xref: /titanic_41/usr/src/uts/common/vm/vm_anon.c (revision 414388d7cb2ee98771e2ac7c2338c460abd44304)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License, Version 1.0 only
6  * (the "License").  You may not use this file except in compliance
7  * with the License.
8  *
9  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
10  * or http://www.opensolaris.org/os/licensing.
11  * See the License for the specific language governing permissions
12  * and limitations under the License.
13  *
14  * When distributing Covered Code, include this CDDL HEADER in each
15  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
16  * If applicable, add the following below this CDDL HEADER, with the
17  * fields enclosed by brackets "[]" replaced with your own identifying
18  * information: Portions Copyright [yyyy] [name of copyright owner]
19  *
20  * CDDL HEADER END
21  */
22 /*
23  * Copyright 2005 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 /*	Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T	*/
28 /*	  All Rights Reserved  	*/
29 
30 /*
31  * University Copyright- Copyright (c) 1982, 1986, 1988
32  * The Regents of the University of California
33  * All Rights Reserved
34  *
35  * University Acknowledgment- Portions of this document are derived from
36  * software developed by the University of California, Berkeley, and its
37  * contributors.
38  */
39 
40 #pragma ident	"%Z%%M%	%I%	%E% SMI"
41 
42 /*
43  * VM - anonymous pages.
44  *
45  * This layer sits immediately above the vm_swap layer.  It manages
46  * physical pages that have no permanent identity in the file system
47  * name space, using the services of the vm_swap layer to allocate
48  * backing storage for these pages.  Since these pages have no external
49  * identity, they are discarded when the last reference is removed.
50  *
51  * An important function of this layer is to manage low-level sharing
52  * of pages that are logically distinct but that happen to be
53  * physically identical (e.g., the corresponding pages of the processes
54  * resulting from a fork before one process or the other changes their
55  * contents).  This pseudo-sharing is present only as an optimization
56  * and is not to be confused with true sharing in which multiple
57  * address spaces deliberately contain references to the same object;
58  * such sharing is managed at a higher level.
59  *
60  * The key data structure here is the anon struct, which contains a
61  * reference count for its associated physical page and a hint about
62  * the identity of that page.  Anon structs typically live in arrays,
63  * with an instance's position in its array determining where the
64  * corresponding backing storage is allocated; however, the swap_xlate()
65  * routine abstracts away this representation information so that the
66  * rest of the anon layer need not know it.  (See the swap layer for
67  * more details on anon struct layout.)
68  *
69  * In the future versions of the system, the association between an
70  * anon struct and its position on backing store will change so that
71  * we don't require backing store all anonymous pages in the system.
72  * This is important for consideration for large memory systems.
73  * We can also use this technique to delay binding physical locations
74  * to anonymous pages until pageout/swapout time where we can make
75  * smarter allocation decisions to improve anonymous klustering.
76  *
77  * Many of the routines defined here take a (struct anon **) argument,
78  * which allows the code at this level to manage anon pages directly,
79  * so that callers can regard anon structs as opaque objects and not be
80  * concerned with assigning or inspecting their contents.
81  *
82  * Clients of this layer refer to anon pages indirectly.  That is, they
83  * maintain arrays of pointers to anon structs rather than maintaining
84  * anon structs themselves.  The (struct anon **) arguments mentioned
85  * above are pointers to entries in these arrays.  It is these arrays
86  * that capture the mapping between offsets within a given segment and
87  * the corresponding anonymous backing storage address.
88  */
89 
90 #ifdef DEBUG
91 #define	ANON_DEBUG
92 #endif
93 
94 #include <sys/types.h>
95 #include <sys/t_lock.h>
96 #include <sys/param.h>
97 #include <sys/systm.h>
98 #include <sys/mman.h>
99 #include <sys/cred.h>
100 #include <sys/thread.h>
101 #include <sys/vnode.h>
102 #include <sys/cpuvar.h>
103 #include <sys/swap.h>
104 #include <sys/cmn_err.h>
105 #include <sys/vtrace.h>
106 #include <sys/kmem.h>
107 #include <sys/sysmacros.h>
108 #include <sys/bitmap.h>
109 #include <sys/vmsystm.h>
110 #include <sys/debug.h>
111 #include <sys/tnf_probe.h>
112 #include <sys/lgrp.h>
113 #include <sys/policy.h>
114 #include <sys/condvar_impl.h>
115 #include <sys/mutex_impl.h>
116 
117 #include <vm/as.h>
118 #include <vm/hat.h>
119 #include <vm/anon.h>
120 #include <vm/page.h>
121 #include <vm/vpage.h>
122 #include <vm/seg.h>
123 #include <vm/rm.h>
124 
125 #include <fs/fs_subr.h>
126 
127 int anon_debug;
128 
129 kmutex_t	anoninfo_lock;
130 struct		k_anoninfo k_anoninfo;
131 ani_free_t	ani_free_pool[ANI_MAX_POOL];
132 pad_mutex_t	anon_array_lock[ANON_LOCKSIZE];
133 kcondvar_t	anon_array_cv[ANON_LOCKSIZE];
134 
135 /*
136  * Global hash table for (vp, off) -> anon slot
137  */
138 extern	int swap_maxcontig;
139 size_t	anon_hash_size;
140 struct anon **anon_hash;
141 
142 static struct kmem_cache *anon_cache;
143 static struct kmem_cache *anonmap_cache;
144 
145 #ifdef VM_STATS
146 static struct anonvmstats_str {
147 	ulong_t getpages[30];
148 	ulong_t privatepages[10];
149 	ulong_t demotepages[9];
150 	ulong_t decrefpages[9];
151 	ulong_t	dupfillholes[4];
152 	ulong_t freepages[1];
153 } anonvmstats;
154 #endif /* VM_STATS */
155 
156 
157 /*ARGSUSED*/
158 static int
159 anonmap_cache_constructor(void *buf, void *cdrarg, int kmflags)
160 {
161 	struct anon_map *amp = buf;
162 
163 	rw_init(&amp->a_rwlock, NULL, RW_DEFAULT, NULL);
164 	return (0);
165 }
166 
167 /*ARGSUSED1*/
168 static void
169 anonmap_cache_destructor(void *buf, void *cdrarg)
170 {
171 	struct anon_map *amp = buf;
172 
173 	rw_destroy(&amp->a_rwlock);
174 }
175 
176 kmutex_t	anonhash_lock[AH_LOCK_SIZE];
177 kmutex_t	anonpages_hash_lock[AH_LOCK_SIZE];
178 
179 void
180 anon_init(void)
181 {
182 	int i;
183 
184 	anon_hash_size = 1L << highbit(physmem / ANON_HASHAVELEN);
185 
186 	for (i = 0; i < AH_LOCK_SIZE; i++) {
187 		mutex_init(&anonhash_lock[i], NULL, MUTEX_DEFAULT, NULL);
188 		mutex_init(&anonpages_hash_lock[i], NULL, MUTEX_DEFAULT, NULL);
189 	}
190 
191 	for (i = 0; i < ANON_LOCKSIZE; i++) {
192 		mutex_init(&anon_array_lock[i].pad_mutex, NULL,
193 			MUTEX_DEFAULT, NULL);
194 		cv_init(&anon_array_cv[i], NULL, CV_DEFAULT, NULL);
195 	}
196 
197 	anon_hash = (struct anon **)
198 		kmem_zalloc(sizeof (struct anon *) * anon_hash_size, KM_SLEEP);
199 	anon_cache = kmem_cache_create("anon_cache", sizeof (struct anon),
200 		AN_CACHE_ALIGN, NULL, NULL, NULL, NULL, NULL, 0);
201 	anonmap_cache = kmem_cache_create("anonmap_cache",
202 		sizeof (struct anon_map), 0,
203 		anonmap_cache_constructor, anonmap_cache_destructor, NULL,
204 		NULL, NULL, 0);
205 	swap_maxcontig = (1024 * 1024) >> PAGESHIFT;	/* 1MB of pages */
206 }
207 
208 /*
209  * Global anon slot hash table manipulation.
210  */
211 
212 static void
213 anon_addhash(struct anon *ap)
214 {
215 	int index;
216 
217 	ASSERT(MUTEX_HELD(&anonhash_lock[AH_LOCK(ap->an_vp, ap->an_off)]));
218 	index = ANON_HASH(ap->an_vp, ap->an_off);
219 	ap->an_hash = anon_hash[index];
220 	anon_hash[index] = ap;
221 }
222 
223 static void
224 anon_rmhash(struct anon *ap)
225 {
226 	struct anon **app;
227 
228 	ASSERT(MUTEX_HELD(&anonhash_lock[AH_LOCK(ap->an_vp, ap->an_off)]));
229 
230 	for (app = &anon_hash[ANON_HASH(ap->an_vp, ap->an_off)];
231 	    *app; app = &((*app)->an_hash)) {
232 		if (*app == ap) {
233 			*app = ap->an_hash;
234 			break;
235 		}
236 	}
237 }
238 
239 /*
240  * The anon array interfaces. Functions allocating,
241  * freeing array of pointers, and returning/setting
242  * entries in the array of pointers for a given offset.
243  *
244  * Create the list of pointers
245  */
246 struct anon_hdr *
247 anon_create(pgcnt_t npages, int flags)
248 {
249 	struct anon_hdr *ahp;
250 	ulong_t nchunks;
251 	int kmemflags = (flags & ANON_NOSLEEP) ? KM_NOSLEEP : KM_SLEEP;
252 
253 	if ((ahp = kmem_zalloc(sizeof (struct anon_hdr), kmemflags)) == NULL) {
254 		return (NULL);
255 	}
256 
257 	mutex_init(&ahp->serial_lock, NULL, MUTEX_DEFAULT, NULL);
258 	/*
259 	 * Single level case.
260 	 */
261 	ahp->size = npages;
262 	if (npages <= ANON_CHUNK_SIZE || (flags & ANON_ALLOC_FORCE)) {
263 
264 		if (flags & ANON_ALLOC_FORCE)
265 			ahp->flags |= ANON_ALLOC_FORCE;
266 
267 		ahp->array_chunk = kmem_zalloc(
268 		    ahp->size * sizeof (struct anon *), kmemflags);
269 
270 		if (ahp->array_chunk == NULL) {
271 			kmem_free(ahp, sizeof (struct anon_hdr));
272 			return (NULL);
273 		}
274 	} else {
275 		/*
276 		 * 2 Level case.
277 		 */
278 		nchunks = (ahp->size + ANON_CHUNK_OFF) >> ANON_CHUNK_SHIFT;
279 
280 		ahp->array_chunk = kmem_zalloc(nchunks * sizeof (ulong_t *),
281 		    kmemflags);
282 
283 		if (ahp->array_chunk == NULL) {
284 			kmem_free(ahp, sizeof (struct anon_hdr));
285 			return (NULL);
286 		}
287 	}
288 	return (ahp);
289 }
290 
291 /*
292  * Free the array of pointers
293  */
294 void
295 anon_release(struct anon_hdr *ahp, pgcnt_t npages)
296 {
297 	ulong_t i;
298 	void **ppp;
299 	ulong_t nchunks;
300 
301 	ASSERT(npages == ahp->size);
302 
303 	/*
304 	 * Single level case.
305 	 */
306 	if (npages <= ANON_CHUNK_SIZE || (ahp->flags & ANON_ALLOC_FORCE)) {
307 		kmem_free(ahp->array_chunk, ahp->size * sizeof (struct anon *));
308 	} else {
309 		/*
310 		 * 2 level case.
311 		 */
312 		nchunks = (ahp->size + ANON_CHUNK_OFF) >> ANON_CHUNK_SHIFT;
313 		for (i = 0; i < nchunks; i++) {
314 			ppp = &ahp->array_chunk[i];
315 			if (*ppp != NULL)
316 				kmem_free(*ppp, PAGESIZE);
317 		}
318 		kmem_free(ahp->array_chunk, nchunks * sizeof (ulong_t *));
319 	}
320 	mutex_destroy(&ahp->serial_lock);
321 	kmem_free(ahp, sizeof (struct anon_hdr));
322 }
323 
324 /*
325  * Return the pointer from the list for a
326  * specified anon index.
327  */
328 struct anon *
329 anon_get_ptr(struct anon_hdr *ahp, ulong_t an_idx)
330 {
331 	struct anon **app;
332 
333 	ASSERT(an_idx < ahp->size);
334 
335 	/*
336 	 * Single level case.
337 	 */
338 	if ((ahp->size <= ANON_CHUNK_SIZE) || (ahp->flags & ANON_ALLOC_FORCE)) {
339 		return ((struct anon *)
340 			((uintptr_t)ahp->array_chunk[an_idx] & ANON_PTRMASK));
341 	} else {
342 
343 		/*
344 		 * 2 level case.
345 		 */
346 		app = ahp->array_chunk[an_idx >> ANON_CHUNK_SHIFT];
347 		if (app) {
348 			return ((struct anon *)
349 				((uintptr_t)app[an_idx & ANON_CHUNK_OFF] &
350 					ANON_PTRMASK));
351 		} else {
352 			return (NULL);
353 		}
354 	}
355 }
356 
357 /*
358  * Return the anon pointer for the first valid entry in the anon list,
359  * starting from the given index.
360  */
361 struct anon *
362 anon_get_next_ptr(struct anon_hdr *ahp, ulong_t *index)
363 {
364 	struct anon *ap;
365 	struct anon **app;
366 	ulong_t chunkoff;
367 	ulong_t i;
368 	ulong_t j;
369 	pgcnt_t size;
370 
371 	i = *index;
372 	size = ahp->size;
373 
374 	ASSERT(i < size);
375 
376 	if ((size <= ANON_CHUNK_SIZE) || (ahp->flags & ANON_ALLOC_FORCE)) {
377 		/*
378 		 * 1 level case
379 		 */
380 		while (i < size) {
381 			ap = (struct anon *)
382 				((uintptr_t)ahp->array_chunk[i] & ANON_PTRMASK);
383 			if (ap) {
384 				*index = i;
385 				return (ap);
386 			}
387 			i++;
388 		}
389 	} else {
390 		/*
391 		 * 2 level case
392 		 */
393 		chunkoff = i & ANON_CHUNK_OFF;
394 		while (i < size) {
395 			app = ahp->array_chunk[i >> ANON_CHUNK_SHIFT];
396 			if (app)
397 				for (j = chunkoff; j < ANON_CHUNK_SIZE; j++) {
398 					ap = (struct anon *)
399 						((uintptr_t)app[j] &
400 							ANON_PTRMASK);
401 					if (ap) {
402 						*index = i + (j - chunkoff);
403 						return (ap);
404 					}
405 				}
406 			chunkoff = 0;
407 			i = (i + ANON_CHUNK_SIZE) & ~ANON_CHUNK_OFF;
408 		}
409 	}
410 	*index = size;
411 	return (NULL);
412 }
413 
414 /*
415  * Set list entry with a given pointer for a specified offset
416  */
417 int
418 anon_set_ptr(struct anon_hdr *ahp, ulong_t an_idx, struct anon *ap, int flags)
419 {
420 	void		**ppp;
421 	struct anon	**app;
422 	int kmemflags = (flags & ANON_NOSLEEP) ? KM_NOSLEEP : KM_SLEEP;
423 	uintptr_t	*ap_addr;
424 
425 	ASSERT(an_idx < ahp->size);
426 
427 	/*
428 	 * Single level case.
429 	 */
430 	if (ahp->size <= ANON_CHUNK_SIZE || (ahp->flags & ANON_ALLOC_FORCE)) {
431 		ap_addr = (uintptr_t *)&ahp->array_chunk[an_idx];
432 	} else {
433 
434 		/*
435 		 * 2 level case.
