss.value.ul++;
1680 			anon_array_exit(&cookie);
1681 			continue;
1682 		}
1683 
1684 		ahm = &anonhash_lock[AH_LOCK(vp, off)];
1685 		mutex_enter(ahm);
1686 		ASSERT(ap->an_refcnt != 0);
1687 		/*
1688 		 * skip this one if copy-on-write is not yet broken.
1689 		 */
1690 		if (ap->an_refcnt > 1) {
1691 			mutex_exit(ahm);
1692 			page_unlock(pp);
1693 			segadvstat.MADV_FREE_miss.value.ul++;
1694 			anon_array_exit(&cookie);
1695 			continue;
1696 		}
1697 
1698 		if (pp->p_szc == 0) {
1699 			pgcnt = 1;
1700 
1701 			/*
1702 			 * free swap slot;
1703 			 */
1704 			if (ap->an_pvp) {
1705 				swap_phys_free(ap->an_pvp, ap->an_poff,
1706 				    PAGESIZE);
1707 				ap->an_pvp = NULL;
1708 				ap->an_poff = 0;
1709 			}
1710 			mutex_exit(ahm);
1711 			segadvstat.MADV_FREE_hit.value.ul++;
1712 
1713 			/*
1714 			 * while we are at it, unload all the translations
1715 			 * and attempt to free the page.
1716 			 */
1717 			(void) hat_pageunload(pp, HAT_FORCE_PGUNLOAD);
1718 			/*LINTED: constant in conditional context */
1719 			VN_DISPOSE(pp, B_FREE, 0, kcred);
1720 			anon_array_exit(&cookie);
1721 			continue;
1722 		}
1723 
1724 		pgcnt = page_get_pagecnt(pp->p_szc);
1725 		if (!IS_P2ALIGNED(index, pgcnt) || npages < pgcnt) {
1726 			if (!page_try_demote_pages(pp)) {
1727 				mutex_exit(ahm);
1728 				page_unlock(pp);
1729 				segadvstat.MADV_FREE_miss.value.ul++;
1730 				anon_array_exit(&cookie);
1731 				continue;
1732 			} else {
1733 				pgcnt = 1;
1734 				if (ap->an_pvp) {
1735 					swap_phys_free(ap->an_pvp,
1736 					    ap->an_poff, PAGESIZE);
1737 					ap->an_pvp = NULL;
1738 					ap->an_poff = 0;
1739 				}
1740 				mutex_exit(ahm);
1741 				(void) hat_pageunload(pp, HAT_FORCE_PGUNLOAD);
1742 				/*LINTED*/
1743 				VN_DISPOSE(pp, B_FREE, 0, kcred);
1744 				segadvstat.MADV_FREE_hit.value.ul++;
1745 				anon_array_exit(&cookie);
1746 				continue;
1747 			}
1748 		}
1749 		mutex_exit(ahm);
1750 		root_pp = pp;
1751 
1752 		/*
1753 		 * try to lock remaining pages
1754 		 */
1755 		for (idx = 1; idx < pgcnt; idx++) {
1756 			pp++;
1757 			if (!page_trylock(pp, SE_EXCL))
1758 				break;
1759 			if (pp->p_lckcnt != 0 || pp->p_cowcnt != 0) {
1760 				page_unlock(pp);
1761 				break;
1762 			}
1763 		}
1764 
1765 		if (idx == pgcnt) {
1766 			for (i = 0; i < pgcnt; i++) {
1767 				ap = anon_get_ptr(ahp, index + i);
1768 				if (ap == NULL)
1769 					break;
1770 				swap_xlate(ap, &vp, &off);
1771 				ahm = &anonhash_lock[AH_LOCK(vp, off)];
1772 				mutex_enter(ahm);
1773 				ASSERT(ap->an_refcnt != 0);
1774 
1775 				/*
1776 				 * skip this one if copy-on-write
1777 				 * is not yet broken.
1778 				 */
1779 				if (ap->an_refcnt > 1) {
1780 					mutex_exit(ahm);
1781 					goto skiplp;
1782 				}
1783 				if (ap->an_pvp) {
1784 					swap_phys_free(ap->an_pvp,
1785 					    ap->an_poff, PAGESIZE);
1786 					ap->an_pvp = NULL;
1787 					ap->an_poff = 0;
1788 				}
1789 				mutex_exit(ahm);
1790 			}
1791 			page_destroy_pages(root_pp);
1792 			segadvstat.MADV_FREE_hit.value.ul += pgcnt;
1793 			anon_array_exit(&cookie);
1794 			continue;
1795 		}
1796 skiplp:
1797 		segadvstat.MADV_FREE_miss.value.ul += pgcnt;
1798 		for (i = 0, pp = root_pp; i < idx; pp++, i++)
1799 			page_unlock(pp);
1800 		anon_array_exit(&cookie);
1801 	}
1802 }
1803 
1804 /*
1805  * Return the kept page(s) and protections back to the segment driver.
1806  */
1807 int
1808 anon_getpage(
1809 	struct anon **app,
1810 	uint_t *protp,
1811 	page_t *pl[],
1812 	size_t plsz,
1813 	struct seg *seg,
1814 	caddr_t addr,
1815 	enum seg_rw rw,
1816 	struct cred *cred)
1817 {
1818 	page_t *pp;
1819 	struct anon *ap = *app;
1820 	struct vnode *vp;
1821 	anoff_t off;
1822 	int err;
1823 	kmutex_t *ahm;
1824 
1825 	swap_xlate(ap, &vp, &off);
1826 
1827 	/*
1828 	 * Lookup the page. If page is being paged in,
1829 	 * wait for it to finish as we must return a list of
1830 	 * pages since this routine acts like the VOP_GETPAGE
1831 	 * routine does.
1832 	 */
1833 	if (pl != NULL && (pp = page_lookup(vp, (u_offset_t)off, SE_SHARED))) {
1834 		ahm = &anonhash_lock[AH_LOCK(ap->an_vp, ap->an_off)];
1835 		mutex_enter(ahm);
1836 		if (ap->an_refcnt == 1)
1837 			*protp = PROT_ALL;
1838 		else
1839 			*protp = PROT_ALL & ~PROT_WRITE;
1840 		mutex_exit(ahm);
1841 		pl[0] = pp;
1842 		pl[1] = NULL;
1843 		return (0);
1844 	}
1845 
1846 	/*
1847 	 * Simply treat it as a vnode fault on the anon vp.
1848 	 */
1849 
1850 	TRACE_3(TR_FAC_VM, TR_ANON_GETPAGE,
1851 	    "anon_getpage:seg %x addr %x vp %x",
1852 	    seg, addr, vp);
1853 
1854 	err = VOP_GETPAGE(vp, (u_offset_t)off, PAGESIZE, protp, pl, plsz,
1855 	    seg, addr, rw, cred, NULL);
1856 
1857 	if (err == 0 && pl != NULL) {
1858 		ahm = &anonhash_lock[AH_LOCK(ap->an_vp, ap->an_off)];
1859 		mutex_enter(ahm);
1860 		if (ap->an_refcnt != 1)
1861 			*protp &= ~PROT_WRITE;	/* make read-only */
1862 		mutex_exit(ahm);
1863 	}
1864 	return (err);
1865 }
1866 
1867 /*
1868  * Creates or returns kept pages to the segment driver.  returns -1 if a large
1869  * page cannot be allocated. returns -2 if some other process has allocated a
1870  * larger page.
1871  *
1872  * For cowfault it will allocate any size pages to fill the requested area to
1873  * avoid partially overwriting anon slots (i.e. sharing only some of the anon
1874  * slots within a large page with other processes). This policy greatly
1875  * simplifies large page freeing (which is only freed when all anon slot
1876  * refcnts are 0).
1877  */
1878 int
1879 anon_map_getpages(
1880 	struct anon_map *amp,
1881 	ulong_t	start_idx,
1882 	uint_t	szc,
1883 	struct seg *seg,
1884 	caddr_t	addr,
1885 	uint_t prot,
1886 	uint_t *protp,
1887 	page_t	*ppa[],
1888 	uint_t	*ppa_szc,
1889 	struct vpage vpage[],
1890 	enum seg_rw rw,
1891 	int brkcow,
1892 	int anypgsz,
1893 	int pgflags,
1894 	struct cred *cred)
1895 {
1896 	pgcnt_t		pgcnt;
1897 	struct anon	*ap;
1898 	struct vnode	*vp;
1899 	anoff_t		off;
1900 	page_t		*pp, *pl[2], *conpp = NULL;
1901 	caddr_t		vaddr;
1902 	ulong_t		pg_idx, an_idx, i;
1903 	spgcnt_t	nreloc = 0;
1904 	int		prealloc = 1;
1905 	int		err, slotcreate;
1906 	uint_t		vpprot;
1907 	int		upsize = (szc < seg->s_szc);
1908 
1909 #if !defined(__i386) && !defined(__amd64)
1910 	ASSERT(seg->s_szc != 0);
1911 #endif
1912 	ASSERT(szc <= seg->s_szc);
1913 	ASSERT(ppa_szc != NULL);
1914 	ASSERT(rw != S_CREATE);
1915 
1916 	*protp = PROT_ALL;
1917 
1918 	VM_STAT_ADD(anonvmstats.getpages[0]);
1919 
1920 	if (szc == 0) {
1921 		VM_STAT_ADD(anonvmstats.getpages[1]);
1922 		if ((ap = anon_get_ptr(amp->ahp, start_idx)) != NULL) {
1923 			err = anon_getpage(&ap, protp, pl, PAGESIZE, seg,
1924 			    addr, rw, cred);
1925 			if (err)
1926 				return (err);
1927 			ppa[0] = pl[0];
1928 			if (brkcow == 0 || (*protp & PROT_WRITE)) {
1929 				VM_STAT_ADD(anonvmstats.getpages[2]);
1930 				if (ppa[0]->p_szc != 0 && upsize) {
1931 					VM_STAT_ADD(anonvmstats.getpages[3]);
1932 					*ppa_szc = MIN(ppa[0]->p_szc,
1933 					    seg->s_szc);
1934 					page_unlock(ppa[0]);
1935 					return (-2);
1936 				}
1937 				return (0);
1938 			}
1939 			panic("anon_map_getpages: cowfault for szc 0");
1940 		} else {
1941 			VM_STAT_ADD(anonvmstats.getpages[4]);
1942 			ppa[0] = anon_zero(seg, addr, &ap, cred);
1943 			if (ppa[0] == NULL)
1944 				return (ENOMEM);
1945 			(void) anon_set_ptr(amp->ahp, start_idx, ap,
1946 			    ANON_SLEEP);
1947 			return (0);
1948 		}
1949 	}
1950 
1951 	pgcnt = page_get_pagecnt(szc);
1952 	ASSERT(IS_P2ALIGNED(pgcnt, pgcnt));
1953 	ASSERT(IS_P2ALIGNED(start_idx, pgcnt));
1954 
1955 	/*
1956 	 * First we check for the case that the requtested large
1957 	 * page or larger page already exists in the system.