436 		 */
437 		ppp = &ahp->array_chunk[an_idx >> ANON_CHUNK_SHIFT];
438 
439 		ASSERT(ppp != NULL);
440 		if (*ppp == NULL) {
441 			mutex_enter(&ahp->serial_lock);
442 			ppp = &ahp->array_chunk[an_idx >> ANON_CHUNK_SHIFT];
443 			if (*ppp == NULL) {
444 				*ppp = kmem_zalloc(PAGESIZE, kmemflags);
445 				if (*ppp == NULL) {
446 					mutex_exit(&ahp->serial_lock);
447 					return (ENOMEM);
448 				}
449 			}
450 			mutex_exit(&ahp->serial_lock);
451 		}
452 		app = *ppp;
453 		ap_addr = (uintptr_t *)&app[an_idx & ANON_CHUNK_OFF];
454 	}
455 	*ap_addr = (*ap_addr & ~ANON_PTRMASK) | (uintptr_t)ap;
456 	return (0);
457 }
458 
459 /*
460  * Copy anon array into a given new anon array
461  */
462 int
463 anon_copy_ptr(struct anon_hdr *sahp, ulong_t s_idx,
464 	struct anon_hdr *dahp, ulong_t d_idx,
465 	pgcnt_t npages, int flags)
466 {
467 	void **sapp, **dapp;
468 	void *ap;
469 	int kmemflags = (flags & ANON_NOSLEEP) ? KM_NOSLEEP : KM_SLEEP;
470 
471 	ASSERT((s_idx < sahp->size) && (d_idx < dahp->size));
472 	ASSERT((npages <= sahp->size) && (npages <= dahp->size));
473 
474 	/*
475 	 * Both arrays are 1 level.
476 	 */
477 	if (((sahp->size <= ANON_CHUNK_SIZE) &&
478 	    (dahp->size <= ANON_CHUNK_SIZE)) ||
479 	    ((sahp->flags & ANON_ALLOC_FORCE) &&
480 	    (dahp->flags & ANON_ALLOC_FORCE))) {
481 
482 		bcopy(&sahp->array_chunk[s_idx], &dahp->array_chunk[d_idx],
483 		    npages * sizeof (struct anon *));
484 		return (0);
485 	}
486 
487 	/*
488 	 * Both arrays are 2 levels.
489 	 */
490 	if (sahp->size > ANON_CHUNK_SIZE &&
491 	    dahp->size > ANON_CHUNK_SIZE &&
492 	    ((sahp->flags & ANON_ALLOC_FORCE) == 0) &&
493 	    ((dahp->flags & ANON_ALLOC_FORCE) == 0)) {
494 
495 		ulong_t sapidx, dapidx;
496 		ulong_t *sap, *dap;
497 		ulong_t chknp;
498 
499 		while (npages != 0) {
500 
501 			sapidx = s_idx & ANON_CHUNK_OFF;
502 			dapidx = d_idx & ANON_CHUNK_OFF;
503 			chknp = ANON_CHUNK_SIZE - MAX(sapidx, dapidx);
504 			if (chknp > npages)
505 				chknp = npages;
506 
507 			sapp = &sahp->array_chunk[s_idx >> ANON_CHUNK_SHIFT];
508 			if ((sap = *sapp) != NULL) {
509 				dapp = &dahp->array_chunk[d_idx
510 							>> ANON_CHUNK_SHIFT];
511 				if ((dap = *dapp) == NULL) {
512 					*dapp = kmem_zalloc(PAGESIZE,
513 					    kmemflags);
514 					if ((dap = *dapp) == NULL)
515 						return (ENOMEM);
516 				}
517 				bcopy((sap + sapidx), (dap + dapidx),
518 				    chknp << ANON_PTRSHIFT);
519 			}
520 			s_idx += chknp;
521 			d_idx += chknp;
522 			npages -= chknp;
523 		}
524 		return (0);
525 	}
526 
527 	/*
528 	 * At least one of the arrays is 2 level.
529 	 */
530 	while (npages--) {
531 		if ((ap = anon_get_ptr(sahp, s_idx)) != NULL) {
532 			ASSERT(!ANON_ISBUSY(anon_get_slot(sahp, s_idx)));
533 			if (anon_set_ptr(dahp, d_idx, ap, flags) == ENOMEM)
534 					return (ENOMEM);
535 		}
536 		s_idx++;
537 		d_idx++;
538 	}
539 	return (0);
540 }
541 
542 
543 /*
544  * ANON_INITBUF is a convenience macro for anon_grow() below. It
545  * takes a buffer dst, which is at least as large as buffer src. It
546  * does a bcopy from src into dst, and then bzeros the extra bytes
547  * of dst. If tail is set, the data in src is tail aligned within
548  * dst instead of head aligned.
549  */
550 
551 #define	ANON_INITBUF(src, srclen, dst, dstsize, tail)			      \
552 	if (tail) {							      \
553 		bzero((dst), (dstsize) - (srclen));			      \
554 		bcopy((src), (char *)(dst) + (dstsize) - (srclen), (srclen)); \
555 	} else {							      \
556 		bcopy((src), (dst), (srclen));				      \
557 		bzero((char *)(dst) + (srclen), (dstsize) - (srclen));	      \
558 	}
559 
560 #define	ANON_1_LEVEL_INC	(ANON_CHUNK_SIZE / 8)
561 #define	ANON_2_LEVEL_INC	(ANON_1_LEVEL_INC * ANON_CHUNK_SIZE)
562 
563 /*
564  * anon_grow() is used to efficiently extend an existing anon array.
565  * startidx_p points to the index into the anon array of the first page
566  * that is in use. curpages is the number of pages in use, starting at
567  * *startidx_p. newpages is the number of additional pages desired.
568  *
569  * If startidx_p == NULL, startidx is taken to be 0 and cannot be changed.
570  *
571  * The growth is done by creating a new top level of the anon array,
572  * and (if the array is 2-level) reusing the existing second level arrays.
573  *
574  * flags can be used to specify ANON_NOSLEEP and ANON_GROWDOWN.
575  *
576  * Returns the new number of pages in the anon array.
577  */
578 
579 pgcnt_t
580 anon_grow(struct anon_hdr *ahp, ulong_t *startidx_p, pgcnt_t curpages,
581     pgcnt_t newpages, int flags)
582 {
583 	ulong_t startidx = startidx_p ? *startidx_p : 0;
584 	pgcnt_t osz = ahp->size, nsz;
585 	pgcnt_t oelems, nelems, totpages;
586 	void **level1;
587 	int kmemflags = (flags & ANON_NOSLEEP) ? KM_NOSLEEP : KM_SLEEP;
588 	int growdown = (flags & ANON_GROWDOWN);
589 	size_t newarrsz, oldarrsz;
590 	void *level2;
591 
592 	ASSERT(!(startidx_p == NULL && growdown));
593 	ASSERT(startidx + curpages <= ahp->size);
594 
595 	/*
596 	 * Determine the total number of pages needed in the new
597 	 * anon array. If growing down, totpages is all pages from
598 	 * startidx through the end of the array, plus <newpages>
599 	 * pages. If growing up, keep all pages from page 0 through
600 	 * the last page currently in use, plus <newpages> pages.
601 	 */
602 
603 	if (growdown)
604 		totpages = osz - startidx + newpages;
605 	else
606 		totpages = startidx + curpages + newpages;
607 
608 	/* If the array is already large enough, just return. */
609 
610 	if (osz >= totpages) {
611 		nsz = osz;
612 		goto out;
613 	}
614 
615 	/*
616 	 * osz/nsz are the total numbers of pages represented by the array.
617 	 * oelems/nelems are the number of pointers in the top level array.
618 	 *
619 	 * Will the new anon array be one level or two levels?
620 	 */
621 
622 	if (totpages <= ANON_CHUNK_SIZE || (ahp->flags & ANON_ALLOC_FORCE)) {
623 		nsz = P2ROUNDUP(totpages, ANON_1_LEVEL_INC);
624 		oelems = osz;
625 		nelems = nsz;
626 	} else {
627 		nsz = P2ROUNDUP(totpages, ANON_2_LEVEL_INC);
628 		oelems = (osz + ANON_CHUNK_OFF) >> ANON_CHUNK_SHIFT;
629 		nelems = nsz >> ANON_CHUNK_SHIFT;
630 	}
631 
632 	newarrsz = nelems * sizeof (void *);
633 	level1 = kmem_alloc(newarrsz, kmemflags);
634 	if (level1 == NULL)
635 		return (0);
636 
637 	/* Are we converting from a one level to a two level anon array? */
638 
639 	if (nsz > ANON_CHUNK_SIZE && osz <= ANON_CHUNK_SIZE &&
640 	    !(ahp->flags & ANON_ALLOC_FORCE)) {
641 		/*
642 		 * Yes, we're converting to a two level. Reuse old level 1
643 		 * as new level 2 if it is exactly PAGESIZE. Otherwise
644 		 * alloc a new level 2 and copy the old level 1 data into it.
645 		 */
646 
647 		if (osz == ANON_CHUNK_SIZE) {
648 			level2 = (void *)ahp->array_chunk;
649 		} else {
650 			level2 = kmem_alloc(PAGESIZE, kmemflags);
651 			if (level2 == NULL) {
652 				kmem_free(level1, newarrsz);
653 				return (0);
654 			}
655 			oldarrsz = osz * sizeof (void *);
656 
657 			ANON_INITBUF(ahp->array_chunk, oldarrsz,
658 			    level2, PAGESIZE, growdown);
659 			kmem_free(ahp->array_chunk, oldarrsz);
660 		}
661 		bzero(level1, newarrsz);
662 		if (growdown)
663 			level1[nelems - 1] = level2;
664 		else
665 			level1[0] = level2;
666 	} else {
667 		oldarrsz = oelems * sizeof (void *);
668 
669 		ANON_INITBUF(ahp->array_chunk, oldarrsz,
670 		    level1, newarrsz, growdown);
671 		kmem_free(ahp->array_chunk, oldarrsz);
672 	}
673 
674 	ahp->array_chunk = level1;
675 	ahp->size = nsz;
676 out:
677 	if (growdown)
678 		*startidx_p = nsz - totpages;
679 	return (nsz);
680 }
681 
682 /*
683  * Called from clock handler to sync ani_free value.
684  */
685 
686 void
687 set_anoninfo(void)
688 {
689 	int	ix;
690 	pgcnt_t	total = 0;
691 
692 	for (ix = 0; ix < ANI_MAX_POOL; ix++) {
693 		total += ani_free_pool[ix].ani_count;
694 	}
695 	k_anoninfo.ani_free = total;
696 }
697 
698 /*
699  * Reserve anon space.
700  *
701  * It's no longer simply a matter of incrementing ani_resv to
702  * reserve swap space, we need to check memory-based as well
703  * as disk-backed (physical) swap.  The following algorithm
704  * is used:
705  * 	Check the space on physical swap
706  * 		i.e. amount needed < ani_max - ani_phys_resv
707  * 	If we are swapping on swapfs check
708  *		amount needed < (availrmem - swapfs_minfree)
709  * Since the algorithm to check for the quantity of swap space is
710  * almost the same as that for reserving it, we'll just use anon_resvmem
711  * with a flag to decrement availrmem.
712  *
713  * Return non-zero on success.
714  */
715 int
716 anon_resvmem(size_t size, uint_t takemem)
717 {
718 	pgcnt_t npages = btopr(size);
719 	pgcnt_t mswap_pages = 0;
720 	pgcnt_t pswap_pages = 0;
721 
722 	mutex_enter(&anoninfo_lock);
723 
724 	/*
725 	 * pswap_pages is the number of pages we can take from
726 	 * physical (i.e. disk-backed) swap.
727 	 */
728 	ASSERT(k_anoninfo.ani_max >= k_anoninfo.ani_phys_resv);
729 	pswap_pages = k_anoninfo.ani_max - k_anoninfo.ani_phys_resv;
730 
731 	ANON_PRINT(A_RESV,
732 	    ("anon_resvmem: npages %lu takemem %u pswap %lu caller %p\n",
733 	    npages, takemem, pswap_pages, (void *)caller()));
734 
735 	if (npages <= pswap_pages) {
736 		/*
737 		 * we have enough space on a physical swap
738 		 */
739 		if (takemem)
740 			k_anoninfo.ani_phys_resv += npages;
741 		mutex_exit(&anoninfo_lock);
742 		return (1);
743 	} else if (pswap_pages != 0) {
744 		/*
745 		 * we have some space on a physical swap
746 		 */
747 		if (takemem) {
748 			/*
749 			 * use up remainder of phys swap
750 			 */
751 			k_anoninfo.ani_phys_resv += pswap_pages;
752 			ASSERT(k_anoninfo.ani_phys_resv == k_anoninfo.ani_max);
753 		}
754 	}
755 	/*
756 	 * since (npages > pswap_pages) we need mem swap
757 	 * mswap_pages is the number of pages needed from availrmem
758 	 */
759 	ASSERT(npages > pswap_pages);
760 	mswap_pages = npages - pswap_pages;
761 
762 	ANON_PRINT(A_RESV, ("anon_resvmem: need %ld pages from memory\n",
763 	    mswap_pages));
764 
765 	/*
766 	 * priv processes can reserve memory as swap as long as availrmem
767 	 * remains greater than swapfs_minfree; in the case of non-priv
768 	 * processes, memory can be reserved as swap only if availrmem
769 	 * doesn't fall below (swapfs_minfree + swapfs_reserve). Thus,
770 	 * swapfs_reserve amount of memswap is not available to non-priv
771 	 * processes. This protects daemons such as automounter dying
772 	 * as a result of application processes eating away almost entire
773 	 * membased swap. This safeguard becomes useless if apps are run
774 	 * with root access.
775 	 *
776 	 * swapfs_reserve is minimum of 4Mb or 1/16 of physmem.
777 	 *
778 	 */
779 	mutex_enter(&freemem_lock);
780 	if (availrmem > (swapfs_minfree + swapfs_reserve + mswap_pages) ||
781 		(availrmem > (swapfs_minfree + mswap_pages) &&
782 		secpolicy_resource(CRED()) == 0)) {
783 
784 		if (takemem) {
785 			/*
786 			 * Take the memory from the rest of the system.
787 			 */
788 			availrmem -= mswap_pages;
789 			mutex_exit(&freemem_lock);
790 			k_anoninfo.ani_mem_resv += mswap_pages;
791 			ANI_ADD(mswap_pages);
792 			ANON_PRINT((A_RESV | A_MRESV),
793 				("anon_resvmem: took %ld pages of availrmem\n",
794 				mswap_pages));
795 		} else {
796 			mutex_exit(&freemem_lock);
797 		}
798 
799 		ASSERT(k_anoninfo.ani_max >= k_anoninfo.ani_phys_resv);
800 		mutex_exit(&anoninfo_lock);
801 		return (1);
802 
803 	} else {
804 		/*
805 		 * Fail if not enough memory
806 		 */
807 
808 		if (takemem) {
809 			k_anoninfo.ani_phys_resv -= pswap_pages;
810 		}
811 
812 		mutex_exit(&freemem_lock);
813 		mutex_exit(&anoninfo_lock);
814 		ANON_PRINT(A_RESV,
815 			("anon_resvmem: not enough space from swapfs\n"));
816 		return (0);
817 	}
818 }
819 
820 
821 /*
822  * Give back an anon reservation.
823  */
824 void
825 anon_unresv(size_t size)
826 {
827 	pgcnt_t npages = btopr(size);
828 	spgcnt_t mem_free_pages = 0;
829 	pgcnt_t phys_free_slots;
830 #ifdef	ANON_DEBUG
831 	pgcnt_t mem_resv;
832 #endif
833 
834 	mutex_enter(&anoninfo_lock);
835 
836 	ASSERT(k_anoninfo.ani_mem_resv >= k_anoninfo.ani_locked_swap);
837 	/*
838 	 * If some of this reservation belonged to swapfs
839 	 * give it back to availrmem.
840 	 * ani_mem_resv is the amount of availrmem swapfs has reserved.
841 	 * but some of that memory could be locked by segspt so we can only
842 	 * return non locked ani_mem_resv back to availrmem
843 	 */
844 	if (k_anoninfo.ani_mem_resv > k_anoninfo.ani_locked_swap) {
845 		ANON_PRINT((A_RESV | A_MRESV),
846 		    ("anon_unresv: growing availrmem by %ld pages\n",
847 		    MIN(k_anoninfo.ani_mem_resv, npages)));
848 
849 		mem_free_pages = MIN((spgcnt_t)(k_anoninfo.ani_mem_resv -
850 		    k_anoninfo.ani_locked_swap), npages);
851 		mutex_enter(&freemem_lock);
852 		availrmem += mem_free_pages;
853 		mutex_exit(&freemem_lock);
854 		k_anoninfo.ani_mem_resv -= mem_free_pages;
855 
856 		ANI_ADD(-mem_free_pages);
857 	}
858 	/*
859 	 * The remainder of the pages is returned to phys swap
860 	 */
861 	ASSERT(npages >= mem_free_pages);
862 	phys_free_slots = npages - mem_free_pages;
863 
864 	if (phys_free_slots) {
865 	    k_anoninfo.ani_phys_resv -= phys_free_slots;
866 	}
867 
868 #ifdef	ANON_DEBUG
869 	mem_resv = k_anoninfo.ani_mem_resv;
870 #endif
871 
872 	ASSERT(k_anoninfo.ani_mem_resv >= k_anoninfo.ani_locked_swap);
873 	ASSERT(k_anoninfo.ani_max >= k_anoninfo.ani_phys_resv);
874 
875 	mutex_exit(&anoninfo_lock);
876 
877 	ANON_PRINT(A_RESV, ("anon_unresv: %lu, tot %lu, caller %p\n",
878 	    npages, mem_resv, (void *)caller()));
879 }
880 
881 /*
882  * Allocate an anon slot and return it with the lock held.
883  */
884 struct anon *
885 anon_alloc(struct vnode *vp, anoff_t off)
886 {
887 	struct anon	*ap;
888 	kmutex_t	*ahm;
889 
890 	ap = kmem_cache_alloc(anon_cache, KM_SLEEP);
891 	if (vp == NULL) {
892 		swap_alloc(ap);
893 	} else {
894 		ap->an_vp = vp;
895 		ap->an_off = off;
896 	}
897 	ap->an_refcnt = 1;
898 	ap->an_pvp = NULL;
899 	ap->an_poff = 0;
900 	ahm = &anonhash_lock[AH_LOCK(ap->an_vp, ap->an_off)];
901 	mutex_enter(ahm);
902 	anon_addhash(ap);
903 	mutex_exit(ahm);
904 	ANI_ADD(-1);
905 	ANON_PRINT(A_ANON, ("anon_alloc: returning ap %p, vp %p\n",
906 	    (void *)ap, (ap ? (void *)ap->an_vp : NULL)));
907 	return (ap);
908 }
909 
910 /*
911  * Decrement the reference count of an anon page.
912  * If reference count goes to zero, free it and
913  * its associated page (if any).
914  */
915 void
916 anon_decref(struct anon *ap)
917 {
918 	page_t *pp;
919 	struct vnode *vp;
920 	anoff_t off;
921 	kmutex_t *ahm;
922 
923 	ahm = &anonhash_lock[AH_LOCK(ap->an_vp, ap->an_off)];
924 	mutex_enter(ahm);
925 	ASSERT(ap->an_refcnt != 0);
926 	if (ap->an_refcnt == 0)
927 		panic("anon_decref: slot count 0");
928 	if (--ap->an_refcnt == 0) {
929 		swap_xlate(ap, &vp, &off);
930 		mutex_exit(ahm);
931 
932 		/*
933 		 * If there is a page for this anon slot we will need to
934 		 * call VN_DISPOSE to get rid of the vp association and
935 		 * put the page back on the free list as really free.
936 		 * Acquire the "exclusive" lock to ensure that any
937 		 * pending i/o always completes before the swap slot
938 		 * is freed.
939 		 */
940 		pp = page_lookup(vp, (u_offset_t)off, SE_EXCL);
941 
942 		/*
943 		 * If there was a page, we've synchronized on it (getting
944 		 * the exclusive lock is as good as gettting the iolock)
945 		 * so now we can free the physical backing store. Also, this
946 		 * is where we would free the name of the anonymous page
947 		 * (swap_free(ap)), a no-op in the current implementation.
948 		 */
949 		mutex_enter(ahm);
950 		ASSERT(ap->an_refcnt == 0);
951 		anon_rmhash(ap);
952 		if (ap->an_pvp)
953 			swap_phys_free(ap->an_pvp, ap->an_poff, PAGESIZE);
954 		mutex_exit(ahm);
955 
956 		if (pp != NULL) {
957 			/*LINTED: constant in conditional context */
958 			VN_DISPOSE(pp, B_INVAL, 0, kcred);
959 		}
960 		ANON_PRINT(A_ANON, ("anon_decref: free ap %p, vp %p\n",
961 		    (void *)ap, (void *)ap->an_vp));
962 		kmem_cache_free(anon_cache, ap);
963 
964 		ANI_ADD(1);
965 	} else {
966 		mutex_exit(ahm);
967 	}
968 }
969 
970 static int
971 anon_share(struct anon_hdr *ahp, ulong_t anon_index, pgcnt_t nslots)
972 {
973 	struct anon *ap;
974 
975 	while (nslots-- > 0) {
976 		if ((ap = anon_get_ptr(ahp, anon_index)) != NULL &&
977 		    ap->an_refcnt > 1)
978 			return (1);
979 		anon_index++;
980 	}
981 
982 	return (0);
983 }
984 
985 static void
986 anon_decref_pages(
987 	struct anon_hdr *ahp,
988 	ulong_t an_idx,
989 	uint_t szc)
990 {
991 	struct anon *ap = anon_get_ptr(ahp, an_idx);
992 	kmutex_t *ahmpages = NULL;
993 	page_t *pp;
994 	pgcnt_t pgcnt = page_get_pagecnt(szc);
995 	pgcnt_t i;
996 	struct vnode *vp;
997 	anoff_t   off;
998 	kmutex_t *ahm;
999 #ifdef DEBUG
1000 	int refcnt = 1;
1001 #endif
1002 
1003 	ASSERT(szc != 0);
1004 	ASSERT(IS_P2ALIGNED(pgcnt, pgcnt));
1005 	ASSERT(IS_P2ALIGNED(an_idx, pgcnt));
1006 
1007 	VM_STAT_ADD(anonvmstats.decrefpages[0]);
1008 
1009 	if (ap != NULL) {
1010 		ahmpages = &anonpages_hash_lock[AH_LOCK(ap->an_vp, ap->an_off)];
1011 		mutex_enter(ahmpages);
1012 		ASSERT((refcnt = ap->an_refcnt) != 0);
1013 		VM_STAT_ADD(anonvmstats.decrefpages[1]);
1014 		if (ap->an_refcnt == 1) {
1015 			VM_STAT_ADD(anonvmstats.decrefpages[2]);
1016 			ASSERT(!anon_share(ahp, an_idx, pgcnt));
1017 			mutex_exit(ahmpages);
1018 			ahmpages = NULL;
1019 		}
1020 	}
1021 
1022 	i = 0;
1023 	while (i < pgcnt) {
1024 		if ((ap = anon_get_ptr(ahp, an_idx + i)) == NULL) {
1025 			ASSERT(refcnt == 1 && ahmpages == NULL);
1026 			i++;
1027 			continue;
1028 		}
1029 		ASSERT(ap->an_refcnt == refcnt);
1030 		ASSERT(ahmpages != NULL || ap->an_refcnt == 1);
1031 		ASSERT(ahmpages == NULL || ap->an_refcnt > 1);
1032 
1033 		if (ahmpages == NULL) {
1034 			swap_xlate(ap, &vp, &off);
1035 			pp = page_lookup(vp, (u_offset_t)off, SE_EXCL);
1036 			if (pp == NULL || pp->p_szc == 0) {
1037 				VM_STAT_ADD(anonvmstats.decrefpages[3]);
1038 				ahm = &anonhash_lock[AH_LOCK(ap->an_vp,
1039 				    ap->an_off)];
1040 				(void) anon_set_ptr(ahp, an_idx + i, NULL,
1041 				    ANON_SLEEP);
1042 				mutex_enter(ahm);
1043 				ap->an_refcnt--;
1044 				ASSERT(ap->an_refcnt == 0);
1045 				anon_rmhash(ap);
1046 				if (ap->an_pvp)
1047 					swap_phys_free(ap->an_pvp, ap->an_poff,
1048 					    PAGESIZE);
1049 				mutex_exit(ahm);
1050 				if (pp != NULL) {
1051 					VM_STAT_ADD(anonvmstats.decrefpages[4]);
1052 					/*LINTED*/
1053 					VN_DISPOSE(pp, B_INVAL, 0, kcred);
1054 				}
1055 				kmem_cache_free(anon_cache, ap);
1056 				ANI_ADD(1);
1057 				i++;
1058 			} else {
1059 				pgcnt_t j;
1060 				pgcnt_t curpgcnt =
1061 				    page_get_pagecnt(pp->p_szc);
1062 				size_t ppasize = curpgcnt * sizeof (page_t *);
1063 				page_t **ppa = kmem_alloc(ppasize, KM_SLEEP);
1064 				int dispose = 0;
1065 
1066 				VM_STAT_ADD(anonvmstats.decrefpages[5]);
1067 
1068 				ASSERT(pp->p_szc <= szc);
1069 				ASSERT(IS_P2ALIGNED(curpgcnt, curpgcnt));
1070 				ASSERT(IS_P2ALIGNED(i, curpgcnt));
1071 				ASSERT(i + curpgcnt <= pgcnt);
1072 				ASSERT(!(page_pptonum(pp) & (curpgcnt - 1)));
1073 				ppa[0] = pp;
1074 				for (j = i + 1; j < i + curpgcnt; j++) {
1075 					ap = anon_get_ptr(ahp, an_idx + j);
1076 					ASSERT(ap != NULL &&
1077 					    ap->an_refcnt == 1);
1078 					swap_xlate(ap, &vp, &off);
1079 					pp = page_lookup(vp, (u_offset_t)off,
1080 					    SE_EXCL);
1081 					if (pp == NULL)
1082 						panic("anon_decref_pages: "
1083 						    "no page");
1084 
1085 					(void) hat_pageunload(pp,
1086 					    HAT_FORCE_PGUNLOAD);
1087 					ASSERT(pp->p_szc == ppa[0]->p_szc);
1088 					ASSERT(page_pptonum(pp) - 1 ==
1089 					    page_pptonum(ppa[j - i - 1]));
1090 					ppa[j - i] = pp;
1091 					if (ap->an_pvp != NULL &&
1092 					    !vn_matchopval(ap->an_pvp,
1093 						VOPNAME_DISPOSE,
1094 						(fs_generic_func_p)fs_dispose))
1095 						dispose = 1;
1096 				}
1097 				if (!dispose) {
1098 					VM_STAT_ADD(anonvmstats.decrefpages[6]);
1099 					page_destroy_pages(ppa[0]);
1100 				} else {
1101 					VM_STAT_ADD(anonvmstats.decrefpages[7]);
1102 					for (j = 0; j < curpgcnt; j++) {
1103 						ASSERT(PAGE_EXCL(ppa[j]));
1104 						ppa[j]->p_szc = 0;
1105 					}
1106 					for (j = 0; j < curpgcnt; j++) {
1107 						ASSERT(!hat_page_is_mapped(
1108 						    ppa[j]));
1109 						/*LINTED*/
1110 						VN_DISPOSE(ppa[j], B_INVAL, 0,
1111 						    kcred);
1112 					}
1113 				}
1114 				kmem_free(ppa, ppasize);
1115 				for (j = i; j < i + curpgcnt; j++) {
1116 					ap = anon_get_ptr(ahp, an_idx + j);
1117 					ASSERT(ap != NULL &&
1118 					    ap->an_refcnt == 1);
1119 					ahm = &anonhash_lock[AH_LOCK(ap->an_vp,
1120 					    ap->an_off)];
1121 					(void) anon_set_ptr(ahp, an_idx + j,
1122 					    NULL, ANON_SLEEP);
1123 					mutex_enter(ahm);
1124 					ap->an_refcnt--;
1125 					ASSERT(ap->an_refcnt == 0);
1126 					anon_rmhash(ap);
1127 					if (ap->an_pvp)
1128 						swap_phys_free(ap->an_pvp,
1129 							ap->an_poff, PAGESIZE);
1130 					mutex_exit(ahm);
1131 					kmem_cache_free(anon_cache, ap);
1132 					ANI_ADD(1);
1133 				}
1134 				i += curpgcnt;
1135 			}
1136 		} else {
1137 			VM_STAT_ADD(anonvmstats.decrefpages[8]);
1138 			(void) anon_set_ptr(ahp, an_idx + i, NULL, ANON_SLEEP);
1139 			ahm = &anonhash_lock[AH_LOCK(ap->an_vp, ap->an_off)];
1140 			mutex_enter(ahm);
1141 			ap->an_refcnt--;
1142 			mutex_exit(ahm);
1143 			i++;
1144 		}
1145 	}
1146 
1147 	if (ahmpages != NULL) {
1148 		mutex_exit(ahmpages);
1149 	}
1150 }
1151 
1152 /*
1153  * Duplicate references to size bytes worth of anon pages.
1154  * Used when duplicating a segment that contains private anon pages.
1155  * This code assumes that procedure calling this one has already used
1156  * hat_chgprot() to disable write access to the range of addresses that
1157  * that *old actually refers to.
1158  */
1159 void
1160 anon_dup(struct anon_hdr *old, ulong_t old_idx, struct anon_hdr *new,
1161 			ulong_t new_idx, size_t size)
1162 {
1163 	spgcnt_t npages;
1164 	kmutex_t *ahm;
1165 	struct anon *ap;
1166 	ulong_t off;
1167 	ulong_t index;
1168 
1169 	npages = btopr(size);
1170 	while (npages > 0) {
1171 		index = old_idx;
1172 		if ((ap = anon_get_next_ptr(old, &index)) == NULL)
1173 			break;
1174 
1175 		ASSERT(!ANON_ISBUSY(anon_get_slot(old, index)));
1176 		off = index - old_idx;
1177 		npages -= off;
1178 		if (npages <= 0)
1179 			break;
1180 
1181 		(void) anon_set_ptr(new, new_idx + off, ap, ANON_SLEEP);
1182 		ahm = &anonhash_lock[AH_LOCK(ap->an_vp, ap->an_off)];
1183 
1184 		mutex_enter(ahm);
1185 		ap->an_refcnt++;
1186 		mutex_exit(ahm);
1187 
1188 		off++;
1189 		new_idx += off;
1190 		old_idx += off;
1191 		npages--;
1192 	}
1193 }
1194 
1195 /*
1196  * Just like anon_dup but also guarantees there are no holes (unallocated anon
1197  * slots) within any large page region. That means if a large page region is
1198  * empty in the old array it will skip it. If there are 1 or more valid slots
1199  * in the large page region of the old array it will make sure to fill in any
1200  * unallocated ones and also copy them to the new array. If noalloc is 1 large
1201  * page region should either have no valid anon slots or all slots should be
1202  * valid.