1958 	 * Actually we only check if the first constituent page
1959 	 * exists and only preallocate if it's not found.
1960 	 */
1961 	ap = anon_get_ptr(amp->ahp, start_idx);
1962 	if (ap) {
1963 		uint_t pszc;
1964 		swap_xlate(ap, &vp, &off);
1965 		if (page_exists_forreal(vp, (u_offset_t)off, &pszc)) {
1966 			if (pszc > szc && upsize) {
1967 				*ppa_szc = MIN(pszc, seg->s_szc);
1968 				return (-2);
1969 			}
1970 			if (pszc >= szc) {
1971 				prealloc = 0;
1972 			}
1973 		}
1974 	}
1975 
1976 	VM_STAT_COND_ADD(prealloc == 0, anonvmstats.getpages[5]);
1977 	VM_STAT_COND_ADD(prealloc != 0, anonvmstats.getpages[6]);
1978 
1979 top:
1980 	/*
1981 	 * If a smaller page or no page at all was found,
1982 	 * grab a large page off the freelist.
1983 	 */
1984 	if (prealloc) {
1985 		ASSERT(conpp == NULL);
1986 		if (page_alloc_pages(anon_vp, seg, addr, NULL, ppa,
1987 		    szc, 0, pgflags) != 0) {
1988 			VM_STAT_ADD(anonvmstats.getpages[7]);
1989 			if (brkcow == 0 || szc < seg->s_szc ||
1990 			    !anon_szcshare(amp->ahp, start_idx)) {
1991 				/*
1992 				 * If the refcnt's of all anon slots are <= 1
1993 				 * they can't increase since we are holding
1994 				 * the address space's lock. So segvn can
1995 				 * safely decrease szc without risking to
1996 				 * generate a cow fault for the region smaller
1997 				 * than the segment's largest page size.
1998 				 */
1999 				VM_STAT_ADD(anonvmstats.getpages[8]);
2000 				return (-1);
2001 			}
2002 		docow:
2003 			/*
2004 			 * This is a cow fault. Copy away the entire 1 large
2005 			 * page region of this segment.
2006 			 */
2007 			if (szc != seg->s_szc)
2008 				panic("anon_map_getpages: cowfault for szc %d",
2009 				    szc);
2010 			vaddr = addr;
2011 			for (pg_idx = 0, an_idx = start_idx; pg_idx < pgcnt;
2012 			    pg_idx++, an_idx++, vaddr += PAGESIZE) {
2013 				if ((ap = anon_get_ptr(amp->ahp, an_idx)) !=
2014 				    NULL) {
2015 					err = anon_getpage(&ap, &vpprot, pl,
2016 					    PAGESIZE, seg, vaddr, rw, cred);
2017 					if (err) {
2018 						for (i = 0; i < pg_idx; i++) {
2019 							if ((pp = ppa[i]) !=
2020 							    NULL)
2021 								page_unlock(pp);
2022 						}
2023 						return (err);
2024 					}
2025 					ppa[pg_idx] = pl[0];
2026 				} else {
2027 					/*
2028 					 * Since this is a cowfault we know
2029 					 * that this address space has a
2030 					 * parent or children which means
2031 					 * anon_dup_fill_holes() has initialized
2032 					 * all anon slots within a large page
2033 					 * region that had at least one anon
2034 					 * slot at the time of fork().
2035 					 */
2036 					panic("anon_map_getpages: "
2037 					    "cowfault but anon slot is empty");
2038 				}
2039 			}
2040 			VM_STAT_ADD(anonvmstats.getpages[9]);
2041 			*protp = PROT_ALL;
2042 			return (anon_map_privatepages(amp, start_idx, szc, seg,
2043 			    addr, prot, ppa, vpage, anypgsz, pgflags, cred));
2044 		}
2045 	}
2046 
2047 	VM_STAT_ADD(anonvmstats.getpages[10]);
2048 
2049 	an_idx = start_idx;
2050 	pg_idx = 0;
2051 	vaddr = addr;
2052 	while (pg_idx < pgcnt) {
2053 		slotcreate = 0;
2054 		if ((ap = anon_get_ptr(amp->ahp, an_idx)) == NULL) {
2055 			VM_STAT_ADD(anonvmstats.getpages[11]);
2056 			/*
2057 			 * For us to have decided not to preallocate
2058 			 * would have meant that a large page
2059 			 * was found. Which also means that all of the
2060 			 * anon slots for that page would have been
2061 			 * already created for us.
2062 			 */
2063 			if (prealloc == 0)
2064 				panic("anon_map_getpages: prealloc = 0");
2065 
2066 			slotcreate = 1;
2067 			ap = anon_alloc(NULL, 0);
2068 		}
2069 		swap_xlate(ap, &vp, &off);
2070 
2071 		/*
2072 		 * Now setup our preallocated page to pass down
2073 		 * to swap_getpage().
2074 		 */
2075 		if (prealloc) {
2076 			ASSERT(ppa[pg_idx]->p_szc == szc);
2077 			conpp = ppa[pg_idx];
2078 		}
2079 		ASSERT(prealloc || conpp == NULL);
2080 
2081 		/*
2082 		 * If we just created this anon slot then call
2083 		 * with S_CREATE to prevent doing IO on the page.
2084 		 * Similar to the anon_zero case.
2085 		 */
2086 		err = swap_getconpage(vp, (u_offset_t)off, PAGESIZE,
2087 		    NULL, pl, PAGESIZE, conpp, ppa_szc, &nreloc, seg, vaddr,
2088 		    slotcreate == 1 ? S_CREATE : rw, cred);
2089 
2090 		if (err) {
2091 			ASSERT(err != -2 || upsize);
2092 			VM_STAT_ADD(anonvmstats.getpages[12]);
2093 			ASSERT(slotcreate == 0);
2094 			goto io_err;
2095 		}
2096 
2097 		pp = pl[0];
2098 
2099 		if (pp->p_szc < szc || (pp->p_szc > szc && upsize)) {
2100 			VM_STAT_ADD(anonvmstats.getpages[13]);
2101 			ASSERT(slotcreate == 0);
2102 			ASSERT(prealloc == 0);
2103 			ASSERT(pg_idx == 0);
2104 			if (pp->p_szc > szc) {
2105 				ASSERT(upsize);
2106 				*ppa_szc = MIN(pp->p_szc, seg->s_szc);
2107 				page_unlock(pp);
2108 				VM_STAT_ADD(anonvmstats.getpages[14]);
2109 				return (-2);
2110 			}
2111 			page_unlock(pp);
2112 			prealloc = 1;
2113 			goto top;
2114 		}
2115 
2116 		/*
2117 		 * If we decided to preallocate but VOP_GETPAGE
2118 		 * found a page in the system that satisfies our
2119 		 * request then free up our preallocated large page
2120 		 * and continue looping accross the existing large
2121 		 * page via VOP_GETPAGE.
2122 		 */
2123 		if (prealloc && pp != ppa[pg_idx]) {
2124 			VM_STAT_ADD(anonvmstats.getpages[15]);
2125 			ASSERT(slotcreate == 0);
2126 			ASSERT(pg_idx == 0);
2127 			conpp = NULL;
2128 			prealloc = 0;
2129 			page_free_pages(ppa[0]);
2130 		}
2131 
2132 		if (prealloc && nreloc > 1) {
2133 			/*
2134 			 * we have relocated out of a smaller large page.
2135 			 * skip npgs - 1 iterations and continue which will
2136 			 * increment by one the loop indices.
2137 			 */
2138 			spgcnt_t npgs = nreloc;
2139 
2140 			VM_STAT_ADD(anonvmstats.getpages[16]);
2141 
2142 			ASSERT(pp == ppa[pg_idx]);
2143 			ASSERT(slotcreate == 0);
2144 			ASSERT(pg_idx + npgs <= pgcnt);
2145 			if ((*protp & PROT_WRITE) &&
2146 			    anon_share(amp->ahp, an_idx, npgs)) {
2147 				*protp &= ~PROT_WRITE;
2148 			}
2149 			pg_idx += npgs;
2150 			an_idx += npgs;
2151 			vaddr += PAGESIZE * npgs;
2152 			continue;
2153 		}
2154 
2155 		VM_STAT_ADD(anonvmstats.getpages[17]);
2156 
2157 		/*
2158 		 * Anon_zero case.