1203  */
1204 void
1205 anon_dup_fill_holes(
1206 	struct anon_hdr *old,
1207 	ulong_t old_idx,
1208 	struct anon_hdr *new,
1209 	ulong_t new_idx,
1210 	size_t size,
1211 	uint_t szc,
1212 	int noalloc)
1213 {
1214 	struct anon	*ap;
1215 	spgcnt_t	npages;
1216 	kmutex_t	*ahm, *ahmpages = NULL;
1217 	pgcnt_t		pgcnt, i;
1218 	ulong_t		index, off;
1219 #ifdef DEBUG
1220 	int		refcnt;
1221 #endif
1222 
1223 	ASSERT(szc != 0);
1224 	pgcnt = page_get_pagecnt(szc);
1225 	ASSERT(IS_P2ALIGNED(pgcnt, pgcnt));
1226 	npages = btopr(size);
1227 	ASSERT(IS_P2ALIGNED(npages, pgcnt));
1228 	ASSERT(IS_P2ALIGNED(old_idx, pgcnt));
1229 
1230 	VM_STAT_ADD(anonvmstats.dupfillholes[0]);
1231 
1232 	while (npages > 0) {
1233 		index = old_idx;
1234 
1235 		/*
1236 		 * Find the next valid slot.
1237 		 */
1238 		if (anon_get_next_ptr(old, &index) == NULL)
1239 			break;
1240 
1241 		ASSERT(!ANON_ISBUSY(anon_get_slot(old, index)));
1242 		/*
1243 		 * Now backup index to the beginning of the
1244 		 * current large page region of the old array.
1245 		 */
1246 		index = P2ALIGN(index, pgcnt);
1247 		off = index - old_idx;
1248 		ASSERT(IS_P2ALIGNED(off, pgcnt));
1249 		npages -= off;
1250 		if (npages <= 0)
1251 			break;
1252 
1253 		/*
1254 		 * Fill and copy a large page regions worth
1255 		 * of anon slots.
1256 		 */
1257 		for (i = 0; i < pgcnt; i++) {
1258 			if ((ap = anon_get_ptr(old, index + i)) == NULL) {
1259 				if (noalloc) {
1260 					panic("anon_dup_fill_holes: "
1261 					    "empty anon slot\n");
1262 				}
1263 				VM_STAT_ADD(anonvmstats.dupfillholes[1]);
1264 				ap = anon_alloc(NULL, 0);
1265 				(void) anon_set_ptr(old, index + i, ap,
1266 				    ANON_SLEEP);
1267 			} else if (i == 0) {
1268 				/*
1269 				 * make the increment of all refcnts of all
1270 				 * anon slots of a large page appear atomic by
1271 				 * getting an anonpages_hash_lock for the
1272 				 * first anon slot of a large page.
1273 				 */
1274 				int hash = AH_LOCK(ap->an_vp, ap->an_off);
1275 
1276 				VM_STAT_ADD(anonvmstats.dupfillholes[2]);
1277 
1278 				ahmpages = &anonpages_hash_lock[hash];
1279 				mutex_enter(ahmpages);
1280 				/*LINTED*/
1281 				ASSERT(refcnt = ap->an_refcnt);
1282 
1283 				VM_STAT_COND_ADD(ap->an_refcnt > 1,
1284 				    anonvmstats.dupfillholes[3]);
1285 			}
1286 			(void) anon_set_ptr(new, new_idx + off + i, ap,
1287 			    ANON_SLEEP);
1288 			ahm = &anonhash_lock[AH_LOCK(ap->an_vp, ap->an_off)];
1289 			mutex_enter(ahm);
1290 			ASSERT(ahmpages != NULL || ap->an_refcnt == 1);
1291 			ASSERT(i == 0 || ahmpages == NULL ||
1292 			    refcnt == ap->an_refcnt);
1293 			ap->an_refcnt++;
1294 			mutex_exit(ahm);
1295 		}
1296 		if (ahmpages != NULL) {
1297 			mutex_exit(ahmpages);
1298 			ahmpages = NULL;
1299 		}
1300 		off += pgcnt;
1301 		new_idx += off;
1302 		old_idx += off;
1303 		npages -= pgcnt;
1304 	}
1305 }
1306 
1307 /*
1308  * Used when a segment with a vnode changes szc. similarly to
1309  * anon_dup_fill_holes() makes sure each large page region either has no anon
1310  * slots or all of them. but new slots are created by COWing the file
1311  * pages. on entrance no anon slots should be shared.
1312  */
1313 int
1314 anon_fill_cow_holes(
1315 	struct seg *seg,
1316 	caddr_t addr,
1317 	struct anon_hdr *ahp,
1318 	ulong_t an_idx,
1319 	struct vnode *vp,
1320 	u_offset_t vp_off,
1321 	size_t size,
1322 	uint_t szc,
1323 	uint_t prot,
1324 	struct vpage vpage[],
1325 	struct cred *cred)
1326 {
1327 	struct anon	*ap;
1328 	spgcnt_t	npages;
1329 	pgcnt_t		pgcnt, i;
1330 	ulong_t		index, off;
1331 	int		err = 0;
1332 	int		pageflags = 0;
1333 
1334 	ASSERT(szc != 0);
1335 	pgcnt = page_get_pagecnt(szc);
1336 	ASSERT(IS_P2ALIGNED(pgcnt, pgcnt));
1337 	npages = btopr(size);
1338 	ASSERT(IS_P2ALIGNED(npages, pgcnt));
1339 	ASSERT(IS_P2ALIGNED(an_idx, pgcnt));
1340 
1341 	while (npages > 0) {
1342 		index = an_idx;
1343 
1344 		/*
1345 		 * Find the next valid slot.
1346 		 */
1347 		if (anon_get_next_ptr(ahp, &index) == NULL) {
1348 			break;
1349 		}
1350 
1351 		ASSERT(!ANON_ISBUSY(anon_get_slot(ahp, index)));
1352 		/*
1353 		 * Now backup index to the beginning of the
1354 		 * current large page region of the anon array.
1355 		 */
1356 		index = P2ALIGN(index, pgcnt);
1357 		off = index - an_idx;
1358 		ASSERT(IS_P2ALIGNED(off, pgcnt));
1359 		npages -= off;
1360 		if (npages <= 0)
1361 			break;
1362 		an_idx += off;
1363 		vp_off += ptob(off);
1364 		addr += ptob(off);
1365 		if (vpage != NULL) {
1366 			vpage += off;
1367 		}
1368 
1369 		for (i = 0; i < pgcnt; i++, an_idx++, vp_off += PAGESIZE) {
1370 			if ((ap = anon_get_ptr(ahp, an_idx)) == NULL) {
1371 				page_t *pl[1 + 1];
1372 				page_t *pp;
1373 
1374 				err = VOP_GETPAGE(vp, vp_off, PAGESIZE, NULL,
1375 				    pl, PAGESIZE, seg, addr, S_READ, cred);
1376 				if (err) {
1377 					break;
1378 				}
1379 				if (vpage != NULL) {
1380 					prot = VPP_PROT(vpage);
1381 					pageflags = VPP_ISPPLOCK(vpage) ?
1382 					    LOCK_PAGE : 0;
1383 				}
1384 				pp = anon_private(&ap, seg, addr, prot, pl[0],
1385 					pageflags, cred);
1386 				if (pp == NULL) {
1387 					err = ENOMEM;
1388 					break;
1389 				}
1390 				(void) anon_set_ptr(ahp, an_idx, ap,
1391 				    ANON_SLEEP);
1392 				page_unlock(pp);
1393 			}
1394 			ASSERT(ap->an_refcnt == 1);
1395 			addr += PAGESIZE;
1396 			if (vpage != NULL) {
1397 				vpage++;
1398 			}
1399 		}
1400 		npages -= pgcnt;
1401 	}
1402 
1403 	return (err);
1404 }
1405 
1406 /*
1407  * Free a group of "size" anon pages, size in bytes,
1408  * and clear out the pointers to the anon entries.
1409  */
1410 void
1411 anon_free(struct anon_hdr *ahp, ulong_t index, size_t size)
1412 {
1413 	spgcnt_t npages;
1414 	struct anon *ap;
1415 	ulong_t old;
1416 
1417 	npages = btopr(size);
1418 
1419 	while (npages > 0) {
1420 		old = index;
1421 		if ((ap = anon_get_next_ptr(ahp, &index)) == NULL)
1422 			break;
1423 
1424 		ASSERT(!ANON_ISBUSY(anon_get_slot(ahp, index)));
1425 		npages -= index - old;
1426 		if (npages <= 0)
1427 			break;
1428 
1429 		(void) anon_set_ptr(ahp, index, NULL, ANON_SLEEP);
1430 		anon_decref(ap);
1431 		/*
1432 		 * Bump index and decrement page count
1433 		 */
1434 		index++;
1435 		npages--;
1436 	}
1437 }
1438 
1439 void
1440 anon_free_pages(
1441 	struct anon_hdr *ahp,
1442 	ulong_t an_idx,
1443 	size_t size,
1444 	uint_t szc)
1445 {
1446 	spgcnt_t	npages;
1447 	pgcnt_t		pgcnt;
1448 	ulong_t		index, off;
1449 
1450 	ASSERT(szc != 0);
1451 	pgcnt = page_get_pagecnt(szc);
1452 	ASSERT(IS_P2ALIGNED(pgcnt, pgcnt));
1453 	npages = btopr(size);
1454 	ASSERT(IS_P2ALIGNED(npages, pgcnt));
1455 	ASSERT(IS_P2ALIGNED(an_idx, pgcnt));
1456 
1457 	VM_STAT_ADD(anonvmstats.freepages[0]);
1458 
1459 	while (npages > 0) {
1460 		index = an_idx;
1461 
1462 		/*
1463 		 * Find the next valid slot.
1464 		 */
1465 		if (anon_get_next_ptr(ahp, &index) == NULL)
1466 			break;
1467 
1468 		ASSERT(!ANON_ISBUSY(anon_get_slot(ahp, index)));
1469 		/*
1470 		 * Now backup index to the beginning of the
1471 		 * current large page region of the old array.
1472 		 */
1473 		index = P2ALIGN(index, pgcnt);
1474 		off = index - an_idx;
1475 		ASSERT(IS_P2ALIGNED(off, pgcnt));
1476 		npages -= off;
1477 		if (npages <= 0)
1478 			break;
1479 
1480 		anon_decref_pages(ahp, index, szc);
1481 
1482 		off += pgcnt;
1483 		an_idx += off;
1484 		npages -= pgcnt;
1485 	}
1486 }
1487 
1488 /*
1489  * Make anonymous pages discardable
1490  */
1491 void
1492 anon_disclaim(struct anon_map *amp, ulong_t index, size_t size, int flags)
1493 {
1494 	spgcnt_t npages = btopr(size);
1495 	struct anon *ap;
1496 	struct vnode *vp;
1497 	anoff_t off;
1498 	page_t *pp, *root_pp;
1499 	kmutex_t *ahm;
1500 	pgcnt_t pgcnt;
1501 	ulong_t old_idx, idx, i;
1502 	struct anon_hdr *ahp = amp->ahp;
1503 	anon_sync_obj_t cookie;
1504 
1505 	ASSERT(RW_READ_HELD(&amp->a_rwlock));
1506 	pgcnt = 1;
1507 	for (; npages > 0; index = (pgcnt == 1) ? index + 1:
1508 		P2ROUNDUP(index + 1, pgcnt), npages -= pgcnt) {
1509 
1510 		/*
1511 		 * get anon pointer and index for the first valid entry
1512 		 * in the anon list, starting from "index"
1513 		 */
1514 		old_idx = index;
1515 		if ((ap = anon_get_next_ptr(ahp, &index)) == NULL)
1516 			break;
1517 
1518 		/*
1519 		 * decrement npages by number of NULL anon slots we skipped
1520 		 */
1521 		npages -= index - old_idx;
1522 		if (npages <= 0)
1523 			break;
1524 
1525 		anon_array_enter(amp, index, &cookie);
1526 		ap = anon_get_ptr(ahp, index);
1527 		ASSERT(ap != NULL);
1528 
1529 		/*
1530 		 * Get anonymous page and try to lock it SE_EXCL;
1531 		 * For non blocking case if we couldn't grab the lock
1532 		 * we skip to next page.
1533 		 * For blocking case (ANON_PGLOOKUP_BLK) block
1534 		 * until we grab SE_EXCL lock.
1535 		 */
1536 		swap_xlate(ap, &vp, &off);
1537 		if (flags & ANON_PGLOOKUP_BLK)
1538 			pp = page_lookup_create(vp, (u_offset_t)off,
1539 			    SE_EXCL, NULL, NULL, SE_EXCL_WANTED);
1540 		else
1541 			pp = page_lookup_nowait(vp, (u_offset_t)off, SE_EXCL);
1542 		if (pp == NULL) {
1543 			segadvstat.MADV_FREE_miss.value.ul++;
1544 			pgcnt = 1;
1545 			anon_array_exit(&cookie);
1546 			continue;
1547 		}
1548 		pgcnt = page_get_pagecnt(pp->p_szc);
1549 
1550 		/*
1551 		 * we cannot free a page which is permanently locked.
1552 		 * The page_struct_lock need not be acquired to examine
1553 		 * these fields since the page has an "exclusive" lock.
1554 		 */
1555 		if (pp->p_lckcnt != 0 || pp->p_cowcnt != 0) {
1556 			page_unlock(pp);
1557 			segadvstat.MADV_FREE_miss.value.ul++;
1558 			anon_array_exit(&cookie);
1559 			continue;
1560 		}
1561 
1562 		ahm = &anonhash_lock[AH_LOCK(vp, off)];
1563 		mutex_enter(ahm);
1564 		ASSERT(ap->an_refcnt != 0);
1565 		/*
1566 		 * skip this one if copy-on-write is not yet broken.
1567 		 */
1568 		if (ap->an_refcnt > 1) {
1569 			mutex_exit(ahm);
1570 			page_unlock(pp);
1571 			segadvstat.MADV_FREE_miss.value.ul++;
1572 			anon_array_exit(&cookie);
1573 			continue;
1574 		}
1575 
1576 		if (pp->p_szc == 0) {
1577 			pgcnt = 1;
1578 
1579 			/*
1580 			 * free swap slot;
1581 			 */
1582 			if (ap->an_pvp) {
1583 				swap_phys_free(ap->an_pvp, ap->an_poff,
1584 				    PAGESIZE);
1585 				ap->an_pvp = NULL;
1586 				ap->an_poff = 0;
1587 			}
1588 			mutex_exit(ahm);
1589 			segadvstat.MADV_FREE_hit.value.ul++;
1590 
1591 			/*
1592 			 * while we are at it, unload all the translations
1593 			 * and attempt to free the page.
1594 			 */
1595 			(void) hat_pageunload(pp, HAT_FORCE_PGUNLOAD);
1596 			/*LINTED: constant in conditional context */
1597 			VN_DISPOSE(pp, B_FREE, 0, kcred);
1598 			anon_array_exit(&cookie);
1599 			continue;
1600 		}
1601 
1602 		pgcnt = page_get_pagecnt(pp->p_szc);
1603 		if (!IS_P2ALIGNED(index, pgcnt)) {
1604 			if (!page_try_demote_pages(pp)) {
1605 				mutex_exit(ahm);
1606 				page_unlock(pp);
1607 				segadvstat.MADV_FREE_miss.value.ul++;
1608 				anon_array_exit(&cookie);
1609 				continue;
1610 			} else {
1611 				pgcnt = 1;
1612 				if (ap->an_pvp) {
1613 					swap_phys_free(ap->an_pvp,
1614 					    ap->an_poff, PAGESIZE);
1615 					    ap->an_pvp = NULL;
1616 					    ap->an_poff = 0;
1617 				}
1618 				mutex_exit(ahm);
1619 				(void) hat_pageunload(pp, HAT_FORCE_PGUNLOAD);
1620 				/*LINTED*/
1621 				VN_DISPOSE(pp, B_FREE, 0, kcred);
1622 				segadvstat.MADV_FREE_hit.value.ul++;
1623 				anon_array_exit(&cookie);
1624 				continue;
1625 			}
1626 		}
1627 		mutex_exit(ahm);
1628 		root_pp = pp;
1629 
1630 		/*
1631 		 * try to lock remaining pages
1632 		 */
1633 		for (idx = 1; idx < pgcnt; idx++) {
1634 			pp++;
1635 			if (!page_trylock(pp, SE_EXCL))
1636 				break;
1637 			if (pp->p_lckcnt != 0 || pp->p_cowcnt != 0) {
1638 				page_unlock(pp);
1639 				break;
1640 			}
1641 		}
1642 
1643 		if (idx == pgcnt) {
1644 			for (i = 0; i < pgcnt; i++) {
1645 				ap = anon_get_ptr(ahp, index + i);
1646 				if (ap == NULL)
1647 					break;
1648 				swap_xlate(ap, &vp, &off);
1649 				ahm = &anonhash_lock[AH_LOCK(vp, off)];
1650 				mutex_enter(ahm);
1651 				ASSERT(ap->an_refcnt != 0);
1652 
1653 				/*
1654 				 * skip this one if copy-on-write
1655 				 * is not yet broken.