2159 		 */
2160 		if (slotcreate) {
2161 			ASSERT(prealloc);
2162 			pagezero(pp, 0, PAGESIZE);
2163 			CPU_STATS_ADD_K(vm, zfod, 1);
2164 			hat_setrefmod(pp);
2165 		}
2166 
2167 		ASSERT(prealloc == 0 || ppa[pg_idx] == pp);
2168 		ASSERT(prealloc != 0 || PAGE_SHARED(pp));
2169 		ASSERT(prealloc == 0 || PAGE_EXCL(pp));
2170 
2171 		if (pg_idx > 0 &&
2172 		    ((page_pptonum(pp) != page_pptonum(ppa[pg_idx - 1]) + 1) ||
2173 		    (pp->p_szc != ppa[pg_idx - 1]->p_szc))) {
2174 			panic("anon_map_getpages: unexpected page");
2175 		} else if (pg_idx == 0 && (page_pptonum(pp) & (pgcnt - 1))) {
2176 			panic("anon_map_getpages: unaligned page");
2177 		}
2178 
2179 		if (prealloc == 0) {
2180 			ppa[pg_idx] = pp;
2181 		}
2182 
2183 		if (ap->an_refcnt > 1) {
2184 			VM_STAT_ADD(anonvmstats.getpages[18]);
2185 			*protp &= ~PROT_WRITE;
2186 		}
2187 
2188 		/*
2189 		 * If this is a new anon slot then initialize
2190 		 * the anon array entry.
2191 		 */
2192 		if (slotcreate) {
2193 			(void) anon_set_ptr(amp->ahp, an_idx, ap, ANON_SLEEP);
2194 		}
2195 		pg_idx++;
2196 		an_idx++;
2197 		vaddr += PAGESIZE;
2198 	}
2199 
2200 	/*
2201 	 * Since preallocated pages come off the freelist
2202 	 * they are locked SE_EXCL. Simply downgrade and return.
2203 	 */
2204 	if (prealloc) {
2205 		VM_STAT_ADD(anonvmstats.getpages[19]);
2206 		conpp = NULL;
2207 		for (pg_idx = 0; pg_idx < pgcnt; pg_idx++) {
2208 			page_downgrade(ppa[pg_idx]);
2209 		}
2210 	}
2211 	ASSERT(conpp == NULL);
2212 
2213 	if (brkcow == 0 || (*protp & PROT_WRITE)) {
2214 		VM_STAT_ADD(anonvmstats.getpages[20]);
2215 		return (0);
2216 	}
2217 
2218 	if (szc < seg->s_szc)
2219 		panic("anon_map_getpages: cowfault for szc %d", szc);
2220 
2221 	VM_STAT_ADD(anonvmstats.getpages[21]);
2222 
2223 	*protp = PROT_ALL;
2224 	return (anon_map_privatepages(amp, start_idx, szc, seg, addr, prot,
2225 	    ppa, vpage, anypgsz, pgflags, cred));
2226 io_err:
2227 	/*
2228 	 * We got an IO error somewhere in our large page.
2229 	 * If we were using a preallocated page then just demote
2230 	 * all the constituent pages that we've succeeded with sofar
2231 	 * to PAGESIZE pages and leave them in the system
2232 	 * unlocked.
2233 	 */
2234 
2235 	ASSERT(err != -2 || ((pg_idx == 0) && upsize));
2236 
2237 	VM_STAT_COND_ADD(err > 0, anonvmstats.getpages[22]);
2238 	VM_STAT_COND_ADD(err == -1, anonvmstats.getpages[23]);
2239 	VM_STAT_COND_ADD(err == -2, anonvmstats.getpages[24]);
2240 
2241 	if (prealloc) {
2242 		conpp = NULL;
2243 		if (pg_idx > 0) {
2244 			VM_STAT_ADD(anonvmstats.getpages[25]);
2245 			for (i = 0; i < pgcnt; i++) {
2246 				pp = ppa[i];
2247 				ASSERT(PAGE_EXCL(pp));
2248 				ASSERT(pp->p_szc == szc);
2249 				pp->p_szc = 0;
2250 			}
2251 			for (i = 0; i < pg_idx; i++) {
2252 				ASSERT(!hat_page_is_mapped(ppa[i]));
2253 				page_unlock(ppa[i]);
2254 			}
2255 			/*
2256 			 * Now free up the remaining unused constituent
2257 			 * pages.
2258 			 */
2259 			while (pg_idx < pgcnt) {
2260 				ASSERT(!hat_page_is_mapped(ppa[pg_idx]));
2261 				page_free(ppa[pg_idx], 0);
2262 				pg_idx++;
2263 			}
2264 		} else {
2265 			VM_STAT_ADD(anonvmstats.getpages[26]);
2266 			page_free_pages(ppa[0]);
2267 		}
2268 	} else {
2269 		VM_STAT_ADD(anonvmstats.getpages[27]);
2270 		ASSERT(err > 0);
2271 		for (i = 0; i < pg_idx; i++)
2272 			page_unlock(ppa[i]);
2273 	}
2274 	ASSERT(conpp == NULL);
2275 	if (err != -1)
2276 		return (err);
2277 	/*
2278 	 * we are here because we failed to relocate.
2279 	 */
2280 	ASSERT(prealloc);
2281 	if (brkcow == 0 || szc < seg->s_szc ||
2282 	    !anon_szcshare(amp->ahp, start_idx)) {
2283 		VM_STAT_ADD(anonvmstats.getpages[28]);
2284 		return (-1);
2285 	}
2286 	VM_STAT_ADD(anonvmstats.getpages[29]);
2287 	goto docow;
2288 }
2289 
2290 
2291 /*
2292  * Turn a reference to an object or shared anon page
2293  * into a private page with a copy of the data from the
2294  * original page which is always locked by the caller.
2295  * This routine unloads the translation and unlocks the
2296  * original page, if it isn't being stolen, before returning
2297  * to the caller.
2298  *
2299  * NOTE:  The original anon slot is not freed by this routine
2300  *	  It must be freed by the caller while holding the
2301  *	  "anon_map" lock to prevent races which can occur if
2302  *	  a process has multiple lwps in its address space.
2303  */
2304 page_t *
2305 anon_private(
2306 	struct anon **app,
2307 	struct seg *seg,
2308 	caddr_t addr,
2309 	uint_t	prot,
2310 	page_t *opp,
2311 	int oppflags,
2312 	struct cred *cred)
2313 {
2314 	struct anon *old = *app;
2315 	struct anon *new;
2316 	page_t *pp = NULL;
2317 	struct vnode *vp;
2318 	anoff_t off;
2319 	page_t *anon_pl[1 + 1];
2320 	int err;
2321 
2322 	if (oppflags & STEAL_PAGE)
2323 		ASSERT(PAGE_EXCL(opp));
2324 	else
2325 		ASSERT(PAGE_LOCKED(opp));
2326 
2327 	CPU_STATS_ADD_K(vm, cow_fault, 1);
2328 
2329 	/* Kernel probe */
2330 	TNF_PROBE_1(anon_private, "vm pagefault", /* CSTYLED */,
2331 		tnf_opaque,	address,	addr);
2332 
2333 	*app = new = anon_alloc(NULL, 0);
2334 	swap_xlate(new, &vp, &off);
2335 
2336 	if (oppflags & STEAL_PAGE) {
2337 		page_rename(opp, vp, (u_offset_t)off);
2338 		pp = opp;
2339 		TRACE_5(TR_FAC_VM, TR_ANON_PRIVATE,
2340 		    "anon_private:seg %p addr %x pp %p vp %p off %lx",
2341 		    seg, addr, pp, vp, off);
2342 		hat_setmod(pp);
2343 
2344 		/* bug 4026339 */
2345 		page_downgrade(pp);
2346 		return (pp);
2347 	}
2348 
2349 	/*
2350 	 * Call the VOP_GETPAGE routine to create the page, thereby
2351 	 * enabling the vnode driver to allocate any filesystem
2352 	 * space (e.g., disk block allocation for UFS).  This also
2353 	 * prevents more than one page from being added to the
2354 	 * vnode at the same time.
2355 	 */
2356 	err = VOP_GETPAGE(vp, (u_offset_t)off, PAGESIZE, NULL,
2357 	    anon_pl, PAGESIZE, seg, addr, S_CREATE, cred, NULL);
2358 	if (err)
2359 		goto out;
2360 
2361 	pp = anon_pl[0];
2362 
2363 	/*
2364 	 * If the original page was locked, we need to move the lock
2365 	 * to the new page by transfering 'cowcnt/lckcnt' of the original
2366 	 * page to 'cowcnt/lckcnt' of the new page.
2367 	 *
2368 	 * See Statement at the beginning of segvn_lockop() and
2369 	 * comments in page_pp_useclaim() regarding the way
2370 	 * cowcnts/lckcnts are handled.
2371 	 *
2372 	 * Also availrmem must be decremented up front for read only mapping
2373 	 * before calling page_pp_useclaim. page_pp_useclaim will bump it back
2374 	 * if availrmem did not need to be decremented after all.
2375 	 */
2376 	if (oppflags & LOCK_PAGE) {
2377 		if ((prot & PROT_WRITE) == 0) {
2378 			mutex_enter(&freemem_lock);
2379 			if (availrmem > pages_pp_maximum) {
2380 				availrmem--;
2381 				pages_useclaim++;
2382 			} else {
2383 				mutex_exit(&freemem_lock);
2384 				goto out;
2385 			}
2386 			mutex_exit(&freemem_lock);
2387 		}
2388 		page_pp_useclaim(opp, pp, prot & PROT_WRITE);
2389 	}
2390 
2391 	/*
2392 	 * Now copy the contents from the original page,
2393 	 * which is locked and loaded in the MMU by
2394 	 * the caller to prevent yet another page fault.
2395 	 */
2396 	/* XXX - should set mod bit in here */
2397 	if (ppcopy(opp, pp) == 0) {
2398 		/*
2399 		 * Before ppcopy could hanlde UE or other faults, we
2400 		 * would have panicked here, and still have no option
2401 		 * but to do so now.
2402 		 */
2403 		panic("anon_private, ppcopy failed, opp = 0x%p, pp = 0x%p",
2404 		    (void *)opp, (void *)pp);
2405 	}
2406 
2407 	hat_setrefmod(pp);		/* mark as modified */
2408 
2409 	/*
2410 	 * Unload the old translation.
2411 	 */
2412 	hat_unload(seg->s_as->a_hat, addr, PAGESIZE, HAT_UNLOAD);
2413 
2414 	/*
2415 	 * Free unmapped, unmodified original page.
2416 	 * or release the lock on the original page,
2417 	 * otherwise the process will sleep forever in
2418 	 * anon_decref() waiting for the "exclusive" lock
2419 	 * on the page.
2420 	 */
2421 	(void) page_release(opp, 1);
2422 
2423 	/*
2424 	 * we are done with page creation so downgrade the new
2425 	 * page's selock to shared, this helps when multiple
2426 	 * as_fault(...SOFTLOCK...) are done to the same
2427 	 * page(aio)
2428 	 */
2429 	page_downgrade(pp);
2430 
2431 	/*
2432 	 * NOTE:  The original anon slot must be freed by the
2433 	 * caller while holding the "anon_map" lock, if we
2434 	 * copied away from an anonymous page.
2435 	 */
2436 	return (pp);
2437 
2438 out:
2439 	*app = old;
2440 	if (pp)
2441 		page_unlock(pp);
2442 	anon_decref(new);
2443 	page_unlock(opp);
2444 	return ((page_t *)NULL);
2445 }
2446 
2447 int
2448 anon_map_privatepages(
2449 	struct anon_map *amp,
2450 	ulong_t	start_idx,
2451 	uint_t	szc,
2452 	struct seg *seg,
2453 	caddr_t addr,
2454 	uint_t	prot,
2455 	page_t	*ppa[],
2456 	struct vpage vpage[],
2457 	int anypgsz,
2458 	int pgflags,
2459 	struct cred *cred)
2460 {
2461 	pgcnt_t		pgcnt;
2462 	struct vnode	*vp;
2463 	anoff_t		off;
2464 	page_t		*pl[2], *conpp = NULL;
2465 	int		err;
2466 	int		prealloc = 1;
2467 	struct anon	*ap, *oldap;
2468 	caddr_t		vaddr;
2469 	page_t		*pplist, *pp;
2470 	ulong_t		pg_idx, an_idx;
2471 	spgcnt_t	nreloc = 0;
2472 	int		pagelock = 0;
2473 	kmutex_t	*ahmpages = NULL;
2474 #ifdef DEBUG
2475 	int		refcnt;
2476 #endif
2477 
2478 	ASSERT(szc != 0);
2479 	ASSERT(szc == seg->s_szc);
2480 
2481 	VM_STAT_ADD(anonvmstats.privatepages[0]);
2482 
2483 	pgcnt = page_get_pagecnt(szc);
2484 	ASSERT(IS_P2ALIGNED(pgcnt, pgcnt));
2485 	ASSERT(IS_P2ALIGNED(start_idx, pgcnt));
2486 
2487 	ASSERT(amp != NULL);
2488 	ap = anon_get_ptr(amp->ahp, start_idx);
2489 	ASSERT(ap == NULL || ap->an_refcnt >= 1);
2490 
2491 	VM_STAT_COND_ADD(ap == NULL, anonvmstats.privatepages[1]);
2492 
2493 	/*
2494 	 * Now try and allocate the large page. If we fail then just
2495 	 * let VOP_GETPAGE give us PAGESIZE pages. Normally we let
2496 	 * the caller make this decision but to avoid added complexity
2497 	 * it's simplier to handle that case here.
2498 	 */
2499 	if (anypgsz == -1) {
2500 		VM_STAT_ADD(anonvmstats.privatepages[2]);
2501 		prealloc = 0;
2502 	} else if (page_alloc_pages(anon_vp, seg, addr, &pplist, NULL, szc,
2503 	    anypgsz, pgflags) != 0) {
2504 		VM_STAT_ADD(anonvmstats.privatepages[3]);
2505 		prealloc = 0;
2506 	}
2507 
2508 	/*
2509 	 * make the decrement of all refcnts of all
2510 	 * anon slots of a large page appear atomic by
2511 	 * getting an anonpages_hash_lock for the
2512 	 * first anon slot of a large page.
2513 	 */
2514 	if (ap != NULL) {
2515 		ahmpages = &anonpages_hash_lock[AH_LOCK(ap->an_vp,
2516 		    ap->an_off)];
2517 		mutex_enter(ahmpages);
2518 		if (ap->an_refcnt == 1) {
2519 			VM_STAT_ADD(anonvmstats.privatepages[4]);
2520 			ASSERT(!anon_share(amp->ahp, start_idx, pgcnt));
2521 			mutex_exit(ahmpages);
2522 
2523 			if (prealloc) {
2524 				page_free_replacement_page(pplist);
2525 				page_create_putback(pgcnt);
2526 			}
2527 			ASSERT(ppa[0]->p_szc <= szc);
2528 			if (ppa[0]->p_szc == szc) {
2529 				VM_STAT_ADD(anonvmstats.privatepages[5]);
2530 				return (0);
2531 			}
2532 			for (pg_idx = 0; pg_idx < pgcnt; pg_idx++) {
2533 				ASSERT(ppa[pg_idx] != NULL);
2534 				page_unlock(ppa[pg_idx]);
2535 			}
2536 			return (-1);
2537 		}
2538 	}
2539 
2540 	/*
2541 	 * If we are passed in the vpage array and this is
2542 	 * not PROT_WRITE then we need to decrement availrmem
2543 	 * up front before we try anything. If we need to and
2544 	 * can't decrement availrmem then its better to fail now
2545 	 * than in the middle of processing the new large page.
2546 	 * page_pp_usclaim() on behalf of each constituent page
2547 	 * below will adjust availrmem back for the cases not needed.
2548 	 */
2549 	if (vpage != NULL && (prot & PROT_WRITE) == 0) {
2550 		for (pg_idx = 0; pg_idx < pgcnt; pg_idx++) {
2551 			if (VPP_ISPPLOCK(&vpage[pg_idx])) {
2552 				pagelock = 1;
2553 				break;
2554 			}
2555 		}
2556 		if (pagelock) {
2557 			VM_STAT_ADD(anonvmstats.privatepages[6]);
2558 			mutex_enter(&freemem_lock);
2559 			if (availrmem >= pages_pp_maximum + pgcnt) {
2560 				availrmem -= pgcnt;
2561 				pages_useclaim += pgcnt;
2562 			} else {
2563 				VM_STAT_ADD(anonvmstats.privatepages[7]);
2564 				mutex_exit(&freemem_lock);
2565 				if (ahmpages != NULL) {
2566 					mutex_exit(ahmpages);
2567 				}
2568 				if (prealloc) {
2569 					page_free_replacement_page(pplist);
2570 					page_create_putback(pgcnt);
2571 				}
2572 				for (pg_idx = 0; pg_idx < pgcnt; pg_idx++)
2573 					if (ppa[pg_idx] != NULL)
2574 						page_unlock(ppa[pg_idx]);
2575 				return (ENOMEM);
2576 			}
2577 			mutex_exit(&freemem_lock);
2578 		}
2579 	}
2580 
2581 	CPU_STATS_ADD_K(vm, cow_fault, pgcnt);
2582 
2583 	VM_STAT_ADD(anonvmstats.privatepages[8]);
2584 
2585 	an_idx = start_idx;
2586 	pg_idx = 0;
2587 	vaddr = addr;
2588 	for (; pg_idx < pgcnt; pg_idx++, an_idx++, vaddr += PAGESIZE) {
2589 		ASSERT(ppa[pg_idx] != NULL);
2590 		oldap = anon_get_ptr(amp->ahp, an_idx);
2591 		ASSERT(ahmpages != NULL || oldap == NULL);
2592 		ASSERT(ahmpages == NULL || oldap != NULL);
2593 		ASSERT(ahmpages == NULL || oldap->an_refcnt > 1);
2594 		ASSERT(ahmpages == NULL || pg_idx != 0 ||
2595 		    (refcnt = oldap->an_refcnt));
2596 		ASSERT(ahmpages == NULL || pg_idx == 0 ||
2597 		    refcnt == oldap->an_refcnt);
2598 
2599 		ap = anon_alloc(NULL, 0);
2600 
2601 		swap_xlate(ap, &vp, &off);
2602 
2603 		/*
2604 		 * Now setup our preallocated page to pass down to
2605 		 * swap_getpage().
2606 		 */
2607 		if (prealloc) {
2608 			pp = pplist;
2609 			page_sub(&pplist, pp);
2610 			conpp = pp;
2611 		}
2612 
2613 		err = swap_getconpage(vp, (u_offset_t)off, PAGESIZE, NULL, pl,
2614 		    PAGESIZE, conpp, NULL, &nreloc, seg, vaddr,
2615 		    S_CREATE, cred);
2616 
2617 		/*
2618 		 * Impossible to fail this is S_CREATE.
2619 		 */
2620 		if (err)
2621 			panic("anon_map_privatepages: VOP_GETPAGE failed");
2622 
2623 		ASSERT(prealloc ? pp == pl[0] : pl[0]->p_szc == 0);
2624 		ASSERT(prealloc == 0 || nreloc == 1);
2625 
2626 		pp = pl[0];
2627 
2628 		/*
2629 		 * If the original page was locked, we need to move
2630 		 * the lock to the new page by transfering
2631 		 * 'cowcnt/lckcnt' of the original page to 'cowcnt/lckcnt'
2632 		 * of the new page. pg_idx can be used to index
2633 		 * into the vpage array since the caller will guarentee
2634 		 * that vpage struct passed in corresponds to addr
2635 		 * and forward.