1656 				 */
1657 				if (ap->an_refcnt > 1) {
1658 					mutex_exit(ahm);
1659 					goto skiplp;
1660 				}
1661 				if (ap->an_pvp) {
1662 					swap_phys_free(ap->an_pvp,
1663 					    ap->an_poff, PAGESIZE);
1664 					    ap->an_pvp = NULL;
1665 					    ap->an_poff = 0;
1666 				}
1667 				mutex_exit(ahm);
1668 			}
1669 			page_destroy_pages(root_pp);
1670 			segadvstat.MADV_FREE_hit.value.ul += pgcnt;
1671 			anon_array_exit(&cookie);
1672 			continue;
1673 		}
1674 skiplp:
1675 		segadvstat.MADV_FREE_miss.value.ul += pgcnt;
1676 		for (i = 0, pp = root_pp; i < idx; pp++, i++)
1677 			page_unlock(pp);
1678 		anon_array_exit(&cookie);
1679 	}
1680 }
1681 
1682 /*
1683  * Return the kept page(s) and protections back to the segment driver.
1684  */
1685 int
1686 anon_getpage(
1687 	struct anon **app,
1688 	uint_t *protp,
1689 	page_t *pl[],
1690 	size_t plsz,
1691 	struct seg *seg,
1692 	caddr_t addr,
1693 	enum seg_rw rw,
1694 	struct cred *cred)
1695 {
1696 	page_t *pp;
1697 	struct anon *ap = *app;
1698 	struct vnode *vp;
1699 	anoff_t off;
1700 	int err;
1701 	kmutex_t *ahm;
1702 
1703 	swap_xlate(ap, &vp, &off);
1704 
1705 	/*
1706 	 * Lookup the page. If page is being paged in,
1707 	 * wait for it to finish as we must return a list of
1708 	 * pages since this routine acts like the VOP_GETPAGE
1709 	 * routine does.
1710 	 */
1711 	if (pl != NULL && (pp = page_lookup(vp, (u_offset_t)off, SE_SHARED))) {
1712 		ahm = &anonhash_lock[AH_LOCK(ap->an_vp, ap->an_off)];
1713 		mutex_enter(ahm);
1714 		if (ap->an_refcnt == 1)
1715 			*protp = PROT_ALL;
1716 		else
1717 			*protp = PROT_ALL & ~PROT_WRITE;
1718 		mutex_exit(ahm);
1719 		pl[0] = pp;
1720 		pl[1] = NULL;
1721 		return (0);
1722 	}
1723 
1724 	/*
1725 	 * Simply treat it as a vnode fault on the anon vp.
1726 	 */
1727 
1728 	TRACE_3(TR_FAC_VM, TR_ANON_GETPAGE,
1729 		"anon_getpage:seg %x addr %x vp %x",
1730 		seg, addr, vp);
1731 
1732 	err = VOP_GETPAGE(vp, (u_offset_t)off, PAGESIZE, protp, pl, plsz,
1733 	    seg, addr, rw, cred);
1734 
1735 	if (err == 0 && pl != NULL) {
1736 		ahm = &anonhash_lock[AH_LOCK(ap->an_vp, ap->an_off)];
1737 		mutex_enter(ahm);
1738 		if (ap->an_refcnt != 1)
1739 			*protp &= ~PROT_WRITE;	/* make read-only */
1740 		mutex_exit(ahm);
1741 	}
1742 	return (err);
1743 }
1744 
1745 /*
1746  * Creates or returns kept pages to the segment driver.  returns -1 if a large
1747  * page cannot be allocated. returns -2 if some other process has allocated a
1748  * larger page.
1749  *
1750  * For cowfault it will alocate any size pages to fill the requested area to
1751  * avoid partially overwritting anon slots (i.e. sharing only some of the anon
1752  * slots within a large page with other processes). This policy greatly
1753  * simplifies large page freeing (which is only freed when all anon slot
1754  * refcnts are 0).
1755  */
1756 int
1757 anon_map_getpages(
1758 	struct anon_map *amp,
1759 	ulong_t	start_idx,
1760 	uint_t	szc,
1761 	struct seg *seg,
1762 	caddr_t	addr,
1763 	uint_t prot,
1764 	uint_t *protp,
1765 	page_t	*ppa[],
1766 	uint_t	*ppa_szc,
1767 	struct vpage vpage[],
1768 	enum seg_rw rw,
1769 	int brkcow,
1770 	int anypgsz,
1771 	struct cred *cred)
1772 {
1773 	pgcnt_t		pgcnt;
1774 	struct anon	*ap;
1775 	struct vnode	*vp;
1776 	anoff_t		off;
1777 	page_t		*pp, *pl[2], *conpp = NULL;
1778 	caddr_t		vaddr;
1779 	ulong_t		pg_idx, an_idx, i;
1780 	spgcnt_t	nreloc = 0;
1781 	int		prealloc = 1;
1782 	int		err, slotcreate;
1783 	uint_t		vpprot;
1784 
1785 #if !defined(__i386) && !defined(__amd64)
1786 	ASSERT(seg->s_szc != 0);
1787 #endif
1788 	ASSERT(szc <= seg->s_szc);
1789 	ASSERT(ppa_szc != NULL);
1790 	ASSERT(rw != S_CREATE);
1791 
1792 	*protp = PROT_ALL;
1793 
1794 	VM_STAT_ADD(anonvmstats.getpages[0]);
1795 
1796 	if (szc == 0) {
1797 		VM_STAT_ADD(anonvmstats.getpages[1]);
1798 		if ((ap = anon_get_ptr(amp->ahp, start_idx)) != NULL) {
1799 			err = anon_getpage(&ap, protp, pl, PAGESIZE, seg,
1800 			    addr, rw, cred);
1801 			if (err)
1802 				return (err);
1803 			ppa[0] = pl[0];
1804 			if (brkcow == 0 || (*protp & PROT_WRITE)) {
1805 				VM_STAT_ADD(anonvmstats.getpages[2]);
1806 				if (ppa[0]->p_szc != 0) {
1807 					VM_STAT_ADD(anonvmstats.getpages[3]);
1808 					*ppa_szc = ppa[0]->p_szc;
1809 					page_unlock(ppa[0]);
1810 					return (-2);
1811 				}
1812 				return (0);
1813 			}
1814 			panic("anon_map_getpages: cowfault for szc 0");
1815 		} else {
1816 			VM_STAT_ADD(anonvmstats.getpages[4]);
1817 			ppa[0] = anon_zero(seg, addr, &ap, cred);
1818 			if (ppa[0] == NULL)
1819 				return (ENOMEM);
1820 			(void) anon_set_ptr(amp->ahp, start_idx, ap,
1821 			    ANON_SLEEP);
1822 			return (0);
1823 		}
1824 	}
1825 
1826 	pgcnt = page_get_pagecnt(szc);
1827 	ASSERT(IS_P2ALIGNED(pgcnt, pgcnt));
1828 	ASSERT(IS_P2ALIGNED(start_idx, pgcnt));
1829 
1830 	/*
1831 	 * First we check for the case that the requtested large
1832 	 * page or larger page already exists in the system.
1833 	 * Actually we only check if the first constituent page
1834 	 * exists and only preallocate if it's not found.
1835 	 */
1836 	ap = anon_get_ptr(amp->ahp, start_idx);
1837 	if (ap) {
1838 		uint_t pszc;
1839 		swap_xlate(ap, &vp, &off);
1840 		if (page_exists_forreal(vp, (u_offset_t)off, &pszc)) {
1841 			if (pszc > szc) {
1842 				*ppa_szc = pszc;
1843 				return (-2);
1844 			}
1845 			if (pszc == szc) {
1846 				prealloc = 0;
1847 			}
1848 		}
1849 	}
1850 
1851 	VM_STAT_COND_ADD(prealloc == 0, anonvmstats.getpages[5]);
1852 	VM_STAT_COND_ADD(prealloc != 0, anonvmstats.getpages[6]);
1853 
1854 top:
1855 	/*
1856 	 * If a smaller page or no page at all was found,
1857 	 * grab a large page off the freelist.
1858 	 */
1859 	if (prealloc) {
1860 		ASSERT(conpp == NULL);
1861 		if (page_alloc_pages(seg, addr, NULL, ppa, szc, 0) != 0) {
1862 			VM_STAT_ADD(anonvmstats.getpages[7]);
1863 			if (brkcow == 0 ||
1864 			    !anon_share(amp->ahp, start_idx, pgcnt)) {
1865 				/*
1866 				 * If the refcnt's of all anon slots are <= 1
1867 				 * they can't increase since we are holding
1868 				 * the address space's lock. So segvn can
1869 				 * safely decrease szc without risking to
1870 				 * generate a cow fault for the region smaller
1871 				 * than the segment's largest page size.
1872 				 */
1873 				VM_STAT_ADD(anonvmstats.getpages[8]);
1874 				return (-1);
1875 			}
1876 		docow:
1877 			/*
1878 			 * This is a cow fault. Copy away the entire 1 large
1879 			 * page region of this segment.
1880 			 */
1881 			if (szc != seg->s_szc)
1882 				panic("anon_map_getpages: cowfault for szc %d",
1883 				    szc);
1884 			vaddr = addr;
1885 			for (pg_idx = 0, an_idx = start_idx; pg_idx < pgcnt;
1886 			    pg_idx++, an_idx++, vaddr += PAGESIZE) {
1887 				if ((ap = anon_get_ptr(amp->ahp, an_idx)) !=
1888 				    NULL) {
1889 					err = anon_getpage(&ap, &vpprot, pl,
1890 					    PAGESIZE, seg, vaddr, rw, cred);
1891 					if (err) {
1892 						for (i = 0; i < pg_idx; i++) {
1893 							if ((pp = ppa[i]) !=
1894 							    NULL)
1895 								page_unlock(pp);
1896 						}
1897 						return (err);
1898 					}
1899 					ppa[pg_idx] = pl[0];
1900 				} else {
1901 					/*
1902 					 * Since this is a cowfault we know
1903 					 * that this address space has a
1904 					 * parent or children which means
1905 					 * anon_dup_fill_holes() has initialized
1906 					 * all anon slots within a large page
1907 					 * region that had at least one anon
1908 					 * slot at the time of fork().
1909 					 */
1910 					panic("anon_map_getpages: "
1911 					    "cowfault but anon slot is empty");
1912 				}
1913 			}
1914 			VM_STAT_ADD(anonvmstats.getpages[9]);
1915 			*protp = PROT_ALL;
1916 			return (anon_map_privatepages(amp, start_idx, szc, seg,
1917 			    addr, prot, ppa, vpage, anypgsz, cred));
1918 		}
1919 	}
1920 
1921 	VM_STAT_ADD(anonvmstats.getpages[10]);
1922 
1923 	an_idx = start_idx;
1924 	pg_idx = 0;
1925 	vaddr = addr;
1926 	while (pg_idx < pgcnt) {
1927 		slotcreate = 0;
1928 		if ((ap = anon_get_ptr(amp->ahp, an_idx)) == NULL) {
1929 			VM_STAT_ADD(anonvmstats.getpages[11]);
1930 			/*
1931 			 * For us to have decided not to preallocate
1932 			 * would have meant that a large page
1933 			 * was found. Which also means that all of the
1934 			 * anon slots for that page would have been
1935 			 * already created for us.
1936 			 */
1937 			if (prealloc == 0)
1938 				panic("anon_map_getpages: prealloc = 0");
1939 
1940 			slotcreate = 1;
1941 			ap = anon_alloc(NULL, 0);
1942 		}
1943 		swap_xlate(ap, &vp, &off);
1944 
1945 		/*
1946 		 * Now setup our preallocated page to pass down
1947 		 * to swap_getpage().
1948 		 */
1949 		if (prealloc) {
1950 			ASSERT(ppa[pg_idx]->p_szc == szc);
1951 			conpp = ppa[pg_idx];
1952 		}
1953 		ASSERT(prealloc || conpp == NULL);
1954 
1955 		/*
1956 		 * If we just created this anon slot then call
1957 		 * with S_CREATE to prevent doing IO on the page.
1958 		 * Similar to the anon_zero case.
1959 		 */
1960 		err = swap_getconpage(vp, (u_offset_t)off, PAGESIZE,
1961 		    NULL, pl, PAGESIZE, conpp, &nreloc, seg, vaddr,
1962 		    slotcreate == 1 ? S_CREATE : rw, cred);
1963 
1964 		if (err) {
1965 			VM_STAT_ADD(anonvmstats.getpages[12]);
1966 			ASSERT(slotcreate == 0);
1967 			goto io_err;
1968 		}
1969 
1970 		pp = pl[0];
1971 
1972 		if (pp->p_szc != szc) {
1973 			VM_STAT_ADD(anonvmstats.getpages[13]);
1974 			ASSERT(slotcreate == 0);
1975 			ASSERT(prealloc == 0);
1976 			ASSERT(pg_idx == 0);
1977 			if (pp->p_szc > szc) {
1978 				page_unlock(pp);
1979 				VM_STAT_ADD(anonvmstats.getpages[14]);
1980 				return (-2);
1981 			}
1982 			page_unlock(pp);
1983 			prealloc = 1;
1984 			goto top;
1985 		}
1986 
1987 		/*
1988 		 * If we decided to preallocate but VOP_GETPAGE
1989 		 * found a page in the system that satisfies our
1990 		 * request then free up our preallocated large page
1991 		 * and continue looping accross the existing large
1992 		 * page via VOP_GETPAGE.
1993 		 */
1994 		if (prealloc && pp != ppa[pg_idx]) {
1995 			VM_STAT_ADD(anonvmstats.getpages[15]);
1996 			ASSERT(slotcreate == 0);
1997 			ASSERT(pg_idx == 0);
1998 			conpp = NULL;
1999 			prealloc = 0;
2000 			page_free_pages(ppa[0]);
2001 		}
2002 
2003 		if (prealloc && nreloc > 1) {
2004 			/*
2005 			 * we have relocated out of a smaller large page.
2006 			 * skip npgs - 1 iterations and continue which will
2007 			 * increment by one the loop indices.
2008 			 */
2009 			spgcnt_t npgs = nreloc;
2010 
2011 			VM_STAT_ADD(anonvmstats.getpages[16]);
2012 
2013 			ASSERT(pp == ppa[pg_idx]);
2014 			ASSERT(slotcreate == 0);
2015 			ASSERT(pg_idx + npgs <= pgcnt);
2016 			if ((*protp & PROT_WRITE) &&
2017 			    anon_share(amp->ahp, an_idx, npgs)) {
2018 			    *protp &= ~PROT_WRITE;
2019 			}
2020 			pg_idx += npgs;
2021 			an_idx += npgs;
2022 			vaddr += PAGESIZE * npgs;
2023 			continue;
2024 		}
2025 
2026 		VM_STAT_ADD(anonvmstats.getpages[17]);
2027 
2028 		/*
2029 		 * Anon_zero case.