2636 		 */
2637 		if (vpage != NULL && VPP_ISPPLOCK(&vpage[pg_idx])) {
2638 			page_pp_useclaim(ppa[pg_idx], pp, prot & PROT_WRITE);
2639 		} else if (pagelock) {
2640 			mutex_enter(&freemem_lock);
2641 			availrmem++;
2642 			pages_useclaim--;
2643 			mutex_exit(&freemem_lock);
2644 		}
2645 
2646 		/*
2647 		 * Now copy the contents from the original page.
2648 		 */
2649 		if (ppcopy(ppa[pg_idx], pp) == 0) {
2650 			/*
2651 			 * Before ppcopy could hanlde UE or other faults, we
2652 			 * would have panicked here, and still have no option
2653 			 * but to do so now.
2654 			 */
2655 			panic("anon_map_privatepages, ppcopy failed");
2656 		}
2657 
2658 		hat_setrefmod(pp);		/* mark as modified */
2659 
2660 		/*
2661 		 * Release the lock on the original page,
2662 		 * derement the old slot, and down grade the lock
2663 		 * on the new copy.
2664 		 */
2665 		page_unlock(ppa[pg_idx]);
2666 
2667 		if (!prealloc)
2668 			page_downgrade(pp);
2669 
2670 		ppa[pg_idx] = pp;
2671 
2672 		/*
2673 		 * Now reflect the copy in the new anon array.
2674 		 */
2675 		ASSERT(ahmpages == NULL || oldap->an_refcnt > 1);
2676 		if (oldap != NULL)
2677 			anon_decref(oldap);
2678 		(void) anon_set_ptr(amp->ahp, an_idx, ap, ANON_SLEEP);
2679 	}
2680 
2681 	/*
2682 	 * Unload the old large page translation.
2683 	 */
2684 	hat_unload(seg->s_as->a_hat, addr, pgcnt << PAGESHIFT, HAT_UNLOAD);
2685 
2686 	if (ahmpages != NULL) {
2687 		mutex_exit(ahmpages);
2688 	}
2689 	ASSERT(prealloc == 0 || pplist == NULL);
2690 	if (prealloc) {
2691 		VM_STAT_ADD(anonvmstats.privatepages[9]);
2692 		for (pg_idx = 0; pg_idx < pgcnt; pg_idx++) {
2693 			page_downgrade(ppa[pg_idx]);
2694 		}
2695 	}
2696 
2697 	return (0);
2698 }
2699 
2700 /*
2701  * Allocate a private zero-filled anon page.
2702  */
2703 page_t *
2704 anon_zero(struct seg *seg, caddr_t addr, struct anon **app, struct cred *cred)
2705 {
2706 	struct anon *ap;
2707 	page_t *pp;
2708 	struct vnode *vp;
2709 	anoff_t off;
2710 	page_t *anon_pl[1 + 1];
2711 	int err;
2712 
2713 	/* Kernel probe */
2714 	TNF_PROBE_1(anon_zero, "vm pagefault", /* CSTYLED */,
2715 		tnf_opaque,	address,	addr);
2716 
2717 	*app = ap = anon_alloc(NULL, 0);
2718 	swap_xlate(ap, &vp, &off);
2719 
2720 	/*
2721 	 * Call the VOP_GETPAGE routine to create the page, thereby
2722 	 * enabling the vnode driver to allocate any filesystem
2723 	 * dependent structures (e.g., disk block allocation for UFS).
2724 	 * This also prevents more than on page from being added to
2725 	 * the vnode at the same time since it is locked.
2726 	 */
2727 	err = VOP_GETPAGE(vp, off, PAGESIZE, NULL,
2728 	    anon_pl, PAGESIZE, seg, addr, S_CREATE, cred, NULL);
2729 	if (err) {
2730 		*app = NULL;
2731 		anon_decref(ap);
2732 		return (NULL);
2733 	}
2734 	pp = anon_pl[0];
2735 
2736 	pagezero(pp, 0, PAGESIZE);	/* XXX - should set mod bit */
2737 	page_downgrade(pp);
2738 	CPU_STATS_ADD_K(vm, zfod, 1);
2739 	hat_setrefmod(pp);	/* mark as modified so pageout writes back */
2740 	return (pp);
2741 }
2742 
2743 
2744 /*
2745  * Allocate array of private zero-filled anon pages for empty slots
2746  * and kept pages for non empty slots within given range.
2747  *
2748  * NOTE: This rontine will try and use large pages
2749  *	if available and supported by underlying platform.
2750  */
2751 int
2752 anon_map_createpages(
2753 	struct anon_map *amp,
2754 	ulong_t start_index,
2755 	size_t len,
2756 	page_t *ppa[],
2757 	struct seg *seg,
2758 	caddr_t addr,
2759 	enum seg_rw rw,
2760 	struct cred *cred)
2761 {
2762 
2763 	struct anon	*ap;
2764 	struct vnode	*ap_vp;
2765 	page_t		*pp, *pplist, *anon_pl[1 + 1], *conpp = NULL;
2766 	int		err = 0;
2767 	ulong_t		p_index, index;
2768 	pgcnt_t		npgs, pg_cnt;
2769 	spgcnt_t	nreloc = 0;
2770 	uint_t		l_szc, szc, prot;
2771 	anoff_t		ap_off;
2772 	size_t		pgsz;
2773 	lgrp_t		*lgrp;
2774 	kmutex_t	*ahm;
2775 
2776 	/*
2777 	 * XXX For now only handle S_CREATE.
2778 	 */
2779 	ASSERT(rw == S_CREATE);
2780 
2781 	index	= start_index;
2782 	p_index	= 0;
2783 	npgs = btopr(len);
2784 
2785 	/*
2786 	 * If this platform supports multiple page sizes
2787 	 * then try and allocate directly from the free
2788 	 * list for pages larger than PAGESIZE.
2789 	 *
2790 	 * NOTE:When we have page_create_ru we can stop
2791 	 *	directly allocating from the freelist.
2792 	 */
2793 	l_szc  = seg->s_szc;
2794 	ANON_LOCK_ENTER(&amp->a_rwlock, RW_WRITER);
2795 	while (npgs) {
2796 
2797 		/*
2798 		 * if anon slot already exists
2799 		 *   (means page has been created)
2800 		 * so 1) look up the page
2801 		 *    2) if the page is still in memory, get it.
2802 		 *    3) if not, create a page and
2803 		 *	  page in from physical swap device.
2804 		 * These are done in anon_getpage().
2805 		 */
2806 		ap = anon_get_ptr(amp->ahp, index);
2807 		if (ap) {
2808 			err = anon_getpage(&ap, &prot, anon_pl, PAGESIZE,
2809 			    seg, addr, S_READ, cred);
2810 			if (err) {
2811 				ANON_LOCK_EXIT(&amp->a_rwlock);
2812 				panic("anon_map_createpages: anon_getpage");
2813 			}
2814 			pp = anon_pl[0];
2815 			ppa[p_index++] = pp;
2816 
2817 			/*
2818 			 * an_pvp can become non-NULL after SysV's page was
2819 			 * paged out before ISM was attached to this SysV
2820 			 * shared memory segment. So free swap slot if needed.
2821 			 */
2822 			if (ap->an_pvp != NULL) {
2823 				page_io_lock(pp);
2824 				ahm = &anonhash_lock[AH_LOCK(ap->an_vp,
2825 				    ap->an_off)];
2826 				mutex_enter(ahm);
2827 				if (ap->an_pvp != NULL) {
2828 					swap_phys_free(ap->an_pvp,
2829 					    ap->an_poff, PAGESIZE);
2830 					ap->an_pvp = NULL;
2831 					ap->an_poff = 0;
2832 					mutex_exit(ahm);
2833 					hat_setmod(pp);
2834 				} else {
2835 					mutex_exit(ahm);
2836 				}
2837 				page_io_unlock(pp);
2838 			}
2839 
2840 			addr += PAGESIZE;
2841 			index++;
2842 			npgs--;
2843 			continue;
2844 		}
2845 		/*
2846 		 * Now try and allocate the largest page possible
2847 		 * for the current address and range.
2848 		 * Keep dropping down in page size until:
2849 		 *
2850 		 *	1) Properly aligned
2851 		 *	2) Does not overlap existing anon pages
2852 		 *	3) Fits in remaining range.
2853 		 *	4) able to allocate one.
2854 		 *
2855 		 * NOTE: XXX When page_create_ru is completed this code
2856 		 *	 will change.
2857 		 */
2858 		szc    = l_szc;
2859 		pplist = NULL;
2860 		pg_cnt = 0;
2861 		while (szc) {
2862 			pgsz	= page_get_pagesize(szc);
2863 			pg_cnt	= pgsz >> PAGESHIFT;
2864 			if (IS_P2ALIGNED(addr, pgsz) && pg_cnt <= npgs &&
2865 			    anon_pages(amp->ahp, index, pg_cnt) == 0) {
2866 				/*
2867 				 * XXX
2868 				 * Since we are faking page_create()
2869 				 * we also need to do the freemem and
2870 				 * pcf accounting.
2871 				 */
2872 				(void) page_create_wait(pg_cnt, PG_WAIT);
2873 
2874 				/*
2875 				 * Get lgroup to allocate next page of shared
2876 				 * memory from and use it to specify where to
2877 				 * allocate the physical memory
2878 				 */
2879 				lgrp = lgrp_mem_choose(seg, addr, pgsz);
2880 
2881 				pplist = page_get_freelist(
2882 				    anon_vp, (u_offset_t)0, seg,
2883 				    addr, pgsz, 0, lgrp);
2884 
2885 				if (pplist == NULL) {
2886 					page_create_putback(pg_cnt);
2887 				}
2888 
2889 				/*
2890 				 * If a request for a page of size
2891 				 * larger than PAGESIZE failed
2892 				 * then don't try that size anymore.
2893 				 */
2894 				if (pplist == NULL) {
2895 					l_szc = szc - 1;
2896 				} else {
2897 					break;
2898 				}
2899 			}
2900 			szc--;
2901 		}
2902 
2903 		/*
2904 		 * If just using PAGESIZE pages then don't
2905 		 * directly allocate from the free list.
2906 		 */
2907 		if (pplist == NULL) {
2908 			ASSERT(szc == 0);
2909 			pp = anon_zero(seg, addr, &ap, cred);
2910 			if (pp == NULL) {
2911 				ANON_LOCK_EXIT(&amp->a_rwlock);
2912 				panic("anon_map_createpages: anon_zero");
2913 			}
2914 			ppa[p_index++] = pp;
2915 
2916 			ASSERT(anon_get_ptr(amp->ahp, index) == NULL);
2917 			(void) anon_set_ptr(amp->ahp, index, ap, ANON_SLEEP);
2918 
2919 			addr += PAGESIZE;
2920 			index++;
2921 			npgs--;
2922 			continue;
2923 		}
2924 
2925 		/*
2926 		 * pplist is a list of pg_cnt PAGESIZE pages.
2927 		 * These pages are locked SE_EXCL since they
2928 		 * came directly off the free list.
2929 		 */
2930 		ASSERT(IS_P2ALIGNED(pg_cnt, pg_cnt));
2931 		ASSERT(IS_P2ALIGNED(index, pg_cnt));
2932 		ASSERT(conpp == NULL);
2933 		while (pg_cnt--) {
2934 
2935 			ap = anon_alloc(NULL, 0);
2936 			swap_xlate(ap, &ap_vp, &ap_off);
2937 
2938 			ASSERT(pplist != NULL);
2939 			pp = pplist;
2940 			page_sub(&pplist, pp);
2941 			PP_CLRFREE(pp);
2942 			PP_CLRAGED(pp);
2943 			conpp = pp;
2944 
2945 			err = swap_getconpage(ap_vp, ap_off, PAGESIZE,
2946 			    (uint_t *)NULL, anon_pl, PAGESIZE, conpp, NULL,
2947 			    &nreloc, seg, addr, S_CREATE, cred);
2948 
2949 			if (err) {
2950 				ANON_LOCK_EXIT(&amp->a_rwlock);
2951 				panic("anon_map_createpages: S_CREATE");
2952 			}
2953 
2954 			ASSERT(anon_pl[0] == pp);
2955 			ASSERT(nreloc == 1);
2956 			pagezero(pp, 0, PAGESIZE);
2957 			CPU_STATS_ADD_K(vm, zfod, 1);
2958 			hat_setrefmod(pp);
2959 
2960 			ASSERT(anon_get_ptr(amp->ahp, index) == NULL);
2961 			(void) anon_set_ptr(amp->ahp, index, ap, ANON_SLEEP);
2962 
2963 			ppa[p_index++] = pp;
2964 
2965 			addr += PAGESIZE;
2966 			index++;
2967 			npgs--;
2968 		}
2969 		conpp = NULL;
2970 		pg_cnt	= pgsz >> PAGESHIFT;
2971 		p_index = p_index - pg_cnt;
2972 		while (pg_cnt--) {
2973 			page_downgrade(ppa[p_index++]);
2974 		}
2975 	}
2976 	ANON_LOCK_EXIT(&amp->a_rwlock);
2977 	return (0);
2978 }
2979 
2980 static int
2981 anon_try_demote_pages(
2982 	struct anon_hdr *ahp,
2983 	ulong_t sidx,
2984 	uint_t szc,
2985 	page_t **ppa,
2986 	int private)
2987 {
2988 	struct anon	*ap;
2989 	pgcnt_t		pgcnt = page_get_pagecnt(szc);
2990 	page_t		*pp;
2991 	pgcnt_t		i;
2992 	kmutex_t	*ahmpages = NULL;
2993 	int		root = 0;
2994 	pgcnt_t		npgs;
2995 	pgcnt_t		curnpgs = 0;
2996 	size_t		ppasize = 0;
2997 
2998 	ASSERT(szc != 0);
2999 	ASSERT(IS_P2ALIGNED(pgcnt, pgcnt));
3000 	ASSERT(IS_P2ALIGNED(sidx, pgcnt));
3001 	ASSERT(sidx < ahp->size);
3002 
3003 	if (ppa == NULL) {
3004 		ppasize = pgcnt * sizeof (page_t *);
3005 		ppa = kmem_alloc(ppasize, KM_SLEEP);
3006 	}
3007 
3008 	ap = anon_get_ptr(ahp, sidx);
3009 	if (ap != NULL && private) {
3010 		VM_STAT_ADD(anonvmstats.demotepages[1]);
3011 		ahmpages = &anonpages_hash_lock[AH_LOCK(ap->an_vp, ap->an_off)];
3012 		mutex_enter(ahmpages);
3013 	}
3014 
3015 	if (ap != NULL && ap->an_refcnt > 1) {
3016 		if (ahmpages != NULL) {
3017 			VM_STAT_ADD(anonvmstats.demotepages[2]);
3018 			mutex_exit(ahmpages);
3019 		}
3020 		if (ppasize != 0) {
3021 			kmem_free(ppa, ppasize);
3022 		}
3023 		return (0);
3024 	}
3025 	if (ahmpages != NULL) {
3026 		mutex_exit(ahmpages);
3027 	}
3028 	if (ahp->size - sidx < pgcnt) {
3029 		ASSERT(private == 0);
3030 		pgcnt = ahp->size - sidx;
3031 	}
3032 	for (i = 0; i < pgcnt; i++, sidx++) {
3033 		ap = anon_get_ptr(ahp, sidx);
3034 		if (ap != NULL) {
3035 			if (ap->an_refcnt != 1) {
3036 				panic("anon_try_demote_pages: an_refcnt != 1");
3037 			}
3038 			pp = ppa[i] = page_lookup(ap->an_vp, ap->an_off,
3039 			    SE_EXCL);
3040 			if (pp != NULL) {
3041 				(void) hat_pageunload(pp,
3042 				    HAT_FORCE_PGUNLOAD);
3043 			}
3044 		} else {
3045 			ppa[i] = NULL;
3046 		}
3047 	}
3048 	for (i = 0; i < pgcnt; i++) {
3049 		if ((pp = ppa[i]) != NULL && pp->p_szc != 0) {
3050 			ASSERT(pp->p_szc <= szc);
3051 			if (!root) {
3052 				VM_STAT_ADD(anonvmstats.demotepages[3]);
3053 				if (curnpgs != 0)
3054 					panic("anon_try_demote_pages: "
3055 					    "bad large page");
3056 
3057 				root = 1;
3058 				curnpgs = npgs =
3059 				    page_get_pagecnt(pp->p_szc);
3060 
3061 				ASSERT(npgs <= pgcnt);
3062 				ASSERT(IS_P2ALIGNED(npgs, npgs));
3063 				ASSERT(!(page_pptonum(pp) & (npgs - 1)));
3064 			} else {
3065 				ASSERT(i > 0);
3066 				ASSERT(page_pptonum(pp) - 1 ==
3067 				    page_pptonum(ppa[i - 1]));
3068 				if ((page_pptonum(pp) & (npgs - 1)) ==
3069 				    npgs - 1)
3070 					root = 0;
3071 			}
3072 			ASSERT(PAGE_EXCL(pp));
3073 			pp->p_szc = 0;
3074 			ASSERT(curnpgs > 0);
3075 			curnpgs--;
3076 		}
3077 	}
3078 	if (root != 0 || curnpgs != 0)
3079 		panic("anon_try_demote_pages: bad large page");
3080 
3081 	for (i = 0; i < pgcnt; i++) {
3082 		if ((pp = ppa[i]) != NULL) {
3083 			ASSERT(!hat_page_is_mapped(pp));
3084 			ASSERT(pp->p_szc == 0);
3085 			page_unlock(pp);
3086 		}
3087 	}
3088 	if (ppasize != 0) {
3089 		kmem_free(ppa, ppasize);
3090 	}
3091 	return (1);
3092 }
3093 
3094 /*
3095  * anon_map_demotepages() can only be called by MAP_PRIVATE segments.