2030 		 */
2031 		if (slotcreate) {
2032 			ASSERT(prealloc);
2033 			pagezero(pp, 0, PAGESIZE);
2034 			CPU_STATS_ADD_K(vm, zfod, 1);
2035 			hat_setrefmod(pp);
2036 		}
2037 
2038 		ASSERT(prealloc == 0 || ppa[pg_idx] == pp);
2039 		ASSERT(prealloc != 0 || PAGE_SHARED(pp));
2040 		ASSERT(prealloc == 0 || PAGE_EXCL(pp));
2041 
2042 		if (pg_idx > 0 &&
2043 		    ((page_pptonum(pp) != page_pptonum(ppa[pg_idx - 1]) + 1) ||
2044 		    (pp->p_szc != ppa[pg_idx - 1]->p_szc)))
2045 			panic("anon_map_getpages: unexpected page");
2046 
2047 		if (prealloc == 0) {
2048 			ppa[pg_idx] = pp;
2049 		}
2050 
2051 		if (ap->an_refcnt > 1) {
2052 			VM_STAT_ADD(anonvmstats.getpages[18]);
2053 			*protp &= ~PROT_WRITE;
2054 		}
2055 
2056 		/*
2057 		 * If this is a new anon slot then initialize
2058 		 * the anon array entry.
2059 		 */
2060 		if (slotcreate) {
2061 			(void) anon_set_ptr(amp->ahp, an_idx, ap, ANON_SLEEP);
2062 		}
2063 		pg_idx++;
2064 		an_idx++;
2065 		vaddr += PAGESIZE;
2066 	}
2067 
2068 	/*
2069 	 * Since preallocated pages come off the freelist
2070 	 * they are locked SE_EXCL. Simply downgrade and return.
2071 	 */
2072 	if (prealloc) {
2073 		VM_STAT_ADD(anonvmstats.getpages[19]);
2074 		conpp = NULL;
2075 		for (pg_idx = 0; pg_idx < pgcnt; pg_idx++) {
2076 			page_downgrade(ppa[pg_idx]);
2077 		}
2078 	}
2079 	ASSERT(conpp == NULL);
2080 
2081 	if (brkcow == 0 || (*protp & PROT_WRITE)) {
2082 		VM_STAT_ADD(anonvmstats.getpages[20]);
2083 		return (0);
2084 	}
2085 
2086 	if (szc < seg->s_szc)
2087 		panic("anon_map_getpages: cowfault for szc %d", szc);
2088 
2089 	VM_STAT_ADD(anonvmstats.getpages[21]);
2090 
2091 	*protp = PROT_ALL;
2092 	return (anon_map_privatepages(amp, start_idx, szc, seg, addr, prot,
2093 	    ppa, vpage, anypgsz, cred));
2094 io_err:
2095 	/*
2096 	 * We got an IO error somewhere in our large page.
2097 	 * If we were using a preallocated page then just demote
2098 	 * all the constituent pages that we've succeeded with sofar
2099 	 * to PAGESIZE pages and leave them in the system
2100 	 * unlocked.
2101 	 */
2102 
2103 	ASSERT(err != -2 || pg_idx == 0);
2104 
2105 	VM_STAT_COND_ADD(err > 0, anonvmstats.getpages[22]);
2106 	VM_STAT_COND_ADD(err == -1, anonvmstats.getpages[23]);
2107 	VM_STAT_COND_ADD(err == -2, anonvmstats.getpages[24]);
2108 
2109 	if (prealloc) {
2110 		conpp = NULL;
2111 		if (pg_idx > 0) {
2112 			VM_STAT_ADD(anonvmstats.getpages[25]);
2113 			for (i = 0; i < pgcnt; i++) {
2114 				pp = ppa[i];
2115 				ASSERT(PAGE_EXCL(pp));
2116 				ASSERT(pp->p_szc == szc);
2117 				pp->p_szc = 0;
2118 			}
2119 			for (i = 0; i < pg_idx; i++) {
2120 				ASSERT(!hat_page_is_mapped(ppa[i]));
2121 				page_unlock(ppa[i]);
2122 			}
2123 			/*
2124 			 * Now free up the remaining unused constituent
2125 			 * pages.
2126 			 */
2127 			while (pg_idx < pgcnt) {
2128 				ASSERT(!hat_page_is_mapped(ppa[pg_idx]));
2129 				page_free(ppa[pg_idx], 0);
2130 				pg_idx++;
2131 			}
2132 		} else {
2133 			VM_STAT_ADD(anonvmstats.getpages[26]);
2134 			page_free_pages(ppa[0]);
2135 		}
2136 	} else {
2137 		VM_STAT_ADD(anonvmstats.getpages[27]);
2138 		ASSERT(err > 0);
2139 		for (i = 0; i < pg_idx; i++)
2140 			page_unlock(ppa[i]);
2141 	}
2142 	ASSERT(conpp == NULL);
2143 	if (err != -1)
2144 		return (err);
2145 	/*
2146 	 * we are here because we failed to relocate.
2147 	 */
2148 	ASSERT(prealloc);
2149 	if (brkcow == 0 || !anon_share(amp->ahp, start_idx, pgcnt)) {
2150 		VM_STAT_ADD(anonvmstats.getpages[28]);
2151 		return (-1);
2152 	}
2153 	VM_STAT_ADD(anonvmstats.getpages[29]);
2154 	goto docow;
2155 }
2156 
2157 
2158 /*
2159  * Turn a reference to an object or shared anon page
2160  * into a private page with a copy of the data from the
2161  * original page which is always locked by the caller.
2162  * This routine unloads the translation and unlocks the
2163  * original page, if it isn't being stolen, before returning
2164  * to the caller.
2165  *
2166  * NOTE:  The original anon slot is not freed by this routine
2167  *	  It must be freed by the caller while holding the
2168  *	  "anon_map" lock to prevent races which can occur if
2169  *	  a process has multiple lwps in its address space.
2170  */
2171 page_t *
2172 anon_private(
2173 	struct anon **app,
2174 	struct seg *seg,
2175 	caddr_t addr,
2176 	uint_t	prot,
2177 	page_t *opp,
2178 	int oppflags,
2179 	struct cred *cred)
2180 {
2181 	struct anon *old = *app;
2182 	struct anon *new;
2183 	page_t *pp = NULL;
2184 	struct vnode *vp;
2185 	anoff_t off;
2186 	page_t *anon_pl[1 + 1];
2187 	int err;
2188 
2189 	if (oppflags & STEAL_PAGE)
2190 		ASSERT(PAGE_EXCL(opp));
2191 	else
2192 		ASSERT(PAGE_LOCKED(opp));
2193 
2194 	CPU_STATS_ADD_K(vm, cow_fault, 1);
2195 
2196 	/* Kernel probe */
2197 	TNF_PROBE_1(anon_private, "vm pagefault", /* CSTYLED */,
2198 		tnf_opaque,	address,	addr);
2199 
2200 	*app = new = anon_alloc(NULL, 0);
2201 	swap_xlate(new, &vp, &off);
2202 
2203 	if (oppflags & STEAL_PAGE) {
2204 		page_rename(opp, vp, (u_offset_t)off);
2205 		pp = opp;
2206 		TRACE_5(TR_FAC_VM, TR_ANON_PRIVATE,
2207 			"anon_private:seg %p addr %x pp %p vp %p off %lx",
2208 			seg, addr, pp, vp, off);
2209 		hat_setmod(pp);
2210 
2211 		/* bug 4026339 */
2212 		page_downgrade(pp);
2213 		return (pp);
2214 	}
2215 
2216 	/*
2217 	 * Call the VOP_GETPAGE routine to create the page, thereby
2218 	 * enabling the vnode driver to allocate any filesystem
2219 	 * space (e.g., disk block allocation for UFS).  This also
2220 	 * prevents more than one page from being added to the
2221 	 * vnode at the same time.
2222 	 */
2223 	err = VOP_GETPAGE(vp, (u_offset_t)off, PAGESIZE, NULL,
2224 	    anon_pl, PAGESIZE, seg, addr, S_CREATE, cred);
2225 	if (err)
2226 		goto out;
2227 
2228 	pp = anon_pl[0];
2229 
2230 	/*
2231 	 * If the original page was locked, we need to move the lock
2232 	 * to the new page by transfering 'cowcnt/lckcnt' of the original
2233 	 * page to 'cowcnt/lckcnt' of the new page.
2234 	 *
2235 	 * See Statement at the beginning of segvn_lockop() and
2236 	 * comments in page_pp_useclaim() regarding the way
2237 	 * cowcnts/lckcnts are handled.
2238 	 *
2239 	 * Also availrmem must be decremented up front for read only mapping
2240 	 * before calling page_pp_useclaim. page_pp_useclaim will bump it back
2241 	 * if availrmem did not need to be decremented after all.
2242 	 */
2243 	if (oppflags & LOCK_PAGE) {
2244 		if ((prot & PROT_WRITE) == 0) {
2245 			mutex_enter(&freemem_lock);
2246 			if (availrmem > pages_pp_maximum) {
2247 				availrmem--;
2248 				pages_useclaim++;
2249 			} else {
2250 				mutex_exit(&freemem_lock);
2251 				goto out;
2252 			}
2253 			mutex_exit(&freemem_lock);
2254 		}
2255 		page_pp_useclaim(opp, pp, prot & PROT_WRITE);
2256 	}
2257 
2258 	/*
2259 	 * Now copy the contents from the original page,
2260 	 * which is locked and loaded in the MMU by
2261 	 * the caller to prevent yet another page fault.
2262 	 */
2263 	ppcopy(opp, pp);		/* XXX - should set mod bit in here */
2264 
2265 	hat_setrefmod(pp);		/* mark as modified */
2266 
2267 	/*
2268 	 * Unload the old translation.
2269 	 */
2270 	hat_unload(seg->s_as->a_hat, addr, PAGESIZE, HAT_UNLOAD);
2271 
2272 	/*
2273 	 * Free unmapped, unmodified original page.
2274 	 * or release the lock on the original page,
2275 	 * otherwise the process will sleep forever in
2276 	 * anon_decref() waiting for the "exclusive" lock
2277 	 * on the page.
2278 	 */
2279 	(void) page_release(opp, 1);
2280 
2281 	/*
2282 	 * we are done with page creation so downgrade the new
2283 	 * page's selock to shared, this helps when multiple
2284 	 * as_fault(...SOFTLOCK...) are done to the same
2285 	 * page(aio)
2286 	 */
2287 	page_downgrade(pp);
2288 
2289 	/*
2290 	 * NOTE:  The original anon slot must be freed by the
2291 	 * caller while holding the "anon_map" lock, if we
2292 	 * copied away from an anonymous page.
2293 	 */
2294 	return (pp);
2295 
2296 out:
2297 	*app = old;
2298 	if (pp)
2299 		page_unlock(pp);
2300 	anon_decref(new);
2301 	page_unlock(opp);
2302 	return ((page_t *)NULL);
2303 }
2304 
2305 int
2306 anon_map_privatepages(
2307 	struct anon_map *amp,
2308 	ulong_t	start_idx,
2309 	uint_t	szc,
2310 	struct seg *seg,
2311 	caddr_t addr,
2312 	uint_t	prot,
2313 	page_t	*ppa[],
2314 	struct vpage vpage[],
2315 	int anypgsz,
2316 	struct cred *cred)
2317 {
2318 	pgcnt_t		pgcnt;
2319 	struct vnode	*vp;
2320 	anoff_t		off;
2321 	page_t		*pl[2], *conpp = NULL;
2322 	int		err;
2323 	int		prealloc = 1;
2324 	struct anon	*ap, *oldap;
2325 	caddr_t		vaddr;
2326 	page_t		*pplist, *pp;
2327 	ulong_t		pg_idx, an_idx;
2328 	spgcnt_t	nreloc = 0;
2329 	int		pagelock = 0;
2330 	kmutex_t	*ahmpages = NULL;
2331 #ifdef DEBUG
2332 	int		refcnt;
2333 #endif
2334 
2335 	ASSERT(szc != 0);
2336 	ASSERT(szc == seg->s_szc);
2337 
2338 	VM_STAT_ADD(anonvmstats.privatepages[0]);
2339 
2340 	pgcnt = page_get_pagecnt(szc);
2341 	ASSERT(IS_P2ALIGNED(pgcnt, pgcnt));
2342 	ASSERT(IS_P2ALIGNED(start_idx, pgcnt));
2343 
2344 	ASSERT(amp != NULL);
2345 	ap = anon_get_ptr(amp->ahp, start_idx);
2346 	ASSERT(ap == NULL || ap->an_refcnt >= 1);
2347 
2348 	VM_STAT_COND_ADD(ap == NULL, anonvmstats.privatepages[1]);
2349 
2350 	/*
2351 	 * Now try and allocate the large page. If we fail then just
2352 	 * let VOP_GETPAGE give us PAGESIZE pages. Normally we let
2353 	 * the caller make this decision but to avoid added complexity
2354 	 * it's simplier to handle that case here.
2355 	 */
2356 	if (anypgsz == -1) {
2357 		VM_STAT_ADD(anonvmstats.privatepages[2]);
2358 		prealloc = 0;
2359 	} else if (page_alloc_pages(seg, addr, &pplist, NULL, szc,
2360 	    anypgsz) != 0) {
2361 		VM_STAT_ADD(anonvmstats.privatepages[3]);
2362 		prealloc = 0;
2363 	}
2364 
2365 	/*
2366 	 * make the decrement of all refcnts of all
2367 	 * anon slots of a large page appear atomic by
2368 	 * getting an anonpages_hash_lock for the
2369 	 * first anon slot of a large page.
2370 	 */
2371 	if (ap != NULL) {
2372 		ahmpages = &anonpages_hash_lock[AH_LOCK(ap->an_vp,
2373 		    ap->an_off)];
2374 		mutex_enter(ahmpages);
2375 		if (ap->an_refcnt == 1) {
2376 			VM_STAT_ADD(anonvmstats.privatepages[4]);
2377 			ASSERT(!anon_share(amp->ahp, start_idx, pgcnt));
2378 			mutex_exit(ahmpages);
2379 
2380 			if (prealloc) {
2381 				page_free_replacement_page(pplist);
2382 				page_create_putback(pgcnt);
2383 			}
2384 			ASSERT(ppa[0]->p_szc <= szc);
2385 			if (ppa[0]->p_szc == szc) {
2386 				VM_STAT_ADD(anonvmstats.privatepages[5]);
2387 				return (0);
2388 			}
2389 			for (pg_idx = 0; pg_idx < pgcnt; pg_idx++) {
2390 				ASSERT(ppa[pg_idx] != NULL);
2391 				page_unlock(ppa[pg_idx]);
2392 			}
2393 			return (-1);
2394 		}
2395 	}
2396 
2397 	/*
2398 	 * If we are passed in the vpage array and this is
2399 	 * not PROT_WRITE then we need to decrement availrmem
2400 	 * up front before we try anything. If we need to and
2401 	 * can't decrement availrmem then its better to fail now
2402 	 * than in the middle of processing the new large page.
2403 	 * page_pp_usclaim() on behalf of each constituent page
2404 	 * below will adjust availrmem back for the cases not needed.