3096  */
3097 int
3098 anon_map_demotepages(
3099 	struct anon_map *amp,
3100 	ulong_t	start_idx,
3101 	struct seg *seg,
3102 	caddr_t addr,
3103 	uint_t prot,
3104 	struct vpage vpage[],
3105 	struct cred *cred)
3106 {
3107 	struct anon	*ap;
3108 	uint_t		szc = seg->s_szc;
3109 	pgcnt_t		pgcnt = page_get_pagecnt(szc);
3110 	size_t		ppasize = pgcnt * sizeof (page_t *);
3111 	page_t		**ppa = kmem_alloc(ppasize, KM_SLEEP);
3112 	page_t		*pp;
3113 	page_t		*pl[2];
3114 	pgcnt_t		i, pg_idx;
3115 	ulong_t		an_idx;
3116 	caddr_t		vaddr;
3117 	int 		err;
3118 	int		retry = 0;
3119 	uint_t		vpprot;
3120 
3121 	ASSERT(RW_WRITE_HELD(&amp->a_rwlock));
3122 	ASSERT(IS_P2ALIGNED(pgcnt, pgcnt));
3123 	ASSERT(IS_P2ALIGNED(start_idx, pgcnt));
3124 	ASSERT(ppa != NULL);
3125 	ASSERT(szc != 0);
3126 	ASSERT(szc == amp->a_szc);
3127 
3128 	VM_STAT_ADD(anonvmstats.demotepages[0]);
3129 
3130 top:
3131 	if (anon_try_demote_pages(amp->ahp, start_idx, szc, ppa, 1)) {
3132 		kmem_free(ppa, ppasize);
3133 		return (0);
3134 	}
3135 
3136 	VM_STAT_ADD(anonvmstats.demotepages[4]);
3137 
3138 	ASSERT(retry == 0); /* we can be here only once */
3139 
3140 	vaddr = addr;
3141 	for (pg_idx = 0, an_idx = start_idx; pg_idx < pgcnt;
3142 	    pg_idx++, an_idx++, vaddr += PAGESIZE) {
3143 		ap = anon_get_ptr(amp->ahp, an_idx);
3144 		if (ap == NULL)
3145 			panic("anon_map_demotepages: no anon slot");
3146 		err = anon_getpage(&ap, &vpprot, pl, PAGESIZE, seg, vaddr,
3147 		    S_READ, cred);
3148 		if (err) {
3149 			for (i = 0; i < pg_idx; i++) {
3150 				if ((pp = ppa[i]) != NULL)
3151 					page_unlock(pp);
3152 			}
3153 			kmem_free(ppa, ppasize);
3154 			return (err);
3155 		}
3156 		ppa[pg_idx] = pl[0];
3157 	}
3158 
3159 	err = anon_map_privatepages(amp, start_idx, szc, seg, addr, prot, ppa,
3160 	    vpage, -1, 0, cred);
3161 	if (err > 0) {
3162 		VM_STAT_ADD(anonvmstats.demotepages[5]);
3163 		kmem_free(ppa, ppasize);
3164 		return (err);
3165 	}
3166 	ASSERT(err == 0 || err == -1);
3167 	if (err == -1) {
3168 		VM_STAT_ADD(anonvmstats.demotepages[6]);
3169 		retry = 1;
3170 		goto top;
3171 	}
3172 	for (i = 0; i < pgcnt; i++) {
3173 		ASSERT(ppa[i] != NULL);
3174 		if (ppa[i]->p_szc != 0)
3175 			retry = 1;
3176 		page_unlock(ppa[i]);
3177 	}
3178 	if (retry) {
3179 		VM_STAT_ADD(anonvmstats.demotepages[7]);
3180 		goto top;
3181 	}
3182 
3183 	VM_STAT_ADD(anonvmstats.demotepages[8]);
3184 
3185 	kmem_free(ppa, ppasize);
3186 
3187 	return (0);
3188 }
3189 
3190 /*
3191  * Free pages of shared anon map. It's assumed that anon maps don't share anon
3192  * structures with private anon maps. Therefore all anon structures should
3193  * have at most one reference at this point. This means underlying pages can
3194  * be exclusively locked and demoted or freed.  If not freeing the entire
3195  * large pages demote the ends of the region we free to be able to free
3196  * subpages. Page roots correspond to aligned index positions in anon map.
3197  */
3198 void
3199 anon_shmap_free_pages(struct anon_map *amp, ulong_t sidx, size_t len)
3200 {
3201 	ulong_t eidx = sidx + btopr(len);
3202 	pgcnt_t pages = page_get_pagecnt(amp->a_szc);
3203 	struct anon_hdr *ahp = amp->ahp;
3204 	ulong_t tidx;
3205 	size_t size;
3206 	ulong_t sidx_aligned;
3207 	ulong_t eidx_aligned;
3208 
3209 	ASSERT(ANON_WRITE_HELD(&amp->a_rwlock));
3210 	ASSERT(amp->refcnt <= 1);
3211 	ASSERT(amp->a_szc > 0);
3212 	ASSERT(eidx <= ahp->size);
3213 	ASSERT(!anon_share(ahp, sidx, btopr(len)));
3214 
3215 	if (len == 0) {	/* XXX */
3216 		return;
3217 	}
3218 
3219 	sidx_aligned = P2ALIGN(sidx, pages);
3220 	if (sidx_aligned != sidx ||
3221 	    (eidx < sidx_aligned + pages && eidx < ahp->size)) {
3222 		if (!anon_try_demote_pages(ahp, sidx_aligned,
3223 		    amp->a_szc, NULL, 0)) {
3224 			panic("anon_shmap_free_pages: demote failed");
3225 		}
3226 		size = (eidx <= sidx_aligned + pages) ? (eidx - sidx) :
3227 		    P2NPHASE(sidx, pages);
3228 		size <<= PAGESHIFT;
3229 		anon_free(ahp, sidx, size);
3230 		sidx = sidx_aligned + pages;
3231 		if (eidx <= sidx) {
3232 			return;
3233 		}
3234 	}
3235 	eidx_aligned = P2ALIGN(eidx, pages);
3236 	if (sidx < eidx_aligned) {
3237 		anon_free_pages(ahp, sidx,
3238 		    (eidx_aligned - sidx) << PAGESHIFT,
3239 		    amp->a_szc);
3240 		sidx = eidx_aligned;
3241 	}
3242 	ASSERT(sidx == eidx_aligned);
3243 	if (eidx == eidx_aligned) {
3244 		return;
3245 	}
3246 	tidx = eidx;
3247 	if (eidx != ahp->size && anon_get_next_ptr(ahp, &tidx) != NULL &&
3248 	    tidx - sidx < pages) {
3249 		if (!anon_try_demote_pages(ahp, sidx, amp->a_szc, NULL, 0)) {
3250 			panic("anon_shmap_free_pages: demote failed");
3251 		}
3252 		size = (eidx - sidx) << PAGESHIFT;
3253 		anon_free(ahp, sidx, size);
3254 	} else {
3255 		anon_free_pages(ahp, sidx, pages << PAGESHIFT, amp->a_szc);
3256 	}
3257 }
3258 
3259 /*
3260  * This routine should be called with amp's writer lock when there're no other
3261  * users of amp.  All pcache entries of this amp must have been already
3262  * inactivated. We must not drop a_rwlock here to prevent new users from
3263  * attaching to this amp.
3264  */
3265 void
3266 anonmap_purge(struct anon_map *amp)
3267 {
3268 	ASSERT(ANON_WRITE_HELD(&amp->a_rwlock));
3269 	ASSERT(amp->refcnt <= 1);
3270 
3271 	if (amp->a_softlockcnt != 0) {
3272 		seg_ppurge(NULL, amp, 0);
3273 	}
3274 
3275 	/*
3276 	 * Since all pcache entries were already inactive before this routine
3277 	 * was called seg_ppurge() couldn't return while there're still
3278 	 * entries that can be found via the list anchored at a_phead. So we
3279 	 * can assert this list is empty now. a_softlockcnt may be still non 0
3280 	 * if asynchronous thread that manages pcache already removed pcache
3281 	 * entries but hasn't unlocked the pages yet. If a_softlockcnt is non
3282 	 * 0 we just wait on a_purgecv for shamp_reclaim() to finish. Even if
3283 	 * a_softlockcnt is 0 we grab a_purgemtx to avoid freeing anon map
3284 	 * before shamp_reclaim() is done with it. a_purgemtx also taken by
3285 	 * shamp_reclaim() while a_softlockcnt was still not 0 acts as a
3286 	 * barrier that prevents anonmap_purge() to complete while
3287 	 * shamp_reclaim() may still be referencing this amp.
3288 	 */
3289 	ASSERT(amp->a_phead.p_lnext == &amp->a_phead);
3290 	ASSERT(amp->a_phead.p_lprev == &amp->a_phead);
3291 
3292 	mutex_enter(&amp->a_purgemtx);
3293 	while (amp->a_softlockcnt != 0) {
3294 		ASSERT(amp->a_phead.p_lnext == &amp->a_phead);
3295 		ASSERT(amp->a_phead.p_lprev == &amp->a_phead);
3296 		amp->a_purgewait = 1;
3297 		cv_wait(&amp->a_purgecv, &amp->a_purgemtx);
3298 	}
3299 	mutex_exit(&amp->a_purgemtx);
3300 
3301 	ASSERT(amp->a_phead.p_lnext == &amp->a_phead);
3302 	ASSERT(amp->a_phead.p_lprev == &amp->a_phead);
3303 	ASSERT(amp->a_softlockcnt == 0);
3304 }
3305 
3306 /*
3307  * Allocate and initialize an anon_map structure for seg
3308  * associating the given swap reservation with the new anon_map.
3309  */
3310 struct anon_map *
3311 anonmap_alloc(size_t size, size_t swresv, int flags)
3312 {
3313 	struct anon_map *amp;
3314 	int kmflags = (flags & ANON_NOSLEEP) ? KM_NOSLEEP : KM_SLEEP;
3315 
3316 	amp = kmem_cache_alloc(anonmap_cache, kmflags);
3317 	if (amp == NULL) {
3318 		ASSERT(kmflags == KM_NOSLEEP);
3319 		return (NULL);
3320 	}
3321 
3322 	amp->ahp = anon_create(btopr(size), flags);
3323 	if (amp->ahp == NULL) {
3324 		ASSERT(flags == ANON_NOSLEEP);
3325 		kmem_cache_free(anonmap_cache, amp);
3326 		return (NULL);
3327 	}
3328 	amp->refcnt = 1;
3329 	amp->size = size;
3330 	amp->swresv = swresv;
3331 	amp->locality = 0;
3332 	amp->a_szc = 0;
3333 	amp->a_sp = NULL;
3334 	amp->a_softlockcnt = 0;
3335 	amp->a_purgewait = 0;
3336 	amp->a_phead.p_lnext = &amp->a_phead;
3337 	amp->a_phead.p_lprev = &amp->a_phead;
3338 
3339 	return (amp);
3340 }
3341 
3342 void
3343 anonmap_free(struct anon_map *amp)
3344 {
3345 	ASSERT(amp->ahp != NULL);
3346 	ASSERT(amp->refcnt == 0);
3347 	ASSERT(amp->a_softlockcnt == 0);
3348 	ASSERT(amp->a_phead.p_lnext == &amp->a_phead);
3349 	ASSERT(amp->a_phead.p_lprev == &amp->a_phead);
3350 
3351 	lgrp_shm_policy_fini(amp, NULL);
3352 	anon_release(amp->ahp, btopr(amp->size));
3353 	kmem_cache_free(anonmap_cache, amp);
3354 }
3355 
3356 /*
3357  * Returns true if the app array has some empty slots.