2405 	 */
2406 	if (vpage != NULL && (prot & PROT_WRITE) == 0) {
2407 		for (pg_idx = 0; pg_idx < pgcnt; pg_idx++) {
2408 			if (VPP_ISPPLOCK(&vpage[pg_idx])) {
2409 				pagelock = 1;
2410 				break;
2411 			}
2412 		}
2413 		if (pagelock) {
2414 			VM_STAT_ADD(anonvmstats.privatepages[6]);
2415 			mutex_enter(&freemem_lock);
2416 			if (availrmem >= pages_pp_maximum + pgcnt) {
2417 				availrmem -= pgcnt;
2418 				pages_useclaim += pgcnt;
2419 			} else {
2420 				VM_STAT_ADD(anonvmstats.privatepages[7]);
2421 				mutex_exit(&freemem_lock);
2422 				if (ahmpages != NULL) {
2423 					mutex_exit(ahmpages);
2424 				}
2425 				if (prealloc) {
2426 					page_free_replacement_page(pplist);
2427 					page_create_putback(pgcnt);
2428 				}
2429 				for (pg_idx = 0; pg_idx < pgcnt; pg_idx++)
2430 					if (ppa[pg_idx] != NULL)
2431 						page_unlock(ppa[pg_idx]);
2432 				return (ENOMEM);
2433 			}
2434 			mutex_exit(&freemem_lock);
2435 		}
2436 	}
2437 
2438 	CPU_STATS_ADD_K(vm, cow_fault, pgcnt);
2439 
2440 	VM_STAT_ADD(anonvmstats.privatepages[8]);
2441 
2442 	an_idx = start_idx;
2443 	pg_idx = 0;
2444 	vaddr = addr;
2445 	for (; pg_idx < pgcnt; pg_idx++, an_idx++, vaddr += PAGESIZE) {
2446 		ASSERT(ppa[pg_idx] != NULL);
2447 		oldap = anon_get_ptr(amp->ahp, an_idx);
2448 		ASSERT(ahmpages != NULL || oldap == NULL);
2449 		ASSERT(ahmpages == NULL || oldap != NULL);
2450 		ASSERT(ahmpages == NULL || oldap->an_refcnt > 1);
2451 		ASSERT(ahmpages == NULL || pg_idx != 0 ||
2452 		    (refcnt = oldap->an_refcnt));
2453 		ASSERT(ahmpages == NULL || pg_idx == 0 ||
2454 		    refcnt == oldap->an_refcnt);
2455 
2456 		ap = anon_alloc(NULL, 0);
2457 
2458 		swap_xlate(ap, &vp, &off);
2459 
2460 		/*
2461 		 * Now setup our preallocated page to pass down to
2462 		 * swap_getpage().
2463 		 */
2464 		if (prealloc) {
2465 			pp = pplist;
2466 			page_sub(&pplist, pp);
2467 			conpp = pp;
2468 		}
2469 
2470 		err = swap_getconpage(vp, (u_offset_t)off, PAGESIZE, NULL, pl,
2471 			PAGESIZE, conpp, &nreloc, seg, vaddr, S_CREATE, cred);
2472 
2473 		/*
2474 		 * Impossible to fail this is S_CREATE.
2475 		 */
2476 		if (err)
2477 			panic("anon_map_privatepages: VOP_GETPAGE failed");
2478 
2479 		ASSERT(prealloc ? pp == pl[0] : pl[0]->p_szc == 0);
2480 		ASSERT(prealloc == 0 || nreloc == 1);
2481 
2482 		pp = pl[0];
2483 
2484 		/*
2485 		 * If the original page was locked, we need to move
2486 		 * the lock to the new page by transfering
2487 		 * 'cowcnt/lckcnt' of the original page to 'cowcnt/lckcnt'
2488 		 * of the new page. pg_idx can be used to index
2489 		 * into the vpage array since the caller will guarentee
2490 		 * that vpage struct passed in corresponds to addr
2491 		 * and forward.
2492 		 */
2493 		if (vpage != NULL && VPP_ISPPLOCK(&vpage[pg_idx])) {
2494 			page_pp_useclaim(ppa[pg_idx], pp, prot & PROT_WRITE);
2495 		} else if (pagelock) {
2496 			mutex_enter(&freemem_lock);
2497 			availrmem++;
2498 			pages_useclaim--;
2499 			mutex_exit(&freemem_lock);
2500 		}
2501 
2502 		/*
2503 		 * Now copy the contents from the original page.
2504 		 */
2505 		ppcopy(ppa[pg_idx], pp);
2506 
2507 		hat_setrefmod(pp);		/* mark as modified */
2508 
2509 		/*
2510 		 * Release the lock on the original page,
2511 		 * derement the old slot, and down grade the lock
2512 		 * on the new copy.
2513 		 */
2514 		page_unlock(ppa[pg_idx]);
2515 
2516 		if (!prealloc)
2517 			page_downgrade(pp);
2518 
2519 		ppa[pg_idx] = pp;
2520 
2521 		/*
2522 		 * Now reflect the copy in the new anon array.
2523 		 */
2524 		ASSERT(ahmpages == NULL || oldap->an_refcnt > 1);
2525 		if (oldap != NULL)
2526 			anon_decref(oldap);
2527 		(void) anon_set_ptr(amp->ahp, an_idx, ap, ANON_SLEEP);
2528 	}
2529 	if (ahmpages != NULL) {
2530 		mutex_exit(ahmpages);
2531 	}
2532 	ASSERT(prealloc == 0 || pplist == NULL);
2533 	if (prealloc) {
2534 		VM_STAT_ADD(anonvmstats.privatepages[9]);
2535 		for (pg_idx = 0; pg_idx < pgcnt; pg_idx++) {
2536 			page_downgrade(ppa[pg_idx]);
2537 		}
2538 	}
2539 
2540 	/*
2541 	 * Unload the old large page translation.
2542 	 */
2543 	hat_unload(seg->s_as->a_hat, addr, pgcnt << PAGESHIFT, HAT_UNLOAD);
2544 	return (0);
2545 }
2546 
2547 /*
2548  * Allocate a private zero-filled anon page.
2549  */
2550 page_t *
2551 anon_zero(struct seg *seg, caddr_t addr, struct anon **app, struct cred *cred)
2552 {
2553 	struct anon *ap;
2554 	page_t *pp;
2555 	struct vnode *vp;
2556 	anoff_t off;
2557 	page_t *anon_pl[1 + 1];
2558 	int err;
2559 
2560 	/* Kernel probe */
2561 	TNF_PROBE_1(anon_zero, "vm pagefault", /* CSTYLED */,
2562 		tnf_opaque,	address,	addr);
2563 
2564 	*app = ap = anon_alloc(NULL, 0);
2565 	swap_xlate(ap, &vp, &off);
2566 
2567 	/*
2568 	 * Call the VOP_GETPAGE routine to create the page, thereby
2569 	 * enabling the vnode driver to allocate any filesystem
2570 	 * dependent structures (e.g., disk block allocation for UFS).
2571 	 * This also prevents more than on page from being added to
2572 	 * the vnode at the same time since it is locked.
2573 	 */
2574 	err = VOP_GETPAGE(vp, off, PAGESIZE, NULL,
2575 	    anon_pl, PAGESIZE, seg, addr, S_CREATE, cred);
2576 	if (err) {
2577 		*app = NULL;
2578 		anon_decref(ap);
2579 		return (NULL);
2580 	}
2581 	pp = anon_pl[0];
2582 
2583 	pagezero(pp, 0, PAGESIZE);	/* XXX - should set mod bit */
2584 	page_downgrade(pp);
2585 	CPU_STATS_ADD_K(vm, zfod, 1);
2586 	hat_setrefmod(pp);	/* mark as modified so pageout writes back */
2587 	return (pp);
2588 }
2589 
2590 
2591 /*
2592  * Allocate array of private zero-filled anon pages for empty slots
2593  * and kept pages for non empty slots within given range.
2594  *
2595  * NOTE: This rontine will try and use large pages
2596  *	if available and supported by underlying platform.
2597  */
2598 int
2599 anon_map_createpages(
2600 	struct anon_map *amp,
2601 	ulong_t start_index,
2602 	size_t len,
2603 	page_t *ppa[],
2604 	struct seg *seg,
2605 	caddr_t addr,
2606 	enum seg_rw rw,
2607 	struct cred *cred)
2608 {
2609 
2610 	struct anon	*ap;
2611 	struct vnode	*ap_vp;
2612 	page_t		*pp, *pplist, *anon_pl[1 + 1], *conpp = NULL;
2613 	int		err = 0;
2614 	ulong_t		p_index, index;
2615 	pgcnt_t		npgs, pg_cnt;
2616 	spgcnt_t	nreloc = 0;
2617 	uint_t		l_szc, szc, prot;
2618 	anoff_t		ap_off;
2619 	size_t		pgsz;
2620 	lgrp_t		*lgrp;
2621 
2622 	/*
2623 	 * XXX For now only handle S_CREATE.
2624 	 */
2625 	ASSERT(rw == S_CREATE);
2626 
2627 	index	= start_index;
2628 	p_index	= 0;
2629 	npgs = btopr(len);
2630 
2631 	/*
2632 	 * If this platform supports multiple page sizes
2633 	 * then try and allocate directly from the free
2634 	 * list for pages larger than PAGESIZE.
2635 	 *
2636 	 * NOTE:When we have page_create_ru we can stop
2637 	 *	directly allocating from the freelist.
2638 	 */
2639 	l_szc  = seg->s_szc;
2640 	ANON_LOCK_ENTER(&amp->a_rwlock, RW_WRITER);
2641 	while (npgs) {
2642 
2643 		/*
2644 		 * if anon slot already exists
2645 		 *   (means page has been created)
2646 		 * so 1) look up the page
2647 		 *    2) if the page is still in memory, get it.
2648 		 *    3) if not, create a page and
2649 		 *	  page in from physical swap device.
2650 		 * These are done in anon_getpage().
2651 		 */
2652 		ap = anon_get_ptr(amp->ahp, index);
2653 		if (ap) {
2654 			err = anon_getpage(&ap, &prot, anon_pl, PAGESIZE,
2655 			    seg, addr, S_READ, cred);
2656 			if (err) {
2657 				ANON_LOCK_EXIT(&amp->a_rwlock);
2658 				panic("anon_map_createpages: anon_getpage");
2659 			}
2660 			pp = anon_pl[0];
2661 			ppa[p_index++] = pp;
2662 
2663 			addr += PAGESIZE;
2664 			index++;
2665 			npgs--;
2666 			continue;
2667 		}
2668 		/*
2669 		 * Now try and allocate the largest page possible
2670 		 * for the current address and range.
2671 		 * Keep dropping down in page size until:
2672 		 *
2673 		 *	1) Properly aligned
2674 		 *	2) Does not overlap existing anon pages
2675 		 *	3) Fits in remaining range.
2676 		 *	4) able to allocate one.
2677 		 *
2678 		 * NOTE: XXX When page_create_ru is completed this code
2679 		 *	 will change.
2680 		 */
2681 		szc    = l_szc;
2682 		pplist = NULL;
2683 		pg_cnt = 0;
2684 		while (szc) {
2685 			pgsz	= page_get_pagesize(szc);
2686 			pg_cnt	= pgsz >> PAGESHIFT;
2687 			if (IS_P2ALIGNED(addr, pgsz) && pg_cnt <= npgs &&
2688 				anon_pages(amp->ahp, index, pg_cnt) == 0) {
2689 				/*
2690 				 * XXX
2691 				 * Since we are faking page_create()
2692 				 * we also need to do the freemem and
2693 				 * pcf accounting.
2694 				 */
2695 				(void) page_create_wait(pg_cnt, PG_WAIT);
2696 
2697 				/*
2698 				 * Get lgroup to allocate next page of shared
2699 				 * memory from and use it to specify where to
2700 				 * allocate the physical memory
2701 				 */
2702 				lgrp = lgrp_mem_choose(seg, addr, pgsz);
2703 
2704 				pplist = page_get_freelist(
2705 				    (struct vnode *)NULL, (u_offset_t)0, seg,
2706 				    addr, pgsz, 0, lgrp);
2707 
2708 				if (pplist == NULL) {
2709 					page_create_putback(pg_cnt);
2710 				}
2711 
2712 				/*
2713 				 * If a request for a page of size
2714 				 * larger than PAGESIZE failed
2715 				 * then don't try that size anymore.
2716 				 */
2717 				if (pplist == NULL) {
2718 					l_szc = szc - 1;
2719 				} else {
2720 					break;
2721 				}
2722 			}
2723 			szc--;
2724 		}
2725 
2726 		/*
2727 		 * If just using PAGESIZE pages then don't
2728 		 * directly allocate from the free list.
2729 		 */
2730 		if (pplist == NULL) {
2731 			ASSERT(szc == 0);
2732 			pp = anon_zero(seg, addr, &ap, cred);
2733 			if (pp == NULL) {
2734 				ANON_LOCK_EXIT(&amp->a_rwlock);
2735 				panic("anon_map_createpages: anon_zero");
2736 			}
2737 			ppa[p_index++] = pp;
2738 
2739 			ASSERT(anon_get_ptr(amp->ahp, index) == NULL);
2740 			(void) anon_set_ptr(amp->ahp, index, ap, ANON_SLEEP);
2741 
2742 			addr += PAGESIZE;
2743 			index++;
2744 			npgs--;
2745 			continue;
2746 		}
2747 
2748 		/*
2749 		 * pplist is a list of pg_cnt PAGESIZE pages.
2750 		 * These pages are locked SE_EXCL since they
2751 		 * came directly off the free list.