3358  * The offp and lenp parameters are in/out parameters.  On entry
3359  * these values represent the starting offset and length of the
3360  * mapping.  When true is returned, these values may be modified
3361  * to be the largest range which includes empty slots.
3362  */
3363 int
3364 non_anon(struct anon_hdr *ahp, ulong_t anon_idx, u_offset_t *offp,
3365 				size_t *lenp)
3366 {
3367 	ulong_t i, el;
3368 	ssize_t low, high;
3369 	struct anon *ap;
3370 
3371 	low = -1;
3372 	for (i = 0, el = *lenp; i < el; i += PAGESIZE, anon_idx++) {
3373 		ap = anon_get_ptr(ahp, anon_idx);
3374 		if (ap == NULL) {
3375 			if (low == -1)
3376 				low = i;
3377 			high = i;
3378 		}
3379 	}
3380 	if (low != -1) {
3381 		/*
3382 		 * Found at least one non-anon page.
3383 		 * Set up the off and len return values.
3384 		 */
3385 		if (low != 0)
3386 			*offp += low;
3387 		*lenp = high - low + PAGESIZE;
3388 		return (1);
3389 	}
3390 	return (0);
3391 }
3392 
3393 /*
3394  * Return a count of the number of existing anon pages in the anon array
3395  * app in the range (off, off+len). The array and slots must be guaranteed
3396  * stable by the caller.
3397  */
3398 pgcnt_t
3399 anon_pages(struct anon_hdr *ahp, ulong_t anon_index, pgcnt_t nslots)
3400 {
3401 	pgcnt_t cnt = 0;
3402 
3403 	while (nslots-- > 0) {
3404 		if ((anon_get_ptr(ahp, anon_index)) != NULL)
3405 			cnt++;
3406 		anon_index++;
3407 	}
3408 	return (cnt);
3409 }
3410 
3411 /*
3412  * Move reserved phys swap into memory swap (unreserve phys swap
3413  * and reserve mem swap by the same amount).
3414  * Used by segspt when it needs to lock reserved swap npages in memory
3415  */
3416 int
3417 anon_swap_adjust(pgcnt_t npages)
3418 {
3419 	pgcnt_t unlocked_mem_swap;
3420 
3421 	mutex_enter(&anoninfo_lock);
3422 
3423 	ASSERT(k_anoninfo.ani_mem_resv >= k_anoninfo.ani_locked_swap);
3424 	ASSERT(k_anoninfo.ani_max >= k_anoninfo.ani_phys_resv);
3425 
3426 	unlocked_mem_swap = k_anoninfo.ani_mem_resv
3427 	    - k_anoninfo.ani_locked_swap;
3428 	if (npages > unlocked_mem_swap) {
3429 		spgcnt_t adjusted_swap = npages - unlocked_mem_swap;
3430 
3431 		/*
3432 		 * if there is not enough unlocked mem swap we take missing
3433 		 * amount from phys swap and give it to mem swap
3434 		 */
3435 		if (!page_reclaim_mem(adjusted_swap, segspt_minfree, 1)) {
3436 			mutex_exit(&anoninfo_lock);
3437 			return (ENOMEM);
3438 		}
3439 
3440 		k_anoninfo.ani_mem_resv += adjusted_swap;
3441 		ASSERT(k_anoninfo.ani_phys_resv >= adjusted_swap);
3442 		k_anoninfo.ani_phys_resv -= adjusted_swap;
3443 
3444 		ANI_ADD(adjusted_swap);
3445 	}
3446 	k_anoninfo.ani_locked_swap += npages;
3447 
3448 	ASSERT(k_anoninfo.ani_mem_resv >= k_anoninfo.ani_locked_swap);
3449 	ASSERT(k_anoninfo.ani_max >= k_anoninfo.ani_phys_resv);
3450 
3451 	mutex_exit(&anoninfo_lock);
3452 
3453 	return (0);
3454 }
3455 
3456 /*
3457  * 'unlocked' reserved mem swap so when it is unreserved it
3458  * can be moved back phys (disk) swap
3459  */
3460 void
3461 anon_swap_restore(pgcnt_t npages)
3462 {
3463 	mutex_enter(&anoninfo_lock);
3464 
3465 	ASSERT(k_anoninfo.ani_locked_swap <= k_anoninfo.ani_mem_resv);
3466 
3467 	ASSERT(k_anoninfo.ani_locked_swap >= npages);
3468 	k_anoninfo.ani_locked_swap -= npages;
3469 
3470 	ASSERT(k_anoninfo.ani_locked_swap <= k_anoninfo.ani_mem_resv);
3471 
3472 	mutex_exit(&anoninfo_lock);
3473 }
3474 
3475 /*
3476  * Return the pointer from the list for a
3477  * specified anon index.
3478  */
3479 ulong_t *
3480 anon_get_slot(struct anon_hdr *ahp, ulong_t an_idx)
3481 {
3482 	struct anon	**app;
3483 	void 		**ppp;
3484 
3485 	ASSERT(an_idx < ahp->size);
3486 
3487 	/*
3488 	 * Single level case.
3489 	 */
3490 	if ((ahp->size <= ANON_CHUNK_SIZE) || (ahp->flags & ANON_ALLOC_FORCE)) {
3491 		return ((ulong_t *)&ahp->array_chunk[an_idx]);
3492 	} else {
3493 
3494 		/*
3495 		 * 2 level case.
3496 		 */
3497 		ppp = &ahp->array_chunk[an_idx >> ANON_CHUNK_SHIFT];
3498 		if (*ppp == NULL) {
3499 			mutex_enter(&ahp->serial_lock);
3500 			ppp = &ahp->array_chunk[an_idx >> ANON_CHUNK_SHIFT];
3501 			if (*ppp == NULL)
3502 				*ppp = kmem_zalloc(PAGESIZE, KM_SLEEP);
3503 			mutex_exit(&ahp->serial_lock);
3504 		}
3505 		app = *ppp;
3506 		return ((ulong_t *)&app[an_idx & ANON_CHUNK_OFF]);
3507 	}
3508 }
3509 
3510 void
3511 anon_array_enter(struct anon_map *amp, ulong_t an_idx, anon_sync_obj_t *sobj)
3512 {
3513 	ulong_t		*ap_slot;
3514 	kmutex_t	*mtx;
3515 	kcondvar_t	*cv;
3516 	int		hash;
3517 
3518 	/*
3519 	 * Use szc to determine anon slot(s) to appear atomic.
3520 	 * If szc = 0, then lock the anon slot and mark it busy.
3521 	 * If szc > 0, then lock the range of slots by getting the
3522 	 * anon_array_lock for the first anon slot, and mark only the
3523 	 * first anon slot busy to represent whole range being busy.
3524 	 */
3525 
3526 	ASSERT(RW_READ_HELD(&amp->a_rwlock));
3527 	an_idx = P2ALIGN(an_idx, page_get_pagecnt(amp->a_szc));
3528 	hash = ANON_ARRAY_HASH(amp, an_idx);
3529 	sobj->sync_mutex = mtx = &anon_array_lock[hash].pad_mutex;
3530 	sobj->sync_cv = cv = &anon_array_cv[hash];
3531 	mutex_enter(mtx);
3532 	ap_slot = anon_get_slot(amp->ahp, an_idx);
3533 	while (ANON_ISBUSY(ap_slot))
3534 		cv_wait(cv, mtx);
3535 	ANON_SETBUSY(ap_slot);
3536 	sobj->sync_data = ap_slot;
3537 	mutex_exit(mtx);
3538 }
3539 
3540 int
3541 anon_array_try_enter(struct anon_map *amp, ulong_t an_idx,
3542 			anon_sync_obj_t *sobj)
3543 {
3544 	ulong_t		*ap_slot;
3545 	kmutex_t	*mtx;
3546 	int		hash;
3547 
3548 	/*
3549 	 * Try to lock a range of anon slots.
3550 	 * Use szc to determine anon slot(s) to appear atomic.
3551 	 * If szc = 0, then lock the anon slot and mark it busy.
3552 	 * If szc > 0, then lock the range of slots by getting the
3553 	 * anon_array_lock for the first anon slot, and mark only the
3554 	 * first anon slot busy to represent whole range being busy.
3555 	 * Fail if the mutex or the anon_array are busy.
3556 	 */
3557 
3558 	ASSERT(RW_READ_HELD(&amp->a_rwlock));
3559 	an_idx = P2ALIGN(an_idx, page_get_pagecnt(amp->a_szc));
3560 	hash = ANON_ARRAY_HASH(amp, an_idx);
3561 	sobj->sync_mutex = mtx = &anon_array_lock[hash].pad_mutex;
3562 	sobj->sync_cv = &anon_array_cv[hash];
3563 	if (!mutex_tryenter(mtx)) {
3564 		return (EWOULDBLOCK);
3565 	}
3566 	ap_slot = anon_get_slot(amp->ahp, an_idx);
3567 	if (ANON_ISBUSY(ap_slot)) {
3568 		mutex_exit(mtx);
3569 		return (EWOULDBLOCK);
3570 	}
3571 	ANON_SETBUSY(ap_slot);
3572 	sobj->sync_data = ap_slot;
3573 	mutex_exit(mtx);
3574 	return (0);
3575 }
3576 
3577 void
3578 anon_array_exit(anon_sync_obj_t *sobj)
3579 {
3580 	mutex_enter(sobj->sync_mutex);
3581 	ASSERT(ANON_ISBUSY(sobj->sync_data));
3582 	ANON_CLRBUSY(sobj->sync_data);
3583 	if (CV_HAS_WAITERS(sobj->sync_cv))
3584 		cv_broadcast(sobj->sync_cv);
3585 	mutex_exit(sobj->sync_mutex);
3586 }
3587