2752 		 */
2753 		ASSERT(IS_P2ALIGNED(pg_cnt, pg_cnt));
2754 		ASSERT(IS_P2ALIGNED(index, pg_cnt));
2755 		ASSERT(conpp == NULL);
2756 		while (pg_cnt--) {
2757 
2758 			ap = anon_alloc(NULL, 0);
2759 			swap_xlate(ap, &ap_vp, &ap_off);
2760 
2761 			ASSERT(pplist != NULL);
2762 			pp = pplist;
2763 			page_sub(&pplist, pp);
2764 			PP_CLRFREE(pp);
2765 			PP_CLRAGED(pp);
2766 			conpp = pp;
2767 
2768 			err = swap_getconpage(ap_vp, ap_off, PAGESIZE,
2769 			    (uint_t *)NULL, anon_pl, PAGESIZE, conpp, &nreloc,
2770 			    seg, addr, S_CREATE, cred);
2771 
2772 			if (err) {
2773 				ANON_LOCK_EXIT(&amp->a_rwlock);
2774 				panic("anon_map_createpages: S_CREATE");
2775 			}
2776 
2777 			ASSERT(anon_pl[0] == pp);
2778 			ASSERT(nreloc == 1);
2779 			pagezero(pp, 0, PAGESIZE);
2780 			CPU_STATS_ADD_K(vm, zfod, 1);
2781 			hat_setrefmod(pp);
2782 
2783 			ASSERT(anon_get_ptr(amp->ahp, index) == NULL);
2784 			(void) anon_set_ptr(amp->ahp, index, ap, ANON_SLEEP);
2785 
2786 			ppa[p_index++] = pp;
2787 
2788 			addr += PAGESIZE;
2789 			index++;
2790 			npgs--;
2791 		}
2792 		conpp = NULL;
2793 		pg_cnt	= pgsz >> PAGESHIFT;
2794 		p_index = p_index - pg_cnt;
2795 		while (pg_cnt--) {
2796 			page_downgrade(ppa[p_index++]);
2797 		}
2798 	}
2799 	ANON_LOCK_EXIT(&amp->a_rwlock);
2800 	return (0);
2801 }
2802 
2803 int
2804 anon_map_demotepages(
2805 	struct anon_map *amp,
2806 	ulong_t	start_idx,
2807 	struct seg *seg,
2808 	caddr_t addr,
2809 	uint_t prot,
2810 	struct vpage vpage[],
2811 	struct cred *cred)
2812 {
2813 	struct anon	*ap;
2814 	uint_t		szc = seg->s_szc;
2815 	pgcnt_t		pgcnt = page_get_pagecnt(szc);
2816 	size_t		ppasize = pgcnt * sizeof (page_t *);
2817 	page_t		**ppa = kmem_alloc(ppasize, KM_SLEEP);
2818 	page_t		*pp;
2819 	page_t		*pl[2];
2820 	pgcnt_t		i, pg_idx;
2821 	ulong_t		an_idx;
2822 	caddr_t		vaddr;
2823 	kmutex_t	*ahmpages = NULL;
2824 	int 		err;
2825 	int		retry = 0;
2826 	uint_t		vpprot;
2827 
2828 	ASSERT(RW_WRITE_HELD(&amp->a_rwlock));
2829 	ASSERT(IS_P2ALIGNED(pgcnt, pgcnt));
2830 	ASSERT(IS_P2ALIGNED(start_idx, pgcnt));
2831 	ASSERT(ppa != NULL);
2832 
2833 	VM_STAT_ADD(anonvmstats.demotepages[0]);
2834 
2835 	ap = anon_get_ptr(amp->ahp, start_idx);
2836 	if (ap != NULL) {
2837 		VM_STAT_ADD(anonvmstats.demotepages[1]);
2838 		ahmpages = &anonpages_hash_lock[AH_LOCK(ap->an_vp, ap->an_off)];
2839 		mutex_enter(ahmpages);
2840 	}
2841 top:
2842 	if (ap == NULL || ap->an_refcnt <= 1) {
2843 		int root = 0;
2844 		pgcnt_t npgs, curnpgs = 0;
2845 
2846 		VM_STAT_ADD(anonvmstats.demotepages[2]);
2847 
2848 		ASSERT(retry == 0 || ap != NULL);
2849 
2850 		if (ahmpages != NULL)
2851 			mutex_exit(ahmpages);
2852 		an_idx = start_idx;
2853 		for (i = 0; i < pgcnt; i++, an_idx++) {
2854 			ap = anon_get_ptr(amp->ahp, an_idx);
2855 			if (ap != NULL) {
2856 				ASSERT(ap->an_refcnt == 1);
2857 				pp = ppa[i] = page_lookup(ap->an_vp, ap->an_off,
2858 				    SE_EXCL);
2859 				if (pp != NULL) {
2860 					(void) hat_pageunload(pp,
2861 					    HAT_FORCE_PGUNLOAD);
2862 				}
2863 			} else {
2864 				ppa[i] = NULL;
2865 			}
2866 		}
2867 		for (i = 0; i < pgcnt; i++) {
2868 			if ((pp = ppa[i]) != NULL && pp->p_szc != 0) {
2869 				ASSERT(pp->p_szc <= szc);
2870 				if (!root) {
2871 					VM_STAT_ADD(anonvmstats.demotepages[3]);
2872 					if (curnpgs != 0)
2873 						panic("anon_map_demotepages: "
2874 						    "bad large page");
2875 
2876 					root = 1;
2877 					curnpgs = npgs =
2878 					    page_get_pagecnt(pp->p_szc);
2879 
2880 					ASSERT(npgs <= pgcnt);
2881 					ASSERT(IS_P2ALIGNED(npgs, npgs));
2882 					ASSERT(!(page_pptonum(pp) &
2883 					    (npgs - 1)));
2884 				} else {
2885 					ASSERT(i > 0);
2886 					ASSERT(page_pptonum(pp) - 1 ==
2887 					    page_pptonum(ppa[i - 1]));
2888 					if ((page_pptonum(pp) & (npgs - 1)) ==
2889 					    npgs - 1)
2890 						root = 0;
2891 				}
2892 				ASSERT(PAGE_EXCL(pp));
2893 				pp->p_szc = 0;
2894 				curnpgs--;
2895 			}
2896 		}
2897 		if (root != 0 || curnpgs != 0)
2898 			panic("anon_map_demotepages: bad large page");
2899 
2900 		for (i = 0; i < pgcnt; i++) {
2901 			if ((pp = ppa[i]) != NULL) {
2902 				ASSERT(!hat_page_is_mapped(pp));
2903 				ASSERT(pp->p_szc == 0);
2904 				page_unlock(pp);
2905 			}
2906 		}
2907 		kmem_free(ppa, ppasize);
2908 		return (0);
2909 	}
2910 	ASSERT(ahmpages != NULL);
2911 	mutex_exit(ahmpages);
2912 	ahmpages = NULL;
2913 
2914 	VM_STAT_ADD(anonvmstats.demotepages[4]);
2915 
2916 	ASSERT(retry == 0); /* we can be here only once */
2917 
2918 	vaddr = addr;
2919 	for (pg_idx = 0, an_idx = start_idx; pg_idx < pgcnt;
2920 	    pg_idx++, an_idx++, vaddr += PAGESIZE) {
2921 		ap = anon_get_ptr(amp->ahp, an_idx);
2922 		if (ap == NULL)
2923 			panic("anon_map_demotepages: no anon slot");
2924 		err = anon_getpage(&ap, &vpprot, pl, PAGESIZE, seg, vaddr,
2925 		    S_READ, cred);
2926 		if (err) {
2927 			for (i = 0; i < pg_idx; i++) {
2928 				if ((pp = ppa[i]) != NULL)
2929 					page_unlock(pp);
2930 			}
2931 			kmem_free(ppa, ppasize);
2932 			return (err);
2933 		}
2934 		ppa[pg_idx] = pl[0];
2935 	}
2936 
2937 	err = anon_map_privatepages(amp, start_idx, szc, seg, addr, prot, ppa,
2938 	    vpage, -1, cred);
2939 	if (err > 0) {
2940 		VM_STAT_ADD(anonvmstats.demotepages[5]);
2941 		kmem_free(ppa, ppasize);
2942 		return (err);
2943 	}
2944 	ASSERT(err == 0 || err == -1);
2945 	if (err == -1) {
2946 		VM_STAT_ADD(anonvmstats.demotepages[6]);
2947 		retry = 1;
2948 		goto top;
2949 	}
2950 	for (i = 0; i < pgcnt; i++) {
2951 		ASSERT(ppa[i] != NULL);
2952 		if (ppa[i]->p_szc != 0)
2953 			retry = 1;
2954 		page_unlock(ppa[i]);
2955 	}
2956 	if (retry) {
2957 		VM_STAT_ADD(anonvmstats.demotepages[7]);
2958 		goto top;
2959 	}
2960 
2961 	VM_STAT_ADD(anonvmstats.demotepages[8]);
2962 
2963 	kmem_free(ppa, ppasize);
2964 
2965 	return (0);
2966 }
2967 
2968 /*
2969  * Allocate and initialize an anon_map structure for seg
2970  * associating the given swap reservation with the new anon_map.
2971  */
2972 struct anon_map *
2973 anonmap_alloc(size_t size, size_t swresv)
2974 {
2975 	struct anon_map *amp;
2976 
2977 	amp = kmem_cache_alloc(anonmap_cache, KM_SLEEP);
2978 
2979 	amp->refcnt = 1;
2980 	amp->size = size;
2981 
2982 	amp->ahp = anon_create(btopr(size), ANON_SLEEP);
2983 	amp->swresv = swresv;
2984 	amp->locality = 0;
2985 	amp->a_szc = 0;
2986 	return (amp);
2987 }
2988 
2989 void
2990 anonmap_free(struct anon_map *amp)
2991 {
2992 	ASSERT(amp->ahp);
2993 	ASSERT(amp->refcnt == 0);
2994 
2995 	lgrp_shm_policy_fini(amp, NULL);
2996 	anon_release(amp->ahp, btopr(amp->size));
2997 	kmem_cache_free(anonmap_cache, amp);
2998 }
2999 
3000 /*
3001  * Returns true if the app array has some empty slots.
3002  * The offp and lenp paramters are in/out paramters.  On entry
3003  * these values represent the starting offset and length of the
3004  * mapping.  When true is returned, these values may be modified
3005  * to be the largest range which includes empty slots.
3006  */
3007 int
3008 non_anon(struct anon_hdr *ahp, ulong_t anon_idx, u_offset_t *offp,
3009 				size_t *lenp)
3010 {
3011 	ulong_t i, el;
3012 	ssize_t low, high;
3013 	struct anon *ap;
3014 
3015 	low = -1;
3016 	for (i = 0, el = *lenp; i < el; i += PAGESIZE, anon_idx++) {
3017 		ap = anon_get_ptr(ahp, anon_idx);
3018 		if (ap == NULL) {
3019 			if (low == -1)
3020 				low = i;
3021 			high = i;
3022 		}
3023 	}
3024 	if (low != -1) {
3025 		/*
3026 		 * Found at least one non-anon page.
3027 		 * Set up the off and len return values.
3028 		 */
3029 		if (low != 0)
3030 			*offp += low;
3031 		*lenp = high - low + PAGESIZE;
3032 		return (1);
3033 	}
3034 	return (0);
3035 }
3036 
3037 /*
3038  * Return a count of the number of existing anon pages in the anon array
3039  * app in the range (off, off+len). The array and slots must be guaranteed
3040  * stable by the caller.
3041  */
3042 pgcnt_t
3043 anon_pages(struct anon_hdr *ahp, ulong_t anon_index, pgcnt_t nslots)
3044 {
3045 	pgcnt_t cnt = 0;
3046 
3047 	while (nslots-- > 0) {
3048 		if ((anon_get_ptr(ahp, anon_index)) != NULL)
3049 			cnt++;
3050 		anon_index++;
3051 	}
3052 	return (cnt);
3053 }
3054 
3055 /*
3056  * Move reserved phys swap into memory swap (unreserve phys swap
3057  * and reserve mem swap by the same amount).
3058  * Used by segspt when it needs to lock resrved swap npages in memory
3059  */
3060 int
3061 anon_swap_adjust(pgcnt_t npages)
3062 {
3063 	pgcnt_t unlocked_mem_swap;
3064 
3065 	mutex_enter(&anoninfo_lock);
3066 
3067 	ASSERT(k_anoninfo.ani_mem_resv >= k_anoninfo.ani_locked_swap);
3068 	ASSERT(k_anoninfo.ani_max >= k_anoninfo.ani_phys_resv);
3069 
3070 	unlocked_mem_swap = k_anoninfo.ani_mem_resv
3071 					- k_anoninfo.ani_locked_swap;
3072 	if (npages > unlocked_mem_swap) {
3073 		spgcnt_t adjusted_swap = npages - unlocked_mem_swap;
3074 
3075 		/*
3076 		 * if there is not enough unlocked mem swap we take missing
3077 		 * amount from phys swap and give it to mem swap
3078 		 */
3079 		mutex_enter(&freemem_lock);
3080 		if (availrmem < adjusted_swap + segspt_minfree) {
3081 			mutex_exit(&freemem_lock);
3082 			mutex_exit(&anoninfo_lock);
3083 			return (ENOMEM);
3084 		}
3085 		availrmem -= adjusted_swap;
3086 		mutex_exit(&freemem_lock);
3087 
3088 		k_anoninfo.ani_mem_resv += adjusted_swap;
3089 		ASSERT(k_anoninfo.ani_phys_resv >= adjusted_swap);
3090 		k_anoninfo.ani_phys_resv -= adjusted_swap;
3091 
3092 		ANI_ADD(adjusted_swap);
3093 	}
3094 	k_anoninfo.ani_locked_swap += npages;
3095 
3096 	ASSERT(k_anoninfo.ani_mem_resv >= k_anoninfo.ani_locked_swap);
3097 	ASSERT(k_anoninfo.ani_max >= k_anoninfo.ani_phys_resv);
3098 
3099 	mutex_exit(&anoninfo_lock);
3100 
3101 	return (0);
3102 }
3103 
3104 /*
3105  * 'unlocked' reserved mem swap so when it is unreserved it
3106  * can be moved back phys (disk) swap
3107  */
3108 void
3109 anon_swap_restore(pgcnt_t npages)
3110 {
3111 	mutex_enter(&anoninfo_lock);
3112 
3113 	ASSERT(k_anoninfo.ani_locked_swap <= k_anoninfo.ani_mem_resv);
3114 
3115 	ASSERT(k_anoninfo.ani_locked_swap >= npages);
3116 	k_anoninfo.ani_locked_swap -= npages;
3117 
3118 	ASSERT(k_anoninfo.ani_locked_swap <= k_anoninfo.ani_mem_resv);
3119 
3120 	mutex_exit(&anoninfo_lock);
3121 }
3122 
3123 /*
3124  * Return the pointer from the list for a
3125  * specified anon index.
3126  */
3127 ulong_t *
3128 anon_get_slot(struct anon_hdr *ahp, ulong_t an_idx)
3129 {
3130 	struct anon	**app;
3131 	void 		**ppp;
3132 
3133 	ASSERT(an_idx < ahp->size);
3134 
3135 	/*
3136 	 * Single level case.
3137 	 */
3138 	if ((ahp->size <= ANON_CHUNK_SIZE) || (ahp->flags & ANON_ALLOC_FORCE)) {
3139 		return ((ulong_t *)&ahp->array_chunk[an_idx]);
3140 	} else {
3141 
3142 		/*
3143 		 * 2 level case.
3144 		 */
3145 		ppp = &ahp->array_chunk[an_idx >> ANON_CHUNK_SHIFT];
3146 		if (*ppp == NULL) {
3147 			mutex_enter(&ahp->serial_lock);
3148 			ppp = &ahp->array_chunk[an_idx >> ANON_CHUNK_SHIFT];
3149 			if (*ppp == NULL)
3150 				*ppp = kmem_zalloc(PAGESIZE, KM_SLEEP);
3151 			mutex_exit(&ahp->serial_lock);
3152 		}
3153 		app = *ppp;
3154 		return ((ulong_t *)&app[an_idx & ANON_CHUNK_OFF]);
3155 	}
3156 }
3157 
3158 void
3159 anon_array_enter(struct anon_map *amp, ulong_t an_idx, anon_sync_obj_t *sobj)
3160 {
3161 	ulong_t		*ap_slot;
3162 	kmutex_t	*mtx;
3163 	kcondvar_t	*cv;
3164 	int		hash;
3165 
3166 	/*
3167 	 * Use szc to determine anon slot(s) to appear atomic.
3168 	 * If szc = 0, then lock the anon slot and mark it busy.
3169 	 * If szc > 0, then lock the range of slots by getting the
3170 	 * anon_array_lock for the first anon slot, and mark only the
3171 	 * first anon slot busy to represent whole range being busy.
3172 	 */
3173 
3174 	ASSERT(RW_READ_HELD(&amp->a_rwlock));
3175 	an_idx = P2ALIGN(an_idx, page_get_pagecnt(amp->a_szc));
3176 	hash = ANON_ARRAY_HASH(amp, an_idx);
3177 	sobj->sync_mutex = mtx = &anon_array_lock[hash].pad_mutex;
3178 	sobj->sync_cv = cv = &anon_array_cv[hash];
3179 	mutex_enter(mtx);
3180 	ap_slot = anon_get_slot(amp->ahp, an_idx);
3181 	while (ANON_ISBUSY(ap_slot))
3182 		cv_wait(cv, mtx);
3183 	ANON_SETBUSY(ap_slot);
3184 	sobj->sync_data = ap_slot;
3185 	mutex_exit(mtx);
3186 }
3187 
3188 void
3189 anon_array_exit(anon_sync_obj_t *sobj)
3190 {
3191 	mutex_enter(sobj->sync_mutex);
3192 	ASSERT(ANON_ISBUSY(sobj->sync_data));
3193 	ANON_CLRBUSY(sobj->sync_data);
3194 	if (CV_HAS_WAITERS(sobj->sync_cv))
3195 		cv_broadcast(sobj->sync_cv);
3196 	mutex_exit(sobj->sync_mutex);
3197 }
3198